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ABSTRACT 
Context-aware computing has been attracting growing attention in recent years. 

Generally, there are several ways for a context-aware system to select a course of 

action for a particular change of context. One way is for the system developers to 

encompass all possible context changes in the domain knowledge. Other methods 

include system inferences and adaptive learning whereby the system executes one 

action and evaluates the outcome and self-adapts/self-learns based on that. However, 

in situations where a system encounters unknown contexts, the iterative approach 

would become unfeasible when the size of the action space increases. Providing 

efficient solutions to this problem has been the main goal of this research project. 

Based on the developed abstract model, the designed methodology replaces the 

single action implementation and evaluation by multiple actions implemented and 

evaluated concurrently. This parallel evaluation of actions speeds up significantly the 

evolution time taken to select the best action suited to unknown context compared to 

the iterative approach. 

The designed and implemented framework efficiently carries out concurrent 

multi-action evaluation when an unknown context is encountered and finds the best 

course of action.  Two concrete implementations of the framework were carried out 

demonstrating the usability and adaptability of the framework across multiple 

domains.  

The first implementation was in the domain of database performance tuning. The 

concrete implementation of the framework demonstrated the ability of concurrent 

multi-action evaluation technique to performance tune a database when performance 

is regressed for an unknown reason.  
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The second implementation demonstrated the ability of the framework to 

correctly determine the threshold price to be used in a name-your-own-price channel 

when an unknown context is encountered.  

In conclusion the research introduced a new paradigm of a self-adaptation 

technique for context-aware application. Among the existing body of work, the 

concurrent multi-action evaluation is classified under the abstract concept of 

experiment-based self-adaptation techniques.  
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Context awareness is a key component in pervasive computing. In simple 

terms, context awareness is the consideration of an entity’s surrounding 

environment, its properties, other entities in the environment and interaction of 

these entities and their influence on the change of the environment’s properties. 

In context-aware computing, the computer system’s actions are determined by 

the context and changes in the context. As a consequence of a context change the 

context-aware system transition through context sensing, context inference, and 

action phases. A context-aware system does not concern itself with the causality 

of the context change but the reactive action it must execute in order to maximize 

the expected goals under the new context.  

In this regard, there are several ways a context-aware system would select an 

action to execute as a result of context change.  One way is for the system 

developers to encompass and embed all possible context changes and 

corresponding action relevant to the application domain into the context-aware 

application. When a context change occurs the context-aware application 

matches it to known context changes and chooses the corresponding action. This 

method works for small sets of context-change and action pairs and is not 

feasible when the system could encounter an unknown context. A system is said 

to have encountered an unknown context when it doesn’t know of an action that 

would make it self-adapt such that the outcome is optimized for that particular 

context.  

Inferences and adaptive learning techniques are used to address the issue of 

encountering unknown contexts. In a context-aware system employing such 

techniques, there exists a one-to-many relationship between the context change 

and action space. The system executes each action iteratively deemed relevant to 
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the sensed context change and evaluates the outcome and chooses the action 

which maximizes the expected goals. However, this iterative approach is not 

feasible when the size of the action space increases as it would result in the 

adaptive time being increased linearly.  

The research project undertaken proposed a novel self-adapting context-

aware framework which addresses the issues in the iterative approach through 

multi-action evaluation and self-adaptation. Under this framework, instead of one 

action, multiple actions are implemented, evaluated and compared concurrently 

to find the action that maximizes the expected goals. This concurrent evaluation 

of actions reduces significantly the time for self-adaptation.  

This novel adaptive context-aware framework forms the key contribution of 

the research. Formal modelling of the framework has been completed and 

through implementation in two distinct domains, the usability of this novel 

approach has been demonstrated. The results and findings from each of these 

implementations have been validated through peer-reviewed publications 

presented at several conferences. 

1.1 Ubiquitous and Pervasive Computing 

The emergence of context-aware computing is rooted in the idea of 

ubiquitous computing, a term first introduced by Weiser [1] as a vision of how 

computers would be working in the 21
st
 century. Not only the vision has been 

realized since then but also surpassed in some areas. However, a look back at the 

characteristics envisioned by Weiser in his paper is needed in order to understand 

how modern-day context-aware systems sprung up from the ideas of ubiquitous 

computing systems. One of the first characteristics Weiser mentions is that 
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“ubiquitous computers must know where they are”. This alludes to the location 

being a key factor in the interaction between users and the computer (or computer 

services). The location based aspect of ubiquitous computing was so widely used 

in context-aware systems creation that some definitions used the location as the 

only factor determining the context of that particular context-aware system. The 

definitions have broadened since then which will be looked at in subsequent 

sections.  

The second aspect envisioned by Weiser refers to the specialist nature of 

ubiquitous computers. In his vision “ubiquitous computers will also come in 

different sizes, each suited to a particular task”. According to this statement 

ubiquitous computers were not expected to be general purpose computers that are 

capable of a multitude of functionalities.  

The final characteristic mentions the technology required by the ubiquitous 

computing which, according to Weiser, “comes in three parts: cheap, low-power 

computers that include equally convenient displays, software for ubiquitous 

applications and a network that ties them all together”.  

If these last two characteristics are looked at together, what emerges is the 

context-aware computing for the internet of things (IoT). A set of computing 

devices specializing in a particular task are connected and orchestrated to meet a 

computing need otherwise not possible.  

The ultimate goal of Weiser’s vision was that people would utilize computing 

power as they would any other utility, without being aware of who, how, when 

and where it was generated. This idea of omnipresence computing power was 

termed pervasive computing. In 1996 Rick Belluzo of HP compared pervasive 
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computing power to electricity [2] and stated it is “the stage when we take 

computing for granted. We only notice its absence, rather than its presence”.            

A formal definition of pervasive computing is given in [3] where it is defined 

as “the idea of making ‘computing power’ available anyplace, anytime in a 

uniform way so that it may be exploited for meeting the challenges faced by 

society”. Also, identified in this literature are four key areas of advancement 

needed in order for pervasive computing to fully materialize. They are 

computing, communication, cognition, and collaboration – called the “4Cs of 

pervasive computing”. 

Much advancement has happened along those 4Cs and the pervasive 

computing has managed to influence many areas within the past decades from its 

inception as a vision for 21
st
-century computers. Some of the areas include 

ubiquitous knowledge workers [4], intelligent transportation [5], pervasive 

healthcare [6, 7], and context-aware appliances [8] which gives an indication of 

the varying landscape within pervasive computing. 

The next leap in pervasive computing came with the emergence of 

smartphones. The key to realizing the full potential of pervasive computing was 

to achieve mobility. This had to be achieved without a reduction in the quality in 

terms of computing power while being mobile. What lacked during the early days 

of pervasive computing was the availability of compact and mobile yet powerful 

computational devices. This is envisaged by Abowd et al. [9] stating that “mobile 

or smartphone will usher in the real age of ubiquitous computing, While Moore’s 

Law will lead to impressive computational and storage properties for these 

devices, it’s their small form factor and constant connectivity that present the 

most intriguing, and sometimes worrying, possibilities.” This has certainly 



6 

 

become a reality and had led to pervasive service computing, where services are 

more personalized and customized depending on each individual’s preference. 

An example of realization of the aforementioned vision would be a smartphone 

application giving location based services, where location is being one aspect of 

the context. Interestingly there’s merging of new technologies to enhance the 

capabilities of these types of systems. Intel’s CARS system is one such example 

[10] where big data technologies coupled with context-awareness serve drivers 

(mobile users) with coupons that are most relevant to the customers’ immediate 

preferences onto the car navigation system without disrupting the navigation 

activities. 

 With these advances in the technology and support, the next steps in 

pervasive computing came in the form of service orchestration. With the use of 

service oriented architecture and web services the traditional model of pervasive 

computing was transformed into service oriented pervasive computing [11]. The 

characteristics of a service oriented pervasive computing system were described 

as “explicit description of user’s activity, pervasive nature, semantics, P2P, trust-

awareness, and wireless sensor networks”. It could be noticed that with the use of 

semantics and trust-awareness this was an attempt to advance the later 2Cs 

(cognition and collaboration) in the 4Cs of pervasive computing. The first two of 

the 4Cs (computing and communications) are also rapidly advancing especially 

with the introduction of GPS as an embedded service. For a user to truly benefit 

from pervasive computing, the first two Cs are not enough. The supporting 

systems need to exhibit cognition - an understanding of the situation.  

With the realization of mobility, the next technological barrier to overcome in 

the pervasive computing landscape is cognition (situation awareness) and 
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collaboration. Evolutionary system designs [12], evidence based pervasive 

systems [13], multi-agent design for enabling cognition through reasoning [14] 

are examples of distinct and parallel efforts taken in addressing the later 2Cs 

(cognition and collaboration) in pervasive computing. 

With the advances in pervasive computing, it could be also expected some 

level of “undesirable outcomes to privacy, basic freedoms (of expression, 

representation, demonstration etc.), and even human rights” [15] to emerge. This 

would mean advances in other areas such as security and trust must also be 

considered along with the advances in pervasive computing. 

In the past, both ubiquitous computing and pervasive computing were 

considered interchangeable terms due to the similarity of computing power being 

available everywhere, anytime. However, due to latest developments, these two 

terms are no longer interchangeable. In current trends, pervasive computing 

involves compact mobile devices which allow access to computing power 

anywhere. On the other hand, the ubiquitous computing avoids users having to 

use computers or devices at all. It acts as computing in the background providing 

computational power without users ever being aware of its existence. According 

to Wiser who coined the term ubiquitous computing, it is not the same thing as 

mobile (pervasive) computing, or a superset or a subset [16].  

1.2 Context and Context-Awareness 

With mobility becoming prominent in the pervasive computing, location 

became a key factor in defining software and its interaction with users and 

devices. The term “context–aware” was first introduced by Schilit and Theimer 

as a generalization of software which changes its characteristics based on 
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location. According to Schilit and Theimer [17] “location information is 

necessary for users and applications that want to query and interact with nearby 

devices and services. Such information also allows stationary clients to track 

moving objects. In general, location information enables software to adapt 

according to its location of use, the collection of nearby people and objects, as 

well as the changes to those objects over time. We use the term context-aware 

computing to describe software exhibiting these general capabilities”. This first 

attempt at defining context-awareness is limiting due to its use of location as the 

focal point of the context. If the software is not adapting based on location 

information, it is not considered a context-aware application. Any context-aware 

model based on this definition will not fit with the multi-action context-aware 

system as two actions associated with a single location would lead to ambiguity.  

The other definitions expanded on this initial definition of “context-aware” by 

combining other aspects with location. Brown et al. [18] defined context as 

“location, time of day, the season of the year, temperature, and so forth.”  Though 

this definition is broader than that of Schilit and Theimer, it still makes no 

assumption as to how each of these context aspects would influence the overall 

context either individually or in combination with each other. Ryan et al. [19] 

define context as “location, time, temperature or user identity” and context-

awareness as the term “that describes the ability of the computer to sense and act 

upon information about its environment” i.e. the context information. Dey [20] 

not only considers the aforementioned aspects such as location and time of the 

day but the users’ emotional state, focus of attention, location and orientation, 

date and time, objects, and people in the user’s environment as well.  
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While some definitions are location-centric, other definitions are either user 

or user’s environment centric.  Hull et al. [21] define context as the “user’s local 

environment” and the situation awareness as “ability of computing devices to 

detect, interpret and respond to aspects of the user's local environment”. This 

definition seems to consider context and situation as synonyms. Franklin & 

Flaschbart [22] also define context as the situation of the user. Situation of the 

user is described as “what is happening at this moment” with the user. The 

moment is further differentiated based on the user’s action, expected goals and 

responses from the system. These aspects could vary from one moment to 

another. 

Brown [23] defined context to be the elements of the user’s environment that 

the user’s computer knows about. Brown provides “location, the adjacency of 

other objects, critical states, imaginary companions, time, and computer states” 

as examples of elements of a context.  

Similar to the user-centric approach in the above definitions a few other 

definitions look at the context from the application-centric perspective.  Ward et 

al. [24] view context as the state of the application’s surroundings while Rodden 

et al. [25] define it to be the application’s setting.  

The aforementioned definitions fit well with certain cases but fail to give a 

generalized definition of context. The following definition by Schilit et al. [26] 

tries to address this limitation by defining context as a constantly changing 

execution environment which is a combination of computing, user, and physical 

environments. According to this definition key aspects of context are “where you 

are, who you are with, and what resources are nearby”. Pascoe [27] defines 

context as a subjective concept that is defined by the entity that perceives it. In 



10 

 

short, it is to be the subset of physical and conceptual states of interest to a 

particular entity.  

Herein lies the problem of defining what a context is, because what is a 

context is subjective to the user, application, environment or what the application 

or user is doing at that time.  There is “no clear boundary which divides what is 

and is not context, but the most interesting kinds of context are those that humans 

do not explicitly provide” [28]. Dey and Abowd [29] conclude that all of the 

aforementioned definitions suffer from the problem of being too specific and give 

a new definition. In [29] Dey and Abowd define context as “any information that 

can be used to characterize the situation of an entity. An entity is a person, place, 

or object that is considered relevant to the interaction between a user and an 

application, including the user and applications themselves”. This definition 

gives the context-aware system developers much more freedom to decide what 

constitutes a context. Following this definition, an entity can bring in and remove 

from the context space any aspect that is not relevant to what is currently being 

perceived. This definition is accepted and used in this research work due to the 

flexibility it provides in defining a context.  

Once the context is defined, Dey defines context-awareness as using “context 

to provide relevant information and/or services to the user, where relevancy 

depends on the user’s task” [29]. Although the context definition in [29] was 

used in this research project, the definition for the context-awareness was not. 

This is because it does not mention the adaptation of the system according to the 

context. In this research definition for context-awareness is expanded to include 

not only the using of context but also adapting to the context. 
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1.2.1 Summary of Context Definitions 

Table 1 below gives a summary of the context definitions mentioned in 

previous section. It shows a concise view of context definitions and how the 

definitions evolved over time to include aspects other than location.  

Table 1. Summary of Context Definitions 

Reference Context defined by 

Schilit and Theimer [17] Location 

Brown et al. [18] 
Location, time of day, the season of the year, 

temperature 

Ryan et al. [19] Location, time, temperature or user identity 

Dey [20] 

Location, date and time, users’ emotional state, focus 

of attention, orientation, , objects, people in the 

user’s environment 

Hull et al. [21] User’s local environment 

Flaschbart [22] Situation of the user 

Brown [23] 
Elements of the user’s environment that the user’s 

computer knows about 

Ward et al. [24] State of the application’s surroundings 

Rodden et al. [25] Application’s setting 

Schilit et al. [26] 

Combination of constantly changing execution 

environment consisting of computing, user, and 

physical environments. 

Pascoe [27] 
Subset of physical and conceptual states of interest to 

a particular entity 

Dey and Abowd [29] 
Any information that can be used to characterize the 

situation of an entity 

 

1.3 Context-Aware Applications 

Similar to the definition in [29], some early definitions focused on the use of 

a context and called such applications (or computing) context-aware applications 

(or computing). Other such definitions include Hull et al. [21], Ryan et al. [19] 

and Pascoe et al. [27, 30]  where context-aware computing is defined as the 

ability of computing devices to detect and sense, interpret and respond to aspects 

of a user's context and the computing devices themselves. Salber et al. [31] 
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define context-aware computing to be the ability to provide a flexible computing 

service based on real-time sensing of context.  

What is missing from these definitions is the adaptation of the application to 

context. Dey et al. [32] introduce the notion of adaptation by defining context-

awareness of a system as the work leading to the automation of a software system 

based on knowledge of the user’s context. On the other hand, Ryan [33] defines 

context-aware applications to be applications that take input from the 

environment via sensors and allow users to select from a range of physical and 

logical options according to their current interests or activities. This appears to be 

a user-driven (manual) adaptation lacking in any automated self-adaptation. 

The definitions [17, 18, 26, 34, 35, 36, 37, 38] define context-aware 

applications to be applications that dynamically adapt/change their behavior 

based on the context of the user and the application. Fickas et al. [13] define 

context-aware applications to be ones that monitor changes in the environment 

and adapt their operation according to predefined or user-defined guidelines. 

Finally, Brown [39] defines context-aware applications as applications that 

automatically provide information and/or take actions according to the user’s 

present context as detected by sensors. An ideal context-aware application would 

be one that encompasses key features of all these definitions, where it detects 

context and changes in context and adapts automatically based on predefined or 

user-defined guidelines.  

1.3.1 Context-Aware Application Development 

From the earlier definitions, it is clear that an application must capture the 

context in order to be considered context-aware. The approaches to capturing the 

context to make an application context-aware could be classified into two 
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approaches.  One is to use a context-aware tool support to define and capture the 

context relevant to the application.  

CAPpella [40] is one such tool that allows context-aware application 

developers to define context by demonstration. Castelli et al. [41] further extend 

this to include augmentation-based learning. This method of context-aware 

application development captures the end-to-end information flow and associated 

contexts during the demonstration phase. Apart from these types of program-by-

demonstration context-aware application development tools, the landscape 

consists of tools that facilitate some niche requirements in the context application 

development process.  

Examples of these include tools to personalize user experience such as 

“Persona, a toolkit that provides support for extending context-aware applications 

with end-user personalization and control features” [42], tools related to context 

recognition in sensory equipment [43], tools for formal modelling of contexts 

[44], collaborative programming with rapid prototyping capabilities such as the 

OPEN framework [45].   

The second approach is the context-aware design and implementation through 

programming. Under this approach, a generic framework or a concrete solution is 

designed and developed to address a problem in the domain (generic framework) 

or a specific problem (concrete solution) [46]. Methodologies used in the design 

and implementation draw from concepts in software engineering and adapt them 

to suit the context-aware domain. Some examples from context-aware 

programming landscape are an incremental approach to increasing context 

awareness in the system [47], similar to incremental development method in 

software engineering. Other methodologies include the use of web services, 
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model-driven architecture to develop context-aware web services [48] and 

semantic-based aspect-oriented programming for composing web services on the 

fly [49]. Other concepts adapted to context-aware systems include ontology-

based context-aware systems [50], sematic-based context-aware systems [51] and 

intelligence-based context-aware systems [52]. 

1.4 Self-Adapting Computer Systems 

As mentioned earlier, a system is context-aware if it adapts based on the 

current context. However, self-adaptation is not unique or limited to the context-

aware systems. The concept existed on its own right before the concept of 

context-aware systems. According to [53] a definition of self-adaptive software 

was provided in a DARPA broad agency announcement as software that 

“evaluates its own behavior and changes behavior when the evaluation indicates 

that it is not accomplishing what the software is intended to do, or when better 

functionality or performance is possible.” As per this definition, the adaptation 

occurs in the behavior of the software rather than in the structure of the software. 

Another definition is given by Oreizy et al. [54] in which it is stated that a 

“self-adaptive software modifies its own behavior in response to changes in its 

operating environment. By operating environment, we mean anything observable 

by the software system, such as end-user input, external hardware devices and 

sensors, or program instrumentation.” 

Self-adapting systems are also associated with autonomic computing systems. 

But according to [55], there’s a key difference between the two, which is “self-

adaptive software primarily covers the application and the middleware layers, 

while its coverage fades in the layers below middleware. On the other hand, 
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autonomic computing covers lower layers too, down to even the network and 

operating system”.   

With these differences, two trends could be identified in the self-adapting 

system landscape with autonomic computing on one end dealing with the full 

stack from software to hardware [56,57,58,59,60,61] and self-adapting software 

dealing primarily on the software stack [62], both incorporating some common 

trends such as genetic algorithms and organic computing. 

1.5 Motivation 

The motivation for the research was rooted in addressing the limitation in 

existing self-adapting context-aware systems when it comes to using them in 

multi-context – multi-action scenarios. The existing self-adapting techniques 

could be broadly classified into two categories based on the context-action 

relationship. The two categories are single context – single action and single 

context – multi-action.   

1.5.1 Single Context – Single Action 

As a subdomain of pervasive computing, context-aware computing has been 

used widely to create smart environments. One common theme of these smart 

environments is that based on sensory data from one or more devices another 

device’s state is changed to bring the environment (in another word context) to a 

state that is most beneficial to the entity in that context.  Three main areas could 

be identified in these types of context-aware frameworks – they are sensory data 

acquisition, context inference/management, and action. IBM’s MAPE-K 

(Monitor, Analyze, Plan, Execute, and Knowledge) loop reference model [196] is 

an example such a framework. The components of the MAPE-K loop could be 
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superimposed into the three main areas of sensing, inference and action of a 

context-aware application. However, a MAPE-K loop still depends on the system 

developers to formulate the event-condition-action (ECA) rules for self-

adaptation [58] which makes it unsuitable for situation where unknown context 

could be encountered. ECA knowledge comes from human experts or other 

methods such as concept utility [197], Bayesian techniques [198] or 

reinforcement learning [100] which suffers from poor scalability when large 

number of ECA state changes exists. 

Due to the nature of its application, a context-aware framework developed for 

these smart environments has an output action that is of two mutually exclusive 

states for a given context. In other words, the sensor data and action have a one-

to-one relationship. For example, a context-aware application developed to 

control the ambient temperature in a room would have actions to turn on or off a 

fan or set the temperature of the air conditioning to one specific value Z when the 

ambient temperature is X degrees or between X and Y degrees.   

It is not possible to have and neither does it make sense to incorporate into 

the context-aware framework actions such as: when the ambient temperature is X 

degrees turn on and off the fan or set the air conditioning temperature to P and Q 

degrees.  

The challenge in this type of context-aware systems is that if a sensory data 

perceives an unknown context, then the system is incapable of deciding which 

course of action to take if the system developers have not embedded this 

knowledge in the system.  For example, assume due to some freak of nature or 

some weather pattern that rarely occurs the ambient temperature is X
1
 and this 
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was not captured in the domain knowledge and therefore no action is defined for 

X
1
. 

Two possible solutions could be envisaged to address this challenge. The 

simplest and commonly used (detailed in Chapter 2) is to add the new context to 

the application knowledge base. This may be fine for a system with few contexts 

and limited context value ranges but becomes infeasible and impractical when the 

system has to deal with a high number of contexts and when the probability of 

encountering unknown context is high due the dynamism and fluidity of the 

environment.  

The other solution would be that the system must be capable of self-adapting. 

Taking the earlier example, the learning and self-adapting could be thought as:  

 
if ambient temperature is X

1
 then 

start with Y = Y
1 

label: 

set air conditioning temperature to Y
 

if not satisfactory 

Y = Y
2
 

go to label: 

if satisfactory 

acquire domain knowledge 

 { for X
1 
set air condition temperature to Y} 

 

But this self-adaptation is a single action iterative process where each 

possible action is evaluated one at a time. The time to identify the best action is 

directly impacted by the number of actions in the action space thus it becomes 

infeasible when the action space becomes large as the time complexity would 

become O(n).  

This poses the first research challenge, which is, the existing context-aware 

systems developed for single context – single action environments such as the 
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ones developed for controlling appliances in smart environments cannot be 

adopted for multi-context – multi-action environments. Therefore, a new solution 

must be formulated that does not have the aforementioned limitations.   

1.5.2 Single Context – Multi-Action 

One possible solution to overcome the research challenge mentioned earlier is 

to evaluate multiple actions concurrently and find the most beneficial action to 

execute in the current context. Unlike smart environments, there are domains 

where when an unknown context is encountered it is possible to output two or 

more actions concurrently and then evaluate the outcome of each of these actions 

to arrive at the best action for the given unknown context. In these systems, it is 

possible to have a single unknown context value associated with two or more 

actions before converging to a single action. This approach eliminates the 

limitation associated with the use of an iterative method which evaluates all 

possible actions to find the best action as explained in the earlier section. 

How such a multi-action context-aware system comes into use could be 

illustrated with the name-your-own-price (NYOP) application. NYOP is a 

strategy where the buyer suggests the price which he/she is willing to pay for 

goods or services without knowing the minimum threshold price T which is 

acceptable. Imagine a hotelier who sells his inventory through such an NYOP 

channel. If the decision to accept or reject a bid is solely based on the bid value 

then the hotelier won’t have the fluidity to react to the demand uncertainty. In 

such cases, the decision to accept or forego depends on factors other than the bid 

value. These factors include the current occupancy rate and expected occupancy 

rate, which could be influenced by events that are scheduled to take part in the 

vicinity of the hotel such as conferences, festivals, sporting events, weather and 
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other seasonal information would be considered as well. These external factors 

influence the context in which the hotelier’s NYOP system makes decisions on 

accepting or rejecting the bids.  

For example, if a new event has been planned in the vicinity of the hotel and 

there is no historical data or knowledge to rely on (an unknown context), the 

context-aware NYOP system could be set up such that instead of having one 

threshold price T the system could have multiple threshold values T
1
and T

2
. It 

will dynamically evaluate which threshold value is resulting in higher yield. At 

the end of this dynamic experiment system will update the system’s actual 

threshold price with the one selected through experimentation. Unlike the context 

aware models used in a smart environment, this approach does not have the 

constraint that each unknown context is associated with only one action. The 

hotelier’s business model does not suffer when using this approach because “the 

retailer wants to obtain as much revenue as possible. In the case of perishable or 

time-dated items (such as Christmas trees or newspapers), the retailer would be 

willing to accept even a lower bid as long as those willing to pay more actually 

do pay more” [63]. 

Although concurrent multi-action execution and evaluation reduce the time 

complexity compared to single context- single action scenario by evaluating 

multiple actions in parallel, there is an issue when the number of context values 

increases. This leads to a high number of permutations to be considered in the 

context space and action space which poses several research challenges which are 

elaborated in the next section.  



20 

 

1.5.3 Multi-Context – Multi-Action 

When a context-aware application considers multiple contexts, the output 

action correlates to a set of context attributes rather than to a single context value 

as in the previous case. A context attribute is an element of the context model 

describing the context [64]. Taking the earlier example of a hotelier selling his 

perishable inventory under an NYOP channel, the threshold price used could be 

influenced by many contexts. For example, a hotelier may decide the threshold 

price based on any upcoming events in the vicinity of the hotel, weather, and 

current occupancy rate. Each of these contexts would have multiple values which 

will be different to how it influences hotelier’s decision-making process. For 

example, considering the earlier contexts events could be conferences, gathering, 

and wedding each of these events has different characteristics which must be 

considered in the decision making. The weather could be defined with concrete 

parameters such temperature 27’C, humidity 60% or vaguely or using fuzzy 

terms such as “sunny day” or “mildly chilly day” etc. Permutations of these 

multiple contexts could be defined as below. 

 

{Conference, Sunny day}  action space {A1,A2,…An} 

{Wedding, {27’C, 60% Humidity},  

           20% occupancy}  action space {Aa,Ab…Az} 

Each permutation of these contexts would result in multi-action evaluation as 

the hotelier is unlikely to have encountered all the permutations. The hotelier has 

to decide on the best course of action whenever a new permutation of context 

values is encountered. As the number of permutations for the “context value - 

adaptive action” combination increases exponentially with an addition of each 

new context, an environment that has to employ multi-context – multi-action 
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systems faces several challenges and addressing these challenges is the core aim 

of this research.  

The foremost challenge of the research is to reduce the number of action 

spaces associated with context attribute permutations. Without it, the 

implementation of a context-aware system using existing self-adapting models 

would lead to resource starvation and would also impact the system convergence 

on to a best adaptive action.  

1.6 Objectives and Contributions of the Research 

The primary objective of the research is to develop a framework for context-

aware systems that finds the best adaptive action for unknown context through 

multi-action evaluation and self-adaptation.  This objective addresses the 

problem of having to deal with a high number of “context-action” permutations 

that could occur in multi-context – multi-action cases. A formal model of the 

generic framework will be presented, which will make it possible for the 

framework to be used across multiple domains.  

The research will contribute to the knowledge in the field of self-adapting 

context-aware systems. The novel generic framework envisaged solves the 

problems associated with multi-context – multi-action systems through the new 

approach of concurrent multi-action evaluation.  

