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Abstract 

Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs 
are available for treating hypertension; however, they often come with a higher risk of side effects and long-term 
therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these 
issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia 
occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, 
using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was con-
ducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski’s 
rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3’,4’-Tetrahydroxy-6, 8-dimethoxy-
flavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found 
non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these 
compounds and hypertension followed by compound-target network construction and protein–protein interaction, 
which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, 
VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds 
Dihydrokaempferol, Flavan-3-ol and Germichrysone, −7.1, −9.0 and −8.0 kcal/mol, respectively. The MD simulation 
results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen 
bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, 
Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension 
and in future novel drug formulation.
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Background
Hypertension is commonly known as high blood 
pressure. It is a globally prevalent and highly 
detrimental chronic medical condition characterized 
by consistently elevated blood pressure within arteries. 
It significantly pose high health risks (Oparil et  al. 
2018; Liao et al. 2023). It is a leading factor for various 
cardiovascular diseases, including cardiac arrest, 
coronary artery disease, strokes, ischemia, vision loss, 
and renal diseases (Wang et al. 2021; Yang et al. 2023). 
This hypertension related consequences are responsible 
for 9.4 million deaths worldwide. It is estimated that 
this count will exceed to 1.56 billion by the year 2025 
(Zhai et al. 2021). Hypertension often develops silently, 
without noticeable symptoms. Hence, regular blood 
pressure monitoring is crucial for early detection and 
management (Hasanzadeh et  al. 2023). According to 
two empirical studies in Pakistan, which are based on 
National Health Survey and rural northern areas of 
the country, hypertension prevalence rate is 46.2% and 
33%, respectively (Almas et al. 2023; Shah et al. 2023). 
If this number continues to increase then one out of 
every third person will be a victim of hypertension 
(Elahi et  al. 2023). Synthetic medication such as 
diuretics, angiotensin receptor blockers, angiotensin-
converting enzyme inhibitors, anti-adrenergic drugs, 
and calcium channel blockers have demonstrated 
positive outcomes in the management of hypertension 
in patients but these drugs have side effects as well 
(Mancia et  al. 2019; Zhan et  al. 2023). Therefore, this 

sort of medications requires double therapy. So it 
doubled the cost of medication, therefore, it is essential 
to develop monotherapy options with less side effects 
(Karr 2017; Juwita et al. 2023).

Moreover, exploring the potential of natural products 
through a reverse pharmacology approach while 
prioritizing safety profiles may represent a rational 
strategy to treat hypertension. In this context, medicinal 
plants continue to hold immense importance for 
humanity due to their contribution to the development 
of modern medicines in the healthcare sector (Jasemi 
et  al. 2020; Qamar et  al. 2023). The family Fabaceae is 
one of the largest family of angiosperm. Several species 
of this family have traditionally been used to treat 
hypertension (Asfaw and Abebe 2021). Cassia fistula, 
Senna alexandrina and Cassia occidentalis are the three 
tropical and subtropical trees belongs to this family 
and are native to eastern Australia, southern Africa, 
Hawaii, southern South America, Indian subcontinent, 
South East Asia, Saudi Arabia, Egypt and Yemen 
(Sharma et al. 2021; Natarajan et al. 2022) These plants 
are abundant in secondary metabolites, including 
tannins, phenolics, alkaloids, terpenoids, flavonoids 
and cardiac glycosides (Shailajan et al. 2013; Naz et al. 
2020). They exhibit a diverse range of pharmacological 
properties, including analgesic, cardioprotective, anti-
inflammatory, antioxidant, antidiabetic, hypoglycemic, 
and hepatoprotective activities (Thomford et  al. 2018; 
Murugesan et  al. 2019). Plant extract treatments 
encounter safety and dosage challenges. Modern 
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formulations involve active phytoconstituents are 
increasingly gaining popularity, effectively addressing 
these concerns (Persechino et al. 2022).

Insilico drug discovery methods, which predict 
compound efficacy against a range of diseases, 
hold promising techniques that can accelerate drug 
development and decrease costs by reducing the 
necessity for extensive laboratory experiments (Gupta 
et al. 2023). Network pharmacology approach has gained 
prominence over the years, offering a holistic approach 
to constructing ’protein-compound/disease-gene’ 
networks for identifying concurrent treatment pathways 
(Zhou et  al. 2020; Xin et  al. 2021). These methods are 
also valuable for predicting compound toxicity, drug 
classification, and bioactivity. Researchers often combine 
network pharmacology with molecular docking to 
understand drug-target interactions, predict potential 
drug candidates more effectively and accelerate the drug 
discovery process (Li 2021; Noor et al. 2022; Singh et al. 
2022). Molecular docking is a crucial computational 
technique for predicting atomic-level interactions 
between small molecules and target proteins, aiding in 
rational drug design and the optimization of existing 
ones (Dey et al. 2023; Ibrahim et al. 2023).

The design of molecular docking programs has become 
essential in herbal drug discovery endeavors, particularly 
for conducting virtual screenings of phytochemicals 
or nutraceuticals to identify potential therapeutic 
compounds (Agu et al. 2023). Herbal drugs face efficacy 
and standardization problems. So far, in literature this 
sort of computational studies related to the Fabaceae 
species particularly, Cassia fistula, Senna alexandrina, 
and Cassia occidentalis has not been discovered. 
Hence, there is need of advanced exploration based on 
computational techniques to evaluate natural Fabaceae 
compounds for hypertension treatment, combining 
network pharmacology and molecular docking to 
identify lead compounds and their mechanisms of action. 
This will explore potential of Fabaceae-derived natural 
products as alternative antihypertensive agents, expedite 
the drug discovery. This study also aims to understand 
their potential mechanisms for treating hypertension 
as well as binding affinities between ligands and protein 
complexes.

Materials and methods
Screening of active compounds
The phytoconstituents of three plant species, namely 
Cassia fistula, Senna alexandrina, and Cassia 
occidentalis, were extracted by a thorough review of 
published literature and different databases. Various 
databases, such as Google Scholars, PubChem (https://​
pubch​em.​ncbi.​nlm.​nih.​gov/ accessed 25 September 

2023), IMPPAT (https://​cb.​imsc.​res.​in/​imppat/ accessed 
on 25 September 2023), and Phytohub (https://​phyto​
hub.​eu/ accessed on 25 September 2023), were employed 
for this purpose. The 3D structures and physiochemical 
characteristics of the identified compounds were sought 
through resources like PubChem (https://​pubch​em.​
ncbi.​nlm.​nih.​gov/ accessed on 27 September 2023), 
SpiderChem (http://​www.​chems​pider.​com/ accessed 
on 27 September) and NIST Library (https://​webbo​ok.​
nist.​gov/​chemi​stry/# accessed on 27 September 2023). 
This was achieved by referencing compound names, 
formulas, and CID/SID numbers. Subsequently, the 
Canonical SMILES notation was utilized to explore the 
pharmacokinetic properties of all active compounds 
(Sarkar et al. 2023).

