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Abstract

In this study, we propose a new semi-nonparametric (SNP) density model for de-
scribing the density of portfolio returns. This distribution, which we refer to as the
multivariate moments expansion (MME), admits any non-Gaussian (multivariate) dis-
tribution as its basis because it is speci�ed directly in terms of the basis density�s
moments. To obtain the expansion of the Gaussian density, the MME is a reformu-
lation of the multivariate Gram-Charlier (MGC), but the MME is much simpler and
tractable than the MGC when positive transformations are used to produce well-de�ned
densities. As an empirical application, we extend the dynamic conditional equicorre-
lation (DECO) model to an SNP framework using the MME. The resulting model is
parameterized in a feasible manner to admit two-stage consistent estimation and it
represents the DECO as well as the salient non-Gaussian features of portfolio return
distributions. The in- and out-of-sample performance of a MME-DECO model of a
portfolio of 10 assets demonstrate that it can be a useful tool for risk management
purposes.
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1 Introduction

Since the subprime crisis, �nancial markets have experienced signi�cant increases in volatility and

correlation. This new scenario has led to a critical need for risk models that consider the conditional

second moments of portfolio returns as well as the entire portfolio distribution.

Multivariate GARCH-type (MGARCH) processes, which have been comprehensively reviewed

by Bauwens et al. (2006) and Silvennoinen and Terasvirta (2009), represent a general class of

models for capturing portfolio risk dynamics. Research into these models has focused mainly on

the following issues: (i) the so-called �curse of dimensionality�, which is an inherent feature of large

portfolios; (ii) modeling the time-varying structure of correlations among assets (see Engle (2002),

Cappiello et al. (2006), Engle and Kelly (2012), and Clements et al. (2015));1 (iii) the accuracy and

reliability of estimation techniques,2 and (iv) the parsimonious explanation of the dynamics in the

moments of the portfolio return distribution. In the latter case, a Gaussian distribution has been

assumed traditionally because it facilitates the estimation and theoretical analysis of the model.

Although (Gaussian)-MGARCH models can parsimoniously capture the dynamics in the �rst and

second moments of asset return distributions, they cannot fully consider the higher-order moments.

Therefore, the Gaussian assumption may be useful for periods of economic stability, but it certainly

leads to losses in forecasting accuracy during periods of higher volatility when the returns�frequency

accumulates in the tails of the distribution. Thus, the ability of multivariate models to signal

signi�cant departures from normality as quickly and reliably as possible is crucial for measuring

and managing risk in an e¢ cient manner. Alternative distributions have been proposed in previous

studies to address this well-known issue, as follows.

1. Parametric multivariate non-normal distributions, e.g., skewed normal (Azzalini and Dalla

Valle, 1996), Student�s t (Kotz and Nadarajah, 2004), Weibull (Malevergne and Sornette,

2004), and generalized hyperbolic (Fajardo and Farias, 2010). These distributions may be

good alternatives for considering skewness and kurtosis but they lack su¢ cient �exibility to

incorporate higher-order conditional (co)-moments.

2. Copula methods for constructing an implicit multivariate probability density function (pdf)

from any combination of univariate marginals; see Patton (2012) for a survey of copula models

1In addition, see Harris and Mazibas (2013), Aslandis and Casas (2013), and Christo¤ersen et al.

(2012) for details of semi-nonparametric, non-parametric, and copula models with time-varying correlations,

respectively.
2Maximum likelihood techniques based on MGARCH models for asset returns yield consistent quasi-

maximum likelihood estimates under normality. MGARCH with non-normally distributed errors can also

be estimated consistently by maximum likelihood using the three-stage procedure described by Fan et al.

(2014), (also see Fiorentini and Sentana (2007), and Sentana et al. (2008)).
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in econometrics. Although the use of copulas appears to be a highly �exible approach, its

tractability for large dimensions is still a serious drawback.

3. Semi-nonparametric (SNP) densities such as the multivariate Gram-Charlier (MGC) pdfs

of Del Brio et al. (2009, 2011). This approach asymptotically captures the true portfolio

distribution (Phillips, 1977) but it exhibits positivity problems in practical applications,

which is an issue that is usually addressed using Gallant and Nychka (1987) and Gallant and

Tauchen (1989)-type (GNT) transformations. The GNT-MGC pdf is positive for all values

of its parameters, but it is more di¢ cult to implement and to handle theoretically because

its moments become complex nonlinear functions of its parameters.3

In this study, we model the conditional4 portfolio return distribution using a novel SNP family

of multivariate densities called multivariate moments expansion (MME). Our aim is to provide

a relatively simple SNP methodology, which can be applied easily to large portfolios.5 We show

that the gains in simplicity due to the use of MME signi�cantly facilitate the statistical analysis

and empirical application of the density. This simplicity is attributable to the de�nition of MME

polynomials, which are characterized by the di¤erence between the n-th power of the random

variable and the n-th moment of the distribution used as the basis. These polynomials do not

require orthogonality conditions to make the density integrate to one, thereby yielding tractable

parameterizations when implementing GNT transformations.

In general, the MME pdf exhibits the following properties.

1. Flexibility : The empirical performance when �tting skewness and thick wavy tails can be

improved via more accurate expansion for every dimension.6

2. Simplicity: The MME is de�ned in terms of very simple polynomials, which do not require

orthogonality to obtain well-de�ned and tractable distributions.

3See León et al. (2009) for a comprehensive analysis of GNT transformations of univariate SNP

distributions. Alternatively, positivity can also be ensured by parametric constraints (Jondeau and

Rockinger, 2001), where this solution does not modify the density speci�cation but it may lead to

suboptimization and underperformance.
4Note that although we propose the MME to model the conditional portfolio return distribution it can

also be used to directly model the unconditional portfolio distribution.
5The �nancial applications in previous studies of multivariate SNP distributions (e.g., Del Brio et al.,

2009 and 2011) have never gone beyond the bivariate case. However, in this study, we demonstrate the

applicability of our MME model to a portfolio of 10 assets.
6The truncation order can be set endogenously in the estimation procedure. However, if the SNP method

is asymptotically valid, then a larger expansion is closer to the density of the �true�frequency function.
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3. Generality : The MME provides a natural method for expanding any multivariate distribution

with �nite moments up to the truncation order.

4. Positiveness: The MME admits GNT-type reformulations in a straightforward manner to

yield more feasibly parameterized distributions than the MGC.

5. Tractability : When the Gaussian pdf is used as the basis, it formally admits two-

stage maximum likelihood estimation (MLE) to avoid the �curse of dimensionality� when

estimating the dynamic conditional correlation (DCC) (Engle, 2002) and dynamic conditional

equicorrelation (DECO) (Engle and Kelly, 2012) models.

6. Applicability : The simple structure facilitates model implementation, thereby admitting

GARCH-type processes and conditional higher-order (co)-moments. Consequently, it can

be used for a wide variety of applications, which range from capturing the moment dynamics

and their interactions to measuring the risk proportion that corresponds to the (co)-moment

of any desired order. The former may be the basis for obtaining measures of risk contagion

among markets and the latter is useful for portfolio choice theory and risk managers who are

concerned with the optimal allocation of liquid wealth in risky assets.7

The remainder of the article is organized as follows. In Section 2, we de�ne the MME pdf and

discuss its statistical properties in relation to the MGC. In Section 3, we describe the MME-DECO

model. Section 4 considers an empirical in- and out-of-sample application of the MME-DECO

model to a portfolio of 10 assets. In Section 4, we summarize our conclusions. All of the proofs are

provided in the Appendix.

2 The MME distribution

In this section, we introduce the MME. Throughout the characterization of the density, we highlight

theoretical advantages of the MME, such as the simplicity of the polynomial structure and the

capacity to admit expansions of non-Gaussian densities. For convenience, we �rst de�ne the MME

density for the case of uncorrelated variables before considering the more general case of correlated

variables.