Through various use cases the research demonstrates that this new approach 

could be used by multiple domains to address multi-context – multi-action cases.  
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1.7 Application Domains 

The research outcomes are applicable in the domain of self-adapting context-

aware system, in the specific case of adapting to the situation when unforeseen 

contexts are encountered.  

What the research delivers is a generic framework of which a concrete 

implementation could be done to meet the requirements of specific use cases.  

During the research two use cases have been implemented in two separate 

domains and a third use case is being worked on.  One use case is in the domain 

of database performance tuning, where the context-aware approach is used for 

experiment-based performance tuning when performance regresses due to 

unknown context.  

The second use case shows how a context-aware approach could be used to 

adjust the threshold prices in name-your-own-pricing channels for unknown 

contexts. 

The third use case is in the domain of thermal modelling. The adoption of the 

proposed context-aware framework is being investigated for workload specific 

thermal modelling in high-end processors. Implementation of the framework 

would be used to dynamically adjust the CPU core count based on encountered 

workloads to meet the energy/power consumption goals.   

1.8 Direction of Research and Thesis Organization 

The first step in this research effort is to study and critically analyse the 

challenges and limitations in the existing self-adapting context-aware application 

domain for the special case of multi-context – multi-action. The result of this 

action is Chapter 2 which examines the existing self-adapting techniques used by 
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the context-aware applications. After studying the existing methods, the 

conclusion was that they lack the capability and are not a viable solution for 

multi-context – multi-action cases. In the end, a taxonomy of self-adapting 

methods used by context-aware systems was created, which allowed a clear 

positioning for this research among the existing body of work.  

Following a critical analysis of existing work, the next step was modelling 

and formulating a generic framework meeting the research objectives. The 

proposed generic framework does not assume any domain or application specific 

constructs or constraints. It acts as a blueprint for a domain specific 

implementation of the user’s choosing. The framework description and formal 

model are given in Chapter 3.  

 Chapter 4 describes the first use case which was in the database performance 

tuning domain. With this implementation of the framework, it was demonstrated 

how a context-aware approach could be used for experiment-based performance 

tuning, especially when the reason for performance regression is unknown. The 

body of work in this chapter is based on published work in [65, 66]. 

Chapter 5 describes the second concrete implementation of the framework, 

which is for dynamical adjusting of threshold pricing in name-your-own-price 

channels. The contents of this chapter are based on the work published in [67, 

68]. 

Chapter 6 gives future directions of the research, including current work 

being carried out in the area of thermal modelling.  

The thesis concludes with Chapter 7 with a summary of research findings and 

a critical analysis of the contribution of the research.  

 



24 

 

 

 

 

 

 

 

 

 

 

2. RELATED WORK 
 

 

 

 

 



25 

 

2.1 Autonomic Systems 

As mentioned in the introduction the concept of self-adaptation is not unique 

or limited to the context-aware application domain. It has been used in other 

application domains as well. The concept was rooted in the properties of software 

(or hardware) agents, which Wooldridge and Jennings [69] first identified as 

being: 

Autonomy: - Agents operate without the direct intervention of humans or 

others, and have some kind of control over their actions and internal state. 

Social Ability: - Agents interact with other agents (and possibly humans) via 

some kind of agent-communication language. 

Reactivity: - Agents perceive their environment, and respond in a timely 

fashion to changes that occur in it. 

Pro-activeness: - Agents do not simply act in response to their environment; 

they are able to exhibit goal-directed behavior by taking the initiative. 

IBM took this further by being the first to introduce the concept of self-

managing computer systems on its autonomic computing (AC) manifesto [70]. 

The idea was that autonomic computing systems would self-manage themselves 

with minimum human input or interference. The autonomous nature of the 

system was analogous to the body’s autonomic nervous system which controls 

key functions without a person being aware or conscious of it.  

The main concept behind IBM’s autonomic systems was that complex 

computing systems should also have autonomic properties that would allow them 

to maintain and optimize themselves, thus reducing the interference from human 
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users. In this regard, IBM introduced four properties a self-managing autonomic 

system must have, popularly known as self-* (self-star) or self-CHOP. These are 

self-CHOP = {self-configuration, self-healing, self-optimization, self-

protection} 

Self-Configuration: - refers to the fact that an autonomic system must be able 

to configure itself towards achieving its high-level goals based on what is desired 

rather than how it’s achieved. For example, this means an autonomic system 

must be able to replicate or install itself into multiple platforms based on the 

needs of the users or desired goals. There is no fixed configuration of the system 

but a dynamic one.   

Self-Healing: - refers to an automatic detection, diagnosis, and correction of 

problems. Fault-tolerance is an important aspect of self-healing. An autonomic 

system must be reactive to failures or proactively detect early signs of a possible 

failure and remedy before it materializes. The types of errors detected could be 

interpreted broadly but they are generally classified as low-level errors and high-

level errors. Low-level errors are likely to be encountered as a failure in hardware 

such as bit errors in memory chips. The high-level error could be an erroneous 

entry in a directory service (software problem) [71].  If possible, the autonomic 

system should attempt to fix the problem. Depending on the nature of the fault or 

failure it could be fixed either by automatically downloading and installing 

software or by switching to using redundant hardware components. However, it 

is important that as a result of the healing process the system is not further 

harmed, for example by the introduction of new bugs or the loss of vital system 

settings. 
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Self-Optimization: - this property refers to automatic monitoring and control 

of resources to ensure the optimal functioning with respect to the defined 

requirements. The autonomic system may decide to initiate a change to the 

system proactively (as opposed to reactive behavior) in an attempt to improve 

performance or quality of service. However, this optimization must be done with 

respect to the criteria relevant to the needs of a specific user, his or her peer 

group, and the enterprise [72]. Resource management is just one aspect of self-

optimizing behavior. 

According to [73], the self-optimizing property allows complex systems to 

improve themselves over time.  For example, middleware (WebLogic, 

WebSphere) or database systems (Oracle, DB2) have hundreds of tuneable 

parameters that must be correctly set for them to function optimally. These would 

then be integrated with equally complex systems. Yet only a few people would 

know how to tune them for best performance. As a result, performance tuning 

one subsystem could have unanticipated effects on the entire system. This is 

where the self-optimizing property of autonomic systems comes useful.  

Autonomic systems will continuously improve their operations through 

constantly monitoring, experimenting, and tuning their own parameters. These 

systems will seek and identify opportunities that allow improvement and learn to 

make appropriate choices on what functions to keep, improve, and discard.  

Self-Protection: - this relates to the property of an autonomic system to 

protect itself from both external and internal threats and vulnerabilities.  The 

system is expected to automatically configure and tune itself to achieve security, 

privacy, function, and data protection goals. The system is expected to defend 
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itself against large-scale, correlated problems arising from malicious attacks or 

cascading failures that remain uncorrected by self-healing measures. 

In terms of internal threats, the autonomic systems will anticipate problems 

based on early incidents or threat reports from sensors and take steps to avoid or 

mitigate them. These also apply to end user actions which could be accidental 

(inadvertently deleting an important file) or deliberate (introducing vulnerability 

in the hope of exploiting it later).  The system must anticipate such security 

breaches and prevent them from occurring in the first place. 

With these initial properties in place, IBM [70] also proposed 8 conditions a 

system must meet to be considered autonomic.  

1. The system must know itself in terms of what resources it has access 

to, what its capabilities and limitations are and how and why it is 

connected to other systems. 

2. The system must be able to automatically configure and reconfigure 

itself depending on the changing computing environment. 

3. The system must be able to optimize its performance to ensure the 

most efficient computing process. 

4. The system must be able to work around encountered problems by 

either repairing itself or routing functions away from the trouble. 

5. The system must detect, identify and protect itself against various 

types of attacks to maintain overall system security and integrity. 

6. The system must be able to adapt to its environment as it changes, 

interacting with neighbouring systems and establishing 

communication protocols. 
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7. The system must rely on open standards and cannot exist in a 

proprietary environment. 

8. The system must anticipate the demand on its resources while keeping 

the complexity of resource management transparent to the users. 

Since then others have expanded on the self-* properties by incorporating 

some of the conditions above.  Some of these self-* properties include  

Self-learning [74]: - the system possesses ability to carry out unsupervised 

learning which does not require any external control. 

Self-creation also called Self-assembly, Self-replication [75]: - the systems 

are self-driven and self-motivated in coming up with creative responses to 

continuously changing demands.  

Self-governance [76]: - the system governing itself without external 

intervention.  

Several other self- properties are listed in [77, 78] such as self-awareness 

where the system knows its resources and the resources it links to and is aware of 

the internal and external components that it manages.  Self-organization, where 

the system structure is driven by a formal model rather than through explicit 

external pressures, self-description where the system explains itself in a manner 

capable of being understood by humans without further explanation, self-

regulation where the system operates to maintain some parameter(s) within a pre-

set range without external control.  

Even with these expansions on self-* there is a debate within the research 

community as to what self-management systems actually are. The confusion 

stems from the fact that a query optimizer in DBMS, a resource manager in OS, 
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or routing software in networks all allow those systems to self-manage. However, 

the autonomic research community is in agreement that these do not constitute a 

self-managed system. According autonomic research community these systems 

simply reflects the change of the query optimizer decision or the network routing 

decision [58] and not necessarily display self-* capabilities. Therefore, the 

autonomic research community has been identifying a system as autonomic if it 

exhibits more than one of the aforementioned self-management properties [79]. 

2.2 Self-Adaptive Systems 

Going by the above consensus in the autonomic research community, it could 

be said that self-adaptive systems are also autonomic systems. For example, self-

adaptive systems have contained elements such as self-optimization and self-

configuration for some time. Early use of this self-optimization property could be 

found on streaming media systems which optimized the music or video playback 

quality to optimal based on the available bandwidth [80, 81].  

However, there’s a key difference between the autonomic system and self-

adaptive system behavior. The main difference between the two is when each 

system carries out self-optimization. Self-optimization in autonomic systems is 

continuous; the system is always on the lookout for opportunities for further 

optimization. Contrarily, the self-adaptive systems optimization happens due to 

change in external factors or an external trigger event.   

This distinction is clear when looking at the some of the most commonly 

accepted definitions [82] of self-adaptive systems.  An early definition of self-

adaptive systems presented by Ravindranathan and Leitch [83] states that “in the 

context of multi-model systems, adaptation is a procedure or method for 
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switching between models. Adaptivity can, therefore, be defined as the capability 

of a system to achieve its goals in a changing environment, by selectively 

executing and switching between models. This capability contrasts with the 

conventional use of the term adaptation used in mono-model systems, where 

design parameters or relations are tuned to fit observed behavior”. In this 

definition, the adaptation is triggered by the change of environment. 

Brun et al. [84] define self-adaptation as the “capability of the system to 

adjust its behavior in response to the environment. The ‘‘self’’ prefix indicates 

that the systems autonomously decide (i.e., with minimal or no interference) how 

to adapt or to organize themselves so that they can accommodate changes in their 

contexts and environments”.  

Naqvi [85] defines self-adaptive by explicitly defining the mechanism used 

for adaptation. According to this definition “a self-adaptive system consists of a 

closed-loop system (i.e., modify in runtime itself using feedback due to 

continuous changes in the system), its requirements and existing tendencies in 

developing and deploying the complex system, thereby reducing human efforts in 

the computer interaction. The conception of the self-adaptive system depends on 

user’s requirements, system properties, and environmental characteristics. The 

self-adaptive software requires high dependability, robustness, adaptivity, and 

availability”. Unlike other definitions, this restricts self-adaptive systems to one 

containing a closed-loop system. However, this is no longer the case and a wide 

range of other techniques are also being used for adaptation.  

Salehie and Tahvildari’s [86] definition states that “a self-adaptive system 

evaluates its own behavior and changes its own performance when the evaluation 

indicates that it is not accomplishing what the software is intended to do, or when 
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better functionality or performance is possible”. In this definition, the 

prominence is given to self-evaluation with a decomposed view of the adaptation 

mechanism such as:  

1. Monitoring software entities (self-awareness) 

2. Environment (context-awareness) 

3. Analyzing significant changes 

4. Planning how to react and executing so that the decisions take effect 

The common approach in existing solutions is to have an external adaptation 

manager which goes through the above four steps and controls the behavior of 

the adaptable software. Programmers are expected to include the application 

logic in the adaptable software in order to be self-adaptive.  

In [55] Salehie and Tahvildari listed the following questions being elicited to 

answer the requirements for adaptation.   These are collectively known as 5W1H.  

 When to adapt? 

 Why do we have to adapt? 

 Where do we have to implement change? 

 What kind of change is needed? 

 Who has to perform the adaptation? 

 How is the adaptation performed?  

However, Krupitzer et al. [87] argue that “who has to perform the adaptation” 

is not required in the self-adaptive system as self-adaptive systems are expected 

to adapt without user involvement.  
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In all of the above definitions, self-adaption is triggered by a change in the 

monitored environment. In [88] self-adaptation is formally defined as a system 

undergoing a state transition due to self-action. In this definition, Autonomic 

System (AS) is thought of as a system consisting of multiple states. Self-

adaptation is defined as autonomic system transitioning from one states (AS) to 

another state (AS
1
) due to self-*action. Self-*action is the mapping that sends 

each state in AS to a state of AS
1
.  AS called the domain of self-*action and AS

1
 

the co-domain of self-*action. 

2.3 Self-Adapting Techniques in Context-Aware Applications 

As mentioned earlier self-adaptive systems differ from autonomic systems 

based on what triggers the self-adaptation. As stated in the previous section the 

trigger for the self-adaptation is a change in the environment monitored by the 

self-adaptive system. Within a context-aware application domain, self-adaptation 

is triggered by a context change. It could be argued that context could be treated 

as a synonym for the environment. But the definition of context mentioned in the 

previous chapter shows that context encompasses not only environmental aspects 

but user interactions as well. As such adaptation within context-aware domain 

could be treated as a special case of self-adaption.  

Nevertheless, there are similarities between context-aware adaptation and 

self-adaptation in other domains (what should be called from now as general self-

adaptation). For example, according to [29] “context-aware applications look at 

the who’s, where’s, when’s and what’s (that is, what the user is doing) of entities 

and use this information to determine why the situation is occurring. An 

application doesn’t actually determine why a situation is occurring, but the 

designer of the application does”. The “who, where, when, what and why” in this 
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case constitute the 5Ws in “5W1H” mentioned in [55]. This similarity in the 

decision structure used for self-adaption allows techniques used in general 

adaptation domain to be used with context-aware adaptation domain as well.  

However, there are unique set of challenges a self-adaption technique must 

overcome within the context-aware domain. Top among the challenges is the 

limited computing resources available for a context-aware application to carry 

out the self-adaptation related tasks, be it extensive calculations with multiple 

parameter sets, dynamic experimentation or evaluating the outcome of the 

adaptive action. Secondly, within the context-aware domain, the adaptation must 

happen near real time. So, the answer to the question of “when to adapt?” is “near 

real time” which is different from general self-adaption where adaptation could 

be proactive or reactive. Therefore context-aware application at times may decide 

to adapt (self-optimize) to a “locally optimal” state instead of “globally optimal” 

state if it means adapting in near real time. Depending on the nature of certain 

context-aware applications, a quick adaptation to a “locally optimal” state may be 

preferred to a slow adaptation to a “globally optimal” state.  

The following section examines the commonly used self-adaptive techniques 

in context-aware application. As mentioned in the previous chapter the objective 

of this research is to develop a framework for a context-aware system that finds 

the best adaptive action for unknown context. The existing body of work is 

critiqued on the basis of the ability of these techniques to handle unknown 

contexts. Taxonomy of these existing techniques is given at the end of the 

chapter, showcasing the position of this research work among the body of the 

existing work. 
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2.3.1 Manual Adaptation 

The manual adaptation of a context-aware system is not widely used 

anymore. It’s included here for the sake of completion. Under this method, either 

the end user or the system developers are expected to make changes to the 

context-aware application to better adapt to the prevailing situation (i.e. current 

context).  

One of the early uses of manual adaptation on the context-aware application 

is presented in [33] where context-aware applications take input from the 

environment via sensors and allow users to select from a range of physical and 

logical options according to their current interests or activities. In this case, the 

system does not self-adapt.  

If this type of method is used in the modern context-aware systems, it would 

result in context inference failure when an unknown context is encountered. A 

context inference failure occurs when the context-aware system encounters a 

context to which it has no adaptive action. The most likely cause for this type of 

issue is system developers being unable to foresee all possible context changes. 

In such cases, if manual adaptation is employed user intervention would be 

needed every time a context inference failure occurs.  

2.3.2 User Defined Adaptation 

User defined adaptation technique is the most widely used self-adaptation 

technique in the context-aware application domain. The “user” here could be 

either the system developer or the end user who configures the context-aware 

application. The user matches each context change to a corresponding action that 

would make the system adapt (self-optimization) keeping in-line with the user 

goals. As shown in Figure 1 there is direct 1:1 correlation between self-adaptive 
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action and context. This type of model is referred to as single-context single-

action model. 

  

Figure 1. Single-Context Single-Action Model 

The action the system takes to self-adapt such that its outcome is optimized to 

the current context is referred to as a self-adaptive action.   

In order to have a 1:1 correlation between the elements in the context space 

and the action space, the system developer must know of all the contexts the 

system is likely to encounter. The expected numbers of contexts are few and 

finite. Therefore, the system developer or user is able to embed the context-action 

pairs into the context-aware application.  

As mentioned in the introduction this type of self-adapting context-aware 

application is widely encountered in the smart environment. Three main areas 

could be identified in these types of context-aware frameworks – they are sensory 

data acquisition, context inference/management, and action. In [20] an early 

example of such a smart system called “CyberDesk” is presented, which self-
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adapts based on user needs. It maintains a registry which consists of systems and 

interfaces that an end user works with. These could be an email reader, a contact 

manager, or a Web-based search engine. It uses the user’s location as the context 

and the services available at any particular time depend on the user’s context at 

that time.  The context change, in this case, is whether the user is stationary 

(sitting at a desk) or mobile. The system adapts between a desktop based service 

and a mobile service depending on the current context. In [21] a similar concept 

is presented for distinguishing between stationary and mobile users with the use 

of wearable devices. Sensors are used to detect the user’s location and the system 

adapts the service provided based on the current location. As mentioned in the 

earlier chapter using location as context was common during the early days of 

context-aware application.  

A smart context-aware space which uses not only location but users and their 

interactions (which is the current definition of context) is presented in [89]. This 

smart environment not only detects the users’ location to adapt the services but 

the nature of the interaction between the users.  It shows how the users’ location 

is detected based on Bluetooth service on user devices “the context broker 

concludes that the owners of the detected devices are also located in Room 338”. 

It then infers the context of the current location acquiring information from 

scheduler service “on 8 September 2004, a presentation is scheduled to take place 

from 1:00 to 2:30 p.m. in Room 338”.  When it is time for the meeting to start, 

the system takes adaptive actions based on what the user has defined. In this case 

“all the lights in the meeting are currently switched on and the background music 

is still playing, the agent invokes the dim light method on the light-control 

service and the stop music method on the music service”. This shows 1:1 
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relationship between current context (this particular meeting) and adaptive action 

(turn off lights and music). If some other meeting requires lights to be kept 

switched on and only background music to be turned off (unknown context), then 

this had to have been envisioned by the developers and programmed into the 

context-aware application. 

Dey et al. [40] presents a way to overcome this need for capturing the 

context-action relationship at programming stage. They propose a programming 

by a demonstration where users demonstrate the desired adaptive action for a 

particular change. Though this allows the system to capture the end users’ desired 

action, the action space is limited by what the user demonstrates.  

Cao et al. [90] present a context-aware tourist guide application which self-

adapts the contents served based on the context, in this case, the location of the 

device and the device itself. The system dynamically adapts the format of the 

content served to best fit the device capabilities and relevance of the content to 

best fit the current location.  The system is vulnerable to encountering locations 

previously not visited or new devices. The system tries to overcome this problem 

by using “social intelligence”, in which the user community defines the best 

adaptive action.  

Mizzaro and Vassena [91] also propose the social approach to overcoming 

context knowledge shortage in applications similar to above [90]. Though this 

does not directly relate to the smart environment, the concept, if required, could 

be adopted specifically to increase the domain knowledge space. The idea is to 

allow “crowd of users to model, control, and manage the contextual knowledge 

through collaboration and participation, to have a dynamic and user-tailored 

context representation, and to enhance the process of retrieval based on users’ 
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actual situation, the community of users is encouraged to define the contexts of 

interest, to share, use” [91]. The downside in using social collaboration to 

enhance the domain knowledge related to context is that knowledge could 

become subjective (depends on each individual user’s experience), thus creating 

many versions of knowledge for the same context. This could lead to ambiguity 

when it comes to selecting an adaptive action.  

The emergences of service-oriented architecture (SOA) paved the way for 

service orchestration techniques and mashup web services. This allowed 

developers to build a new system or new capabilities by orchestrating existing 

services. He et al. [92] provide such a use case which combines the semantic web 

with the ubiquitous web with the use of a mashup web services to create smart 

(context-aware) plant watering system.  The system proposed by [92] will 

monitor the humidity through a sensor and the rain forecast through a weather 

service. Based on these aspects the system dynamically determines whether 

watering is needed. The system uses a plant-cultivation domain-knowledge 

service which allows calculation of the amount of water the plant requires by 

understanding the species and life stage. The system is dependent on the designer 

inputting the domain knowledge “we also take domain knowledge services as a 

vital component that can explore human-accumulated knowledge related to the 

target thing” [92].  This information is fed into the system by the end user (an 

example of end-user defined adaptation).  This user configuration, actually, is 

unified by a plant ontology service, and acts as an input to the plant-cultivation 

domain-knowledge service. Finally, depending on the context (humidity value is 

lower than a specified threshold and no rain is forecasted) the system triggers the 

actuator to water the plant with a specific amount of water. The system will 
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dynamically adapt the dosage of water based on the context. However, this type 

of system would be unable to handle an unknown context aspect arising outside 

the encapsulated domain knowledge. 

Though the single-context single-action model is common in the smart 

environment it could be employed for self-adaption of software as well. A 

context-ware framework for controlling hardware and software for optimizing 

power consumption in a mobile phone is provided in [93]. The context, in this 

case, comprises of the battery level and status, the current location and the time 

for the next available charging opportunity. The framework proposes three 

profiles with various self-adaptive features at four distinct levels – hardware & 

software features adoption, user features adoption and additional optimization. 

When the battery is critically low, priority is given to maximizing the battery life 

until the next charging opportunity. The application will offer energy efficient 

alternatives to the user to minimize the battery consumption while compromising 

the user experience. 

A similar strategy has been put forward [94] for reducing the power 

consumption of mobile network base stations by adjusting the available 

bandwidth during low usage times. The first context source comprises static 

information parameters supplied by network providers or network component 

manufacturers. Secondly, the user context which is the data coming from mobile 

devices. Third context source is the contextual information gained from the 

mobile network components. The final context source is information acquired 

from third-party context sources, such as web services or databases. Based on the 

current context, the context-aware application dynamically adjusts the 
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availability of resources and bandwidth which in turn reduces the overall power 

consumption in the network.  

In all of the above scenarios, the adaptive action was predefined by the 

system developer or by the end user during a configuration phase. The system 

will fail to self-adapt if it encounters a context that has not been envisioned and 

adaptive action embedded into the system. Relying on developers to capture the 

context could lead to incorrect contexts and inflexible context definitions [95]. So 

there is a need to enable the system to recognize more contexts and adapt to 

optimize the computing outcome. Loke [47] proposes a formal method for 

incremental context awareness. The model defined two monotonic extensions – 

breadth-monotonic extension for extending the system so that it recognizes more 

situations (context) than before and depth-monotonic extension for the cases 

when there is uncertainty and the system extends itself through estimation. “The 

idea of incremental awareness is, hence, to effectively “grow” the system over 

time in such a way as to preserve either or both of these monotonicity properties, 

the system at a later time being a depth- and/or breadth-monotonic extension of 

the previous version [47].” Though the system increments its context-awareness, 

it is up to the designers to embed the adaptive action as there are no action 

evaluation capabilities in this model to verify if the adaptive action results in self-

optimization.  

2.3.3 Learning-Based Adaptation 

Developers had to overcome the limitations presented in the user defined 

(single-context single-action models) self-adaptive technique by allowing the 

system to dynamically select the best adaptive action. The use of learning-based 

adaptation technique provided this capability. However, the learning-based 
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adaptation technique is not specific to the context-aware system. It has been 

widely used in general self-adaptive systems and tightly coupled to self-

optimization. The learning-based adaptation could be further classified based on 

the learning approaches. One of the key features of learning-based adaptation is 

the ability of the system to determine the distance between the expected and the 

actual goal based on the selected self-adaptive action.  

Tesauro et al. [96] use the concept of the central arbiter to determine the 

optimal resource allocation which is computed based on a utility function, which 

is refined by learning. Elkhodary et al. [97, 98] propose a learning and self-

optimizing technique purely based on the goals and utility function attached to 

each goal.  

In [99, 100] a collaborative learning approach is proposed, which differs from 

the earlier mentioned single function learning approach. Collaborative 

reinforcement learning makes collective adaptation possible by collaborative 

feedback and lessons learned are broadcasted to all collaborating parties. A 

collaborative reinforcement learning model for decentralized coordinated self-

adaptive components is presented in [101] where the components learn 

collectively through collaboration but self-adapt individually.  

A context-aware adaptation based on the Constraint-Satisfaction Problem 

(CSP) technique is proposed in [102], handling situations where several 

configurations are available for the same context. Abdelwahed et al. [103] 

propose a self-adapting technique for distributed systems with varying 

environmental and operating conditions. It uses prediction-based learning 

combined with an online control technique to tune the performance of individual 

system components.  
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Evolutionary programming and artificial intelligence (AI) based learning 

techniques are proposed in [54,104,105] to handle encountering uncertain 

changes and facilitate self-adaptation.  

Not all of these learning techniques are equally effective and compatible with 

the requirements of the context-aware application domain. For instance, the AI 

and evolutionary programming techniques would be resource intensive and time-

consuming to be effective in near real time adaptation in a context-aware 

application. Moreover, these techniques require that the system is trained 

beforehand in order to recognize contexts.   

The solution was to associate a subset of the action space with each context as 

possible self-adaptive actions. When the system encounters an unknown context 

change, it would carry out self-adaptive actions from the associated subset of 

actions, iteratively measuring the outcome for each action against the expected 

outcome. The system could finally settle on the action that gives either the 

expected outcome or has the one that resulted in the least distance to the expected 

outcome. In this technique, there is a one-to-many relationship between the 

context and the adaptive action as shown in Figure 2. This type of model is 

referred to as a single context multiple-action model.  
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Figure 2. Single-Context Multiple-Action Model 

Among the learning techniques, the supervised learning with feedback loop 

captures these requirements and has been used with context-aware applications.  

O'Connor et al. [95] develop a context-aware heating controller which self-adapts 

based on temperature readings. The context-aware model uses Q-Learning with a 

feedback loop to find the best adaptive action for each set of context changes. 

The application receives a reward from the environment when an action is taken 

in a particular context. By exploring all combinations of contexts and actions, the 

application learns the most suitable adaptive action for each context. 

Another instance of the use of feedback-based learning for context-aware 

adaptation is presented in [106]. In this case, context is used to improve the 

ambient assisted living conditions by using feedback from previous instances of 

intervention to resolve current issues.  The feedback information highlights 

important criteria such as the quality of sleep during the night and possible 

breaches of safety during the day in order to better service the residents.  
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Case-based reasoning (CBR) [199, 200, 201, 202, 203, 204] is a problem 

solving methodology which uses experience drawn from the encounters of 

similar kind of problems in the past to solve the current problem. CBR has been 

widely used in many areas including in autonomic systems to achieve self-

configuration capabilities [205, 206].  

