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An Empirically grounded Agent Based simulator for Air Traffic
Management in the SESAR scenario

Abstract

In this paper we present a simulator allowing to perform policy experiments relative to the air traffic
management. Different SESAR solutions can be implemented in the model to see the reaction of the different
stakeholders as well as other relevant metrics (delay, safety, etc). The model describes both the strategic
phase associated to the planning of the flight trajectories and the tactical modifications occurring in the en-
route phase. An implementation of the model is available as an open-source software and is freely accessible
by any user.

More specifically, different procedures related to business trajectories and free-routing are tested and we
illustrate the capabilities of the model on an airspace which implements these concepts. After performing
numerical simulations with the model, we show that in a free-routing scenario the controllers perform less
operations but the conflicts are dispersed over a larger portion of the airspace. This can potentially increase
the complexity of conflict detection and resolution for controllers.

In order to investigate this specific aspect, we consider some metrics used to measure traffic complexity.
We first show that in non-free-routing situations our simulator deals with complexity in a way similar to what
humans would do. This allows us to be confident that the results of our numerical simulations relative to the
free-routing can reasonably forecast how human controllers would behave in this new situation. Specifically,
our numerical simulations show that most of the complexity metrics decrease with free-routing, while the few
metrics which increase are all linked to the flight level changes. This is a non-trivial result since intuitively the
complexity should increase with free-routing because of problematic geometries and more dispersed conflicts
over the airspace.

1. Introduction

In 2012 around 9,5 million flights crossed the European airspace and this number is expected to increase
by 50% in the next 20 years (Eurocontrol, 2013). Due to this traffic increase, without significant changes in
the way air transport is currently managed, flying in Europe could lead to increased costs for the airlines,
due to greater delays, and for the environment, due to higher CO2 emissions. To tackle these challenges,
the European Commission created in 2007 the SESAR JU (Single European Sky ATM Research Joint
Undertaking) with the scope of coordinating all relevant research and development efforts in Europe. Since
then, SESAR has been working on defining, exploring, testing, and implementing new solutions to cope with
the foreseen increase in air traffic. Among these, the concepts of free-routing and 4D trajectories have been
proposed (SESAR, 2007; European Commission, 2010; Eurocontrol, 2005) and are already implemented in
some areas of the European Airspace (Eurocontrol, 2012a). In the future, or in what we call in the following,
SESAR scenario, all airspace users will be allowed to plan an optimal trajectory, in space and time, from
departure to arrival. At the moment, instead, aircraft need to stick to the structure of the airspace network
and follow pre-defined airways which are often not the most direct routes. In this environment, air traffic
controllers have the role of avoiding conflicts in some specific areas that are mainly located where airways
intersect. The implementation of free-routing poses therefore some challenges in terms of safety of the
operations and of complexity of the situation that controllers have to manage. For instance, conflicts may
become harder to detect due to the spread and increased number of possible conflicting points. Moreover,
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methods used to solve conflicts (i.e. direct routes) may not be applicable any more since aircraft will be
already flying the most direct trajectory.

Although Free Route Airspace is already implemented in some parts of Europe (Eurocontrol, 2015), its
application is still limited to conditions where traffic load is quite low. Therefore, it is relevant to assess its
impact in the higher traffic conditions foreseen in the next 20 years in relation to the safety of the operations
and to the complexity that controllers will have to manage. To this end, we have developed an Air Traffic
Simulator to evaluate the implementation of some of the features foreseen by SESAR. The Simulator consists
of several modules that can work independently to allow the user to perform analyses at different levels,
from the creation of the airspace to the definition of the planned trajectories up to the execution phase.
The Simulator can take as input either real data (actual trajectories, airspace structures) or synthetic data,
and it can thus simulate both current and future scenarios, as well as all the conditions in between. Even
though other similar tools exist (FACET (Tumer and Agogino, 2007), CATS (Allignol et al., 2011, 2013)),
we developed our own simulator to have an open-source tool intended as (i) something flexible to perform
analyses in a quick and easy way considering only relevant parameters and (ii) providing a library of tools
for investigating the ATM system. A quick review of the main agent based models relevant for the ATM
system is available at (ComplexWorld, 2015).

The basic features of our Agent Based Model (ABM) were first introduced in Ref. (Bongiorno et al., 2013;
Gurtner et al., 2014) for the current ATM scenario and in Ref. (Bongiorno et al., 2015a,b) for the SESAR
scenario, as part of the activities performed during the SESAR Joint Undertaking WP-E research project
ELSA “Empirically grounded agent based model for the future ATM scenario”. Different implementations
of these basic principles can be found in (Monechi et al., 2015, 2014).

In this paper we present an updated version of the simulator already presented in (Bongiorno et al.,
2015a) with a focus on the analysis of the implementation of Free Route from a safety and a complexity
perspective. In particular we show that, by progressively making trajectories straighter, the number of actions
that controllers have to perform in order to ensure aircraft safety – i.e. to avoid conflicts – decrease. But
these actions are more scattered in the airspace, thus potentially increasing the complexity of the situations
controllers have to manage. Given that there is no consensus, as far as we know, about what is a complex
situation for controllers, we first compare some complexity metrics that can be found in literature (Histon
et al., 2002) with our own (i.e. the number of controller’s actions) and find out that they are well-correlated.
In addition we show that our own complexity metrics are very well related with what a human would be
experiencing in terms of complexity (Sridhar et al., 1998; Delahaye and Puechmorel, 2000; Chatterji and
Sridhar, 2001; Laudeman et al., 1998).

The paper is organized as follows. Section 2 describes the data we use as input to calibrate the model in
the current scenario. We also show how the complexity metrics change in the SESAR scenario and what are
the main factors contributing to the decrease of the overall complexity that we measure. Section 3 describes
the Simulator, with a focus on the modules that have been used in the analysis, while Section 4 presents the
results of the calibration process. Section 5 shows the results of the analysis when implementing free-routing
within the simulator. We finally present some conclusions in section 6.

2. Data

The model we present can be calibrated on data, either totally or partially. In section 5, we show some
results where the model is used to predict the results of new scenarios, based on a prior calibration using
traffic data. In order to calibrate the model, we use a database created and consolidated during the ELSA
project.

The database we use contains information on all the flights that, even partly, cross the ECAC airspace.
Data are collected by EUROCONTROL (http://www.eurocontrol.int), the European public institution
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that coordinates and plans air traffic control for all Europe and were obtained as part of ELSA 1.
Data come from two different sources. First, we have access to the Demand Data Repository (DDR)

(Eurocontrol, 2010) database containing all the trajectories followed by any aircraft in the ECAC airspace.
Indeed, we have access to data relative to a time period of 15 months, from the 8th of April 2010 to the 27th

of June 2011. Each 28 day time period is termed AIRAC cycle. A planned or realized trajectory is made
by a sequence of navigation points crossed by the aircraft, together with altitudes and timestamps. The
typical time between two navigation points lies between 1 and 10 minutes, giving a good time resolution
for trajectories. In this paper we use the “last filed flight plans”, i.e. the so-called M1 files, which are the
planned trajectories – filed from 6 months to one or two hours before the real departure. We also use the
real trajectories, i.e. the so-called M3 files, because we compare planned and realized trajectories in order
to investigate the role of the air traffic controllers. The database includes all flights in the enlarged ECAC
airspace2 even if they departed and/or landed in airports external to the enlarged ECAC airspace.

The other source of information is given by the NEVAC files. NEVAC files (Eurocontrol, 2009) contain
the definition (borders, altitude, relationships, time of opening and closing) of airspace elements, namely
airblocks, sectors, FIR (Flight Information Region), etc. The active elements at a given time constitute
the configuration of the airspace at that time. Thus, they give the configuration of the airspaces for an
entire AIRAC cycle. Here we only use the information on sectors, FIRs or ACCs (Air Control Centers) and
configurations to rebuild the European airspace. Specifically, at each time we have the full three dimensional
boundaries of each individual sector and FIR or ACC in Europe. All this information has been incorporated
into the database.

