

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Towards formalisation of situation-specific computations in
pervasive computing environments

Reza Shojanoori

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2013.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

TOWARDS FORMALISATION OF SITUATION-SPECIFIC COMPUTATIONS

IN PERVASIVE COMPUTING ENVIRONMENTS

R. SHOJANOORI

PhD

2013

 ii

TOWARDS FORMALISATION OF SITUATION-SPECIFIC COMPUTATIONS

IN PERVASIVE COMPUTING ENVIRONMENTS

ABDOREZA (REZA) SHOJANOORI

A thesis submitted in partial fulfilment of the

requirements of the University of Westminster

for the degree of Doctor of Philosophy

May 2013

 iii

To my wonderful wife, Afsaneh, for her continuous love and

support, and to our amazingly understanding and patient boys,

Hossein, Hamed and Erfan.

 iv

Acknowledgment

I cannot thank enough the Magnificent the Merciful for giving me the passion and

strength to complete this thesis, during which I felt more how frail we are in his

glorious Kingdom.

I have to thank my friend, colleague and supervisor Dr. Radmila Juric who has given

me much pause for thought during this research. Lively, sometimes heated,

discussions we had within our small research group is unforgettable. Her friendship,

professionalism, and research enthusiasm is exemplary. I cannot possibly forget and

not acknowledge the help of all the people from whom I have learned, my teachers,

my colleagues and most of all my “students”. I would also like to thank my friend

and colleague Colin Everiss for his help and support throughout.

I am grateful to my wife and the boys for their extraordinary support and

forbearance. During the course of this research I could not fulfil my responsibilities

as a husband and father and for this I can only apologise and hope I will be able to

make it up to them.

Towards Formalisation of Situation-specifc Computations in PCEs v

Abstract

We have categorised the characteristics and the content of pervasive computing

environments (PCEs), and demonstrated why a non-dynamic approach to

knowledge conceptualisation in PCEs does not fulfil the expectations we may have

from them. Consequently, we have proposed a formalised computational model,

the FCM, for knowledge representation and reasoning in PCEs which, secures the

delivery of situation and domain specific services to their users. The proposed

model is a user centric model, materialised as a software engineering solution,

which uses the computations generated from the FCM, stores them within software

architectural components, which in turn can be deployed using modern software

technologies. The model has also been inspired by the Semantic Web (SW) vision

and provision of SW technologies. Therefore, the FCM creates a semantically rich

situation-specific PCE based on SWRL-enabled OWL ontologies that allows

reasoning about the situation in a PCE and delivers situation specific service.

The proposed FCM model has been illustrated through the example of remote

patient monitoring in the healthcare domain. Numerous software applications

generated from the FCM have been deployed using Integrated Development

Environments and OWL-API.

Towards Formalisation of Situation-specifc Computations in PCEs vi

Table of Contents

CHAPTER 1, INTRODUCTION ... 1

1.1 Research Domain .. 1

1.2 Research Problem ... 3

1.2.1 Research Motivation .. 3

1.2.1.1 A New Role for Computing ... 3

1.2.1.2 Adopting New Technologies ... 4

1.2.2 Research Vision .. 6

1.2.3 Concerns .. 7

1.2.4. The Core of the Research Problem ... 8

1.3 Research Objectives .. 9

1.4 Research Approach ... 10

1.5 Research Method .. 10

1.6 Thesis Outline .. 11

CHAPTER 2, BACKGROUND OF THE RESEARCH .. 13

2.1 Ubiquitous Computing .. 13

2.1.1 Expansion of Computing .. 14

2.1.2 The New Paradigm and HCI Community ... 14

2.1.3 AI is Challenged .. 16

2.1.4 Recognition of the New Paradigm ... 17

2.2 Pervasive Computing .. 18

2.2.1 Launch of Pervasive Computing .. 18

2.2.2 Review of Pce Perceptions ... 19

2.2.3 Pervasive Computing Versus Ubiquitous Computing 21

2.3 Context In Computing ... 22

2.3.1 Definition and Categories of Context .. 23

2.3.2 Context Awareness .. 28

2.3.3 Context Modelling ... 30

2.4 Semantic Web ... 35

2.4.1 Ontology Definition ... 38

2.4.1.1 OWL Ontology .. 39

2.4.1.2 Constraints and Assertions with OWL .. 40

2.4.2 SWRL Rule .. 42

2.4.2.1 The Role of Competency Question (CQ) .. 42

2.4.3 Ontology Applications .. 43

2.5 Summary ... 45

CHAPTER 3, PROBLEMS WITH PERVASIVE COMPUTING.. 47

3.1 Expectations from Pervasive Computing .. 48

3.2 Problems with Context-Awareness in Pervasive Computing 52

3.3 Summarising Shortcomings of Pervasive Computing 56

3.4 The Way Forward in this Research ... 57

3.4.1 What would be Common Characteristics of PCE? 57

3.4.2 What Would be the Role of situations in Pervasive Computing? 61

3.4.3 What Do We Compute in PCEs and Why? ... 62

Towards Formalisation of Situation-specifc Computations in PCEs vii

3.6 Summary ... 64

CHAPTER 4, A FORMALISED COMPUTATIONAL MODEL FOR PCES 65

4.1 Taxonomical Structure of Pce ... 67

4.1.1 Definitions of PCE, Situations and Delivered Services in PCE 67

4.1.2 Instance ins t and Category Ctg i as Abstractions in PCE∆T 70

4.1.3 Levels λ of Categories Ctg i in PCE∆ .. 70

4.1.4 Taxonomical Structure PCE∆T with Leaf and Root Categories 72

4.1.5 Occurrence of Root categories RCtg i .Lev j , in PCE∆T 73

4.1.6 Combining Occurences of Ctg i .Lev j in PCE∆T 76

4.1.6.1 Finding Combinations of Root Occurrences RCtg i .Lev j , in PCE∆T . 76

4.1.6.2 Illustrating Subsets of RCtg i .Lev j , Occurences in PCE∆T 78

4.1.7 An Instance Characteristics of a Taxonomical Element 80

4.1.8 Illustrating an Instance Characteristics chr q of a Taxonomical Element 81

4.1.9 Relationships rlp r in PCE∆T ... 82

4.1.9.1 Relationships between Taxonomical Elements at the Root of PCE∆T . 83

4.1.9.1.1 Consequences of the Relationship ‘hasPreference’ 84

4.1.9.1.2 Consequences of Creating a new Taxonomical Element 85

4.1.10 Summarising PCE∆T .. 85

4.2 Formal Computational Model (FCM) in PCE ... 87

4.2.1 The FCM with Loops and Steps Towards PCE∆T 87

4.2.1.1 Creation of Ctg i .Lev j ,insertion of ins t ,addition of chr q and vlu q 89

4.2.1.2 Creation of Generic Relationships rlp r .. 91

4.2.1.3 Creation of Extended Relationships rlp r .. 91

4.2.2 The FCM in Pseudo Code Using OWL Terminologies 91

4.2.2.1 Mapping PCE∆T to OWL Terminologies ... 92

4.2.2.2 The FCM in Pseudo Code ... 94

4.2.3 The FCM and Delivering a Situation-specific Service in a PCE 97

4.3 Summary ... 99

CHAPTER 5, EVALUATION OF THE PROPOSED MODEL BY IMPLEMENTATION 100

5.1 Setting the Scene .. 100

5.1.1 Healthcare Domain .. 101

5.1.2 SeCH Environment ... 102

5.1.3 The Scenario .. 103

5.1.4 Recapitulation of FCM Terminologies ... 105

5.1.5 ASeCS Software Architecture... 107

5.2 Illustration of the FCM in A PCE .. 111

5.2.1 Formulating the Competency Question (CQ) .. 111

5.2.2 Illustration of FCM Loops and Steps .. 113

5.2.2.1 Illustration of Creation of ctgi.Levj, Insertion of inst, and addition of

chrq,vluq .. 114

5.2.2.2 Illustration of Generic Relationships rlpr, ... 119

5.2.2.3 Illustration of Extended Relationships rlp r , 120

5.2.2.4 Summarising all PCE∆T Elements for the Running Scenario 120

5.2.3 Summarising the Creation of PCE∆T .. 122

Towards Formalisation of Situation-specifc Computations in PCEs viii

5.2.3.1 Using Existing Ctg i .Lev j and rlp r .. 122

5.2.3.2 Extension of of PCE∆T with Situation-specific Ctg i .Lev j in SeCH 123

5.2.3.3 Extension of PCE∆T with Situation-specific rlpr in SeCH 124

5.2.4 Illustration of Mapping PCE∆T to OWL Ontological Concepts 124

5.2.5 Illustration of Delivering a Service in a PCE∆ .. 129

5.2.6 Running the Rule .. 133

5.3 Summary ... 134

CHAPTER 6, EVALUATION AND REFLECTION .. 135

6.1 Evaluation .. 135

6.1.1 Meeting Objectives .. 135

6.1.1.1. Outlining Problems in PCE Research and their Shortcomings 136

6.1.1.2. Agreeing on Common Characteristics of and Situations in PCEs 136

6.1.1.3. Defining the FCM .. 138

6.1.1.4. Illustrating the FCM .. 140

6.1.2 Impact of Semantic Web Technologies ... 142

6.1.2.1 The Impact of SWT on the FCM .. 142

6.1.2.2 The Impact of SWT Stack on the FCM .. 144

6.1.2.3 The applicability of the FCM across problem domains 144

6.2 Reflection .. 145

6.2.1 The FCM and the Generic Taxonomical Structure 145

6.2.1.1 What Influenced the Generic Taxonomical Structure 145

6.2.1.2 Choice of Root Categories RCtgi.Levj in PCE∆T.................................. 146

6.2.1.3 Natural Growing of the PCE∆T .. 147

6.2.1.4 Disjoint Extension of Ctgi.Levj ... 149

6.2.1.5 Depth of Ctg i .Lev j Extension .. 149

6.2.2 Role of OWL in Defining THE FCM ... 150

6.2.3 Implementation ... 151

6.2.3.1 SWRL enabled OWL Ontology .. 151

6.2.3.2 Mapping CQ to THE FCM .. 153

6.2.3.3 Mapping Situation-specific CQ to SWRL Rule................................... 153

6.2.3.4 Role of Traditional Computing in Realisation of PCEs 154

6.3 Contribution ... 155

6.4 Research Conclusion and Future Work .. 156

REFERENCES ... 158

APPENDIX A .. 173

APPENDIS B .. 178

Towards Formalisation of Situation-specifc Computations in PCEs ix

List of Tables

3.1 Expectatons from pervasive computing 52

3.2 Limitations of context-aware applications 56

3.3 Summary of PCE characteristics 61

4.1 An example of situational information received by a PCE∆ 80

4.2 PCE∆ situational information of figure 4.7 82

4.3 Mapping PCE∆ to OWL terminologies

the semantic language manipulating them

93

5.1 Segments of the running example competency question 113

5.2 Content of the PCE∆T of the running example 121

5.3 Mapping situational information of Table 5.1 to PCE∆T

taxonomical element of Table 5.2

121

5.4 Mapping of key elements of PCE∆T and constructs OWL ontology 125

5.5 Transformation of detected contextual data to ontological

concepts

127-8

5.6 Mapping the CQ semantics with the atoms of SWRL rule 130

Towards Formalisation of Situation-specifc Computations in PCEs x

List of Figures

2.1 Tim Berners-Lee’s original Web information management view 36

2.2 Semantic Web Stack 38

2.3 Building blocks of OWL using UML notations 40

2.4 Graphical representation of Listings 2.1 & 2.2 41

4.1 FCM computation of a situation-specific service in a PCE 66

4.2 An inst being a “Subset of” a number of Ctgi. Levj 71

4.3 Each “subsets of” a Ctgi. Levj is qualified with a level λ 71

4.4 RCtgi.Levj of a PCE 76

4.5 RCtgi.Levj of a PCE with Mbr(inst, Ctgi.Levj) examples 77

4.6 An example of a five-level λ CtgiLevj 79

4.7 Partial graphical representation of an example of a PCE∆ 82

4.8 Relationship rlpr between taxonomical roots 84

4.9 Summarisation of generic PCE∆T 86

4.10 Formalised Computational Model in PCEs 88

4.11 Adding (Mbr(inst, Ctgi.Levj), chrq, vluq) to FCM 90

5.1 SeCH environment as an example of a PCE 103

5.2 CM computations for the example scenario PCE∆ 106

5.3 ASeCS software architecture 107

5.4 Part of PCE∆ showing instance “margaret” and its category “Resident” 109

5.5 PCE∆T representation of instances and Ctgi.Levj characteristics of

the scenario CQ

118

5.6 The generic PCE∆T 122

5.7 Extension of generic PCE∆T to accommodate new Ctgi.Levj 123

5.8 Extension of generic PCE∆T to accommodate the new rlpr 124

5.9 The generic GOnto OWL ontology 126

5.10 The SeCHOnto OWL ontology 129

5.11 The result of running the SWRL rule for the running example CQ 133

6.1 Vertical extension of Ctgi 148

Towards Formalisation of Situation-specifc Computations in PCEs xi

List of Abbreviations

ACM Association for Computing Machinery

AI Artificial Intelligence

ASeCS Assisted Self Care System

CML Context Modelling Language

CoBrA Context Broker Architecture

CQ Competency Question

DL Description Logic

FCM Formal Computational Model

GOnto Generic Ontology

GUI Graphical User Interface

HCI Human Computer Interaction

HTML Hyper Text Markup Language

IDE Integrated Development Environment

IRI Internationalized Resource Identifier

JDBC Java Database Connectivity

OWL Web Ontology Language

PCE Pervasive Computing Environment

RDF Resource Description Framework

RDFS RDF Schema

RMI Remote Method Invocation

SE Software Engineering

SeCH SelfCare Home

SeCHOnto SeCH Ontology

SOCAM Service oriented context-aware middleware

SQL Structured Query Language

SW Semantic Web

SWT Semantic Web Technology

SWRL Semantic Web Rule Language

UC Ubiquitous Computing

UML Unified Modelling Language

URI Uniform Resource Identifier

Web World Wide Web

W3C World Wide Web Consortium

XML Extensible Markup Language

XML-S XML Schema

CHAPTER 1

INTRODUCTION

1.1 Research Domain
Pervasive computing is leading the way in a fast-growing trend of integrating

transparently physical heterogeneous computational devices into our private and

professional lives. The ubiquity of these devices and advances in developing

software solutions across domains, have raised hopes for the creation of true

widespread pervasive computing environments (PCE). The research advances in PCE

in the last two decades, and the demand growth for computations on mobile,

wireless and handheld devices has earned a growing eagerness within the software

and hardware industry for a greater involvement in creating PCEs, particularly in the

last ten years. The interplay of research and technological achievements along with

the perpetual effort by researchers and practitioners working on various PCE

projects on one hand, and maturity of distributed systems and mobile computing on

the other, have paved the way for the richness of PCEs in the post-PC era. These

efforts and triumphs not only have brought about technical devices perceived as

‘exotic’ in the 1980s and even 1990s, but also contributed towards a gradual

realisation of powerful PCEs spread across many domains.

The changing nature of software applications and pervasiveness of computational

environment has not and could not have been addressed by traditional computing,

basically because the nature of computation has changed. Also the way we perceive

computing today has changed. Not only do we compute with our handheld devices

at any time, we also have started to become in charge of computations. For

Chapter 1, Introduction

 2

example, we recall not long ago, when in a bank in central London a customer who

did not have any form of identification with him, was begging the fastidious branch

manager to let him withdraw £50 from his account. Now, provided your mobile

phone is registered with your bank, you can withdraw cash without a debit card.

Your only proof of identification is your mobile phone. Until not long ago, we had a

very systematic and ordered way of computing through business applications,

which were run somewhere by someone. Leaving us quite isolated from it. Now, we

are in charge of the way we compute. Mobile Web-based services, mobile shopping,

trading, commodity market probing, following the news, watching your favourite TV

program, managing your schedule and appointments with your doctor, monitoring

local civic services are just a few examples of what users can do whenever they

want and while on the move. Although the Web has changed our lives, not all

applications are run on the Web, and even Web applications offer, by and large,

limited functionality. However, being in a PCE provides users with a different

experience from being exposed to a Web application.

Considering the far reaching impact of PCEs on our everyday life, their diverse

characteristics and trans-disciplinary nature, and of course being a relatively new

topic, it is understandable that the literature does not show any consensus on the

definition of PCEs. Nevertheless, the user role and involvement in a PCE is generally

accepted as a key feature of the PCE. This varies in different publications, but by

and large, the user is an indispensable part of PCEs who expects some kind of

service from it. Still, the realisation of this objective is viewed from different angles

by different researchers and practitioners. However, what is commonly accepted is

the fact that the complexity of the computing infrastructure had to be hidden from

users for minimal intervention by them to administer computation. This has been a

reflection of what the visionary Weiser articulated, about the experience users have

had in the past and the obligations of the computer scientists to avoid such

complexities (Weiser, 1991).

This lack of clarity, and that sometimes researchers and practitioners focus on

specific aspect(s) and not PCE as a whole, introduced several synonyms for

Chapter 1, Introduction

 3

pervasive computing in the literature. The most commonly interchangeable term

used for pervasive computing is ‘ubiquitous computing’. Other terms include

‘proactive computing’, ‘ambient computing’; some such as Streitz and Nixon (2005)

and Lyons (2002), consider ‘ambient intelligence’ is also pervasive computing.

1.2 Research Problem
In this section we will explain what the core of the research problem is. However,

prior to that for a better appreciation of the problem we would like to elaborate on

our motivation, vision, and eventually our concerns for the research.

1.2.1 Research Motivation

Users are now in charge of the way they compute. In this section, we will look into

this phenomenon from two perspectives, new role of computing and the

inescapability of embracing new technologies.

1.2.1.1 A New Role for Computing

We have to assess new ways of ‘thinking about computers’. In the second decade of

the 21
st

 century, our attitude towards computing in general and rapidly changing

perception on what we compute and how we compute must reflect the ever

changing and increasing demand for computing in general across domains. In the

era of daily creation and the availability of new Android or iOS apps which can be

programmed by users and posted on various open source platforms (at the time of

writing this the number of app downloads exceeded 25 billion), at the time when

sensor-equipped smart phones are commonplace, and we are being enabled to

manage our electronic ‘possessions’ from wherever we are, we really need to re-

think where the computations stand today. The times when we were only

concerned to compute in an orderly manner, as in traditional business transaction

or general-purpose processing supported by highly structured database

repositories, have gone.

We may argue that the Web changed everything and that our software applications

today are hosted by the internet technologies and numerous solutions which

perceive software as a service. However, we still compute in an old manner:

applications are solely dependent on huge data repositories, and our computation

Chapter 1, Introduction

 4

is delivered through traditional programming procedures supported by components

and service oriented technologies. Pervasiveness of modern computational spaces

may use such solutions, but it would be impossible to model user behaviour and the

environment to constantly address users’ situation-specific expectations. Very often

we associate the expectations users may have in PCEs with services that may be

delivered to them. Realizing Weiser’s view to bring computers to users, requires

timely information on the situation the user is in (Banavar et al., 2000)(Chen et al.,

2004b)(Saha and Mukherjee, 2003)(Sullivan and Lewis, 2003). Users, their location,

their preference and wishes appropriate to the situation, their activity, the present

environment, surrounding devices and their up-to-moment state and the like are

typical necessary information for any reasoning mechanism to compute the

situation, and to reason upon to deliver a service to the user. Database

management systems cannot support such requirements.