Compound/ligand selection through pharmacokinetic 
properties and ADMET analysis
The compound/ ligand pharmacokinetic properties 
were finding out by using software DataWarrior V5.5.0 
(accessed on 28 September 2023). Lipinski’s rule of five 
for drug discovery was considered the standard criteria 
for pharmacokinetic properties i.e. compounds that 
encompasses oral bioavailability (OB ≥ 30), molecular 
weight (MW < 500  Da), drug Likeness (DL ≥ 0.18), 
hydrogen bond donors (H donor < 5), octanl water 
coefficient (P < 5) and hydrogen bond acceptors 
(H acceptor < 10) are ideal for study (Daina et  al. 
2017; Shahid et  al. 2022). The ADMET (absorption, 
distribution, metabolism, excretion, and toxicity) 
properties of all compounds were predicted using two 
online software, SwissADME (http://​www.​swiss​targe​
tpred​iction.​ch/ accessed on 28 September 2023) and 
ADMETlab 2 (https://​admet​mesh.​scbdd.​com/ accessed 
on 28 September 2023). These programs assess key 
pharmacokinetic characteristics of a compound/ligand, 
including its interaction with the blood–brain barrier 
(BBB), distribution, absorption in the gastrointestinal 
tract, metabolism as a substrate for P-glycoprotein (P-gp), 
inhibition of cytochrome P450 enzymes such as CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, CYP3A4, and lipophilicity 
for absorption through the plasma membrane (Mukhtar 
and Khan 2023).

Compounds toxicity assessment
Drug toxicity refers to the harmful effects of a substance 
when taken in excessive amounts or when the body is 
unable to metabolize and eliminate it properly. It can 
range from mild side effects to severe, life-threatening 
reactions. Two software was utilized, DataWarrior V5.5.0 
(accessed on 29 September 2023) and Protox II server 
(https://​tox-​new.​chari​te.​de/​protox_​II/ accessed on 29 
September 2023), for the prediction of various toxicity 
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indicators including carcinogenicity, Immunotoxicity, 
Irritating effect, reproductive, hepatotoxicity, and 
mutagenicity. The understudy compounds were also 
subjected to assessment for predicting their LD50 
values and drug toxicity classifications. LD50 values 
are commonly expressed in mg/kg of body weight and 
represent the dose at which 50% of test subjects succumb 
after exposure to a substance. Toxicity classes are defined 
in accordance with the Global Harmonization System 
(GHS) for the categorization and labeling of substances 
(Nafisah et al. 2022).

Bioactivity score prediction
The drug score values serve as an indicator of the 
inherent potential of a prospective complex to function 
as a potential drug candidate. Using the web-based 
tool Molinspiration (https://​www.​molin​spira​tion.​com/ 
accessed on 1st October 2023), predictions were made 
regarding the bioactivity score of phytoconstituents 
concerning their interaction with human receptors, 
including G protein-coupled receptors (GPCRs), 
kinases, proteases, ion channels, enzymes, and nuclear 
receptors. A compound is classified as dynamic (active) 
if its bioactivity score exceeds 0.0, moderately active if 
it falls within the range of -5.0 to 0.0, and inactive if the 
bioactivity score is below −5.0 (Mukhtar and Khan 2023).

Network pharmacology profiling of compounds
Potential target screening of active compounds 
and hypertension
The data of potential targets for active compounds were 
retrieved from SwissTargetPrediction (http://​www.​swiss​
targe​tpred​iction.​ch/ accessed on 2nd October 2023) 
and STITCH (http://​stitch.​embl.​de/ accessed on 2nd 
October 2023) through inputting the canonical SMILES 
and specifying species as “Homo sapiens”. Whereas, the 
hypertension targets were downloaded from GeneCard 
(http://​www.​genec​ards.​org/ accessed on 2nd October 
2023) and DesGenet (http://​www.​disge​net.​org/ accessed 
on 2nd October 2023). The targets of these databases 
were merged and removed repetitions in targets. The 
common names of the targets were also searched from 
UniProtKB (https://​www.​unipr​ot.​org/ accessed on 3rd 
October 2023). The mutual targets of compounds and 
hypertension were achieved through Venn diagram 
construction using Bioinformatics tool (https://​bioin​
forma​tics.​psb.​ugent.​be/​webto​ols/​Venn accessed on 4 
October 2023) (Tabassum et al. 2022).

Construction of compound‑target network
The compound-targets network was constructed to 
check the interaction of active compounds within the 
complex biological system by using Cytoscape V3.10.1 

(https://​cytos​cape.​org/ accessed on 4 October 2023). In 
this network, nodes symbolize the chemical constituents 
and targets, with edges illustrating their interactions. The 
network analyzer function was utilized to evaluate the 
fundamental characteristics of the network. Following 
this, the network underwent filtering based on the 
"degree," which represents the number of connected 
nodes linked to a specific network node as a node 
attribute (Ram et al. 2023).

Prediction of protein–protein‑interaction network and hub 
genes
The protein–protein Interaction of 161 common genes 
was assessed through STRING database (https://​string-​
db.​org/ accessed on 5 October 2023), with the organism 
specified as "Homo sapiens. The protein–protein 
Interaction network was visualized using Cytoscape 
V3.10.1 (accessed on 5 October 2023). CytoHubba plugin 
was used to identify the hub genes and nodes exhibiting 
elevated degrees within the network. The strong 
associations of the genes being targeted are emphasized 
by the prominence of the highest degree (Tao et al. 2013).

Construction of target–compound–pathway network
The data for KEGG pathway analysis of the top hub 
genes was obtained from the DAVID database (https://​
david.​ncifc​rf.​gov/​tools.​jsp accessed on 6 October 2023) 
and network was constructed to check the compounds 
mechanism in these pathways (Tabassum et al. 2022).

Gene ontology and KEEG pathway analysis
The Gene Ontology and KEEG pathway analysis was 
performed by using functional genes annotation 
resource database DAVID (http://​david.​ncifc​rf.​gov/ 
accessed on 7 October), with specified organism “Homo 
sapiens”. It employs Gene Ontology analysis to classify 
gene functions into biological processes (BP), cellular 
components (CC), molecular functions (MF) and 
enrichment pathway analysis into KEEG pathway. The 
cut off method with a probability score below 5 × 10–2 
was applied to select the top 20 GO annotations (BP, CC 
and MF) and KEEG pathways to draw bar and lollipop 
plot by using Shiny GO (http://​bioin​forma​tics.​sdsta​te.​
edu/​go/ accessed on 6 October 2023).