In this study we consider the LIRR ACC (Rome, Italy) between 2010-05-06 and 2010-06-03, i.e. the 334
AIRAC. We are considering only commercial flights, which in first approximation are obtained by considering
1) flights performed with Landplanes (i.e. no helicopter, gyrocopter, only aircraft which can only operate
from or alight on land), 2) scheduled flights, 3) flights with a IATA code 4) flights with a duration longer
than 10 minutes. We also exclude few other flights having obvious recording data errors. To focus our
attention on the en-route phase we filter out from the flight plans all navpoints crossed at an altitude lower
than FL 240. After the filtering procedure, 35714 are kept for the entire AIRAC.

In order to include the local constraints of the sector capacities, it is important to remember that the
sectors are not static geometric regions but they are merged together and split dynamically to fulfill workload
requirements. For the sake of simplicity we will refer to the collapsed sector defined in the reference (Gurtner
et al., 2015). These are a static bi-dimensional projection of the sectors higher than FL 350. The sectors
capacity inferred from data is defined as the maximum number of flights expected within a time-window of
one hour inside the collapsed sector. Finally, data do not include Saturdays and Sundays in order to avoid
weekly seasonality effects.

All the data that we present here are used in section 5 to produce some results with the model that we
describe hereafter.

3. The Model

The ELSA Air Traffic Simulator is a fast-time simulation agent-based model describing the strategic and
tactical phases of the air traffic management. It is composed of several fairly independent modules:

1Data can be accessed by asking permission to the legitimate owner (EUROCONTROL). The owners reserve the right to
grant/deny access to data.

2Countries in the enlarged ECAC airspace are: Iceland (BI), Kosovo (BK), Belgium (EB), Germany-civil (ED), Estonia
(EE), Finland (EF), UK (EG), Netherlands (EH), Ireland (EI), Denmark (EK), Luxembourg (EL), Norway (EN), Poland (EP),
Sweden (ES), Germany-military (ET), Latvia (EV), Lithuania (EY), Albania (LA), Bulgaria (LB), Cyprus (LC), Croatia (LD),
Spain (LE), France (LF), Greece (LG), Hungary (LH), Italy (LI), Slovenia (LJ), Czech Republic (LK), Malta (LM), Monaco
(LN), Austria (LO), Portugal (LP), Bosnia-Herzegovina (LQ), Romania (LR), Switzerland (LS), Turkey (LT), Moldova (LU),
Macedonia (LW), Gibraltar (LX), Serbia-Montenegro (LY), Slovakia (LZ), Armenia (UD), Georgia (UG), Ukraine (UK).
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• A network generator, including navigation points and sectors.

• A strategic layer, able to investigate the competition amongst airlines for the strategic allocation of
best routes and here used as a flight plan generator.

• A rectification module, used to straighten up trajectories when simulating free-routing.

• A pre-tactical de-conflicting module, used to generate (by brute-force) conflict-free planned tra-
jectories starting from real or surrogate planned trajectories.

• A tactical layer, with a conflict resolution engine, simulating a tunable, imperfect super-controller.

• A post-processing module, including standard metrics computation and a simple graphic interface
to see the networks computed from trajectories produced by the model.

A schematic representation of the code is displayed in Fig. 1. The model uses a description of the airspace
in terms of navigation points (which form a network on which the flights are travelling) and sectors. The
latter define in which area the controller can actually interact with the flights.

The model includes the possibility of building different airspaces, ranging from the full manual prescrip-
tion of navigation points and sectors to the automatic generation of airspace. Real airspaces can also be
used easily, possibly integrating deviations from reality controlled by the user (e.g. number of navigation
points). The airspace can be composed of several sectors and is in three dimensions of space, but is static
throughout the simulation.

The model gives the possibility of generating flight trajectories in a controlled way. In particular, there
exists the possibility of slowly tending to business trajectories – i.e. straighter and straighter trajectories, thus
testing the possibility of continuous integration of the free-route scenario on real airspace. The integration
can be heterogeneous, with some sectors keeping a fixed grid of navigation points whereas others have already
moved to business trajectories.

The core engine of the model is the resolution of conflicts, given an airspace and some flights traveling
through it. The controller can have different strategies (horizontal deviation, vertical deviations, give a
direct) depending on the environment and its own limited – and tunable – look-ahead time. The controller
is perfect in the sense that it avoids all conflicts but sometimes makes suboptimal decisions due to its limited
forecast capabilities. “Shocks” can be used to perturb the trajectories. Indeed, some parts of the airspace
can be randomly shut down for a given time, simulating weather events or military exercises. The spatial
and temporal distributions of shocks can be fully controlled.

The code of the simulator is written in Python and C (Kernighan and Ritchie, 1988), but only a limited
knowledge of Python and C is required in order to use it. It is released under the General Public License
version 3, i.e. it is open-source. In particular, it is freely downloadable on Github (ELSA-Project, 2016a).
The community is welcome to use it, modify it, ask for clarifications and report bugs, using the tools available
on GitHub or contacting directly the authors. The code has currently been fully tested under Linux, but
should work also with MACOS with minimal effort.

Each of the modules briefly illustrated below are fully described in (ELSA-Project, 2016b).

3.1. Network Generator

The starting point of our simulator is a network generator module that is used to generate the navigation
points grid that will then be populated by flying aircraft. In particular, it allows:

• To generate the spatial distribution of navigation points or use external data,

• To compute the navigation points network edges with a triangulation 3 or use external data,

3We use the Delaunay triangulation for its properties (Delaunay, 1934).
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Figure 1: Organization of the model.
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• To generate sectors at random, using a Voronoi tessellation (Voronoi, 1908) for the boundaries or use
external data,

• To compute time of travels between edges of navigation points or use external data.

Hence the user can fully specify the network and the sectors or use the module in a semi-automated way. It
is also possible to build a network based on traffic data.

3.2. Strategic Layer

The strategic layer is a full Agent-Based Model where different agents, i.e. airlines and network manager,
are collaborating or competing for the same resources, i.e. time slots and trajectories. An earlier version
has been described in detail in (Gurtner et al., 2014, 2015). The strategic layer is designed to generate
trajectories with a coarse level of description, suitable to study high level phenomena. In particular, the
trajectories are kinematic and do not take into account winds, weight, etc.

Some results related to this model have already been presented in Ref. (Gurtner et al., 2015). With
respect to that work, we updated the model in order to have a full, navigation point-based description of
the airspace, on top of the sector-based description. The full description of this updated version is available
in (ELSA-Project, 2016b). In short, the strategic layer takes as input a network of navigation points with
the legitimate paths and fills the airspace realistically, with airlines submitting flight plans and the network
manager rejecting or accepting them on a capacity-constraint basis.

For the purpose of the present work, we consider the strategic layer of our simulator as a tool that
produces a set of realistic trajectories, fulfilling some capacity constraints, which can be used as an input
to the tactical layer below. Since the agents can have different behaviours, the results depend also on the
choices of the code user. Here we use some default values that were obtained by considering the results of
the calibration procedure we ran in (Gurtner et al., 2014).

As a result, the strategic layer, when used as a “traffic generator”, generates synthetic traffic on a given
network of navigation points and sectors. It allows to create traffic in a set of sectors given some airports
and/or entry/exit points in a realistic way, making sure no sector is overloaded. The user can specify in
particular:

• A total number of flights,

• the navigation point network to be used,

• a distribution of flights per pair of entry/exit points,

• a distribution of departure times,

• some capacities for the sectors.

Other parameters, such as those specifying the type of airlines present in the considered airspace, are set to
default values, see Table 1.

We also have a “simplified traffic generator” that simply generates trajectories by randomly extracting
navigation points according to the constraints mentioned previously and without considering the sectors
capacities. We use this simplified approach because it performs faster than the full traffic generator in which
the capacity is set to infinity. Having a fast simulator for trajectories that do not fulfill capacity constraints
reveals itself useful when performing numerical simulations for the description of the SESAR scenario.