A context-aware case-based reasoning (CBR) application is presented in 

[107] which use a combination of a context-aware CBR with general domain 

knowledge to solving domain specific problems in uncertain contexts. The 

system consists of three models: situation awareness model, general domain 

knowledge model, and the case model. The case model is the library containing 

past cases and their solutions, thus enabling the system to evaluate the 

effectiveness of the current configurations.  

Adaptation based on supervised learning with feedback loop becomes 

unfeasible when the number of context values increases as this leads to a large 

number of context and action element combinations. According to [95], the Q-

learning itself becomes infeasible when a number of states in context space 

increases, thus it requires intermediary learning states to reduce the number of 

states to learn about. As for case-based reasoning, the quality of adaptation 

depends on the domain knowledge and the number of past cases available. This 

poses the same problem mentioned in the previous section which is, the system 

having to depend on the developers to capture context to assign appropriate self-

adaptive action.  

2.3.4 Policy-Based Adaptation 

Policy-based adaptation techniques provide an alternative to the 

aforementioned two techniques. There is no direct correlation between context 
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change and the adaptive action. Instead, the system developer formulates a set of 

policies which determine the adaptive action to take based on what policies are in 

effect before/during/after the context changes.  

In [108] Salomie et al. introduces a triple set model (called RAP) where the 

context C is modelled as a triple C = <R, A, P> where R represents a set of 

context resources, A is a set of actors which interact with context resources and P 

is a set of real context related policies. This context model is mapped onto 

different real contexts by populating the sets with real context-specific elements, 

thus resulting in a specific context model CS = <RS, AS, PS>.   

Cioara et al. [109] expands on the context triple model presented in [108] by 

introducing self-adapting capabilities to the RAP model. The self-adaptive 

algorithm in [109] uses a closed feedback loop with four phases which are 

monitoring, analysis, planning, and execution. During the monitoring phase the 

system continuously monitors itself and its execution environment in order to 

capture and represent the relevant information. The analysis phase deals with 

detecting significant changes in the system itself and/or the execution 

environment (i.e. context change detection). The planning phase decides and 

selects the appropriate adaptation actions as a response to the detected changes. 

Finally, the execution phase modifies the system behavior by enforcing the 

adaptation actions selected in the planning phase.  Looking at the pseudo code of 

the algorithm presented in [109], it could be seen that this algorithm evaluates 

each action one at a time in an iterative manner. As mentioned in the previous 

section of learning-based techniques, using feedback loop for learning could be 

time-consuming in finding the best adaptive action when there are multiple inputs 

generating a high number of permutations. Though [109] expands on a policy-
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based approach, the introduction of feedback loop has made it unviable for a 

context-aware application that seeks to self-adapt through multi-action 

evaluation.  

One of the unique uses of the policy-based adaptation techniques is to enforce 

context constraints by way of self-adapting to restrict user capabilities. In [110] a 

self-adaptive context-aware system is presented, which restricts user access to the 

network resources based on a trust policy. The system self-adapts the resources’ 

access criteria dynamically based on the context in which the resource is 

accessed and the trust policy assigned to the user. A similar policy-based 

approach is presented in [111] which uses an adaption tree to model to adapt the 

rules (difficulty level) of a context-aware mathematic game. Samulowitz et al. 

[112] presents a document-based approach with the introduction of Context-

Aware Packets (CAPs), which contain context constraints and data to adapt a 

service request to the prevailing context. In essence CAPs, in this case, act as the 

policy document. Dey et al. [113] use the policy-based approach as a lightweight 

alternative to continuous adaptation for a context stream. According to [113] an 

event-based adaptation instead of policy-based would be “quite heavyweight 

when streams of context are being sent (e.g., from a temperature sensor that 

produces updates each time the temperature changes by .01 degrees)”.  

A formal model for policy based self-adaption is presented in [114] called 

PobSAM (Policy-based Self-Adaptive Model) for developing and specifying 

self-adaptive systems that employ policies as the principal paradigm to govern 

and adapt the system behavior. The main elements of a PobSAM model are 

actors that perform the main functionality of the system and managers that 

control the behavior of actors autonomously according to a set of predefined 
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policies. Conceptually the model has been represented as three layers: managed 

actors layer, autonomous manager layer and view layer which provides a layer of 

abstraction between the actors and managers. Formally PobSAM is denoted by Π 

= ⟨R, V, E, M⟩ where R, V, E, and M represent the set of actors, view variables, 

events, and managers. Similar to RAP triple mentioned in [108], the idea is to 

populate the PobSAM with actual instances of actors, views, events and 

managers. In [114] the implementation of the PobSAM is given for unmanned 

autonomous vehicles (UAV) where the model adapts vehicles role (survey, relay, 

idle) based on context information.  

Though policy-based adaption techniques eliminate the issues associated with 

the single-context single-action model and single-context multi-action model, 

they introduce their own set of issues when considered for multi-context multi-

action application. Due to a large number of context-action pairs that exist in 

multi-context - multi-action model, a dynamic evaluation policy at run time could 

become high resource consuming operation.  

2.3.5 Statistics-Based Adaptation 

The statistical methods use probabilistic reasoning to help the system choose 

a suitable adaptive action out of many different actions available to the system. 

Most commonly used statistical methods are Bayesian Network and Hidden 

Markov model.   

Bayesian Network (BN) is one of the models used to represent uncertainty 

[115]. This feature of BN is used in context-aware systems to adapt amidst the 

uncertainty in the perceived context. Zheng et al. in [116] describe a Bayesian 

network of n variables consisting of a DAG (Direct Acyclic Graph) of n nodes 

and a number of arcs. Nodes Xi in a DAG correspond to random variables, and 
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directed arcs between two nodes represent direct causal or influential relations 

from one variable to the other. The uncertainty of the causal relationship is 

represented locally by the CPT (Conditional Probability Table). P(Xi|Pa(Xi)) 

associated with each node Xi, where Pa(Xi) is the parent set of Xi. Under the 

conditional independence assumption, the joint probability distribution of X = 

(X1,X2,…,Xn) can be factored out as a product of the CPTs in the network, 

namely, the chain rule of BN: P(X) = Πi P(Xi|Pa(Xi)). With the joint probability 

distribution, BNs support, at least in theory, any probabilistic inference in the 

joint space. 

Both [117] and [118] propose using probabilistic reasoning coupled with 

ontological reasoning to self-adapt when uncertainty is encountered in the 

context. Instead of failing when a developer has not programmed an adaptive 

action (user defined adaptation) to perceived context, these systems rely on BN to 

choose the most suitable adaptive action among many.  

In [117] the adaptation to a new context comes in the way of restructuring 

conditional probability table (CPT) by adding a node to the given Bayesian 

network. However, in [118] probabilistic information derived from BN is used to 

create instances of ontology classes. The context-aware system uses these 

instances of ontology classes to infer on the perceived context and adapt.  

Hidden Markov Model (HMM) is another statistical method used in context-

aware applications to facilitate adaptation. HMM allows representation of 

probabilistic distribution over a sequence of observations [119, 120] and consists 

of two main properties that give the “hidden” and “Markov” to its name. In this 

model, an observation Xt at time t is produced by a stochastic process whose state 

St is hidden from the observer (hidden property). Secondly, this hidden process is 
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assumed to satisfy the Markov property, where the current state St at time t 

depends only on the previous state St-1 at time t – 1 and is independent of all 

values prior to t – 1 referred to as 1
st
 order Markov property. 

This ability to predict the current state based only on the previous state has 

been used in [121] to develop a context-aware application which adapts to the 

service provided to users based on observed user actions. The system uses 

previous observations to predict the intention and mental state of the user and 

adapts the services to best fit the user expectations.  

Markov Logic Network (MLN) [122] is another Markov statistical method 

used in context-aware applications. MLN enables uncertain inference as a result 

of applying the ideas of a Markov network [122, 123] to first-order logic. The 

idea behind MLN is that when the system violates one formula in the knowledge 

base that formula becomes less probable, but not impossible (fewer the violations 

for a particular formula, the more probable it is). This MLN probability-based 

reasoning has been used in [124] to develop a context-aware travel 

recommendation system. The system models the context as the user’s current 

location, destination searched, travel habits. The context-aware application adapts 

its recommendation such that destinations with a higher probability of being 

selected are presented to the user.  

The issue with statistics or probability based adaptive techniques is that they 

are prone to erroneous prediction. When the system encounters an unknown 

context, the accuracy of the adaptive action taken depended on the existing 

statistical data and the predictive model used.  In the multi-context multi-action 

model, this would require gathering a large data set in order to predict the 

appropriate adaptive action with high probability.  
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2.4 Taxonomy of Context-Aware Adaptation Techniques 

 

 

Figure 3. Taxonomy of Context-Aware Adaptation Techniques 
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The above taxonomy has been created encompassing frequently used context-

aware adaptive techniques. Manual adaptation was present in the early context-

aware application where users were presented with the option of choosing an 

adaptive action out of many. However this approach has limited usage nowadays. 

From the manual adaptation the momentum shifted towards automated self-

adaptation.  

User defined adaptation was the first technique in the self-adapting context-

aware application landscape. It relied on system developers or users to specify or 

configure the system’s adaption prior to use. System was expected to encounter 

only few context changes and had a single action associated with each context. 

Naturally this technique suffered from context inference failures when system 

encountered an unknown context.  

This led to the next step up in the self-adaptive techniques in context-aware 

application domain. The common theme in these techniques is self-adaptation 

without user intervention or with minimal user intervention when unknown 

contexts are encountered. Foremost among these techniques is the learning-based 

adaptation technique. Most common subcategory in learning-based adaptation is 

feedback loop base learning, widely used in control system. Feedback loop uses 

error correction mechanisms to narrow the difference between expected and 

actual goals for each action system iterates over as a result of a context change. 

When the number of actions the system has to iterate over is large the time for 

adaptation also increases. The second learning-base technique is case-based 

reasoning. Case-based reasoning uses past experience (action used in similar 

situation in the past) to adapt when unknown context is encountered. The quality 

of the adaptation depends on similarity between past case and current case.  
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Statistics-based hidden Markov model and Bayesian networks use statistical 

information from the past context changes to adapt to an unknown context. 

Similar to case-based reasoning mentioned earlier, in this technique also the 

quality of adaptation depend the quality of the statistical data available.  

An alternative to above self-adapting techniques was the policy-based 

adaptation. Rather than explicitly specifying the exact action to undertake in 

order to adapt, the policy-based adaptation technique only specify set of policies 

to follow to adapt. The policy rules governs which actions are applied for a 

context changes. Similar to user defined adaptation, the policy-based adaptation 

depends on system developers or users to formulate the policies that should 

govern the adaptation.  

The critique of the existing techniques has shown the need for a new 

approach to handling adaptation when an unknown context is countered in a 

multi-context multi-action model.  

This research proposes an experiment-based adaptation technique which uses 

concurrent multi-action evaluation to find the adaptive action, applicable to a 

multi-context multi-action model when a context-aware application encounters 

an unknown context.  

The research envisages a new paradigm of experiment-based adaptation 

techniques in the context-aware domain. Self-adaptation via concurrent multi-

action evaluation would be one construct of this new paradigm.  
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3.1 Motivation 

The inability to use existing context-aware adaptation techniques with multi-

context multi-action models is the primary motivation for proposing a generic 

framework which uses a novel experiment-based adaptation technique. The 

proposed framework carries out context-aware self-adaptation via concurrent 

multi-action evaluation. 

The motive of the novel framework is to address the limitation in the existing 

context-aware adaptation techniques which were detailed in Chapter 2.  In 

summary, the new framework addresses the following issues in the existing 

context-aware adaptation techniques. 

1. Dependency on system developers to pre-define context and context 

elements which cause rigid context declarations.  

2. Dependency on system developers to encompass and embed all 

possible context change-adaptive action pairs into the system. 

3. Inability to carry out system adaptation when an unknown context is 

encountered.  

4. The time for system adaptation being dependent on the size of the 

action space (i.e. the number of adaptive actions to be evaluated). 

5. The need of user intervention to expand the knowledge base which 

stores context and adaptive action information.  

The secondary motivation of the proposed framework was to have an 

implementation agnostic context-aware platform which could be used across 

multiple domains. The existing context-aware adaptive techniques work well for 

certain use cases in a particular domain but cannot be ported to other domains or 

different use cases.  By being implementation-agnostic the proposed generic 
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framework allows cross domain implementations using the generic framework as 

a blueprint.  Sections 3.5 gives a generic UML class diagram which could be 

used as a blueprint for a concrete implementation of the framework in object 

oriented programming language. It must be stated that these diagrams are 

guidelines that captures the core concept of the framework. Developers are free 

to use these blueprints or create their own implementation strategy depending on 

the domain and the actual use case for which the framework is implemented for.   

3.2 Generic Framework Description – Meta Level 

The framework encompasses the three major aspects a self-adapting context-

aware system must have, that is context sensing, action, and self-adaptation. With 

these three aspects in place, any concrete implementation of the framework 

would qualify as a self-adapting context-aware application. The conceptual 

framework was designed with three distinct systems each with a unique purpose.  

Figure 4 shows a high-level view of the system architecture. 

 

 

Figure 4. System Architecture of the Context-Aware Framework 
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The novelty of the framework is how these systems are orchestrated to find 

the best action for self-adaptation through concurrent multi-action evaluation. As 

seen in Figure 4 the generic framework consists of three systems, they are the 

context system, the inference system, and the action system. The subsequent 

sections give a detail description of each of these systems.  

3.2.1 Context System 

The context system carries out two responsibilities. First, it defines the 

boundaries of the context space. The context space boundary is determined based 

on the context definition in [29] the definition chosen to model context in this 

research. Primarily “any information used to characterize the situation of an 

entity” is considered within the context boundary, thus within the context space. 

Any information that does not fit this definition is considered outside of the 

context space. Any context that is outside the context boundary is considered not 

relevant to the context-aware application.  Realistically the context space consists 

of a concrete subset of the context that is attainable from sensors, applications 

and users and able to be exploited in the execution of the task. The context space 

for a given context-aware application is usually explicitly specified by the 

application developer, but may evolve over time [64]. Information that was 

relevant at one point in time may become obsolete or new information could 

become relevant in characterizing the context. With advancements in sensor 

technologies, collecting low-level sensor data has become significantly easier and 

cheaper. This has resulted in the vast amount of data being collected and 

requiring non-traditional reasoning techniques to be employed to understand the 

sensory data [125].  
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Within a context space, each piece of information that characterizes a 

situation of an entity could be defined as a context attribute. A context attribute 

consists of an identifier, type, and a value, and optionally a collection of 

properties describing specific characteristics [64].  

This research uses the concept of context attributes to overcome the problem 

of rigid context definitions by system developers. In the proposed generic 

framework, the context space is represented as a collection of context with each 

context consisting of set of context attribute values and identifiers. The context 

attribute values are presented by 𝑣𝑥𝑦, 𝑥 = {1. . 𝑛}, 𝑦 = {1. . 𝑘} and the attribute 

identifier is represented as 𝑎𝑦, 𝑦 = {1. . 𝑘}.With this notation the context space 

could be represented as a collection of contexts {𝐶1, 𝐶2, … 𝐶𝑛} where each context 

is represented as  

𝐶1 = {𝑣11𝑎1, 𝑣12𝑎2, 𝑣13𝑎3, … , 𝑣1𝑘𝑎𝑘} 

𝐶𝑖 = { 𝑣𝑖1𝑎1, 𝑣𝑖2𝑎2, 𝑣𝑖3𝑎3, … , 𝑣𝑖𝑘𝑎𝑘 } 

𝐶𝑛 = {𝑣𝑛1𝑎1, 𝑣𝑛2𝑎2, 𝑣𝑛3𝑎3, … , 𝑣𝑛𝑘𝑎𝑘} 

When taken as sets each attribute and value pairs could be used to uniquely 

represent each context.  To illustrate this representation in real world example 

assume a context consists of three attributes such as temperature, humidity and 

pollen level. Context space consisting of multiple values for each of these context 

attribute could be represented as  

𝐶1 = {20𝐶: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 70%: ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, ℎ𝑖𝑔ℎ: 𝑝𝑜𝑙𝑙𝑒𝑛 𝐿𝑒𝑣𝑒𝑙} 

𝐶2 = {25𝐶: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 67%: ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑚𝑒𝑑𝑖𝑢𝑚: 𝑝𝑜𝑙𝑙𝑒𝑛 𝐿𝑒𝑣𝑒𝑙} 

𝐶3 = {22𝐶: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 72%: ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑙𝑜𝑤: 𝑝𝑜𝑙𝑙𝑒𝑛 𝐿𝑒𝑣𝑒𝑙} 

If required this could be even represented as below for simplification. 
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[
20 70 ℎ𝑖𝑔ℎ
25 67 𝑚𝑒𝑑𝑖𝑢𝑚
22 72 𝑙𝑜𝑤

] [

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦

𝑝𝑜𝑙𝑙𝑒𝑛 𝑙𝑒𝑣𝑒𝑙
] = [

𝐶1

𝐶2

𝐶3

] 

With this representation of the context space developers are not constrained 

by rigid context definitions. Evolution of the context space is carried out by 

modifying the elements in each set that represents a unique context. 

The introduction of a new context attribute to the context space will result in 

the addition of a new element to the set representing the context. With this 

approach developers would not have to make any changes to the existing context 

definition as they will be unaffected by the addition of a new context attribute. 

This expansion could be illustrated as below where the context space of n 

contexts is expanded to n+1 with the addition of a new context attribute ak+1.  

𝐶1 = {𝑣11𝑎1,               𝑣12𝑎2 ,        … , 𝑣1𝑘𝑎𝑘} 

𝐶𝑖 = { 𝑣𝑖1𝑎1,                𝑣𝑖2𝑎2 ,       … , 𝑣𝑖𝑘𝑎𝑘 } 

𝐶𝑛 = {𝑣𝑛1𝑎1,               𝑣𝑛2𝑎2 ,      … , 𝑣𝑛𝑘𝑎𝑘} 

𝐶𝑛+1 = {𝑣(𝑛+1)1𝑎1,    𝑣(𝑛+1)2𝑎2, … , 𝑣(𝑛+1)𝑘𝑎𝑘,    𝑣(𝑛+1)(𝑘+1)𝑎(𝑘+1)} 

Taking the earlier example, context space after the additon of a new context 

attribute wind speed could be illustrated as below.  

[

20 70 ℎ𝑖𝑔ℎ
25 67 𝑚𝑒𝑑𝑖𝑢𝑚
22
28

72
60

𝑙𝑜𝑤
𝑙𝑜𝑤

𝑛/𝑎
𝑛/𝑎
𝑛/𝑎
30

] [

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦

𝑝𝑜𝑙𝑙𝑒𝑛 𝑙𝑒𝑣𝑒𝑙
𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑

] = [

𝐶1

𝐶2

𝐶3

𝐶4

] 

Similarly, the removal of a context attribute from the context space could be 

represented by a reduction in element count in the context. The context set 

transformation shown below illustrates the removal of a context attribute ak from 

an existing context space.  

𝐶1 = {𝑣11𝑎1,               𝑣12𝑎2 ,        … , 𝑣1(𝑘−1)𝑎(𝑘−1)} 

𝐶𝑖 = { 𝑣𝑖1𝑎1,                𝑣𝑖2𝑎2 ,       … , 𝑣𝑖(𝑘−1)𝑎(𝑘−1) } 
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𝐶𝑛 = {𝑣𝑛1𝑎1,               𝑣𝑛2𝑎2 ,      … , 𝑣𝑛(𝑘−1)𝑎(𝑘−1)} 

For the earlier mentioned example, simplified representation of the context 

space after the removal of a context element pollen level could be written as 

[
20 70
25 67
22 72

] [
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦
] = [

𝐶1

𝐶2

𝐶3

] 

 

The removal of the context attribute does not reduce the size of the context 

space. However, the context attribute is now placed outside the context space 

boundary and is not used to characterize the situation of an entity. The new 

matrices represent this change in context representation. 

The context space representation proposed provides a domain independent 

method for formulating context spaces. At the same time, it addresses the issue of 

dependency on system developers for context space formulation and rigid context 

definitions. 

The second objective of the context system is context sensing. This has been 

broken down into two steps - context acquisition and defuzzification. The context 

system was formed with the assumption that the context space is heterogeneous 

where context attributes are acquired from various heterogeneous sources. This is 

in keeping with reality where modern day context-aware applications gather 

context attributes from various sources such as hardware sensors (hard sensors), 

web resources [126, 127], databases and host-to-host services (soft sensors). 

Acquiring context attributes from heterogeneous sources presents a problem of 

having each of these attributes in different types or even in fuzzy terms which 

would make it difficult to calculate a closeness measure between contexts.  For 

example, a context-aware application used for controlling ambient temperature in 
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a room may get room temperature in crisp values through a hardware sensor, 

such as 10, 20 or 30 Celsius. However, same could be sensed through a soft 

sensor (i.e. Web service API) in fuzzy terms such as “very cold”, “cold”, “hot”, 

“very hot”. At times, use of fuzzy terms may provide a higher degree of accuracy 

than the use of a value range. An example of such a case could be found in 

defining a buyer type in a context-aware application which differentiates buyers 

based on their spending. A value range based buyer type classification would 

define a buyer spending less than $100 “low buyer”, $101-$200 “medium buyer” 

and anyone spending more than $200 as “high-end buyer”. In this case, buyers 

who spend $10 and $100, both will be classified as “low buyer”. This can lead to 

unfair classification of the users as the buyer who spent $100 is much closer to a 

medium buyer than the one who spent $10. Fuzzy sets address this problem with 

the use of the membership. 

However, sensing using fuzzy terms is not feasible therefore the generic 

framework introduced a defuzzification layer into the context system to address 

this problem. Defuzzification allows different data types and values to be 

transformed into crisp values. Defining a context with crisp values allows 

differentiating between contexts and detection of unknown context. This 

differentiation is possible because, as explained previously, each value set within 

context is unique to that particular context.  Furthermore, the action system uses 

the distance between context attribute values as a measurement for determining 

the nearest known context to any unknown context encountered. In this research 

the Euclidean distance between each context is used to measure closeness 

between contexts. As each context element is represented with a crisp value, the 
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Euclidean distance method provides a convenient way of calculating distance by 

considering each value as a coordinate point in multi-dimensional space.  

There are many defuzzification methods available such as Centre-of-Gravity, 

Centre-of-Sum, First-of-Maxima, Last-of-Maxima, and Middle-of-Maxima 

[128,129,130]. The proposed generic framework is not prejudiced towards any 

particular defuzzification technique. It is left to the implementers of the 

framework to decide on an actual defuzzification method based on application 

and domain specific properties [131].  

Finally, the generic framework has been architected such that the context 

system is fully decoupled from the action system. This makes the addition and 

removal of a context attribute from the context space agnostic to the concurrent 

action implementation in the action system. As a result of this decoupling the 

action space does not grow or shrink based on context space but only on the goal 

specification (goal specification is explained in the subsequent section detailing 

the action system). This negates the need for system developers to encompass 

and embed all context change – adaptive action pairs into the system. Both 

context and action space can grow and shrink independently of each other.  

3.2.2 Inference Systems 

The second system in the proposed framework is the inference system. The 

primary objective of this system is context-inference, which is to identify 

whether the context the system is currently encountering or operating under is 

already known or unknown. A context is considered unknown if the system is 

unaware of an adaptive action to execute in that particular context. Similarly a 

context is considered a known context if it has an associated adaptive action.  
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In existing context-aware systems, the inference system would consist purely 

of a knowledge base. In these systems, the knowledge base must be pre-

populated by system developers with all “context change – adaptive action” pairs 

the system is likely to encounter. If the context-aware system is expected to 

encounter a new context, then the knowledge base must be expanded pre-

emptively. Failure to do so would result in context inference failure and the 

system would be unable to execute an adaptive action.  

The primary use of the knowledge base is to infer if the currently perceived 

context is known or unknown.  If the context is a known context, then the 

knowledge base provides the corresponding adaptive action suited to optimize 

the goal expectation under the said context. If the context is unknown, then the 

inference system invokes the actions system to carry out the concurrent multi-

action evaluation. The inference system provides the action system with the 

initial adaptive action around which the action space for evaluation is built. This 

initial adaptive action corresponds to the adaptive action of the closest known 

context to the unknown context.  

The closest known context is found by calculating the distance between each 

known context’s attribute and the unknown context’s attribute. However, it is 

possible that two or more contexts could have equal distances. To overcome this 

problem the research expands the idea of context attributes in [64] by introducing 

a “priority” as a property of a context attribute.  The priority is based on the 

degree of influence each context attribute has in the prevailing context.  It is 

possible certain context attributes may have a higher degree of influence than 

others.  With the introduction of the priority, if there are two or more contexts 

with equal distances to the unknown context, then the priority of each context 
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attribute is considered. In this case, the context containing high priority attributes 

is considered the closest context to the unknown context.  

However, it is still possible that two or more contexts could have context 

attributes with the same degree of influence. In such cases, the decision of 

identifying the closest known context is based on the output value (scalar value) 

of the adaptive action. This presents the application developer with two options. 

One is to consider the context for which the corresponding adaptive action has 

the highest configuration parameter among other equal-distance peers which is 

termed as an optimistic approach. Another option is to choose the context whose 

action has the lowest configuration parameter as a method of risk aversion, which 

is termed pessimistic approach. Taking the earlier example of a context-aware 

application used for controlling ambient temperature, two equal-distance contexts 

could have adaptive actions which set the temperature to 20 or 30 Celsius. In 

the optimistic approach the context whose adaptive action sets the room 

temperature to 30 could be chosen as the closest known context. Under the 

pessimistic approach the context whose adaptive action sets the room 

temperature to 20 could be chosen as the closest known context. 

The framework makes no assumption as to which approach to use and it is up 

to the application developer to choose a pessimistic or optimistic approach based 

on the context-aware system requirement. During the implementation of the 

second case study of the research both these two approaches were used and 

tested.  

The techniques used for modelling the knowledge base within a context-

aware application have evolved over time. The current trend is geared towards 

modelling context and the knowledge base using ontologies [132-141]. The 



65 

 

advantage of modelling the knowledge base using ontology is that it allows 

leveraging of ontological inference techniques to be used to carry out context 

inference. However, the disadvantage of this approach is that the knowledge base 

model created would have domain specific constructs. This would necessitate a 

higher degree of rework before this knowledge base model is adapted to another 

domain.  

In the proposed framework, the implementation of the knowledge base is 

transparent to the other systems in the framework. No assumptions are made with 

regard to how the contexts are modeled and the knowledge is organized within 

the knowledge base. The two case studies implemented used two different 

knowledge base modelling approaches. One uses the current trend of using 

ontologies to model the knowledge base, while the other uses the knowledge base 

model inspired by data warehouse technique.   

Apart from the knowledge base the inference system also consists of a self-

adapting mechanism. One of the two aspects of the self-adaptation mechanism is 

to expand the knowledge base with results of the concurrent multi-action 

evaluation. Expanding the knowledge base allows the context-aware system to 

recognize more and more context over time. A separate self-adaptive mechanism 

also addresses the issue of requiring user intervention for knowledge base 

expansion. The second aspect is that the self-adaptive system will be responsible 

for executing the adaptive action on the external system which the context-aware 

system manages. In essence, the self-adaptive mechanism acts as an abstraction 

between the context-aware application and the external application managed by 

it, allowing ease of portability.  
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3.2.3 Action System 

The action system is invoked when an unknown context is inferred by the 

inference system. The action system carries out the concurrent action evaluation 

to find the best adaptive action to take in the currently perceived unknown 

context. The best adaptive action is chosen based on how well it adapts the 

application in line with expected goals of the application.   

The action system consists of four components (i) goal specification, (ii) 

action refinement, (iii) concurrent action execution, and (iv) action evaluation. 