If we would like to see PCEs as domain and situation-specific environments, then we

should assume that for each situation a new situation-specific computational space,

which consists of a situation-specific model, data, and computations, will be

created. It is also important to address the impact and role of user in the creation of

instances of PCEs. User adoption of such instances of PCE is crucial for their

existence. Assuming that we can secure the existence of an situation of PCE without

user participation is wrong. The user must be willing to co-exist in the situation of

the PCE, decide when computation should take place, and when necessary, indicate

their preferences at runtime.

1.2.1.2 Adopting New Technologies

We have to examine the impact of the software and hardware changes on our way

to creating situation of PCEs. We know how technology has had impact on our

lifestyles, businesses, education and governance, and are aware of our dependence

on the benefits of adopting technological changes as they appear. It is not the

question “when and if” we have to embrace new technologies. Changes of modern

technology in today’s everyday life is drastic. There are always so many of them

around us that we have opportunities to use them immediately, thanks to their

modern and easy-to-use interfaces. Taking into account the generation of young

Chapter 1, Introduction

 5

people that is growing up with modern gadgets, one can safely argue that

technology is a ‘must’ and not ‘if’. We have to envisage how quickly we could

respond to new technologies and what this means in terms of creating

computational spaces in PCEs. Will these computational spaces be of the same

nature as in the environments, which are not pervasive? From that perspective,

software technologies and the Semantic Web in particular, have delivered

interesting solutions for PCEs. Solutions that may be able to address the needs of a

new computational model for supporting situations in PCEs. Increasing popularity of

the SW technologies shows that such new computational models which focuse on

the manipulation of the semantics of situations in PCEs work very well, particularly

if user expectations and involvement in such spaces are taken into account.

We have learned the lessons from the past in terms of standardisation of software

technologies before we start exploiting them across various domains. Therefore

W3C attempts is a good example of preparing the Semantic Web technology (SWT)

stack, which can be used within and outside its original purpose of manipulating the

meaning within the Web pages across the Internet (Horrocks et al., 2005). The

SWTs have brought us new types of computational space which can manipulate the

meaning of information available on the Web and therefore securing its handling.

However, we are able to extend the same mechanism of manipulating the

semantics of the Web towards any other form of computations not necessarily

related to the Internet. In other words, we have to pay attention to the power of

new languages, which do exactly that: handle the semantic of computational spaces

and allow us to manipulate it outside traditional highly structured repositories of

databases and SQL like exploitation and manipulation of its content.

So, we are encountered with pervasiveness of modern computational spaces that

cannot be tackled through traditional computations on one hand, and availability of

technology on the other. So, these were the triggers to start our thinking. But

thinking is just the starting point.

Chapter 1, Introduction

 6

1.2.2 Research Vision

We have to agree that pervasive computing has now penetrated into our everyday

life in almost all domains of computing and that certain software applications have

been taken for granted when we create software solutions for PCEs. Examples are

pervasive healthcare (Thoyib et al., 2011), (Zhang et al., 2011a), ubiquitous learning

(Hwang et al., 2011), (Tsai et al., 2001), ubiquitous manufacturing (Zhang et al.,

2011b), just to name a few. We have also been aware that software production

today is heavily supported by numerous integrated development environments

(IDEs), tools, ready-made code available on open sources and forums (Truong and

Dustdar, 2010), (Ayala et al., 2011). Most of our modern software applications

interpret PCE as ‘pervasive spaces’ (Helal, 2011), ‘context-aware smart spaces’

(Chen et al., 2011), some offer solutions for the management of pervasive

environments (Bourcier et al., 2011), some are more technological and domain

specific such as (Milosevic et al., 2011), and some are more generic (Lukowicz et al.,

2012). As a result, we would like to find out what we can perceive as computation in

PCEs. We want to find out whether in this modern world of pervasiveness of

technology we can make successful computations as in the past. We were supposed

to provide structured data through some interfaces and the computing system was

supposed to give results at the end. Now, we have to review our perception of

‘data’ and what ‘computing’ in PCE is.

Therefore, our vision is that computations in PCEs must :

1) Capture semantics of a situation in a PCE.

2) Address constant changes of situations that may occur in a PCE, which may

differ from moment to moment. That is, we may witness many different

situations in the PCE.

3) Take into account that understanding situations in a PCE depends on how

successfully we can model their semantics , manipulate and reason upon it.

4) Improve earlier research visions on context awareness (Dey, 2001)(Schmidt

et al., 1999), its implementations and roles in modern pervasive computing

spaces (Ellenberg et al., 2011)(Gellersen et al., 2002)(Sang et al., 2003)(

Chapter 1, Introduction

 7

Adlam and Orpwood 2004). This will help to strengthen our motivations,

outlined in paragraph 1.2.1.

1.2.3 Concerns

The feasibility of putting forward our vision on creating computations for PCEs will

depend on the ability to answer many questions.

For example, what is the difference and borderline between collecting interpreted

contextual-data and defining a situation in a PCE? Do both of them have any or

similar impact on the creation of the computationally significant representation of

PCE?

If we assume that we would still like to use traditional software engineering (SE)

principles of applying computations with imperative and declarative programming,

upon highly structured repositories of databases and Web pages, can we use the

same principles in defining situations in PCEs and delivery of a situation-specific

service(s) to users? Would such SE principles take into account our vision of

creating computational spaces for PCEs as itemised 1)- 4) in paragraph 1.2.2?

If we assume that defining a situation in a PCE requires understanding of the

semantic of the PCE or maybe the meaning/purpose of each situation in PCE (as in

3) above), then we might need computations with reasoning mechanisms which

should be a part of our SE principles?

If we agree that inference and reasoning mechanisms in PCEs would support the

definition of situations and delivery of a situation-specific service(s) to users in PCEs,

then what would the computations in PCEs be?

Finally, if we agree on the presence and the purpose of inference and reasoning in

PCEs, which technology should be used in order to achieve both: the definition of

situations and delivery of services in PCEs?

Even if we do not know the immediate answers to our concerns above, we assume

that the traditional Artificial Intelligence (AI) techniques and methods to reason and

secure inference might not be the best possible option for defining situations and

delivering services in PCE. For example, the evolution from the expert systems

generation to cognitive systems and then to ‘intelligent systems’ and even

‘intelligent assistant systems’, and now ‘context-based intelligent assistant systems’

Chapter 1, Introduction

 8

generation, is still following traditional interpretation of context and reasoning

upon it with minimal regards for users and changes in situations, if at all any. There

is no evidence that these systems would work in PCEs with 1)-4) in mind. In a

testimony of the last 25 years of AI, Brezillon (2011) acknowledges that a radically

different perception of context, situation and its relationships with users is

necessary if we wish to address crucial aspects of pervasive computing.

Consequently, we envisage that without SE principles in creating computational

models, which define situations in PCEs and reason upon them in order to deliver

services to users in PCEs, we cannot claim that PCEs exist. Therefore, the SE

community has a key role to play to materialise what the AI community regards as

‘intelligent software systems’ and what could be delivered through defining

constantly changeable situations of PCEs.

1.2.4. The Core of the Research Problem

We can summarise from the discussion above that the core of our research problem

is polarised around thefollowing questions.

- What would be the computationally significant representation of a situation in

PCE?

- If it is a computational model that defines a situation in a PCE and secures

delivery of situation-specific services to users in PCEs, what would it consist of?

- How would we support the semantics in a PCE and what would be our inferring

mechanism to support reasoning in PCEs?

- What should we reason about when defining a situation in a PCE?

- Shall we create new reasoning mechanism which do not rely necessarily on

reasoning techniques available in AI?

- Should we strive a formal computational model, which answers all our questions

and address 1) - 4) in paragraph 1.2.2?

- How would we use the formalised computations in real life examples and what

would be needed for their implementations?

Consequently, our research should

Chapter 1, Introduction

 9

� Address the role of programming languages in representing situations in PCE and

their (in)ability to represent the semantic in PCEs.

� Show that the “intelligence” or “smartness” of PCEs are not always guaranteed

by computational power of various algorithms which are stored in computational

models, nor by the management of computations through component and

service oriented platforms, while perceiving software as a service and using

excessive object-oriented programming.

� Contemplate that we must use modern software technologies which allow

conceptualization of knowledge and reasoning in order to address the

“intelligence” and “smartness” in PCEs. One of the best options might be the

SWTs which have been used for interpreting the meaning/semantics of

numerous websites, where understanding of the website contents has been

supported by languages and reasoning from the SWT stack.

Therefore, our way forward in proposing a new role for computing, that allows

adopting transparently new technologies in PCEs, is a formalised computational

model which address 1) – 4) in 1.2.2, using SWT and utilising the SE principles.

1.3 Research Objectives
The aim of this research is to specify a formal computational model that can

represent computationally significant semantics of different situations in domain-

specific PCEs. The model can accommodate semantics of different domains and is

therefore reusable across any domain of interest. In view of this, the research

objectives are to:

1) Analyse and summarise the problems in and shortcomings of pervasive

computing and assess the way it has been addressed in SE in the last decade.

2) Create a list of common characteristics of PCE and set the foundation for

defining situations in PCEs through a formal computational model, which would

satisfy SE principles.

3) Define a formal computational model which will allow representation of

computationally significant semantics of any situation in PCEs for the purpose of

delivering situation-specific services.

Chapter 1, Introduction

 10

4) Illustrate and implement the proposed formal computational model in a domain

of interest, using SWRL enabled OWL ontology.

1.4 Research Approach
Following an in depth analysis of PCEs in general and developing a formal

computational model, we will perform a systematic proof-of-concept

implementation approach to illustrate the functionality of our proposed formal

computational model. The model will represent computationally significant

semantics of different situations in domain-specific PCEs, and support reasoning

upon it to deliver services to the users of PCEs.

The proof-of-concept implementation will not only validate the proposed model for

PCEs, but will also demonstrate the potentials of SW technologies in developing

computational models in PCEs.

1.5 Research Method
There is no consensus in the software development community on what PCE is.

Considering the complexity of the subject matter and its multidisciplinary nature we

start our research by

1) Investigating what PCE is, and what constitutes a PCE. We explore what the

characteristics of PCEs are, and what the expected delivered output of a PCE is.

We would like to emphasize that due to the lack of widely accepted PCE definition,

we provide our own definition and observe it throughout.

Despite being a relatively new topic in the realm of computer science, there has

been growing attention to PCE by the research community and equally by

practitioners. Therefore, the next aspect of the research method is to

2) study how in the past situations in PCEs have been formally defined

(presented), and what are their weaknesses considering 1) above and lack of

widely accepted definition of PCEs.

Rather than providing a specific solution to a problem-specific and domain-specific

situation, we favour a SE solution to the creation of PCE situations. This entails a

model that is generic, i.e. applicable across domains and situations in PCEs, and

Chapter 1, Introduction

 11

simple enough to be used for different situations in PCEs. To achieve a generic

solution for PCEs considering 1) above we need a formal computational model.

Therefore, our next aspect of the research method is to

3) develop a formal computational model that allows definition (representation)

of situations in PCEs, and reasoning upon it to deliver services to the user of

PCEs.

We would also like to emphasize that our formal computational model should

primarily serve software engineers and guarantee that certain computations will

take place with the expected outcome. Consequently, no further proof of the

formal computational model would be required except introducing its concepts and

their relationships which will enable the computations typical of SE principles.

Ultimately, the role of the formal model would be to guide software engineers to

perform computations in pervasive spaces.

To illustrate the above formal model, it will be applied to an example scenario.

Therefore, our eventual aspect of the research method is to

4) apply the formal model as a result of 3) in a typical PCE environment.

1.6 Thesis Outline
Following this introductory chapter, in Chapter 2 background information on

ubiquitous computing and pervasive computing is provided. In this chapter we also

elaborate on the perception of context awareness of the past and present. Our

definition of PCE and what it constitutes, which will be followed throughout the

thesis, is stated in this chapter.

In Chapter 3 we go through related works that provide any generic solutions to

address any aspect of PCEs in general. Through the chapter, we point out the

problems and concerns and contrast our proposal to existing solutions.

Expectations, limitations of existing solutions, and common characteristics of PCEs

are summarised in separate tables in this chapter. An explanation on what

pervasive computing is and how we do it is provided at the end of the chapter to set

ground for the following chapter.

Chapter 1, Introduction

 12

In Chapter 4, we define the formal computational model through definitions and

axioms. These definitions and axioms will define the creation of domain and

situation-specific taxonomical structure. The steps towards creation of this

structure is provided in pseudo code and in diagram format. How reasoning upon

the taxonomical structure element is done to deliver a service to PCE users is also

explained in this chapter.

In Chapter 5, we introduce a particular case study in a health domain environment,

and a software architecture supporting deployment of the formal computational

model. Formalism delivered in Chapter 4 are mapped to the case study to illustrate

how the semantics of the example scenario as a situation are represented by

following the formal model. The illustration is done through a Java application that

communicates with the ontological model and SWRL reasoning engine via OWL API.

In Chapter 6, we evaluate and reflect on our achievements through the course of

this research. We also provide our conclusions of the research including the

contributions and advantages of the research outcome, followed by future works in

this chapter.

CHAPTER 2

BACKGROUND OF THE RESEARCH

In Chapter 1 we discussed our motivation for the research and a new role for

computing in the 21
st

 century. We briefly also stated different experiences users of

PCEs have comparing with any other form of computations. Pervasive or ubiquitous

computing has increasingly attracted the attention of researchers in the last two

decades. Equally, the wide range of applications this promising paradigm has

offered, has encouraged practitioners and policy makers too. Proactive involvement

of both public and private sector in the on-going efforts of realising seamless

integration of heterogeneous computational devices into our everyday personal

and professional life, is now assuring. Consequently, we need background

information on ubiquitous and pervasive computing with examples. The context

awareness that pervasive computing applications entail, along with context

modelling, is also discussed in this chapter. How SWTs, particularly RDF, OWL

ontology and SWRL (W3C 2004a,b) have become handy in realising pervasive

computing applications are elaborated here with inclusion of a comprehensive,

although not exhaustive, research examples.

2.1 Ubiquitous Computing
Advances in information systems, technology and communication brought to reality

the once science-fiction concept of ‘cyberspace’ (Gibson, 1984). In less than a

decade after William Gibson coined the term cyberspace, the integration of

communication tools and devices to allow wide range of interactive communication

was no longer fiction. The advances in microchips and computer industry in general,

Chapter 2, Bckground of the Research

14

in parallel with continuing progress in telecommunication brought about a new

vision of the cyberspace. If three decades ago the ratio of microchips to humans

was 1 to 100, by mid 90s this was 1 to 1. With the same growth rate the 1 to 1 was

reversed in 2005 to 100 to 1 (McCullough, 2004). Regardless of the statistics, we do

feel the saturation of our surroundings with a variety of computational devices as

they have been integrated into our lives to a point, where it is difficult to imagine

our lives without them.

2.1.1 Expansion of Computing

This development and the emergence of relatively affordable computers in the mid

1970’s, which resulted in the ubiquity of personal computers and devices with

embedded computational capabilities by the 1980’s, inspired researchers to

question and attend to some of the deep issues the computing community was

facing, with the enthusiastic scientists and researchers both in the academia and

industries starting to talk about a new paradigm or era in computing.

The pervasiveness of personal computers meant that people could easily interact

with the cyberspace via their computers with a keyboard or a mouse. In other

words, the whole cyberspace was accessible by everyone at the same time through

their desktop. These huge steps have gone much further than imaginations of

visionaries such as Gibson. Computing, not only in personal computers but also as

embedded microchips or integrated processors in a vast variety of devices, has now

extended the cyberspace perspective to an extraordinary level.

2.1.2 The New Paradigm and HCI Community

The concept of the new paradigm, or the new trend advocating a new way of

thinking about computing was not shared by the human computer interaction (HCI)

community. The pervasiveness of PCs and the fact that they occupied the ‘centre of

attention’ of their users was not convincing enough for the HCI community to see

the new trend, and instead they focused on one side effect of the phenomenon by

promoting the creation of more intuitive interfaces to ease the interaction with

computers.

Chapter 2, Bckground of the Research

15

Mike Weiser criticised this approach and wrote in his influential article The

computer of the 21st century (Weiser, 1991) that the deep issue surrounding

personal computers ‘is not just a user interface problem’. He had a more holistic

approach to determining the problem. Questions such as why computers are too

complex and hard to use, too demanding of attention, too isolating from people

and their activities, and too dominating as they have occupied our desktops and our

lives (Weiser, 1991), were well received by the computing community.

This view was further elaborated in (Weiser et al., 1999). The focus of the new

vision was on how transparently technology can be integrated into users’ daily

social activity wherever they happened to be and whenever it is. A new way of

thinking about ‘computers’ that took into account the human world, and that

computers are working transparently at the background was promoted. The HCI

perception of the problem at hand was inclined towards devices, whereby the more

open-minded revisionists focused their attention on users in a way that they can

comfortably perform daily activity without having to bother to attend to direct

interaction with computers or computing devices. One view was focused on

computers as a source of information hence justifying their research on how to

interact with computers, whereas the other view led by Weiser regarded computers

just as an interface to information and advocated the view that computers should

not occupy users attention and it is the information that users need to interact with,

not the computers.

Weiser described the new trend in computing founded on earlier trends:

mainframe, personal computer, and widespread distributed computing-Internet

(Weiser and Brown, 1998) and named it ‘ubiquitous computing’ (UC). Therefore, in

the new paradigm the UC is fundamentally characterised by artefacts, computers or

devices embedded with processors that are computationally interconnected. This is

why ubiquity of microprocessor-embedded objects and the Internet are considered

as forerunners of UC.

Chapter 2, Bckground of the Research

16

2.1.3 AI is Challenged

The emergence of the new trend not only challenged the HCI community’s view but

the traditional practice of AI was also in question. The UC advocators argue for a

vision of ‘calm technology’ (Weiser and Brown, 1996) whereby the availability of

more detailed information to the user puts the ‘user at the centre’ and brings about

calmness.

The ubiquity of computing-enabled devices that are networked, empower the user

by expanding his ‘periphery’ so that he can switch his attention from centre to a

non-centre (periphery) whenever necessary (Weiser and Brown, 1998). Pousman

and Stasko (2006) state that with such technologies ‘users are more able to focus

on their primary work tasks while staying aware of non-critical information that

affects them’. As an analogy to appreciate the difference between these two views

consider the following scenario. You are making breakfast for yourself just before

setting off to work. The centre of your attention is making breakfast.

Simultaneously, you are listening to the traffic radio station so as not to miss any

warning that might affect your daily route to work. The TV set is also switched on so

that you will notice when your long awaited program on mortgage advice, which is

scheduled to be on the morning program appears on screen. You are exposed to

various periphery data without attending to them, but as soon as, for example, you

see that your expected TV program is showing, your attention will be diverted to

the TV. This availability and not overloading of information gives one a sense of

serenity.

A network of microprocessor embedded devices in a UC environment gives exactly

that unobtrusive serenity to users. Weiser calls this awareness of periphery without

explicit attention ‘locatedness’. In their criticism against the AI community,

defenders of the new vision believed that if a computer device becomes aware of

only where it is located, (locatedness), it can adapt its behaviour significantly

“without even a hint of AI” (Weiser, 1991). McDermott (1981) complained also that

programs in AI to a great degree are “problems rather than solutions”.

Chapter 2, Bckground of the Research

17

2.1.4 Recognition of the New Paradigm

This shift of paradigm towards UC as a result of the new thinking about computing

was sensed by ACM (Association for Computing Machinery) when they organised in

March 2000 a conference expertly entitled ‘Beyond Cyberspace’. In an editorial

note (Crawford, 2000), this vision was stated as “The era of pointing, clicking, or

typing is giving way to new seamless, intuitive links between the two worlds

(humans and computers)… It’s clear we’ve reached a turning point in the way we

interact with computers.”