It is worth mentioning that both traffic generators give as an output 2-D trajectories, i.e. trajectories
that lie on an horizontal plane. In order to have 3-D trajectories we implemented the following procedure:

1. For each flight, we first extract from the distribution of flight levels occupancy (see figure 2) a series
of flight levels as well as the number of navigation points of the considered trajectory;
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2. we then order the values so that the first third of them are in increasing order, the last third of values
are in decreasing order the second third of values are mixed. In other words, the corresponding flight
ascends, has a fairly stable altitude and then descends towards the end of the trajectory. This is a very
simplistic procedure that nevertheless has the advantage to roughly capture the fact that aircraft have
an ascending, en-route, and descending phase. The altitudes thus generated concur in determining
the planned trajectories. They can be modified during the tactical phase in order to solve possible
conflicts. The way these altitudes will be modified is fully explained in (ELSA-Project, 2016b).

When generating the planned trajectories, we consider that all aircraft travel with the same velocity
as a first approximation. This velocity is taken equal to the average velocity of all aircraft present in the
considered airspace. However, trajectories can also be taken from real data, in which case we consider the
real velocity of each trajectory segment.

Given the previous considerations, when generating the flight plan trajectories, one has also to consider
the following additional constraints:

• a distribution of flight levels occupancy,

• a distribution of velocities.

We attract the attention of the reader on the fact that the trajectories we generate here and use in the
following represent simplified versions of real trajectories. Indeed, as highlighted previously, the trajectories
are purely kinematic and do not take into account winds or aircraft weights. This is deliberate, since we
aim at building a simplified model of the reality, only keeping the features which impact the phenomena we
want to study (capacity constraints, conflict scaling, conflict resolution complexity). Note however that these
simplified trajectories are in fact generated in a way which is quite similar to what the Network Manager
does in reality.

3.3. Rectification Module

The rectification module was introduced to study the transition between current and SESAR scenario
in a controlled way. In particular, there exists the possibility of slowly tending to straight trajectories, thus
testing the possibility of progressive integration of the free-route concept on the current airspace structure.
The integration can be heterogeneous, with some sectors keeping a fixed grid of navigation points whereas
others have already moved to free-route. The module requires as input a generic M1 file, i.e. a set of planned
trajectories in the current scenario, and produces as output another M1 file where trajectories have higher
values of efficiency. This efficiency is defined as the ratio between the actual length of the trajectory and the
shortest path between origin and destination (Bongiorno et al., 2015b):

E =

∑
Nf
d(O,D)i∑

Nf
dBP (O,D)

(1)

At each step the algorithm evaluates the current efficiency and if it is less than the target, it substitutes a
point of a route randomly selected with the medium point between the previous navigation point and the
successive one.

3.4. Pre-Tactical De-conflicting Module

The model also includes a pre-tactical de-conflicting module. Its task is to generate conflict-free planned
trajectories starting from real or surrogate planned trajectories. The need for such a module is due to the
fact that one of the features foreseen by SESAR will be a better planning of the trajectories such that they
may be already conflict-free (Eurocontrol, 2012b). As such, since we are still at the planning level and
no issue regarding the flight conditions is taken in consideration, differently from the module of 3.5, that
modifies the sequence of navigation points/flight levels, this module only acts on the departure time of the
aircraft.
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3.5. Tactical Layer

The tactical layer of our simulator can be considered as a zero-intelligence agent-based model (in the line
of (Farmer et al., 2003)) that simulates the interactions between ATC controllers and aircraft. There is no
learning from the agents and they interact in a mechanistic way.

The core of the tactical layer is composed by the “conflict detection” and “conflict resolution” submod-
ules4. These modules are used to check whether any conflict occurs and to solve it (Bongiorno et al., 2015b).
It essentially works along the same lines than the analogous module already presented in Ref. (Bongiorno
et al., 2013). In order to check for collisions between the i-th aircraft and all the other Nf − 1 ones, flying
at the same flight level, the conflict detection module performs a sample of the aircraft trajectories with
a resolution of δt seconds. This time-step is then divided into N elementary time increments of length δt
and the position of each aircraft is computed for each of them. We thus have an array of positions for each
aircraft simultaneously present in the considered airspace. Then the module compares the array of aircraft i
with the array of the other Nf − 1 aircraft by calculating the distance between any two aircraft flying at the
same flight level at each time increment. A conflict is detected if at least one value is below the minimum
separation distance of 5 nautical miles.

The simplest version of the conflict resolution module is based on two strategies: rerouting and flight
level changing. In order to solve the conflicts, the module tries first to reroute the aircraft. If the rerouting
fails, it changes the flight level instead. In order to reroute the aircraft, the Simulator generates a set of
random temporary navigation points around the location of the possible conflict, within a range of 100 km.
Then it tries to send the aircraft towards one of these coordinates, making sure that (i) the total path length
is minimized and that (ii) the angle between planned and deviated trajectories is smaller than a threshold
value selected by the user. If no solution is found by performing a re-routing with these two constraints,
then the module tries to send the aircraft 2 separation levels up (e.g. from FL 320 to FL 340). If it fails
again, it tries 2 separation levels down.

3.6. Post Processing

The simulator also features some post-processing tools which help the user having a better grasp on
the results of the model. The functions currently include for instance network-builders from trajectories,
computation of different network metrics, comparisons of networks, as well as a movie maker to replay
simulations.

4. Calibration and Data Input

In this section, we describe how the model can be calibrated by partially or totally using real data. More
precisely, we look at the general input needed by the model and the specific data we used in the present
article in order to produce the results found in section 5. We first summarize the parameters entering the
model and then show the activities performed for the selection of the parameters that were calibrated, when
possible, on real data. We gather all parameters of the simulator into two main categories. On one side we
have the parameters needed for the generation of the flight trajectories, either synthetic or taken from real
data. These parameters mainly refer to the parts of the model described in sections 3.1 and 3.2. On the
other side we have the set of parameters needed for the management of the trajectories. These parameters
mainly refer to the parts of the model described in section 3.5.

4The issue of conflict detection and resolution has been extensively studied in literature. We can refer the reader to a short
review, available at http://www.complexworld.eu/agent-based-models-take-off/
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4.1. Trajectory Generation

The main operational inputs for the strategic layer have been collected during interviews with Alitalia
Flight Dispatchers that work at the Alitalia Operation Center (OCC)5. They are the professional figures in
charge of defining the flight plans and monitoring the flight execution phase. The Alitalia Operation Center
is responsible of coordinating and managing almost 700 flight per day, of which around 70 are long-haul
flights.

The information collected that is more relevant for the development of the strategic ABM is mainly
related to: (a) the timeframe of the flight plan definition process (6 hours in advance for long-haul flights
and 2-hours in advance for medium and short-haul flights); (b) the costs taken into account for the flight
plan optimization; (c) the interactions between the flight dispatcher and the network manager and the fact
that the flight dispatcher is unaware of other companies strategies; (d) the flight plan submission process,
how flight plans are rejected and submitted again for the final approval; (e) the criticalities related to the
planning phase such as the exceeding of capacity of one or more sector, bad weather avoidance, partial or
total closure of destination airport or unpredictable events like strikes, big events, wars.

In Table 1 we list all the parameters relevant for the generation of flight trajectories. In the third column
we give a short description of the parameters and in the fourth column we introduce a classification of the
parameters in terms of the three categories described below:

• FP - free parameter, to be chosen at will depending on the type of experiments one wants to perform.

• EO - external output, to be chosen according to some rule depending on the type of realistic experiments
one wants to perform.

• CD - parameter that needs to be calibrated from data.

• CV - parameter that needs to be calibrated according to the validation activities performed with ATM
experts and ATCOs.

Depending on the way the different modules are used, the same parameter can fit into different categories,
corresponding to different calibration procedures.

In addition to these parameters, the flight plan generator requires the specification of the distributions
indicated in Table 2.

Table 2: Distributions relevant for the generation of flight trajectories.