Domain and motif analysis
Domain and motif analysis were performed by using two 
databases: NCBI-CDD (https://​www.​ncbi.​nlm.​nih.​gov/​
Struc​ture/​cdd/​cdd.​shtml accessed on 9 October 2023) 
and MEME (https://​meme-​suite.​org/​meme/​db/​motifs 
accessed on 10 October 2023), respectively.

https://www.molinspiration.com/
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Molecular docking
Molecular docking simplifies the investigation of 
interactions between ligands and proteins, making 
it possible to discover their respective associates. 
Active components’ 3D structures were extracted 
from PubChem in SDF format and optimized, while 
potential genes’ structures were obtained from RCSB 
PDB in PDB format (https://​www.​rcsb.​org/ accessed 
on 7 October 2023) while selecting the best protein 
crystal structure for docking, emphasizing smaller 
resolution, completeness, and human origin. Protein 
structure was refined by using software PyMOL V2.5.5 
to remove ligands and water molecules. Following this, 
the ligand and protein molecules were subject to a series 
of operations, including charging, hydrogenation, and 
normalization, using AutoDockTool V1.5.6, culminating 
in the generation of PDBQT file formats (Mir et  al. 
2023a, b). The interaction between the processed ligands 
and proteins was subsequently examined through 
molecular docking with AutoDock Vina. AutoDock 
Vina, renowned for its user-friendliness, rapid processing 
speed, automated grid box dimension calculation, and 
convenient estimation of binding sites. AutoDock Vina 
facilitated the incorporation of phytoligands, which 
were treated as "flexible," into protein targets that were 
considered "rigid” (Mukhtar and Khan 2023). In this 
study, a grid box size of 38 × 44 × 56 (x, y, and z) with a 
grid spacing of 0.375 was employed for Flavon-3-ol. The 
grid center was positioned at coordinates 1.417, 47.278, 
and 21.667 for x, y and z. For Dihydrokaempferol, the 
grid box was created with size 36 × 38 × 44 xyz points, 
grid spacing of 0.375  Å and grid center of x, y and z 
dimensions of 19.500, −11.806 and 10.083, respectively. 
For Germichrysone, the grid box was set at 66 × 32 × 28 
xyz points with grid spacing of 0.375 Å and grid center 
was designated at dimensions (x, y and z): 5.750, −0.500 
and 0.333, respectively. To calculate the binding energy 
associated with these interactions, Command Prompt 
on Microsoft Window V6.3.900 was utilized, facilitating 
the visualization of the docking results. The docking 
search parameters employed include Lamarckian 
Genetic Algorithm, with the number of genetic algorithm 
runs ranging from 10 to 100 in increments of 10. The 
population size is set at 150, while the maximum 
number of energy evaluations is moderate at 2,500,000. 
Additionally, the maximum number of generations is 
set to 27,000, with default docking parameters utilized 
for run. Scoring functions were employed to evaluate 
and rank the poses produced throughout the docking 
procedure. These functions gauge the binding free energy 
or affinity between the ligand and receptor (Durhan et al. 
2022).

Molecular dynamic simulation
Molecular dynamic (MD) simulation was performed to 
find out the stability and variability of top ranked docking 
complexes. Top scoring protein–ligand complexes were 
simulated to determine the binding affinities of the 
best hit compounds after docking by using software 
GROMACS version 2020 (Release 2017) with specific 
system (Lenovo ThinkSystem SR650; Processor: 
2 × Intel(R) Xeon (R) Gold 6130 CPU @ 2.10  GHz 
(32 Cores); RAM: 4 × 32  GB DDR4; Drivers: 1 × 1  TB 
NVMe; 2 × 4  TB SAS RAID). The protein topology and 
parameters for MD simulation was generated using the 
charm 3 force field and CGenFF server (Mazurek et  al. 
2021; Ko et al. 2022). The TIP3P water model was used 
for solvating each system, followed by neutralization with 
the requisite quantities of Na+ and Cl−. Then, the energy 
of each system was minimized using the steepest descent 
minimization algorithm with a maximum of 50,000 
iterations and < 10.0  kJ/mol of force. Position constrains 
were applied to the receptor and ligand of both systems 
for 100  ps during leapfrog integrator, a 2  fs time step, 
and LINCS holonomic constrains. The NPT (Number 
of Atoms, Pressure, and Temperature) ensembles were 
used for 100 ps at temperature (300 K) with a 2  fs time 
step during the NPT equilibration phase. Following the 
energy minimization and equilibration of all the systems, 
an MD production run of 50 ns with a time step of 2  fs 
was performed, and the structure’s coordinates were 
saved every 10 ps. The trajectories were used for different 
dynamics evaluations after a 50  ns MD simulation, 
including root mean square deviation (RMSD) of ligands 
relative to the backbone of proteins. The amount of 
H-bonds between the ligand and proteins was estimated 
over a 50-ns period. The Coul-SR and LJ-SR ligand–
protein interaction energies were also calculated.

Determination of binding free energies of the protein 
and ligand complexes by MM‑PBSA
The protein–ligand complexes binding free energies 
(ΔGBind) were determined through the utilization of the 
molecular mechanics Poisson–Boltzmann surface area 
(MM-PBSA) method, employing the adaptive Poisson–
Boltzmann solver 3.0 (APBS 3.0) within the g_mmpbsa 
package (Gogoi et  al. 2021). Widely acknowledged as 
one of the most employed techniques for calculating 
interaction energies within biomolecular complexes, the 
MM-PBSA approach, coupled with molecular dynamics 
(MD) simulation, allows for the elucidation of significant 
conformational fluctuations and entropic contributions 
to the binding energy. In essence, the binding free energy 
(GBind) between a protein and a ligand in a solvent can be 
defined as follows:

https://www.rcsb.org/
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where ΔGBind represents the changes in Gibbs free 
energy, ΔH represents the change in enthalpy (heat), 
T is temperature in Kelvin and ΔS change in entropy 
(Kupferschmidt and Cohen 2020).

Results and discussion
Screening of active compounds
The utilization of computational screening and 
prediction to identify phytoconstituents possessing 
favorable pharmacodynamic and pharmacokinetic 
characteristics offers a time-efficient and cost-effective 
approach (Siddiqui et  al. 2022). In this study, A total 
of 414 compounds were found reported in literature 
across three species C. fistula, Senna alexandrina and 
C. occidentalis. The compounds were initially screened 
through the examination of their pharmacokinetic 
properties and ADMET analysis. Six compounds 
including germichrysone, benzeneacetic acid, Flavan-
3-ol, 5, 7, 3’, 4’-Tetrahydroxy-6, 8-dimethoxyflavon, 
dihydrokaempferol and epiafzelechin, demonstrated 
effectiveness. Lipinski’s rule of five was also applied 
to conform the drug discovery criteria. According to 
this rule, all the 6 compounds have zero Lipinski’s rule 
violation and meet the standard criteria i.e. molecular 
weight (MW < 500  Da), Drug Likeness (DL ≥ 0.18), 
hydrogen bond donors (H donor < 5), octanl water 
coefficient (P < 5) and hydrogen bond acceptors (H 
acceptor < 10) (Table 1). An ideal drug is one that adheres 
to Lipinski’s rule without violations (Narkhede et al. 2020; 
Singh et al. 2023).

