
3rd Mediterranean Conference on Embedded Computing MECO - 2014 Budva, Montenegro

Specifying Timing Requirements in Domain Specific
Languages for Modeling

Damjan Temelkovski
University of Westminster
London, United Kingdom

damjantemelkovski@gmail.com

Ljerka Beus-Dukic
University of Westminster
London, United Kingdom

l.beus-dukic@westminster.ac.uk

Abstract—Complex Real-Time Embedded Systems (RTESs) can
be developed using model-based engineering. The problem is
choosing a modeling language that has capabilities to model the
most important characteristic of RTESs: timing. This paper
shows an analysis of the most popular modeling languages and
their capabilities to model timing constraints in RTESs. It
includes UML, SysML, AADL, MARTE and EAST-ADL. A brief
comparison between MARTE and EAST-ADL, based on the case
study from the automotive industry, is also included.

Keywords-model-based engineering; modeling languages;
MARTE; EAST-ADL; real-time embedded systems;

I. INTRODUCTION
A Real-Time Embedded System (RTES) is an embedded

system where the correctness of the system depends on the
time it produces the result as well as the logical correctness.
Hard RTESs have timing constraints which they must satisfy
or the result would be a system failure. RTESs are called
safety-critical if a failure of the system leads to the loss of
human lives. Examples of such systems include a braking
system in a car, an oxygen ventilation machine in a hospital,
air traffic control systems, etc.

As RTESs become larger and more complex, the need for a
more structured development process such as Model-Based
Engineering (MBE) has been recognized by the research
community (INRIA, ITEA, CEA LIST) [1, 2, 3]. In MBE all
the development revolves around models. This approach
allows for performance analysis to be done in the early stages
of the development, predicting the system's performance
before any implementation. This includes timing analysis - the
most important part of performance analysis for RTESs.
Timing constraints can refer to either logical or chronometric
(physical) time. Multiform timing constraints are constraints
for which physical dimension does not play any role, but the
simultaneity and precedence between events gives the notion
of time.

II. REVIEW OF MODELLING LANGUAGES FOR RTESS
There are many different modeling languages that can be

used in MBE, but there is a lack of a standard language and
methodology that will be used for RTESs in all domains.

A modeling language can be:
• General Purpose Language (GPL)
• Domain Specific Language (DSL)

GPLs are used across all domains providing the same
semantics for different kinds of systems. DSLs are designed
through a collaborative process between software engineers
and domain experts and are used on a particular domain.

A. UML
UML [4] is the best example of a GPL. Since version 2.0,

UML supports time related meta-classes such as
TimeExpressions, TimeObservations, and Durations. UML
provides a simple way to model time.

The UML timing diagram is used to display the change in
state or value in elements over time and it can be used to
specify time-related behavior. There are two kinds of timing
diagrams: state timing diagrams and general value timing
diagrams. The state timing diagram shows the changes
between different states (y-axis) over time (x-axis). The
general value timing diagram shows the change of a value
(displayed inside a diamond) over time.

UML’s simple time model is not sufficient for the
development of complex RTES.

B. SPT
UML's shortcomings regarding time modeling have

triggered the creation of the SPT (UML profile for
Schedulability, Performance & Time) [5]. However, SPT is
based on UML 1.4 and is now obsolete.

It has been noted [6] as very useful for dealing with time
and resources, using concepts such as: instant, duration, time
based event, and stimuli. It introduced a time domain model
partitioned into several groups of concepts for modeling: time
and time values (TimeModel), events in time and time-related
stimuli (TimedEvents), timing mechanisms such as clocks and
timers (TimingMechanisms), and timing services in real-time
operating systems (TimingServices).

However, although SPT provided a framework for
representing time and time-related mechanisms, it revealed
deficiency of expressive power and flexibility.

This research has been supported by the EUROWEB Project funded by the Erasmus
Mundus Action II programme of the European Commission

3rd Mediterranean Conference on Embedded Computing MECO - 2014 Budva, Montenegro

C. MARTE
MARTE (UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded systems) [7] was created
as a replacement of SPT [8]. It is split into the following
packages:

• the core MARTE Foundations extended by:

• MARTE Design Model (used to model the
features of an RTES)

• MARTE Analysis Model, also called Real-Time
& Embedded Analysis – RTEA (used to describe
the analysis of system properties)

• MARTE Annexes containing profiles and model
libraries

The MARTE Foundations package contains two packages
for modeling time:

1. Time Package for time properties
2. NFP Package for Non-Functional Properties

The RTEA package contains the Performance Analysis
Modeling (PAM) package which is useful for performance
analysis. Note that MARTE provides facilities to annotate
models with information required to perform specific analysis.