2.1 MME for uncorrelated variables

The generalization of a univariate SNP density to the n-dimensional setting (Sarabia and Gómez-

Déniz, 2008) may be achieved in the following two stages: (1) the multivariate pdf is de�ned

7See Eeckhoudt and Schlesinger (2006), Ebert (2011), Ebert and Wiesen (2011) and Ñíguez et al. (2015)

for an overview of the literature on higher-order risk preferences.
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as the product of n independent univariate SNP distributed variables, and (2) a non-diagonal

correlation matrix is incorporated via a linear transformation. This appealing procedure has severe

issues because the number of parameters increases dramatically with both the expansion (m) and

dimension (n) orders, which a¤ects the parameter identi�cation process and the convergence of

MLE algorithms. In this study, we tackle the curse of dimensionality in both of the aforementioned

stages. In stage one, we characterize the multivariate SNP model of uncorrelated variables using a

multivariate pdf of the Samarnov (1966) and Lee (1996) type, the marginals of which are univariate

SNP distributions, but the number of parameters only increases linearly with n.8 It should be

noted that the family of SNP distributions constructed using this procedure are uncorrelated but

not independent (with the exception of the multivariate Gaussian distribution, which is nested in

our general MME speci�cation). In stage two, we implement the two-step estimation of the DCC

and DECO models: (1) the conditional variances are estimated independently and consistently,

and (2) the density parameters and the DECO structure are estimated using the standardized

residuals from step one. We provide more details of the procedures for estimating the DCC-MME

and DECO-MME models in the following sections.

To facilitate comparisons, we consider two families of SNP distributions. The �rst family is

referred to as MGC and it expands a (multivariate) Gaussian density in terms of series of its

derivatives or their Hermite polynomials (HPs) counterparts.9 By construction, the HPs constitute

an orthonormal basis and this property allows us to de�ne density functions even for truncated

(�nite) series. The second family called MME is de�ned for a general sequence of distributions

used as the basis, which involve very simple polynomials that depend directly on the non-central

moments of the basis distributions.

However, positivity is not held in the whole domain in any of those truncated expansions unless

positivity restrictions or transformations are implemented. In particular, both the MGC and MME

de�ned in this section incorporate GNT transformations and they are re-scaled so they can integrate

up to one.10 A remarkable characteristic of these expansions is that straightforward closed forms

exist for the GNT scaling constants, which greatly simpli�es the implementation of the positive

transformations. To proceed with the formal de�nition of these two families of densities, without

loss of generality, we consider the same truncation order, m, for all dimensions n.

8We extend Samarnov-Lee�s framework to both the SNP distributions and the n�variate case.
9HPs are based on Edgeworth and Gram-Charlier (GC) series (see Kendall and Stuart, 1977). Recently,

Withers and Nadarajah (2014) found a dual relation for these expansions in a multivariate framework using

Bell polynomials.
10We use the simplest GNT-type transformation, i.e., squaring every polynomial in the SNP expansion.

Ñíguez and Perote (2012) showed that this transformation is as accurate as other types of GNT

transformations. However, it yields symmetric pdfs unless the distribution employed as the basis of the

expansion is skewed, and thus it is appropriate when the skewness of the data is not severe.
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De�nition 1. Let fxitgni=1 be a sequence of uncorrelated standard Gaussian variables. Then, we
de�ne the joint MGC pdf as,

�(xt;�) =
1

n

"
nY
i=1

� (xit)

#"
nX
i=1

��1i

 
1 +

mX
s=1

�2isHs(xit)
2

!#
; (1)

where xt = (x1t; x2t; : : : ; xnt)
0 2 Rn, � (xit) denotes the N(0,1) pdf, Hs(xit) is the HP such that

ds� (xit) =dx
s
it = (�1)s� (xit)Hs(xit), � is a m � n matrix of parameters with general elements

f�isg, and f�igni=1 is the sequence of scaling constants that makes the density integrate up to one,

�i =

Z "
1 +

mX
s=1

�2isHis(xit)
2

#
� (xit) dxit = 1 +

mX
s=1

�2iss!; 8i = 1; 2; :::; n: (2)

The most relevant characteristics of the MGC, including the marginal pdfs, raw moments, and

cumulative distribution function (cdf), were derived by Del Brio et al. (2011), who also provided a

comparison of this density with other related SNP distributions.

De�nition 2. Let fgi(xit)gni=1 be a sequence of pdfs of zero mean, unit variance, and uncorrelated
variables with E [xrit] =

R
xritgi(xit)dxit = �ir < 1; 8i = 1; 2; : : : ; n and 8r � m. Then, the MME

pdf of xt = (x1t; x2t; : : : ; xnt)0 2 Rn is de�ned as,

F (xt;
) =
1

n

"
nY
i=1

gi (xit)

#"
nX
i=1

w�1i

 
1 +

mX
s=1


2is (x
s
it � �is)

2

!#
; (3)

where 
 is a m�n matrix of parameters with general elements f
isg, and fwigni=1 is the sequence
of scaling constants that makes the density integrate up to one,

wi =

Z "
1 +

mX
s=1


2is (x
s
it � �is)

2

#
gi(xit)dxit = 1 +

mX
s=1


2is(�i;2s � �2is); 8i = 1; 2; :::; n: (4)

We consider the analysis of the statistical properties of the MME pdf in the next section and

in the following, we focus on discussing the di¤erences between the pdfs � and F in De�nitions 1

and 2, respectively.

The �rst di¤erence is due to the polynomial structure of the expansions. The HPs in � are

de�ned in terms of the derivatives of the Gaussian pdf, whereas the polynomials in F are de�ned

as the di¤erence between the �empirical moment� of the distribution and its counterpart in the

distribution used as the basis, Ps(xit) = xsit � �is. Unlike the HPs, the polynomials Ps(xit) are not
orthogonal but they are designed such that they cancel out with integration and thus the function

F integrates up to one.
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If f'i(xit)gni=1 is a sequence of standard Gaussian distributions with non-central moments
denoted as

�
�+is
	n
i=1
, then Hs(xit) can be re-written as a linear combination of P+s (x

s
it) = xsit��+is,

as follows:

Hs(xit) = s!

[s=2]X
k=0

(�1)k
k!(s� 2k)!2k x

s�2k
it = s!

[s=2�1]X
k=0

(�1)k
k!(s� 2k)!2k

h
xs�2kit � �+s�2k

i
=

[s=2�1]X
k=0

ckP
+
s�2k(xit);

(5)

where ck = (�1)ks!=k!(s � 2k)!2k. Therefore, if the standard Gaussian is used as the basis (we
refer to F in this case as F+, i.e., when gi(xit) = � (xit) and �is = �+is 8i = 1; 2; :::; n) and GNT

transformations are not implemented, MGC and the MME yield exactly the same expression, and

thus both are asymptotic representations of a given pdf (see Cramér, 1925). Nevertheless, if GNT

transformations are applied to obtain well-de�ned pdfs, then the MGC and MME become di¤erent

pdfs, where the former has a much simpler structure. This is a very important advantage of the

MME compared with the MGC from theoretical and empirical viewpoints.

The second di¤erence between � and F is due to the distributions used as the basis, where � is

de�ned for expansions of the Gaussian pdf, whereas F is de�ned for any sequence of distributions

fgi(xit)gni=1 with �nite moments up to the expansion order m.11 The large family of MME

distributions represent the parameter �exibility that is inherent in SNP methods, and thus they

are potential instruments for capturing the conditional distributions of portfolios. Nevertheless,

whether the in�nite expansions consider the true distribution, as in the expansion of Gaussian

densities, is still an open question.12 Of particular interest is the expansion of the Student�s t

distribution, which may also be developed in terms of the derivatives of its pdf (see Mauleón and

Perote, 2000, for the univariate case), but it is obtained trivially using the MME as stated in

Equation (6):

F �(xt; �;�) =
1

n

"
nY
i=1

tv (xit)

#"
nX
i=1

 �1i

 
1 +

mX
s=1

�2is (x
s
it � ��is)

2

!#
; (6)

where tv (xit) represents a standard Student�s t with � degrees of freedom; ��is its s� th non-central
moment, i.e. ��is = �+is (� � 2)

s=2�1 =(��s)(��s�2)(��s�4) � � � (��4) 8s even (0 8s odd); � is a
11It should be noted that it is also feasible to expand other continuous and di¤erentiable pdfs in terms of

their own derivatives. In particular, for the Poisson, Gamma, or Beta distributions, these SNP pdfs are the

so-called Gram-Charlier Type B, Laguerre, and Jacobi expansions, respectively (e.g., see Abramowitz and

Stegun, 1972). Nevertheless, their empirical applications and their extensions to the multivariate framework

are uncommon, probably due to tractability reasons.
12The asymptotic properties of the MGC rely on the underlying Taylor expansion (e.g., see Blinnikov

and Moessner (1998) for the Taylor expansion of the GC characteristic function). However, the MME does

not necessarily possess this property for any arbitrary combination of non-Gaussian basis distributions.