The investigation of ADMET properties for 
various compounds revealed that four substances, 
namely Germichrysone, 5,7,3’,4’-Tetrahydroxy-6,8-
dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, 
exhibited an incapacity to penetrate the blood–brain 
barrier. Conversely, Benzeneacetic acid and Flavan-3-ol 
demonstrated a high capability to traverse the blood–
brain barrier. The blood–brain barrier is a protective 
barrier formed by endothelial cells in the blood vessels of 
the brain, which effectively blocks the entry of numerous 
toxins into brain tissues (Kadry et al. 2020; Alajangi et al. 
2022). Two compounds Germichrysone and Epiafzelechin 
showed positive results for permeability glycoprotein 
substrates (P-gp substrates) while the remaining 
compounds showed negative efficacy. The results suggest 
that non-Pgp substrates exhibit improved persistence 
in their cells. The role of P-gp in drug transport is 
essential for pharmacology and drug development, as it 
can influence the bioavailability and efficacy of various 
medications (Karthika et  al. 2022; Rachmale et  al. 

�GBind = �H − T�S
2022; Attia et  al. 2023). In order to maintain consistent 
plasma concentrations and enhance the absorption 
of the tested compounds, it was expected that these 
substances would exhibit inhibitory actions on all five 
cytochrome P450 enzyme classes, namely CYP2C9, 
CYP2C19, CYP3A4, CYP1A2, and CYP2D6. Only one 
compound 5,7,3’,4’-Tetrahydroxy-6,8-dimethoxyflavon 
showed inhibitory effect against CYP2C9, CYP3A4, 
CYP1A2, and CYP2D6. One compound flavan-3-ol 
showed inhibitory effect against CYP2D6. The remaining 
compounds exhibited no inhibitory activity against 
these cytochrome classes. Cytochrome P450 enzymes 
are a family of enzymes responsible for metabolizing 
a wide range of drugs and other xenobiotics (foreign 
substances) in the body. Inhibiting specific CYP enzymes 
can enhance drug bioavailability, extend half-life, and 
mitigate drug-drug interactions (Chatterjee et  al. 2022; 
He et al. 2023; Xing et al. 2023). Each of the compounds 
demonstrated substantial gastrointestinal absorption, 
suggesting a pronounced capacity for absorption within 
the human intestinal tract (Table  2). Compounds with 
high gastrointestinal absorption exhibit efficient uptake 
and transport across the intestinal wall, enhancing their 
bioavailability (Azman et al. 2022).

Toxicity prediction of compounds
Toxicity assessment of compounds is a critical step 
in drug discovery, ensuring the safety and efficacy of 
potential therapeutic agents. Insilico tools for molecular 
docking offer a cost-effective and efficient means to 
predict drug toxicity, allowing researchers to evaluate 
potential drug candidates for their safety profiles before 
advancing to costly Invitro and Invivo experiments 
(Kumar et  al. 2023; Sinha et  al. 2023). Compound 
toxicity was assessed through a comprehensive 
analysis of six distinct toxicity factors, encompassing 
mutagenicity, reproductive toxicity, irritant potential, 
hepatotoxicity, carcinogenicity, Immunotoxicity, and 
cytotoxicity. All the compounds showed non-toxic 
effects against all the factors except two compounds 
(Germichrysone and 5,7,3’,4’-Tetrahydroxy-6,8-
dimethoxyflavon). Germichrysone showed highly toxic 
mutagenic and irritant effect and 5,7,3’,4’-Tetrahydroxy-
6,8-dimethoxyflavon showed highly toxic mutagenic 
and Immunotoxicity effect. With the exception of two 
compounds (Germichrysone and 5,7,3’,4’-Tetrahydroxy-
6,8-dimethoxyflavon), all the compounds 
exhibited non-toxic effects against various factors. 
Germichrysone displayed highly toxic mutagenic 
and irritant effects, while 5,7,3’,4’-Tetrahydroxy-6,8-
dimethoxyflavon exhibited highly toxic mutagenic and 
Immunotoxicity effects (Table 3).
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Prediction of LD50 and drug class
The level of toxicity varies according to the dosage, the 
short-term toxic impact is assessed through the median 
lethal dose (LD50) (Saganuwan 2017). Compounds LD50 
and toxicity class prediction results showed that three 
compounds 5,7,3’,4’-Tetrahydroxy-6,8-dimethoxyfla-
von, Flavan-3-ol and Epiafzelechin have drug toxicity 
class V (LD50 = 2500  mg/kg, LD50 = 3919  mg/kg, and, 
LD50 = 2500  mg/kg, respectively), may be or may not 
harmful if swallowed; one compound Dihydrokaempferol 
have drug toxicity class IV (LD50 = 2000  mg/kg) can be 
harmful if swallowed; and two compounds Germichrys-
one and Benzeneacetic acid have drug toxicity class III 
(LD50 = 221  mg/kg and LD50 = 300  mg/kg, respectively), 
can be toxic if swallowed (Table 4).

Bioactivity score prediction of compounds
Bioactivity score prediction results showed that only 
one compound benzeneacetic acid was biologically 
inactive as enzyme, protease, kinase, GPCR, Ion channel 
modulator and nuclear receptor inhibitor. Among the 
other compounds examined, Germichrysone, Flavan-
3-ol, and Dihydrokaempferol displayed moderate 
biological activity as kinase inhibitors.

On the other hand, 5,7,3’,4’-Tetrahydroxy-6,8-dimeth-
oxyflavon also exhibited moderate biological activ-
ity as proteases, kinases, and ion channel modulators 

inhibitor. The remaining compounds (Germichrysone, 
Flavan-3-ol, 5,7,3’,4’-Tetrahydroxy-6,8-dimethoxyfla-
von, Dihydrokaempferol and Epiafzelechin) demon-
strated high biological activity as enzyme inhibitors, 
protease inhibitors, GPCR ligands, ion channel modu-
lators, kinase and nuclear receptor ligands (Fig.  1). 
Compound bioactivity refers to the ability of a chemi-
cal compound to produce a specific biological effects 
or response when interacting with a living organism or 
biological system (Hussein and Azeez 2023; Mukhtar 
and Khan 2023).