The MARTE Time Meta-model
MARTE defines a meta-model with concepts such as time

structure, time access, and time usage. A TimeBase is the
basic building block in a time structure. A time access is
defined through the MARTE concept of a Clock. A clock has
a defined Unit and an Event that happens on every clock tick.
There are two predefined clocks in MARTE: a LogicalClock
and a ChronometricClock. NFPs (skew, stability, etc.) are
measured against a reference chronometric clock.

MARTE makes a clear distinction between a Duration
Value, which is used to describe a span or an interval of time,
and an InstantValue, used to reference a single time instant. A
TimedElement in MARTE is any type of model element
associated with a Clock. There are three main TimedElements
in MARTE: TimedEvent, TimedProcessing, and
TimedObservation. Most elements refer to either discrete or
dense time specified by attributes such as TimeNatureKind.

The MARTE Time Package incorporates the concepts
defined by the time meta-model. It provides new UML
stereotypes, model libraries and expression languages such as
Value Specification Language (VSL) for value expressions
and Clock Constraint Specification Language (CCSL) for
clock constraint expressions. MARTE ClockConstraints are
specified as declarative statements and CCSL can be used for
expressing the constraints. Most of the MARTE stereotypes
extend a UML stereotype explicitly referring to a clock. The
model libraries TimeTypesLibrary and TimeLibrary contain
enumerations used to define various time properties.

Apart from the MARTE Time package, the Generic
Resource Modeling (GRM) Package also defines time-related
stereotypes, such as TimingResource. There are time-related

NFP types defined in the NFP Package as well (e.g.
NFP_Duration, NFP_Frequency).

D. SysML
Systems engineers have found UML too software-specific

and they have created the SysML (Systems Modeling
Language) [9]. SysML was created as a subset of UML 2.1.1
with several extensions. The extensions include two new
diagrams (requirement diagram and parametric diagram), a
new concept of a block replacing the UML class, neutral data
formats, omission of software specific UML elements, etc.
The lack of possibility to model non-functional requirements,
such as timing requirements in UML, is addressed by the
structured and standardized way of denoting requirements in
the requirement diagram. SysML provides stereotypes such as
«requirement», «deriveReqt», «satisfy», «verify», «refine», as
well as a table notation for representing the requirements and
their relationships.

The parametric diagram is used to define constraint
relationships between the blocks and their internal properties
including time.

E. AADL
The need for a language like AADL (Architecture

Analysis & Design Language) has been recognized by the
aerospace industry [10]. AADL has a component-based
approach to system architecture and focuses on the
components of the system, their interactions and their
properties. It provides software models and mechanisms for
analysis including early validation, safety analysis, etc. AADL
has a textual, graphical and XML notation.

The runtime characteristics of software components can be
declared in the AADL model. An AADL component is formed
by a type and an implementation declaration. Properties such
as the timing properties can be declared as part of the
implementation declaration.

An AADL system specification consists of one or more
property sets and one or more packages. A package has
component types with implementation declarations and annex
libraries. A system instance can be made based on the
specification, and the AADL analysis mechanisms are
performed on this instance. These analysis mechanisms are
usually made by a specially designed tool (e.g. OSATE [11]).

Many AADL properties and property types have been pre-
declared. They are divided into groups such as the Timing
Properties group with properties for specifying timing.

F. AUTOSAR
In the past few decades the amount, size, and complexity of

RTESs in the automotive industry has been growing
exponentially. Today, an average automotive vehicle has as
many RTESs (known as Electronic Control Units-ECUs) as an
average aircraft had two decades ago [12].

AUTOSAR (AUTomotive Open System ARchitecture) is
a partnership between many key players in the automotive
industry [13]. One of its goals is to make a common method

3rd Mediterranean Conference on Embedded Computing MECO - 2014 Budva, Montenegro

for developing software, and have companies compete on
implementation. A globally accepted standard for hardware
independent software makes the integration of software from
multiple suppliers much easier and helps make software a
commodity.

AUTOSAR defines an Application Layer, a Runtime
Environment (RTE), and a Basic Software Layer (BSL)
consisting of services, hardware abstraction, and drivers. The
Complex Drivers Layer (CDL) is used for special purpose
functionalities for sensors and actuators, such as real-time
functionalities. Drivers for devices with strict timing
constraints are part of the CDL.