Therefore, searching for an appropriate characterization of the space of the basis pdfs that retain the validity

of the resulting MME as an asymptotic approximation of a given frequency function is worthwhile.
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m�n matrix of parameters with general elements f�isg; and  i = 1+
mP

s=1is
�2is(�

�
i;2s���2is ). It should

be noted that the MME expansion using the Gaussian density as the basis is a particular case of

the MME of the Student�s t because the latter converges to the former as � tends to in�nity (since

tv (xit) !
v!1

� (xit) and ��is !
v!1

�+is). Therefore, if GNT-type reformulations are not implemented,

the MME with the Student�s t as the basis generalizes the MGC, and thus it also represents a valid

asymptotic method for approximating any frequency function. Furthermore, it appears that by

expanding a Student�s t, we may account for extreme events with shorter expansions than when

using a Gaussian density as the basis. However, the MME with Student�s t as the basis requires

v > m so the Student�s t moments are well de�ned. These analyses, as well as those of the MME

for other non-Gaussian distributions, are outside the scope of the present study, but they illustrate

how the general formulation of the MME represents a very interesting avenue for future research.

These arguments demonstrate that the MME is a simple, general, �exible, and tractable SNP

method for parsimoniously approximating pdfs such as those of portfolio returns.

2.1.1 MME properties

In this section, we present the main properties of the MME, i.e., up-to-one integration, marginals,

(non-central) moments, cdf, and related copula density. All of the proofs are provided in the

Appendix.

1. The MME is a well de�ned pdf because it is positive (due to the GNT-type of transformation)

and it integrates up to one (Proof 1 in the Appendix).

2. MME marginal pdfs are combinations of a Gaussian and univariate GC pdfs (Proof 2 in the

Appendix).

fi(xit) = gi(xit)

"
n� 1
n

+
1

nwi

 
1 +

mX
s=1


2is (x
s
it � �is)

2

!#
: (7)

3. MME non-central moments are functions of the squared density parameters (Proof 3 in the

Appendix).

E [xrit] =

�
n� 1
n

+
1

nwi

�
�ir +

1

nwi

mX
s=1


2is
�
�i;2s+r + �is(�is�ir � 2�i;s+r)

�
; 8r 2 Z: (8)

4. The MME cdf can be obtained from the univariate Gaussian and moments expansion (ME) cdfs

(Proof 4 in the Appendix).

H(xt) = Pr[x1t � x1; � � � ; xnt � xn] =
1

n

nX
i=1

hi(xi)

24 nY
j=1; j 6=i

Z xj

�1
gj (xjt) dxjt

35 ; (9)
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where hi(xi) denotes the cdf of the corresponding univariate ME distribution evaluated at xi. For

the case of the ME of a Gaussian pdf, this cdf is given by Equations (10) and (11)

hi(xi) = Pr [xi � xi] =

Z xi

�1
w�1i

 
1 +

mX
s=1


2is (x
s
it � �is)

2

!
� (xit) dxit

=

Z xi

�1
� (xit) dxit + w

�1
i � (xi)

nX
s=1


2s
�
2�+s Txit(s)� Txit(2s)

�
; (10)

Txi(s) = xs�1i + (s� 1)xs�3i + (s� 1)(s� 3)xs�5i + : : :+ �+s x
�
i ; (11)

where � = 0 for s odd and � = 1 for s even (see Ñíguez and Perote, 2014, for more details).

5. The MME copula density can be obtained as (Proof 5 in the Appendix):13

c(h1(x1); h2(x2) � � �hn(xn)) =

1

n

�
nP
i=1

w�1i

�
1 +

mP
s=1


2is (x
s
it � �is)

2

��
nQ
i=1

�
n� 1
n

+
1

nwi

�
1 +

mP
s=1


2is (x
s
it � �is)

2

�� : (12)

2.2 MME for correlated variables

We have analyzed the case of the MME conditional distribution for uncorrelated variables, but

portfolio returns exhibit time-varying correlations, which is a feature that can be incorporated

directly into the MME density (De�nition 3) by considering a linear transformation of the following

type:

ut = �
1=2
t xt = DtR

1=2
t xt; (13)

where the (positive de�nite) variance-covariance matrix, �t = �
1=2
t �

1=2
t = DtR

1=2
t R

1=2
t Dt =

DtRtDt, has been decomposed in the diagonal matrix of the conditional deviations, Dt =

diagf�1t; � � � ; �ntg, and the correlation matrix, Rt. Then, the MME density for time-varying

correlations can be de�ned as follows.

De�nition 3. Let ut = (u1t; u2t; : : : ; unt)0 2 Rn be a 0 mean random vector with multivariate pdf

G(ut;�t;�), where �t denotes the conditional variance-covariance matrix, and � is a vector that

contains the density parameters not included in �t. Let gi(uit) denote the i� th marginal density
13An analysis of correspondence between the MME copula and known copula functions can be obtained

in a Monte Carlo simulation according to the following three steps: (1) MME marginals are simulated, (2)

known copula models are �tted to the simulated marginals, and (3) a Kolmogorov�Smirnov-type test is used

to �nd the best �tted known copula for the assumed MME. This experiment is outside the scope of the

present study, but we consider that it would be worthwhile investigating in further research.
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of G(ut;�t;�) and �ir < 1, r � m;8i = 1; 2; : : : ; n is its corresponding r � th order non-central

moment. The MME pdf of ut is de�ned as,

F (ut;
;�t;�) =
1

n
G(ut;�t;�)

nX
i=1

w�1i

"
1 +

mX
s=1


2is (x
s
it � �is)

2

#
; (14)

where 
 is a m � n matrix of parameters with general elements f
isg ; xit is the corresponding
component of the inverse transformation in Equation (13), and wi is the scaling constant in

Equation (4).

The MME in Equation (14) nests the multivariate distribution used as the basis, G(ut;�t;�),

but it also encompasses a wide family of SNP expansions, depending on the basis distribution.

The statistical properties of the MME family of distributions in De�nition 3 may be obtained in

a straightforward manner from their uncorrelated counterparts in De�nition 2 and by considering

the transformation in Equation (13). In fact, the properties described in Section 2.1.1 are still valid

for the inverse transformation, xt = �
�1=2
t ut, and thus no theoretical discussion is necessary at this

point.

More interestingly, the MME distribution that uses Gaussian pdfs as the basis (F+) preserves

the �separability� property introduced by Engle (2002) and Engle and Sheppard (2001), where

the log-likelihood function can be split into the volatility part, LV (ut;�) in Equation (15) and

the log-likelihood of the standardized variables "t = D�1
t ut, which has the MME speci�cation

LF+("t;�;
) in Equation (16),

LV (ut;�) = �1
2

nX
i=1

"
T log(2�) +

TX
t=1

�
ln(�2it) +

u2it
�2it

�#

= �1
2

nX
i=1

[T log(2�) + LVi(uit;�i)] ; (15)

LF+("t;�;
) = �1
2

TX
t=1

(
ln jRtj+ "0tR�1t "t � 2 ln

"
nX
i=1

w�1i

 
1 +

mX
s=1


2is
�
xsit � �+is

�2!#)
;

(16)

where �, � and 
 denote the vectors that contain the parameters of the conditional variances and

correlations and those associated with the MME, respectively (see Proof 6 in the Appendix).

This latter property allows the implementation of two-step MLE to MME-DCC, as follows.

In the �rst step, the parameters of the conditional variances are estimated consistently by

independent quasi-MLE (QMLE). In the second step, the dynamic correlation and the MME

weighting parameters are estimated jointly by maximizing the log-likelihood of the standardized

residuals obtained in the �rst step, i.e., LF+("t; b�;�;
), where b� = argmax fLV (ut;�)g. This

10



simpli�ed estimation procedure was theoretically valid only under Gaussianity until Del Brio et al.

(2011) extended it to the MGC by arguing that the second step is consistent under misspeci�cation

provided that the MGC is a valid asymptotic expansion. In the present study, we go a step further

by extending it to densities of the MME type.

