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Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumor in
adults, with poor prognosis. Extracellular vesicles (EVs) are key-mediators for cellular communication through
transfer of proteins and genetic material. Cancers, such as GBM, use EV release for drug-efflux, pro-oncogenic
signaling, invasion and immunosuppression; thus the modulation of EV release and cargo is of considerable
clinical relevance. As EV-inhibitors have been shown to increase sensitivity of cancer cells to chemotherapy, and
we recently showed that cannabidiol (CBD) is such an EV-modulator, we investigated whether CBD affects EV
profile in GBM cells in the presence and absence of temozolomide (TMZ). Compared to controls, CBD-treated cells
released EVs containing lower levels of pro-oncogenic miR21 and increased levels of anti-oncogenic miR126;
these effects were greater than with TMZ alone. In addition, prohibitin (PHB), a multifunctional protein with
mitochondrial protective properties and chemoresistant functions, was reduced in GBM cells following 1 h CBD
treatment. This data suggests that CBD may, via modulation of EVs and PHB, act as an adjunct to enhance
treatment efficacy in GBM, supporting evidence for efficacy of cannabinoids in GBM.
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Introduction
Tumors that arise from glia or glial precursor cells are the most
prevalent type of brain cancer and account for over 32% of all central
nervous system (CNS) and approximately 80% of malignant primary
CNS tumors [1]. Glioblastoma multiforme (GBM) is the most
aggressive form and constitutes 50% of all gliomas and 15.6% of all
primary brain tumors [2]. Long lasting and persistent headaches are
the most common initial presenting symptom, often associated with
seizures, visual disturbances, cognitive impairment and nausea and
vomiting; the presentation depending on the location and growth rate
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of the tumor. Effective treatment options remain very limited due to
their aggressiveness and heterogeneity. Despite multimodal therapy
consisting of surgery, radiation and chemotherapy, therefore only
28.4% of patients survive one year and 3.4% survive to year five [3].
This highlights the need for enhancing current therapeutic strategies
with new approaches, including supplementary treatment with
cannabinoids [4,5].

Extracellular vesicles (EVs) are lipid bilayer-enclosed structures,
30–1000 nm in diameter, which are released from parent cells and
participate in cell-to-cell communication, both in physiological and
pathophysiological processes, via transport of a variety of biological
molecules. EVs participate in cell migration, differentiation and
angiogenesis [6–11] and have been shown to play important roles in
numerous pathologies including cancers [12–21]. Furthermore, the
identity of circulating EVs and changes in their cargo may serve as
reliable biomarkers of brain tumors and response to therapeutic
treatment [22–25].

In GBM, EVs are emerging as key-mediators for intra/inter-tumor
communication through horizontal transfer of functional proteins
and nucleic acids, including mRNA, miRNA and lncRNA, through
which GBM cells influence the microenvironment to promote tumor
growth, angiogenesis, metabolism and invasion [26–29]. Both the
regulation of EV biogenesis and changes in EV cargo are thus of great
importance and drug-directed modulation of EVs is gaining increased
interest for therapeutic use [27,30]. Novel ways for modulating EV
release to limit tumor growth in vivo, and to sensitize various cancer
cells to chemotherapy, have been highlighted by us and other groups
[12,14,31–35].

Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis
sativa and known for its anti-neoplastic and chemo-preventive
activities [36–38]. Known anti-cancerous effects of cannabinoids
include inhibition of tumor proliferation, angiogenesis and induction
of tumor cell death [5,37,39], while in GBM, additional effects on
inhibition of invasiveness and stem-cell like properties have been
observed [40,41]. The high resistance of GBM to standard therapy,
consisting of surgical resection followed by radiotherapy in addition
to concomitant and adjuvant chemotherapy with temozolomide
(TMZ) [42], and the high recurrence rates of GBM tumors, is partly
related to the presence of glioma stem-like cells [43]. A recent study
showed that CBD enhanced radiation-induced death in GBM and
also affected the stem/progenitor cells and astrocytes [44]. CBD has
shown great promise in an exploratory Phase 2 placebo-controlled
clinical study of a proprietary combination with tetrahydrocannabinol
(THC) in combination with dose-intense TMZ in 21 patients with
recurrent GBM (clinical trial NCT01812603) [45,46], while
previously, CBD showed protective effects in murine models of
glioblastoma [47,48]. CBD has also been shown to selectively inhibit
GBM proliferation and to induce death of cultured human GBM
cells [39], as well as being effective against other cancers [37].