In March 2000 Intel’s persuasion of participants at Intel's Computer Continuum

(Intel 2000) to explore future computing possibilities reads

“Computing, not computers, will characterize the next era of the

computer age. The critical focus in the near future will be on

ubiquitous access to pervasive and largely invisible computing

resources. A continuum of information processing devices ranging

from microscopic embedded devices to giant server farms will be

woven together with a communication fabric that integrates all of

today's networks with networks of the future. Adaptive software

will be self-organizing, self-configuring, robust and renewable. At

every level and in every conceivable environment, computing will

be fully integrated with our daily lives”.

Therefore, the penetration of a wide variety of networking devices, wireless

networks, personal digital assistants, sensors, actuators, and numerous other

mobile embedded devices into the field of computing, together with their increased

deployment by users, have all led to the emergence of UC. The new trend started in

the nineties but became the focus of the research community’s attention in the

following decade. Furthermore, it aims to integrate computing and communication

devices in and with the environment transparently so as to enable users to focus

their attention on what they actually want to know or to do rather than on their

interaction with computing devices per se.

The increasing attention to UC has introduced new terminologies, sometimes as

synonyms for UC. Some of these are more commonly used than others in the

literature , among which is pervasive computing.

Chapter 2, Bckground of the Research

18

2.2 Pervasive Computing
The new vision about computers and computing in general, along with the

unprecedented advancement and expansion of technology of various types of

devices with embedded microprocessors, extending from domestic every-day use to

sophisticated professional tools in the healthcare domain, manufacturing, defence,

public transport systems, public offices and similar, has inspired more and more

researchers to divert their attention to this vision. The emergence of serious

research and applied projects such as ParcTab(Schilits et al., 1993), Stick-e

Note(Brown et al., 1997), Personal Tour Guide (Abowd et al., 1997), Intelligent

Room (Coen, 1998), Bat (Harter et al., 1999), Context Toolkit(Salber et al., 1999b),

Aura (Garlan et al., 2002), Vivago(Korhonen et al., 2003), One World (Grimm, 2004),

CoBrA Intelligent Meeting Room (Chen et al., 2003a), CareMedia(Bharucha, 2006)

made it clear to those still in doubt that the new vision is not hype and it is here to

stay and prosper.

2.2.1 Launch of Pervasive Computing

At the start of the 21
st

 century, coincidentally two articles were published, one from

IBM (2001) and another from Satyanarayanan from Carnegie Mellon University

(Satyanarayanan, 2001) both addressing their perception of the required

infrastructure of the future networks of computers and computationally enabled

devices. The former introduced the term ‘autonomic computing’ and the latter

ironically advocated ‘pervasive computing’ that IBM had publicised. The first

evidence of the appearance of the term “pervasive computing” in the literature

appears to be in 1999 when IBM devoted one issue of its journal, ‘IBM Systems

Journal’ to this topic. In an editorial article, Ark and Selker (1999) considered the

emergence of the term pervasive computing as a continuation of the work by the

HCI community on the interaction of users with pervasive computers.

Throughout this issue of the journal, the terms pervasive and ubiquitous computing

were used interchangeably. Both articles addressed equally low and high level

aspects of the new computing era, i.e. the technical structure and deployment of

technologies along with the design and creation of software architectures

Chapter 2, Bckground of the Research

19

supporting environments in which users are empowered by receiving necessary

services without disturbances.

IBM has stated in its manifest that the growing complexity of the IT industry has

hindered its purpose which is to serve people. They suggested that their proposed

architecture of autonomic computing would deal with the complexity of existing

computing infrastructure systems rather than relying on human intervention and

administration. Both (IBM, 2001) and (Satyanarayanan, 2001) were in favour of

embedding the complexity in the software and hardware system infrastructure and

automating its administration. To allow users to concentrate on what they want to

do and not how they want to do it, exactly what Weiser was trying to convince the

HCI community.

When we look at the eight characteristics that IBM proposed for their vision,

however, little on dealing with users’ expectations of the ‘autonomic computing’

system is found. From the same perspective Satyanarayanan demonstrates

consideration for the user and wrote that a PCE system subsumes all the known

features of distributed and mobile computing and therefore it must be scalable

while allowing environments with different physical and computational provisions

to communicate. He summarised PCE systems to be proactive systems which allow

linking knowledge from different parts to infer knowledge and anticipate with

minimal user distraction (Satyanarayanan, 2001; 2011).

2.2.2 Review of PCE Perceptions

Viewing the system from users’ perspective has attracted a growing number of

researchers. Henricksen et al. (2002) emphasises that pervasive computing

demands applications that are capable of operating in highly dynamic environments

and of placing fewer demands on user attention, hence PCE needs to be sensitive to

its context that is ‘highly interrelated’, ‘imperfect, and that exhibits a range of

‘temporal characteristics’ and that has many ‘alternative representations’.

In their expectations of the kind of support PCE should provide, Abowd and Mynatt

(2000) describe activities in such environments as ‘rarely have a clear beginning or

Chapter 2, Bckground of the Research

20

end’, ‘interruption is expected’, ‘multiple activities operate concurrently’ and

‘context-shifting among multiple activities is assumed’. Knowledge on ‘user

preferences’, ‘device capabilities’, and ‘application requirements’ are considered by

Arbanowski et al. (2004) as the key requirements for PCE systems.

These spaces have characteristics. Bacon (2002) and Intille (2002) have listed a

number of features for a pervasive computing environment. Intille declared a PCE

as a ‘Non-intrusive’ environment with abilities to ‘empower’ and help people, and

learn from the behaviour of its inhabitants. In a separate paper he raises his

concern about the level of presence of such systems in people’s lives and warns that

PCEs should not “… strip people of their sense of control over their environment’

(Intille, 2006).

A PCE system according to Satyanarayanan (2001, 2011) has to be context-aware to

be minimally intrusive. In his paper, how context is internally represented, how

frequently the context information has to be consulted and where to store it,

whether historical context is useful are also outlined. Saha and Mukherjee (2003)

add the need for perceptual information about the environment as another

differentiating feature of PCE and traditional computing.

Chen et al. (2004b), who believe that PCE system is a natural extension of mobile

computing, describe their vision of PCE as computer systems seamlessly integrated

into the life of everyday users, providing them with services and information in an

“anywhere, anytime” fashion. Communication between different pervasive

computing environments, PCEs, according to (Chen et al. 2004b) requires

interoperable devices and sensors with computing capabilities involved in such

environments to be able to ‘share knowledge’, and ‘reason about their

environment’.

From this perspective Sullivan and Lewis (2003) considered ‘massive scalability’,

‘heterogeneity of processor forms’, ‘poor application portability over embedded

processors’, ‘heterogeneity of access networks’ as the most challenging tasks in

developing PCEs. Hellenschmidt (2006) outlined the requirements for the assembly

Chapter 2, Bckground of the Research

21

of ‘intelligent’ environments from distributed devices and components to achieve

pervasive software infrastructures. He summarised these as extensibility, to add

devices at runtime, exchangeability of devices, autonomy of devices from each

other, decentralization, provision of conflict resolution mechanisms, ease of

implementation of software applications using the environment, and real-time

responses to support users. Ark and Selker (1999) in their leading article highlight

four major aspects of PCE. Computing being spread throughout the environment;

users being mobile; increasingly information appliances become available; and

communication between the elements of the system including users is made easier.

They stress that users should not carry with them devices containing their personal

information, and at the same time a device will be more aware of its user and

surroundings. Hence they called this type of computing ‘context-based computing’.

Cassou et al. (2009), on the other hand, stress on the heterogeneity’, ‘dynamicity’,

and ‘lack of structuring’ between interrelated components of PCE as the main

features. Saha and Mukherjee (2003) characterise PCE with proactivity, scalability,

heterogeneity, integration and invisibility. They consider ‘intelligent environment’

as a prerequisite to PCE systems.

Along the same line, researchers generally view the unprecedented ubiquity of

computing capabilities and advances in semantic web technologies as an

unprecedented opportunity for designing and deploying systems in PCEs that

empower end-users doing their day-to-day activities with greater comfort,

simplicity and support (Yoo, 2010; Romero et al., 2011; and Rolim et al., 2011).

2.2.3 Pervasive Computing Versus Ubiquitous Computing

The Oxford Dictionary defines ubiquitous as “present, appearing, or found

everywhere” and explains pervasive as “(especially of an unwelcome influence or

physical effect) spreading widely throughout an area or a group of people”. The

English Collins Dictionary defines ubiquitous as “having or seeming to have the

ability to be everywhere at once” and includes it in the list of synonyms for

pervasive.

Both in academia (Chen and Kotz, 2000; Satyanarayanan, 2001; Intille, 2002;

Chapter 2, Bckground of the Research

22

Sullivan and Lewis, 2003; Henricksen and Indulska, 2006; Bettini et al., 2010) and

industry (Kephart and Chess, 2003; Mühlhäuser and Gurevych, 2008) pervasive and

ubiquitous computing are used, by and large, interchangeably. Nevertheless, some

including Singh et al. (2006) believe in disparity between pervasive and ubiquitous

computing, and stress that when the former is combined with mobile computing,

the latter is achieved. To emphasise on the importance of pervasive computing for

UC, they perceive realization of ‘true’ UC through knowledge sharing between

individual PCEs. At the same time some authors are more lenient when using UC,

for example, to Walker et al. (2001) any ubiquity of computing devices where their

performance is transparent is a UC environment.

To summarise, going through research publications, for example those mentioned

already, one can arguably state that pervasive computing is now being commonly

used in the literature as a ‘welcome influence’ and as synonym for ubiquitous

computing. Therefore, in this thesis we are not differentiating between PCE and UC.

We attempt to use PCE throughout this document as it is more commonly used in

the literature. Nevertheless, at times the term UC might be used interchangeably

without any intention to indicate any difference unless otherwise stated.

We have mentioned in section 1.2.1.1 that the computational spaces in PCEs consist

of model, data and computations. The data of a situation in a PCE is referred to in

the literature as context. We have said in section 1.2.2 that we would like to

witness improvement of earlier visions on context awareness and its

implementations and roles in modern pervasive computing spaces in PCEs. We

would also like to know what the difference and borderline between collecting

interpreted contextual-data and defining a situation in a PCE is (section 1.2.3). This

leads us to the next section on context.

2.3 Context in Computing
The term context means ‘the circumstances that form the setting for an event’ in

the Oxford dictionary and ‘the situation within which something exists or happens,

and that can help explain it’ in the Cambridge dictionary. Despite this general

understanding of what context is, in the computer science discipline the perception

Chapter 2, Bckground of the Research

23

is different. There has been growing research in this area, but to the best of our

knowledge there is yet an agreed upon definition of context to emerge. In this

section some of the most referenced definitions and views in the literature are

presented.

We would like to point out here that in the literature sometimes the term ‘situation’

is being used for ‘context’. However, some publications like (Gessler et al., 2005), or

(Coutaz et al., 2005) distinguish these from each other. They regard situation is

related to location only, and context is related to conditions such as temperature,

weather, or lighting in that location. To Dey and Abowd (1999), these two terms are

different when they say context ‘characterize the situation’.

2.3.1 Definition and Categories of Context

The definitions of context in different publications are presented here in

chronological order. The earliest publication on context in computing is a 1994

research paper by Schilits et al. (1994). Without providing any definition for context

they stated their perception of context in terms of three important aspects of

context which are ‘where you are’, ‘who you are with’, and what resources are

nearby’. They categorised context into three categories, computing context, user

context, and physical context and listed some examples such as ‘lighting’, ‘noise

level’, network connectivity’, ‘social situation’ to emphasise that context involves

more than just the user’s location.

Reviewing the research publications since then until 1999 shows no consensus on

the definition of context. In their 1999 survey examining fourteen ‘context-aware’

applications, Dey and Abowd (1999) have concluded that researchers including

themselves (Dey, 1998) have either provided definition of context ‘by example’ or

provided synonyms rather than offering a concrete definition. After their view of

the past they presented their definition of context as ‘any information that can be

used to characterize the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application,

including the user and applications themselves’ (Dey et al., 1999). To Dey et al. the

situation of a particular entity is characterized by location, identity, time and

Chapter 2, Bckground of the Research

24

activity.

Chen and Kotz (2000) adopted (Schilits et al., 1994) categories and added two more

categories, time context, and context history. ‘Time’ to represent the timing of

when the contextual information was collected, and ‘history’ to refer to any past

information saved in a persistent repository. Not convinced of the existing

definition of context, Chen and Kotz gave their definition of context as ‘context is

the set of environmental states and settings that either determines an application’s

behaviour [active context] or in which an application event occurs and is interesting

to the user [passive context]’.

Although further elaborations are given in the following chapters regarding

‘situation’ as opposed to ‘context’ we would like to make a clear distinction here

between these two terms as far as PCEs are concerned. We refer to context as any

useful piece of information that describes a particular element in a PCE. Whereas

situation is referred to the collection of all contextual information and also

information acquired through inference on the collected context.

Schmidt (2000) describes four different types of context. One is when the

environment is active and detects a device and communicates with the detected

device. The inverse case of the first type is the second in which the device senses

the environment. Third, is a direct input by user to the application, and the forth is

information retrieved from a database.

In response to (Dey et al., 2001), Winograd (2001) disputes their definition of

context and argues that terms such as ‘any information’ or ‘characterize’ the

situation that they use in their definition are broad. He goes on and says that

context should be used in a more specific way, to characterize its role in

communication. Acording to Winograd ‘context is an operational term’, that is,

something is context because of the way it is used in interpretation, not due to its

inherent properties. Interestingly, Roy et al. (2011) subscribe to the Winograd

definition of context in their context-aware agent system.

Chapter 2, Bckground of the Research

25

Henricksen et al. (2002) refer to context as circumstances or situations in which a

computing task takes place. They stress on the lack of clarity in the literature about

context and instead of offering their definition, they have provided some

characteristics of context information in terms of association, which is a uni-

directional relationship linking an entity to its attributes or other entities. They

consider context information is more than the ‘current state’ of the context and

therefore, can vary from ‘atomic facts’ to ‘complex histories’. In (Henricksen and

Indulska 2004; 2005), and (Henricksen et al. 2005) they categorise context

according to their distinctive characteristics into four groups: sensed, static, user-

supplied, and derived information.

Ranganathan and Campbell (2003) define context as the information “… about the

circumstances, object, or conditions surrounding a user that is considered relevant

to the interaction between the user and the ubiquitous computing environment”.

Chen and Finin (2003) in their context broker architecture CoBrA define context as

any information that can be used to characterise the situation of a person, a

computing device, or a software agent. In another publication Chen et al. (2003a,

2003b) expressed their meaning of context as a location, its environmental

attributes such as noise level or temperature, and the people, devices, objects and

software agents it contains.

Ranganathan and Campbell (2003) divide the context into seven categories of

physical (e.g. time, location), environmental (e.g. weather, light), informational (e.g.

stock exchange information), personal (e.g. health, mood), social (e.g. group

activity), application related (e.g. email) and system related (e.g. network traffic).

In an article about the importance of context in UC, Coutaz et al. (2005) explained

why context is not merely the current state of a predefined environment and wrote

that context is ‘part of a process of interacting with an ever-changing environment’.

They believe context is too complex to be pre-programmed and suggested explicitly

coded responses to ‘situations and contexts’ should be replaced with ‘a higher level,

more knowledge-intensive use of machine- readable strategies coupled with

Chapter 2, Bckground of the Research

26

reasoning and learning’(Coutaz et al., 2005).

Khedo (2006) categorises use of context in context aware applications into three

different classes: presenting information and services, automatically executing a

service, and tagging detected context information for future use.

Xiaosheng et al. (2006) have categorized context as manually acquired (e.g. the

information provided by user) and automatically acquired (e.g. user’s identity,

location, or activity). They argue that many context elements are “raw” (e.g. time,

location, temperature) because they are simply acquired through various forms of

sensors; thus such elements are regarded as ‘low-level’ context. On the other hand,

elements like activity are ‘synthetic’ context which is inferred through reasoning

based on raw context; thus they are regarded as ‘high level’ context.

Paganelli et al. (2006) refer to the overall contextual information of an ‘entity’ as

‘entity context’ and any specific characteristic of the entity as ‘context item’.

According to them context items are of location, physical data, activity,

instrumental context, or social context category, and context entity is composed of

one or more of these context items.

Bolchini et al. (2007) who provide a survey of context models, distance themselves

from the Dey and Abowd view and seems to subscribe to the (Coutaz et al., 2005)

view that context is not just a ‘profile’ but it is also an ‘active process’. They regard

context as the element which impacts ‘the way humans (or machines) act and how

they interpret things.’ With regards to the complexity of context representation,

they advocate models that support only a specific context sub-problem and do not

condone systems with a completely general aim that support any possible

application (Bolchini et al., 2007).

Nguyen and Choi (2008) describe context as always-changing-phenomena where its

change leads to a change of behaviour by the people who are subjected to it. Roy et

al. (2008) define context as a set of data that provides a model of the real world and

therefore they don’t make any distinction between different types of information as

Chapter 2, Bckground of the Research

27

far as context is concerned. To them the data related to a location is as important as

the data related to what happens within the location.

In recent publications it seems that (Chen and Kotz, 2000) definition received more

attention. For example Bellavista et al. (2012) in a survey of context data

distribution for mobile ubiquitous systems adopted Chen’s and Kotz’s definition of

contexts according to which context is a four dimensional space composed of

computational context, physical context, time context and user context. Chen and

Kotz consider context history applicable to some applications also, but Bellavista et

al. have disregarded this dimension.

Mehra (2012) describes context as the information halo that implicitly surrounds

objects of interest and includes those pertinent supplementary facts, rules or

axioms whose consideration makes our situations understandable by devices,

people, or organisations seeking to provide us with content or services. Mehra

argues that in addition to ‘situational context’ there is also the ‘large context’ which

is a historically, socially and semantically expanded model of a user’s context.

Educational affiliation, sports team loyalty, locations visited are some of the

examples of ‘large context’ that their inclusion not only will improve personalisation

of delivered ‘content, alert and advertisement’ but will also simplify the interaction

with users.

We have mentioned in section 1.3 in Chapter 1 that one of the objectives of this

thesis is to define a formal computational model which will allow representation of

computationally significant semantics of any situation in PCEs for the purpose of

delivering situation-specific services. The representation of the semantics of a

situation requires correct contextual information about the particular situation in

the PCE. Availability of context is therefore, essential for the success of PCEs. In the

literature, ‘context awareness’ is used as a qualifying adjective for describing

software applications capable of adapting themselves to the context. Our view of

awareness and use of context in PCEs is different, but in the following section we

present what is commonly perceived as context awareness.

Chapter 2, Bckground of the Research

28

2.3.2 Context Awareness

Schilits et al. (1994) define this form of computing based on their PARCTab pioneer

experiment (Schilits et al., 1993) as systems that adapt according to the location of

use, the collection of nearby people, and accessible devices. Such systems will react

automatically, according to them, to any changes to the environment. They have

categorised context-aware applications into four categories. These categories are

proximate selection, automatic contextual reconfiguration, contextual information

and commands, and context-triggered actions. In the proximate selection category,

the user’s current location determines the area from which located objects will be

identified for ease of selection by the user. In the automatic contextual

reconfiguration, the connectivity of devices in the environment is managed

automatically. That is, adding or removing components or changing connections

between existing components. The contextual information and commands category

exploits the user’s current location to respond to context information queries and

commands. Shilits et al. describe the context-triggered actions category of

applications as systems that support ‘simple IF-THEN rules used to specify how

context-aware systems should adapt’.