Furthermore, Engle and Kelly (2012) proved that under the conditions given by White (1994,

Theorem 6.11), if DCC is consistent, then DECO will also yield consistent estimations, even under

the misspeci�cation of the correlation matrix. Therefore, the two-step MLE of the MME-DECO

model is consistent and it represents a simpli�ed speci�cation of the correlation structure for the

portfolio dynamics. In the following section, we describe the MME-DECO model in relation to the

explicit transformation (13) linked to the DECO.

3 The MME-DECO model

Let rt 2 Rn in Equation (17) be a random vector of portfolio returns with a conditional distribution
on the information set 
t�1 as an MME with a Gaussian pdf as the basis (F = F+ in De�nition

3, where gi(xit) = � (xit) and �is = �+is 8i = 1; 2; :::; n) (Equation (19)). In the following,

we consider this particular case of the MME distribution. Let the portfolio�s conditional mean

Et(rt) = E(rtj
t�1) = �t(�) and variance Vt(rt) = E(utu
0
tj
t�1) = �t(�;�) be modeled as the

MGARCH process in Equations (18), (20), and (21), where �, �, �, and 
 are the vector/matrices

including the conditional mean, variance, correlation, and density parameters, respectively, and �
is the Hadamard product computed via element-by-element multiplication. We assume the DECO

process for modeling correlations, which states a very simple positive de�nite variance-covariance

matrix that preserves the time-varying nature of correlations. For the sake of clarity, we denote

RDECOt and RDCCt as the DECO and DCC correlation matrices, respectively. Therefore, the

correlation matrix for the standardized returns (Equation (22)) is that of Equation (23). In is

the identity matrix of order n and Jn is an n � n matrix of ones, but imposing the DCC-type

conditional correlations in Equations (24)�(25). eQt replaces the o¤-diagonal elements of Qt with
zeros, although it keeps its main diagonal, and Q is the unconditional covariance matrix of the

standardized residuals. Moreover, DECO sets �t equal to the average pairwise DCC correlations

as in Equation (26), where qij;t is the i� th row and j � th column element of Qt.

rt = �t(�) + ut; (17)

�t(�) = �0 + �
0
1rt�1; (18)

utj
t�1 � F+(0;�t(�;�);
); (19)

�t(�;�) = Dt(�)R
DECO
t (�)Dt(�); (20)

D2
t = diagf�i0g+ diagf�i1g � ut�1u0t�1 + diagf�i2g �D2

t�1; (21)
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"t = D�1
t ut; (22)

RDECOt (�) = (1� �t)In+�tJn; (23)

RDCCt (�) = eQ�1=2t�1 Qt
eQ�1=2t�1 ; (24)

Qt = Q(1� �1 � �2) + �1 eQ1=2t�1"t�1"0t�1 eQ1=2t�1 + �2Qt�1; (25)

�t =
2

n(n� 1)
nP
i=1

nP
j=1;j>i

qij;tp
qii;tqjj;t

; (26)

�t 2
�
�1
n� 1 ; 1

�
; (27)

�1 > 0; �2 > 0; �1 + �2 < 1; (28)

j�i1j < 1; �ij > 0; 8j = 0; 1; 2 and �i1 + �i2 < 1; 8i = 1; :::; n: (29)

The DECO-MMEmodel in Equations (17)�(29) nests the DECOmodel for 
 = 0. Furthermore,

the MGC-DECO model may be de�ned as well as the DECO-MME, but we replace Equation (19)

with utj
t�1 � �(0;�t(�;�);
). All of these DECO models allow for time-varying correlations

with a very simple dynamic structure (which depends only on two parameters, �1 and �2), but

they preserve the same correlation in every period for all assets.14 Furthermore, if Q is a positive

de�nite matrix and under the conditions in Equations (27) and (28), the (MGC-, MME-) DECO

correlation matrix is positive de�nite and mean reverting.

The main problem of the (Q)MLE for the MME-DECO (as well as the MGC-DECO) model

is that it needs an explicit transformation "t = R
1=2
t xt (and its inverse function) such that

Et ["t"
0
t] = R

1=2
t R

1=2
t = Rt = (1� �t)In+ �tJn. Hence, if xt is distributed as described in Equation

(3), then the pdf of "t will be

F+("t;�;
) =
(2�)�n=2

n

���R�1=2t

��� exp��1
2
"0tR

�1
t "t

� nX
i=1

w�1i

 
1 +

mX
s=1


2is
�
xsit � �+is

�2!
: (30)

Given the constraint in Equation (27), it is well known that the inverse of the DECO�s correlation

matrix and its determinant are R�1t = �1In+ �2Jn; where �1 =
��t

(1��t)(1��t+n�t)
and �2 = 1

1��t
; and

jRtj = (1� �t)n�1 (1 + (n� 1) �t), respectively. Moreover, the inverse transformation xt = R
�1=2
t "t

14This assumption may be loosened by considering di¤erent blocks of correlation among the portfolio

assets. The block DECO (Engle and Kelly, 2012) obtained may improve the e¢ ciency of the MLE, but at

the cost of introducing more parameters and complexity into the model. The block DECO is particularly

useful when stocks can be grouped according to similarity, e.g., stocks that belong to the same industry. It

should also be noted that the DECO model might impose a strong restriction on the lower bound to capture

negative correlations when the number of assets is excessively large.
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that retrieves the standardized distribution in Equation (3) can be obtained easily through the

following argument:

x0txt = "0tR
�1=2
t R

�1=2
t "t = "

0
tR

�1
t "t = �1

 
nX
i=1

"it

!2
+ �2

nX
i=1

"2it

= �2

"
nX
i=1

"2it �
n2�t

1� �t + n�t
"2t

#
= �2

nX
i=1

("it � ct"t)2; (31)

where "t = 1
n

nX
i=1

"it and ct is the variable that satis�es
n2�t

1��t+n�t
= 2nct � nc2t .

Then, Equations (32) and (33) allow the direct implementation of the MME-DECO and MGC-

DECO models.15

xit =
1p
1� �t

("it � ct"t); (32)

ct = 1�
s

1� �t
1� �t + n�t

: (33)

This transformation yields a correlation matrix Et [xtx0t] = In provided that all of the o¤-diagonal

elements in Rt are equal to �t (see Proof 8 in the Appendix). Nevertheless, if a dynamic structure

of the DCC type is assumed for the correlation matrix Rt, then further assumptions on �t must

be considered to make both the DCC and DECO correlation structures compatible. In particular,

DECO assumes that �t equals the average of the DCC pairwise correlations. Unfortunately, if �t

is set according to DECO, then the transformed vector xt does not necessarily equal In, and thus

the procedure may induce convergence problems in the MLE algorithms.16 However, we argue that

this is a minor shortcoming compared with the gains in simplicity and tractability of the model,

especially for high-dimensional systems. Despite this, Engle and Kelly (2012) showed that DECO

is not only simpler than DCC but it also outperforms it by attenuating any measurement errors

and describing portfolio co-movements more accurately.

Similar to the MME-DCC (see the previous section), the MME-DECO model can be estimated

in two steps, as follows. The �rst step estimates the conditional mean (�) and variance (�)

parameters by applying QML to the univariate series (see the log-likelihood in Equation (15)), and

the second step computes the conditional correlations (�) and the remaining parameters in the

15This transformation allows di¤erent applications, which range from estimation to model evaluation

criteria (e.g., in Section 4, we use it to evaluate multivariate cdfs using the property in Equations (9)�(11)).

An alternative valid transformation as n tends to in�nity is presented in Proof 7 in the Appendix.
16Note that this issue is also present in the Gaussian-DECO because this model can be obtained when the

transformations in Equations (32) and (33) are applied to the standard Gaussian pdf (2�)�n=2 exp
�
� 1
2x

0
txt
�
:
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MME model (
) by maximizing the MME-DECO log-likelihood in Equation (34)).

LDECOF+ ("t; b�;�;
) =
= �1

2

TX
t=1

(
ln
��RDECOt

��+ "0tRDECO�1t "t � 2 ln
"
nX
i=1

w�1i

 
1 +

mX
s=1


2is
�
xsit � �+is

�2!#)

= �1
2

TX
t=1

ln

�
1 + (n� 1�t
(1� �t)1�n

�
� 1

2

TX
t=1

1

1� �t

0@ nX
i=1

"2it �
�t

1 + (n� 1)�t

 
nX
i=1

"it

!21A
+

TX
t=1

ln

8<:
nX
i=1

w�1i

0@1 + mX
s=1


2is

"
(1� �t)�

s
2

"
"it � "t � "t

s
1� �t

1� �t + n�t

#s
� �+is

#21A9=; :

(34)

This two-step procedure works reasonably well for relatively large portfolios provided that the

expansion order m is not excessively large. As is usual in multivariate SNP models, the key to

driving the MLE algorithms to convergence is setting appropriate initial values. Furthermore, the

estimation procedure may be simpli�ed by conditioning the log-likelihood of the MME-DECO on

the estimates obtained for the DECO. The following section provides an example, which illustrates

this procedure for a 10-asset portfolio.