We have recently shown that CBD is a novel modulator of EV
release in several cancer cell lines [35] and we and other groups have
shown that EV-modulators, including CBD, can significantly
increase sensitivity of various cancer cells to chemotherapy
[12,14,31–35]. Therefore, we set out to identify whether effects on
EVs could be a hitherto overlooked contributing factor to the
beneficial effects observed for CBD in GBM treatment. Besides
modulating EV release, changes in EV cargo would also be of high
importance and have for example been shown to change in GBM in
response to TMZ treatment [49]. Thus we also sought to further
establish whether CBD affected pro- and anti-oncogenic microRNAs
(miRs) exported via EVs from GBM cells. The effect of CBD
treatment was assessed on the main pro-oncogenic miR21, which is
an anti-apoptotic factor in GBM, affects viability, senescence and
invasion in GBM and is also enriched in EVs shed from GBM
[50,51]. As an example of an anti-oncogenic micro RNA, effects on
miR126 were assessed, as in GBM-derived patient samples, miR126
is significantly lower than in paired non-tumoural controls and related
to high histopathological grades, but found to be elevated in GBM
patients with better prognosis [52].

Recent studies have underpinned multifaceted roles of prohibitin
(PHB) in cell metabolism, apoptosis, senescence, cell survival and
immunity, and thus, cancer. PHB is also critical for mitochondrial
function and integrity [53,54], while mitochondria are central to
cancer survival and progression, in particular due to their central role
in calcium signal control, which is altered in cancer [55–57].
Critically, CBD has been shown to modulate mitochondrial function,
and thus, calcium signaling [58–62]. Importantly, increased PHB
levels are linked to chemoresistance in cancers [63,64] and we have
recently shown that CBD could lower PHB levels in three cancer cell
types [35].

Here, we provide evidence that CBD reduces PHB protein levels
and changes EV-mediated export of microRNAs to an anti-oncogenic
signature in GBM cells. CBD-mediated modulation of EV profile in
GBM provides novel insight into how CBD may work in GBM and
furthermore informs improved strategies for intervention in GBM
treatment.

Materials and Methods

Cell Cultures
LN18 (ATCC CRL-2610; grade IV glioblastoma derived from a

male patient with a right temporal lobe glioma) and LN229 (ATCC
CRL-2611; glioblastoma derived from a female patient with right
frontal parietal-occipital glioblastoma), were cultured according to
ATCC's recommendations at 80% confluence in 75 cm2 flasks in
complete Dulbecco's Modified Eagle's Medium (DMEM), with 5%
foetal bovine serum (FBS) at 37 °C/5% CO2. LN18 and LN229 are
chemo-resistant and chemo-sensitive GBM cell lines respectively
[65]; both cell lines are reported to form tumors in nude mice
[66,67].

Cell Viability Assays
The viability of the cells was assessed after 1 h treatment with CBD

(1 μM and 5 μM; GW Pharmaceuticals, U.K.), after 1 h treatment
with TMZ (100, 200, 400 or 800 μM; Sigma, U.K.) and after 1 h
treatment of CBD (5 μM) combined with TMZ (800 μM),
compared to DMSO control treated cells. Cell viability was assessed
before the start of every experiment using the Guava ViaCount cell
death assay (Guava Millipore) as previously described [35].

Effects of CBD Treatment on EV Release from GBM Cells
The effect of 1 h CBD (1 and 5 μM) treatment on EV release was

compared to control DMSO-treated cells. LN18 and LN229 cells
were seeded at a density of 5 x 105 cells per well, in triplicate, in the
presence of culture medium (pre-warmed DMEM, supplemented
with 10% FBS; Sigma-Aldrich, U.K.). The cell preparations were
thereafter washed with pre-warmed PBS (EV-free), and resuspended
in pre-warmed serum- and EV-free DMEM (which had been
centrifuged at 70,000 g for 24 h and filtered through a 0.22 μm
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membrane) and plated at 5 x 105 cells. CBD (1 or 5 μM) in 0.001%
DMSO was incubated with the cells for 1 h at 37 °C/5% CO2;
DMSO treated cells were used as controls. The plates were briefly
placed on ice, the supernatant collected from each well, cell debris was
removed by centrifugation at 200 g for 5 min and thereafter EVs were
isolated from the remaining supernatant as described in section 2.5.