ID Param. Description
1 v distribution of the aircraft velocity
2 FL distribution of the flight levels occupancy
3 OP distribution of flights between origin-destination pairs
4 DEP distribution of departure times

These are distributions that can be easily obtained from real data. The main calibration activity con-
ducted on real data regards the choice of the aircraft velocity. In the top-left panel of Fig. 2 we show the
distribution of the aircraft velocity measure starting from the M1 files and in the LIRR ACC. The median
of the distribution is v = 230 m/s which correspond to v = 828 km/h. This is the value that we used in
the simulations of section 5. From this distribution one might estimate vmin ≈ 130 m/s and vmax ≈ 320
m/s. The standard deviation is about ≈ 22 m/s. The top right panel shows the distribution of flights
between airport pairs, while the bottom left panel shows the distribution of flight levels occupancy. Finally,
in the bottom right panel we show the distribution of departure times for the original M1 flight trajectories

5This small section is taken directly from the SID paper 2013 (Bongiorno et al., 2013).
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Table 1: Model parameters relevant for the generation of flight trajectories. In boldface we indicate the category associated to
the parameter in the present work.

ID Parameter Description Type Value
01 Ns Number of sectors FP/EO 10

02 Np Number of navigation points per sector FP/EO
Dis. from data

(∼ 28 in average)
03 A Area of the considered airspace FP/EO LIRR
04 Na Number of airports or entries/exits FP/EO 189
05 {tij} Crossing times of edges CD Dis. from data
06 {Cα} Capacity of airports FP/CD Not used here
07 {Ci} Capacity of sectors FP/CD Dis. from data

08 dmin
Minimum number of navpoints between

entry and exit potentially linked by a flight
FP/CD 5

9 Nfp Number of flight plans submitted for each flight FP/CV 10

10 Nsp
Number of paths of navigation points

per path of sector
CD 2

11 τ Time shifting step for the flight plan FP/CV 15 min.
12 DP Type of departure times pattern FP/CD/EO Dis. from data

13 δt0
Standard deviation of noise added

to the real departure times
FP Not used here

14 Nf Number of flights FP/EO Variable
15 α, β Behavioural parameters for airlines FP/CD 1, 0.001
16 Nshock Number of sectors which are shut down FP Not used here

(green line), i.e. the distribution required in section 3.4. We also show the distribution in the case where
pre-tactical de-conflicting module of section 3.4 is applied. Interestingly, our procedure does not alter the
original distribution in a significant way, notwithstanding the fact that it is a brute-force method. This is
very important for us, because we can simulate a strategic conflict-free scenario with very realistic departure
times. It is also interesting per se, because it means that real strategic deconfliction procedures could be
implemented without disrupting the business models of the airlines.

4.2. Trajectory Management

The parameters related to the trajectory management are summarized in Table 3. The number of
parameters that need to be calibrated from data is really small. However, there are many parameters
(CV category) that are related to the behaviour of the controllers. In principle, these parameters could be
inferred from data through some sophisticated data mining. However, we believe they could also be fixed by
consulting ATM experts and ATCOs. Finally, they can also be changed at will when performing scenario
simulations, to test how changing a given feature affects the ATM system.
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Figure 2: Top left panel: velocity distribution measured from the M1 files. Top right panel: empirical probability distribution
of the number of flights between origin and destination airports. Bottom left panel: empirical probability distribution of the
flight level occupancy. Bottom right panel: distribution of departure times for de-conflicted (blue line) and original M1 flight
trajectories (green line). Data refer to the LIRR ACC on day 06/05/2010.

Table 3: Model parameters relevant for the management of flight trajectories.

ID Parameter Description Type Value

01 ∆t
Length of the time-step.

This is also related to the controller’s look-ahead.
FP 12.27m

02 δt Length of the elementary time-intervals. FP 8s

03 tr
Fraction of ∆t by which we move the overlapping

time-steps.
FP 0.25

04 σv
Range of the noise introduced in the estimation

of the aircraft velocity
CV not used here

05 Dmax

Radius of the circle centered in B where we look
for temporary navigation points potentially relevant

for performing a re-routing.
FP not used here

06 αM
Maximum angle of deviation between planned and

modified trajectory.
CV 15 deg

07 Tmax

Maximal temporal distance between the navigation
point B and navigation point E that identify when

a deviated portion of flight trajectory starts and ends
FP/CV 24.5m

08 pd Probability to try to issue a direct. CD/CV 0
09 Ls Sensitivity threshold for issuing a direct. FP/CV not used here
10 CS Center of each shock. FP/CD not used here
11 Sm Average number of shocks per time-step per flight-level. FP/CD not used here
12 DS Temporal duration of each shock. FP/CD not used here
13 RS Radius of each shock. FP/CD not used here

14 FLmin/max
Minimum/maximum flight level where shocks

are generated
FP/CD not used here
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5. Results

Now that we have described the general procedure of calibration and the specific calibration we use to
produce the results described hereafter, we turn to the output that the model can produce with this setup.

In this section we present some results obtained with the simulator. We focus on two interdependent
aspects: the complexity from the controller’s point of view to solve conflicts, and the resulting level
of safety. Our goal is the following: understand what are the leading factors of complexity based on
the current situation, and predict what will be the complexity with different levels of traffic and different
conditions (free-routing).

More specifically, we show in this section that our model predicts that in the SESAR scenario potential
conflicts will be less frequent than in the current scenario, but they will be more widespread all over the
entire airspace. This in principle increases the complexity that controllers face in the SESAR scenario.

Moreover, we show that our simulator is able to tackle complexity in the same manner than humans do,
in the current ATM scenario. This will ensure that we can use the simulator to perform realistic scenario
simulations to assess how the controllers will operate in the SESAR scenario. We also show how capacity
constraints lead to different levels of complexity.

Our roadmap is the following: we first study the relationship between the number of conflicts and the
degree of free-routing (geometric efficiency of the trajectory). We then study how potential conflicts can turn
into real conflicts due to uncertainty on time and how this picture evolves with free-routing. We then show
how the conflicts are located geographically with free-routing, in order to have a first idea of the complexity
of conflict-solving with free-routing. To go further, we use some complexity metrics and study how they
change with free-routing. We also investigate the effect of capacity constraints on complexity. Finally, we
use Principal Component Analysis and non linear fitting techniques to a) find the main drivers of complexity
for controllers b) predict how the complexity evolves with free-routing.

The data we will consider below were obtained by first selecting the first day of AIRAC 334 (06 May
2010) and the LIRR ACC which covers most of central Italy. We then generated synthetic M1 trajectories
by using the Flight Plan Generator with no capacity constraints of section 3.2. Moreover, the trajectories
are deconflicted using the module described in section 3.4. This is done in order to discard any effect due to
the resolution of possible conflicts, given the fact that in the SESAR scenario it is assumed that the flight
trajectories released by the Network Manager will be conflict-free. The deconfliction itself leads to some
changes in the departures times. However, the changes are quite small: 98% of the flights are departing
within ± 22 minutes of their initial departure times. We generated N = 100 realizations of the given
day. These trajectories are subsequently rectified by using the module described in section 3.3. We thus
generate different sets of flight plans corresponding to different levels of efficiency ranging from a low value
of E = 0.973 corresponding to the current scenario to the highest value of E = 0.999 corresponding to the
SESAR scenario. Trajectories are generated for different number of aircraft present in the airspace. These
values range from Nf = 1500 to Nf = 2200. From real data, we can observe that the number of aircraft
actually present in the considered airspace, given the applied filters, is approximately Nf = 1800.