Together these four components encompass the novel concurrent multi-action 

adaptive technique proposed by the research. The action system would address 

the two remaining issues identified in the motivation section. The objective of the 

action system is to carry out concurrent multi-action evaluation when an 

unknown context is encountered and to find the best adaptive action for that 

context. The novelty of the framework lies in the fact this adaptation could be 

carried out with minimal user input during the setup and execution of the context-

aware application. The aforementioned four components are tasked with unique 

roles in achieving this objective.  

The ultimate result of an adaptive action in a context-aware application is 

introducing change to the system it manages. The change introduced by the 

action manifests as the action’s output. This research proposes the concept of 

defining adaptive action as a function of the parameter manipulated by it. This 

could be explained by taking the smart plant watering system mentioned in [92] 

as an example. The adaptive action, in this case, is the watering of the plant and 

the parameter manipulated by the adaptive action is the volume of water 

delivered to the plant. In this case, the self-adaptive action A could be defined as 
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a function of the volume of water delivered: A (volume of water delivered).  The 

research uses this parametrized action concept to carry out concurrent multi-

action adaptation with minimum user intervention.   

The goal specification component of the action system encapsulates the 

extremities of the parameters used in the action space. The premise is that within 

a particular domain the set of parameter values interesting for the application is 

far less compared to the universe of parameter values within that domain. 

Therefore, in any implementation of the generic framework, the application 

developer only has to specify minima and maxima of the parameter values that 

the context-aware application must use for concurrent action execution. This 

releases the application developer from having to foresee all possible context-

change and adaptive action pairs.   

The action refinement component builds the action space used for the 

concurrent action execution. It uses the goal specification as the boundary for 

parameter values used for creating actions within the action spaces. In addition to 

the goal specification, three other action refinement related control values are 

introduced in the generic framework as means of limiting the number of actions 

in the action space, as well as means of fine tuning the concurrent execution. The 

action refinement receives the parameter value associated with a closest known 

context, discovered in the context inference phase as an input. This closest 

known context is used as the seed for expanding the action space with the use of 

three control values defined in the action refinement. The three control values of 

the action refinement are: 

1. A value to specify the number of actions created with parameter values 

towards the maxima of the goal specification. 
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2. A value to specify the number of actions created with parameter values 

towards the minima of the goal specification. 

3. A value to specify the difference between two neighbouring actions’ 

parameter value. 

The introduction of these three control values eliminates the need for the 

context-aware system to employ a brute force method which will evaluate every 

parameter value between the minimum and maximum goal specification. Since 

there’s no correlation between the action system and the context space, the size 

of the action space is controlled independently with these control values. It is 

assumed that values for these control parameters are set based on the expected 

outcomes and the domain where the context-aware application is used in. The 

total number of actions to be executed and evaluated is determined by how large 

or small the three control parameters are set for, which allows fine tuning of the 

action execution. Besides prepopulating of the knowledge base with facts using 

system developers expertise of the domain, these five values (the two goal 

specification values and the three action refinement values) are the only values 

required from the system developers. 

The action space built using the five values defined in the action refinement 

mentioned earlier. Once the action space is built it is handed over for concurrent 

multi-action experimentation. The generic framework proposes a private 

workbench for the concurrent action execution. A private workbench is an 

experimental area where the current state of the system is shielded from the 

effects of the action under evaluation. Unlike the iterative approach used by 

existing self-adapting context-aware systems, the generic framework proposed by 

the research uses concurrent action execution to evaluate all actions at the same 
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time. The iterative approach where actions are evaluated sequentially will have a 

time complexity of O(n). The concurrent action evaluation will have a time 

complexity O(1) as actions are executed independently of each other. This 

reduction in time complexity translates to short self-adaptation time.  Depending 

on the action’s parameter the execution end time of each action may vary. In 

context-aware application domain it’s expected that all action would complete 

around the same time. But this is no guarantee as depending on the domain the 

framework is implemented, certain parameter values could make some action 

take longer to complete than others. To overcome this a cut-off time for 

experimentation could be introduced. Any action that has not completed by this 

cut-off time could be removed from being considered for the action evaluation 

phase. Introduction of the cut-off time could further reduce the time for 

adaptation.  

There are research attempts to parallelize the adaptation [142] with the use of 

parallel optimization techniques, such as particle swarm optimization (PSO) 

[143]. However, there is a key difference between the PSO based technique and 

the concurrent multi-action evolution method of this research. In the PSO 

technique each particle must update their velocity and position relative to the 

particle with the global optimal for iteration of the optimization task. In the 

proposed framework, each action (similar to the particle in PSO domain) is 

treated with equal importance and is a candidate to become a “best adaptive 

action”. Moreover, all actions evaluate the problem space independent of other 

actions (particles) without any relation to other actions in the action space.  

At the end of the concurrent experimentation phase the outcome of each 

action is evaluated and the best action for the unknown context is chosen. The 
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action outcome evaluation component contains the optimization centric function 

used for deciding the best action based on the action outcomes. The evaluation 

function used is domain specific. For example, the context-aware application 

used to determine the best threshold price in a name-your-own-price (NYOP) e-

commerce site would be looking to choose an action that maximizes the future 

profits (NYOP case study is presented in Chapter 5), whereas a context-aware 

application used for performance tuning may look for minimizing resource usage 

such as CPU and memory (case study presented in Chapter 4).   

3.3 Formal Modelling 

A formal model of the proposed generic framework’s action system is 

presented, which could be used as a blueprint for any domain-specific 

implementation.  

3.3.1 Goal Specification 

As mentioned earlier, the goal specification encapsulates the extremities of 

the parameters used in the action space. The system developer is expected to 

specify the minimum and the maximum of the parameter values that the context-

aware application must use for concurrent action execution. These extremities are 

denoted as Glo for minimum and Ghi for maximum. The goal specification values 

are considered elements of the action’s parameter space, which is used to 

differentiate one action from another.   

(Glo, Ghi )∈ {action parameter space} 

3.3.2 Action Refinement 

The action refinement limits the number of actions used for concurrent multi-

action evaluation. It builds the action space using the action of the closest known 
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context as the seed. This seed action is denoted as Ak and defined as a function of 

its outputs parameterk. 

Seed action = Ak(parameterk) 

The three control values of the action refinement component are denoted as 

1. The lower bound expansion range denoted by p, which specifies the 

number of actions to define in the direction of Glo.  

2. The upper bound expansion range denoted by q specifies the number of 

actions to define in the direction of Ghi. 

3. The distance between two neighboring actions’ parameter values denoted 

by Δ. 

These are the only inputs that depend on system developers and are based on 

their knowledge of the application domain. In practice the values dictate how 

many actions the user wants the context-aware application to consider for 

concurrent multi-action evaluation.  With these values in place, the action space 

for concurrent multi-action evaluation could be defined as a union of three sets.  

Action space = { Ak(parameterk)∪ 

Ap(parameterp)∪ 

Aq (parameterq) 

 |   p  = {1 .. n}, n > 0,  q = {1 .. m}, m > 0, 

parameterk  - p∆ ≥ Glo, 

parameterk  + q∆ ≤ Ghi,  

∆  > 0 

} 

Figure 5 illustrates how the five parameters in action refinement come 

together to create the action space. As mentioned previously the creation of the 

action space starts of by identifying the seed action (denoted A(k), black arrow). 

Around this other actions are generated with equal distance of ∆ between each 

neighbouring actions’ parameter values. The expansion continues until p and q 
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number of actions are created on either side of A(k). These are denoted in green 

arrows in Figure 5. If any of the parameter values within an action falls outside of 

Glo or Ghi then these are not considered as part of the action space. In Figure 5 

these are denoted by the red arrows. From this it is clear that by adjusting the five 

parameters in the action refinement users of the context-aware application can 

fine tune the action space used for concurrent multi-action evaluation.   

 

Figure 5. Action Space Creation 

3.3.3 Concurrent Multi-Action Execution 

As implied by the name, the concurrent multi-action execution is to execute 

all the actions in the action space at the same time. The research uses the notation 

used by Vinh [88] for autonomic systems (AS) to formally modell the parallel 

execution of the action space.  

 

Self-*action[1-n] are parallel self-adaptive actions executed in the concurrent action 

space while AS1 and AS2 are two states of the autonomic system. One key aspect is 

that the system adaptation is carried out in private workbench and is opaque to the 

users until the action outcome evaluation has taken place.  



73 

 

3.3.4 Action Outcome Evaluation 

As mentioned earlier, the evaluation criteria for choosing the action that 

results in the highest benefit depends on the user expectations and the domain in 

which the context-aware system is implemented.  

Thus the best parameter to use with the adaptive action executed as a result of 

the unknown context change could be formally defined as 

parameterbest=  { 

∀parameteri∈ {action space parameters} 

∃ Ai (parameteri): Maximum Benefit (Ai) 

 } 

What above formal definition means is that for all parameters that were in the 

actions that made up the action space, there exists one parameter such that 

delivers the maximum benefit (best outcome) out of all the concurrently executed 

actions.   

The best parameter to use with the adaptive action is the one that yields the 

highest benefit in line with the application’s goal expectations. At the time of the 

experimentation the user is unaware of the optimal goal outcome. What is 

expected from the system is to adapt so that the outcome is the best possible 

under current context. 

3.4 Application of Framework  

As mentioned in the Section 3.1 the framework has been designed to be 

implementation and domain agnostic. Figure 6 shows application of the 

framework to achieve context-aware adaptation through concurrent multi-action 

evaluation. Figure 6 in this case depicts a hypothetical context-aware application 

which acquires context attributes from three sources. One is through social media 

APIs, the other from mobile phones and lastly set of hard sensors.  The initial 
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context boundary consists of these three sources. The context-aware application 

applies the adaptive action on the adapted system (or system manged by context-

aware application). 

 

Figure 6. Application of Framework to Achieve Context-aware Adaptation 

In the early days of context-aware computing the context attributes were acquired 

primarily from hard sensors. Examples of such context-aware applications were 

mentioned in Chapters 1 and 2.  

The smart phones enabled easy access to context information while being mobile. 

In fact both Apple and Google have numerous products [210] that customize the 

services based on user’s context. The product customization is not based just on the 

location of the user and includes other aspect such as personal preference, past usage.  

Somewhat new into the mixture is social network based context gathering. Users 

of social networks are increasingly sharing personal information which both 

implicitly and explicitly gives contextual information about the user. This social 

media based context information has been used to enhance communication between 
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user groups [211], create augmented reality that is context-aware [212]  and predict 

future events which has been used to detect potential crime [213, 214].  

As mentioned earlier the initial context boundary consists of above three context 

sources. Section 3.2.1 described how the context boundary would change when new 

context sources become relevant and existing context sources are made irrelevant. 

This is shown in Figure 6 with the second context boundary which brings in Host-to-

Host (H2H) services and relational and big data sources as context sources. At the 

same time the hard sensors are made irrelevant thus placing them outside the context 

boundary. XML/SOAP, JSON, RESTful APIs are used to acquire context 

information from external sources to create mashup web services. Example of a 

mashup web services which act as soft sensors for context-aware application was 

mentioned in [92]. How the framework handles removing and adding of context 

attributes was described previously in Section 3.2.1.  

As the knowledge base does not have any facts with new context attributes, 

context inference will result in concurrent multi-action execution. Creation and 

execution of concurrent action space was explained on Section 3.2.3. As a result of 

the concurrent action evaluation the best adaptive action for prevailing context will 

be applied to the adapted system. In Chapter 4, the case study shows use of context-

aware application to adapt a database to different work load mixes while in Chapter 5 

the context-aware application adapts a hoteliers NYOP channel. 

3.5 Blueprint for Framework Implementation 

The nature of the concrete implementation of the framework is highly subjective 

and depends largely on the domain it is been implemented. Apart from the domain 

the programming languages used (i.e. object oriented, sequential programming) and 

aspect such as implementation architecture (i.e. object oriented architecture, aspect 
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oriented architecture, service oriented architecture) will heavily influence the 

implementation strategy. Therefore it is a difficult task to have a “one size fits all” 

implementation of the framework. However, considering the core systems and 

modules it is possible to give a generic blueprint which could be further expanded to 

fit the domain specific constructs. Figure 7 shows a UML diagram which captures 

the core systems and modules and interaction between them.  

 

Figure 7. Blueprint for Generic Framework Implementation 

The three packages in the UML have a one-to-one mapping to the three 

system described in Section 3.2.  

The context system package in the diagram consists of four classes. An 

abstract context class which has two attributes which are context values and 

context priority. The abstract context class could be extended to specialist sub 

classes of soft sensor context and hard sensor context. These could be further sub 

classed based on the concrete implementation. The context acquisitions class the 

other class in the package. This class could be used for acquiring and detecting 

context changes.  
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The inference system package contains a single knowledge base class. The 

blueprint only specifies the operations on the knowledge base. The developers 

have the freedom to choose the mechanism for storing knowledge facts that is 

most convenient for the actual implementation. To demonstrate this capability, 

the case studies provided in Chapter 4 and 5 uses two different mechanism for 

storing knowledge facts.  

The action system package consists of five classes. At the centre of it is the 

action class. It has the method for executing the action assigned to it and the 

attribute to hold the value of the parameter on which action is parametrized 

(parameterized action is explained on Section 3.2.3). The other four classes have 

a one-to-one mapping to the modules in action system on Figure 4. The action 

refinement class builds the action space using values from goal specification. The 

actions in the action space are concurrently executed once submitted to the action 

executor. The concurrent action executor simulates a private workbench area for 

experimentation where actions under evaluation do not affect the system state. 

The action evaluation class find the best course of action and update the 

knowledge base with the context-action pair facts.  

What’s omitted from the action system package is the applying of best action 

on the adapted system as depicted on Figure 6. This is highly dependent on the 

implementation and nature of the interface between context-aware application 

and the adapted system.  

Once the generic framework was formed, the next step in the research was the 

implementation of a context-aware system based on the proposed framework. 

Two use cases from two different domains were used for this purpose. Chapter 4 

and 5 of the thesis detail these case studies. 
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4.1 Background 

Performance problems in the database system (DBS) could have a cascading 

effect on all aspects of an enterprise application. Database vendors have provided 

some help in identifying and resolving performance regression by way of 

automation and manageability [144]. But ultimately it is the responsibility of the 

database administrator (DBA) to fine tune the DBS to perform optimally. A 

properly tuned DBS is more likely to enable a DBA to achieve the service level 

agreements (SLA) than a non-tuned DBS. 

However, database performance tuning is not a one-off task. A DBA has to 

constantly keep an eye on the DBS performance as a multitude of reasons could 

cause the tuning work carried out earlier to become invalid or inadequate. 

Changes in hardware or faulty hardware related issues (i.e. failed memory banks 

reducing the memory available to the system, network bandwidth reduction, 

failed I/O controllers reducing I/O bandwidth) could easily be detected with 

modern monitoring systems and replacing the component will rectify the issue. 

But there are other factors that pose much more subtle performance problems. 

This type of changes include database upgrades (i.e. change in optimizer 

behavior), change in configuration parameters (i.e. depreciated configuration 

settings or change in a default value set at installation), change in workloads and 

business requirements (i.e. a DBS system used for online transaction processing 

(OLTP) now being used for transaction processing and decision support system 

(DSS)), stale statistics on data or a combination of these factors. As a result, the 

database query performance could regress, remain unaffected or improve [145].  
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Figure 8 and 9 show a real-world example
1
 of performance regression due to 

a runaway query consuming high CPU. Figure 8 shows the CPU usage at the 

time of the incident, while Figure 9 shows the CPU consumptions on that hour 

compared with the hourly CPU consumptions over a 3-month period.   

 

Figure 8. DB CPU Usage During Performance Regression 

 

Figure 9. Hourly CPU Usage on the DB Over 3 Month Period 

If any of the aforementioned reasons result in performance regression, the 

DBA would have to rectify it. Prior to starting performance tuning activities, the 

DBA prioritizes which performance tuning tasks to carry out first. This 

prioritization is done based on a prediction the DBA makes as to which tuning 

action would yield the highest performance benefit with the lowest cost. The cost 

could be in the form of monetary losses due to regressed performance, as well as 

time limit imposed by SLA to resolve a performance issue. The DBA uses her 

knowledge of the DBS, past experiences of handling a similar situation and even 

                                                 
1
Graphs obtained by the author as part of his work at CodeGen Ltd (www.codegen.co.uk). 
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intuition to make this prioritization. However, this prediction may not always be 

accurate, thus resulting in elongated performance resolution time. 

As there are many factors to consider, it is impossible for a DBA to predict 

the performance changes without actually trying the changes on a system [146]. 

Therefore, the experiment-based performance tuning models give a DBA an 

accurate understanding on the returns of the tuning effort as opposed to 

predictive models [147] which consider data statistics or algorithmic 

complexities. In such cases, the DBA would create a replica of the production 

database, run a similar workload to recreate the problem behavior and then 

hypothesizes the root cause and the set of potential solutions and evaluate them 

one by one with different sets of experiments [148,149,150]. Experimenting with 

a representative system or on the production system itself allows a DBA to 

accurately gauge the performance gain for a particular tuning task before 

applying it to a production DBS. 

There are similarities between how a context-aware system reacts to a context 

change and how a DBA employs an experiment-based performance tuning 

model. Self-adapting context-aware systems have three main aspects, context 

sensing, actions or actuators and self-adaptation/self-learning based on action 

outcomes. These aspects could be superimposed to experiment-based DBS 

performance tuning as follows. The DBA has to monitor the DBS to determine if 

the performance has regressed (i.e. context sensing). Performance regression is 

detected by way of increased query execution time, high user response time, 

change in the CPU pattern, memory usage patterns, etc. (i.e. context inference). 

The DBA would carry out a tuning action depending on the symptoms. If the 

DBA is aware of the reason for the current performance change, this would be a 
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known context. Since there are many factors that could affect the database 

performance, the DBA may not always know the root cause outright (i.e. 

unknown context). In an unknown context, DBA would need to engage in 

multiple tuning experiments (i.e. actions in the context-aware model), evaluate 

the outcome of them all and then would decide the most beneficial tuning activity 

to apply on the production DBS. Once a fix is found, the DBA would be 

knowledgeable to detect similar situations in the future and fix them quickly, the 

same way a context-aware system uses self-adaptation and evolves to recognize 

more and more contexts. 

4.2 Current Approaches 

Experiment-based database performance tuning models are actively developed 

and researched into by both the academic initiatives and by database vendors. 

Among the related work, two types of experiment-based database performance 

models could be identified. The first model type is where experimentation takes 

place offline or offloaded from the production system, while the second model 

runs experimentation on the production system itself in real-time. During a 

performance crunch, configuration parameter tuning could give the quickest fix 

with minimum effort. This is because if the effect of changing the configuration 

parameter is already known then the change could be implemented without any 

pre-processing activities. Depending on the configuration parameter database may 

not even need to be restarted, ensuring no downtime for the application. After this 

initial breather, the DBA could further investigate the root cause of the 

performance regress and provide a more substantiated solution. But modern 

databases have hundreds of parameters and deciding which parameter to tune and 

what value to set for it requires careful testing. A wrong parameter or parameter 
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value could worsen an already bad situation. Database vendor literature provides 

insight into the parameters a DBA is most likely to use for tuning the workload. 

This vendor literature could be considered as guidelines but may need to be tested 

and validated for each individual application. 

A framework proposed in [151] provides a DBS independent experiment-

based approach to database tuning via configuration parameter settings. With the 

use of adaptive sampling, it identifies and brings high impact and high-

performance configuration parameters into the experiment workbench. Using a 

cycle-stealing paradigm it executes experiments directly on the production 

database for accurate gauging of the benefits to configuration parameters changes. 

Another configuration parameter related framework is presented in [149], in 

which starting off with a small number of experiments, the framework expands 

the experiment base depending on the estimated benefits from each experiment. A 

rapid experiment-defining framework and a high-level language that enable the 

DBA to define experiments using the framework are proposed in [152]. The 

framework orchestrates the scheduling, running and tuning of the system in an 

automated fashion. The DBA is free to devise experiments to check the impact of 

configuration changes. An offline experiment-based performance model is 

presented in [153], which trains neural network to recognize the workload patterns 

on a test system before letting it predict performance on the production database. 

As training of the neural network is required beforehand, the dynamic adaptation 

to performance workloads that were not in the training set could be unpredictable. 

The neural network internal weight adjustments are opaque to a DBA, thus 

validation of the prediction would require a DBA to carry out further tests.  
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If tuning cannot be achieved through configuration parameter changes, then 

the next option for achieving good performance is for a DBA to tune the relevant 

database queries. To successfully tune queries a DBA must be aware of the 

characteristics of the data being queried, statistics and the business requirements. 

In this regard, an experiment-based SQL tuning framework is presented in [148]. 

Using cardinality sets the framework quickly develops new plans that are in the 

same neighborhood but with better execution plans. Cardinality sets represents the 

cardinality values that are needed for costing a particular SQL execution plan. The 

approach used by Oracle is based on an initial SQL plan which is considered the 

baseline, while other plans are generated and compared against this baseline plan 

[145, 154]. If better plans are found, then they are added to the baseline after 

verification allowing query performance to always improve and never regress 

beyond the baseline. Oracle has automated this tuning process with the use of 

automatic tuning optimizer [144] in Oracle database versions of 11g and with 

automatic re-optimization techniques in 12c [155]. 

A vendor-specific experiment-based performance tuning tool is described in 

[146], called SQL Performance Analyzer. The SQL Performance Analyzer (SPA) 

was introduced by Oracle in the 11g database version and allows the DBA to 

measure performance changes or the impact of configuration parameter changes, 

database version upgrades, updating statistics, and the creation of database 

objects such as indices and to materialize views. SPA could be used on the 

production database or a SQL set from production could be transferred to a test 

system to be used with SPA. However, SPA does not provide any way to 

automatically run the tests and requires the DBA to execute each experiment. A 

more robust workload capture and replay system is presented in [156, 157]. The 
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DBA could capture the production workload with minimum overhead and use the 

captured workload to conduct experiments on a test system (i.e. offline) to the 

same level of concurrency as the production system. The database replay works 

for proactive performance tuning but is not sufficient for reactive performance 

tuning as the workload capture has to happen before the problem period. 

4.3 Formal Modelling 

The proposed framework was adapted to implement a context-aware 

experiment-based database performance tuning system as shown in Figure 10. 

 

 

 

Figure 10. Adaptation of Context-Aware Framework for Experiment-Based 

Performance Tuning 

 

The three systems (context, action, and inference) of the proposed framework 

are mapped to the experiment-based database performance tuning case study as 

follows.  Following the definition in [29], which was adopted by the research, the 

database system (DBS) is nominated as the entity that is of concern and the user 

workload W and the resource usage R are defined as the contexts describing the 

state of the DBS. At any given time, the workload W could consist of zero or more 

user workload types. Zero workload type represents no user work being done on 

the database. The background work needed for the upkeep of the DBS is not 
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considered as this is of no practical use or concern for the tuning effort. The 

resource usage R describes the level of consumption of system resources by the 

DBS at a given point in time. The resource types include CPU, memory and DBS 

memory components such as buffer pools, I/O utilization, network utilization and 

any other resource type the DBS uses to service the workload. 

The context acquisition is responsible for sensing and acquiring these context 

values. Based on the context values acquired the context system decides if a 

context change has occurred. How the context sensing happens is implementation 

specific. However, as with any instrumentation activity, care must be taken not to 

induce any overhead due to the context sensing. The CPU cycle stealing 

mechanism in [151] is one possible mechanism that could be employed for 

context value sensing. The cycle stealing mechanism uses idle computing capacity 

to carry out context sensing work with near zero overhead on production loads. 

Furthermore, the context acquisition is expected to transform the heterogeneous 

context value types in multiple units into a single unit of measurement, allowing 

comparison of contexts. This context comparison is used in the action system to 

find the closest known context to an unknown context. Two workload types were 

defined for W; W={OLTP,DSS}. The online transaction processing (OLTP) 

workload type has the characteristic of accessing a small percentage of tuples on 

few tables for a given query. The Decision Support System (DSS) workload types 

are ad-hoc queries that access a large percentage of tuples in multiple tables for 

management information or business intelligence reports. The CPU load for each 

workload type was considered as the resource usage R; R={CPUOLTP , CPUDSS}. 

It’s not uncommon for both these workload types to be present in the same DBS. 

It is typical in enterprise scenarios that the usage pattern remains constant over 
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time as the application uses a similar set of queries [153, 158]. Therefore, any 

change to the workload type or the resource usage pattern is considered a context 

change and context inference is carried out. 

The action system is responsible for concurrent action execution and 

evaluation when an unknown context is encountered. The goals of the action 

system are to reduce the number of required actions (experiments) and to 

complete the actions in a single pass as opposed to iterative manner. To achieve 

this first goal the action system uses goal specification and action refinement. The 

goal specification defines the extremities of the variable parameter used in the 

actions. In this implementation, the performance tuning is carried out by way of 

database configuration changes. The experimentation consisted of executing a 

representative workload using a different set of configuration values for each 

experiment. The representative workload is created by capturing the top resource 

consuming queries for each workload type. The goal specification, in this case, 

would be the minimum and maximum values to be used in the experiments, but 

not necessarily the maximum and minimum values the parameter could be 

configured for. These extremities are denoted as Glo and Ghi and are considered 

elements of the configuration parameter space. 

 

(Glo,Ghi )∈ { DB configuration parameter space} 

 

The action refinement limits what action qualifies to be in the action space. 

Without the limiting effects of the action refinement, the context-aware system 

would have to experiment with every value between Glo and Ghi which would be 

a resource and time intensive endeavour. The action limiting process starts by 

identifying from the knowledge base, the context that is closest to the unknown 
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context. The closeness is measured by the difference of the context values. If 

more than one context is found to be the closest, then the priority of each context 

is considered. The configuration parameter setting of this known context is used 

to devise the initial action. This is denoted as Ak and defined as a function of the 

configuration parameter configurationk of the closest known action. 

 

Initial action = Ak( DB configurationk ) 

 

To derive other actions in the action space three integer parameters are 

introduced. They are the lower bound expansion range denoted p, which specifies 

the number of actions to define in the direction of Glo. The upper bound 

expansion range denoted by q specifies the number of actions to define in the 

direction of Ghi and finally the distance between each configuration parameter is 

denoted by Δ. These three parameters and the goal specification are the only 

inputs that depend on system developers, effectively eliminating the need to 

identify all possible context changes. Having defined these values, the total 

number of actions (or experiments) which need to be executed could be defined 

as a union of three action sets. 

 

Action space = { Ak (DB configurationk) ∪ 

Ap (DB configurationp) ∪ 

Aq (DB configurationq) 

 |   p  = {1 .. n}, n > 0,  q = {1 .. m}, m > 0, 

DB configurationk  - p∆ ≥ Glo, 

      DB configurationk  + q∆ ≤ Ghi,  

  ∆  > 0 

 } 

 

The defined actions are then executed concurrently in a private workbench. 

The private workbench ensures that the configuration changes in each action are 
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opaque to and do not affect the current state of the DBS. As all actions are 

executed concurrently, the outcome of each action is known at the same time as 

opposed to an iterative approach where the analysis of the results has to be 

delayed until all actions have finished. 

The final phase of the action system is the outcome evaluation. The 

evaluation criteria for choosing the action that result in the highest benefit depend 

on the domain the context-aware system is implemented in. For the database 

performance, the tuning actions are evaluated based on a minimizing function. 

That is, the best action is the one with the configuration parameter that resulted in 

minimum resource usage such as the CPU usage for the execution of queries, the 

number of data blocks accessed, memory utilization or even the response times or 

a combination of metrics as used by [146]. Thus the best configuration parameter 

for the unknown context could be formally defined as 

DB configurationbest =  { 

∀ DB configurationi ∈ {DB configuration parameters in action space} 

∃ Ai (DB configurationi): minimum (Resource Usage (Ai)) 

 } 

 

Once the best setting for the configuration parameter is known for the current 

context, it could be used to update the context-aware system so it recognizes this 

context in the future (learning and adaptation) and at the same time, the DBS 

configuration setting is changed to optimize the workload execution. 