Pascoe (1998) identifies four generic contextual capabilities when he describes his

prototypical development of a wearable computing system. Sensing, adaptation,

resource discovery, and augmentation are these capabilities that context-aware

applications should support. Harter et al. (1999) considers context-aware

applications as those which adapt their behaviour to a changing environment.

Dey and Abowd (1999) believe the goal of context-aware computing ‘should be to

make interacting with computers easier’. They recommended that a context-aware

application should collect contextual information ‘through automated means’ and

let the application designer decide what information is relevant and how to deal

with it’. They express the relevance of context-awareness to UC as ‘to best support

the human–computer interaction’. With regards to features of context-aware

applications, Dey and Abowd combined ideas from (Schilit et al., 1994) and (Pascoe,

1998) and suggested three key categories of context-aware features that a context-

Chapter 2, Bckground of the Research

29

aware application should support. These are ‘presentation of information and

services to a user, automatic execution of a service, and tagging of context to

information for later retrieval’ (Dey and Abowd, 1999).

Chen and Kotz (2000) provide two context-aware computing definitions to reflect

their active and passive definition of context. They define active context awareness

as an application that automatically adapts to discovered context, by changing the

application’s behaviour, and define passive context awareness as an application

that presents the new or updated context to an interested user or makes the

context persistent for the user to retrieve later.

Dey (2001) gives a more generalized description of a system to be context-aware.

He believes if the system uses context ‘to provide relevant information and/or

services to the user, where relevancy depends on the user’s task’, then it is a

context-aware system. In describing their context broker architecture, CoBrA, Chen

and Finin (2003) describe context-aware computing as allowing systems to act more

autonomously and take initiative, but informed by a better model of what their

users need and want. This is an example of context model inflexibility.

The environment according to Khedr and Karmouch (2004) becomes context-aware

when it can capture, interpret, and reason about physical characteristics, such as

location, the system, such as applications running, and the user such as presence.

Hong et al. (2009) adopted the definition by Byun and Cheverst (2004) and also

Khedo (2006) that a system is context aware if it can adapt its functionality to the

current context it detects and interprets. Mehra (2012) emphasizes that the real

power of context-aware computing is in its automated reasoning based on facts and

rules describing the environment around a user or event. He considers ‘gathering,

sharing and obtaining’ data about ‘large context’ is the challenge the community is

facing to realize context-aware computing.

Hong et al. (2009) provides a literature review of 237 journal articles between 2000

and 2007 in which context-awareness is a core essence of the article. They have

categorised the focus of this research into five abstract layers. These layers in order

Chapter 2, Bckground of the Research

30

of number of publications are, concept and research, application, network

infrastructure, middleware, and with the least publication user interface.

There have been many suggestions by researchers designing and implementing

context-aware PCE about the way different elements of a PCE communicate with

each other to support the context-aware applications. To this end, several

architectures, frameworks or middleware tools were developed and surveyed

(Henricksen et al., 2005), (Singh and Conway, 2006), (Baldauf et al. 2007), (Kjær,

2007), (Miraoui et al., 2008). We found Henricksen et al. and Miraoui et al. more

detailed in terms of categorisation of the architecture according to the essential

features pertinent to PCE. The comparison of different architectures that authors of

(Miraoui et al., 2008) have done is based on context abstraction level,

communication model, reasoning system, extensibility and reusability.

Even by 2012 there is no agreed upon definition on context and context awareness.

In their survey on current research on context data distribution in mobile ubiquitous

environment, Bellavista et al. (2012) acknowledge this lack of consensus and offer

their own definition. According to them, context awareness is ‘the ability to provide

services with full awareness of the current execution environment’.

2.3.3 Context Modelling

Context aware application systems are qualified with detecting, collating, storing

and disseminating contextual information at the lowest level and aggregating it into

increasingly more abstract models (Khedo 2006). To support such a system a

context model is required to handle contextual information.

Harter et al. (1999) present a platform that enables applications to constantly

monitor users as they move around a building. Their location-aware system is based

on ‘a persistent distributed object system’ which will provide context accessible to

various applications. They used object-oriented approach to model the contextual

information since they view the environment to consist of a collection of real

objects.

Chapter 2, Bckground of the Research

31

Henricksen et al. (2002), after exploiting Entity relationship model and the class

diagram of UML, have concluded that these information systems modelling

techniques are ‘neither natural nor appropriate’ for describing context. To

overcome the shortcomings of these techniques they have devised their own

object-based modelling technique using special constructs designed with the

characteristics of context in mind. According to their abstract directed graph model

for context information in terms of its characteristics in PCE systems, context is

characterised through a number of associations, which is a uni-directional

relationship linking an entity to its attributes or other entities. These associations

are divided at a high-level abstraction as static or dynamic associations. The

dynamic association is divided further to sensed, derived and profiled association.

Temporal association which is attached to a time interval and dependencies

between associations also play a role in their model.

In a follow up work to (Henricksen et al. 2002), McFadden et al. (2004) developed a

context modelling technique that provides two levels of abstractions. They called

these levels as ‘facts’ and ‘situations’. Situations, according to them, are defined by

constraints on context facts expressed using predicate logic. In their distributed

approach to the development of context-aware communication applications, they

used their own developed Context Modelling Language (CML) and some Java

technologies such as JDBC and RMI.

Chen et al. (2003a and 2004b) have expressed their reason for using OWL ontology

to model context for 1) it is much more expressive than RDF or RDF-S (Brickley and

Guha, 2010) allowing to build more knowledge into the ontology, 2) OWL has been

suggested by W3C as the standard language, 3) OWL provides a means to share

context knowledge, and 4) OWL ontology helps their CoBrA context broker to

reason about context and detect knowledge inconsistency.

In SOCAM, at the bottom of the architecture (Gu et al., 2004) are ubiquitous

sensors. These sensors will feed the internal context service providers. The internal

and external context providers deliver their service to the middleware, which is

called context interpreter. The context interpreter consists of a context knowledge

Chapter 2, Bckground of the Research

32

base and a reasoning engine, which is based on some inference rules. At the top of

the architecture are the context–aware services that can use contextual information

directly from the context providers or from the middleware and adapt themselves

to the context. In SOCAM context knowledge base stores contextual facts in a

persistent relational database. Context ontologies are divided into upper ontology

and domain specific ontologies. The former has computing entity, location, person

and activity as its key classes that Gu et al. consider to be common in all PCEs.

Preferences of the user are not represented in the upper ontology of SOCAM.

Although the authors acknowledge that ‘context may quickly become out-of-date’,

they do not offer any solution for this key issue. This is an example of contextual

information in traditional context-aware applications can quickly become outdated.

As SOCAM is service oriented, it has to offer a service-locating service to discover

available contextual information. It is not clear how SOCAM can maintain this

provision in PCEs where different services are required at any given moment. This is

an example of Provision of insufficient contextual information will result in delivery

of unexpected services to the user.

The ontology-based CoBrA architecture (Chen et al 2003a) serves agents, which

could be applications within a device or services provided by devices, through a

centralised broker. The reasoning mechanism that CoBrA developers offer over

context information for resolving inconsistent context information, applying privacy

policies and inferring additional context information, is within OWL ontologies

without additional rule support. Provision of contextual information to distributed

agents when CoBrA encounters complex situation in which multiple context

information are interlinked, is therefore limited. CoBrA uses a central database to

store and fuse collected contextual information. The COBRA-ONT (Chen et al 2004a)

ontologies, in which time is an important concept, is predefined and in all situations

all contextual information, even if they may not be relevant to the situation, are

collected from various devices distributed in the PCE. This unnecessary information

overload would make processing the context to deliver expected service to the user

very expensive. This is an example of Unnecessary information overload caused by

pre-defined contextual model and architecture that detects all contextual

Chapter 2, Bckground of the Research

33

information would make processing the context to deliver expected service to the

user very expensive.

SOCAM and CoBrA are examples of PCE architectures for context-aware

applications that are specific for a domain and therefore require additional effort

for their adaptation to other domains.

Sense Everything Control Everything, SECE (Boyaci, et al 2012) although categorised

in the literature under context-aware computing, has little to offer to represent a

holistic view of the context. SECE is designed to facilitate user’s communication and

is an event-driven system which acts on user’s behalf automatically, and is a non-

user involvement system. It is a rule based system in which actions take place

without any interaction from the user on the basis of the description of the event as

the body of a rule.

As Khedo (2006) indicates a challenge in making context aware applications is to go

beyond reading one sensor data and act upon it. It is more about ‘context

recognition’ to detect for example complex activities and to differentiate between

different users not defined by a single sensor. SECE is an example of a simplistic

view of PCEs in which context awareness is more than localization.

(Henricksen and Indulska 2004; 2005), and (Henricksen et al. 2005) present a

different context modelling approach. They adopted and extended Object-Role

Modelling and developed a graphical context modelling approach CML. They have

implemented their prototyping system in Java, and used a relational database

management system to store contextual information to be queried by context-

aware applications. This is another example of unnecessary information

overloading.

Earlier ‘context-aware’ applications that were more localization-aware applications

such as The Active Badge (Want et al., 1992), ParcTab (Schilits et al., 1993), Stick-e

Note (Brown et al., 1997), and Cyberguide (Abowd et al., 1997) did not support

context abstraction and therefore, no context model for context representation is

present.

Chapter 2, Bckground of the Research

34

Fahy and Clarke (2004) provide an abstraction of contextual information for their

CASS system that was modelled using object oriented techniques. Hydrogen three-

layered architecture (Hofer et al. 2002) also uses an object oriented model to

represent context. (Wang et al., 2004), (Nguyen and Choi, 2008), and (Khalil et al.,

2008) provide more detailed insight into the process of modelling context, but

(Strang and Linhoff-Popien, 2004) and (Bolchini et al., 2007) provide more detailed

analysis on different classes of context models.

Strang and Linhoff-Popien (2004) classify Context models by the “scheme of data

structures used to exchange contextual information” and provide six categories as:

Key-Value Models, Mark-up Scheme Models, Graphical Models, Object Oriented

Models, Logic Based Models, and the last but surely not the least, Ontology Based

Models. Strang and his colleague evaluate instances of their classification based on

six criteria of a) compatibility with a distributed application environment, b)

capability to partially validate contextual knowledge on structure, c) richness and

quality of information, d) model’s ability to compensate data incompleteness or

ambiguity due to hardware inefficiencies, e) level of formality and finally f)

applicability to existing environments. In their evaluation they brand key-value

models as “weak” due to disability to fulfil the first five criteria and regard the

ontology modelling as “the most promising asset” for context modelling in PCE.

In their survey of context models Bolchini et al. (2007) have evaluated and classified

sixteen applications based on a proposed analysis framework; the classification is

made based on the use of context (i.e. context as a matter of channel-device

presentation, as a matter of location and environment, as a matter of user activity,

as a matter of agreement on sharing a context). They have concluded that systems

which are aimed at providing non-proprietary support to context data tend to be

ineffective. They state: “Different context sub problems and applications have

almost incompatible requirements…; as a consequence the context model should

be chosen depending on the target application.” This survey shows how common

the issue of the inflexibility of context models is in context-aware applications.

Chapter 2, Bckground of the Research

35

Baldauf et al. (2007) also provide a brief survey of context-aware systems. Authors

review the architecture design and context modelling of some of the solutions and

concluded that in the reviewed models although abstract context sources are

used,but only physical sensors (detecting from physical sensors) are mainly used in

practice, and virtual (context information detected from software applications or

services) and logical (inferring additional information based on physical and virtual

information and some other pre-defined information) sensors need to be looked at

too. The other observation they made is that every system uses its own format to

describe context and its own communications mechanisms between context

sources and users.

Having different format to describe context in a PCE that naturally deals with

heterogeneous devices has raised concern among the researchers. Roy et al. (2008)

stress on this issue and point out that moving from controlled intelligent spaces to

open intelligent spaces will create more problems if the heterogeneity of context

models is not addressed.

We would like to conclude this section by referring to the joint view of three

renowned researchers, who first coined the term Semantic Web in 2001, on

traditional knowledge representation. Considering the requirements of the

Semantic Web, Berners-Lee et al. (2001) dismissed the traditional knowledge-

representation systems for being capable of handling the ever expanding web of

information. These systems’ centralized nature that requires all users ‘to share

exactly the same definition of common concepts’ is their major concern. They

believe such systems will be ‘unmanageable’ and concluded that ontologies are the

most appropriate way of modelling when complex set of concepts are involved.

2.4 Semantic Web
Visionary Tim Berners-Lee depicted his thoughts about the future Web in 1989 as

shown in Figure 2.1. The links between the nodes in the diagram, like ‘wrote’,

‘refers to’ and ‘describes’, show his proposal to his employer on how to annotate

documents in the Web. The motivation for his proposal was increasing amount of

unstructured information in the company’s intranet network which was not

supported by any meta data. Tim Berners-Lee was proposing that his idea will

Chapter 2, Bckground of the Research

36

improve collaboration beween different departments and staff as they would have

more information about each document they access. The immediate solution to the

HTML-encoded Web was XML technology (W3C). Although the design objective of

the new language was encoding for machine processing, it does not have the

necessary sound formalism to provide meaning of the terms, for example, ‘wrote’,

‘refers to’ and ‘describes’ are meaningless to a machine processing the XML code.

This
document"Hypertext"

Linked
information

Hypermedia

CERNDOC

ENQUIRE

Tim
Berners-Lee

section

group

C.E.R.N

wrote

 division

Hierarchical
systems

for example

for example

describes

includes

for example

A
Proposal
"Mesh"

Hyper
Card uucp

News

IBM
GroupTalk

VAX/
NOTES

Computer
conferencing

describes

includes

includes

Comms
ACM

describes

refers
to

describes

etc

group

unifies

Figure 2.1: Tim Berners-Lee’s original Web information management view (Berners-Lee, 1989)

In other words, XML and XML-Schema could not attribute meaning to tagged terms

of a document to be able to share knowledge. However, the other issue with XML

was that it could only tagged the internal content of a document and therefore

external sources linked to a document could not be represented. To address this

issue the RDF (Resource Description Framework)(W3C, 2004c) was promoted. RDF

is graph-based and comprised of nodes and edges. Each edge is a binary

relationship between two nodes. The complete graph is a set of binary statements

based on XML syntax. The structure of each statement is a triple: subject, predicate,

object. The structure, therefore, provides a data model represented in triples.

Subjects and objects are the nodes and predicates are the edge linking subjects to

Chapter 2, Bckground of the Research

37

objects. Subjects and predicates are URI (Uniform Resource Identifier) resources but

an object can be either a URI resource or literal values.

So, when the Semantic Web (Berners-Lee et al., 2001) was introduced XML and RDF

technologies were already available. Tim Berners-Lee’s and his colleagues’ vision

about the Semantic Web was to improve the traditional Web so that the huge

amount of information available in the Web can be shared. Enterprises, businesses,

public offices, health centres, or individuals can then be strengthening by

exchanging and sharing their knowledge with each other. To this end, XML, RDF and

RDF-Schema were not sufficient. The philosophy they were advocating was a ‘Web

of data’ that is structured and formalised to be processed by computers. Given that

XML and RDF were both machine processable and available at the time, any new

formalism had to be based syntactically on these technologies.

To ascribe meaning to sources of RDF triples, Berners-Lee et al. recommended the

Semantic Web stack shown in Figure 2.2. Ontology layer is a key layer of this

architecture. Although AI community has used ontology modelling for quite some

time, there was no standard and guideline on use of a formal specification language

for ontology. It did not take long before W3C announced its standard Web ontology

language, OWL (W3C, 2004), (W3C, 2004a), (Kadak, T. and Kleerova, 2006) and only

recently suggested OWL2 as the revised ontology language (Grau et al. 2008). The

use of ontology in the stack is to provide vocabulary and formal meaning to concept

used in the taxonomical structure of the ontology. To infer new knowledge based

on existing knowledge, using ontological model, a logical rule layer was felt

necessary. A compatible rule engine with OWL ontology that execute the logical

rules reason about the semantics of the environment to deliver a situation-specific

service. The stack depicted in Figure 2.2 also shows that any rule to support

reasoning is based nontology.

Like any other technology, the rate of SW technology success depends on how

widely it has been adopted by key industries. SW technologies have already started

conquering various computing domains and have shown that, apart from managing

Chapter 2, Bckground of the Research

38

Figure 2.2: Semantic Web Stack (W3C 2004b)

the semantics of the Web, and bringing ‘structure to the meaningful content of

Web pages’, they can be extremely powerful for building semantics of any

computational environment. Applications of SWTs across domains range from

business intelligence and semantic management to interoperability,

communications, and data sharing. The expressive capability of OWL to allow

context information to be represented for context-aware applications, on one hand,

and the formalised structure of knowledge representation allowing reasoning upon

acquired contextual information, on the other, demonstrated that SW technologies,

including OWL, are suitable technologies for the SW requirements.

2.4.1 Ontology Definition

In the information systems community the term ontology refers to a particular type

of conceptual model of some entities of interest or ‘concepts’ as in the famous

‘Ogden Triangle’ (Ogden 1923). The model represents the entities in a way that it

facilitates shared understanding and sharing information about the entities. The

representation is formalised by following some standard set of constructs. Gruber

(1993) describes ontology as ‘specification of conceptualisation’. Formal

specification of domain ontological models requires a language. The language has to

be expressive enough to allow the representation of the domain but at the same

time decidable to allow reasoning on existing contextual information to detect any

Chapter 2, Bckground of the Research

39

inconsistencies among acquired information, but also to infer new knowledge from

the existing knowledge.

2.4.1.1 OWL Ontology

The first ontology language recommended by W3C was RDF (W3C, 2004c). Another

recommendation of W3C is RDF Schema (W3C, 2004d) that adds some features as

metadata to RDF to complement it. Same as RDF, the statements in RDFS are binary

relationships; i.e. predicates are binary. However, despite some added features to

RDF, RDFS is undecidable because of the fragment of the logic it is based on.

Decidability however, is a key feature of applications generated upon ontologies.

Any fully-fledged PCE system built on ontologies require support for reasoning,

without which the extent of support they provide for users will be limited. This

shortcoming in RDFS necessitates the development of a new language. The first

version of OWL introduced in 2004, then in 2009 the second version was announced

followed by W3C announcement in December 2012, to make OWL2 as the

consortium’s recommendation for ontology language (W3C, 2009).

The first OWL (OWL 1 as now recognised by W3C) has three varients, OWL Lite,

OWL DL, and OWL Full. OWL Lite is subset of OWL DL, and OWL DL is a subset of

OWL Full. In OWL 2, where new features and new vocabularies have been

introduced, three more sublanguages of OWL DL are also offered. It is outside the

scope of this thesis to elaborate more on this, but keen readers are referred to

(Baader et al., 2007) for more detailed information on Description Logic (DL), to

(W3C, 2004e) for OWL in general, and to (W3C, 2012a) for more information on

OWL 2 new features and vocabularies.

We provide here a brief explanation of some of the constructs of OWL, and refer

interested readers to (W3C, 2012b) for extensive information. As Figure 2.1 shows

and mentioned earlier OWL ontology is based on RDF and the data model

represented in RDF is a set of triples. Therefore, as it is for RDF, it is the same for

OWL that resources whether being ‘subject’ or ‘object’ or ‘predicate’ are the key

building blocks of OWL. The terminology W3C uses for these resources in OWL is

‘entity’ and considers entities as ‘fundamental building blocks of OWL’ (W3C,

Chapter 2, Bckground of the Research

40

2012b). As depicted in Figure 2.3 an ‘entity’, or ‘concept’ as is sometimes referred

to in the literature, can be a ‘class’, ‘object property’, ‘data property’, a ‘data type’,

or ‘named individual’. Unlike other entities, ‘annotation property’ entity is not

expressed formally in OWL. In that, we will not discuss this type of entity any

further. As the diagram shows each entity has one Internationalized Resource

Identifier (IRI). IRI has replaced URI in OWL2 (W3C, 2012b).