Table 2  ADMET properties of Phytoconstituents

Phytoconstituents CYP1A2 
inhibitor

CYP3A4 
Inhibitor

CYP2C19 
inhibitor

CYP2D6 
inhibitor

CYP2C9 
inhibitor

BBB permeant P-gp substrate Log Kp (skin 
permeation)

GI absorption

Germichrysone No No No No No No Yes −7.46 cm/s High

Benzeneacetic acid No No No No No Yes No −8.60 cm/s High

Flavan-3-ol No No No Yes No Yes No −5.66 cm/s High

5,7,3’,4’-Tetrahydroxy-6, 
8-dimethoxyflavon

Yes Yes No Yes Yes No No −6.35 cm/s High

Dihydrokaempferol No No No No No No No −7.13 cm/s High

Epiafzelechin No No No No No No Yes −7.46 High

Table 3  Toxicity prediction of effective compounds

Phytochemicals Mutagenic Reproduction Irritant Hepato-toxicity Carcino-genic Immuno-toxicity Cyto-toxicity

Germichrysone Highly toxic Non-toxic Highly toxic Non-toxic Non-toxic Non-toxic Non-toxic

Benzeneacetic acid Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic

Flavan–3–ol Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic

5,7,3’,4’-Tetrahydroxy-6, 
8-dimethoxyflavon

Highly toxic Non-toxic Non-toxic Non-toxic Non-toxic Highly toxic Non-toxic

Dihydrokaempferol Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic

Epiafzelechin Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic Non-toxic

Table 4  Prediction of LD50 and toxicity class of compounds

Class I (Fatal) if swallowed: (LD50 ≤ 5); Class II (fatal) if swallowed: (5 < LD50 ≤ 50); 
Class III (toxic) if swallowed (50 < LD50 ≤ 300); Class IV (harmful) if swallowed: 
(300 < LD50 ≤ 2000); Class V (may be harmful) if swallowed (2000 < LD50 ≤ 5000); 
Class VI (non-toxic) if swallowed (LD50 > 5000)

Sr. No Compounds Predicted LD50 Predicted 
toxicity 
class

1 Germichrysone 221 mg/k Class III

2 Benzeneacetic acid 300 mg/kg Class III

3 Flavan-3-ol 2500 mg/kg Class V

4 5,7,3’,4’-Tetrahydroxy-6, 
8-dimethoxyflavon

3919 mg/kg Class V

5 Dihydrokaempferol 2000 mg/kg Class IV

6 Epiafzelechin 2500 mg/kg Class V



Page 9 of 24Shahzadi et al. Bioresources and Bioprocessing           (2024) 11:53 	

Network pharmacology analysis
Identification of potential targets
Network pharmacology is an interdisciplinary approach 
that analyzes complex interactions between biological 
systems, drugs, and diseases to gain a holistic under-
standing of drug actions and discover novel therapeutic 
targets (Nogales et al. 2022; Yuan et al. 2022). The 662 tar-
gets were retrieved from 6 compounds through the Swis-
sTargetPrediction. The potential targets of hypertension 
found in the databases GeneCard and DisGeNet were 
10685 and 2323, respectively. Following the elimination 
of duplicates and the integration of hypertension-related 
targets, 161 common targets were identified, signifying 
potential intersections between compound targets and 
those associated with hypertension. These shared targets 
were regarded as potential targets for the selected plants 
in their hypertension-related actions (Fig. 2). A protein–
protein interaction network reveals the intricate web of 
connections between various proteins in a cell, crucial 
for understanding cellular functions and disease mecha-
nisms (Wang et al. 2022a, b, c; Rodina et al. 2023).

Construction of compound‑target network
Compound-target network was constructed by using 
Cytoscape to analyze the interaction between the 6 active 
compounds and 161 potential targets (Fig.  3). In Fig.  3, 
the network green-colored nodes at the center represent 

Fig. 1  Bioactivity score prediction map of different compounds and activities receptor ligand; > 0.0 (active), −5.0 to 0.0 (moderately active) 
and below −5.0 (inactive)

Fig. 2  Venn diagram of targeted genes and drug target genes
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the phytoconstituents; purple-colored nodes show the 
potential targets of hypertension and orange-colored 
nodes showing the targets function in different pathways 
regulation. Furthermore, the edges depict the interac-
tion of chemicals and targets. Target-Compound network 
analysis shows that one active ingredient can affect many 
targets, while the same target may interact with more 
than one active compound. This reflects the multi-target 
and multi-components effects of the compounds in the 
medication for hypertension.

Construction of Protein–protein‑Interaction (PPI) and hub 
genes
The Protein–protein-Interaction network of 161 common 
genes was constructed by using STRING database. After 
visualizing the PPI network in Cytoscape, 161 nodes with 
1871 edges were found (Fig. 4A). The CytoHubba plugin 
was employed to identify hub genes, with an examination 
of 12 topological analysis methods for hub gene predic-
tion. Among these 12 methods, the degree method was 
chosen to identify the top ranked hub genes. The follow-
ing genes, namely AKT1, CASP3, HSP90AA1, MAPK14, 
MMP9, PPARG, PTGS2, TLR4, and VEGFA, emerged 

as the top-ranked genes due to their significantly high 
degree values (Table 5). After first stage node genes iden-
tification, four compounds Germichrysone, Flavan-3-ol, 
Benzeneacetic acid and Dihydrokaempferol was found 
effective against TLR4, MMP9, MAPK14, AKT1, VEGFA 
and HSP90AA1 (Fig. 4B.).

Construction of compound‑target‑pathway network
The mechanism of 4 compounds Germichrysone, Flavan-
3-ol, Benzeneacetic acid and Dihydrokaempferol was 
studied in hypertension. For this purpose enriched 
pathways were selected by DAVID analysis and 
compound-target-pathway network was constructed 
with Cytoscape (Fig. 4B). The degree values determined 
the node color and size, while the active components’ 
targets exhibited coordination through various paths, 
connecting with each other and contributing to the 
management of hypertension.

Gene ontology and pathway enrichment analysis
Gene Ontology is a structured and standardized system 
used to categorize and describe the functions of genes 
and their products (Wang et al. 2022a, b, c). In order to 

Fig. 3  Compound-target Network



Page 11 of 24Shahzadi et al. Bioresources and Bioprocessing           (2024) 11:53 	

Fig. 4  A Protein–protein Interaction Network B Compound-target-pathway Network
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clarify the molecular mechanisms through which active 
compounds enhance hypertension treatment, GO anno-
tations and KEGG pathway analysis was conducted on 
a set of 161 targets associated with anti-hypertension 
activity. GO analysis recognized 386 biological pro-
cesses (BP) (Fig. 5A), which include regulation of trans-
port system, positive regulation of cell communication, 
positive regulation of signaling pathways, regulation of 
programmed cell death and blood circulation (Mabhida 
et  al. 2021; Wei et  al. 2022; Wang et al. 2023); 56 cellu-
lar components (CC) (Fig.  5B), which include integral 

component of plasma membrane, neuron projection, 
axon, cellular surface, secretory vesicle, synapse, mem-
brane raft, perinuclear region of cytoplasm, dendrite and 
synapse (Ali et al. 2022; He et al. 2023; Wang et al. 2022a, 
b, c); and 110 molecular functions (MF) (Fig. 5C) such as 
protein serine/threonine kinase activity, which regulate 
vascular tone and renin–angiotensin–aldosterone sys-
tem (RAAS), renal sodium handling and baroreceptors; 
phosphotransferase activity/alcohol group as acceptor; 
kinase activity; signaling receptor activity such baro-
receptors, adrenergic receptors, endothelin receptors, 

Fig. 5  Gene ontology plots A Biological process B Cellular Components C Molecular function
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Renin–angiotensin–aldosterone system receptors play 
crucial role in blood pressure regulation; oxidoreduc-
tase activity, which involves physiological processes that 
influence vascular function, endothelial health and car-
diovascular homeostasis (Zeng et al 2017; Cui et al. 2018; 
Pradana et  al. 2023). Applying the cutoff value p < 0.05 
top 20 GO annotations (BP, CC, and MF) were selected 
to draw lollipop plots.