5.1. Going from the current scenario to the SESAR scenario

In Fig. 3 we show the average number of conflicts detected in the LIRR ACC, for different values of
efficiency (horizontal axis) and for different values of the number of aircraft present in the ACC (different
lines in the plot). All the curves have been normalized with N2

f , i.e. with the maximum number of pairs of
conflicting aircraft in an environment with Nf aircraft. The average number of conflicts is here measured
as the average number of actions that the controller has to perform in order to avoid the conflicts detected
by the Collision Module described in section 3.5. Therefore, these measures are performed on the surrogate
M3 flight trajectories generated by our model footnoteWe recall that our trajectories only concern the en-
route part and do not include the airports proximities or the terminal maneuvering area (TMA) sectors, as
described in section 2.. Indeed, the figure shows two interesting features: on one side we have that all curves
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seem to collapse in a single curve when the number of conflicts is rescaled with N2
f . This is expected in a

stable environment (same airspace, same departure times distribution). Indeed, adding a flight at random
on an airspace has a constant probability – because of the stable environment – of triggering a conflict with
each other flight. Hence, adding a flight adds on average p × Nf conflicts, where p is the probability to
have a conflict. If, on average, a flight creates k conflicts, then the total number of conflicts will grow as
kp(Nf − 1)/Nf/2 ∼ N2

f .
Moreover, the number of detected conflicts decreases when the efficiency increases, thus indicating that

in the SESAR scenario we would observe less conflicts and therefore a smaller workload for controllers.
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Figure 3: Average number of conflicts detected in the surrogate M3 flight trajectories of the LIRR ACC, for different values of
efficiency (horizontal axis) and for different numbers aircraft present in the ACC (different lines in the plot). Each of the curve
has been normalized by N2

f .

We have also devised a simple procedure to compute what is the expected number of possible safety
events (PSE), i.e. potential conflicts we should expect if all flights were to stick exactly to their flight plans.
Indeed, since we add some noise on the departure times of the flights, the expected conflicts might not occur,
and others non-expected events can take place. Moreover, we can also understand whether the fact that we
observe less conflicts is already present at the level of planning or if it is mainly due to the management of
trajectories done by the controllers. We start from the M1 deconflicted trajectories and we implement the
following procedure:

• We perform a very fine spatial sampling of all flight trajectories, taking one point every meter along
the trajectories.

• Starting from the original flight plans we associate to each of these sampled points a timestamp. This
is done by assuming that between two navigation points the velocity of the aircraft is constant.

• We select those sampled points P
(a)
i in the a-th flight trajectory and P

(b)
j in the b-th flight trajec-

tory such that the Euclidean distance d(P
(a)
i , P

(b)
j ) between the two points is smaller than the safety

threshold distance dthresh = 5 NM.

• We further select the points such that the times t
(a)
i at which the a-th aircraft crosses P

(a)
i and t

(b)
j at

which the b-th aircraft crosses P
(b)
j are below a certain time threshold Tthresh.
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By using such procedure we are able to show what are the points of the ACC that are likely to attract the
controller attention as a source of possible conflicts. Of course, the number of PSEs thus defined is strictly
dependent on the threshold Tthresh considered. In Fig. 4 we show the PSEs detected in the LIRR ACC, for
different values of efficiency (horizontal axis) and for different values of the number of aircraft present in the
ACC (different curves in the plot). As above, each of the curves has been normalized by N2

f . In the figure we
show the results for Tthresh = 5.0 min. Also in this case, the figure shows two interesting features. First, all
curves collapse in a single curve when the number of PSEs is rescaled by N2

f . Second, the number of PSEs
decreases with the efficiency, thus indicating that in the SESAR scenario we would expect less potential
conflicts.
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Figure 4: Average number of PSEs detected in the M1 flight trajectories of the LIRR ACC, for different values of efficiency
(horizontal axis) and for different numbers of aircraft present in the ACC (different curves in the plot). Each of the curve has
been normalized by N2

f .

In Fig. 5 we show a scatter plot between the normalized PSEs detected from the M1 files with Tthresh =
5.0 min (horizontal axis) and the normalized number of conflicts detected from the surrogate M3 files (vertical
axis) for different values of efficiency. The figure shows the existence of two different regimes. For values of
efficiency close to unity, the points can be fitted with a linear relationship, with a slope around 0.05, while
for lower values of efficiency, we have a linear relationship with a slope around 0.01. In any case, the fact
that the slope is higher for high values of efficiency indicates that a small variation in the PSEs translates
into a larger variation of the number of detected conflicts. This means that the SESAR scenario might turn
out to be less flexible with respect to variations in the planning of the trajectories.

14



3.0 3.5 4.0 4.5 5.0 5.5 6.0
PSE/N 2

f
1e 5

0.6

0.8

1.0

1.2

1.4

<
C
on
fl
ic
t
>
/
N

2 f

1e 6

y=0.05 x
y=0.01 x 0.975

0.978
0.981
0.984
0.987
0.990
0.993
0.996
0.999

Ef
f

Figure 5: Scatter plot of the average number of conflicts detected in the surrogate M3 flight trajectories versus the average
number of PSEs in the LIRR ACC. Different points represent different values of efficiency and different values of the number
of aircraft present in the ACC. In dashed line we added the linear fits corresponding to the first and second part of the curve.

5.2. Heterogeneity

The above results show that in the SESAR scenario one should expect to observe less conflicts than
in the current scenario. We now investigate their spatial locations. In fact, the main reason for having a
navigation point grid is that it helps the controllers in monitoring the air traffic, since they need to do it
only in specific portions of the airspace. We are therefore interested in understanding whether or not this
feature will be maintained in the SESAR scenario.

In Fig. 6 we show a density map of the PSEs detected when considering three different values of efficiency
and Tthresh = 5.0 min. In the left panel we show the PSEs detected starting from the real M1 trajectories,
which correspond to an efficiency value of E = 0.973. In the right panel we show the PSEs detected starting
from the M1 trajectories corresponding to the SESAR scenario, i.e. with an efficiency value of E = 0.999.
In the central panel we show the PSEs detected starting from the M1 trajectories corresponding to the
intermediate value of efficiency E = 0.980. As expected, when efficiency increases, the possible conflicts are
more spread all over the airspace, rather than being concentrated in specific regions. In fact, flight trajectories
are more distributed over the entire airspace and therefore the probability of conflicting is smaller. This
explains why the number of detected conflicts decreases when the efficiency increases. This also implies that
the controller activity in the SESAR scenario will change, moving from a situation where he/she has to give
attention to a high number of conflicts concentrated in specific points, to a situation where he/she will have
to manage less conflicts spread over a much larger portion of the airspace.
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Figure 6: Density map of the PSEs detected when considering three different values of efficiency and Tthresh = 5.0 min in
the LIRR ACC. In the left panel we show the PSEs detected starting from the real M1 trajectories, i.e. of E = 0.973. In the
bottom panel we show the PSEs detected starting from the M1 trajectories corresponding to the SESAR scenario, i.e. with an
efficiency value of E = 0.999. In the right panel we show the PSEs detected starting from the M1 trajectories corresponding to
the intermediate value of efficiency E = 0.980. To enhance readability, we first take the logarithm of the number of PSEs and
then we normalize by dividing all values by the maximum value found in the three graphs (which is reached in the left panel).

Indeed, controllers are obviously sensitive not only to the number of conflicts or the number of flights,
but to other factors. In fact, to the best of our knowledge, there is no consensus about what is a complex
situation for controllers. In literature (Histon et al., 2002) there are examples of several metrics that capture
specific aspects of the complexity typically faced by the controllers. These metrics are quite diverse and
are linked to time to conflicts, distances between aircraft, geometry of conflicts, etc. They are computable
from the planned trajectories, which allows to see at each point in time what is the expected complexity for
the controller. On the other hand, we also have our own measure of complexity, directly coming from the
model. Indeed, the number of actions done by the controllers can be viewed as a complexity measure where
our (super-)controller gradually meets more complex situations and thus makes more actions to solve the
conflicts. As a consequence, we are here interested in investigating whether the number of actions can be
related to the complexity metrics already known in literature.