4.4 Implementation 

The context-aware experiment-based performance tuning system was 

developed as a Java desktop application. The key components of the Java and 

OWL implementations of the three systems (context, inference, and action) in the 

research framework are given in the following sections.  
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4.4.1 Context System 

The context-aware system would sense the context-space for any changes. As 

mentioned in an earlier section, the context space consists of resource usage and 

workload. Two Oracle DB connection services were created in the database for 

each of the workload types W={OLTP,DSS}, thus enabling the measuring of the 

resource usage R={CPUOLTP , CPUDSS} of each of these workload types.  

Constructor and class variables of the Context class are shown in Listing 1.  

public class Context { 

 

private int oltp; //oltp load 

private int dss; //dss load 

private String name; 

private String workloadType; 

 

private Connection oltpConnection; 

private Connection dssConnection; 

 

private int C1_PRIORITY=1; 

private int C2_PRIORITY=2; 

 

private int optimizer_index_cost_adj; 

 

public Context(int c1, int c2, int  optiIndCostAdj){ 

 

        this.oltp = c1; 

        this.dss = c2; 

 

        this.optimizer_index_cost_adj = optiIndCostAdj; 

 

    } 

} 

Listing 1. Context Class for DB Performance Tuning Case 

Context sensing was carried out by polling the database every 5 seconds and 

evaluating the CPU usage of each service assigned to the workload types. This 

polling only incurred 0.000015% of the total hourly CPU time available on the 

DBS server, which is considered to be negligible. When new workloads are added 

to or removed from the DBS, the resource usage pattern would vary based on the 

final workload that exists in the DBS. This change in the resource usage pattern is 

considered a context change if there was a 3% difference in the CPU usage 
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between 3 consecutive samples. The value of 3% was based on DBA expertise of 

the database application. Furthermore, with the help of the DBA’s understanding 

of the domain, it was found that a 5-second polling interval and the 3 samples 

gathered provided the ideal polling frequency and sampling rate to avoid taking 

too long to detect a context change versus introducing an additional overhead to 

the system. 

Listing 2 shows the Context acquisition class which was implemented as a 

runnable java thread (Full code listing is given in Appendix A). It shows the 

continuous sampling of the DB workload and detecting a context change when 

there’s a 3% difference on the load.  

 
public class ContextAcquire extends Thread { 

 

   private Connection con; 

   private final String SQL = "select service_name,value from 

                      v$service_statS where stat_name='DB CPU'  

                      AND SERVICE_NAME IN ('dsssrv','oltpsrv')"; 

    ... 

   private GUIObjects guiObj; 

 

   public ContextAcquire(GUIObjects guiObj) throws SQLException { 

 

   con = DBConnectionPool.getDBConnection(DBConnectionPool.POOL); 

 

        valueMap.put(CURRENT, new ContextValue()); 

        valueMap.put(PREVIOUS, new ContextValue()); 

        this.guiObj = guiObj; 

        setName("Context Accquire"); 

    } 

 

   @Override 

public void run() { 

 

 while (true) { 

 

          if (i == 0) { 

              value = valueMap.get(PREVIOUS); 

          } else { 

              value = valueMap.get(CURRENT); 

              twosamplecollected = true; 

          } 

  ... 

long oltpValue = 0, dssValue = 0; // no load on the DB 

 

  if (i == 1) { 

   ContextValue before = valueMap.get(PREVIOUS); 
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oltpValue = ((value.getOltpValue() -     

before.getOltpValue())); 

dssValue = ((value.getDssValue() -   

before.getDssValue())); 

} 

 

if (i == 0 && twosamplecollected) { 

 

ContextValue current = valueMap.get(CURRENT); 

oltpValue = ((value.getOltpValue() - 

current.getOltpValue())); 

dssValue = ((value.getDssValue() -  

current.getDssValue())); 

} 

 

 

if (dssValue > 0 || oltpValue > 0) { 

 

      BigDecimal oltpBD = new BigDecimal(oltpValue); 

      BigDecimal dssBD = new BigDecimal(dssValue); 

BigDecimal oltpPct = 

oltpBD.multiply(hundred).divide(oltpBD.add(dssBD), 

mc).round(mc1); 

 

boolean isContextChanged = 

hasContextChanged(oltpPct.doubleValue(), 

dssPct.doubleValue()); 

... 

     } 

 

public boolean hasContextChanged(double oltp, double dss) { 

 

        if (preDSSValue < 0) { 

 

            prevOLTPValue = oltp; 

            preDSSValue = dss; 

 

            return true; 

        } 

 

        double ot = Math.abs(oltp - prevOLTPValue); 

        double ol = Math.abs(dss - preDSSValue); 

 

        if (ot >= 3 || ol >= 3) { 

 

            ++samples; 

        } 

 

        if (samples == 3) { 

 

            samples = 0; 

            prevOLTPValue = oltp; 

            preDSSValue = dss; 

            return true; 

        } 

 

        return false; 

 

    } 

} 

Listing 2. Context Acquisition and Context Change Detection 
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4.4.2 Inference Systems 

The knowledge base was modelled using java implementation of Protégé 

OWL API and for inference Java API for Protégé Pellet Reasoner was used.   

The context inference is carried out by the inference system which consists of 

a knowledge base and a self-adaption and learning mechanism. When a context 

change is encountered, the knowledge base is queried to identify if the context is 

known. If the inference system is unable to find the context in the knowledge 

base, the action system is invoked. The other component in the inference system 

is the self-adaptation and learning mechanism which updates the context-aware 

system and the knowledge base with the outcome from the action system. 

The knowledge base represents each context in terms of the earlier defined 

context values, which is workload type and associated resource usage. The 

knowledge base was modelled using web ontology language (OWL). The 

objective was to have an OWL representation of context [159] that would allow 

leveraging of OWL inherent inference capabilities for context inference. With the 

use of the OWL only the distinct workload types need to be defined, in this case 

the OLTP and DSS workload types. Taking into consideration the resource usage 

distribution of the current context, the DBS is said to have an OLTP workload 

type if there is no resource usage for DSS and all existing resource usage is for 

serving the OLTP queries. The Listing 3 illustrates how this is defined using 

OWL restriction. 

<owl:Class rdf:ID="OLTP"> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty> 

<owl:FunctionalProperty rdf:ID="oltpLoad"/> 

</owl:onProperty> 

<owl:hasValue datatype="int">100</owl:hasValue> 

</owl:Restriction> 

</rdfs:subClassOf> 

<rdfs:subClassOf> 
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<owl:Restriction> 

<owl:onProperty> 

<owl:FunctionalProperty rdf:ID="dssLoad"/> 

</owl:onProperty> 

<owl:hasValue datatype="int">0</owl:hasValue> 

</owl:Restriction> 

</rdfs:subClassOf> 

</owl:Class> 

 

Listing 3. OWL Class Definition for OLTP Workloads 

 

 

Similarly, the current context is said to have a DSS workload if there is zero 

usage for OLTP queries and all existing resource usage is for serving the DSS 

queries. OWL class for DSS workload type is presented in Listing 4.  

<owl:Class rdf:ID="DSS"> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty> 

<owl:FunctionalProperty rdf:ID="oltpLoad"/> 

</owl:onProperty> 

<owl:hasValue datatype="int">0</owl:hasValue> 

</owl:Restriction> 

</rdfs:subClassOf> 

<rdfs:subClassOf> 

<owl:Restriction> 

<owl:onProperty> 

<owl:FunctionalProperty rdf:ID="dssLoad"/> 

</owl:onProperty> 

<owl:hasValue datatype="int">100</owl:hasValue> 

</owl:Restriction> 

</rdfs:subClassOf> 

</owl:Class> 

 

Listing 4. OWL Class Definition for DSS Workloads 

 

Using OWL it is possible to model other workload types as complex classes 

based on the distinct workload types OLTP and DSS defined earlier. The current 

context is said to have a mixed workload if the resource usage has an OLTP 

portion as well as a DSS portion. This is defined in OWL using OLTP and DSS 

types as following. The OWL specification for Mix workload type is given in 

Listing 5 below. 
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<owl:Class rdf:about="#Mix"> 

<owl:disjointWith rdf:resource="#DSS"/> 

<owl:disjointWith rdf:resource="#OLTP"/> 

<rdfs:subClassOf> 

<owl:intersectionOf rdf="Collection"> 

<owl:complementOf rdf:resource="#DSS"/> 

<owl:complementOf rdf:resource="#OLTP"/> 

</owl:intersectionOf> 

<rdfs:subClassOf 

</owl:Class> 

 

Listing 5. OWL Class Definition for Mix Workloads 

 

Mix workload type is specified as the complement of both the DSS workload 

type and OLTP workload type, which could be inferred as a system having CPU 

usage on OLTP and DSS workloads. Though the mix workload type is created as 

a disjoint of DSS and OLTP, this definition alone isn’t enough to infer a mix 

workload type. This is because OWL currently adopts a standard logical model of 

open world assumptions. Under open world assumptions, a statement cannot be 

assumed true on the basis of failure to prove it [160]. 

To overcome this limitation of OWL two rules using SWRL (Semantic Web 

Rule Language) were created. With the use of OWL + SWRL the context-aware 

system was able to correctly infer that the perceived load is OLTP, DSS or a 

mixture of both.  

Workload(?x)  dssLoad(?x,0)  oltpLoad(?x,100)  OLTP(?x) 

 

Workload(?x)  dssLoad(?x,100)  oltpLoad(?x,0)  DSS(?x) 

 

Listing 6. SWRL Rules for OLTP and DSS Workloads 

The SWRL rules refer to a “workload” class which is a generic workload type 

defined as a union of all three aforementioned workload types. The OWL 

specification of this generic workload type is given below. The full OWL + 

SWRL definitions are presented in Appendix B. 

<owl:Class rdf:ID="Workload"> 

<rdfs:subClassOf> 

<owl:Class> 
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<owl:unionOf rdf:parseType="Collection"> 

<owl:Class rdf:about="#Mix"/> 

<owl:Class rdf:about="#DSS"/> 

<owl:Class rdf:about="#OLTP"/> 

</owl:unionOf> 

</owl:Class> 

</rdfs:subClassOf> 

</owl:Class> 

Listing 7. OWL Class Definition for Workload Type 

Because of this generic workload type specification, the domain or 

application specific workload types (e.g. Order search workload, sales report 

workload and etc.) could be inferred upon and deduced to one of the three 

aforementioned workload types, thus allowing the implementation of the 

framework to be independent of any domain specific constructs. Unlike the other 

context-aware systems, where developers had to capture all possible context 

changes, in the proposed self-adapting model the knowledge base starts off with 

few known contexts. This initial knowledge could be derived from the DBAs 

knowledge of the system, past experience and even intuition (rule of thumb) and 

is not expected to be extensive. Once the knowledge base has sufficiently 

expanded, the DBA could even invalidate these initial knowledge base settings 

and let the system populate it with experiment-based results. This would ensure 

all knowledge facts are validated through experimentation not based on intuition 

of the DBA. 

The following code listing shows Java implementations of loading and 

populating the knowledge base with initial knowledge and initializing rule engine 

for inference.  

private void createReasoner() { 

 

reasoner = 

ReasonerManager.getInstance().createProtegeReasoner 

(owlModel, ProtegePelletOWLAPIReasoner.class); 

 } 

 

private void createRuleEngine() throws SWRLParseException, 

SWRLRuleEngineBridgeException, SWRLRuleEngineException { 
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 factory = new SWRLFactory(owlModel); 

 bridge = BridgeFactory.createBridge("SWRLJessBridge", 

    owlModel); 

} 

 

private void loadKnowledgeBase() throws OntologyLoadException    

{ 

   owlModel = ProtegeOWL.createJenaOWLModelFromURI(URI); 

 

   workload = owlModel.getOWLNamedClass("Workload"); 

   hasName = owlModel.getRDFProperty("hasName"); 

   dssLoad = owlModel.getRDFProperty("dssLoad"); 

   oltpLoad = owlModel.getRDFProperty("oltpLoad"); 

   optiIndCostAdj = 

 owlModel.getRDFProperty("optiIndexCostAdjValue"); 

 

   for (Context c : mainList) { 

 

   OWLIndividual w1 =   

  workload.createOWLIndividual(c.getName()); 

 w1.setPropertyValue(hasName, c.getName()); 

 w1.setPropertyValue(oltpLoad, c.getC1()); 

 w1.setPropertyValue(dssLoad, c.getC2()); 

 w1.setPropertyValue(optiIndCostAdj,   

  c.getOptimizerIndexCostAdj()); 

 

   } 

 } 

Listing 8. OWL Model and Pellet Reasoner Loading 

The context-aware application infers whether the perceived workload type is 

a known context or unknown context by dynamically executing SWRL against the 

knowledge base.  

public ResponseObj checkContextKnown(Context c) throws 

 SQWRLException, SWRLParseException, SWRLRuleEngineException { 

 

ResponseObj response = new ResponseObj(); 

SWRLImp imp = factory.createImp("Query-1",  

"Workload(?x) ∧ dssLoad(?x," + c.getC2() + ") ∧ 
oltpLoad(?x, " + c.getC1() + ") → sqwrl:select(?x)"); 

 

    bridge.infer(); 

    SQWRLResult result = bridge.getSQWRLResult("Query-1"); 

 

 while (result.hasNext()) { 

 

  response.setChecked(true); 

  OWLIndividual ind =  

owlModel.getOWLIndividual(result.getObjectValue("?x").to

String()); 

 

... 

Context existingContext = new Context(oltp, dss, opti, 

 contextName.toString()); 

   response.setContext(existingContext); 



98 

 

   result.next(); 

 } 

       imp.delete(); 

       return response; 

 

} 

Listing 9. Dynamic Inference of Workload Types 

The self-adapting mechanism updates the knowledge base with newly 

discovered knowledge. Along with the update to persistent media, the context-

aware application updates the in-memory OWL model with this newly discovered 

knowledge.  

public void updateKnowledgeBase(Context unknownContext,Connection  

 connection) throws SWRLRuleEngineException, SQLException{ 

 

OWLIndividual w1 = 

workload.createOWLIndividual(unknownContext.getName()); 

w1.setPropertyValue(hasName, unknownContext.getName()); 

      w1.setPropertyValue(oltpLoad, unknownContext.getC1()); 

      w1.setPropertyValue(dssLoad, unknownContext.getC2()); 

w1.setPropertyValue(optiIndCostAdj,  

 unknownContext.getOptimizerIndexCostAdj()); 

        bridge.infer(); 

        saveKnowledge(unknownContext, connection); 

 

    } 

Listing 10. Updating of Knowledge Base 

Appendix C has the full Java code listing of the knowledge base class.  

4.4.3 Action System 

When an unknown context is encountered, the action system would identify 

the high CPU consuming queries for each workload type and bring them to the 

private workbench for experimentation. In this case, the experimentation would be 

the concurrent execution of queries under various configuration parameter 

settings. The context-aware application adapts the database by setting the 

configuration parameter which results in the lowest resource consumption under 

current the context (i.e. workload mix).  
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Out of hundreds of parameters in Oracle, the configuration parameter 

optimizer_index_cost_adj [161] was chosen as the parameter to demonstrate how 

the proposed framework could be adopted for experiment-based performance 

tuning. In practice, when database tuning is done by way of configuration 

parameter changes it is carried out one parameter at a time. As such use of a 

single configuration parameter to demonstrate the context-aware approach is 

similar to a DBA carrying out the very first configuration parameter change on a 

long list of configuration parameters. The optimizer_index_cost_adj parameter 

influences the optimizer behavior based upon the value it is set for. By default, it 

is set to 100 in which case the optimizer counts the cost of using index access path 

same as using table access paths. Lower values make the optimizer to consider 

index access as a less costly operation compared to table access path and on the 

other hand, higher values make it favour full table scans over index access paths. 

However, there are no clear guidelines to setting this parameter in practice and 

DBAs are likely to leave it at the default value for fear of setting it to an incorrect 

value [162]. The rule of thumb is to set it to a lower value for OLTP workloads, 

which makes query plans bias for index access and set it to a higher value for DSS 

workloads, in favour of full table scans. But this rule of thumb may not work for 

every application, thus this parameter makes an ideal candidate for experiment-

based performance tuning. In addition to the aforementioned reason, this 

parameter also made a good candidate to demonstrate the proof of concept for the 

following reasons. 

 

1. This parameter affects the query execution plans by influencing the 

optimizer’s decision to use indexes versus full table access. Based on the 

selected plan, the resource usage (CPU, memory, disk I/O) will vary between 
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each query and as such the resource usage of the query is indicative of how 

well it is performing. Therefore, this parameter gives a direct correlation 

between the resource usage of each plan and the parameter value being used. 

By comparing resource usage of various queries under different parameter 

value settings, it is possible to identify which parameter is beneficial to be 

used for the current context (i.e. workload type). 

 

2. The value that could be set for the parameter has a wide range (1-10000) but 

for an enterprise application, the applicable range is much narrower, which is 

the concept demonstrated by the goal specification. 

 

3. Adaptability to the action refinement model proposed in the framework 

modelling section allows the automated experiment creation and execution. 

 

4. The parameter could be set at the system level or session level. System level 

setting is applicable to the entire DBS, while session level setting is visible 

only to the candidate session and opaque to other database sessions. As such 

it provides a private workbench to carry out the concurrent experimentation. 

 

5. The setting of the parameter does not require the database to be restarted, 

allowing rapid application prototyping and experimentation without any 

delay. 

Although optimizer_index_cost_adj is used here, any configuration parameter 

could have been used such as optimizer_index_caching [161] or 

optimizer_dynamic_sampling [161] with the context-aware model.  
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The private workbench for concurrent experimentation was implemented as a 

runnable Java thread which creates the action space using values for goal 

specification and action refinement.  

public class ConcurrentActionExecutor extends Thread { 

 

... 

 

  @Override 

  public void run() { 

 

  ... 

 

   Action closestKnownAction = 

   knowledgeBase.getClosestAction(unknownContext); 

   int optimizerIndCostAdj =  

   closestKnownAction.getOptimizerIndexCostAdj(); 

 

ActionRefinement refine = new ActionRefinement();                    

ArrayList<Action> actionSpace =  

refine.getRefinedActionSpace(optimizerIndCostAdj, 

unknownContext,list, produerLock); 

... 

   } 

 }  

Listing 11. Private Workbench for Concurent Action Execution 

Each action is also implemented as a runnable java thread, which allows 

multiple instances of the action class to be executed with low overhead. Each 

action class is encapsulated with the values of the unknown context and a 

configuration parameter. Each action has a unique configuration parameter to 

experiment with and SQL executed by one action is not influenced by the 

configuration parameters of other actions. The actions and the concurrent action 

executioner are arranged in a producer-consumer configuration, allowing fixed 

set of experimentation for all actions.  

The goal specifications (Glo,Ghi) were set as (25,250). Furthermore, values for 

(p,q,∆) were set at (3,3,25). How the values of (p,q,∆) related to the concurrent 

multi-action evaluation was explained in the previous formal model section. 
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These values were used to create the action space. Apart from any inputs to the 

knowledge base, these 5 values are the only input expected from developers or 

users of the context-aware application. This reduces the reliance on system 

developers to capture all possible context changes. The following listing shows 

the dynamic creation of action space for concurrent experimentations, starting off 

with the closest known context’s configuration parameter.  

ArrayList<Action> actionSpace = new ArrayList<>(); 

 

 for (int i = getOptimisisticCount(); i >= 0; i--) { 

 

if (optimizerIndCostAdj + (delta * i) > goal.getMaxValue()) { 

    continue; 

 } 

Action action = new Action(new Context(unknownContext.getC1(),  

unknownContext.getC2(),                            

(optimizerIndCostAdj + (delta * i)),                     

DBConnectionPool.getDBConnection(DBConnectionPool.

OLTP), 

DBConnectionPool.getDBConnection(DBConnectionPool.

DSS)),list, produerLock); 

        actionSpace.add(action); 

} 

 

 for (int i = 1; i < getPessimisticCount() + 1; i++) { 

 

if (optimizerIndCostAdj - (delta * i) < goal.getMinValue()) {                          

 continue; 

 } 

 

Action action = new Action(new Context(unknownContext.getC1(),  

unknownContext.getC2(), 

optimizerIndCostAdj - (delta * i),  

DBConnectionPool.getDBConnection(DBConnectionPool.

OLTP),                            

DBConnectionPool.getDBConnection(DBConnectionPool.

DSS)),list, produerLock); 

       actionSpace.add(action); 

} 

         return actionSpace; 

 

Listing 12. Building of Action Space in Action Refinement Class 

The system has the options of choosing either CPU, response time or the 

number of blocks accessed as the evaluation criteria for determining the best 

configuration parameter for the perceived context. For the experiments of this 

research, CPU usage was chosen as the evaluation criteria. The reason for this is 
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that as the experimentation is carried out concurrently there could be contention for 

shared resources (memory, I/O, network), which may increase the overall 

experimentation elapsed time. Furthermore, all experiments may not face the same 

level of resource contention as well. However, the CPU time represents the total 

time consumed by a query on CPU and not affected by contention issues and is 

provided by Oracle DB internal statistics gathering process [163]. Therefore 

comparing the CPU time instead of the elapsed time of each experiment eliminates 

any discrepancies due to resource contention. 

4.4.4 Runtime Execution of Context-Aware Application 

The following text describes the runtime execution of the context-aware 

application developed based on the proposed framework. At inception, the 

knowledge base was populated with an initial set of facts.  These facts were not 

validated and they are used to represent the DBA setting the initial configuration 

based on the DBA’s experience and intuition. These initial knowledge facts, 

shown in Figure 11 include one relating to OLTP only workloads, another DSS 

only workloads and one for mix workload type where the CPU usage was 

distributed (90:10) among OLTP and DSS workloads.  

 

Figure 11. Pre-Populated Knowledge Base 

The context-aware application starts of by sensing the context (workload and 

resource usage) and infers upon the currently perceived context. The outcome of 

this inference has two possibilities; either the system has encountered a known 
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context or an unknown context. If the context is known and if the current 

configuration setting is not the ideal based on the knowledge base facts, the 

system adapts the database by setting the ideal configuration parameter.  

The following section demonstrates what happens at run time when a 

database that is currently running a mixed workload and the DSS workload 

portion completes. In order to optimize the query for OLTP, the DBS must be 

adapted by setting the configuration parameter to 100, which is the ideal 

parameter for OLTP only workloads. In Figure 12, the system outputs the status 

of a known context being encountered.  

 

Figure 12. Known Context Encountered by Context-Aware Application 
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Figure 13 shows the system output status where the system has been updated 

with the configuration parameter value ideal for OLTP only workloads. Once the 

system is updated, the application goes back to context sensing mode. 

 

 

Figure 13. DBS Updated With Value from Knowledge Base 
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The section below describes the runtime activity when the system encounters 

an unknown context. In this particular case, the system was running only an 

OLTP workload and a DSS workload is introduced into the database. As a result 

the resource usage pattern changes and the context-aware application infers a 

context change as shown in Figure 14.  

 

Figure 14. System Detects an Unknown Context 

Once the unknown context is detected the action system carries out the 

concurrent multi-action evaluation. In Figure 15 the workload distribution dials 

show the workload distribution of 10:90 between OLTP:DSS workload types. 

Looking at the knowledge base (Figure 11) it could be seen that the closest know 

context for this unknown context is OLAP_0_100, which has a workload 

distribution of 0:100 between OLTP:DSS. The database configuration parameter 

associated with this context is 20.  The action space is built around the closest 

known context to the perceived unknown context.  The action space consists of 4 

actions with configuration values of 20, 45, 70 and 90.  Each graph shows the 
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amount of CPU, response time and number of database blocks used during the 

experimentation under different configuration parameters.  

 

Figure 15. Concurrent Multi-Action Evaluation Being Carried Out 

 

 

 

 

 

 

 

 

At the end of the concurrent multi-action evaluation, the context-aware 

application updates the DBS with the configuration parameter that yields the 

highest benefit in terms of resource reduction as shown in Figure 16.  

DB Configuration parameter 

uses by the closets known 

context 

DB configuration parameters 

used by each action in the 

action space.  Using the 

formal specification 

mentioned in Section 3.3.2 

these could be written as 

A(25), A(45), A(70), A(90).  
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Figure 16. DBS Updated by the  Best Adaptive Action 

Finally, the context-aware application updates the knowledge base with the 

configuration parameter information and associated context as shown in Figure 

17. In this case the unknown context had a workload distribution of 8:92 between 

OLTP:DSS.  Concurrent multi-action evaluation had identified that DB 

Configuration parameter 20 to be the best setting for this context (i.e. workload 

distribution) The context-aware application would be able to recognize the current 

context in the future, which is no longer unknown and set the ideal configuration 

parameter for it.  

 

Figure 17. Knowledge base Updated with New Context Information 
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4.5 Experimentation 

The context-aware application experimentation was conducted with two 

different setups. In setup one, the experimentation is conducted on the same 

database (on-site) that is being sensed by the context system. In the second 

experiment setup, the experimentation is conducted away (off-site) from the 

database being sensed by the context system. Apart from where the 

experimentation takes place, all other aspects of the experimentation are the same 

between the two setups. 

Workloads were generated against two of Oracle database’s sample schemas 

namely OE (order entry) and SH (sales history) [164]. The query to OE schema 

was used to simulate OLTP workload type. This schema contains order entry 

related tables, which are accessed using order numbers. The query access paths 

are index based. The queries to SH schema was used for simulating DSS 

workload type, which runs queries against the sales history for generating sales 

reports. Query access paths on this workload type tend to use the index and full 

table scans. The data volumes of the sample schemas were increased with the use 

of Swingbench [165] load generator, such that the OE schemas main table to have 

over one million rows and SH main table to have over four million rows. 

4.5.1 Experiment Setup 1 

Figure 18 shows the first experiment setup, where the experimentation is on-

site. This setup represents a configuration where an enterprise system consists of 

the production database and no standby database. In such cases, in order for 

findings of the experiments to be realistic, the experimentation must be conducted 

on the production database itself.  
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Figure 18. Experimentation Setup with an On-site Database 

 

For this setup, the Oracle 12.1 was chosen as the production database which 

ran on a server with 12GB RAM, 2.0GHz Intel quad-core processor and 500GB 

SAS disks running on RedHat Linux 5.5. The workload was generated using a load 

injector server which had the specifications of 16GB RAM, 2.4GHz Intel quad-core 

processor, and 500GB SAS disk running RedHat Linux 6.4 All machines were 

connected via LAN. 

Three different workloads were created for the OLTP and DSS workload 

types (OLTP1, DSS1, DSS2) and injected to and removed from the DBS at 5-minute 

regular intervals. The OLTP1 workload represents the regular online transaction 

processing workload the DBS is tuned for. The DSS1 and DSS2 represent two 

different decision support queries that are executed infrequently. This is 

representative of a practical situation such as an airline reservation system where 

OLTP1 would represent a search for availability of seats which is executed the 

majority of times and DSS1 and DSS2 would represent ad-hoc reporting queries 

such as mid-day sales report for a particular destination or a date. Table 2 shows the 
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experimental workload mix on the DBS at various times corresponding to Figure 

19.  

Table 2. Experimental Workload Mix in the DBS 

Time Workload Mix 

T0, T6 OLTP1 

T1, T7 OLTP1, DSS1 

T2, T9 OLTP1, DSS1, DSS2 

T3, T11 OLTP1, DSS2 

T4, T13 OLTP1 

 

4.5.2 Results 

 

 

Figure 19. CPU Usage of the On-site DBS Without and With Context-Aware 

Adaptation 

 

On Figure 19 the graph on the left in blue colour represents the CPU usage 

pattern when the DBS configuration was optimized only for OLTP workloads 

and the graph on right in green colour represents when the context-aware 

application is able to experiment and updates the configuration parameter to best 

fit the workload mix the DBS is serving at the time. The Oracle Enterprise 

Manager (OEM) plots the CPU usage in terms of active sessions [163] (Y-axis), 

the value of which is calculated as: 
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𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 =  
𝐶𝑃𝑈 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑛𝑜𝑛 − 𝑖𝑑𝑙𝑒 𝐷𝐵 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑤𝑎𝑙𝑙 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒
 

This represent the ratio of CPU time used by all active session in a given time 

interval. The theoretical maximum for this value is the total number of CPU 

cores available on the server where the DBS is running. There were no other 

workloads on the test DBS except for the experimental workloads generated. 