2.4.1.2 Constraints and Assertions with OWL

As literals are not individuals in OWL, they are not shown as a specialised type of

‘Entity’. In OWL only individuals make members of an OWL class. It is worth

mentioning here that although the ontology schema is represented in OWL the

individuals that populate the ontology are represented in RDF.

Figure 2.3: Building blocks of OWL using UML notations (W3C, 2012b)

An object property is a binary predicate that relates two individuals being member

of the same or different classes. Each object property has two predefined

properties, rdfs:domain and rdfs:range . Domain restricts the subject of the

predicate to be an individual of a particular class, likewise, range restricts the object

of the predicate to be an individual of a particular class. In Listing 2.1 the description

of two object properties, belongsTo and isCurrentlyIn in RDF/XML

format are presented. The first object property indicates that the ‘subject’ of the

predicate belongsTo is always an individual of class OBJECT, and the ‘object’ of

the predicate is always an individual of class PERSON.

Chapter 2, Bckground of the Research

41

Listing 2.1: An example of description of two object properties in RDF/XML format

An example of asserting named individual in OWL in RDF/XML format is shown in

Listing 2.2. In this example an individual of class Heater , heater152 is asserted.

Listing 2.2: An example of asserting a named individual in OWL

The object properties described in Listing 2.2 in addition to some datatype

properties are added to describe and represent the object heater152 .

The Listing 2.1 and 2.2 is shown in graphics in Figure 2.4. Please note that the

Heater class is related to OBJECT class through the following predicate:

<rdfs:subClassOf rdf:resource="&Ontology13560225922 95;OBJECT"/>

because of this subclass relationship any individual of Heater is also an individual

of OBJECT .

 PERSON

 OBJECT

 belongsTo

 rdfs:range

isCurrentlyIn

 LOCATION

status rdfs:range

 literal string

Figure 2.4: Graphical representation of Listings 2.1 & 2.2

<owl:ObjectProperty rdf:about="&Ontology13560225922 95; belongsTo">
 <rdfs:domain
rdf:resource="&Ontology1356022592295; OBJECT"/>
 <rdfs:range rdf:resource="&Ontology13560225 92295; PERSON"/>
</owl:ObjectProperty>

<owl:ObjectProperty
rdf:about="&Ontology1356022592295; isCurrentlyIn">

 <rdfs:range
rdf:resource="&Ontology1356022592295; LOCATION"/>

<owl:NamedIndividual rdf:about="&Ontology1356022592 295;heater152">
 <rdf:type rdf:resource="&Ontology1356022592295; Heater"/>
 <status rdf:datatype="&xsd;string">off</status>
 <belongsTo rdf:resource="&Ontology1356022592295 ;margaret"/>
 <isCurrentlyIn rdf:resource="&Ontology135602259 2295;room101"/>
</owl:NamedIndividual>

Heater

heater152

 margaret

room101 rdfs:domain

“off”

Chapter 2, Bckground of the Research

42

2.4.2 SWRL Rule

OWL ontologies cannot provide advanced reasoning when complex

interrelationships between several concepts of ontology are involved. Whether SW

tecknologies are used to add structure to the content of the Web, or are used in any

PCEs for making use of the semantics of the computational environment,

shortcomings of ontologies for reasoning upon existing context are compensated

with some deductive rules. Rules are a set of IF, THEN statements where one or

more than one statement (or premises) represent the condition (also known as

body or antecedent of the rule), and one or more statements represent the action

(also known as head or consequent of the rule). These rules can be set for a variety

of purposes. They can be used, for example, to apply user preferences, to apply

business or service policies, to implement some security measures, to maintain

smooth network operation, or they can be set to trigger an actuator in response to

a particular situation in a PCE.

Despite its expressive power and reasoning mechanism, complex rules where

several OWL ‘entities’ are involved cannot be handled by OWL ontology. This

deficiency on one hand, and the necessity for any rule to be added on top of the

ontology to run using the same reasoning engine, on the other, required a new

language for writing rules in SW. Therefore, W3C recommended the Semantic Web

Rules Language, SWRL, as another language that allows the integration of OWL

ontology and a rule layer that sits on top of it (Horrocks, et al. 2004). SWRL, which is

also based on DL, complements OWL ontology. How non-monotonic SWRL and

monotonic OWL can work together hand in hand to offer a decidable reasoning

system is outside the scope of this thesis. Interested readers are referred to (Eiter et

al. 2007) which provides a good overview of rules and ontologies for the SW.

2.4.2.1 The Role of Competency Question (CQ)

The competency questions provide the information necessary to develop a new

ontology or extend an existing one. The set of CQs will therefore specify the criteria

for the design of the ontology in terms of its terminology and constraints; i.e. to

ensure the design decisions made for the ontology are correct. This means that the

CQs are to verify whether the ontology meets the requirements specified in the

Chapter 2, Bckground of the Research

43

questions, and not to direct towards a particular design. In other words, any

particular set of CQs cannot be related to one and only one ontological model. As

the ‘words’, or ‘phrases’ used in the CQs will form the terminologies used in the

formal ontology specification, the formulation of the competency questions to

capture all necessary requirements for the design of the ontology is very important.

CQs are usually defined in a stratified manner (Uschold and Gruninger, 1996), so

that the rational for the lower level questions is how the answer to the CQ is used

to answer a higher level, more complex CQ. We have explained the role of RDF

technology in SW in previous sections. Sentences, phrases and words in CQs will

determine the RDF triples (subject, predicate, object). For example, the informal

sentence “the status of the heater is off”, which is an excerpt from a CQ is translated

into a formal CQ: status (? h,"off") . This entails that the concept Heater

must have data type property status.

We conclude this section with a statement from Tim Berners-Lee (2000) to stress on

the importance of capturing terms of the CQ to realize the SW vision and use of SW

technologies in PCE.

“The philosopy was: What matters is in the connections. It isn’t the

letters, it’s the way they’re strung together into words. It isn’t the

words, it’s the way they’re strung together into phrases. It isn’t the

phrases, it’s the way they’re strung together into document.”

2.4.3 Ontology Applications

OWL ontologies are increasingly being used across domains, more noticeably in

health domain. Ontologies, particularly in the health care domain, are used mostly

for vocabulary specification or for serving context aware applications. Examples for

the former are, the well-known Gene Ontology Consortium with the role to produce

a dynamic, controlled vocabulary for all being gene (GO, 2000), a big biomedical

vocabulary like Thesaurus for cancer research (Hartela et al., 2005), large scale

clinical terms SNOMED (Spackman et al., 2000), or more to serve the needs of a

particular community such as phenotype ontologies (Mungall et al., 2010).

Examples where ontologies are used for more than vocabulary purposes, and used

in PCE applications to serve users are (Chen and Finin, 2003), (Wang et al. 2004),

Chapter 2, Bckground of the Research

44

(Ko, et al., 2007), (Paganelli and Giuli, 2007), (Bardram and Christensen, 2007),

(Niyato et L., 2009), (Arnich et al., 2010), (Polza et al., 2010), (Coronato, 2010),

(Romero, et al., 2011), and (Zhang et al., 2011).

Chen and Finin (2003) have used ontology for modeling contexts using OWL

language. They consider ontologies as ’key requirements’ for building context-

aware PCE systems. In another project Chen et al. (2004b) have developed a shared

ontology SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) for

supporting UC and PCE applications. They believed that their generic ontological

model, that was developed using OWL, can be a step towards the standardization of

a shared ontology to be reused by ontology-driven application developers.

In their agent-based system to negotiate context information, Khedr and Karmouch

(2004) use an ontology agent that provides the semantic functionalities that other

agent can use to represent and share context in the system. To represent a unified

context model, they have taken an ontology-based approach, and defended their

choice by arguing that other approaches do not support extensibility and

interoperability with other context-aware systems.

Wang et al. (2004) use a set of ontologies to describe and represent contextual

information within their architecture, SOCAM. These ontologies are divided into

domain-specific and generalised ontologies.

In the ontology based U-HealthCare, Ko et al. (2007) have defined three context

ontologies for Person, Device and Environment, and their model does not include

the element of time. Their ontologies are semantically divided into general context

ontologies and domain context ontology, similar to (Wang et al., 2004).

Paganelli and Giuli (2007) provide a more detailed ontological model than (Ko et al.,

2007) for their ‘Kamer’ project. They have provided four ontologies to represent

patients, other people patient encounters with, the physical environment, and an

alarm management ontology. In the ‘Patient Personal Domain Ontology’ they

include patients physiological information. They have used OWL language and some

first order logic rules to reason upon the context. Some of ontological entities,

Chapter 2, Bckground of the Research

45

particularly classes are being repeated in different ontologies to run predefined

rules.

A very detailed, and yet, general view of the ontologies for pervasive systems is

explained by (Stevenson et al., 2009). They have adapted requirements for

modelling context that (Strang and Linnho- Popien, 2004) and (Henricksen et al.,

2005) have elaborated in terms of “capturing the quality of data and supporting

temporal data”. In addition to these requirements for capturing properties of

sensed data, Stevenson et al added requirements for modelling properties and

capabilities of sensors too. Some of the ontologies in the Stevenson et al.’s

Ontonym model are Time, Location, People, Event, Resource, and Device. They

suggest that an approach to evaluate a context model is through the application

that is supposed to use it, and how the model “fits” the application.

We would like to add that not all ontology based applications and context

management use OWL language. Korpipää et al. (2003) for example use RDF for

context representation. Jahnke et al. (2004) also offers an ontology-based context

aware system in which the context representation is divided into two ontologies,

domain dependent and domain independent ontology. They have used a graph-

based database for storing contextual facts. They are using their own encoding for

contextual representation and for communication between the context sensors and

the context users. However, since W3C recommendation in 2004 endorsing OWL as

the ontology language standard, efforts to develop ontologies in other languages

have declined.

2.5 Summary

In this chapter, we have provided different perspectives of pervasive and ubiquitous

computing, and how this new paradigm challenged previous views on computing.

The diverse characterisation of pervasive computing environments and systems,

gathered through a collection of published documents was also given in this

chapter. Realisation of pervasive computing depends on context-awareness.

Various definitions and viewpoints of this concept is reflected in several prototypes

developed. In most early context-aware applications and in mobile-computing the

Chapter 2, Bckground of the Research

46

study reveals that context-awareness is used as a synonym for location-awareness.

There is a growing trend in the pervasive computing community to look far beyond

location as context. Different approaches to context modelling and growing interest

in use of ontologies to abstract contextual data was also covered.

Increasing inclination towards the use of Semantic Web technology as a software

solution to problems and concerns of pervasive computing systems is also covered

in this chapter. A brief explanation of some of the SW technologies that interest us,

particularly RDF, OWL ontology and SWRL rule along with concept and vocabulary

used in the realm of SW is also given in the chapter.

CHAPTER 3

PROBLEMS WITH PERVASIVE COMPUTING

In this chapter we analyse the research problem from two different

perspectives. Firstly, in section 3.1. we debate expectations we all have from

pervasive computing and we single out only those which cannot be delivered

through the traditional approach to creating computing environments. We use

word “traditional” to refer to all computing practices, which have existed in SE for

developing applications in businesses, science, governance and leisure, in the last 3

decades. They all heavily depend on numerous transaction processing,

manipulation of databases and knowledgebases, information retrieval, scientific

calculations and similar. We do not wish to claim that PCE cannot be developed

using the traditional SE principles, but we wish to point out that computational

environments have changed significantly and our well established way of creating

computational solutions may not be appropriate for creating PCE. Secondly, in

section 3.2 we look at pitfalls in the field of context awareness, which promised to

address the real nature of PCE, but delivered results only fractionally. Consequently

in section 3.3 we summarise the shortcomings of pervasive computing.

We would like to think that the way forward is to create a common consensus on

the characteristics of PCE (Section 3.4.1) and define the role of situations in them

(section 3.4.2.). We would also like to bring forward our vision on what exactly we

need to compute in PCE (section 3.4.3). Our perception of PCEs is drawn from our

own research (Shojanoori et al. 2010, 2012),(Shojanoori and Juric, 2013) and

outcome of discussions in section 3.2.1 and 3.2.2.

Chapter 3, Problems with Pervasive Computing

48

3.1 Expectations from Pervasive Computing

It is difficult to find published sources of information which itemise expectations we

all have from pervasive computing. However, from the background reading and

experiences of defining pervasiveness across different domains (Shojanoori et al.

2010, 2012),(Shojanoori and Juric, 2013) (Koay et al., 2010a,b), we have grouped

and contrast them with common perceptions of traditional computing in the

paragraphs below.

Defining inputs dynamically: Computing, from the outset until very recently, has

been regarded as the process of achieving some desired output when some pre-

defined set of inputs is provided. Programmers have to define and program

functions that convert the inputs to outputs. The computers were designed to be

general-purpose computers, which at the same time are expected to compute

different functions, and therefore have, sometimes “difficult-to-design” algorithms,

ready. Obviously, these programmed algorithms would work only if the input to

them is known and very well defined. By contrast, in the 21
st

 century computing,

the set of inputs for computation is not always known in advance. For example, in

an intensive care unit, where the health status of patients are constantly

monitored, different supporting devices, depending on the patient’s current status,

might be needed and consequently they might produce different types of input

which should be accepted at run time. Also, the choice of devices might not be

known in advance, i.e. before we set up a PCE, but we should be able to use these

devices as situation requires. In cases of using biometrics and similar technologies

in Border Control environments, when we identify a passenger through face or iris

recognition, they both produce viable input sources for the recognition system,

which can be used interchangeably or altogether. In some cases we may use iris

recognition because of relatively lower reliability of face recognition, which simply

might not work for all passengers.

Computing output not guaranteed: The general-purpose computers always return

a result, be it information retrieved from a persistent repository or some physical

output such as dispensed money at the end of a transaction using an automated

Chapter 3, Problems with Pervasive Computing

49

teller machine. Although individual computational devices in PCEs may have

outputs, computing functions may not have any output at all. For example, if there

is no change of condition of a particular patient who is monitored remotely, his/her

PCE will not take any “action”, which means that PCE will produce no output.

However, this lack of “output” doesn’t mean that there has not been any

computation at all. Computing to infer that “there has not been any changes” is an

example of not having any output as a result of the computation.

Distribution of devices and computing: In traditional computing, computation is

limited to general-purpose computers. Their centralised functionality is not

distributed among devices embedded with computing capabilities designed for a

specific task. By contrast computing devices in pervasive computing are equipped

with their own microprocessor and therefore have a specific purpose, which is

defined within their own computing function. This is actually a key feature that may

distinguish pervasive from traditional computing. For example, a thermometer

sensor that provides body temperature of a person could be augmented to produce

contextual information rather than raw data. That is, instead of providing the exact

number (e.g. temperature, in remote patient monitoring) it may give an information

whether the person’s body temperature is normal, high, or low.

Pervasiveness of user-specific devices: In traditional computing many users share

the same general-purpose computing device. Opposite to the practice in traditional

computing, computing devices, or devices embedded with some computational

power, by and large, are user-specific and therefore are not shared by several users.

At the same time each user is surrounded by numerous devices, which makes

his/her environment pervasive, but full of user-specific devices. For example, a

patient in a hospital ward, who has just had an operation, may carry or be attached

to a number of devices, and each of them may monitor some aspect of the patient’s

health. They are all specific to that patient and not shared by anyone else.

Flexible interfaces: Software applications generated from a traditional computing

system make use of very limited ways of interaction with the environment. Direct

keyboard or mouse input from the user are by far the most common ways of

Chapter 3, Problems with Pervasive Computing

50

providing input to computing functions in traditional computing. However, to

support users of pervasive computing system with as much flexibility as possible,

there cannot be constraints on the type of interfaces between the devices

generating information and the software applications that are making use of them.

For example, identifying people in a particular PCE can be done through face

recognition, by voice tone, by finger print, or by iris of the eye. In all these cases we

use devices with completely different interfaces for achieving the same goal:

identify a person. Normally all these interfaces are parts of various devices,

integrated into a PE, which enable the recognition.

 Implicit interaction: While in traditional computing the interaction between human

and computer is explicit, in pervasive computing where the user is surrounded by

devices embedded with computing capabilities, the interaction between the human

user and information is implicit. For example, a patient who is being monitored

remotely and falls unexpectedly may not interact with any system to notify his

unfortunate incident. The sudden change of the patient’s body position can alert

the remote monitoring system and there will be an implicit interaction between the

patient and his/her PCE.

Redundancy of historical information: Traditional computing applications, more

often than not, rely on persistent data, whereas pervasive computing may compute

the moment without any regard to the historical information. This, by no means

dismisses the usefulness of historical information in a PCE. The issue is that the PCE

is not responsible for it, and its provision has to be taken care of at the level where

we run a software application which supports the PCE. For example, a PCE user

might decide to block incoming calls, and right at the next moment he/she changes

his/her mind and wants to receive calls. The decision made in the previous moment

cannot be judged for the next. Or even if he/she blocks incoming calls at a particular

time of day in the last month, this historical information cannot be considered as a

basis for inferring the same action at any other moment in future without the PCE

user’s consent.

Chapter 3, Problems with Pervasive Computing

51

Premature end of computing procedure: There is always a pre-defined start-to-end

procedure in traditional computing, but in pervasive computing activities may end

prematurely. Our everyday life is full of examples of opting for one task and then,

without completing it, switching to another is very common. One of the best

examples are user clicks on the web. We very often end-up retrieving information

form websites which we did not plan at the beginning of our retrieval session. A

user of a PCE shall not coordinate himself/herself with PCE, it is the other way

round.

User-centric computing: In traditional computing user is in the “background”. The

general-purpose computing devices carry out computations with minimal, if at all

any, user involvement. However, in pervasive computing environments, computing

often does not happen without user consent. User preferences, requirements and

requests have a role to play in PCE and they determine which services should be

provided to them. No action can take place in a PCE without the user consent or

authorisation. This may be in advance when users subscribe to the PCE and/or at

the time the PCE is being used. A resident of a care home might have given in

advance an authorisation to be remotely monitored while asleep, but he/she can

change his/her mind at any moment.

Computing transparency: In traditional computing, applications are device-

oriented, whereas in environments where users are empowered by the surrounding

wireless and mobile computational devices, applications become user-oriented.

Transparency of computations in traditional computing is a non-existent feature,

but important in PCE because users have to interact with the PCE at all times. They

are well aware of their interaction, and they may persist until the desired output is

produced. Computing transparency involves automatic and seamless integration of

computing devices, as its key feature, which is essential in PCE. For example,

monitoring the presence and location of inhabitant of a homecare, their activity,

who they are with at a particular moment can be handled in a PCE without the

users being disturbed or even noticing it.

Chapter 3, Problems with Pervasive Computing

52

In Table 3.1 we summarise the expectations debated in this section and give their

brief explanations.

 Expectation Description

E1 Defining inputs

dynamically

Inputs to computers to perform a task cannot be limited to a

prescribed list of inputs given in advance; inputs should be defined

dynamically at run-time.

E2 Computing output

not guaranteed

In pervasive computing we may not have any output at all.