Figure 1 illustrates the shapes available for the bivariate MME-DECO compared with the

MGC-DECO and DECO, as well as its sensitivity to changes in the correlation and the weighting

parameters, 
i4 and 
i6. These �gures show the high �exibility of the (bivariate) models for �tting

any target distribution, even if it is di¤erent for each asset (dimension). This feature is particularly

useful for modeling and forecasting portfolio risk measures because their accuracy is closely linked

to the ability of the model to capture the tail thickness and possible multimodality of the portfolio

return distributions. The plots highlight how the DECO (Figure 1.1) is unable to represent heavy

tails, whereas both the MME-DECO (Figures 1.2�1.4) and MGC-DECO (Figures 1.5 and 1.6)

assign a higher probability to the distribution tails when the truncation order is higher and when

the values of the parameters in the expansion are higher. It is interesting to note the �exibility

of the SNP-DECO models, where in addition to the portfolio conditional correlations, they can

also represent the salient features with respect to the normality of the asset return distributions.

Moreover, the MME-DECO also starts by providing a higher density in the tails to lower values

of the parameters than the MGC-DECO, which can be interpreted as the higher sensitivity of the

density function to the weighting parameters.

[Insert Figure 1]
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4 Empirical application to portfolio returns

The MME represents a highly �exible and straightforward parameterization of the multivariate

conditional distribution of the portfolio return, which is consistent with MGARCH models.

However, the MME admits many di¤erent extensions, which depend on the focus of the study.

Some of these extensions are as follows: (i) di¤erent marginals can be used to consider asymmetric

correlation and tail dependence, even in an n�dimensional setting;17 (ii) high-order conditional
moments (e.g., dynamics of skewness and kurtosis) can be modeled, and the dependencies between

these moments across portfolio variables can even be considered to address possible spillover e¤ects;

(iii) two- or three-step MLE (since the log-likelihood of the MME is separable) as well as the

generalized method of moments can be implemented directly to simplify the estimation procedure;

and (iv) applications of the DCC and DECO type can also be implemented to tackle the curse of

dimensionality in the variance and covariance matrix. In this study, we focused on points (iii) and

(iv), and thus in this section, we investigate the in- and out-of-sample performance of MME-DECO

and MGC-DECO compared with DECO based on an empirical application to portfolio returns.

4.1 Data

The data employed in this study were (daily) percentage log returns, which were computed as

rit = 100 log (Pit=Pit�1) from series fPitgTt=1 of daily prices for: four stock indexes (Dow Jones

(DJ), Ibex 35, Nikkei 300, and Hang Seng (HS)); three individual shares (Deutsche Bank (DB),

BP, and Apple); and three exchange rates (U.S. dollar to pound sterling (FX $/£ ), Japanese yen to

pound sterling (FX U/£ ), and Swiss franc to U.S. dollar (FX Fr/$)). All of the series were sampled
from February 16, 1995 to February 16, 2015 to obtain a total of 5; 218 observations. The data were

obtained from Datastream. Table 1 reports the descriptive statistics for the series, the Jarque-Bera

statistic (J-B), and its corresponding p-value (p-v) for the null of normality. The J-B test results

showed that the empirical distribution of the series was not normal, where it was (mildly) skewed

and highly leptokurtic. The sample correlations ranged from �0.001 to 0.64.

[Insert Table 1]

Figure 2 shows plots of the return series for the full sample. The shaded areas correspond to

the two periods that we used for the out-of-sample forecasting performance analysis: 1) the data

period from March 19, 2013 to February 16, 2015 (500 observations), which exhibited relatively

low volatility and it was nearer to a normal distribution; and 2) 500 observations from the recent

17The MME can be an alternative to the copula approach for modeling asymmetric dependence,

particularly for large portfolios; e.g., see Ang and Chen (2002) and Patton (2006) for evidence of the

asymmetric dependence of returns in stocks and exchange rates, respectively.
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credit crunch period (July 17, 2008 to June 16, 2010), which exhibited high volatility and a more

leptokurtic distribution.

[Insert Figure 2]

4.2 Model evaluation

The models were estimated in two stages by MLE techniques using a rolling window with a size N

equal to 4717 (3499) for the density forecast of the market calm (crisis) period. In the �rst stage, an

AR(1) process for the conditional mean (selected according to Akaike�s information criterion (AIC))

and a GARCH(1,1) process for the conditional variance were jointly estimated (under normality)

independently for each asset. In the second stage, the standardized residuals from the previous stage

were used to estimate the conditional equicorrelation equation in the DECO model. The DECO

estimates and standardized residuals from the �rst and second stages were used to estimate the

MGC- and MME-DECO density parameters. Finally, following Pagan (1986), a further Newton-

Rapshon iteration without line search was performed based on the density and DECO process

parameter estimates to ensure that the information matrix was block diagonal, thereby obtaining

estimators that were asymptotically equivalent to joint QMLE.18

To obtain the speci�cations of the MGC and MME models, we proceeded by truncating

the expansion at the highest-order signi�cant parameter. The GNT-type transformation yields

symmetric distributions, so the odd-order parameters were omitted. The resulting SNP-DECO �

model had an s-th order polynomial with weighting parameters denoted by 
is;� (s = 4; 6); 
i2;� were

set to zero so that the standardized SNP distributions had unit variance.19 Estimating SNP-DECO

models is not computationally demanding for lower dimensions but it may become very slow for

large portfolios. In the latter case, the selection of appropriate starting values may be achieved

by estimating the univariate marginals (Equation (7)) in advance, starting with polynomials of

low orders, and by considering the relations between the density parameters and their moment

counterparts (Equation (8)). The multivariate model is then estimated by starting with a low

dimension, say n = 3. Moreover, a robustness check of the estimates is recommended, particularly

when performing out-of-sample recursive estimation. We monitored the optimization by perturbing

the starting values to check that the (Q)ML estimates obtained were the global optima.

Table 2 presents the estimation results obtained for the two in-sample windows considered in

this study. The AR(1)-GARCH(1,1) parameter estimates show that the data series exhibited: (1) a

18Given the possible limitations when estimating the MGC- and MME-DECO models, it should be

mentioned that possible losses in estimation e¢ ciency and consistency, which may be important when

evaluating the in-sample performance of models, are not crucial in an out-of-sample evaluation analysis

(Ruiz and Pascual, 2002). An empirical analysis of the properties of the estimator for SNP-DECO models

is an area for future research.
19For the sake of simplicity in notation the parameters of both the MME and MGC were denoted as f
isg :
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typical small structure in the conditional mean and (2) high persistence in the conditional variances

(these estimates are not presented in the table to save space). The parameter estimates for the

DECO process were both signi�cant and they exhibited high persistence in all of the pooled asset

correlations. For both the MGC- and MME-DECO models, 
i4 was not signi�cant for some series,

but 
i6 was signi�cant for all dimensions (Bollerslev and Wooldridge (1992) robust standard errors

are shown in parentheses). The estimation results were very similar for the two sample periods

considered as well as for the data rolling windows used in the forecasting exercise.