Therefore, the two graphs on Figure 19 are directly comparable. The X-axis unit 

is minutes and time-steps denote the workload injection and 

experiment/adaptation points. 

The context-aware system knows the configuration parameter to use when 

OLTP only workload is present as this was inserted to the knowledge base, based 

on the DBAs experience of the system. At T6 the system is updated with the 

corresponding setting for OLTP workload type. When at T7 the second workload 

is introduced the load characteristic changes, the context-aware system infers it 

has encountered an unknown context and the current configuration is not suited 

for the mixed workload. Concurrent experimentation and adaptation are carried 

out by the context-aware system between T7 – T8.  During the concurrent 

experimentation, the CPU usage on the DBS system spikes higher than the CPU 

usage at T1 when the DBS is not employing a context-aware system to adapt to 

changing workloads.  

Once the adaptation has taken place at T8 and the DBS is updated with the 

best configuration for the current workload mix the CPU usage is reduced (T8 – 

T9) compared to what the CPU usage would have been if there had been no 

adaptation. At T9 the second DSS workload is introduced. This results in 

increasing the CPU usage in the DBS, however, since the system has already 
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adapted to a DSS workload type, the increase is less compared to the increase in 

the CPU usage when the DBS was non-adaptive.  

The change in the CPU usage results in a context change and experiment-base 

adaptation takes place between T9 – T10. During the on-site concurrent 

experimentation, the CPU usage spikes since but even then the overall CPU 

usage is less compared to when the DBS was non-adaptive (T2 – T3). Once the 

DBS adapts to the new workload mix, as a result of the concurrent 

experimentation the CPU usage reduces (T10 – T11) compared to had there been 

no adaptive tuning. At T11 DSS1 is removed from the workload mix which results 

in a reduction of the CPU usage. The resulting workload mix is identified as a 

context change and experimentation and adaptation take place between T11 – T12. 

Since the system has already adapted, the workload change does not result in a 

CPU usage spike compared to the previous two concurrent experimentations. At 

the end of each experiment-based adaptation, the knowledge base is updated with 

the configuration parameter identified as the best for the unknown context 

encountered. This enables the context system to recognize similar contexts in the 

future without any experimentation and to adapt the DBS configuration to better 

suit that context.  

The results showed that when the DBS is able to adapt according to the 

workload being served, this results in less CPU usage compared to when it was 

non-adaptive. However, the on-site concurrent experimentation results in 

additional load to the DBS (time period T7 – T8). This could be overcome by 

either using a cycle-stealing mechanism [151] or conducting the concurrent 

experimentation off-site.  
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4.5.3 Experiment Setup 2 

A second experimentation setup was devised where the concurrent 

experimentation is conducted off-site away from the product DBS on the standby 

database. Enterprise application uses standby databases for business continuity as 

part of the disaster recovery strategy. The primary and standby DBS are kept in 

synchronization by shipping redo records from the primary DBS to the standby 

DBS. As such any experimentation on the standby DBS will have the same load 

characteristic as an experimentation on primary DBS. 

The chosen DBS was Oracle 12.1 for both primary DBS and standby DBS 

which ran on a server with 12GB RAM, 2.0GHz Intel quad-core processor and 

500GB SAS disks running on RedHat Linux 5.5. The workload was generated 

using multi-threaded load injector scripts which ran out of server which had the 

specifications of 16GB RAM, 2.4GHz Intel quad-core processor, and 500GB 

SAS disk running RedHat Linux 6.4. All machines were connected via LAN. 

Figure 20 shows this off-site concurrent experimentation setup.  

 

 
 

Figure 20.  Experimentation Setup with an Off-site Database 
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Similar to the on-site concurrent experimentation setup, three different 

workloads were created for the OLTP and DSS workload types (OLTP1, DSS1, 

DSS2) and injected to the primary DBS at the same rate used for the previous 

experiment setup. Table 3 shows the experimental workload mix on the primary 

DBS at various times corresponding to Figure 21. 

Table 3. Experimental Workload Mix in the Off-Site DBS 

Time Workload Mix 

T0, T6 OLTP1 

T1, T7 OLTP1, DSS1 

T2, T9 OLTP1, DSS1, DSS2 

T3, T11 OLTP1, DSS2 

T4, T13 OLTP1 

 

4.5.4 Results 

 

Figure 21. CPU Usage of the Off-site DBS Without and With Context-Aware 

Adaptation 

Same as before, the graph on the left in blue represents the CPU usage pattern 

when the DBS configuration optimized only for OLTP workloads and the graph 

on right in green represents when the context-aware application is able to 

experiment and updates the configuration parameter to best fit the workload mix 

the DBS is serving at the time. 

The experimentation starts off with the system containing only the OLTP1 

workload and first DSS workload (DSS1) is injected at T7. This results in a change 
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of the CPU usage distribution and is detected by the context-aware application as 

a context change. Inference of this context change reveals this is an unknown 

context which results in concurrent experimentation to be carried out on the 

standby DB. During this experimentation time period (T7 – T8) the CPU usage 

reaches the same level as in the test without context-aware adaptation (T1 – T2). 

However, once the experiment results have been evaluated and adaptation has 

taken place, the overall CPU usage is lower for the rest of the time period of the 

(T8 – T9) compared to without experiment-base adaptation. As the concurrent 

experimentation is off-site there no additional overhead introduced to the primary 

DBS. Using the equation used to calculate the active session count, the difference 

in the absolute CPU usage was found to be 150 CPU seconds. Since the workload 

injection rate is constant the two tests cases (without and with adaptation) had the 

same amount of work. Therefore the reduction in the CPU usage implies the new 

query plan resulting from the adaptation of the optimizer parameter to fit the 

current workload mix used less CPU to complete the same workload.  Calculating 

this reduction in CPU usage showed that when database was adaptive it used 20% 

less CPU to execute the same workload compared to non-adaptive instance. 

The knowledge base is expanded with the current context space values and the 

parameter setting suited for it. The second DSS workload (DSS2) is injected at T9 

but as the DBS has already been adapted to one DSS workload the increase in the 

overall CPU usage is lower compared to the same workload mix (T2 – T3) without 

experiment-base adaptation. But the injection of this second DSS workload results 

in a change in the overall CPU usage. This in turn triggers a context inference that 

leads to unknown context being detected and concurrent experimentation to take 

place in the time period of (T9 – T10). Evaluation of the experiment result 
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indicated that parameter setting that’s already being used results in the lowest 

overall CPU usage for the current context. Therefore, the adaptation did not result 

in lowering of the CPU usage for this time period of (T9 – T11) but it is still lower 

compared to (T2 – T3), which had a similar workload mix. The knowledge base is 

expanded to include the current context and parameter setting suited for it, so the 

context-aware system is capable of detecting and adapting irrespective of the 

order of the workload occurrence. At T11 one of the DSS workloads (DSS1) is 

removed from the DBS, which results in a change in the CPU usage distribution 

and context inference to take place. Similar to earlier cases, since the DBS has 

already been adapted to the OLTP and DSS workload mix, the overall CPU usage 

is lower (T11 – T13) compared to same workload period without experiment-based 

adaptation (T3 – T4). As the context inference reveals an unknown context, the 

concurrent experimentation take place in the time period (T11 – T12). Similar to the 

situation with the previous workload injection, the adaptation based on the 

experimental results does not lower the overall CPU usage as the current 

configuration values and the values derived from the experiment results are the 

same. However, the knowledge base is updated to reflect the current context and 

configuration parameter setting so that the context-aware system is capable of 

identifying this particular workload mix in the future. 

These observations for both experimental setups could be validated by 

examining the results of the concurrent experiments, which is the CPU used per 

single execution of a query under different parameter settings. These results are 

used by the action evaluation to determine the action that maximizes the goal 

expectations. In this case, the expected goal is to reduce the CPU used for query 

execution. In order to avoid workload bias, for the mixed workload types, the 
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result evaluation uses a weighted average to calculate average CPU used during 

the experimentation. For example, assume that the DBS is primarily used for 

OLTP workloads. Therefore it could have more OLTP query executions than DSS 

query executions. As such using the weighted average ensures the configuration 

parameter change does not negatively affect the workload type that is most active 

at the time of the context change. 

The system started with OLTP only workload type which is a known context 

based on the initial facts the knowledge base is populated with, where 

configuration value of 100 was considered the best configuration. When the DSS 

workload is injected into the DBS, the CPU usage pattern gets changed and the 

context inference did not yield a known context. This resulted in the top resource 

consuming queries for each workload type being executed in the private 

workbench under six different parameter settings. Each parameter reflects an 

action (A(20), A(45), A(70), A(95), A(120), A(145)) which used that parameter to 

create a distinct private workbench area for experimentation. SQL executed in 

these private workbench areas would use the configuration parameter set by each 

action on that particular private workbench area. Figure 22 shows the weighted-

average CPU usage per execution of a query during the concurrent multi-action 

evaluation under various configurations settings.  
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Figure 22. Average CPU Usage for Each Configuration Settings 

It shows that setting the configuration parameter to 70 results in the lowest 

CPU usage to execute the current workloads. However, if only the OLTP 

workload type is considered, then the best configuration parameter setting would 

be 95. But in a mix workload environment, this would lead to regressed 

performance on the DSS workload queries. Furthermore, this result evaluation 

could be used by the DBA to validate the initial knowledge base setting and 

rectify if they are not the ideal configuration values. 

4.6 Conclusion of the Case Study 

   The experimental results have shown that with the use of goal specification and 

action refinement together with the concurrent multi-action evaluation, the 

implemented system enables the DBS to adapt to changing workload types and 

resource usage patterns. As a result of this work, it is hoped to introduce a new 

paradigm of context-aware database performance tuning where instead of one setting 

fits all approach, the DBS updates its settings to best suit the current workloads and 

assists DBAs in performance tuning tasks. 
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As future work, the context-aware model could be extended to include multiple 

parameters for tuning. Some of these parameters involve system resource related 

parameter tuning such as memory parameters (buffer pool sizes, shared pool size) 

I/O parameters (synchronous IO, asynchronous IO, IO schedulers), network socket 

related parameters. This would require a multi-node grid experimentation setup for 

concurrent experimentation to be carried out as resource settings are not opaque 

between the experiments.  

The lessons learned from this case study have implication beyond database 

performance tuning. The ability to adapt the database and run the same workload 

with less CPU has commercial implication as well. One such item is reduced 

licensing cost as system is able to handle more workload with adaptation. Therefore 

requirement for server scale up or scale out would be infrequent. This in turn reduces 

the power consumption in the data centres.  If workloads could be completed with 

few number of servers (or CPUs) using application adaptation, that will have a major 

impact on power consumption. In an era where environmental concerns are front 

page news due to power (or energy) generation and consumption, this context-aware 

approach could be used to address some of those concerns.  
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5.1 Background 

The Name-your-own-price (NYOP) sales strategy gained wide popularity 

with the rise of the e-commerce. The web and related technologies overcame the 

technical barriers that made such a sales channel to be unfeasible in the 

traditional brick and mortar operators. In brief, under an NYOP strategy, the 

seller does not disclose the price of the goods or services being provided. The 

buyer would bid based on the perceived value of the goods or the service. If this 

bid value is higher than a threshold price that the seller has set, then and only 

then a transaction would occur.  

However, employing an NYOP strategy for selling time-sensitive items 

provides additional challenges. A time-sensitive item, in this case, is an entity the 

value of which becomes insignificant to both the buyer and the seller after a 

certain point in time. Examples of such items are the common perishable goods, 

sports or concert tickets, airline tickets and alike, which after a certain time no 

longer have a commercial value. One example of a challenge when employing an 

NYOP for selling time-sensitive items is that the seller has to consider the actual 

and perceived price depreciation of the items if an NYOP bid is rejected. At the 

same time if there’s no demand uncertainty, then the seller could afford to reject 

a bid with little risk and hope for a higher yield from another bid.  

In essence, the seller has to be aware of the current bidding trends and 

external forces that influence the buyer’s bid values before deciding to accept or 

reject an NYOP bid. The current bidding trends and the external forces are the 

contexts of the NYOP bidding system, as they have a direct influence on the 

execution of the bidding system. In order to make maximum profit with changing 

context, the seller must adapt the threshold price to best fit the current context as 
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one threshold price may not suit all eventualities. This is a problem for the seller 

as it is not possible to know the best threshold price for all the contexts the 

NYOP system may encounter.  

A context-aware application implemented based on the framework proposed 

by this research provides a possible solution to this problem with its concurrent 

multi-action evaluation when an unknown context is encountered. 

5.2 Name-Your-Own-Price Channel 

Name-your-own-price (NYOP) is a strategy where the buyer suggests the 

price which he/she is willing to pay for a good or service without knowing the 

minimum threshold price which is acceptable. This technique has been employed 

for commercial activity throughout history. In fact, when in “1653 George Fox 

suggested that everyone should pay the same price for the same good it was 

considered a radical notion and by and large ignored” [166]. This practice is still 

being used by street vendors in various parts of the world where no trade is done 

without some form of haggling, in another word, naming your price.  

However, the technique has emerged as another viable mainstream sales 

channel thanks to the internet economy (or e-commerce), which has eliminated 

the issues involved with manual NYOP strategy. Terwiesch et al. [166] list some 

of the issues eliminated by technology, allowing online haggling to be viable. 

Foremost in the absence of posted prices, the owner of the retail store had to 

provide detailed instructions to his clerks on how to conduct the haggling 

process. They had to be given advice on how to give a price so it is not too high, 

so customers aren’t turned away. At the same time, they had to be taught how to 

discount in favour of a sale during low demand times. This process required 
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extensive training, which is no longer needed with electronic sales channels (e-

channels). The second issue had to do with scalability; the capacity of the clerk 

dealing with customers was constrained by the lengthy haggling for every 

transaction. Therefore, it is possible some customers may miss out on a reduced 

or haggled price. In order to avoid customer dissatisfaction [167], the owner 

would have to hire additional clerks. Finally, the communication between owner 

and clerks require close supervision and monitoring to avoid principal-agent 

problems. The decision flow for a NYOP channel could be modeled as below 

where T is the acceptable threshold price. 

 

Figure 23. NYOP Decision Flow 

A buyer places a bid with value Xi and if this value is higher than the 

acceptable threshold price T then a transaction occurs. If the bid value is lower 

than threshold price then the buyer is informed of this fact and either allowed to 

make another bid or the bidding process terminates. The buyer incurs “frictional 

cost” [168, 169, 170] when a bid is resubmitted after a rejection. Frictional cost is 
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the additional cost (time, effort and emotional strain) a buyer has to bear during a 

subsequent bid after having being rejected previously.  

In a situation where NYOP is used for non time-sensitive items, the 

buyer’s focus is to have a high consumer surplus, because the seller isn’t 

incentivized to adjust the price of the item. Consumer surplus is the difference 

between buyer’s willingness to pay (the maximum price he/she will pay) and the 

actual price paid with low frictional cost [171]. However, when NYOP is used 

for time-sensitive items the seller will also be concerned about the producer 

surplus, which is the difference between the lowest price the seller is willing to 

sell at and the actual selling price [172, 173]. 

There are similarities and differences between NYOP and traditional 

auction mechanisms. Vickrey [207] identified four basic auction mechanisms. 

They are the English, Dutch, first-price sealed-bid and second-price sealed-bid 

auctions. English auction also called ascending auction [208] is where bidders 

would start at a lower bid value and go on increasing the bid value until one 

bidder is successful in completing the auction transaction. Dutch auctions [209] 

on the other hand are auctions in which the offering price of the item being sold 

is set high and then lowered until a bidder makes a bid and wins it. The two types 

of auction mechanism are also called real-time auctions to distinguish them from 

the sealed-bid strategies explained next.  

In first-price sealed-bid auctions a bidder would submit a sealed bid 

before a particular deadline. Once the deadline has passed all the bids are 

evaluated and highest bidder is chosen as the winner.  In the second-price sealed-

bid auction, the winner doesn’t pay the amount that she submitted but that of the 

second highest bid.  
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The NYOP is similar to sealed-bid auction as each NYOP bid is invisible 

to other bidders. Bidders in a NYOP mechanism are driven by consumer surplus 

rather than any other influences. To encourage higher bid values sellers using 

NYOP channels may not allow subsequent bids.  

However response to NYOP could be instantaneous making it similar to 

real-time auction mechanisms such as English or Dutch auctions. Unlike the 

ascending or descending auctions the NYOP allow a user to change their bid 

values as they please. In practice a NYOP seller may force a user to only submit 

a second bid if it’s higher than previous one. But users are known to circumvent 

this restriction on online NYOP channels by using multiple credit/debit cards.  

But the fundamental difference between traditional auction mechanisms 

and NYOP is that in auctions, bidders would know the starting price of an item 

whereas in NYOP bidders have no knowledge of the price of the item at any 

stage. Thus in auctions bidders can decide how much more or less to bid based 

on the reserved price or competing bids. In NYOP a bidder would be guided only 

by his consumer surplus.  

5.2.1 Name-Your-Own-Price Strategies 

Companies like Priceline (www. priceline.com - sells airline tickets and hotel 

rooms) employ a random element, where it randomly selects two hotels from a 

set of hotels, rather than compare the bid with the lowest rate available. This 

ensures that the information gained through previous successful bids is negated. 

Therefore, each bid’s willingness to pay is not influenced by other successful or 

unsuccessful bids [174]. In this NYOP strategy even if two buyers bid the same 

value, it’s possible that only one bid is successful and other one is rejected. Hinz 

et al. [175] compare the strategy of using fixed thresholds versus adaptive 
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thresholds, whereby the seller is learning the buyer’s willingness to pay with each 

bid that is being rejected.  

Allowing or restricting repeat bids is another mechanism used to influence 

the buyer’s bids. Fay [176] examines whether it is profitable to restrict buyers to 

a single bid similar to the strategy employed by Priceline which restrict one bid 

per buyer for 24 hour period. However, on time-sensitive items repeat bids would 

be negative for the seller surplus as the perceived value of the item diminishes 

with time, leading to the buyer’s assumption that the threshold price T at time t1 

is less than the threshold price at time t2 when t2> t1. Therefore, the seller must 

infer the potential future gain or loss when rejecting a bid with the hope that the 

buyer will submit another bid.  

This restriction on when a subsequent bid could be placed is designed to play 

on the buyer’s impatience [177]. Impatient bidders would like to conclude the 

transaction at a lower fractional cost. An example of this strategy could be the 

Dutch auctions where bidders prefer to purchase an item sooner at a higher price 

when faced with a positive cost of bidding at a later time. As a result, on average, 

Dutch auctions have higher revenue than sealed-bid auctions [178]. Unlike in a 

Dutch auction, in a time sensitive NYOP scenario it is the seller’s surplus that is 

affected as the ultimate owner of the item. 

Customer impatience could also be used to segment buyers as high and low 

spenders. For example, business travellers would have a high willingness to pay 

[179] to secure their bids due to the nature of the travel, which is time sensitive. 

Corporate budgets may also allow them to bid at higher values than individuals, 

who have to pay out of their own pocket.  
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Opaqueness is another method employed to influence the buyer’s behavior. 

Opaqueness refers to the fact that buyers cannot have complete information about 

the product or prices. In this regard, Priceline’s deals are opaque as buyers cannot 

know the exact hotel when they bid for hotel rooms in a specified area, nor do 

they know whether the bidding prices will be accepted [170]. In [174] it is stated 

that this opacity makes it difficult for price rivalry, as buyers cannot be certain 

about the outcome of their bid or if a substitute item (e.g. same flight from a 

different website) from a rival would succeed for the same bid value. 

Information leakage to the buyer through interface design is also used to 

influence the buyers’ bids [180]. Due to the restricted number of bids (in this case 

one), the buyer is given information on the probability of succeeding if certain 

values are used. This method may not be suitable when using NYOP for time-

sensitive items due to the depreciative nature of the items. 

5.2.2 Pricing Strategies for Time Sensitive Items 

Time-sensitive items are items the price of which decreases over time due to 

the perishable nature of the item. Well-known perishable items are food items 

such as milk, meat, etc. But this is not limited to consumables. There are items 

that become perishable due to seasonality such as seasonal clothing (winter coats, 

summer beach-ware, etc.), seasonal decorative (Christmas trees), or due to being 

replaced by another, such as magazines, or an empty seat on a departing airplane 

or each day a hotel room is unoccupied  (a lost opportunity to earn revenue).  

Berk et al. [181] developed a dynamic programming model which determines 

the selling prices dynamically by considering the dynamic pricing of perishable 

assets and explicitly incorporates the menu cost into the model with the objective 

of maximizing the discounted expected profit for an initial inventory. The menu 



129 

 

cost is the costs associated with price changes with reference to the particular 

physical costs. For example, printing new menus at a restaurant or changing 

labels at a store every time the prices are changed could be considered as menu 

costs. For an NYOP the menu cost would exist implicitly as the internal threshold 

price and any subsequent change to threshold price is opaque to the bidder.  

Two of the pricing strategies that are widely used on perishables are adjusting 

the order quantity to influence price [182] or adjusting the price based on demand 

or both price and order quantity [183] and [184].  

Chun in [183] employs the later strategy of adjusting supply. This model is 

primarily concerned with the case where the retailer wants to maintain the same 

selling price on a perishable product throughout the entire sales period by 

adjusting the ordering policy rather than the price.  This strategy is not directly 

applicable to NYOP as there is no posted price, hence the buyer has no restriction 

to adjust the “posted price” in the form of the threshold price.  

Becher [184] tries to inject intelligence into the price and order adjustment 

process through the use of fuzzy controllers and hope to identify the revenue 

potential of a rule-based implementation. However, when a buyer identifies a 

new factor that needs to be incorporated into the decision structure, it would 

require introducing new fuzzy rules which could be time-consuming.  

The strategy in [182] could be broken down into two: control price based on 

buyer discrimination and quantity of items left on the shelf. The buyer 

discrimination is implicit in clearance sales as explained by [185]. The buyers 

with high valuation make their purchases early on during the sale (with wider 

choice), while buyers with low valuation purchase during discounted time period 

(sales time). Though the time sensitive items in NYOP channel could be 
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considered a form of a clearance sale, the opaqueness of the price and the 

outcome of the bid bring uncertainty which is not present in a clearance sale. 

5.3 Problem Identification 

As it doesn’t hold its own inventory, the revenue loss to Priceline from 

foregoing the transactions that could have been successful is very limited. The 

loss of revenue occurs to the hoteliers who decide to release some of their 

perishable inventory through the Priceline’s NYOP channel. Priceline makes no 

assumption about the demand rate or the occupancy rate of the hotel. 

On the other hand, if it is the hotelier that makes the decision, as the owner 

of the perishable inventory, the decision to forego a successful bid would depend 

on factors other than the value of the bid. When there is demand certainty, the 

hotelier could forego a successful bid in the hope of higher yield with other 

successful bids. But when there is demand uncertainty, he must consider the 

context of his transactional environment to determine if the bid should be 

accepted or not. 

In these situations, the hotelier’s own factors would be considered, such as 

the current occupancy rate, expected occupancy rate which could be influenced 

by an event that is scheduled to take part in the vicinity of the hotel such as 

conferences, festivals, sporting events, weather and other seasonal information. It 

would be beneficial for the hotelier to have the rooms occupied at “some rate” 

(breakeven being the minimum value) when there’s demand uncertainty and the 

rate of occupancy is low, than to have unoccupied rooms incurring operational 

costs. According to [180] “the retailer wants to obtain as much revenue as 

possible. In the case of perishable or time-dated items (such as Christmas trees or 
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newspapers), the retailer would be willing to accept even lower bids as long as 

those willing to pay more actually do pay more”. 

The hotelier is unlikely to know the best threshold value to set for all the 

combinations of factors (i.e. contexts). Therefore, the hotelier’s NYOP system 

needs to employ a context-aware system that adapts the bid value based on the 

current context. Currently, hoteliers manually adapt their prices for known 

contexts. How hoteliers adapt the price for known contexts could be 

demonstrated in the following real world example. The example is based on the 

room price variation of two hotels based in the vicinity of an exhibition centre 

when three different types of events are held at the venue.    

The exhibition centre in question is ExceL London
2
 which hosts many events 

such as conferences, trade and private shows throughout the year. Out of many 

hotels in the vicinity, two hotels were chosen based on the closeness to the venue 

of the events. One of the hotels chosen is Ibis Style Hotel
3
 and the other is 

DoubleTree by Hilton
4
. Figure 24 shows the locality of these hotels relative to 

the event venue.   

                                                 
2
http://excel.london/ 

3
http://www.ibis.com/gb/hotel-8712-ibis-styles-london-excel/index.shtml 

4
http://doubletree3.hilton.com/en/hotels/united-kingdom/doubletree-by-hilton-hotel-london- 

docklands-riverside-LONNDDI/index.html 
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Figure 24. Locality of Hotels Relative to Event Venue 

Three distinctly different events were chosen to compare how the room price 

varies during the days of the events. One event chosen was ComiCon
5
 which is 

held twice a year in May and in October. For comparison, October date range 

was chosen as it is closer to the dates of other events considered here. The other 

two events chosen were World Travel Market (WTM)
6
 and Defence & Security 

Equipment International (DSEI)
7
,  both held once a year in November and 

September respectively. WTM is a trade show which brings together travel and 

tour operators from around the world. DSEI is an arms expo which showcases the 

latest in defence technologies.  

Considering a typical attendee at each of these events, their “buyer surplus” 

(willingness to pay) for a hotel could be arranged in increasing order as    

ComiCon < WTM < DSEI. ComiCon is mainly attended by teenagers and young 

adults with limited buyer surplus, while the other two events are mainly attended 

by corporate workers and government employees with higher buyer surplus.  

                                                 
5
http://www.mcmcomiccon.com/london/ 

6
http://www.wtm.com 

7
http://www.dsei.co.uk/ 
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The price of a single room with one adult was obtained through both hotels’ 

public websites
8
, for the duration of the events. The price for two days before and 

one day after the event was obtained as well. This allows detecting the change of 

price before, during and after the event. Since each event happens at different 

dates the x-axis of the graphs had to be changed to reflect all events. Figure 25 

and Figure 26 show the price variation during each event by each hotel. On these 

graphs ComiCon is held from days 3-5, WTM from days 3-5 and DSEI from 

days 3-6.  

Looking at the graphs it is clear that price adaptation is happening based on 

the hotel guests’ buying power. The price increases are not by the same degree 

for all of the events but based on the expected buyer surplus. The hoteliers know 

the context of the event and the type of attendees and adapt the price to gain high 

revenue.  

 

Figure 25. Price Variation of Ibis Hotel’s rooms 

                                                 
8
Price valid as of 11

th
 October 2016 
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Figure 26. Price Variation of DoubleTree by Hilton Hotel’s Rooms 

The problem the hoteliers face is how to set the price in an unknown context, 

so that it results in high revenue but with low customer dissatisfaction. The 

unknown context could be an event that’s held in the vicinity for the first time 

and historical information on buyers’ surplus does not exist. On the other hand, 

the unknown context could arise due to seemingly unrelated events. An example 

of such unknown context is the change in demand for coach travel during the 

Icelandic volcanic eruption in 2010 [186]. Due to the grounding of flights during 

this period other forms of transport had an increased demand. Figure 27 shows 

the revenue for 2009 and 2010 for a coach company
9
 which shows a higher than 

normal revenue during the time of the disruption.  