KEEG analysis predicted 118 pathways regarding the 
hypertension, which include PI3K-Akt signaling pathway 
which regulate various cellular pathways in blood pres-
sure regulation like endothelial function, inflammation 
and renal function; Rap1 signaling pathway which regu-
late vascular tone and endothelial cells to control blood 
pressure; EGFR tyrosine kinase inhibitor resistance like 
erlotinib or gefitinib increase blood pressure, inhibit-
ing EGFR regulate blood vessels function; HIF-1 signal-
ing pathway also referred to as Hypoxia-Inducible Factor 
1 (HIF-1) signaling pathway, studies suggest that HIF-1 
regulate Renin-angiotensin system and can affect the 
expression of renin; and AGE-RAGE signaling pathway 
in diabetic complications, chronic activation of the AGE-
RAGE pathway contributes to endothelial dysfunction 
(Fig.  6A) (Di et  al. 2018; Mabhida et  al. 2021; He et  al. 
2023). A hierarchical clustering tree was constructed 
to summarize the correlation among significant path-
ways. Pathways with many shared genes are clustered 
together. In Fig.  6B bigger dots indicating more signifi-
cant P-values. Furthermore, an interaction network was 
built between these enriched pathways to study the rela-
tionship. The network establishes connections between 
two pathways (nodes) if they possess 20% or more shared 
genes, with 20% being the default threshold. Nodes with 
a darker shade indicate more significantly enriched gene 
sets, while larger nodes signify larger gene sets. Thicker 
edges denote a higher degree of gene overlap (Fig.  6C). 
Applying the cutoff value p < 0.05 top 20 KEGG pathways 

were selected to draw bar plot, cluster tree and interac-
tion network.

Gene/protein structure view by domain and motif analysis
Domain and motif analysis are techniques used to study 
the structure and function of gene/ proteins (Shen 
et al. 2020). Several genes may share common domains, 
domain superfamilies, and motifs, participating in vari-
ous cellular, biological, and molecular functions (Jia 
et al. 2023). In the context of proteins, a domain is a dis-
tinct structural unit or region within the protein that 
has a specific function. Proteins are composed of one or 
more domains, each of which contributes to the over-
all function of the protein. Analysis revealed that dif-
ferent domains and domain super families were found 
involved in targeted genes cellular functions (HSP90, 
HSP90 Superfamily, HATPase_c_3, peptidase_C14, PKi-
nase, PKc_like Superfamily, PKinase tyr, PH, PKinase_C_ 
Superfamily, PKinase_C, Kinase-like, Kinase_like super-
family, PPARgamma_N, Hormone_recep, NR_LBD 
superfamily, ABC1, An_peroxidase, TIR, TIR_2, LRR_4 
superfamily, peptidase_M10, fn2 superfamily, PT, PDGF, 
PDGF superfamily), molecular functions (HSP90 Super-
family, HATPase_c_, HATPase_c_3, HATPase Superfam-
ily, CASc superfamily, PKinase, PKc_like Superfamily, 
PH, PKinase_C_, Kinase-like, Kinase-like superfamily, 
PPARgamma_N, zf-C4, NR_DBD_like superfamily, Hor-
mone_recep, NR_LBD superfamily, ABC1, An_per-
oxidase, An_peroxidase superfamily, TIR superfamily, 
TIR_2 superfamily, HX superfamily) and biological func-
tions (HSP90, peptidase_C14, PKinase, PKc_like Super-
family, PKinase tyr, PH, PH-like superfamily, PKinase_C, 
PKinase_C Superfamily, PPARgamma_N_, 
PPARgamma_N_ Superfamily, NR_LBD superfamily, 
ABC1, An_peroxidase, An_peroxidase superfamily, EGF, 
EGF_CA superfamily, TIR, TIR_2, LRR_8, LRR_8 super-
family, LRR_9, LRR_9 superfamily, LRR_4 superfamily, 

Fig. 6  Enrichment analyses of targeted genes A KEEG pathways B clustering between pathways C pathways interaction network
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Peptidase_M10, Peptidase_M10 superfamily, fn2, PT 
superfamily, Hemopexin, PDGF, PDGF superfamily) 
(Fig. 7).

HSP90, also known as Heat shock protein 90, highly 
conserved domain and protein family involved in 
cellular homeostasis, regulation of signal transduction 
and cancer biology (Birbo et  al. 2021; López et  al. 
2021). HATPase_c_3, HATPase superfamily and 
HATPase_c play essential role in transcription, DNA 
unwinding and replication and protein degradation 
(Xue et  al. 2023). Peptidase_ C14 is peptidase domain 
involved in catalyzing the hydrolysis of peptide bonds 
in proteins, protein degradation and regulation of cell 
signaling (Velilla et al. 2023). CASc or CRAL/TRIO and 
Sec14p superfamily is a group of structurally related 
proteins that play role in cellular processes such as 
lipid binding and transport, signal transduction, and 
cellular differentiation and development (Song et  al. 
2020). PKinase, PKc_ superfamily, PKinase, PKinase_C, 
and PKinase_tyr involve in both cellular and molecular 
functions such as signal transduction, cell cycle 
regulation, transcriptional regulation, RNA processing 
and stability (Ahuja et al. 2019; Roskoski 2020). Kinase_
like/Kinase_like superfamily involve in protein–protein 
interaction, regulation of kinase activity, substrate 
recognition and cellular localization (Paul and Srinivasan 
2020). PPARgamma_N superfamily play role in ligand 
binding, transcriptional activation and regulation of gene 
expression (Nakadai et al. 2023). Zf-C4/ zinger finger and 
fn2 domains involve in DNA binding and transcriptional 
regulation (Fisher et  al. 2023). NR-DBD, LR-DBD 

superfamilies, ABC1 and HX domains play crucial 
role in cellular and molecular response such as nuclear 
receptors, transcriptional regulation and hormone 
sensing (Abdullah‐Zawawi et  al. 2021). Hormone_recep 
and An_peroxidase domains are involve in molecular and 
biological functions like gene expression and oxidative 
stress (Molina et  al. 2022). Peptidase_M10 and PDGF 
superfamilies domains are involve in cell signaling, 
immune response and extracellular matrix remodeling 
(Nageswara et al. 2019).

A motif is a short, conserved sequence pattern or 
structural element in nucleic acids or proteins, linked to 
specific functions or binding sites, and may exist as small 
regions within larger sequences, playing roles in func-
tional activities like ligand or substrate binding in pro-
teins In nucleic acids, motifs can be recognition sites for 
proteins. Figure 8 depicted top hub genes motif locations, 
symbol and motif consensus.