Effects of TMZ and CBD-TMZ Treatment on EV Release
from GBM Cells
LN18 and LN229 cells were cultured and prepared for EV

isolation and quantification as described in section 2.3 and
respectively treated for 1 h with 5 μM CBD alone as before, for 1
h with TMZ alone (800 μM as determined by the cell viability assay;
see sections 2.2 and 3.1) or for 1 h with a combination of CBD (5
μM) and TMZ (800 μM). DMSO-treated cells were used as controls.

EV Isolation and Quantification by Nanoparticle Tracking
Analysis (NTA)
Cell culture supernatants from the procedures in sections 2.3 and

2.4 were initially centrifuged at 4000 g for 1 h for removal of cell
debris and the resulting supernatant thereafter spun at 100,000 g for
1 h at 4 °C. The resulting EV pellets were then resuspended in
Dulbecco's PBS (DPBS), centrifuged again at 100,000 g for 1 h at 4
°C and thereafter resuspended in 100 μl sterile EV-free PBS.
Nanoparticle tracking analysis (NTA) was carried out using the
NS300 Nanosight (Nanosight Amesbury, U.K.), equipped with a
405 nm diode laser and a sCMOS camera. Samples were diluted 1:10
in sterile-filtered EV-free DPBS and the number of particles in the
field of view was maintained in the range of 20–40 with a minimum
concentration of samples at 5 x 107 particles/ml. Camera settings
were according to the manufacturer's instructions (Malvern), four 90
sec videos per sample were recorded and the obtained replicate
histograms were averaged. Each experiment was repeated three times.

miRNA Analysis in GBM Cells and Derived EVs
For assessment of microRNA cargo in GBM derived EVs, LN18

and LN229 cells were cultured to a 75% confluency in T75 flasks in
DMEM/5% FBS. The cells were washed with EV-free Dulbecco PBS
(DPBS) and thereafter fresh EV and serum free medium was added,
containing CBD (5 μM), TMZ (800 μM) or a combination of TMZ
(800 μM) and CBD (5 μM), and 0.001% DMSO for control
treatment. After 1 h treatment, the cell medium was collected for EV
isolation (carried out as described in section 2.5), while the cells were
pelleted for further RNA isolation and microRNA analysis. RNA was
extracted from treated and control-treated cells and their respective
EVs, using Trizol (Sigma, U.K.) and RNA concentration and purity
was measured using the NanoDrop Spectrophotometer at 260 nm
and 280 nm absorbance. RNA was reverse-transcribed to cDNA
using the qScript microRNA cDNA Synthesis Kit (Quantabio, U.K.)
according to the manufacturer's instructions. The resulting cDNA
was used to assess the expression of microRNAs miR21 and miR126,
while U6-snRNA and has-let-7a-5p were used as a reference RNA for
normalization of miR expression levels. The PerfeCTa SYBR Green
SuperMix (Quantabio, U.K.) was used together with MystiCq
microRNA qPCR primers for both miR21 (hsa-miR-21-5p) and
mir126 (hsa-miR-126-5p), obtained from Sigma (U.K.). The
sequences for U6-snRNA primers were U6 forward,
5′-GCTTCGGCAGCACATATACTAAAAT-3′, Hsa-let-7a-5p for-
ward 5′-CCGAGCTGAGGTAGTAGGTTGTATA-3′ and reverse
5′-CGCTTCACGAATTTGCGTGTCAT-3′ for both. The follow-
ing thermocycling conditions were used: denaturation at 95 °C for 2
min, followed by 40 cycles of 95 °C for 2 sec, 60 °C for 15 sec, and
extension at 72 °C for 15 sec. The miR21 and miR126 expression
levels were normalized to that of U6, using the ΔΔC method [68].
Each experiment was repeated three times.