E3 Distribution of

devices and

computing

Centralising computing functionality, particularly when lots of

computation takes place at any moment is not feasible, practical any

demanded any more. Computing responsibility can be delegated to

variety of devices, with a variable computational power and each of

them can be designed for a specific task.

E4 Pervasiveness of

user-specific

devices

Computing devices are user-specific and each user may also use

multiple devices. Identifying users from each other to deliver services

appropriate for one and not the other is typical of pervasive

computing.

E5 Flexible interfaces There cannot be constraints on the type of interfaces used in pervasive

computing. Devices and applications can use use numerous and

constantly changeable devices (as they change).

E6 Implicit interaction Interaction between human and computer may be historically seen as

explicit, but in pervasive computing, where user is surrounded by

computational devices, the interaction between may often be implicit.

E7 Redundancy of

historical

information

Pervasive computing is not responsible for historical information; they

have to deal with situation they encounter in PCEs. Each situation in

PCE might require different computations and services to be delivered.

E8 Premature end of

procedure

In traditional computing there is always a pre-defined start-to-end

procedure, but in pervasive computing activities may end prematurely.

E9 User-centric

computing

Pervasive computing applications are user-oriented rather than device-

oriented.

E10 Computing

transparency

Seamless integration of devices with minimal user explicit interaction

is a key feature of pervasive computing.

Table 3.1: Expectations from pervasive computing

3.2 Problems with Context-Awareness in Pervasive Computing
In chapter 2, section 2.3 we elaborated on the research relevant for contexts in

computing. We highlighted the lack of common consensus on what exactly context

may mean; we discussed the complexity and limitations of software applications

which are developed with ‘context in mind’ and which consequently become

‘context-aware’ and we also looked at the issue of ‘context modelling’ in such

applications. Al three of them have highlighted a range of limitations of context

aware applications. In this section we elaborate on problems in context aware

computing and give our further justification on why ‘context awareness’ has not

delivered most of expectations E1-E10 form Table 3.1.

Chapter 3, Problems with Pervasive Computing

53

Imperfection of context awareness: (Henricksen et al. (2002) argue that because

PCEs are highly dynamic, information describing them can quickly become out of

date. According to them ‘context histories (past and future)’ will frequently form

part of the context description and therefore applications in PCE are interested in

more than the ‘current state of the context’. We agree with (Henricksen et al.,

2002) that information describing an situation of a PCE can quickly become out of

date, but question their view that software applications in PCE are interested in

more than the current state of the context. We believe that situation specificity is a

key feature of context-awareness in PCE, which changes constantly and at any given

time we may encounter a different situations in the same PCE. We would also like

to think that one change in a PCE must trigger the existence of a new situation and

the acquired information of the situation is always related to one moment in a PCE,

which might be completely immaterial for the next one. From that perspective,

situation might be much more than “the current state of the context”, as

Hendrickson claims, but not in terms of relying on historical information and

“previous” contexts. The appropriateness of the information generated in and by

PCE and their usage by software applications, will always depend on the situation

triggered by a change in the PCE. Whenever there is a need for historical

information in PCEs, we can deal with it at the application levels, i.e. applications

can make the right decision in situations where another source of information is

required, such as a piece of data retrieved from a database, what (Bellavista et al,

2012) refers to as ‘virtual sensors’. We would like to emphasise that by looking at

various situations in PCE we come closer to the idea of situation awareness, as

defined and exploited in (Matheus et al., 2003)(Matheus, 2005)(Bahrami, et al.,

2007)(Gauvin, et al., 2003). According to their contextualisation of information in

pervasive computing, situations describe pervasiveness “better than context”,

which is close to our own idea of creating a PCE based on ‘a situation’ in it.

Localisation-aware systems dominate: Most of the available and fully developed

context-aware applications are not actually context aware but are rather

‘localization-aware’ systems. Active Badge (Want et al 1992), ParcTab (Schilits et

al., 1993), Cyberguide (Abowd et al 1997), the Intelligent Room (Coen, 1998), the

Chapter 3, Problems with Pervasive Computing

54

Bat (Harter, et al 1999), the Context Toolkit (Salber et al 1999b), (Garlan et al 2002),

CASS (Fahy and Clarke 2004) are primarily concerned about the location context of

the user in order to make a decision. Most of these localization-aware systems are

systems that adapt themselves to only the new location of the user, so as to provide

mobile functionality appropriate to the location. Although location-aware systems

have gained popularity in recent years when using mobile devices, we believe

information generated in context-aware PCEs is far more diverse and complicated,

i.e. context awareness in PCEs is more than localization.

Contextual information is not always abstracted: Some proposed context-aware

architectures, including the above examples, are dependent on the hardware

infrastructure. Consequently in software applications generated form such

architectures do not support context abstract at all, or at best to a limited extent.

For example, the location information detected from sensors is not interpreted to

produce a higher level of abstraction and physical sensors are also not hidden

behind needed abstraction. As a consequence we created systems which were NOT

scalable; i.e. capable to allow expansion. In other words the system was not able to

accommodate any additional sensors and could not cope with the dynamic nature

of PCEs. We believe that the way out is in abstracting contextual information

through models which can be materialised with appropriate languages that allow

reasoning upon detected contextual information and infer situational information.

Lack of context reasoning: Some proposed architectures, such as The Context

Toolkit (Salber et al 1999b) do not have an easy-to-apply context reasoning

mechanism to infer either “high context information” or situational information.

Toolkit represents context using key-value model of context representation. The

keys do not have meanings and therefore do not allow further than basic reasoning

upon contexts. Hydrogen architecture (Hofer et al 2002) is also short of a reasoning

mechanism. Although it uses an object oriented model to represent context, each

sensor is being interpreted through a highly coupled adaptor and therefore its

software architecture does not provide a good abstraction of context. In the CASS

architecture (Fahy and Clarke, 2004) the contextual information which is limited to

Chapter 3, Problems with Pervasive Computing

55

location is passed to a relational database. This means that the context processing

takes place in a relational data model which cannot support any reasoning

mechanism. It is also important to note that most of the available architectures for

context-aware applications in PCE are specific to an application domain and, as

Miraoui et al (2008) have concluded in their survey, they require additional effort

for their adaptation to other domains. With regards to the healthcare domain,

although many research papers can be found on pervasive healthcare systems, few

of them focus on the context model and its structure.

The lack of high level abstraction: When the processing of context is done in a key-

value model, relational model or object-oriented model, because the terms used do

not have meaning, reasoning to infer higher-level context, if it exists at all, must be

done through programming. This lack of high-level abstraction requires the context

models to be highly coupled with the rest of the system and therefore the addition

of more devices dynamically is not supported. We believe that due to the rich

formalism available in ontologies for representing contextual information, we

should use them for reasoning upon contex and to inferring situational information

in PCEs. Service oriented context-aware middleware, SOCAM (Gu et al., 2004),

(Wang et al., 2004), and context broker architecture, CoBrA (Chen et al., 2003a),

(Chen et al., 2004a) are among the most cited examples in the literature that have

used OWL ontology for processing the contextual information. However, these are

not examples which can model a situation in PCE for two reasons. The first one is

that their interpretation and manipulation of contextual data is focused on

managing the sensor generated data, which is not always sufficient for interpreting

situation in PCEs. There is an abundance of data in PCEs, which is NOT generated by

sensors, but play an important role for defining the semantics of the situation in

PCE. The second is that, all these solutions are knowledge based systems that

manage enormous amount of data. This has been considered as cumbersome SE

solutions which are very difficult to manage. Even if we assume that we can

distribute such complex SE solutions across clouds, then it is questionable how

could these distributed computations answer the our view that PCEs exist because

Chapter 3, Problems with Pervasive Computing

56

they can accommodate constantly changing and seamlessly integrated devices of

variable computational power.

Table 3.2. summarises the shortcomings of context awareness in addressing needs

of PCEs.

� Limitation Description

L1 outdated

contextual

Information

Contextual information in traditional context-aware applications can

quickly become out of date.

L2 Domination of

localisation-aware

systems

context awareness in PCEs is more than localization.

L3 Lack of context

abstraction

physical sensors are not hidden behind abstractions.

L4 Lack of context

reasoning

Inappropriate context model is used that does not support context

reasoning mechanism to infer high-level context and reason about

complex situations.

L5 Insufficient context-

information

Provision of insufficient situational information will result in delivery of

unexpected services to the user.

L6 Information

overloading

Unnecessary information overload caused by pre-defined contextual

model and architecture that detects all contextual information would

make processing the context to deliver expected service to the user

very expensive.

L7 Context model

inflexibility

Most of the available architectures for context-aware applications in

PCE are specific to an application domain; they require additional

effort for their adaptation to other domains.

Table 3.2: Limitations of context-aware applications

3.3 Summarising Shortcomings of Pervasive Computing

The analysis of current problems in Pervasive computing itemised in Table 3.1, and

the limitations of well-known applications of context awareness listed in table 3.2,

have polarised our research problem and send two important messages.

Firstly, however hard in the past we tried to create new SE solutions which respond

to either technological changes or ever changing business demands, it is always

difficult to predict that such software solutions will be a definitive answer to

problems we experience in new computing environments. Building Context

Awareness in computing is not a silver bullet for creating PCE, as highlighted in the

previous section. It is difficult to imagine that we can exploit the 15 years of

research in modelling and managing context, which mainly manipulates sensor

generated data, when modelling and manipulating PCE and, at the same time,

achieve expectations E1-E10 from Table 3.1.

Chapter 3, Problems with Pervasive Computing

57

Secondly, the list of expectations from table 3.1 is not ‘science fiction’. It is more a

common perception of modern computational environments. We can claim that it

is difficult to perceive modern computing without having pervasiveness in mind.

Therefore if we advocate that our PCE exist because we can seamlessly integrate

numerous heterogeneous devices into our everyday life, and compute with them at

any time and place, then we will immediately stumble upon the traditional

perception of contextualising PCE. Tables, 3.1 and 3.2 send clear messages:

I. Traditional context are not sufficient for defining and manipulating PCE and

therefore we should replace it with situations in PCE, as found in Table 3.2 and in

Objective 2 on page 9.

II. We should re-think or re-assess the way we perceive computing in PCE. This is

obvious from Table 3.1 but also dictated by Objective 3 on page 10.

3.4 The Way Forward in This Research

In this section we pave the way towards a possible solution which can address I. and

II. from section 3.3. We have to identify the way of meeting expectations E1-E10

from Table 3.1. and addressing limitations L1-L8 from Table 3.2. The outcome is a

list of categorised characteristics of PCE itemised in Table 3.3, which should be used

when addressing I. and II.

3.4.1 What would be Common Characteristics of PCE?

In this section we create a set of categorised PCE characteristics which are based on

expectation we itemised in Table 3.1.

When addressing E10 (Computing transparency in PCEs), we primarily need a

seamless integration of devices within a particular PCE. However, if we would like

to think that PCEs are physical environments which are augmented with numerous

heterogeneous devices with embedded computational power, then these devices

should be interconnected with each other. They can be stationary or mobile, and

there is no restriction on the number of them. However, the existence of their

computational and communicational power is essential in order to have them

seemingly integrated into PCE. Hence, we have characteristics P1 and P2 in Table

Chapter 3, Problems with Pervasive Computing

58

3.3. In addition if we assume that any number of devices can comprise a particular

PCE then we would like to think that no pre-defined device setting is needed. The

setting of heterogeneous computational devices in a PCE is not definite. That is,

adding a new device, replacing a malfunctioning device with a working one, or

removing a device without replacement is possible in a PCE at runtime with ease

and without affecting any other part of the PCE. There is no pre-defined structure

between devices of a PCE, and there is no operational dependency between

devices. Otherwise devices would be highly coupled with each other and therefore

their replacement or removing from the setting would be difficult if not impossible.

Thus characteristics P3 in Table 3.3.

When addressing E9 (User-centric computing) we have to create computational

environment which serves the user. We would like to think that the PCE empowers

its users at any time/place, favours unobtrusiveness and respects/adopts user

preferences as they interact within PCE. Consequently, the devices integrated into

a PCE penetrate into our private and professional lives and enable us to perform our

daily tasks comfortably. Thus P8, P9, P11, P12 in Table 3.3.

When addressing E6 (Implicit interaction) we would like to think that, apart from

securing as minimal intrusion for the user as possible, the PCEs guarantees implicit

and not solely explicit interactions between users and PCE. This may mean that

users may use and be a part of a PCE without “attending” to any device. Devices

are transparently integrated into a PCE in order to secure the delivery of expected

services and the most important outcome is that these services should exactly

match users expectations and preferences, without assuming that the interaction

between users and PCE is explicit. The user in a PCE can focus on what they want

to do, not how to do it. Thus characteristics P12, P13, P14 in Table 3.3.

When addressing E7 (Redundancy of historical information), we need to be

concerned only about the situation specific information within a particular PCE. We

would like to think that the availability of an extensive amount of information,

which might have been cumulated within the PCE will overload the user and is not

in itself a virtue. This may mean that the power of PCE is in its ability to handle a

particular “moment” or a situation, which may not depend on historic information

at all. What matters is to have all the relevant information about the situation that

Chapter 3, Problems with Pervasive Computing

59

makes a difference to the user. Consequently, we would like to think that a

situation in a PCE is based on information, which is important for that “moment”

and may be completely immaterial for the next one. If any monitoring, tracking, or

historical information is indeed needed in PCEs, it may be managed by other means,

e.g. through a separate or additional software applications which run in PCE.

Finally, we would like to think that a PCE will make use of the information provided

by its seamlessly integrated devices (also referred to as ‘information appliances’

(Norman 1999)) in a particular situation and make a decision on appropriate service

to the user for that situation. Thus characteristics P14, P16, P19, P20, P21 in Table

3.3.

When addressing E1 and E8 we need proactivity in PCE whilst not being

autonomous. We would like to think that PCEs in spite of being user-centric

environments, should also be “proactive systems”, i.e. they may take actions

without being instructed. Although users’ serenity and composure necessitates

their minimal distraction in PCEs, which is also supported by PCEs unobtrusiveness,

we would like to believe that it is not very wise to condone a completely

autonomous PCE where users’ changing preferences and dynamic input into a PCE

do not play any role. We can also add that, as a consequence, we might witness a

premature end of computing procedures in PCE because it would be difficult and

inappropriate to predict exactly what a particular situation in PCE would be and

which decisions are to be taken in that PCE. Thus characteristics P3, P5, P6, P7, P17

in Table 3.3.

However, we would like to think that PCE accommodates intelligence which enable

us to address E1, and E6-E10. We do need provision of some reasoning mechanism

that can infer new knowledge (we may call it higher level, i.e. situational

information) from the collected contextual information (we may call it “low level”).

Furthermore, supporting execution of reasoning rules in situations where several

pieces of situational information are related to each other and where the

relationships cannot be represented in any abstract PCE model, will result in

addition of a set of reasoning rules to the semantic of PCEs. Thus characteristics P8-

P17 and P19-22 in Table 3.3.

Chapter 3, Problems with Pervasive Computing

60

Finally, all PCEs are domain specific. The setting of devices and information in a PCE

is determined by the domain. Conceptualisation of a PCE without a domain is not

possible and we would like to think that it is not practically possible to have a

generic PCE applicable to all domains. The pre-defined situations are difficult to

enumerate and not advisable. Therefore, there cannot be any predefined PCE

“model” applicable across domains. Thus characteristics P18 in Table 3.3.

In Table 3.3 we summarise the characteristics of PCE which is done according to the

analysis above and in sections 3.1. We have 4 groups of PCE characteristics which

focus on different aspects of PCEs. We can look at

• PCEs from the perspective and nature of devices which are seamlessly

integrated into them and consequently create various computational /

communication settings;

• PCEs from the user perspective because users are a major driving force behind

the creation of any particular PCE.

• the performance of PCEs in terms of the nature of software solution which

accompany PCE and focus on the fact that situations in PCE are to be modelled

and computed in order to justify their existence: the delivery of

expectations/services to their users.

Each line in Table 3.3. is labelled as a particular “P” which should be taken into

account if we wish to address the shortcomings of pervasive computing as itemised

in I and II from section 3.3. We highlight that most of the “Ps” in Table 3.3 are

consequences of EXPECTATIONS we have in PCE, i.e. all L1-L10 which appeared in

Table 3.1. However, the issue of situation awareness and capability of reasoning in

computations within PCE are consequences of limitations of the current context-

aware solutions in pervasive computing, as itemised in Table 3.2. If we wish to

create a SE solution which deals with P1-P18, we will implicitly address the issue of

creating and manipulating situational information. In other words, focusing on

devices and users in and performance of PCE would implicitly require the existence

of situational information.

Chapter 3, Problems with Pervasive Computing

61

 PCE/Device/User/Situation Characteristic

P1 PCE (and devices) is a physical environment with seamlessly integrated

devices.

P2 contains heterogeneous networked devices with various

computational and communicational power.

P3 is scalable to allow extension of devices dynamically at

runtime.

P4 PCE (and computational/

communication setting)

are stationary or mobile.

P5 have no definite setting.

P6 have no pre-defined structure between them.

P7 have no operational dependency between them.

P8 PCE (and its users)

is to empower the user.

P9 is to empower the user anywhere anytime.

P10 is to avoid information overloading.

P11 is user-centric.

P12 is non-autonomous, adopts user desire and preferences.

P13 PCE (and its performance)

is unobtrusive.

P14 has minimal distraction to the user.

P15 has no tracking of user behaviour.

P16 has no interest of historical information.

P17 is proactive.

P18 is domain specific.

P19

PCE (and its situation)

is situation-aware.

P20 is situation specific.

P21 is capable of inferring situational information.

P22 is capable of reasoning upon situations.

Table 3.3: Summary of PCE characteristics

It is also important to note, that not all “P” from Table 3.3. are essential in the

creation of PCE. Therefore it remains to be discovered how to approach the

implementation of these requirements itemised in P1-P22 and how to find out

which one of them is more important than other. Obviously, P1-P7 are solely

related to the existence, purpose and capabilities of various heterogeneous devices

which surround us, but P8-P22 are more focused on software solutions which we

must develop in order to materialise PCE. They are more focused on the semantics

which will be stored in PCEs and manipulated though computations in order to

deliver expected services to users involved in the PCE.

3.4.2 What Would be the Role of situations in Pervasive Computing?

PCE, based on our discussions in the previous sections, can be seen as a physical

environment that contains a collection of heterogeneous computational devices,

which are seamlessly networked and integrated. The collection or setting of devices

in a PCE, which can be stationary or mobile, can change even at runtime, owing to

Chapter 3, Problems with Pervasive Computing

62

the fact that there is no pre-defined structure and operational dependency

between devices. Systems designed with PCE in mind are user-centric and they

observe user preferences; PCE without a user is inconceivable. The purpose of PCE,

as a non-autonomous environment, is to empower users, without overloading them

with information, at anytime and anywhere. PCE ARE proactive and, at the same

time, unobtrusive, with minimal distraction to their users. They are also domain and

situation specific. This means that they are situation-aware and capable of inferring

situational information from low-level contextual data and able to reason about

situations Thus P19, 16, 21 and 22 in Table 3.3.

3.4.3 What Do We Compute in PCEs and Why?

If we wish to address the shortcomings of pervasive computing as underlined in

section 3.3 and pave the way towards creating PCEs which can fit all situations we

may encounter within them, then we need primarily a SE solution, with its

computations, which can generate both: a definition of the semantics in a particular

situation in a PCE and the delivery of services within it. The way forward would be

to create the formal computational model, which should be materialised through a

SE solution, which

A. uses the computations generated from the formal model

B. is built from a software architectural model which accommodates the

computations defined in the formal model and

C. secures the deployment of software architectural elements, by using the

available technologies.