Molecular docking
Molecular docking is an essential component of drug dis-
covery, as it anticipates the interactions between poten-
tial drug compounds and target proteins, thus facilitating 
the development of more precise and efficient medica-
tions (Nag et al. 2023). Molecular docking was employed 
to screen potential targets for components capable 
of reducing the occurrence of hypertension. Docking 
analysis successfully predicted a strong binding affin-
ity between the components and the binding pockets of 
the target proteins. The four active components (Dihy-
drokaempferol, Flavan-3-ol, Benzeneacetic acid and 

Fig. 7  Conserved domains in top hub genes
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Germichrysone) were docked with the six potential tar-
gets of hypertension (Table 6). The lower (more negative) 
the binding energy, the stronger the anticipated affinity 
for binding of the ligand against the target in molecu-
lar docking. The more negative the binding energy, the 
higher the expected affinity for ligand binding to the tar-
get during molecular docking (Sarkar et al. 2021; Kumar 
et  al. 2023). A scoring function was employed to assess 
the positioning and order of docked structures, result-
ing in the generation of nine poses, from which the top 
one structure was chosen. The primary criterion for 
selecting the top structure was the number of hydro-
gen bonds present. Compounds with a higher count 
of hydrogen bonds were given preference. The phyto-
chemicals showed binding energies for TLR4 ranging 
from − 5.9 kcal mol−1 to − 8.0 kcal mol−1. Gremichrysone 
showed the highest binding affinity with lowest binding 
energy (i.e., −8.0 kcal  mol−1), followed by Dihydrokaep-
ferol (−7.1 kcal  mol−1). The highest number of interact-
ing residues was observed in the interaction of TLR4 
with both Germichrysone and Dihydrokampferol contain 
4 interacting amino acid residues i.e. Leu 117, Leu 138, 
Ile 114, Phe 144 and Asn 137 and Asn 143, Leu 138, Ile 
114 and Gln 115, respectively. The energies showed by 
phytochemical for MMP9 range from (−7.8  kcal  mol−1 
to −9.0  kcal  mol−1), the binding affinity of Flavon-3-ol 
with MMP9 recorded was (−9.0  kcal  mol−1), they have 
three amino acid residues i.e. Leu 188, His 226 and 
Tyr 248. The spectrum of energies exhibited by phy-
tochemicals for MAPK14 varies from −4.2  kcal  mol−1 
to −7.8  kcal  mol−1. The binding affinity of Flavon-3-ol 
for MAPK14 was noted -7.8  kcal  mol−1, with highest 
number (i.e. nine) of interacting amino acid residues 
such as Ala157, Leu167, Thr106, Ala51, lys53, Ile84, 
Val38, His107 and Met109, followed by Benzene ace-
tic acid (−5.6  kcal  mol−1) have four interacting amino 
acid residues i.e. Ala51, Val38, Lys53 and Thr106. The 

energy showed by phytoligands for VEGFA range from 
−4.8 kcal mol−1 to −5.5 kcal mol−1. The binding affinity of 
Flavon-3-ol with VEGFA was note down -5.5 kcal mol−1 
with two interacting amino acid residues i.e. Cys26 and 
Tyr25. The energy exhibited by phytoligands for AKT1 
varies between −3.8  kcal  mol−1 and −4.7  kcal  mol−1. 
The Benzene acetic acid demonstrated a binding affinity 
of -4.7 kcal mol-1 with AKT1, with three specific amino 
acid residues involved: Ala50, Glu40, and Lys39. The 
energy showed by phytochemical for HSP90AA1 range 
from −5.6  kcal  mol−1 to −6.7  kcal  mol−1. The recorded 
binding affinity between Germichrysone and HSP90AA1 
was −6.7 kcal mol−1, involving interaction with two spe-
cific amino acid residues: Asp93 and Asp54 (Table  6). 
The docked protein structures 2D and 3D model lines 
of three complexes Dihydro-TLR4, Flavon-MMP9 and 
Germich-TLR4 with greater binding affinity are given 
in Fig. 9 which was further validated by MD simulation. 
An examination of the interplay between protease and 
ligands revealed substantial influences from traditional 
hydrogen bonding, carbon hydrogen bonding, alkyl inter-
actions, and pi–alkyl interactions (Mir et al. 2023a, b).

Molecular docking simulation
Molecular dynamics (MD) simulations are essential 
tools in the field of drug discovery and the evaluation 
of the structural stability of ligand–protein complexes 
(Fatullayev et  al. 2023; Sayed et  al. 2023). Through 
the simulation of the ever-changing behavior of these 
complexes, scientists can acquire valuable information 
regarding their binding stability and strength (Kumari 
et  al. 2023; Sekaran et  al. 2023). This information can 
be leveraged to fine-tune ligand structures, aiding in 
the assessment of potential drug effectiveness and the 
identification of the most favorable candidates for sub-
sequent experimental trials (Patel et  al. 2023). Based 
on the top-scoring results obtained from the docking 

Fig. 8  Conserved motifs in top hub genes
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complexes, we conducted molecular dynamics simula-
tions for the following pairs: Flavan-3-ol and MMP9, 
dihydrokaempferol and TLR4, and Germichrysone and 
TLR4. Each complex underwent a 200  ns MD simula-
tion to analyze the conformational dynamics of the 

core compounds and their respective targets. Various 
energy components were assessed, including poten-
tial energy, kinetic energy, average Coulombic short-
range (Coul-SR) energy, and average Lennard–Jones 
short-range (LJ-SR) energy. Utilizing the final 200  ns 

Table 6  The binding affinity of compounds and core targets

Sr. No Compounds Target Target PDB ID Target protein structure Binding 
affinity (Kcal/
mol)

Interacting amino acids residues

1 Dihydrokaempferol TLR4 2Z62 −7.1 Asn 143, Leu 138, Ile 114 and Gln 115

2 Flavan-3-ol MMP9 6ESM −9.0 Leu 188, His 226 and Tyr 248

MAPK14 6S9P −7.8 Ala157, Leu167, Thr106, Ala51, Lys53, Ile84, 
Val38, His107 and Met109