AUTOSAR Timing Extension
Since release 4, the AUTOSAR specification incorporates

the AUTOSAR Timing Extensions. The timing extensions in
AUTOSAR are using two basic concepts: event
(TimingEvent) and event chain (TimingEventChain). There
are several different types of timing constraints:

• SynchronizationConstraint
• AgeConstraint
• LatencyConstraint
• ExecutionTimeConstraint

G. EAST-ADL
EAST-ADL (Electronics Architecture and Software

Technology – Architecture Description Language) was
created specifically for complex and advanced RTESs in the
automotive industry [14]. EAST-ADL complements
AUTOSAR providing higher levels of abstraction as well as
analysis and lifecycle management support. It follows the
guidelines of the low-level implementation that AUTOSAR
provides, but adds a higher, more abstract modeling level
based on concepts from UML, SysML and AADL. It also
allows for the AUTOSAR model to be extended with timing
and safety requirements, traceability, and verification and
validation models.

EAST-ADL is organized in 4 abstraction layers. The
highest VehicleLevel defines what the vehicle should do. It
presents the user-visible content of the vehicle as seen from
the outside. The Analysis, Design, and Implementation levels
explain how these features should be accomplished. The
AnalysisLevel focuses on the functionality of the RTES,
providing functional abstractions about the system’s behavior
and algorithms. The DesignLevel focuses on providing a
detailed hardware-oriented view of the RTES. Finally, the
ImplementationLevel provides an AUTOSAR-based
implementation of this view. The RTES is modeled in each
level, and various traceability relations provide links between
the levels. This allows for a feature to be traced all the way to
the hardware implementation.

The modeling of both timing requirements and properties in
the functional abstraction levels is done by using TADL
(Timing Augmented Description Language). The
implementation level uses AUTOSAR Timing Extensions.

TADL was defined by ITEA [15] to provide the description
of timing information at higher levels of abstraction and to
allow timing analysis to be done in early stages of the
development of systems. An updated version - TADL2 was
defined in order to align with the AUTOSAR Timing
Extensions.

Timing in EAST-ADL (TADL)
There are several fundamental concepts in TADL:
• Events
• Event Chains
• Constraints
An event either causes an execution (then it is referred to

as stimulus), or it is caused by an execution (a response). A
stimulus always happens before a response. TADL has several
predefined events such as: EventFunctionFlowPort,
EventClientServerPort, or EventFunction.

Event Chains are bindings of several events in order to
show the relations between them. Events can be composed
into an event chain, or an event chain can be decomposed into
several events. The timing constraints can be set on an event
or an event chain. The TADL timing constraints can be:

1. Event Constraints (set on an event)

• Periodic
• Sporadic
• Pattern
• Arbitrary

2. Offset Constraint (set on several events)

• Age
• Reaction
• Input/output synchronization

3. Delay Constraints (set on an event chain)

III. COMPARISON OF MARTE AND EAST-ADL
A case-study of the development of a braking system in a

car, done using EAST-ADL for modeling, was conducted to
view EAST-ADL's capabilities in action [16]. The braking
system was modeled in MARTE in order to compare the two
languages. Our MARTE model used the EAST-ADL
abstraction layers, producing use-case, class, and sequence
diagrams on the vehicle, analysis, and design level.

In MARTE there is a lack of specific semantics for the
types of timing constraints present in EAST-ADL, such as
age, reaction, execution, etc. This has been overcome by
adding new properties to the classes. These properties were
referred to in the timing constraints using OCL (Object
Constraints Language). Fig. 1 shows an excerpt of the class
diagram on the design level where an OCL rule loops through
all instances of the class ABS and makes sure that the value
torqueComputedAt is at most 15 ms greater than the value
occursAt of the ActuatorReaction_Event class. It also shows a
synchronization constraint that makes sure that the
ActuatorReaction_Events happen within 15 ms of each other,

3rd Mediterranean Conference on Embedded Computing MECO - 2014 Budva, Montenegro

by looping through all instances and comparing the value of the
property occursAt.

Figure 1. Excerpt of the MARTE class diagram on design level [17]

The constraints in our MARTE model used the MARTE
TimedConstraint stereotype and were referring to a basic
chronometric Clock or a multiform-time based logical Clock.
The latter was used for constraints specified through distance
such as "The vehicle shall start to brake within 5 meters after
the brake pedal is pressed".

A comparison of the EAST-ADL timing constraints and the
model in MARTE is shown in Table I.