Western Blotting Analysis
LN18 and LN229 cells, from the treatment groups described in

section 2.6, were pelleted and protein extracted using RIPA+ buffer
(Sigma, U.K.) containing 10% protease inhibitor complex (Sigma
P8340), by gently homogenizing the cell pellet with regular intervals
on ice for 2 h. Thereafter, the cell preparation was centrifuged at
16,000 g for 20 min at 4 °C and the supernatant collected. The same
procedure was carried out for extracting protein from isolated EV
pellets. Protein extracts were re-constituted in 2× Laemmli sample
buffer containing 5% β-mercaptoethanol, boiled for 5 min at 100 °C
before separation by SDS-PAGE, using 4–20% Mini-Protean TGX
protein gels (BioRad, U.K.), followed by Western blotting analysis.
Approximately 5 μg of protein was loaded per lane and even transfer
to nitrocellulose membranes (0.45 μm, BioRad) was assessed using
Ponceau S staining (Sigma). The membranes were blocked for 1 h at
room temperature in 5% BSA (Sigma) in Tris buffered saline (TBS)
with 0.001% Tween20 (TBS-T), followed by overnight treatment at
4 °C with the primary anti-PHB antibody (ab75771, Abcam; 1/2000
in TBS-T) for cell lysates, while for EVs the primary antibodies
against the EV-specific markers CD63 (ab68418) and Flot-1
(ab41927) were used at 1/1000 in TBS-T. Thereafter, membranes
were washed in TBS-T, incubated for 1 h at room temperature with
an HRP-conjugated secondary anti-rabbit IgG antibody (BioRad, U.
K.; 1/4000 in TBS-T), followed by washing in TBS-T and
visualization using ECL (Amersham, U.K.) and the UVP
BioDoc-ITTM System (U.K.). HRP-conjugated anti-beta-actin
antibody (ab20272, Abcam, 1/5000 in TBS-T) was used as the
internal loading control and densitometry analysis was carried out
using ImageJ.

Statistical Analysis
The graphs and histograms were prepared, and statistical analysis

was performed, using GraphPad Prism version 6 (GraphPad
Software, San Diego, U.S.A.). One-way ANOVA was performed
followed by Tukey's post-hoc analysis; significant differences were
considered as P ≤ .05.

Results

Cell Viability of GBM Cells Following CBD and TMZ
Treatment

Cell viability of LN229 cells was not significantly affected after 1 h
treatment with CBD at the concentrations tested (1 and 5 μM), while
LN18 cell viability was reduced by 13.6% (P = .0043) in the
presence of 5 μM CBD, but was not significantly affected by 1 μM
CBD treatment (Supplementary Figure 1, A and B). The two cell
lines differed in sensitivity to TMZ, with LN18 showing a 15%
decrease (P = .0023) and a 23% decrease (P b .0001) in cell viability
after 1 h treatment with 400 and 800 μM TMZ respectively, while
the LN229 cells showed a non-significant 5% decrease in cell viability
after 1 h treatment with 800 μM TMZ (Supplementary Figure 1, C
and D). For further assessment of EV release and combinatory
treatment with CBD (5 μM), 800 μM TMZ was thus the chosen
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working concentration. Cell viability for 1 h combinatory treatment
with TMZ (800 μM) and CBD (5 μM) resulted in a 24.2% decrease
in cell viability (P = .0002) in LN18 GBM cells, while a 10.9%
decrease in cell viability (P = .0118) was observed in the LN229 cells
(Supplementary Figure 1, E and F).

Effects of CBD on EV Release from GBM Cells
Both LN18 and LN229 cells released EVs between 20–500 nm,

with the majority of EVs in the isolate being in the range of 20–200
nm (Figure 1, A and B and Supplementary Figure 2). The EVs were
characterized by electron microscopy and verified to be positive for
the EV-specific markers CD63 and Flotillin-1 (Figure 1). In LN18
cells, the modal peak size of EVs released in untreated cells was 83.8
nm, while after 1 h treatment with CBD (1 or 5 μM) the modal peak
size of EVs was 35.1 nm and 40.6 nm respectively (Figure 1C). In the
LN229 cells, the modal peak size of EVs in untreated cells was 111.2
nm, while the modal peak size of EVs released after 1 h treatment
with CBD (1 or 5 μM) was 104 nm and 125.5 nm respectively, with
no significant change in modal peak size compared to that of vesicles
released from untreated control cells (Figure 1D).