VEGFA 6ZBR −5.5 Cys26 and Tyr 25

3 Benzene acetic acid MAPK14 6S9P −5.6 Ala51, Val38, Lys53 and Thr106

AKT1 1UNQ −4.7 Ala50, Glu40 and Lys39

4 Germichrysone HSP90AA1 5J2X −6.7 Asp93 and Asp54

TLR4 2Z62 −8.0 Leu 117, Leu 138, Ile 114, Phe 144 and Asn 137
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of simulation trajectories, we calculated the interac-
tion energy, which accounts for van der Waals and 
electrostatic interactions, to estimate their binding 
affinity at each site. Specifically, the Flavan-MMP9, 
Dihydro-TLR4, and Germich-TLR4 complexes exhib-
ited average Coul-SR interaction energies of −43.8253, 
−49.0746, and −18.0598  kJ/mol, respectively. Moreo-
ver, the average LJ-SR interaction energies for these 
complexes were −110.202, −32.1595, and −119.129 kJ/
mol, respectively. These findings indicate that the inter-
action between Flavan-MMP9 and Germich-TLR4 

was stronger than that of the Dihydro-TLR4 complex, 
as depicted in Fig. 10A, B, and C. According to RMSD 
results, the Flavan-MMP9 complex began to rise from 
0.2  nm at 25  ns and stabilized at around 100  ns, as 
shown in Fig.  11A. Dihydro-TLR4 remained stable at 
0.1  nm with minor fluctuations and began to rise to 
0.2  nm at 200  ns, as illustrated in Fig.  11B. The Ger-
mich-TLR4 complex reached 0.1  nm at 50  ns, as pre-
sented in Fig.  11C. Further, protein–ligand complexes 
are stabilized by hydrogen bonds (H-bonds). An analy-
sis of H-bond interactions was conducted on the MD 

Fig. 9  Molecular interactions and docking poses of selected phytoligands at different protein receptor sites A Dihydrokaempferol (TLR4) B 
Flavon-3-ol (MMP9) C Germichrysone (TLR4) representing docked protein structures and their Hu respective 3D and 2D model lines
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trajectories to determine the total number of H-bonds 
formed between protein–ligand complexes, shedding 
light on the binding affinity of ligands to proteins. The 
Flavan-MMP9, Dihydro-TLR4, and Germich-TLR4 
complexes displayed H-bonds ranging from 0 to 4, 0 
to 5, and 0 to 3, respectively. These outcomes revealed 

that, throughout the simulations, the total number of 
H-bonds in all protein–ligand complexes remained sta-
ble, as shown in Fig. 12A, B, and C.

Fig. 10  Time (ns) vs interaction energy (K/mol) plots of the molecular dynamic simulation of docking complexes involving the receptors A 
Flavon-MMP9 B Dihydro-TLR4 C Germi-TLR4

Fig. 11  Time (ns) vs root mean square deviation plots of molecular dynamic simulation of docking complexes involving the receptors A 
Flavon-MMP9 B Dihydro-TLR4 C Germich-TLR4

Fig. 12  Time (ns) vs number of hydrogen bonds plots of molecular dynamic simulation of docking complexes involving the receptors A 
Flavon-MMP9 B Dihydro-TLR4 C Germich-TLR4
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Binding free energies of the complex by Molecular Mechanics 
Poisson‑Boltzmann Surface Area (MM‑PBSA)
Free binding energy calculations in molecular docking 
simulations were performed to estimate the strength of 
the interaction between a ligand and its target protein. 
The free binding energies (ΔG) calculated were 17.5, −4.5 
and −9.7 kcal/mol in Dihydro-TLR4, Flavon-MMP9 and 
Germich-TLR4, respectively. These binding energies rep-
resent the thermodynamic stability of the ligand–protein 
complex; a more negative free binding energy indicates 
a more stable complex, suggesting a higher likelihood of 
the ligand binding tightly to the receptor (Fig.  8). In an 
isolated system, the total energy (ΔH) is conserved. ΔH 
calculated were 0.3, −20.4 and −19.5  kcal/mol in Dihy-
dro-TLR4, Flavon-MMP9 and Germich-TLR4, respec-
tively (Fig. 8). ΔH is essential in determining the equation 
of state (temperature, volume and pressure) for a system 
and understanding reaction mechanisms, reaction rates, 
and the stability of different chemical species. Moreover, 
the thermodynamic behavior of the system is measured 
by entropy TΔS. The entropic contribution to the bind-
ing free energy (TΔS) is significant factor; it helps in pre-
dicting and understanding the strength and specificity 
of molecular interactions. The values of TΔS calculated 
were 18.6, 4.8 and 7.7 kcal/mol in Dihydro-TLR4, Flavon-
MMP9 and Germich-TLR4, respectively (Fig. 13).

Computational analytic technologies such as molecular 
docking and network pharmacology are essential 
for progressing clinical investigations because they 
offer priceless insights into the processes involved in 
drug discovery and development (Tao et  al. 2020). 
Molecular docking facilitates the rational design of new 
therapies by predicting the binding affinity and manner 
of interaction between small compounds and target 

proteins. It streamlines the medication development 
process by enabling researchers to evaluate the safety and 
efficacy characteristics of possible therapeutic options 
(Kaur et  al. 2019). Network pharmacology adds to this 
by explaining intricate relationships within biological 
systems, discovering synergistic effects, and identifying 
potential off-target effects or undesirable reactions (Li 
et  al. 2023). Integrating these computational tools into 
clinical trials improves precision medicine initiatives by 
allowing for the identification of personalized treatment 
regimens matched to specific patient profiles, ultimately 
enhancing therapeutic outcomes and patient care (Collin 
et al. 2022).

Furthermore, network pharmacology and molecular 
docking have disadvantages, such as insufficient 
biological understanding, reliance on rigid models, and 
the requirement for experimental confirmation. The 
precision of scoring functions and the computational 
resource needs provide obstacles for molecular docking. 
Despite this, they continue to be useful tools in drug 
discovery when combined with experimental validation 
and other computational approaches (Kaushik et  al. 
2018).

Conclusion
In this study, we delved into the potential mechanisms 
underlying the use of phytochemicals from three Fabaceae 
family species Cassia fistula, Senna alexandrina and 
Cassia occidentalis to treat hypertension. Our approach 
combined network pharmacology-based analysis with 
molecular docking and molecular dynamics (MD) 
simulation. Drug discovery analysis followed by network 
pharmacology analysis identified some important 
phytoconstituents germichrysone, benzeneacetic acid, 
Flavan-3-ol, 5,7,3’,4’-Tetrahydroxy-6, 8-dimethoxyflavon, 
dihydrokaempferol, and epiafzelechin which revealed 
that these were the main constituents related to 
hypertension targets while TLR4, MMP9, MAPK14, 
AKT1, VEGFA and HSP90AA1 were the main 
hypertension-related molecular targets. 20 hypertension-
related pathways were identified with the highest 
number of observed genes and lowest false discovery 
rate. Further, molecular docking studies showed that 
Dihydrokaempferol, Flavan-3-ol and Germichrysone 
possessed the highest binding energies towards all the 
targeted proteins (TLR4, MMP9). The study provided 
a comprehensive understanding of the suggested 
mechanism of action of compounds that may have 
potential use in hypertension treatment. The identified 
compounds Dihydrokaempferol, Flavan-3-ol belongs are 
active components of Cassia fistula and Germichrysone 
is the active components of C. occidentalis. In conclusion, 
our findings underscore the importance of exploring 

Fig. 13  Binding free energies of ligand and protein complexes 
by MM-PBSA
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natural remedies as potential alternatives to conventional 
pharmacological interventions.
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