In order to do so, we compute the metrics of (Laudeman et al., 1998; Sridhar et al., 1998) and (Chatterji
and Sridhar, 2001) by using our planned trajectories. At the same time, we use the model on the same
trajectories and we record the number of actions necessary to solve conflicts. Table 4 shows the average
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values over one single day of these metrics. The values are also averaged over N ∼ 100 realizations. The
precise meaning of the metrics can be found in Appendix A, but we report in the table a very short description
of them too. Quite strikingly, despite the results of Fig. 6, most of the metrics decrease in the new scenario.
The metrics which increase are all linked to the altitude, essentially because with free routing as we designed
it the flights are always descending or ascending, but never stay at a constant altitude. Consistently with
most of the metrics, the number of actions of the controller also drops, as also indicated in Fig. 4 and Fig.
3. Note also that the metric C16, which captures the geometry of potential conflicts, also drops a lot (by
64%). This counter-intuitive results is probably due to the fact that this metric scales with the number of
conflicts. Since the latter drops a lot in the new scenario, the possible higher complexity due to geometry
disappears with the number of conflicts. Another explanation might be that, since conflicts are more spread
all over the considered airspace – see Fig. 6 – on average aircraft stay at a larger distance, which makes the
topological constraints less stringent.

Low Eff High Eff Norm. diff. T test Short description

C1 1.747375 1.702682 -0.012954 Diff. Density
C2 0.267801 0.288694 0.037543 Diff. Climbing
C3 0.290026 0.307920 0.029924 Diff. Stationary
C4 0.337407 0.293016 -0.070414 Diff. Descending
C5 0.003366 0.003196 -0.025883 Not Diff. Inverse of horizontal distance
C6 0.000194 0.000191 -0.007885 Not Diff. Inverse of vertical distance

C7 0.001828 0.001920 0.024651 Diff.
Inverse of horizontal distance

(vertical conflict)

C8 0.000107 0.000064 -0.252736 Diff.
Inverse of vertical distance

(horizontal conflict)
C9 0.003678 0.016946 0.643301 Diff. Inverse minimum horizontal distance
C10 0.000122 0.000070 -0.268582 Diff. Inverse minimum vertical distance
C11 0.039245 0.032656 -0.091634 Diff. Positive time-to-conflict

C12 0.000002 0.000002 -0.012337 Not Diff.
Average inverse minimum

time-to-conflict
C13 0.041139 0.019182 -0.363997 Diff. Inverse minimum time-to-conflict
C16 0.000472 0.000101 -0.646889 Diff. Crossing angles
N 34.967815 34.053641 -0.013245 Diff. Density
HC 3.244316 0.000000 -1.000000 Diff. Heading changes
AC 15.659597 17.028818 0.041887 Diff. Altitude change
MD5 0.807553 0.467555 -0.266642 Diff. 3d distance 0-5 NM
MD10 0.673807 0.446676 -0.202708 Diff. 3d distance 6-10 NM
CP25 1.683513 1.412701 -0.087465 Diff. Horizontal distance 0-25 NM
CP40 2.080441 1.949608 -0.032464 Diff. Horizontal distance 26-40 NM
CP75 7.737588 6.996779 -0.050278 Diff. Horizontal distance 41-70 NM
na v 0.051049 0.021128 -0.414553 Diff. Vertical changes
na h 0.048543 0.022056 -0.375179 Diff. Horizontal changes
na tot 0.099592 0.043184 -0.395084 Diff. Total actions

Table 4: Values of different complexity metrics in the low and high efficiency scenarios. The third column indicates the
normalized difference between both, and the fourth one the result of a T-test to see if the metrics are statistically different in
both scenarios. The last column shows a very brief description of the metrics. The values presented are computed over one
day. The last three rows are coming from simulations, whereas the other ones are computed over planned trajectories only.
More specifically, na h and na v are the number of actions that the controller does on the horizontal and vertical axes, whereas
na tot is just the sum. The other metrics are coming from papers of the literature on the subject and their full meaning can
be found in appendix Appendix A. We have highlighted in bold the metrics which increase in the new scenario.

17



In summary, it seems that the complexity indicators are decreasing overall in the new scenario. As a
consequence, we have a strong indication that the situation would be less complex for humans to handle.
Moreover, the indicators of complexity coming from the algorithm are going in the same direction. In other
words, it seems that our virtual super-controller and some real controllers would react in the same way to
changing conditions of traffic. If this point is confirmed, we could safely use our simulator to predict the
complexity of situations in new environments, including free-routing.

5.3. Complexity Scaling

Before going further in the use of these complexity metrics, it is worth understanding better what is the
relationship between the complexity and its most simple component, the density.

To investigate this issue we perform simulations on the same airspace, but varying the sectors capacities.
We first produce a fixed number of trajectories with the strategic layer, and then we change the capacities
in three different ways:

• In the first scenario, we decrease uniformly the capacities of all sectors.

• In the second one, we “impair” severely three central sectors, increasing the capacities of the surround-
ing sectors to have the same average capacity. Then we decrease all capacities uniformly like in the
previous point.

• The last one is the witness in which we remove the capacity constraint and change the number of
flights submitting a flight plan.

After that, we use the tactical layer to solve all conflicts in each simulation and we track the number of
actions of the controllers. Figure 7 shows the output. For each of the scenarios, we performed a power-
law regression with the function Nf 7→ bNa

f . For the red line – without capacity constraints – we obtain
a = 2.0 ± 9.0e − 5 and b = 8.4e − 5 ± 3.0e − 11, i.e. a pure quadratic law. This is expected, because the
number of conflicts should scale with the number of pairs of aircraft, i.e. ∼ Nf (Nf − 1)/2 ∼ N2

f , as already
noted before.

Interestingly, the regression for the two other scenarios yield different scalings. With the same regression,
the violet line yields: a = 2.4±1.0e−4 and b = 3.6e−6±8.0e−14 and the blue line gives: a = 2.8±2.0e−4
and b = 3.4e − 7 ± 1.0e − 15. In other words, they are clearly displaying super-quadratic behaviours. But
before explaining why, we comment on the fact that despite this behaviour, these two cases usually need less
actions than the capacity-free case for the same number of flights. This is due to the fact that capacities
tend to spread the flights during the day. Hence the concentration in time of flights decreases during peaks,
which decreases the number of potential conflicts (flights are flying at different times).

The same argument explains the super-quadratic behaviour. Indeed, due to our experimental procedure,
when the number of flights increases, it means that the capacities are less binding, since we keep the number
of flights fixed as input to the strategic layer. Hence, when the number of flights increases, the number of
potential conflicts increases more quickly than N2

f , because more flights are flying at similar times. Finally,
note that the same kind of simulations in free-routing yields the same kind of results (not shown here).

The conclusion is that sectors play a major role in the complexity of the airspace, and that complexity
heavily depends on the pairs of flights simultaneously present in the airspace. All the variance is not explained
by the density though, and other factors are important, especially to human controllers.

5.4. Complexity Metrics

In this section we will assess the capability of our simulator to tackle complexity as much as humans do
in the current ATM scenario. This will be done by considering the complexity indicators already introduced
above and comparing their values obtained with our simulator and in the case of human decisions. Having
clarified this aspect, in the next section we will therefore use the simulator to assess how the controllers will
operate in the SESAR scenario.
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Figure 7: Different scaling for different scenarios. The scatter plots have been obtained with a uniform reduction of the capacities
(light blue), with some sectors severely impaired (violet) and without any capacity (red). The solid lines are the result of power
law regressions for each set of data (see text for the values of the coefficients).

5.4.1. Structure of the correlation matrix

In order to address such question, we first consider the correlation matrix computed starting from the
above metrics. Specifically, we compute the Pearson correlation coefficients over one day of data with a
resolution of two minutes. The correlations are presented in tables 5 and 6.

We first notice that these metrics are very far from being independent from each other. Except for the
case of C12 (related to the average inverse time-to-conflict), all metrics show quite high correlations between
them. In particular, the metrics N, HC, etc. are very correlated with each other. In fact, this is expected,
since these metrics are not normalized with the square of the traffic, i.e. they all scale at least as ∼ N2

f , as
shown in section 5.3. Hence, their correlations just reflect the daily pattern of traffic. For the same reason,
the choice of the density as the first relevant metric in each batch (C1 and N) is not necessarily the most
relevant – because the density squared in the relevant metric. Note however that the correlation between the
metrics can also have other sources, but normalizing the metrics with adequate scaling allows precisely to
better see these secondary effects. In any case, this high degree of correlation poses the problem of the real
causes of the complexity for controllers. At best, the use of these metrics can be viewed as an inadequate
“base” for the description of the complexity metrics space.