After 1 h treatment with CBD (5 μM), LN18 cells showed a
significant reduction in EV release (both exosomes and MVs; Figure
2, A–C), while in the LN229 cells the opposite was observed as CBD
increased EV release compared to DMSO treated control cells (Figure
Figure 1. EV release in GBM cells under standard culture conditions
Nanosight analysis, shows EVs released from LN18 cells under stand
the 25–300 nm range. EVs are verified to be positive for CD63 and Flo
histogram of EVs released from LN229 cells, under standard culture co
be positive for CD63 and Flot-1 and are also shown by TEM; the scale
changed after 1 h CBD treatment.D) In the LN229 GBM cell line, moda
2, D–F). In the LN18 cells, a 29% reduction was seen in exosome
(≤100 nm) release (P = .0066), a 24% reduction in smaller (101–200
nm) MVs (P b .0001) and a 56% reduction of larger (201–500)
MVs (P b .0001) following CBD treatment, compared to control
treated cells (Figure 2, A–C). In the LN229 cells, a 65% increase of
exosomes (≤100 nm) (P = .0144), a 50% increase of smaller
(101–200 nm) MVs (P = .0001) and a 57% increase of larger
(201–500) MVs (P = .0140) was observed following CBD treatment
(Figure 2, D–F).

Effects of 1 h TMZ and Combinatory CBD-TMZ Treatment
on EV Release from GBM Cells

The two GBM cell lines showed varying responses in EV release
after 1 h TMZ treatment, compared to DMSO treated controls
(Figure 2). In LN18 cells (Figure 2, A–C), TMZ significantly reduced
release of the smaller (101–200 nm) MV subset by 20% (P = .0003;
Figure 2B) but did not significantly affect exosome (≤100 nm) release
or release of the larger (201–500 nm) MV subset (Figure 2, A and C).

In LN229 cells (Figure 2, D–F), TMZ treatment significantly
increased exosome (≤100 nm) release by 20% (P = .0060), MVs in
the 101–200 nm size range by 60% (P = .0008) and MVs in the
201–500 nm size range by 98% (P = .0406).

The two GBM cell lines differed in EV release profiles after 1 h
combinatory treatment with CBD (5 μM) and TMZ (800 μM). In
and after 1 h CBD treatment. A) An NTA histogram, generated by
ard culture conditions; the size of EVs released falls mainly within
t-1 and are also shown by TEM; the scale-bar is 100 nm. B) An NTA
nditions, shows an EV population of 25–300 nm. EVs are verified to
bar is 100 nm. C) In the LN18 cell line, modal size of EVs released
l size of EVs showed no significant change after 1 h CBD treatment.



Figure 2. CBD and TMZ modulate EV release from GBM cells. EV release was assessed by NTA analysis after 1 h treatment with CBD (5
μM), TMZ (800 μM) and combinatory treatment of CBD (5 μM) with TMZ (800 μM). A) In LN18 cells, CBD significantly reduced exosome
release. B) In LN18 cells, the release of smaller MVs was significantly reduced by CBD and TMZ but not after combinatory treatment,
compared to DMSO controls. C) In LN18 cells, larger MVs were significantly reduced by CBD and CBD-TMZ combinatory treatment. D) In
LN229 cells, exosome release was significantly increased in single CBD or TMZ treatment, as well as in the CBD-TMZ combinatory
treatment, compared to control DMSO treated cells. E) In LN229 cells, the release of smaller MVs was increased in all treatment groups,
compared to DMSO control-treated cells. F) In LN229 cells, the release of larger MVs was increased in all treatment groups, compared to
DMSO controls. The P values indicated above the bars in the histograms represent significant changes compared to DMSO control;
significant changes for TMZ versus combinatory treatment of TMZ with CBD are also indicated.
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LN18 cells, CBD-TMZ combinatory treatment did not significantly
affect release of exosomes (≤100 nm) or the smaller MV (101–200
nm) subset compared to DMSO controls, but significantly reduced
release of the larger MV (201–500 nm) subset, compared to both
DMSO control and TMZ treatment (P ≤ .0001 and P = .001
respectively; Figure 2C).
In LN229 cells, exosome release was significantly increased

following CBD-TMZ combinatory treatment, both compared to
DMSO controls and compared to TMZ alone (P = .0049 and P =
.0115 respectively), but showed similar effects as CBD alone (Figure
2D); the same trend was observed for release of the smaller (101–200
nm) MV subset. The larger MV subset (201–500 nm) showed
significantly increased release in all treatments, compared to DMSO
control, while no significant difference was observed between the
individual treatment groups (Figure 2F).