Without A.-C above we cannot claim that we offer a SE solution which creates a

PCE. The formalised computational model per se is no guarantee that we will be

able to deliver results. We need a software architecture which accommodates

proposed computations created form the formal model, which in turn guarantees

that its components will be deployable with available software technologies.

The background research in section 2.4 has highlighted that the use of SWTs is the

way forward, if we wish to create a new era of SE solutions based on the semantic

and understanding of our computational environments across domains. The SWT

stack (W3C 2004b) has been created with semantic “Web” in mind, but the same

Chapter 3, Problems with Pervasive Computing

63

philosophy, ideas and languages in particular can be re-used outside the semantic

Web domain. If we can transfer the interpretation of and reasoning upon the

content of web and its URLs to any computational environment, then we can

achieve almost identical result as on the Web. In our particular domain of creating

situations in PCEs and reasoning upon them in order to deliver services, we need the

same mechanism: describe the domain (situation within a PCE) using SWT

languages, and reason upon it using SWRL in order to create a computational result

(“deliver a service”).

The common characteristics of PCEs from Table 3.3 might be sufficient to manage

the description of semantics in situations we may encounter in PCEs. However,

without having a formal model which will define exactly

1) which elements we must have, and

2) which computational steps we must perform in order to secure the

computations which deliver a service,

we may not claim that the we have created a PCE with characteristics itemised in

Table 3.3. This type of formalisation might have a double purpose:

a) it may systemise our perception on what PCEs are and what we expect from

them across wider research community, and

b) it may guarantee that, if we follow the formalised model, we will be able to

define and create a situation in a PCE which will deliver an expected service.

Furthermore, by knowing that we will use the SW technology stack, the formal

model should be expressed in vocabulary and following the terms of the suitable

technology, which can secure the implementations of formalised computations

through the deployment of software architectural components. Both of them,

vocabulary and terms, must influence and determine the format and the content of

the formal computational model, which should not be confused with numerous

formalisations available in (Baader, et al., 2011), (Krdzavac and Gasevic, 2010),

(Klinov and Parsia, 2008), (Pan et al., 2006).

It is expected that our formalised model should give a finite set of definitions and

axioms which will help us to formalise the knowledge on PCE. We also need a

Chapter 3, Problems with Pervasive Computing

64

structure within the model which can create and manage formalised knowledge.

From that respect OWL as a language and OWL ontologies in general, as a

formalisation of the knowledge we wish to define and manipulate, seems to be a

perfect choice. At the same time we have to think how to use the formalised model

for computing implicit consequences or knowledge the model describes or creates.

Implicit consequences are beneficial in SE because they can successfully be

implemented and can support any automation we may create through our

computations, which is very important in PCEs.

Furthermore, our formal model should create cheap computations, i.e. our

solutions should be computationally cheap. This means that building any

knowledge base and excessive persistence, which could underpin the delivery of

services in PCEs, is out of question. In the era of highly accessible mobile and

wireless computing, we should assume that all our implementations should run on

mobile devices. Therefore, we should be very cautious with the possibility of

hosting our SE solution in various clouds and using application hosts as an answer to

the deployment of our computations.

3.6 Summary
This section itemises expectations we have in pervasive computing environments

and analyses limitations encountered in software solutions focused on context

awareness which attempted to address the complexity of pervasive computing.

Therefore we pushed forward the issue of situation in PCEs and created a common

set of PCE characteristics which could help us to achieve one of the objectives of our

research and pave the way for the creation of the formal computational model

which can create a PCE and which can be deployable using SE principles and

modern software technologies.

Chapter 4

A Formalised Computational

Model for PCEs

In this chapter, we propose a formal computational model (FCM) for delivering a

situation-specific service in PCEs.

The formal computational model (FCM) secures the delivery of a situation-specific

service(s) in a particular situation PCE∆ by

1) creating a situation-specific taxonomical structure PCE∆T for the PCE∆; and

2) reasoning upon the PCE∆T taxonomical elements in order to deliver a

situation-specific service for the PCE∆.

Consequently, the purpose of computations in FCM is to secure

a) the existence of a generic taxonomical structure PCE∆T, which can fit any

situation PCE∆ found in PCE. However, each PCE is always domain-specific

(P18, Table 3.3) and when dealing with a situation PCE∆ in PCE, we have to

have domain and situation-specific taxonomical elements, as noted in 1)

above. This implies that the FCM should be able to create the exact PCE∆T

for each detected situation, i.e. to create a situation-specific taxonomical

structure, which may be extended from the generic taxonomical structure

PCE∆T.

b) the delivery of a situation-specific service for PCE∆, based on the semantics

found in the (possibly) extended generic taxonomical structure PCE∆T. This

implies that in each situation PCE∆, the FCM must be able to manipulate the

semantics of the situation PCE∆, through reasoning upon PCE∆T elements.

Chapter 4, A Formalised Computational Model for PCEs

66

Obviously the result of such reasoning is always a delivery of a situation-

specific service(s).

If the FCM has to give us a formal computation for a) and b) above, then we must

define it in either pseudo code or in a graphical format. In both cases each part of

FCM should be self-explanatory and each term of the FCM should be defined

through either definitions or axioms. Therefore in section 4.1. we give a set of

definitions and axioms which are essential for understanding the FCM. They are

summarised into a generic taxonomical structure PCE∆T, which can be extended by

the FCM into a situation-specific taxonomical structure. In section 4.2. we define

steps which secure the creation of the generic and extended (i.e. situation-specific)

elements of the PCE∆T in order to deliver a situation-specific service.

It is important to note that the creation of a situation-specific taxonomical structure

is a powerful mechanism for delivering a correct service(s). The power of the

proposed FCM is creating a semantically rich taxonomical structure in the first

place, without which we cannot secure the delivery of the service, because it is

based on the semantics found in the taxonomical structure.

Figure 4.1: FCM computation of a situation-specific service in a PCE

The reader should pay attention to the fact that the FCM cannot fully specify the

exact computation of the delivered service(s), because services are domain and

situation-specific. However, the FCM ensures that the taxonomical structure PCE∆T

PCE receives

interpreted

contextual data

A change

is detected

triggers

abstracted to

 C
o

m
p

u
tin

g

th
e

 situ
a

tio
n

Delivery of Domain &

Situation-specific Service

An action

relevant to the

situation is

identified

PCE∆T PCE∆

user

P
 C

 E

Chapter 4, A Formalised Computational Model for PCEs

67

is sufficiently rich and may trigger reasoning for the delivered service(s)

automatically. Figure 4.1 shows that once a change in a PCE is detected, The PCE

receives interpreted contextual data to create a situation PCE∆. Based on the

situation PCE∆, the FCM will create the taxonomical structure PCE∆T. The FCM will

also reason upon the elements of the PCE∆T to trigger a domain and situation-

specific service(s) to be delivered to the user of the PCE.

4.1 Taxonomical Structure of PCE

Terms used in FCM, irrespective of whether it is defined in pseudo code or in a

graphical format, must be defined in advance for the FCM to be self-explanatory.

Therefore, we give a set of definitions and axioms which are essential for

understanding the FCM. These definitions and axioms are summarised into a

generic taxonomical structure PCE∆T, which can be extended by the FCM into a

domain and situation-specific PCE∆T.

4.1.1 Definitions of PCE, Situations and Delivered Services in PCE

PCE is a cyber-physical environment in which there are various devices with

computation and communication power, and people who wish to be empowered by

the advanced technologies surrounding them. Given that PCEs are cyber-physical,

they are naturally occupied with physical and tangible objects that do not

necessarily bear any resemblance to a device. These objects could be tagged and

equipped with appropriate microchips and sensor pads to act like a device, lending

themselves to a more diverse and expanded PCE. There are also intangible objects

present within PCEs. Software programs (computing entities) which support PCEs,

including those that integrate various devices into a PCE, or software applications

which generate and manipulate data created within the environment are examples

of such cyber objects. Each of these cyber and physical objects that are seamlessly

interconnected through a wireless network and allow pervasiveness of computing

and communication of data at anytime and anywhere, have a purpose and role to

play in various situations users may encounter within a PCE. Their main role is to

deliver services to a user of a particular PCE. This means that in each situation in

PCEs we know exactly which cyber physical objects are interconnected with the

user, and what the user expects from the PCE at that moment. User’s expectations

Chapter 4, A Formalised Computational Model for PCEs

68

are very often associated with services which should be delivered by a particular

PCE in a particular situation. Based on our description of PCE in section 3.4.1, and

P1, P2, P9, P11 in Table 3.3 section 3.4.1,

Definition 1: PCEs are cyber-physical environments that allow pervasiveness of

computing and communication of data at anytime and anywhere to support

users who are in charge of such environments.

If we say that in each situation within a PCE, we may have any number of cyber-

physical objects, interconnected with the user, who is in charge of that particular

PCE and expects services from it, then we should assume that in each situation

within a PCE we have only one user. Therefore, In each situation in a PCE we

should know

1) who the user is,

2) which services the user expects from the PCE and

3) which cyber-physical objects are interlinked in that PCE to deliver the

services. In other words we should always know exactly what a particular

PCE “contains” in a particular situation and how it supports the user of

the particular PCE.

In order to address 1)-3) above we introduce a situation ∆ in PCE as “a particular

moment in real world”. Each situation ∆ within a specific domain triggers the

existence of a particular PCE which we name PCE∆. In each PCE∆ we consequently

know exactly which cyber-physical objects exist, who is in charge of it (who is “the

user”) and which services will be delivered, i.e. expected by the user. Therefore,

cyber-physical objects and the user are essential participants in PCE∆ and the

situation ∆ consequently creates “user-centric” PCE∆; i.e. user decides on

participation in the PCE∆ and on the number and type of cyber-physical objects

within PCE∆ from the domain-specific PCE (P3, P11, P20, and P18 of Table 3.3 in

Chapter 3).

Definition 2: PCE∆ is a particular situation ∆ in a PCE, i.e. it is a specific PCE

where any number of cyber and physical objects coexists for the purpose of

delivering a domain-specific service to the user, who is in charge of the PCE∆ .

Chapter 4, A Formalised Computational Model for PCEs

69

For each situation ∆, we will have one and only one user of the PCE∆, who will be

surrounded by the chosen cyber and physical objects, and will expect services from

the PCE. These “expected services” from the PCE are often associated with

functionalities defined within it. They are always domain-specific and situation-

specific; therefore we can say that in each PCE∆ we may have various domain

specific services delivered to the user of the PCE∆. However, delivering of services

in PCEs is always based on the situation. We have to decide how a situation creates

a particular PCE∆ (“what are its participants?”) and how to secure the delivery of

appropriate services in the PCE∆ (“what does user expect from the PCE∆?”). Based

also on P9, P17, and P18 of Table 3.3 section 3.4.1,

Definition 3: A domain and situation-specific service for the user of a PCE∆ is a

functionality triggered by computations in the PCE in order to provide timely

and appropriate assistance to the user.

Finally, recognising situations ∆ in real world, and PCE∆ created by them, depends

on data and information we must have on PCE and main participants of PCE∆ . If we

really want to know which choices of cyber and physical objects we may have for

the creation of a particular PCE∆ and which user is in charge of it, we should be able

to “detect” them from within the PCE. In other words their availability for and

presence in a particular PCE∆ should be detected, or “known” if we wish to deliver

services to the user (P2, P3, P11, and P19 in Table 3.3). The “detection” itself may

have various forms and may result in various data being available in the PCE∆. We

may be able to detect PCE∆ participants by

(i) using sensors and sensor generated data;

(ii) exploiting users’ inputs, which may often carry information on users’

preferences and intentions in a particular PCE∆;

(iii) retrieving any persistent data which might be available in semantically rich

PCE environments. It is important to note that the richer “detection”, the

more successful delivery of services in a PCE∆ will be.

Therefore any combination of (i)-(iii) is assumed when creating a PCE∆ .

Chapter 4, A Formalised Computational Model for PCEs

70

4.1.2 Instance inst and Category Ctgi as Abstractions in PCE∆∆∆∆T

Each PCE∆ comprises a finite number of real world instances. The obvious examples

are the PCE∆’s user or the cyber and physical objects involved in the PCE∆. Where

real world instances share the same features, they are grouped together under an

encompassing abstract name. The most important rationale behind grouping real

world instances is to facilitate the delivery of domain-specific services (Definition 3).

If we know that real world instances, ins t s, share semantics, they might be

grouped together to enhance the delivery of domain specific services to different

users in different PCE∆s. We group real world instances into categories Ctg i where

i ∊ ℕ. In other words, group of real world instances which are abstracted into a

category Ctgi are actually its instances, ins t s, participating in a PCE∆.

Definition 4: An instance inst is a real world participant in a PCE∆. The set of all

instances of a PCE∆ is INS = {inst | t = 1 .. n, n ∊ ℕ } where n denotes the

number of instances participating in a particular PCE∆.

Definition 5: A category Ctgi is an abstraction of a subset of INS. Ctgi are

classified into CTG, representing all abstractions of subsets of INS in a

particular PCE∆; i.e. the set of all categories in a particular PCE∆ is CTG = {Ctgi |

i = 1 .. n, n ∊ ℕ } where n denotes the number of subsets (categories) of the set

of all real world instances of the PCE∆.

4.1.3 Levels λ of Categories Ctgi in PCE∆∆∆∆

If we see Ctg i s as abstractions of real world instances inst then we have to bear in

mind that the higher the level of abstraction, the less the precision of the semantics

of its instances ins ts. When more precision is required to represent the semantics

of some real world instances, lower levels of abstractions are needed. Categories

{Ctg i , I i ∊ ℕ } should therefore, have subsets which allow for levels of

abstraction. These subsets should also allow richer interpretation of semantics of

instances ins t which make {Ctg i , I i ∊ ℕ }; i.e. an instance ins t being

represented by a lower level abstract category is semantically richer than by a

higher level abstract category.

When an inst of a Ctg i is detected in a PCE∆,

1) all subset categories of the Ctg i are also detected;

Chapter 4, A Formalised Computational Model for PCEs

71

2) ins t may belong to any subset of its Ctg i , depending on the situation ∆ and

the precision of abstraction required.

We must know exactly which subset of category Ctgi the ins t belongs to. To

differentiate between different subsets of a Ctg i , each of them is levelled. For each

Ctg i there are a finite number of ordered levels, λ

λ = (Lev 1, Lev 2, . . Lev j , . . Lev m-1, Lev m), 1 ≦ j ≦ m

which determines, to which subset of Ctg i real world instance ins t belongs. Each

level will encompass its lower levels as depicted in Figure 4.2.

Figure 4.2: An ins t being a “Subset of” a number of Ctg i . Lev j

λ is an order set with a binary relation “a subset of”between each two elements.

This indicates the order among any two members (two subsets of the Ctg i) of λ

such that for all 1<j<m, Lev 1 is “a subset of” Lev j and Lev j is “a subset of”

Lev m as shown in Figure 4.3.

Definition 6: λ is an order set of subsets of a Ctgi of m levels where “a subset

of” relation exists between each two subsets.

Figure 4.3: Each “subsets of” a Ctg i . Lev j is qualified with a level λ

The association of the qualifying factor of each subset of a Ctg i with a level means

that each Ctg i and its subsets will have to be denoted with two values. One of

these values is for Ctg i and the other for its Lev j . Therefore, all categories in

 Levm Levm-1 Levj Lev1

Ctg i

Ctg i

Ctg i

Ctg i

Lev LevLev

inst
Lev Levm

Chapter 4, A Formalised Computational Model for PCEs

72

PCE∆ are shown as category level Ctg i .Lev j where i, j ∊ ℕ, if we wish them to

accommodate instances ins t . The set of all Ctg i .Lev j is shown as CTG.λ.

Axiom 1: ∀ x ∊ CTG , ∃ Levj ∊ λ where x. Levj ∊ CTG.λ

This implies that an inst is always known by the Ctg i .Lev j that it is a member of.

This membership is called Mbr .

Definition 7: A category membership Mbr is the membership of an instance

inst in a category level Ctgi.Levj and denoted as Mbr (inst, Ctgi.Levj) where i, t, j

= 1 .. n, n ∊ ℕ.

Definition 7 lends itself to a new inevitability. Combination of detected ins t s,

their Ctg i .Lev j and Mbr(ins t , Ctg i .Lev j) in a PCE∆ necessitates a need for

a taxonomical structure which can hold ins t s and Ctg i .Lev j s with their Mbr

together. This taxonomical structure is called PCE∆T.

4.1.4 Taxonomical Structure PCE∆∆∆∆T with Leaf and Root Categories

Definition 8: PCE∆T is the taxonomical structure of the real world participants

in PCE∆ described through INS, CTG.λ and Mbr (inst, Ctgi.Levj).

PCE∆T = {Mbr (x, y) | x ∊ INS, y ∊ CTG.λ}

When abstracting real world instances, the most specialised Ctg i .Lev j of a real

world inst is where j = 1; that is Mbr (ins t , Ctg i .Lev 1). This special category,

Ctg i .Lev 1, is called leaf category and is shown as LCtg i .Lev j . On the other

hand, the most generic Ctg i .Lev j that the real world ins t has Mbr is where j =

m, the maximum level in λ. This special category, Ctg i .Lev m, is called root

category and is shown as RCtg i .Lev j .

Definition 9: A leaf category LCtgi.Levj ∊ CTG.λ is a category where Levj ∊ λ and

it is the infimum (Levj ≡ Lev1).

Consequently, Axiom 2 says that for each instance ins t ∊ INS , there will always

be one and only one leaf category where Mbr(ins t , LCtg i .Lev j).

Axiom 2: ∀x ∊ INS , ∃! Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is LCtgi.Levj }

For each inst there is always one and only one element of taxonomical structure

that is a leaf category where Mbr(inst, LCtgi.Levj) holds.

Definition 10: A root category RCtgi.Levj ∊ CTG.λ is a category where Levj ∊ λ,

and it is the supremum(Levj ≡ Levm).

Chapter 4, A Formalised Computational Model for PCEs

73

Consequently, Axiom 3 says that for each instance inst there is always one and only

one element of taxonomical structure which is a root category where Mbr(ins t ,

RCtg i .Lev j) holds.

Axiom 3: ∀x ∊ INS , ∃! Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is RCtgi.Levj }

Considering Definition 6 and Axiom 1, we can deduce Axiom 4 which states that

for every ins t ∊ INS we will have Mbr (ins t , Ctg i .Lev j) for all available

values of j.

Axiom 4: ∀ x where Mbr(x, LCtgi.Levj) holds ∃	∑ 	�
��� Mbr (x, Ctgi.Levj)

4.1.5 Occurrence of Root categories RCtgi.Levj, in PCE∆∆∆∆T

The root RCtg i .Lev j is a very important element of CTG.λ because we know

that

- RCtg i .Lev j is not a subset of another category (Definition 10);

- RCtg i .Lev j embrace all insts of Ctg i .Lev j (Axiom 4);

- each ins t is inevitably a member of a RCtg i .Lev j (Axiom 3).

Therefore we need to illustrate the power of RCtg i .Lev j by defining its

occurrences. They will also allow us to

1) illustrate abstraction of inst into different Ctg i ; and

2) axiomatise different Ctg i

There are many occurrences of RCtg i .Lev j in a PCE. We denote “occurrence”

with the symbol “≡”. First example of RCtg i .Lev j occurrence is an abstraction of

users in PCE∆ (see Definitions 1-3). There is always a user who is in charge of the

PCE∆. However, users can have distinguishing roles, and therefore should have

different ins t s. Whatever the role of the user is, he or she is a person and in that

the RCtg i .Lev j of all ins t of users in a PCE∆ is named Psn for Person.