                                                 
9
Graph courtesy of CodeGen Ltd.  
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Figure 27. Revenue for a Coach Travel Company between 2009 - 2010 

On the other hand, increasing the price due to an increase in demand could 

result in customer dissatisfaction [187]. Such was the case when Uber decided to 

increase the fares during London underground rail strikes [188, 189].  

In any NYOP channel adaptation of the threshold, the price must be 

transparent to the end user and applicable uniformly to avoid unsavoury effects 

on customers. For example, Amazon used price discrimination based on 

customer type (new vs existing), which led to a situation “when a buyer deleted 

the cookies on his computer that identified him as a regular Amazon customer, 

the price of a DVD offered to him for sale dropped from $26.24 to $22.74” [190]. 

Due to the customer outrage Amazon had to issue a public apology and refund all 

customers who had paid higher prices. 

The research offers a solution to this problem based concurrent multi-action 

evaluation technique to adapt the threshold price. The context-aware approach 

gauges the buyers’ surplus dynamically when an unknown context is encountered 

and adjusts the threshold price to yield high revenue. This experiment-based 

adaptation technique differs from NYOP techniques used in the travel industry 

[191].   
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5.4 Formal Modelling 

The proposed framework was adapted to implement a context-aware NYOP 

channel system as shown in Figure 28.  

 

 

Figure 28. Flow Diagram of the Concurrent Multi-Action Evaluation System 

The multi-context space was modeled as consisting of four soft contexts. The 

first context is the current occupancy of the hotel, which acquired through hotel’s 

internal reservation database. The other contexts are related to an event planned 

near the vicinity of the hotel. These include event type, event location, and date 

of the event. Though they are related to the single event, each influences the bid 

values and the hotelier’s NYOP channel in its own way. Treating the event 

related information as the context is in line with the definition in [29] adopted by 

the research. The event type could be a corporate event, a trade show or an 

entertainment-related event. As shown in the problem identification section each 

of these event types influences the bid value by way of buyer surplus. In essence, 

the buyer type is inferred based upon the event type.  If the event venue is not 
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near the hotel then this would have less influence on the value of the bid 

compared to an event at a venue near the hotel. Therefore, the event location is 

considered a context. The final context is the temporal information of the event, 

as the demand for hotel rooms likely to increase during the days of the event. 

There are many avenues for sensing these event-related contexts, such as 

consuming Web Services APIs, Social media feeds (Twitter, Facebook) or 

traditional web pages.  

This demonstrates the modelling of context system to acquire context from 

heterogeneous sources. The context acquisition and defuzzification layer are 

responsible for formalizing how each type of context fits into the model. In the 

NYOP use case, the occupancy would be a numerical value; the event type is a 

classification (of string type).  The events must be interpreted and quantified, so 

that the distance between contexts could be measured. When an unknown context 

is encountered this inter-context distance is used to identify the closest known 

context.  

The knowledge base was modeled using a relational database system 

(RDBMS), with each knowledge fact represented as a tuple in the RDBMS.  This 

approach was chosen to demonstrate the versatility of the proposed generic 

framework when it comes to choosing technologies for implementations. A 

knowledge base implementation using OWL was demonstrated in the previous 

use case (Chapter 4). When a threshold value is identified for unknown context, 

this fact is stored in the knowledge base. So the context-aware system recognizes 

more and more contexts and is able to self-adapt.  

The action system is modelled such that each action evaluated a sample set of 

bid values under various threshold prices. The evaluation criterion was set to the 
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threshold price with the highest number of successful bids. It is possible that 

some bids would be successful in more than one threshold. In such cases, the bid 

would be considered successful only in the highest threshold it exceeds. 

Taking the NYOP threshold price as the configuration parameter, the formal 

modelling of the proposed context-aware framework was carried out as below. 

 The goal specification is a sub-range of the entire bid value range. For 

example, if the universe of prices for a hotel room is considered, it could vary 

between $0 (100% discounted) and thousands of dollars (based on luxury). But 

for a particular hotelier, such a large value range is irrelevant. His interest lies in 

a small range of threshold values, so that accepted bids do not result in a loss (< 

Glo) or the threshold price is too high (> Ghi) resulting in lower conversions 

(uncompetitive) and unsold rooms. The lower limit of the goal specification sets 

the minimal price at which the hotelier is willing to set the threshold price when 

there’s high demand uncertainty. The upper limit sets the highest margin that will 

enable high yield and still be competitive in terms of other hotels in the area. 

With these constraints in mind Glo and Ghi are modelled as elements of the 

seller’s interested price range. 

(Glo,Ghi )∈ { seller’s interested price range} 

In the NYOP context-aware application, the action system adapts the 

threshold price of the hotel's bid evaluation system. The actions devised for 

concurrent experimentation are defined as a function of the threshold price. 

Similar to an earlier database performance use case, the action of the context 

closest to the unknown context is denoted as Ak and set as the initial action.  

Initial action = Ak( threshold_pricek ) 
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Besides the goal specification, the only other user inputs are the values for 

action refinement (p, q, Δ). In this case, the lower bound expansion value range p 

(in the direction of Glo) represents the minimum threshold price the hotelier is 

prepared to set. Similarly, the upper bound expansion value range q (in the 

direction of Ghi) represents the maximum threshold the hotelier is willing to set 

without being priced out of the competition. Finally, the difference between two 

neighbouring threshold prices is denoted by Δ.  

Having defined these parameters, the total number of actions (or the 

experiments) which need to be executed could be defined as a union of three 

action sets. 

Action space = { Ak (threshold_pricek)∪ 

Ap (threshold_pricep)∪ 

Aq (threshold_priceq) 

   |   p  = {1 .. n}, n > 0,  q = {1 .. m}, m > 0, 

 threshold_pricek - p∆ ≥ Glo, 

 threshold_pricek + q∆ ≤ Ghi,  

  ∆  > 0 

 } 

Once the action space is created, it is passed on to the concurrent action 

execution module. In this case, the action consists of the hotelier’s context-aware 

system evaluating a sample set of live bids with different threshold values to see 

which threshold value would give the highest yield.  

The action evaluation consists of the evaluation criteria used to determine the 

outcome of which action is the most beneficial. The hotelier’s evaluation 

criterion is a maximizing function which is to select the action that gives the 

highest yield.  
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threshold_pricebest = { 

∀ threshold_pricei∈ {action space threshold prices} 

∃ Ai (threshold_pricei): Maximum (Benefit(Ai)) 

                               } 

The best threshold price identified through the concurrent action evaluation is 

then associated with the perceived context. This context-action information is 

added to the knowledge base, allowing the context-aware application to carry out 

adaptation when the same context is encountered in the future.  

5.5 Implementation 

The context-aware application was implemented as a standalone Java (JDK 

1.6) application running on a quad-core 2.5 GHz server with 8 GB RAM, and 

RedHat Linux 5. 1.  

5.5.1 Context System 

The context system had to acquire the four contexts mentioned in Figure 28. 

The occupancy was sensed through querying the reservation system of the 

database and the context of the event was sensed through a Java Web Service 

(JAX-WS) API. In a production environment, the context-aware application 

would be working in connection with the hoteliers’ reservation system to acquire 

context (occupancy) and update the threshold price for bid evaluation. In lieu of a 

reservation system, mock up services and database tables were used as sources 

for context acquisition detecting context changes. The constructor and variables 

of the context class are shown in Listing 13. 

public class Context { 

 

 

    private double occupancy; 

    private double eventType; 

    private double eventLocation; 

    private double eventDate; 
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    private int C1_PRIORITY=1; 

    private int C2_PRIORITY=2; 

    private int C3_PRIORITY=3; 

    private int C4_PRIORITY=4; 

 

    private double thresholdValue; 

 

public Context(double c1, double c2, double c3,double c4, 

double  thresholdValue){ 

 

        this.occupancy = c1; 

        this.eventType = c2; 

        this.eventLocation = c3; 

        this.eventDate = c4; 

        this.thresholdValue = thresholdValue; 

    } 

Listing 13. Context Class for NYOP Channel Case Study 

5.5.2 Action System 

The action class was created as a runnable Java thread. Each action has a 

unique threshold value against which it evaluates the bid values. The bid values 

originally submitted to the hotelier’s NYOP channel are cloned and fed into a 

common basket from which the action class thread obtains the bid values for 

evaluation. The Listing 14 shows the run method of the action class.  

public class Action extends Thread { 

 

   ... 

 

    @Override 

    public void run() { 

 

        synchronized (getBasket()) { 

            try { 

 

                if (getBasket().size() > 0) { 

 

                    while (getBasket().size() > 0) { 

 

                        double bidValue = getBasket().remove(0); 

                        checked++; 

 

                        if (bidValue < getThresholdValue()) { 

                            rejected++; 

                        } else { 

                            sucess++; 

amount = new 

BigDecimal(getAmount()).add(new 

BigDecimal(bidValue)).setScale(2, 

RoundingMode.UP); 
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                        } 

                    } 

                } 

            } catch (Exception ex) { 

                ex.printStackTrace(); 

            } 

        } 

    } 

Listing 14.  Bid Value Evaluation in Action Class 

The action refinement and action space creation, in this case, is similar to that 

of Section 4.4.3. Starting off with the closest known context’s action, the action 

space is expanded within the constraints of the action refinement values.  

The action resulting in the highest revenue is evaluated to be the most 

beneficial and its threshold price is used to adapt the NYOP channel.  

5.5.3 Inference System 

A relational databse management system (RDBMS) was used to model the 

knowledge base for this implementation of the proposed context-aware 

framework. This was mainly to demonstrate the technology independent feature 

of the framework. The use of RDBMS posed several challenges compared to the 

use of OWL in the previous use case. The main challenge was being able to 

remove existing contexts or bring in new contexts when they become relevant for 

the application. Schema-less NoSQL databases provided one possible solution. 

However, this was rejected as the inference operation in NoSQL database would 

be computationally intensive. The final solution was the adoption of the star 

schema from the data warehouse domain to represent the knowledge facts. A fact 

table in the star schema is used to store the threshold price and measure tables are 

used to store each of the contexts. When a new context is introduced to the 

system, it is added to the knowledge base as a new measure. This doesn’t affect 
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any of the existing context facts and the same is true for removing a measure 

table (context) as well.  

5.5.4 Runtime Execution of the Context-Aware 

Application 

With the help of Figure 29, the run time execution of the context-aware 

application could be described as follows.  

 

Figure 29. Run Time Execution of Context-Aware Application in an NYOP 

Channel 

The context-aware application detects a context change through Event-WS 

(Web Service) when an event is scheduled at a nearby venue (event-WS contain 

location information). If the perceived context is unknown, this triggers 

concurrent multi-action evaluation to adapt the hotelier’s NYOP system. Under 

these conditions, the action system acquires clones of the bid values submitted to 

the hotelier’s NYOP channel in real time. These bid values are then evaluated 

against multiple threshold prices during concurrent multi-action evaluation. Once 

the concurrent multi-action evaluation has completed, the context-aware system 
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updates the hotelier’s NYOP channel with the threshold price that would yield 

the highest revenue for the perceived context.  

5.6 Experiment Setup 

The experimentation was conducted without the use of any NYOP strategies 

mentioned in Section 5.2.2, such as allowing multiple bids, time restriction on 

subsequent bids etc. Instead, each value is considered as an individual bid and not 

as a subsequent bid part of a bidding transaction.  

The knowledge base was populated with facts of known context and 

threshold values to be used for bid evaluation when the system is under each 

known context.  

The experimentation consisted of two tests and a control test to go along with 

each of the two tests. One of the tests simulated an unknown context in which the 

mean value of the bids is lower than the threshold value of the closest known 

context. This case was referred to as the pessimistic case. This represents a 

situation the buyer surplus is lower than what the hotelier expected. The hotelier 

has to adapt the threshold price by lowering it in order to capture more bids in 

this context. An un-adapted threshold price would mean the hotelier loses out 

under the current context. 

The second test simulated an unknown context under which the mean bid 

values are considerably higher than the threshold value of the closest known 

context. This case was referred to as the optimistic case where the buyer surplus 

is higher compared to what the hotelier anticipated. Under this context, the 

hotelier has to increase the threshold value to achieve higher revenue.  This 

prevents some bids from succeeding, which encourages higher bidding values. 

Though no assumptions were made about the bidding strategies, this test case 



145 

 

was included in the experimentation for the completeness of the evaluation, by 

showing that the framework works for both the optimistic and the pessimistic 

cases. 

A sample set of bid values were generated using the normal distribution class 

of Apache Common Math library
10

. The mean value of the sample set was 

adjusted to make the generated bid values fit either the pessimistic case or the 

optimistic case. The Δ value from the action refinement was chosen as the value 

for standard variation when the sample bid value set was created. This ensured a 

wide range of bid values that would fall into different threshold price ranges. 

Though the normal distribution was used to generate input bid values, it makes 

no difference to the outcome of the test case even if the bid values are of a 

different distribution. This is because the best course of action is chosen after 

evaluating all the bid values with all the actions in the action space. 

Control tests were devised to evaluate the effectiveness of concurrent multi-

action evaluation against an existing self-adaptive context-aware model. For this 

purpose, a context-aware system with learning based self-adapting technique was 

used. Such a system would iterate over a set of threshold prices using a sample 

set of bids and finally evaluates the outcomes to find the best threshold price. For 

control tests case, each action (evaluation of bids against threshold price) was 

given a sample of bids. The sample size was calculated as: 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑑𝑠 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒
 

This ensured the total number of bids used for evaluation is the same for all 

the tests and each bid is only evaluated by one action and not repeated. 

                                                 
10

http://commons.apache.org/proper/commons-math/ 
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The action evaluation is done based on the number of successful bids for each 

threshold value. Although not part of the evaluation criteria, the monetary value 

gained or lost based on each test is also compared. 

For the test case, the goal specification was set as (Glo, Ghi) = (190, 300). The 

action refinement parameters (p, q) were set as equal numbers of pessimistic and 

optimistic expansion - (p, q) = (2, 2) and the distance between two nearest 

threshold prices (Δ) was set to 15.  

For the pessimistic test case, 1000 bid values were generated using a normal 

distribution function with a mean value of 212.50 and standard deviation of 15. 

For the optimistic test case, another 1000 bid values were generated with a mean 

value of 243.50 and standard deviation of 15. For both test cases, it was assumed 

the hotelier’s NYOP system had threshold price set at 225. This had to be known 

beforehand in order to explicitly generate bid values to match the pessimistic and 

the optimistic cases. 

Each of the test cases (optimistic and pessimistic tests) had two control tests. 

The two control tests differ from each other based on how the action space is 

traversed. The two possibilities here are, first evaluating the threshold price in the 

increasing order of the threshold price value and then followed by decreasing 

order (optimistic direction). The second option is the reverse of it, where the test 

starts with decreasing order and then increasing the order of threshold price 

values (pessimistic direction). What this represents is the hotelier first increasing 

and then decreasing the threshold price or vice versa in order to gauge the buyer 

surplus.  These tests also allowed to check if the order of choosing an action 

(optimistic action first or pessimistic action first) has any effect on the overall 

outcome, compared with the concurrent multi-action evaluation technique.  
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5.6.1 Results 

The expansion from the closest known context’s adaptive action’s threshold 

value resulted in five actions that will evaluate bids with 5 different threshold 

values. The threshold values were 195, 210, 225, 240 and 255. These are denoted 

as A(195), A(210), A(225), A(240) and A(250) in the graphs below. 

 

5.6.2 Results for Pessimistic Test Case 

The result of the pessimistic test case (Figure 30) shows that under the current 

unknown context the majority of successful bid values were evaluated by an 

action that had a threshold value of 210.  

 

 

Figure 30. Successful Bid Count for the Test Case Where Unknown Context 

Results in Pessimistic Bid Values 

In this context the hotelier has to lower his threshold price to 210 in order 

have a high revenue. In essence, the hotelier could associate the current unknown 

context with the threshold value 210 for future evaluation, thus effectively 

evolving the system to recognize the current unknown context in the future. This 

conclusion is known to be correct as the bid values for the pessimistic test case 

were generated using a normal distribution with a mean value of 212.50. 
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In the pessimistic test case, 880 out of 1000 bid values succeeded in one 

threshold value or another. The remaining values were less than 195, thus 

rejected. However, looking at the control test cases in the optimistic direction, 

there were only 332 successful bid values while in the pessimistic direction there 

were 342 bid values. The low success rate is due to employing only a single 

action, which evaluates the bids by using only a single threshold value.  

Furthermore, the results of the test case erroneously show 195 to be the 

threshold value under which the majority of bids are successful. This would 

result in unnecessarily lowering the hotelier’s profit margin. Figure 31 shows the 

highest yield is obtained using the adaptive threshold price, which was made 

possible by the concurrent multi-action evaluation technique.  

This confirms that the concurrent multi-action evaluation gives the fluidity 

and flexibility needed to react to an unknown context compared to the self-

learning adaptive techniques with an iterative approach.  

 

Figure 31. Yield for Pessimistic Test Case 

5.6.3 Results for Optimistic Test Case 

The results of the optimistic test case (Figure 32) show that under the current 

unknown context the majority of successful bids occur with an action that 
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evaluated them with a threshold value of 240. This is known to be true as the bid 

values were generated under the normal distribution that had a mean value of 

243.50. Thus, the hotelier’s NYOP channel system could be evolved by 

associating the context with the action of setting the threshold price to 240. Out 

of 1000 bids, 999 were successful, while the remaining one value was less than 

195 and therefore was rejected.  

 

 

Figure 32. Successful Bid Count for the Test Case Where Unknown Context 

Results in Optimistic Bid Values 

The control tests in both pessimistic and optimistic directions resulted in 

erroneously identifying that using a threshold value of 195 is the correct course 

of action. In fact, this indicates that the context change or the unknown context 

encountered has a pessimistic effect on the bid values, when in fact the opposite 

is known to be true. Out of 1000 bid values only 732 and 745 were successful in 

the pessimistic direction and the optimistic direction test cases respectively. 

The sum of successful bid values in (Figure 33) shows that the concurrent 

multi-action evaluation yielded higher revenue than the self-learning techniques 

using iterative approach. This affirms the fact that the concurrent multi-action 
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evaluation is able to accurately predict the impact the change of context has on 

the bid values. A context-aware self-adapting NYOP channel system would stand 

to gain higher revenue compared to a system which uses self-learning techniques 

with an iterative approach for adaptation.  

 

Figure 33. Yield for the Optimistic Test Case 

 

5.7 Conclusion of the Case Study 

An implementation of the proposed generic framework was completed for the 

NYOP scenario. The experimental results from both test cases showed that 

concurrent multi-action execution and evaluation is able to identify the best 

action for an unknown context, thus evolving the system to work with previously 

unknown contexts. These promising results complement very well the much 

faster evaluation time for our concurrent multi-action framework when compared 

to context-aware systems based on the iterative approach. 

Though this use case was implemented for NYOP channel, the proposed 

framework could be easily adopted for any domain that allows concurrent multi-

action evaluation. 
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6. FUTURE DIRECTIONS 
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The versatility of the proposed framework has been demonstrated with the 

implementation of two case studies from two distinct domains. A solution based 

on the proposed framework has been envisaged to achieve thermal energy 

efficiencies in high-end processors. 

6.1 Need for Energy Tuning in Processors 

Thermal energy-related issues, such as overheating, are a serious concern in 

modern high-end processors. The high temperatures not only reduce the 

reliability [192] and the lifetime of the underlying hardware but also increase the 

power consumption. High power consumption is a major issue for commercial 

data centres as this leads to higher cooling bills and high carbon footprints. All 

major processor manufacturers correlate the maximum expected performance 

with the thermal design power (TDP) [193]. TDP is the maximum amount of 

temperature and power that could be sustained by the processor over a long 

execution period of a typical workload.  

The problem in managing the thermal energy in processors comes from the 

fact that there are physical properties that influence the thermal behavior of the 

processor. Besides the physical properties, the nature of the workload also affects 

the power consumption of the processor. For a user running a workload on a 

processor, the physical property is something immutable. As such research work 

has been geared towards application-specific thermal energy models. Such a 

model is presented in [194] where asymptotic equilibrium temperature (𝑇∞
ℎ) is 

presented as  

𝑇∞
ℎ =  𝜏∞

ℎ + 𝑇0 

Aggregated asymptotic equilibrium temperature includes three components, 

which are ambient (power-off) temperature, idle equilibrium temperature, and the 
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asymptotic equilibrium temperature. The ambient (power-off) temperature and 

the idle equilibrium temperature (T0) are static components. However, the 

asymptotic equilibrium temperature (𝜏∞
ℎ ) is transient and solely dependent on the 

application workload and representative of additional power consumed during the 

execution of the workload.  

The experimentation in [194] was carried out to find the lowest power 

consumption for a constant workload by varying the core count and the CPU 

scaling governor of the processor. The CPU scaling governor controls the P-

states of the CPU of which the two extreme cases are the power save scaling 

governor (low P-state) and the on-demand scaling governor (high P-state). 

Through a brute force method of experimentation, the power consumption for all 

cores and P-states combinations were obtained for a constant workload. With this 

result in hand, thermal energy efficiencies are achieved by configuring the CPU 

to the core count that resulted in minimum power consumption during the 

experimentation.  

6.2 Using the Proposed Framework for Thermal Energy 

Modelling 

However, the approach in [194] has two problems:  

1. The use of brute force method to vary the core count.  

2. The use of constant workload.  

Having to vary the core count for each P-state means longer experimentation 

time. For example, for a 16-core processor, this would mean running 32 

experiments (16 for each P-state) to find the ideal core count for low power 

consumption. Secondly, whenever workload changes the experimentation has to 
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be carried out again as asymptotic equilibrium temperature is solely dependent on 

the workload characteristics.  

These issues could be addressed with an implementation of the proposed 

framework with its use of concurrent multi-action evaluation. A description of a 

potential solution is given here which is awaiting implementation and testing. 

  The knowledge base is modelled as in Table 4 where each workload is 

associated with a core count, asymptotic equilibrium temperature, and power 

consumption.  

Table 4. Knowledge Base for Thermal Modelling 

Workload  Core Count 

Asymptotic 

Equilibrium 

Temperature 

Power 

Consumption 

W1 C1 𝜏1 P1 
Wk Ck 𝜏k Pk 
Wn Cn 𝜏n Pn 
Wi C? 𝜏? P? 

 

What is expected of the concurrent multi-action evaluation system is to find 

out the core count (C?) which results in minimum power (or temperature) 

consumption for unknown workload Wi. An analogy could be drawn between the 

above model and the Chapter 4 case study of database performance tuning. By 

defining the workload as the context and adaptive action as a function of the core 

count being set A(Ci; i= 1 – n), an action space for concurrent multi-action 

evaluation could be devised. The initial core count could be obtained using the 

closeness measure of the workloads. This approach reduces the number of 

experiments needed to find the core count that achieved desired goal 

expectations.  

The same experimentation model could be used to answer optimization 

queries such as “what is the minimum CPU count required to complete the work 
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under given SLAs but with minimum power consumption” or for identification of 

the highest performance for a different number of CPUs and different consumed 

power. The implementation of this model requires special hardware equipment 

and the author is waiting for the next available opportunity.  
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7. CONCLUSION 
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Context-aware computing has come a long way since sprouting out as part of a 

vision for ubiquitous computing. At a time when mobile computing was a novelty, 

context-awareness was the key to keeping computing power uniform and relevant 

from a user’s perspective. The expectation was for computers to be aware of their 

location, dedicated to the particular task and finally users to be unaware of the 

origins of the computing power they are consuming. The early models developed for 

context-aware computing had location as the only aspect when it came to defining a 

context. This led to narrow and constrained definitions of context and context-aware 

applications. Chapter 1 collates the evolution of the definitions over the years as new 

aspects were considered and attempts were made to arrive at a wide-reaching generic 

definition.  

The research community’s effort had resulted in a broader context definition, 

however, the self-adaptation techniques used by the context-aware applications had 

limitations resulting from the legacy context definitions they were modeled on. The 

existing self-adapting techniques are specific to either single context – single action 

or single context – multi-action use cases.  The single context – single action model 

worked well with legacy context definitions which considered location as the only 

aspect defining the context. Each context change had exactly one corresponding 

adaptive action. The context and action spaces were limited and finite in size. This 

required the context-aware application developers to embed all possible “context 

change – adaptive action” pairs into the system. Context inference failure would 

occur if the system encounters a context change that was not foreseen. Context-aware 

applications developed using the single context – single action model were unable to 

adapt to unknown context. The single context – multi-action model was introduced 

as a solution to the above limitations. In this model when an unknown context is 



158 

 

encountered the system would iterate over a finite set of pre-defined actions to find 

the best adaptive action.  However, the iterative approach suffers from serious 

scalability limitations particularly when the size of the action space increases in 

multi-context – multi-action scenarios.  

Thus, the objective of this project was to address the limitation in existing self-

adapting techniques used by the context-aware systems when it comes to multi-

context – multi-action scenarios. The research identified five issues in the existing 

body of work to address.  

1. Dependency on system developers to pre-define context and context 

elements which cause rigid context declarations.  

2. Dependency on system developers to encompass and embed all possible 

context change-adaptive action pairs into the system. 

3. Inability to carry out system adaptation when an unknown context is 

encountered.  

4. The time for system adaptation being dependent on the size of the action 

space (i.e. the number of adaptive actions to be evaluated). 

5. The need of user intervention to expand the knowledge base which stores 

context and adaptive action information.  

The research introduced a novel generic framework which solves the above 

issues by achieving self-adaptation via concurrent multi-action evaluation. The 

framework consists of three systems called context, inference, and action. The 

project addresses the above objectives by decoupling context and action spaces, 

creating a dynamic action space for evaluation and using just five user inputs and a 

self-updating knowledge base model. Chapter 3 provides an extensive description of 
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each of the systems along with how each system either individually or together with 

another system addresses the research objectives.  

The domain agnostic formal model as derived in this project delivers an ease of 

adoption and portability for context-aware developers when carrying out concrete 

implementations of the novel concurrent multi-action evaluation technique. Two case 

studies were carried out to validate the concept of self-adaptation via concurrent 

multi-action evaluation and to showcase the ease of cross domain adaptability of the 

framework. 

The first case study uses an implementation of the framework for performance 

tuning of a database when it encounters a previously unknown workload mix. The 

experiment resulted in a 20% reduction in CPU usage when self-adaptation via 

concurrent multi-action valuation is in use, compared to the non-adaptive setting. 

This achievement validates the soundness of the formal model and its 

implementation.  

The second case study involves finding the threshold price for name-your-own-

price channels when a hotel booking system encounters an unknown context. On this 

occasion, the implementation of the framework is compared against an existing 

adaptation technique with an iterative approach. The results show that self-adaptation 

via concurrent multi-action evaluation correctly identified the nature of the context 

change and is able to set the appropriate threshold price. On the contrary, the 

iterative approach resulted in either erroneous interpretation of the context change or 

setting threshold prices unsuitable to the detected context change. This achievement 

cemented the superiority of the novel self-adaption technique proposed in this 

research project compared to existing self-adapting techniques when it came to 

multi-context – multi-action scenarios. 
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As a further proof of the versatility of the framework, future work involving 

thermal energy modelling in high-end processors has been planned.  

The implementations of the framework could be used in other domains to solve 

problems associated with multi-context multi-action model. For example, a cloud 

provider could use the proposed framework to adjust the market value of spot 

instances [195] using wide variety of contexts such as current resource availability, 

current demand and future demand for spot instances and even react quickly to 

dynamic changes in the competitors’ spot instance market values. Another possible 

area of use is dynamic resize of a computer cluster based on context. In this case, the 

multi-context space could consist of workload and user types and aspects of SLA 

related constraints. The concurrent multi-action evaluation technique could be used 

to dynamically shrink or expand the cluster through concurrent multi-action 

evaluation.  In short, due to the domain agnostic nature of the framework it could be 

implemented in any domain to achieve self-adaptation in multi-context multi-action 

cases.  