miRNA Analysis in GBM Cells and Derived EVs Following
CBD Treatment
EVs isolated from LN18 and LN229 cells, and the respective cell

lysates, were analyzed for changes in pro-oncogenic miR21 and
anti-oncogenic miR126 following 1 h treatment with CBD (5 μM).
Compared to DMSO treated controls, pro-oncogenic miR21 was
significantly reduced both in EVs and the respective cell lysates after 1
h CBD treatment (Figure 3A). A stronger effect was observed for
LN229-derived EVs, where miR21 in EVs was 5-fold reduced
compared to DMSO control (P = .0001; n = 3), while in
LN18-derived EVs miR21 was 1.82-fold reduced compared to
DMSO control (P = .002; n = 4; Figure 3A). In the respective cell
lysates, a similar reduction of miR21 was observed in both GBM cell
lines with an approximate 9-fold reduction (P = .002 for LN18;
P b .0001 for LN229, respectively) compared to DMSO-treated
cells. The relative levels of anti-oncogenic miR126 were significantly
increased in EVs and the respective cell lysates after 1 h treatment
with CBD (Figure 3B). In LN18-derived EVs a 2.5-fold increase
(P = .0005; n = 4) in miR126 was observed, while in LN229-derived
EVs a 6-fold increase was observed (P = .003; n = 3), compared to
DMSO control treated cells. The same trend for increased miR126
was observed in the respective cell lysates with a 2-fold increase of
miR126 in LN18 cell lysates (P = .004; n = 4) and a 6-fold increase
in LN229 cell lysates (P = .015; n = 3), compared to DMSO treated
controls (Figure 3B).

miRNA Analysis in GBM Cells and Derived EVs Following
Combinatory TMZ-CBD Treatment

GBM cells were further assessed for modulation in microRNA
cargo following 1 h treatment with TMZ (800 μM) alone, versus
combinatory treatment of TMZ (800 μM) with CBD (5 μM).
Pro-oncogenic miR21 was significantly reduced both in EVs released
from LN18 and LN229 cells, as well as in the respective cell lysates,
compared to TMZ treatment alone. Some differences were observed



Figure 3. CBD reduces miR21 and increases miR126 in GBM cells and derived EVs. A) After 1 h CBD treatment (5 μM), pro-oncogenic
miR21 was significantly reduced both in EVs released from LN18 and LN229 cells, as well as in the respective cell lysates, compared to
DMSO treated controls. B) After 1 h CBD treatment, anti-oncogenic miR126 was significantly increased in EVs released from both LN18
and LN229 cells, as well as in the respective cell lysates, compared to DMSO controls. Exact P values for changes in relative miRNA
expression are indicated (n = 4 for each treatment group for LN18; n = 3 for each treatment group for LN229). Data are normalized to
U6-snRNA and has-let7a-5p.
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between the two cell lines as follows: miR21 showed higher decrease
in EVs released from LN18 (9.5-fold; P b .0001; n = 3) than
LN229 (3.3-fold; P = .0021; n = 3), compared to TMZ treatment
alone, while in the respective cell lysates, miR21 was 5-fold
(P b .0001; n = 3) reduced in LN18 and 9.3-fold (P b .0001;
n = 3) reduced in LN229 cells following CBD-TMZ treatment
(Figure 4A). After 1 h CBD-TMZ treatment, anti-GBM associated
miR126 was significantly increased in EVs released from both LN18
(3.84-fold; P = .0018; n = 3) and LN229 cells (3.25-fold; P =
.0032; n = 3), compared to TMZ treatment alone. In CBD-TMZ
treated cell lysates, miR126 was 11.84-fold (P = .0015; n = 3)
increased in LN18 and 9.82-fold (P = .0022; n = 3) increased in
LN229 cells, compared to TMZ treatment alone (Figure 4B).