5.4.2. Reducing the dimensionality of the complexity

Statistically speaking, the variance of all these variables can be explained with a smaller number of
“hidden” variables, which can be interpreted as the real descriptors of the complexity. With this idea in
mind, we perform a Principal Component Analysis (PCA) (Pearson, 1901), aiming at discovering these
hidden variables and reduce the dimensionality of the problem. For this analysis, we use the first batch of
metrics, i.e. metrics from C1 to C16. Since these metrics are already properly normalized, they are likely to
give cleaner results. Moreover, to some extent, they include the second batch of metric through quite high
correlations between them (not shown here).

After performing the PCA on the correlation matrix of Eq. 5, we choose to keep the first four components,
which account for about 88% of the variance. Their compositions in terms of the initial variables C1 – C16
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C16

C1 1.00
C2 0.63 1.00
C3 0.63 0.77 1.00
C4 0.63 0.72 0.90 1.00
C5 0.91 0.80 0.82 0.82 1.00
C6 0.44 0.76 0.82 0.81 0.66 1.00
C7 0.94 0.74 0.77 0.77 0.98 0.59 1.00
C8 0.82 0.50 0.48 0.48 0.72 0.33 0.75 1.00
C9 0.65 0.47 0.48 0.49 0.65 0.35 0.66 0.58 1.00
C10 0.82 0.48 0.47 0.46 0.71 0.32 0.74 0.95 0.60 1.00
C11 0.99 0.62 0.62 0.62 0.91 0.43 0.93 0.81 0.64 0.81 1.00
C12 -0.12 -0.06 -0.03 -0.02 -0.09 -0.00 -0.12 -0.10 -0.08 -0.09 -0.09 1.00
C13 0.69 0.39 0.40 0.40 0.60 0.27 0.62 0.56 0.43 0.59 0.69 -0.08 1.00
C16 0.92 0.60 0.60 0.60 0.85 0.42 0.88 0.75 0.57 0.74 0.91 -0.12 0.63 1.00

Table 5: Pearson correlation coefficients for the complexity metrics found in (Chatterji and Sridhar, 2001) (first batch).

N HC AC MD5 MD10 CP25 CP40 CP75

N 1.00
HC 0.99 1.00
AC 1.00 0.99 1.00
MD5 0.95 0.94 0.95 1.00
MD10 0.93 0.93 0.94 0.96 1.00
CP25 0.96 0.95 0.96 0.98 0.97 1.00
CP40 0.96 0.96 0.96 0.98 0.97 0.98 1.00
CP75 0.97 0.97 0.97 0.98 0.97 0.99 0.99 1.00

Table 6: Pearson correlation coefficients for the complexity metrics found in (Laudeman et al., 1998) (second batch).
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are shown in Fig. 8. As usual with PCA, the difficult part is to give a physical interpretation to the new
variables. This can be very instructional and some suggestions are made thereafter.

The first component is clearly related to a scaling not adequately captured by the normalizations of the
metrics, i.e. a global dependence on the traffic. The second component might be related to a differential
complexity between horizontal and vertical components, since most of the negative weights are related to
vertical metrics whereas the positive weights are associated to more horizontal metrics. The third metric is
almost purely the metric C12, which was expected from the correlation matrix in table 5, since it has very
low correlations with other metrics. Finally, the last component is clearly related to the speed of aircraft:
C9, related to the inverse of the minimum distance between aircraft, has a negative weight, whereas C13,
related to the minimum time to conflict. Indeed, greater speed and fix time horizon for the controller implies
smaller C9 and bigger C13.

Figure 8: Composition of the first four eigenvectors of the PCA in the current scenario.

Note that all these results have been obtained with non-rectificated – or original – trajectories, i.e. in the
current scenario. However, one might go further and check whether or not the determinants of complexity will
be the same in the current and the SESAR scenario. Specifically, one might ask whether the four eigenvectors
of Fig. 8 will be the same also in the SESAR scenario. A full discussion of this issue goes beyond the scope
of this paper, but we include in Appendix B the results of the same procedure than above on straight
trajectories, i.e. in the new scenario. Preliminary results show that the components are not very different
with respect to the current scenario. On one hand, this is reassuring, because it means that the metrics have
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the same kind of cross-dependence and thus that we can safely extrapolate the current complexity measures
to the new scenario. On the other hand, the fact that they are slightly different is expected and this is
exactly why our model could be beneficial to forecast the real complexity of the situation. In fact, the model
is based on some kind of cognitive modelling rather than relying on assumptions on complexity.

5.4.3. Explaining the actions of the simulator with the new variables

Our next step is to discover how well these new combined metrics can explain the variation of the number
of actions of our controller. As stated previously, the core idea here is that the number of actions is a measure
of the complexity for our algorithm.

In order to do this, we perform an ordinary least square regression (Miller and Miller, 2005) on the data.
The explanatory variables are the four components isolated above and the variable to explain is the number
of action (na tot) of our controller. The result of the fit is presented in table 7. The fitting procedure is quite
successful, with a R2 of 0.817. The weights for each variables are very well defined since the t-tests return
p-values smaller than 0.5%. Note also that the first two components are much more important to explain
the variations than the two others, which are not negligible nevertheless. This table shows that with only
four complexity variables, we are able to forecast quite well the behaviour of the synthetic (super-)controller
of our simulator.

Comp. Weights Std. err. P > |t| 95% CI

0 0.2803 0.005 0.000 [0.270, 0.291]
1 0.2431 0.012 0.000 [0.219, 0.267]
2 -0.0465 0.016 0.004 [-0.078, -0.015]
3 0.0684 0.021 0.001 [0.027, 0.110]

Table 7: An ordinary least square method is used to make a regression of the number of actions in our model against the four
components found during the PCA. The first column presents the weights, the second one the standard error, the third one a
t-test for the coefficients, and the last one the 95% confidence interval. Note that the variables have been standardized (i.e. we
subtract the mean and divide by the standard deviation). The fit has a R2 of 0.817.

Finally, in Fig. 9 we show the variations over the day of two metrics Calgo,real and Calgo,fit . Specifically,
Calgo,real is the actual number of actions of our algorithm, while Calgo,fit is the number of actions computed
by only considering our own regression of the number of actions versus the four components we have isolated
with the PCA. The correlation between these two curves is 0.904, thus confirming that using the four PCA
components gives a good approximation of the controllers’ workload.
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Figure 9: Variation of four complexity metrics with time of the day. The data has been re-sampled every 10 minutes for
visibility.

5.4.4. Complexity for real controllers

The final step for us is to compare these results with the real complexity experienced by human. For
this, we base our analysis on the work of Refs. (Chatterji and Sridhar, 2001; Laudeman et al., 1998). In
these two papers, the authors managed to isolate two sets of number weighting the metrics N, HC, etc. ,
i.e. the metrics included in the second batch. The first set is a subjective weighting scheme made by three
controllers: they think for instance that the heading changes are approximatively twice as complex as the
density itself. The second set of weights comes from a regression of complexity recorded in live by controllers
against the metrics, computed every 2 minutes. This, in a way, gives a more “unconscious” assessment of
complexity from real controllers.

In our investigation, we take both these sets of weights in order to recompute an approximation of the
complexity of the situations that a human would experience should she/he control our trajectories.
In figure 10 we show the variations over the day of the Calgo,real metrics described above together with other
two metrics called Ch,sub and Ch,fit. Specifically, Ch,sub is the number of actions done by the controller and
computed by using the subjective weights over the set of metrics N, HC, etc. while Ch,fit is the number of
actions done by the controller and computed by using the “regression” weights over the set of metrics N,
HC, etc. The correlation between Calgo,real and Ch,sub is 0.950 and the correlation between Calgo,real and
Ch,fit is 0.950. The correlation between Ch,sub and Ch,fit is 0.999.
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Figure 10: Variation of four complexity metrics with time of the day. The data has been re-sampled every 10 minutes for
visibility.