In Table 2 and Figure 3, the AIC and average AIC (AIC) values indicate that the MME-DECO

provided a better goodness-of-�t than the MGC-DECO, but both improved the performance of the

DECO. This result was consistent across all of the rolling windows, as shown in Figure 3. It should

be noted that all of the models shared the same DECO correlation structure, so the di¤erences

among them were due only to the parameters of the expansions. Figure 4 also provides an example

of the �tted marginal densities for the FX $/£ return series based on the MME, MGC, and Gaussian

pdfs compared with the data histogram. The densities yielded similar performance at the center

of the distribution, but MME and MGC departed from Gaussian signaling in the presence of the

signi�cant frequency in the far left tail, thereby providing useful information when measuring the

risk associated with the down-slope of the distribution.20

[Insert Table 2 and Figures 3 and 4]

Next, we tested the performance of the models for density forecasting in the two out-of-sample

periods with high and low volatility, and kurtosis (500 predictions for each period). The forecasts

obtained by the models were compared according to weighted logarithmic scoring rules (Gneiting

and Raftery (2007), and Amisano and Giacomini (2007)) for the marginal and conditional portfolio

return distributions (Diebold et al., 1999). A model provides better forecasting performance when

its weighted average logarithmic score is lower, which is de�ned as:

�(eg; x) = �N�1
T+N�1X
t=T

$(xt+1) ln egt(xt+1); (35)

where egt(xt+1) denotes the one day-ahead density forecast from model g and $(�) is a weight
function used to evaluate the performance when forecasting di¤erent regions of the return

distribution. The null hypothesis of equal density forecasting performance from two alternative

20As an alternative to the SNP marginal pdfs, we checked the performance of the univariate mixture

of normals (MN) as a suitable pdf to capture the frequency in the tails of the return distributions (e.g.,

see Alexander and Lazar, 2006). The results showed that univariate three- and two-component MN pdfs

provided a good �t to the tails of the returns histogram, which were similar to the univariate ME and GC

pdfs, and they were better than that of the normal. These results are available from the authors upon

request.
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models f and g, H0 : E
�
�( ef; x)� �(eg; x)� = 0; was tested using the Amisano and Giacomini

(2007) test. We conducted pairwise scoring rule tests using the following weights: (1) $1 = 1

to measure the performance for the full density, and (2) $2 = 1 � �(x)=�(0) to evaluate the

performance of the models when predicting the density tails.

The scoring rule test results are reported in Table 3. The main entries represent the di¤erence

between the weighted average scores using the MME-DECO with respect to the models in the

columns, where the numbers in parentheses are the t-test statistics. A negative score indicates that

the MME-DECO yielded more accurate forecasts than the alternative models.

The results in Table 3 Panel A showed that the MME-DECO obtained statistically signi�cant

lower scores, thereby improving the forecasts with DECO for the full, marginal, and conditional

densities. These results are broadly consistent with those in Table 3 Panel B, although the

di¤erences in the scores were more pronounced when these models were compared in terms of

the forecasting accuracy of the densities� tails. For the two out-of-sample periods considered in

this study, we found no major di¤erences in performance, although slightly lower di¤erences in tail

forecasting were predominant for the period of market calm compared with the period of crisis.

Compared with the MGC-DECO, the scoring rule results were better using the MME-DECO

(MGC-DECO) for the period of relatively low (high) volatility and kurtosis, although the overall

scoring rule di¤erences were not signi�cant for both of the periods and the weighting functions

considered. In summary, our results show that improvements can be obtained in the accuracy of

forecasting the portfolio returns density by using MME- and MGC-DECO compared with DECO.

[Insert Table 3]

5 Concluding remarks

Copula models and multivariate parametric leptokurtic pdfs have been used in risk management to

explain the higher-order conditional (co)-moments of portfolio return series. Nevertheless, the

data �ts achieved using these techniques can be improved because the models are either not

su¢ ciently �exible to consider the salient features of asset returns or, if they are, they are too

complex and analytically intractable. Alternatively, the multivariate SNP approach, which is

traditionally based on GC expansions, is characterized by its �exibility in �tting any target density

while maintaining a reasonable analytical tractability, which is facilitated by using series based on

orthogonal polynomials (e.g., HPs).

In this study, we proposed a novel SNP family of multivariate distributions (MME), which

maintains the typical �exibility and generality of SNP methods, but it has both theoretical and

empirical advantages due to its simplicity. The MME and the MGC di¤er in terms of two main

features. First, the polynomial structure of MME is based on a very simple functional form that
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allows up-to-one integration without requiring orthogonality conditions, unlike the MGC. Second,

the basis distribution of the MME may be any pdf with �nite moments up to the expansion order,

whereas MGC pdfs are de�ned based on a series of derivatives of the Gaussian density. Therefore,

the MME is a straightforward method for obtaining well-de�ned pdfs, which are su¢ ciently

�exible to incorporate the salient empirical features of the portfolio return�s distribution and to

asymptotically approximate its true distribution. Indeed, the MME encompasses the MGC when

the Gaussian density is used as the basis and positive transformations (GNT) are not implemented,

but if positivity is used via GNT, then the MME yields a much simpler pdf.

An important feature of the MME is that it admits Engle�s (2002) decomposition of the

likelihood function, which allows us to address the �curse of dimensionality� by two-step MLE.

As an illustration of the applicability of the MME family of pdfs, we described an application to

portfolio returns, where the correlations in the returns followed the DECO model of Engle and

Kelly (2012).

We compared the in- and out-of-sample performance of the MME-DECO to that of the DECO

and MGC-DECO. We found that the pdfs obtained using the MME-DECO were highly responsive

to the weighting parameters, thereby providing a rich variety of shapes, which are particularly useful

for modeling portfolio risk. Thus, the MME-DECO outperformed both MGC-DECO and DECO

according to the AIC. The evaluation of the models in terms of the out-of-sample density forecasting

showed that the MME-DECO obtained similar performance to the MGC-DECO, and both yielded

signi�cant improvements compared with the DECO. Our results highlight the �exibility of the MME

pdf. In particular, it can obtain a feasibly parameterized model, which accurately captures both

time-varying correlations and leptokurtosis. Thus, MME is an appealing tool for use in portfolio

risk management due to its simplicity and accuracy. Its applications to other distributions, such as

the Student�s t, gamma, and normal inverse Gaussian, appear to be a promising avenue for further

research into SNP methods.
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Appendix

This appendix includes the proofs of the properties of the MME densities presented in Sections

2.1.1. and 2.2, and the proofs related to the transformations required to implement the MME-

DECO model. Proof 1 shows that MME densities integrate up to one; Proof 2, Proof 3, Proof 4

and Proof 5 provide closed forms for marginal pdfs, (non-central) moments, cdf and copula density,

respectively; Proof 6 shows the separability of the log-likelihood for the MME; Proof 7 includes an

alternative approximation for implementing the MME-DECO model valid for very large portfolios,

and Proof 8 shows that the transformation in equations (32) and (33) yields uncorrelated variables

in the DECO model.

Proof 1. The MME pdf integrates up to one.Z
� � �
Z
F (xt)dx1t � � � dxnt

=
1

n
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� � �
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=

1

n
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It must be also noted that the scaling constant wi is

wi =
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s=1


2is (x
s
it � �is)

2

!
gi (xit) dxit

=

Z
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2
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nX
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2is(�i;2s + �
2
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nX
s=1


2is(�i;2s � �2is): (37)

Proof 2. The MME marginals are combinations of univariate ME and Gaussian pdfs.

fi(xit) =

Z
� � �
Z
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Proof 3. The MME moments have a simple relation to the squared density parameters.

E [xrit] =

Z
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, 8r 2 Z; (39)

and provided that gi(xit) has �nite moments at least up to the (2s+ r)-th order :�

Proof 4. The cdf of the MME can be obtained through the cdfs of univariate ME and Gaussian
distributions.
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Proof 5. Let xt 2 Rn be a random vector joint MME cdf H(xt) with margins hi(xi) = zi,
zi 2 [0; 1] ; and joint MME pdf F (xt) with margins fi(xi);8i = 1; 2: Then the Sklar�s theorem
(see e.g. Jondeau et al. 2007, p. 242) states that there exists a copula function C such that
H(xt) = C(h1(x1); h2(x2); � � � ; hn(xn)); the density of the copula being

c(h1(x1); h2(x2); � � � ; hn(xn)) =
F (xt)
nQ
i=1

fi(xi)

: (41)

Based on this theorem and the densities in equations (3) and (7) the density of the MME copula
can be expressed as
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Proof 6. The log-likelihood of the Gaussian MME is separable thus formally admitting two-step

estimation.
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Proof 7. The transformation in equation (54) is an accurate alternative for implementing the

MME-DECO model for large portfolios.