The contributions to knowledge by this research could be summarized as below. 

 The generic framework provides a domain independent method for 

formulating context spaces. It eliminates the dependency on system developers for 

context space formulation and rigid context definitions. Facilitating context addition 

and removal with ease in multi-context models.  

 The novel context-aware architecture of the framework fully decouples the 

context-system from the action system. The decoupling makes changes made in the 

context space agnostic to the concurrent action implementation in the action system. 

Both context and action space can grow and shrink independently of each other. This 
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feature negates the need for system developers to encompass and embed all context 

change – adaptive action pairs into the system.  

 The research expanded the concept of context attribute by introducing a 

“priority” as a property of a context attribute.  The priority is based on the degree of 

influence each context attribute has in the prevailing context.  With the introduction 

of the priority, if there are two or more contexts with equal distances to the unknown 

context, then the priority of each context could be used to discriminate between the 

equidistance contexts.   

 This research introduced the novel concept of defining adaptive action as a 

function of the parameter manipulated by it. This concept allows the dynamic 

creation of action space based on just five pre-defined user inputs.   

 The novel experiment-based self-adaption technique formulated by the 

research uses concurrent multi-action evaluation to speeds up self-adaption in 

context-aware application when in multi-context multi-action models.  

In conclusion, the thesis presents a novel context-aware application framework 

which enables self-adaptation via concurrent multi-action evaluation when an 

unknown context is encountered. The proposed framework eliminates the limitations 

of the currently existing approaches by employing an experiment-based adaptation 

mechanism. A concrete implementation of this framework was carried out showing 

how it could be used in a variety of domains. As a result of this work, a new 

paradigm of a self-adaptation technique for context-aware application has risen. The 

taxonomy presented in Chapter 2 shows the unique placement of this novel self-

adaptation technique among the existing body of work. It is believed that this new 

contribution to knowledge will lead to further experiment-based self-adaptation 

techniques.  
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APPENDIX A  - CONTEXT ACQUIRE CLASS 
 
package org.wmin.asanga.context; 

 

import java.math.BigDecimal; 

import java.math.MathContext; 

import java.math.RoundingMode; 

import java.sql.Connection; 

import java.sql.PreparedStatement; 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.util.HashMap; 

import org.wmin.asanga.action.ConcurrentActionExecutor; 

import org.wmin.asanga.util.Context; 

import org.wmin.asanga.util.ContextValue; 

import org.wmin.asanga.util.DBConnectionPool; 

import org.wmin.asanga.util.GUIObjects; 

 

/** 

 * 

 * @author Asanga 

 */ 

public class ContextAcquire extends Thread { 

 

    private Connection con; 

    private final String SQL = "select service_name,value from 

v$service_statS where stat_name='DB CPU' AND SERVICE_NAME IN 

('dsssrv','oltpsrv')"; 

    //above sql overhead 3 microseconds 

    private String CURRENT = "current", PREVIOUS = "previous"; 

    private HashMap<String, ContextValue> valueMap = new 

HashMap<>(); 

    int i = 0; 

    double prevOLTPValue = -1, preDSSValue = -1; 

    int samples = 0; 

    private GUIObjects guiObj; 

 

    public ContextAcquire(GUIObjects guiObj) throws 

SQLException { 

 

        con = 

DBConnectionPool.getDBConnection(DBConnectionPool.POOL); 

 

        valueMap.put(CURRENT, new ContextValue()); 

        valueMap.put(PREVIOUS, new ContextValue()); 

        this.guiObj = guiObj; 

        setName("Context Accquire"); 

    } 

 

    @Override 

    public void run() { 

 

 

        ContextValue value = null; 

 

        boolean twosamplecollected = false; 

 

        while (true) { 

 

            if (i == 0) { 
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                value = valueMap.get(PREVIOUS); 

            } else { 

                value = valueMap.get(CURRENT); 

                twosamplecollected = true; 

            } 

 

            try { 

 

                PreparedStatement pr = 

con.prepareStatement(SQL); 

                ResultSet rs = pr.executeQuery(); 

 

                while (rs.next()) { 

 

                    value.setValues(rs.getString(1), 

rs.getLong(2)); 

                } 

 

                rs.close(); 

                pr.close(); 

 

                long oltpValue = 0, dssValue = 0; 

 

                if (i == 1) { 

 

                    ContextValue before = 

valueMap.get(PREVIOUS); 

 

                    oltpValue = ((value.getOltpValue() - 

before.getOltpValue()));// / (double) (5 * 1000000)); 

                    dssValue = ((value.getDssValue() - 

before.getDssValue()));// / (double) (5 * 1000000)); 

                } 

 

                if (i == 0 && twosamplecollected) { 

 

                    ContextValue current = 

valueMap.get(CURRENT); 

 

                    oltpValue = ((value.getOltpValue() - 

current.getOltpValue()));// / (double) (5 * 1000000)); 

                    dssValue = ((value.getDssValue() - 

current.getDssValue()));// / (double) (5 * 1000000)); 

                } 

 

                if (dssValue > 0 || oltpValue > 0) { 

//                    System.out.println("dss value 

"+dssValue+ "  oltp value"+oltpValue); 

                    BigDecimal hundred = new BigDecimal(100); 

                    MathContext mc = new MathContext(2, 

RoundingMode.HALF_EVEN); 

                    MathContext mc1 = new MathContext(1, 

RoundingMode.HALF_UP); 

                    BigDecimal oltpBD = new 

BigDecimal(oltpValue); 

                    BigDecimal dssBD = new 

BigDecimal(dssValue); 

 

                    BigDecimal oltpPct = 

oltpBD.multiply(hundred).divide(oltpBD.add(dssBD), 

mc).round(mc1); 
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//                    BigDecimal dssPct = 

dssBD.multiply(hundred).divide(oltpBD.add(dssBD),mc); 

 

//                    BigDecimal oltpPct2 = 

oltpBD.divide(oltpBD.add(dssBD),mc).multiply(hundred).round(mc1); 

                    BigDecimal dssPct = 

hundred.subtract(oltpPct); 

 

//                    System.out.println("oltp " + 

oltpPct.doubleValue() + "   dss " + dssPct.doubleValue()); 

//                    System.out.println("oltp " + 

oltpPct.doubleValue() + "   dss " + dssPct.doubleValue()); 

//                    System.out.println("oltp " + oltpValue + 

"   dss " + dssValue); 

 

                    

guiObj.getOltpMeter().updateMeterValue(oltpPct.doubleValue()); 

                    

guiObj.getDssMeter().updateMeterValue(dssPct.doubleValue()); 

 

                    boolean isContextChanged = 

hasContextChanged(oltpPct.doubleValue(), dssPct.doubleValue()); 

                    System.out.println(isContextChanged); 

 

                    if (isContextChanged) { 

 

                        guiObj.clearBarCharts(); 

                        ConcurrentActionExecutor m = new 

ConcurrentActionExecutor(new Context(oltpPct.intValue(), 

dssPct.intValue()), guiObj); 

                        m.start(); 

                        m.join(); 

 

 

                    } 

 

                    System.out.println("back to sensing the 

context change "); 

                    guiObj.getStatus().updateProgress(0); 

                    guiObj.getStatus().updateStatus("Sensing 

context values"); 

 

                } else { 

                    System.out.println("no load on system"); 

                    guiObj.getStatus().updateStatus("No load 

on system"); 

                    guiObj.getDssMeter().updateMeterValue(0); 

                    guiObj.getOltpMeter().updateMeterValue(0); 

                    prevOLTPValue = -1; 

                    preDSSValue = -1; 

                } 

                i = ++i % 2; 

 

                Thread.sleep(5 * 1000); 

            } catch (InterruptedException ex) { 

                ex.printStackTrace(); 

            } catch (SQLException ex) { 

                ex.printStackTrace(); 

            } 
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        } 

 

    } 

 

    public boolean hasContextChanged(double oltp, double dss) 

{ 

 

//        return true; 

        if (preDSSValue < 0) { 

 

            prevOLTPValue = oltp; 

            preDSSValue = dss; 

 

            return true; 

        } 

 

        double ot = Math.abs(oltp - prevOLTPValue); 

        double ol = Math.abs(dss - preDSSValue); 

 

 

        if (ot >= 3 || ol >= 3) { 

 

            ++samples; 

        } 

 

        if (samples == 3) { 

 

            samples = 0; 

            prevOLTPValue = oltp; 

            preDSSValue = dss; 

            return true; 

        } 

 

        return false; 

 

    } 

} 
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APPENDIX B - OWL + SWRL DEFINITIONS 
<?xml version="1.0"?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    mlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 

    xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 

    xmlns:owl="http://www.w3.org/2002/07/owl#" 

    xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#" 

    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

    xmlns:swrl="http://www.w3.org/2003/11/swrl#" 

    xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns="http://www.owl-ontologies.com/Ontology1394035041.owl#" 

    xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#" 

  xml:base="http://www.owl-ontologies.com/Ontology1394035041.owl"> 

  <owl:Ontology rdf:about=""> 

    <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/> 

    <owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl"/> 

  </owl:Ontology> 

  <owl:Class rdf:ID="OLTP"> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:FunctionalProperty rdf:ID="oltpLoad"/> 

        </owl:onProperty> 

        <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >100</owl:hasValue> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:FunctionalProperty rdf:ID="dssLoad"/> 

        </owl:onProperty> 

        <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >0</owl:hasValue> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Class> 
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        <owl:intersectionOf rdf:parseType="Collection"> 

          <owl:Class> 

            <owl:complementOf> 

              <owl:Class rdf:ID="DSS"/> 

            </owl:complementOf> 

          </owl:Class> 

          <owl:Class> 

            <owl:complementOf> 

              <owl:Class rdf:ID="Mix"/> 

            </owl:complementOf> 

          </owl:Class> 

        </owl:intersectionOf> 

      </owl:Class> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#DSS"/> 

    </owl:disjointWith> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#Mix"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:ID="Workload"> 

    <rdfs:subClassOf> 

      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="#Mix"/> 

          <owl:Class rdf:about="#DSS"/> 

          <owl:Class rdf:about="#OLTP"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 

  </owl:Class> 

  <owl:Class rdf:about="#DSS"> 

    <owl:disjointWith rdf:resource="#OLTP"/> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#Mix"/> 

    </owl:disjointWith> 

    <rdfs:subClassOf> 
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      <owl:Restriction> 

        <owl:onProperty> 

          <owl:FunctionalProperty rdf:about="#oltpLoad"/> 

        </owl:onProperty> 

        <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >0</owl:hasValue> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >100</owl:hasValue> 

        <owl:onProperty> 

          <owl:FunctionalProperty rdf:about="#dssLoad"/> 

        </owl:onProperty> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Class> 

        <owl:intersectionOf rdf:parseType="Collection"> 

          <owl:Class> 

            <owl:complementOf rdf:resource="#OLTP"/> 

          </owl:Class> 

          <owl:Class> 

            <owl:complementOf> 

              <owl:Class rdf:about="#Mix"/> 

            </owl:complementOf> 

          </owl:Class> 

        </owl:intersectionOf> 

      </owl:Class> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 

  </owl:Class> 

  <owl:Class rdf:about="#Mix"> 

    <owl:disjointWith rdf:resource="#DSS"/> 

    <owl:disjointWith rdf:resource="#OLTP"/> 

    <rdfs:subClassOf> 

      <owl:Class> 

        <owl:intersectionOf rdf:parseType="Collection"> 

          <owl:Class> 
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            <owl:complementOf rdf:resource="#DSS"/> 

          </owl:Class> 

          <owl:Class> 

            <owl:complementOf rdf:resource="#OLTP"/> 

          </owl:Class> 

        </owl:intersectionOf> 

      </owl:Class> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 

  </owl:Class> 

  <owl:DatatypeProperty rdf:ID="optiIndexCostAdjValue"> 

    <rdfs:domain> 

      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="#DSS"/> 

          <owl:Class rdf:about="#Mix"/> 

          <owl:Class rdf:about="#OLTP"/> 

          <owl:Class rdf:about="#Workload"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:domain> 

    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 

  </owl:DatatypeProperty> 

  <owl:FunctionalProperty rdf:about="#dssLoad"> 

    <rdfs:domain> 

      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="#DSS"/> 

          <owl:Class rdf:about="#Mix"/> 

          <owl:Class rdf:about="#OLTP"/> 

          <owl:Class rdf:about="#Workload"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:domain> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 

    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:ID="hasName"> 

    <rdfs:domain> 
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      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="#DSS"/> 

          <owl:Class rdf:about="#Mix"/> 

          <owl:Class rdf:about="#OLTP"/> 

          <owl:Class rdf:about="#Workload"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:domain> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 

    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:about="#oltpLoad"> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 

    <rdfs:domain> 

      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="#DSS"/> 

          <owl:Class rdf:about="#Mix"/> 

          <owl:Class rdf:about="#OLTP"/> 

          <owl:Class rdf:about="#Workload"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:domain> 

    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 

  </owl:FunctionalProperty> 

  <swrl:Imp rdf:ID="Rule-1"> 

    <swrl:head> 

      <swrl:AtomList> 

        <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 

        <rdf:first> 

          <swrl:ClassAtom> 

            <swrl:argument1> 

              <swrl:Variable rdf:ID="x"/> 

            </swrl:argument1> 

            <swrl:classPredicate rdf:resource="#OLTP"/> 

          </swrl:ClassAtom> 

        </rdf:first> 

      </swrl:AtomList> 

    </swrl:head> 
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    <swrl:body> 

      <swrl:AtomList> 

        <rdf:rest> 

          <swrl:AtomList> 

            <rdf:rest> 

              <swrl:AtomList> 

                <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 

                <rdf:first> 

                  <swrl:DatavaluedPropertyAtom> 

                    <swrl:argument1 rdf:resource="#x"/> 

                    <swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

                    >100</swrl:argument2> 

                    <swrl:propertyPredicate rdf:resource="#oltpLoad"/> 

                  </swrl:DatavaluedPropertyAtom> 

                </rdf:first> 

              </swrl:AtomList> 

            </rdf:rest> 

            <rdf:first> 

              <swrl:DatavaluedPropertyAtom> 

                <swrl:propertyPredicate rdf:resource="#dssLoad"/> 

                <swrl:argument1 rdf:resource="#x"/> 

                <swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

                >0</swrl:argument2> 

              </swrl:DatavaluedPropertyAtom> 

            </rdf:first> 

          </swrl:AtomList> 

        </rdf:rest> 

        <rdf:first> 

          <swrl:ClassAtom> 

            <swrl:classPredicate rdf:resource="#Workload"/> 

            <swrl:argument1 rdf:resource="#x"/> 

          </swrl:ClassAtom> 

        </rdf:first> 

      </swrl:AtomList> 

    </swrl:body> 

  </swrl:Imp> 

  <swrl:Variable rdf:ID="oltp"/> 

  <swrl:Imp rdf:ID="Rule-2"> 

    <swrl:head> 

      <swrl:AtomList> 
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        <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 

        <rdf:first> 

          <swrl:ClassAtom> 

            <swrl:argument1 rdf:resource="#x"/> 

            <swrl:classPredicate rdf:resource="#DSS"/> 

          </swrl:ClassAtom> 

        </rdf:first> 

      </swrl:AtomList> 

    </swrl:head> 

    <swrl:body> 

      <swrl:AtomList> 

        <rdf:first> 

          <swrl:ClassAtom> 

            <swrl:classPredicate rdf:resource="#Workload"/> 

            <swrl:argument1 rdf:resource="#x"/> 

          </swrl:ClassAtom> 

        </rdf:first> 

        <rdf:rest> 

          <swrl:AtomList> 

            <rdf:rest> 

              <swrl:AtomList> 

                <rdf:first> 

                  <swrl:DatavaluedPropertyAtom> 

                    <swrl:propertyPredicate rdf:resource="#oltpLoad"/> 

                    <swrl:argument1 rdf:resource="#x"/> 

                    <swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

                    >0</swrl:argument2> 

                  </swrl:DatavaluedPropertyAtom> 

                </rdf:first> 

                <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 

              </swrl:AtomList> 

            </rdf:rest> 

            <rdf:first> 

              <swrl:DatavaluedPropertyAtom> 

                <swrl:argument2 rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

                >100</swrl:argument2> 

                <swrl:argument1 rdf:resource="#x"/> 

                <swrl:propertyPredicate rdf:resource="#dssLoad"/> 

              </swrl:DatavaluedPropertyAtom> 

            </rdf:first> 
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          </swrl:AtomList> 

        </rdf:rest> 

      </swrl:AtomList> 

    </swrl:body> 

  </swrl:Imp> 

  <swrl:Variable rdf:ID="xoltp"/> 

  <swrl:Variable rdf:ID="dss"/> 

</rdf:RDF> 
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APPENDIX C - KNOWLEDGE BASE CLASS 
 
package org.wmin.asanga.inference; 

 

import 

edu.stanford.smi.protege.exception.OntologyLoadException; 

import edu.stanford.smi.protegex.owl.ProtegeOWL; 

import 

edu.stanford.smi.protegex.owl.inference.pellet.ProtegePelletOWLAP

IReasoner; 

import 

edu.stanford.smi.protegex.owl.inference.protegeowl.ReasonerManage

r; 

import 

edu.stanford.smi.protegex.owl.inference.reasoner.ProtegeReasoner; 

import 

edu.stanford.smi.protegex.owl.inference.reasoner.exception.Proteg

eReasonerException; 

import edu.stanford.smi.protegex.owl.model.*; 

import 

edu.stanford.smi.protegex.owl.swrl.bridge.BridgeFactory; 

import 

edu.stanford.smi.protegex.owl.swrl.bridge.SWRLRuleEngineBridge; 

import 

edu.stanford.smi.protegex.owl.swrl.bridge.exceptions.SWRLRuleEngi

neBridgeException; 

import 

edu.stanford.smi.protegex.owl.swrl.exceptions.SWRLRuleEngineExcep

tion; 

import edu.stanford.smi.protegex.owl.swrl.model.SWRLFactory; 

import edu.stanford.smi.protegex.owl.swrl.model.SWRLImp; 

import 

edu.stanford.smi.protegex.owl.swrl.parser.SWRLParseException; 

import edu.stanford.smi.protegex.owl.swrl.sqwrl.SQWRLResult; 

import 

edu.stanford.smi.protegex.owl.swrl.sqwrl.exceptions.SQWRLExceptio

n; 

import java.sql.Connection; 

import java.sql.PreparedStatement; 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.util.ArrayList; 

import java.util.Collection; 

import java.util.Iterator; 

import org.wmin.asanga.action.Action; 

import org.wmin.asanga.util.Context; 

import org.wmin.asanga.util.ResponseObj; 

 

/** 

 * 

 * @author Asanga 

 */ 

public class KnowledgeBase { 

 

    ArrayList<Context> mainList = new ArrayList<>(); 

     

    private boolean isPessimisticApproach = true; 

    private final String CONTEXT_SQL = "select oltp_load, 

dss_load, opti_ind_cost_adj,name from context"; 
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    private final String SAVE_CONTEXT_SQL="insert into context 

values(?,?,?,?)"; 

    private OWLModel owlModel; 

    private SWRLRuleEngineBridge bridge; 

    private SWRLFactory factory; 

    private ProtegeReasoner reasoner; 

    private final String URI = "file:///" + 

System.getProperty("user.dir").replace("\\", "/") + 

"/workload3.owl"; 

    private OWLNamedClass workload; 

    private RDFProperty hasName; 

    private RDFProperty dssLoad; 

    private RDFProperty oltpLoad; 

    private RDFProperty optiIndCostAdj; 

 

    public KnowledgeBase(Connection connection) throws 

SQLException, OntologyLoadException, SWRLParseException, 

SWRLRuleEngineBridgeException, SWRLRuleEngineException { 

 

        loadContexts(connection); 

        loadKnowledgeBase(); 

        createRuleEngine(); 

        createReasoner(); 

 

    } 

 

    private void createReasoner() { 

 

        reasoner = 

ReasonerManager.getInstance().createProtegeReasoner(owlModel, 

ProtegePelletOWLAPIReasoner.class); 

 

    } 

 

    private void createRuleEngine() throws SWRLParseException, 

SWRLRuleEngineBridgeException, SWRLRuleEngineException { 

 

        factory = new SWRLFactory(owlModel); 

        bridge = BridgeFactory.createBridge("SWRLJessBridge", 

owlModel); 

 

    } 

 

    private void loadKnowledgeBase() throws 

OntologyLoadException { 

 

        owlModel = ProtegeOWL.createJenaOWLModelFromURI(URI); 

 

        workload = owlModel.getOWLNamedClass("Workload"); 

        hasName = owlModel.getRDFProperty("hasName"); 

        dssLoad = owlModel.getRDFProperty("dssLoad"); 

        oltpLoad = owlModel.getRDFProperty("oltpLoad"); 

        optiIndCostAdj = 

owlModel.getRDFProperty("optiIndexCostAdjValue"); 

 

        for (Context c : mainList) { 

 

            OWLIndividual w1 = 

workload.createOWLIndividual(c.getName()); 

            w1.setPropertyValue(hasName, c.getName()); 

            w1.setPropertyValue(oltpLoad, c.getC1()); 
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            w1.setPropertyValue(dssLoad, c.getC2()); 

            w1.setPropertyValue(optiIndCostAdj, 

c.getOptimizerIndexCostAdj()); 

 

        } 

    } 

 

    private void loadContexts(Connection connection) throws 

SQLException, OntologyLoadException { 

 

        PreparedStatement pr = 

connection.prepareStatement(CONTEXT_SQL); 

        ResultSet rs = pr.executeQuery(); 

        while (rs.next()) { 

 

            Context c = new Context(rs.getInt(1), 

rs.getInt(2), rs.getInt(3), rs.getString(4)); 

            mainList.add(c); 

        } 

 

        rs.close(); 

        pr.close(); 

        connection.close(); 

    } 

 

    public Action getClosestAction(Context c) { 

 

 

 

        double diff = -1; 

        ArrayList<Context> diffList = new ArrayList<>(); 

 

        for (Context e : mainList) { 

 

            double d = e.getDifference(c); 

//            System.out.println("dddddd "+d+" 

"+e.getThresholdValue() ); 

            if (diff < 0) { // first occurence 

 

                diff = d; //current minimum value 

                diffList.add(e); 

            } else { 

 

                if (d < diff) { // a lower value found remove 

all 

 

                    diffList.clear(); 

 

                    diff = d; 

                    diffList.add(e); 

                } else if (d == diff) { // same value found 

 

                    diffList.add(e); 

                } 

 

            } 

 

        } 

 

        if (diffList.size() > 1) { 
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            diff = -1; 

            ArrayList<Context> c1List = new ArrayList<>(); 

 

            for (Context e : diffList) { 

 

                double c1diff = e.getC1Difference(c); 

 

                if (diff < c1diff) { 

                    diff = c1diff; 

                    c1List.add(e); 

                } 

            } 

 

            // check the high priority first 

            if (c1List.size() > 1) { 

 

 

                diff = -1; 

                ArrayList<Context> c2List = new ArrayList<>(); 

 

                for (Context e : c1List) { 

 

                    double c2diff = e.getC2Difference(c); 

 

                    if (diff < c2diff) { 

                        diff = c2diff; 

                        c2List.add(e); 

                    } 

                } 

 

                if (c2List.size() > 1) { 

 

                    diff = -1; 

                    ArrayList<Context> c3List = new 

ArrayList<>(); 

 

                    for (Context e : c2List) { 

 

                        double c3diff = e.getC2Difference(c); 

 

                        if (diff < c3diff) { 

                            diff = c3diff; 

                            c3List.add(e); 

                        } 

                    } 

 

                    if (c3List.size() > 1) { 

 

                        Context e = c3List.get(0); 

 

                        for (int i = 1; i < c3List.size() - 1; 

i++) { 

 

                            Context k = c3List.get(i); 

 

                            if (isPessimisticApproach) { 

 

                                e = 

e.getPessimisticThresholdContext(k); 

                            } else { 
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                                e = 

e.getPessimisticThresholdContext(k); 

                            } 

 

                        } 

 

                        return new Action(e); 

 

 

                    } else { 

 

                        return new Action(c3List.get(0)); 

                    } 

 

 

                } else { 

 

                    return new Action(c2List.get(0)); 

                } 

 

 

            } else { 

 

                return new Action(c1List.get(0)); 

            } 

 

 

 

        } else { 

 

            return new Action(diffList.get(0)); 

        } 

 

    } 

 

    public ResponseObj checkContextKnown(Context c) throws 

SQWRLException, SWRLParseException, SWRLRuleEngineException { 

 

        ResponseObj response = new ResponseObj(); 

 

        SWRLImp imp = factory.createImp("Query-1", 

"Workload(?x) ∧ dssLoad(?x," + c.getC2() + ") ∧ oltpLoad(?x, " + 
c.getC1() + ") → sqwrl:select(?x)"); 

        bridge.infer(); 

        SQWRLResult result = bridge.getSQWRLResult("Query-1"); 

 

        while (result.hasNext()) { 

 

            response.setChecked(true); 

 

            OWLIndividual ind = 

owlModel.getOWLIndividual(result.getObjectValue("?x").toString())

; 

 

            StringBuilder contextName = new 

StringBuilder(ind.getBrowserText()); 

            int oltp = (Integer) 

ind.getPropertyValue(oltpLoad); 

            int dss = (Integer) ind.getPropertyValue(dssLoad); 
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            int opti = (Integer) 

ind.getPropertyValue(optiIndCostAdj); 

 

            Context existingContext = new Context(oltp, dss, 

opti, contextName.toString()); 

            response.setContext(existingContext); 

            result.next(); 

        } 

        imp.delete(); 

        return response; 

 

    } 

 

    public ResponseObj getWorkloadTypes(Context context) 

throws SWRLRuleEngineException, ProtegeReasonerException { 

 

        ResponseObj response = new ResponseObj(); 

 

        OWLIndividual w1 = 

workload.createOWLIndividual("unknown-workload"); 

        w1.setPropertyValue(hasName, "unknown-workload"); 

        w1.setPropertyValue(oltpLoad, context.getC1()); 

        w1.setPropertyValue(dssLoad, context.getC2()); 

 

 

        bridge.infer(); 

        Collection<OWLClass> cls = 

reasoner.getIndividualDirectTypes(w1); 

        Iterator<OWLClass> itr = cls.iterator(); 

 

        while (itr.hasNext()) { 

 

            

response.addWorkloadTypes(itr.next().getBrowserText()); 

        } 

 

        w1.delete(); 

        return response; 

    } 

     

    public void updateKnowledgeBase(Context 

unknownContext,Connection connection) throws 

SWRLRuleEngineException, SQLException{ 

         

        OWLIndividual w1 = 

workload.createOWLIndividual(unknownContext.getName()); 

        w1.setPropertyValue(hasName, 

unknownContext.getName()); 

        w1.setPropertyValue(oltpLoad, unknownContext.getC1()); 

        w1.setPropertyValue(dssLoad, unknownContext.getC2()); 

        w1.setPropertyValue(optiIndCostAdj, 

unknownContext.getOptimizerIndexCostAdj()); 

         

        bridge.infer(); 

         

        saveKnowledge(unknownContext, connection); 

         

         

         

    } 
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    private void saveKnowledge(Context 

unknownContext,Connection connection) throws SQLException{ 

         

        connection.setAutoCommit(false); 

        PreparedStatement pr = 

connection.prepareStatement(SAVE_CONTEXT_SQL); 

        pr.setInt(1,unknownContext.getC1() ); 

        pr.setInt(2,unknownContext.getC2() ); 

        

pr.setInt(3,unknownContext.getOptimizerIndexCostAdj()); 

        pr.setString(4, unknownContext.getName()); 

         

        pr.execute(); 

        connection.commit(); 

        pr.close(); 

        connection.close(); 

    } 

} 

 