Prohibitin Protein is Decreased in GBM Cells After 1 h CBD
Treatment

In LN18 cells, a reduction of 11.3–37.7% in PHB protein levels
was observed after 1 h treatment with CBD (5 μM), compared to
DMSO treated controls (Figure 5A). A similar trend was observed in
the LN229 cells, with PHB protein levels reduced by 15–15.7%
after 1 h CBD treatment, compared to DMSO treated controls
(Figure 5B). In LN18 cells, treated with a combination of CBD
(5 μM) and TMZ (800 μM) for 1 h, PHB protein levels were reduced
by 3–8%, compared to TMZ treatment alone (Figure 5C). The same
trend was observed in LN229 cells, with a 5–9% reduction in PHB
protein levels following combinatory treatment (Figure 5D). For
assessment of relative changes, band density of PHB was normalized
against the internal β-actin loading control (Figure 5).

Discussion
While CBD has been found to be effective in anti-GBM treatment,
and EVs have been related to GBM progression and invasiveness, no
link has hitherto been made between CBD and EV release in GBM.
We report here, for the first time, CBD-mediated changes in EV
profile from GBM cells and furthermore show that microRNAs in
CBD treated GBM cells, and their derived EVs, are modified to an
anti-oncogenic signature. The modulation of miR21 has previously
been shown to affect viability, senescence and invasion in GBM
[51,69], while miR21 silencing was found to decrease tumor cell
proliferation and tumor size, as well as enhancing apoptosis activation
and improving animal survival in vivo [70]. In GBM samples,
miR126 is significantly lower than in paired non-tumoural controls;
patients with higher intra-tumoural miR126 levels have significantly
improved survival duration than patients with lower miR126 levels
[52]. In GBM tissues, average miR126 expression is found to be
significantly decreased and relates to high histopathological grades,
while over-expression of miR126 suppresses glioma cell proliferation
and invasion in vitro, for example via the ERK pathway [71]. The



Figure 4. CBD in combination with TMZ more effectively reduces miR21 and increases miR126 export in EVs released from GBM cells,
compared to TMZ alone. A) After 1 h CBD treatment (5 μM) in combination with TMZ (800 μM), pro-oncogenic miR21 was significantly
reduced in EVs released from LN18 and LN229 GBM cells, as well as in the respective cell lysates, compared to TMZ treatment alone. B)
After 1 h CBD-TMZ treatment, anti-oncogenic miR126 was significantly increased in EVs released from both LN18 and LN229 cells, as
well as in the respective cell lysates, compared to TMZ treatment alone. Exact P values for changes in relative miRNA expression are
indicated (n = 4 for each treatment group for LN18; n = 3 for each treatment group for LN229). Expression levels are normalized to
U6-snRNA and has-let7a-5p.

Figure 5. Prohibitin is reduced in GBM cells following CBD treatment. A) After 1 h treatment with CBD (5 μM), PHB protein levels were
reduced in LN18 cells compared to DMSO treated controls; a = 11.3%, b = 37.7% reduction of PHB protein in CBD treated versus
DMSO control treated cells. B) In LN229 GBM cells, reduced PHB protein levels were also observed after 1 h CBD treatment, compared to
DMSO treated control cells; a = 15.7% and b = 15% reduction of PHB protein after CBD treatment respectively. C) Reduced PHB
protein levels (3–8%) were also observed in LN18 cells treated for 1 h with CBD (5 μM) in combination with TMZ (800 μM), compared to
TMZ treatment alone.D) In LN229 cells, reduced PHB protein levels (5–9%) were also observed in CBD-TMZ versus TMZ treatment alone.
“R” indicates the change in PHB protein levels relative to β-actin, which was used as the internal loading control.
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observed up-regulation of miR126 and increased EV-mediated export
of miR126, found in the present study after 1 h treatment of GBM
cells with CBD alone, as well as in combinatory application with
TMZ, thus indicates an anti-GBM function via changes in this
miRNA in response to CBD. In the same vein, reduced levels of
miR21, after 1 h treatment with CBD, as well as in combinatory
application with TMZ, indicates a strong anti-GBM activity via
down-regulation of this miRNA and its extracellular transport via
EVs. Notably, when applying a combination of CBD with TMZ in
both GBM cell lines tested here, the relative-fold increase of miR126
and decrease of miR21 was more marked than after treatment with
CBD or TMZ alone, thus indicating an enhanced anti-cancerous
miRNA response when CBD is combined with TMZ. Interestingly,
miR21 inhibition has previously been shown to enhance chemo-
sensitivity of TMZ-resistant GBM cells in vitro [72].