The conclusion from this last figure is that our metrics, either fitted or measured, are very well related
with what a human would be experiencing in terms of complexity. This means that our model can be run
on exotic scenarios in order to have a good idea of the workload that a human controller would experience.
Note also that, with the results from 5.2, we can also conclude that the free-routing would in fact decrease
the complexity of the airspace. This counter-intuitive result should be considered with caution, because
essentially it resides in the following mechanism. On one hand, using free-routing decreases the number
of heading and altitude changes, as well as the average distance between aircraft. On the other hand, the
complexity of conflicts increase because of problematic geometries. As a results, the precise output depends
on the real weights that the controller gives to these mechanisms.

In Table 8 we provide the information about the weights with which the four PCA components enter
the metric Ch,sub described above. The same information is given in Table 9 for the metric Ch,fit. The
comparison with Table 7 shows that indeed the role of the four PCA components is strikingly similar both
for human controllers, see Table 8 and our simulator, see Table 7. This indicates that indeed our simulator
tackles complexity in the same way than humans do in the current ATM scenario.

Comp. Weights Std. err. P > |t| 95% CI

0 0.2993 0.004 0.000 [0.292, 0.306]
1 0.2440 0.008 0.000 [0.228, 0.260]
2 -0.0442 0.011 0.000 [-0.065, -0.023]
3 0.0925 0.014 0.000 [0.065 0.120]

Table 8: Fit of Ch,sub against the four components of the PCAs. R2 = 0.919
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Comp. Weights Std. err. P > |t| 95% CI

0 0.3015 0.003 0.000 [0.295, 0.308]
1 0.2376 0.008 0.000 [0.222, 0.253]
2 -0.0416 0.010 0.000 [-0.062, -0.021]
3 0.0896 0.013 0.000 [0.063 0.116]

Table 9: Fit of Ch,fit against the four components of the PCAs. R2 = 0.925

6. Conclusions

In this paper we have presented an agent-based simulator able to simulate the air traffic management in
the current and in the SESAR scenario. The model is composed of several modules fully described in (ELSA-
Project, 2016b). The model simulates both the strategic phase associated to the planning of the aircraft
trajectories and the tactical modifications that might occur in the en-route phase. It is able to forecast some
high-level features of new scenarios, for instance when specific SESAR solutions are implemented.

Studying more specifically the free-routing solutions envisioned by SESAR, we have shown that in this
scenario we can expect the controllers to perform a smaller number of operations but that they will be
dispersed over a larger portion of the airspace. This would in principle indicate an increase in the complexity
controllers will have to deal with. In order to investigate this specific aspect, we have considered some
metrics that are used in the literature to “measure” complexity in a certain airspace. These metrics are
not independent from each other, as they measure complexity from different perspectives. Hence, we have
used PCA to decrease the number of relevant metrics while keeping most of their predictive power. After
having selected four components, which have quite physical interpretations, we tested if they have also the
power of predicting the variation of the complexity for our algorithm, i.e. the number of actions, and the
subjective variations of complexity for humans, with linear regressions. Since the regressions are quite good,
we conclude that 1) the reduction to four components is able to catch most of the complexity in the sector
2) that our algorithm can be safely used in new scenarios in order to predict the workload for humans. This
good capacity forecast could be used by policy maker to test free-routing in denser regions than it is today.

Our results have been obtained in the idealized case when no sector is present in the considered airspace.
This would correspond to the most extreme case where a huge portion of airspace is completely integrated,
at least at cruise altitude. It is left for a future work to investigate how the possible partitions of the airspace
into sectors would impact the management of trajectories in the SESAR scenario and whether or not this
would lead to an increase in the complexity when it comes to have different controllers.
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Appendix A. List of Complexity Metrics

Table A.10: Complexity metrics used in section 5.4 found in the literature, in reference (Chatterji and Sridhar, 2001), labelled
(1) in the table, and in references (Laudeman et al., 1998; Sridhar et al., 1998), labelled (2). A quick description of each metric
is included.

Metrics Based on Ref.

C1 Density (1)
C2 Number of climbing aircraft (1)
C3 Number of stationary aircraft (1)
C4 Number of descending aircraft (1)
C5 Inverse of the mean weighted horizontal distance between aircraft pairs (1)
C6 Inverse of the mean weighted vertical distance between aircraft pairs (1)

C7
Mean inverse horizontal distance of aircraft below vertical

separation distance
(1)

C8
Mean inverse vertical distance of aircraft below horizontal

separation distance
(1)

C9 Inverse minimal horizontal distance among pairs of aircraft (1)
C10 Inverse minimal vertical distance among pairs of aircraft (1)
C11 Number of aircraft pairs with positive time-to-conflict (1)

C12
Number of aircraft with at least with positive

time-to-conflict divided by mean time-to-conflict
(1)

C13 Inverse of minimal time-to-conflict (1)
C16 Mean geometrical complexity based on crossing angles (1)

N Density (2)
HC Number of aircraft with heading change greater than 15◦ (2)
AC Number of aircraft with altitude change greater than 750 feet (2)

MD5 Number of aircraft with 3d distance between 0-5 nautical miles (2)
MD10 Number of aircraft with 3d distance between 6-10 nautical miles (2)

CP25
Number of aircraft with horizontal distance between 0-25 nautical

miles and vertical separation less than 2000 feet.
(2)

CP40
Number of aircraft with horizontal distance between 26-40 nautical

miles and vertical separation less than 2000 feet.
(2)

CP75
Number of aircraft with horizontal distance between 41-70 nautical

miles and vertical separation less than 2000 feet.
(2)
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Appendix B. Complexity Metrics in the SESAR scenario

In section 5.4 we clarified that our simulator works in a way which is quite close to that of a human
controller in the current ATM scenario. We can therefore be confident that the results of sections 5.1 and 5.2,
based on numerical simulations relative to the SESAR scenario, are a reasonable forecast of how a human
controller would behave in the SESAR scenario.

However, one might go further and check whether or not the determinants of complexity will be the same
in the current and the SESAR scenario. Specifically, one might ask whether the four eigenvectors of Fig.
8 will be the same also in the SESAR scenario. To this end, here we will consider numerical simulations
obtained starting from deconflicted trajectories with highest efficiency E=0.999. Like in the current scenario
case, in Fig. B.11 we show the composition, in terms of the initial variables C1 – C16, of the four PCA
eigenvectors with largest eigenvalues (violet). For the sake of comparison, we also show the composition for
the current scenario (blue), i.e. the same data showed in Fig. 8. In the SESAR scenario these eigenvectors
account for about 82% of the variance. The figure shows that indeed the composition of the four PCA
eigenvectors is different in the current and SESAR scenario. In particular, the role of the C9 metrics seems
to be drastically different in the two cases, while other components, such as C12 and C13 show differences
in limited cases.

Figure B.11: Composition of the first four eigenvectors of the PCA in the SESAR scenario.

Again, our next step is to discover how well these eigenvectors can explain the variation in the number
of actions of our SESAR scenario controllers. In order to do this, we perform an ordinary least square
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regression on the data (Miller and Miller, 2005). The explanatory variables are the four components from
the PCA and the variable to explain is the number of action (na tot) of our controller. The result of the fit
is presented in Table B.11. A direct comparison with Table 7 shows that the weights are quite close to each
other, thus confirming that the role of these four eigenvectors in explaining the complexity in the SESAR
scenario is essentially the same as in the current scenario.

Comp. Weights Std. err. P > |t| 95% CI

0 0.2640 0.006 0.000 [0.252 0.276]
1 0.2571 0.014 0.000 [0.229 0.285]
2 -0.0555 0.019 0.003 [-0.093 -0.018]
3 0.0766 0.025 0.002 [0.028 0.125]

Table B.11: Fit for Ch,fit. An ordinary least square method is used to make a regression of the number of actions in our
model against the four components found during the PCA. The first column presents the weights, the second one the standard
error, the third one a t-test for the coefficient, and the last one the 95% confidence interval. Note that the variables have been
standardized (i.e. we subtract the mean and divide by the standard deviation). The fit has a R2 of 0.925.

These interesting considerations will be studied in a subsequent paper.
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