TABLE I. TIMING CONSTRAINTS IN EAST-ADL AND MARTE

EAST-ADL Timing
Constraint (value)

MARTE Timing Constraint
(value)

Reaction (upper) TimedConstraint («nfp»
property:TimeUnit in the classes)

Execution (upper) TimedConstraint (property:Real
in the class)

Periodic (period) TimedConstraint (property:Real
in the class)

InputSynchronization
(upper)

TimedConstraint («nfp»
property:TimeUnit in the class)

OutputSynchronization
(upper)

TimedConstraint («nfp»
property:TimeUnit in the class)

IV. CONCLUSION
More and more modeling languages include concepts for

handling timing. EAST-ADL, with the abstraction over the
AUTOSAR timing concepts, offers an elegant way to model
RTESs in the automotive industry. The UML-based MARTE
is a very good alternative for RTESs in the automotive
industry but can be used for any kind of RTESs.

EAST-ADL’s main benefit is that it is easier to use for a
modeler experienced with modeling automotive RTESs,

especially with AUTOSAR. Most importantly, EAST-ADL
offers semantics for different types of timing constraints
which is not the case with MARTE.

A case study of an approach using EAST-ADL was
conducted and the same problem was modeled in MARTE as
part of this research. Our MARTE model could be used
directly by tools such as Acceleo (to generate code) and
Cheddar (to perform timing analysis). This would be an
advantage for MARTE because the case study of the EAST-
ADL approach showed there isn't any uniform way to do this
in EAST-ADL.

REFERENCES

[1] INRIA. INRIA AOSTE. [Online]. http://www-sop.inria.fr/aoste/
[2] ITEA. ITEA Ofiicial Web Site. [Online]. https://itea3.org/
[3] CEA LIST. CEA LIST Official Website. [Online]. http://www-

list.cea.fr/
[4] Object Management Group. UML 2.4.1. Specification, 2011 [Online]

http://www.omg.org/spec/UML/2.4.1/
[5] Object Management Group, “SPT 1.1 Specification,” Object

Management Group, 2005. [Online].
http://www.omg.org/spec/SPTP/1.1/

[6] Bran Selic, “Models, Software Models and UML,” in UML for Real:
Design of Embedded real-Time Systems, Luciano Lavagno, Grant
Martin, and Bran Selic, Eds. Boston, Massachusetts: Kluwer Academic
Publishers, 2003, pp. 1 - 16

[7] Object Management Group. (2012) The OMG MARTE Web Site.
[Online]. http://www.omg.org/omgmarte/

[8] Charles André, Frédéric Mallet, and Robert De Simone, “Time modeling
in MARTE,” in ECSI Forum on specification & Design Languages
(FDL), 2007, pp. 268-273. [Online] http://www-
sop.inria.fr/members/Frederic.Mallet/publis/2007/fdl07b.pdf

[9] Object Management Group, “SysML 1.3 Specification,” 2012. [Online].
http://www.omg.org/spec/SysML/1.3

[10] Peter H Feiler and David P Gluch, “Model-Based Engineering with
AADL; An Introduction to the SAE Architecture Analysis & Design
Language”.: Addison-Wesley, 2013

[11] SAE International. OSATE AADL tool. [Online].
http://www.aadl.info/aadl/currentsite/tool/osate.html

[12] Hans Blom et al., “EAST-ADL – An Architecture Description Language
for Automotive Software-Intensive Systems,” White Paper, 2012
[Online] http://www.maenad.eu/public_pw/conceptpresentations/EAST-
ADL_WhitePaper_M2.1.10.pdf

[13] AUTOSAR, “Specification of Timing Extensions,” 411,. [Online].
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtens
ions.pdf

[14] EAST-ADL, “EAST-ADL Domain Model Specification,” 2013.
[Online]. http://www.east-adl.info/Specification/V2.1.11/EAST-ADL-
Specification_V2.1.11.pdf

[15] Hans Blom, et al. “Annotation with timing constraints in the context of
EAST-ADL2 and AUTOSAR–the timing augmented description
language”. In Proc. Workshop on the Definition, Evaluation, and
Exploitation of Modelling and Computing Standards for Real-Time
Embedded Systems, Dublin, Ireland, 2009, (pp. 2-5)

[16] Damjan Temelkovski, Ljerka Beus-Dukic, “Model-Based Engineering
in Real-Time Embedded Systems: Specifying Timing Constraints”, to be
published, 6th ICT Innovations Conference, Ohrid, Macedonia, 2014

[17] Damjan Temelkovski, Ljerka Beus-Dukic, “Model-Based Engineering
in Real-Time Embedded Systems: Specifying Timing Constraints” –
research project report, University of Westminster, 2014