Let Rt = (1 � �t)In + �tJn be the DECO correlation matrix, where In is the identity matrix

of order n and Jn a n � n matrix of ones. Let us assume that this matrix can be decomposed as

Rt = AtAt where At = �1In + �2Jn: Then parameters �1 and �2 would be those that satisfy:

AtAt = (�1In + �2Jn)(�1In + �2Jn) = �21In + n�
2
2Jn + 2�1�2Jn

= �21In + (n�
2
2 + 2�1�2)Jn = (1� �t)In + �tJn; (44)

i.e.,

�21 = 1� �t =) �1 =
p
1��t; (45)
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n�22 + 2�1�2 = �t =) n�22 + 2
p
1��t�2 � �t = 0 =) �2 =

�2
p
1��t �

p
4(1��t)� 4n�t
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: (46)

Nevertheless the solution

At =
p
1��tIn +

1

n

�p
1��t + n�t �

p
1��t

�
Jn (47)

does not yield the exact matrix Rt but an approximation,

AtAt = Rt � 2
1

n
(1� �t)Jn; (48)

that converges to the true matrix as n tends to in�nity. An interesting implication of this approach

is that the inverse transformation may be straightforwardly computed:

A�1t = �1In + �2Jn; (49)

where AtA�1t = In: Therefore
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Therefore
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1��t 1
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n
p
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n
p
1��t

�
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Then, equation (54) represents an alternative transformation, to that in equations (32) and (33),

valid for large portfolios:

xit =
n� 1

n
p
1��t

"it +
nX
j=1
j 6=i

�
1

n
p
1��t + n�t

� 1

n
p
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�
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See Graybill (1983) for other related transformations and properties on the matrix Rt = (1��t)In+
�tJn.
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Proof 8. The MME-DECO model standardized with the transformation in equations (32) and (33)

has zero correlation for every pair of returns.
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and provided that Et
�
"2it
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= 1; 8i = 1; 2; :::; n:

If �sht = �t 8s 6= h then
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Figures
Figure 1: Plots of bivariate Gaussian-, MGC- and MME-DECO densities
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Figure 1.1: Gaussian DECO. �t= 0:05:

5

0

­5­5

0

0

0.5

1

1.5

5

Figure 1.2: MME-DECO. �t= 0:05; 
14= 0, 
16= 0:0005, 
24= 0:065,

16= 0:0002.
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(Figure 1 continued)
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Figure 1.3: MME-DECO. �t= 0:05; 
14= 0, 
16= 0:005, 
24= 0:05, 
16= 0:002.
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Figure 1.4: MME-DECO. �t= 0:4; 
14= 0, 
16= 0:005, 
18= 0:003; 
24= 0:05,

26= 0:002, 
28= 0:0005

29



(Figure 1 continued)
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Figure 1.5: MGC-DECO. �t= 0:1; 
14= 0:25, 
16= 0:025, 
24= 0:15, 
16= 0:015.
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Figure 1.6: MGC-DECO. �t= 0:01; 
14= 0:2, 
16= 0:02, 
18= 0:003; 
24= 0,

16= 0:02. 
28= 0:007.
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Figure 2: Daily percent log return series
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Notes: Plots and histograms of daily log returns of: Dow Jones, Ibex 35, Nikkei 300 and Hang
Seng stock index returns; Deutsche Bank, BP and Apple stock returns; and $/£ , U/£ and Fr/$ FX
returns. Full sample: 2/17/1995 - 2/16/2015 (5217 obs.). Out-of-sample periods (shaded areas, 500
obs.): 7/17/2008 - 6/16/2010 (higher volatility period) and 3/19/2013 - 2/16/2015 (lower volatility
period).
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Figure 3: Overall goodness-of-�t of MGC- and MME-DECO
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Notes: This �gure provides MGC- and MME-DECO AIC series obtained from rolling window
estimation through: Low (L) volatility out-of-sample period (3/19/2013 - 2/16/2015), and high
(U) volatility out-of-sample period (7/17/2008 - 6/16/2010).
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Figure 4: Fitted and empirical marginal densities (left tail)
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Notes: Fitted marginal and empirical pdfs for FX $/£ standardized returns. Histogram (Solid blue),
MME (Dash black), MGC (DotDash red) and Gaussian (DotDotDash green). Sample 2/17/1995 -
3/18/2013, 4717 obs., parameter estimates are provided in Table 2.
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Tables

Table 1: Descriptive statistics of daily percent returns

Mean Max Min St. Dev. Skew Kurtosis J-B stat (p-v)

Sample 2/17/1995 - 2/16/2015

Observations 5217

Dow Jones 0.03003 10.0891 -8.69495 1.11219 -0.26520 10.59539 12601.5 (0.00)

Ibex 35 0.02367 13.4836 -9.58586 1.45849 -0.01759 8.05976 5565.3 (0.00)

Nikkei 300 0.00298 12.9511 -10.2687 1.34674 -0.21636 8.79710 7345.9 (0.00)

Hang Seng 0.02131 17.2471 -14.7346 1.61924 0.09151 13.90975 25879.8 (0.00)

Deutsche Bank -0.00203 22.3031 -18.0729 2.32904 0.18352 11.33788 15141.2 (0.00)

BP 0.01505 10.5825 -14.0368 1.67378 -0.04372 7.62108 4643.5 (0.00)

FX $/£ -0.00047 4.47445 -3.91821 0.54758 -0.03954 7.43977 4286.1 (0.00)

FX U/£ 0.00325 6.34316 -6.94279 0.80547 -0.47496 9.74857 10096.1 (0.00)

FX Fr/$ -0.00582 8.47479 -11.4188 0.70149 -0.81471 23.92072 95717.0 (0.00)

Apple 0.08456 28.6795 -73.1231 3.00796 -2.55747 75.06267 1134522 (0.00)

Rang(�) [-0.001,0.64]

Notes: This table provides the descriptive statistics of the daily percent return data used in the
paper. The Jarque-Bera (J-B) statistic is asymptotically distributed as a �2 distribution with 2
degrees of freedom under the null of normality, the p-value (p-v) of the test is in parenthesis next
to the J-B statistic. Rang(�) denotes the range of the sample correlation coe¢ cients of the ten
return series.
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Table 2: Estimation results

DECO MME-DECO MGC-DECO DECO MME-DECO MGC-DECO

Sample 2/17/1995 - 3/18/2013 (4717 obs.) 2/17/1995 - 7/16/2008 (3499 obs.)

Stage 1

�1 0.0058 (6.32) 0.0102 (6.36)

�2 0.9916 (680.2) 0.9825 (395.8)

Stage 2


14;� -0.0000 (-0.00) 0.0000 (0.00) -0.0000 (-.00) 0.0000 (0.00)


16;� -0.0005 (-2.87) -0.0022 (-2.83) -0.0007 (-2.96) -0.0027 (-2.84)


24;� -0.0000 (-0.00) 0.0000 (0.00) -0.0000 (-.00) -0.0000 (-0.00)


26;� 0.0007 (3.80) -0.0028 (-3.90) 0.0008 (3.91) -0.0033 (-3.92)


34;� -0.0000 (-0.00) 0.0229 (2.09) -0.0000 (-0.00) -0.0000 (-0.00)


36;� 0.0015 (6.06) -0.0042 (-3.97) 0.0012 (4.66) -0.0046 (-4.30)


44;� -0.0000 (-0.00) 0.0368 (4.71) -0.0000 (-0.00) 0.0355 (3.70)


46;� -0.0016 (-6.85) -0.0025 (-1.35) -0.0017 (-6.52) -0.0036 (-2.01)


54;� -0.0000 (-0.00) -0.0000 (-0.00) -0.0000 (-0.00) -0.0000 (-0.00)


56;� -0.0011 (-4.81) -0.0038 (-4.98) -0.0011 (-4.51) -0.0041 (-4.62)


64;� 0.0000 (0.00) 0.0377 (4.52) 0.0000 (0.00) 0.0341 (3.28)


66;� -0.0021 (-8.91) -0.0052 (-4.62) -0.0017 (-5.91) -0.0036 (-2.59)


74;� 0.0684 (9.94) 0.1481 (14.1) 0.1023 (9.83) 0.2050 (11.5)


76;� 0.0038 (6.95) 0.0112 (5.22) 0.0046 (5.84) 0.0168 (5.69)


84;� -0.0000 (-0.00) 0.0529 (7.08) -0.0195 (-1.72) -0.0681 (-8.25)


86;� -0.0026 (-11.2) 0.0063 (5.20) 0.0268 (5.47) 0.0057 (3.56)


94;� 0.0852 (12.74) 0.1487 (14.1) 0.0429 (10.99) 0.0725 (9.41)


96;� -0.0032 (-5.45) 0.0127 (6.62) 0.0000 (0.00) -0.0000 (-0.00)