PHB was found to be reduced in GBM cells following CBD
treatment alone, and when combined with TMZ, compared to TMZ
treatment alone. In a previous study, we showed that CBD-mediated
changes in EV-release in three cancer cell lines associated with
reduction in PHB levels, changes in mitochondrial function and
sensitization to chemotherapy [35]. PHB plays multifaceted roles in
cell survival immunity, metabolism, senescence and apoptosis
[53,54]. The accumulation of PHB is a common cellular response
to stress and has been shown to protect cancer cells from ER stress and
chemotherapy-induced cell death [64]. PHB has previously been
linked to GBM regulation [73,74] and shows dysregulated expression
in gliomas [75–78]. PHB is associated with high grade gliomas [76]
and the regulation of PHB, for example, via micro-RNAs, may be of
pivotal importance in cancer treatment [74,79,80]. Interestingly,
PHB accumulation occurs in mitochondria after chemotherapy
treatment and de-novo accumulation has been shown to be associated
with chemoresistance in melanoma in vitro, while knock-down of
PHB sensitized melanoma cells to chemotherapy [64]. Changes in
PHB levels have also been associated with melanoma cell
proliferation, mitochondrial dysfunction, ER stress and melanoma
cell apoptosis, in response to bornyl cis-4-Hydroxycinnamate from
Piper betle stems [81].

Recently, TMZ has been shown to affect EVs released by GBM
cells [49], and this relates to our findings here, where we detected
TMZ-mediated modulatory effects on EV release and cargo
composition in the two GBM cell lines. Higher levels of EV release
in response to TMZ or CBD may imply a cellular response to aid
drug efflux, but may also be indicative of a pseudo-apoptotic
response, where apoptotic factors are still low enough for the cell to
turn the apoptosome into EVs for export of hazardous agents [82,83].

Interestingly, after 1 h treatment with CBD, contrary to what was
observed in LN18 cells, EV release from LN229 cells was significantly
increased, and these EVs also carried 6-fold increased amounts of
anti-GBM miR126 (compared to 3.5-fold increased amounts in
LN18), as well as significantly reduced levels of pro-oncogenic
miR21. Furthermore, combinatory treatment of CBD with TMZ
resulted in many-fold increased levels of miR126 and reduced levels
of miR21, compared to TMZ treatment alone. Thus, both
CBD-mediated changes in EV sub-populations released and changes
in EV cargo, alongside changes in PHB levels, may contribute to the
known CBD-mediated sensitization of GBM cells to chemotherapy.
The differences observed here between LN18 and LN229 GBM cells
reflect the well-known complexity of glioblastomas [84]. At the same
time, the identification of common pathways in the two GBM cell
lines tested here, may inform novel measures for treatment of this
heterogeneous group of tumors. Recent findings during a
placebo-controlled phase II clinical trial investigating CBD:THC in
combination with dose-intense TMZ in GBM patients (clinical trial
NCT01812603) has shown great promise, where the control group
receiving TMZ had a 44% survival rate compared to the group
receiving combinatory treatment of THC:CBD with TMZ, which
had an 83% 1-year survival rate, and in addition showed median
survival over 662 days, while the control group median survival was
369 days [45,46]. The CBD-mediated modulation of EV biogenesis,
EV associated cargo and reduction of PHB levels, presented here, may
thus be of great interest for refining application of CBD, in
combination with standard therapy and chemotherapeutic agents, in
anti-GBM therapy.

Conclusions
Here we show, for the first time, a modulatory effect of CBD on EV
release and a CBD-mediated reduction in pro-oncogenic miR21 and
elevation of anti-oncogenic miR126 in GBM cells. When used in
combination with TMZ, CBD enhanced anti-oncogenic miR126
and reduced pro-oncogenic miR21 expression in GBM cells and
GBM derived EVs, compared to TMZ treatment alone. Furthermore,
we have also shown that PHB, a pleiotrophic protein involved in
mitochondrial housekeeping, cell survival, immunity and chemore-
sistance, was reduced in GBM cells upon CBD treatment. This
supports emerging evidence that CBD has anti-cancer effects and
indicates that CBD can be used to lower anti-chemotherapeutic
responses to TMZ as well as modifying EV cargo to an anti-oncogenic
signature in GBM.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tranon.2018.12.004.
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