10;4;� -0.0000 (-0.00) 0.0558 (6.96) -0.0000 (-0.00) 0.0570 (6.53)


10;6;� -0.0033 (-14.0) 0.0095 (8.42) -0.0033 (-12.4) 0.0094 (7.10)
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(Table 2 continued)

DECO MME-DECO MGC-DECO DECO MME-DECO MGC-DECO

AIC� 16.925 8.0853 8.1009 16.792 8.2940 8.3029

AIC� 16.872 8.0270 8.0457 16.563 8.0642 8.1001

Mean equation: rit = �i0 + �i1ri;t�1 + uit; uit = "it�it; i = 1; 2; :::; 10

Variance equation: �2it = �i0 + �i1u
2
i;t�1 + �i2�

2
i;t�1

MGC-DECO pdf: �(ut;
;�t) = 1
2�(ut;�t)

�
��1i

�
1 + 
2i4Hi4(xit)

2 + 
2i6Hi6(xit)
2
��

MME-DECO pdf: F+(ut;
;�t) =
1
2�(ut;�t)

�
w�1i

�
1 + 
2i4Pi4(xit)

2 + 
2i6Pi6(xit)
2
��

Notes: This table presents ML estimates of the parameters of DECO, MGC- and MME-DECO for

a portfolio of 10 assets and the two in-sample periods under analysis. Heteroscedasticity-consistent

standard errors are provided in parentheses next to the parameter estimates. Conditional mean

and variance equations (AR(1)-GARCH(1,1)) parameter estimates are not displayed in the table

to save space; these estimates take the typical values for daily stock returns. �1 and �2 denote

the conditional correlation parameters, 
is;� (s = 4; 6) denote the s-th order polynomial weight

parameter of the expansions in model � (MGC- and MME-DECO). AIC denotes Akaike information

Criterion and AIC is the average AIC for the 500 estimations performed, with a constant size rolling

window, for the prediction analysis.
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Table 3: Weighted scoring rule tests

DECO MGC-DECO DECO MGC-DECO

Out-of-sample 7/17/2008 - 6/16/2010 3/19/2013 - 2/16/2015

Panel A: Full density ($1)

Marginal DJ -0.00114 (-4.19) 0.00055 (0.70) -0.00252 (-1.74) 0.00053 (0.94)

Marginal Ibex -0.00160 (-2.31) 0.00136 (1.48) -0.00251 (-1.84) 0.00064 (1.10)

Marginal Nikkei -0.00398 (-3.65) 0.00597 (1.07) -0.01413 (-1.49) 0.00067 (0.31)

Marginal HS -0.00466 (-2.62) 0.00000 (0.12) -0.00692 (-3.22) 0.00044 (4.04)

Marginal DB -0.01656 (-1.61) 0.00891 (1.92) -0.00495 (-2.55) -0.00072 (-3.09)

Marginal BP -0.01940 (-1.95) -0.00043 (0.63) -0.02418 (-1.67) 0.00151 (0.70)

Marginal Apple -0.08191 (-5.67) 0.00848 (0.63) -0.04328 (-5.24) -0.00778 (-5.88)

Marginal $/£ -0.04316 (-2.64) 0.00256 (1.46) -0.01117 (-2.93) -0.00013 (-1.31)

Marginal U/£ -0.03814 (-2.68) -0.00244 (-1.06) -0.07492 (-1.75) 0.00109 (-0.18)

Marginal Fr/$ -0.01637 (-1.70) 0.00140 (1.34) -0.02954 (-2.21) 0.00086 (0.53)

Conditional DJ -0.19857 (-6.52) 0.00555 (0.76) -0.20000 (-4.08) -0.00487 (-0.71)

Conditional Ibex -0.19810 (-6.50) 0.00474 (0.68) -0.20001 (-4.09) -0.00498 (-0.72)

Conditional Nikkei -0.19573 (-6.44) 0.00012 (0.02) -0.18839 (-3.91) -0.00500 (-0.77)

Conditional HS -0.19505 (-6.42) 0.00607 (0.79) -0.19560 (-4.01) -0.00477 (-0.70)

Conditional DB -0.18314 (-6.40) -0.00281 (-0.52) -0.19757 (-4.03) -0.00361 (-0.52)

Conditional BP -0.18031 (-6.38) 0.00576 (0.75) -0.17834 (-3.81) -0.00584 (-0.90)

Conditional Apple -0.11779 (-4.99) 0.01459 (2.02) -0.15924 (-3.30) -0.00345 (-0.51)

Conditional $/£ -0.15655 (-6.38) 0.00354 (0.54) -0.19134 (-3.93) -0.00420 (-0.61)

Conditional U/£ -0.16156 (-5.98) 0.00854 (1.25) -0.12760 (-5.31) -0.00324 (-0.87)

Conditional Fr/$ -0.18333 (-6.36) 0.00470 (0.64) -0.17298 (-3.67) -0.00520 (-0.78)

Panel B: Density tails ($2)

Marginal DJ -0.00270 (-4.14) 0.00109 (0.64) -0.00619 (-1.71) 0.00135 (0.95)

Marginal Ibex -0.00385 (-2.22) 0.00300 (1.48) -0.00617 (-1.80) 0.00160 (1.10)

Marginal Nikkei -0.00948 (-3.51) 0.01474 (1.06) -0.03488 (-1.47) 0.00182 (0.35)

Marginal HS -0.01082 (-2.44) -0.00000 (-0.22) -0.01661 (-3.10) 0.00100 (3.71)

Marginal DB -0.04114 (-1.59) 0.02142 (1.88) -0.01198 (-2.47) -0.01740 (-2.98)

Marginal BP -0.04760 (-1.91) 0.00108 (0.64) -0.05930 (-1.63) 0.00386 (0.71)
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(Table 3 continued)

DECO MGC-DECO DECO MGC-DECO

Marginal Apple -0.18965 (-5.33) -0.01865 (-5.21) -0.09846 (-4.90) -0.01740 (-5.57)

Marginal $/£ -0.10502 (-2.56) 0.00607 (1.44) -0.02619 (-2.76) -0.00039 (-1.64)

Marginal U/£ -0.08953 (-2.52) -0.00492 (-0.86) -0.17853 (-1.67) -0.00063 (0.04)

Marginal Fr/$ -0.03849 (-1.59) 0.00316 (1.26) -0.07149 (-2.14) -0.00227 (0.55)

Conditional DJ -0.37188 (-6.38) 0.01046 (0.81) -0.33953 (-4.34) -0.01118 (-0.52)

Conditional Ibex -0.37171 (-6.21) 0.01349 (0.90) -0.36933 (-4.20) -0.00814 (-0.65)

Conditional Nikkei -0.35250 (-6.21) 0.00146 (0.15) -0.33671 (-3.69) -0.00812 (-0.66)

Conditional HS -0.35685 (-6.24) 0.01653 (0.98) -0.35579 (-3.95) -0.00781 (-0.61)

Conditional DB -0.34166 (-5.96) -0.00217 (-0.20) -0.35637 (-3.98) -0.00563 (-0.45)

Conditional BP -0.34509 (-6.03) 0.01754 (1.05) -0.32799 (-3.54) -0.00901 (-0.70)

Conditional Apple -0.23698 (-4.90) 0.02967 (2.01) -0.28429 (-3.46) 0.00437 (0.38)

Conditional $/£ -0.30328 (-6.22) 0.00877 (0.65) -0.34072 (-4.22) -0.00799 (-0.68)

Conditional U/£ -0.28348 (-5.92) 0.01418 (1.18) -0.24102 (-4.85) -0.00465 (-0.57)

Conditional Fr/$ -0.31975 (-6.08) 0.00907 (0.70) -0.30933 (-3.20) -0.00597 (-0.44)

Notes: This table reports the results of scoring rule tests for one-step-ahead density forecast
through the two out-of-sample periods considered (density forecasts 500 each out-of-sample period:
7/17/2008 - 6/16/2010 and 3/19/2013 - 2/16/2015). The entries are pairwise di¤erences of the
weighted average logarithmic score from the MME-DECO marginal and conditional distributions
with respect to the counterpart distributions of the models in the columns; a negative value means
that the MME-DECO presents a lower average score than its counterpart in the column. Amisano
and Giacomini (2007) test t-statistics for the signi�cance of the pairwise di¤erence between the
average logarithmic scores are in parentheses.
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