Definition 11: Psn is an occurrence of RCtgi.Levj encompassing all possible

abstractions of real world instances of users, insts, in any PCE∆.

For each situation PCE∆T there exists one and only one occurrence Psn of

RCtg i .Lev j .

Chapter 4, A Formalised Computational Model for PCEs

74

Axiom 5: ∀ PCE∆T, ∃! Psn, where Psn ≡ RCtgi.Levj

For each situation PCE∆T there exists one and only one instance ins t ∊ INS

where Mbr (ins t , Psn) holds.

Axiom 6: ∀ PCE∆T, ∃! Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is Psn}

For all PCE∆ there exists one and only one inst of Psn

The second example of RCtg i .Lev j occurrence is an abstraction of cyber and

physical objects in the PCE∆. We name such occurrence Ojt for Object.

Definition 12: Ojt is an occurrence of RCtgi.Levj encompassing all possible

abstractions of real world instances, insts, of cyber and physical objects in any

PCE∆.

For each situation, PCE∆ there exists one and only one occurrence Ojt of

RCtg i .Lev j .

Axiom 7: ∀ PCE∆T, ∃! Ojt, where Ojt ≡ RCtgi.Levj

For each situation PCE∆ there exists at least one instance ins t ∊ INS , where

Mbr (ins t , Ojt).

Axiom 8: ∀ PCE∆T, ∃ x, where Mbr(x, y) ∊ {PCE∆T | x ∊ INS, y is Ojt}

The Third example of RCtg i .Lev j occurrence is an abstraction of all domain-

specific information. Every service offered by a PCE∆ to the user is related to

information specific to the domain in which the PCE∆ has occurred. We named such

occurrence Fld for Field.

Definition 13: Fld is an occurrence RCtgi.Levj encompassing all possible

abstractions of real world instances, insts, of domain-specific information in

any PCE∆.

Axiom 9: ∀ PCE∆T, ∃! Fld, where Fld ≡ RCtgi.Levj

For each situation PCE∆ there exists at least one instance ins t ∊ INS , where

Mbr (ins t , Fld).

Axiom 10: ∀ PCE∆T, ∃ x, where Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is Fld}

Chapter 4, A Formalised Computational Model for PCEs

75

Therefore, according to Axiom 6, 8, and 10 it is reasonably justifiable to conclude

that it is not conceivable at all to have a PCE∆T without three specific Mbr(ins t ,

RCtg i .Lev j) where RCtg i .Lev j occurrence for the first instance is Psn , for

the second instance is Ojt , and for the third instance is Fld.

More often than not the set INS of a PCE∆ has insts of other occurrence of

RCtgi.Levj than Psn , Ojt and Fld (P12 of Table 3.3 Chapter 3). Therefore the next

example of the RCtg i .Lev j occurrences might be

(i) preferences of the user of Psn ,

(ii) his/her location within PCE∆,

(iii) the position of the ins t s of Ojt involved in a PCE∆.

(i)-(iii) may also have an important part in delivering a particular service in the PCE∆.

Therefore, the fourth example of RCtg i .Lev j occurrence is an abstraction of all

user preferences as in i) above. We name such occurrence Pfc for Preference.

Inclusion of preferences means that the software system which supports the user in

a PCE∆ is less intrusive and more personalised.

Definition 14: Pfc is an occurrence of RCtgi.Levj encompassing all possible

abstractions of real world instances, insts, of preferences of users in any PCE∆.

For each situation in PCE∆ there may exist one and only one occurrence Pfc of

RCtg i .Lev j .

Axiom 11: ∀ PCE∆T, may ∃! Pfc, where Pfc ≡ RCtgi.Levj

For each situation PCE∆ there may exist an instance ins t ∊ INS , where Mbr (ins t , Pfc).

Axiom 12: ∀ PCE∆T, may ∃ x, where Mbr(x, y) ∊ {PCE∆T| x ∊ INS, y is Pfc}

Finally, the fifth example of RCtg i .Lev j occurrence is an abstraction of all

locations as in (ii) and (iii) above. We name such occurrence Lcn for Location.

Definition 15: Lcn is an occurrence of RCtgi.Levj encompassing all possible

abstractions of real world instances, insts, of physical or cyber locations in any

PCE∆.

For each situation in PCE∆ there may exist one and only one occurrence Lcn of

RCtg i .Lev j .

Chapter 4, A Formalised Computational Model for PCEs

76

Axiom 13: ∀ PCE∆, may ∃! Lcn, where Lcn ≡ RCtgi.Levj

For each situation PCE∆ there may exist at least one instance ins t ∊ INS ,

where Mbr (ins t , Lcn).

Axiom 14: ∀ PCE∆T, may ∃ x, where Mbr(x, y) ∊ {PCE∆T| x ∊ INS, y is Lcn}

Figure 4.4: RCtg i .Lev j of a PCE

All possible occurences of RCtg i .Lev j , outlined in 1) above, are shown in

Figure 4.4 whereas axiomatisation of different Ctg i s, outlined in 2) above, are

shown in Axioms 5-14. Boxes with stronger border lines depict their essential

presence in any PCE∆T.

4.1.6 Combining Occurences of Ctgi.Levj in PCE∆∆∆∆T

It is worth reiterating Axiom 6, 8, and 10 in which we state that a PCE∆ cannot

emerge without the presence of

- inst where Mbr(ins t , Psn) is true,

- insu where Mbr(ins u, Ojt) is true, and

- insv where Mbr(ins v, Fld) is true;

It is, however, acceptable to encounter a PCE∆ without any references to any ins x

or insy where Mbr(ins x, Lcn) and Mbr(ins y, Pfc) as stated in axioms 12 and

14.

4.1.6.1 Finding Combinations of Root Occurrences RCtgi.Levj, in PCE∆∆∆∆T

If we were to assume that a PCE∆ could be created by combination of any two,

three, four or five RCtgi.Levj then there are 26 possible ways that RCtgi.Levjs could

make a PCE∆ as the calculations below shows. The number of variations when we

Psn

Ojt

Fld
R

C
tg

i. Le
v

j
Lcn

Pfc

Chapter 4, A Formalised Computational Model for PCEs

77

have combinations without repetition and where order doesn’t matter can be

calculated according to the formula

���� = �!/�! �� − ��!

Where ‘n’ is the number of possible RCtg i .Lev j which is 5, and ‘r’ is the number

of different RCtg i .Lev j selected from ‘n’. ‘n’ is always 5, but ‘r’ can vary from 2 to

5. For n=5 and r = 2 the number of combinations would be

�52� =
5!
2! 3! 	= 10

Likewise, �53� = 10, �54� = 5, �55� = 1. Therefore the total combination would be

10+10+5 +1 = 26. If we were to allow ins t s of the same RCtg i .Lev j to make a

PCE∆, then we would have to add �51� = 5 to 26 to get a total of 31 combinations.

However, considering Axiom 11 that a PCE∆ must have at least one occurrence of

three specific RCtg i .Lev j s namely, Psn , Ojt and Fld , the total number of

possibilities is actually limited to the presence of Lcn , Pfc , both Lcn and Pfc , or

neither. According to the above formula this is �20� + �21� + �22� = 1 + 2 + 1 = 4.

Therefore, there are always four possibilities of a PCE∆. These possibilities are:

(1) { Psn, Ojt, Fld },

(2) { Psn, Ojt, Fld, Lcn },

(3) { Psn, Ojt, Fld, Pfc }, or

(4) { Psn, Ojt, Fld, Lcn, Pfc }.

We illustrate (4) in figure 4.5 showing examples of ins t s of some occurrences of

RCtg i .Lev j which make a particular PCE∆. In this figure, RCtg i .Lev j s are

shown at the left and Mbr for each real world instance ins t is depicted to their

right. Considering Definition 7 and Axiom 3, readers should interpret Figure 4.5 as

Mbr(margaret, Psn), Mbr(heater152, Ojt), Mbr(feverish, Fld),

Mbr(room101, Lcn), and Mbr(heaterPreference, Pfc).

Figure 4.5: RCtg i .Lev j of a PCE with Mbr(ins t , Ctg i .Lev j) examples

Psn

Ojt

Fld

Lcn

Pfc

margaret

heater152

feverish

room101

heaterPreference

R
C

tg
i Le

v
j

M
b

r(in
s

t , R
C

tg
i .Le

v
j)

Chapter 4, A Formalised Computational Model for PCEs

78

4.1.6.2 Illustrating Subsets of RCtgi.Levj, Occurences in PCE∆∆∆∆T

We illustrate possible subsets of RCtg i .Lev j occurrences in a particular PCE∆,

using the Fld occurrence, in order to explain how a detailed abstraction of

instances ins t and Mbr(ins t , RCtg i .Lev j) work for a particular value of ‘i’

(i.e. Mbr(ins t , Fld.Lev j)). In other words, whenever a particular ins t is

detected, we should be able to determine two things:

1) To which occurrence the ins t is a member of (we use the example of

Mbr(ins t , Fld.Lev j)

2) The leaf where Mbr(ins t , Fld.Lev 1) is true.

However, if there is more than one instance inst detected in a particular situation

which belongs to the subset of Fld.Lev m (Fld occurrence at the root level) then

we must know, for each detected instance ins t , which precision (i.e. Lev j) we

need to satisfy when creating Mbr(ins t , RCtg i .Lev j).

In our example of detecting Mbr(ins t , Fld.Lev j), we would like to know

exactly which Lev j is applicable to each particular instance ins t detected. In

other words, instances ins t may belong to any level from Lev 1 (the case of

Mbr(inst, LFld.Levj) and Lev m (the case of Mbr(ins t , RFld.Lev j)).

Let us say that we detected instances form INS :

� feverish, critical, normal

� diabetes, hypertension, stroke

� residential care, nursing care, continuing care

� NHS, private

The first three can be abstracted into General Health category, the second

three into Helath Condition category, the third three into Care Home

category, and the last two into Health category. However, at the same time, for

all of these instances Mbr(ins t , Fld.Lev j) must hold. Because our Ctg i is

actually determined by an occurrence (Fld), each of these detected instances must

satisfy one of the following: Mbr(ins t , Fld.Lev 1), Mbr(ins t , Fld.Lev 2),

Mbr(ins t , Fld.Lev 3), or Mbr(ins t , Fld.Lev 4). Figure 4.6 shows exactly

Chapter 4, A Formalised Computational Model for PCEs

79

how the detected instances inst are placed correctly within different subsets of the

Fld occurrence.

Figure 4.6: An example of a five-level λ Ctg i Lev j

The representation of Figure 4.6 in Mbr(ins t , Ctg i .Lev j) format would be

Mbr(feverish,General health),Mbr(critical,General

health),Mbr(normal,General health)

Mbr(diabetes,Health Condition), Mbr(hypertension,He alth

Condition), Mbr(stroke,Health Condition)

Mbr(residential care,Care Home),Mbr(nursing care, C are

Home),Mbr(continuing care,Care Home)

Mbr(NHS, Health), Mbr(Private, Health)

Where General health is Fld.Lev 1 , Health Condition is Fld.Lev 2 ,

Care Home is Fld.Lev 3, and Health is Fld.Lev 4.

In other words we have a four-level subset of a RCtg i .Lev j , where λ = { Lev 5,

Lev 4, Lev 3, Lev 2, Lev 1}. This implies that Fld.Lev 1 is “a subset of”

Fld.Lev 2 which is “a subset of” Fld.Lev 3 that is “a subset of” Fld.Lev 4

which is “a subset of” Fld.Lev 5.

In any PCE∆ therefore, when an ins t is detected, we will also know, in addition to

Mbr(ins t , LCtg i .Lev j) all other Ctg i .Lev j that LCtg i .Lev j is a “subset

of”. The successive detection of Ctg i .Lev j (reader is reminded that the term

‘successive’ is not used pedantically as detection takes place all at once) ends when

 ≡ ≡ ≡ ≡ ≡

FldLev5

FldLev4

FldLev3

CtgiLev5 CtgiLev4 CtgiLev3 CtgiLev2 CtgiLev1

 Fld Health Care Health General

 Home Condition Health

FldLev2

FldLev1

feverish

h
normal

critical

diabetes

hypertensio

stroke

Residential

Nursing

Continuing care

NHS

private

Chapter 4, A Formalised Computational Model for PCEs

80

the last detected ins t satisfies Mbr(ins t , RCtg i .Lev j), i.e. any of the

following Mbr(inst, Psn.Levj), Mbr(ins t , Ojt i .Lev j), Mbr(ins t , Fld.Lev j),

Mbr(ins t , Lcn.Lev j) or Mbr(ins t , Pfc.Lev j).

If ins t ‘feverish’ was detected at LCtg i .Lev j in the example shown in Figure 4.6,

then we expect the detected information shown in Table 4.1 to be available for

further computation:

Expected Information Based on

Mbr(feverish, General Health) Definition 7, Axiom 2

Lev1 ≺ Lev2 ≺ Lev3 ≺ Lev4 ≺ Lev5 Definition 6

Mbr(feverish, Health Condition), Mbr(feverish, Care Home),

Mbr(feverish, Health), Mbr(feverish, Fld),

Axiom 4

Table 4.1: An example of situational information received by a PCE

It is worth stressing again that in any particular PCE∆T an instance ins t of a

LCtg i .Lev j cannot be an instance of another leaf at the same level of the same

root. To clarify with an example consider an environment in which a user can have

different roles and therefore can be of different LCtg i .Lev j . In higher education

environment, for example, a research student can be a lecturer (LCtg i .Lev j to be

lecturer). So, the user has two roles, student and lecturer. Nevertheless, at any

particular moment as soon as s/he takes charge of a PCE∆, s/he has to indicate

which hat s/he has on. So, one and only one of the roles is present at any moment

in time. In other words, a detected LCtg i .Lev j , in this example, will always have

one and only one of Psn as its RCtg i .Lev j .

Axiom 15: ∀ inst , ∃! (x, y) ∊ {PCE∆T| x = LCtgi.Levj, y = RCtgi.Levj }

4.1.7 An Instance Characteristics of a Taxonomical Element

The taxonomical structure PCE∆T contains a set of Mbr(ins t , Ctg i .Lev j) which

were abstracted from real world instances. However, each PCE∆ may contain

additional semantics, which may have not been captured when (a) abstracting

instances ins t into Ctg i .Lev j and (b) securing that for each detected ins t the

Chapter 4, A Formalised Computational Model for PCEs

81

Mbr(ins t , Ctg i .Lev j) is true. Therefore, if we had any additional semantics in

PCE∆, which is either

1) not captured by initial abstractions from real world instances or

2) too specific to be captured in our initial abstractions because we might

decide not to abstract them into any Ctg i .Lev j

we introduce another element of PCE∆T, which cover cases in 1) and 2). These cases

will be easily found when detecting main participants in the PCE∆.

If detected information in a particular situation ∆, which creates the PCE∆ shows

that it can not be abstracted into any of the occurrences RCtg i .Lev j and their

subsets, then we should be able to find an element within the taxonomical

structure PCE∆T which may accommodate such semantics.

Therefore, we introduce characteristic chr q of Mbr(ins t ,Ctg i .Lev j) as a new

taxonomical element to be a description of a particular Mbr(ins t ,Ctg i .Lev j). It

is natural to expect that these characteristics are initially reserved for the leaves of

our taxonomical structure, i.e. we will always need characteristics of LCtg i .Lev j

with value vlu q describing (ins t , LCtg i .Lev j). However, they may appear as

an additional semantics for any other taxonomical element Mbr(ins t ,

Ctg i .Lev j).

Definition 16: An instance characteristic chrq is a description of a Mbr(inst,

Ctgi.Levj) with value vluq in the format of a triplet ((Mbr(inst, Ctgi.Levj), chrq,

vluq)).

4.1.8 Illustrating an Instance Characteristics chrq of a Taxonomical Element

A particular PCE∆ has occurred in a health domain. This is known when an ins t of

Fld which is an occurrence of RCtg i .Lev j (Definition 13), is detected. As the

Mbr (inst, RCtg i .Lev j) nor any other Ctg i .Lev j of Fld are shown in Figure

4.7, it is not clear how many Ctg i .Lev j there are between LCtg i .Lev j and

RCtg i .Lev j ≡ Fld . That is why there is ‘?’ in the FldLev ?.

Chapter 4, A Formalised Computational Model for PCEs

82

Figure 4.7: Partial graphical representation of an example of a PCE∆

The representation of what is illustrated in Figure 4.7, and what definitions and

axioms they are based on is shown in Table 4.2.

 Representation of Detected Information Based on

a an instance margaret, Mbr (margaret, Resident), LCtgi.Levj ≡ PsnLev1 =

Resident ≺ RCtgi.Levj ≡ PsnLev2 = Psn, are detected.

Definition 7, Axiom

2, 4

b The name and gender which are chrq describing ‘margaret’ become

(margaret, name, “Margaret”) and (margaret, gender, “female”)

Definition 16

c an instance heater152, Mbr (heater152, Heater), LCtgi.Levj ≡ OjtLev1

=Heater ≺ OjtLev2 = Allocated Object ≺ RCtgi.Levj ≡ OjtLev3 = Ojt are

detected.

Definition 7, Axiom

2, 4

d The state chrq that describes ‘heater152’ becomes (heater152, state,

“off”).

Definition 16

Table 4.2: PCE∆T situational information of Figure 4.7

4.1.9 Relationships rlpr in PCE∆∆∆∆T

In each PCE∆ we have to allow relationships within the PCE∆T between taxonomical

Mbr (ins t , Ctg i .Lev j). For example, we may have a relation between Mbr

(heater152, Heater) and Mbr(margaret, Resident), representing the

semantics of a relationship rlp r between these two taxonomical elements.

Definition 17: A relationship rlpr between PCE∆T elements is a binary relationship

between Mbr(inst, Ctgi.Levj) and Mbr(insu, CtgxLevy) and denoted as rlpr(Mbr(inst,

Ctgi.Levj), Mbr(insu, CtgxLevy)). This implies that these two instances inst and insu

which are members of category Ctgi.Levj and CtgxLevy are related by rlpr.

We have to think about a set of particular rlp r which should be applied to

occurrences of the RCtg i .Lev j . We illustrate and define essential rlp r through

axioms below in order to emphasise that in a particular PCE∆T there are additional

Psn

(Psn.Lev2)

Ojt

(Ojt.Lev3)

Fld

(Fld.Lev?)

Lcn

Pfc

R
C

tg
i. Le

v
j

Resident

(Psn.Lev1)

Health

(Fld.Lev?)

margaret

gender =

“female”

name =

“Margare

Heater

(Ojt.Lev1)

state =

“off”

heater152

Chapter 4, A Formalised Computational Model for PCEs

83

domain and situation-specific semantics, and that there are domain and situation-

specific rlp r due to the existence of domain and situation-specific occurrences of

RCtg i .Lev j .

Consequently characteristics, (Mbr(ins t , Ojt.Lev j), chr q, vlu q) from section

4.4 and relationships rlp r are bringing more semantics to the taxonomical

elements of PCE∆T. However, the former is defined solely on Mbr(ins t ,

Ctg i .Lev j) and latter on RCtg i .Lev j occurrences.

4.1.9.1 Relationships between Taxonomical Elements at the Root of PCE∆∆∆∆T

As any PCE is about a specific domain, and given that it is impossible to think of a

PCE∆ without the presence of user (Axiom 6), there is always a rlp r between

Mbr(ins t , RCtg i .Lev j) and Mbr(ins u, RCtg xLev y) where LCtg i .Lev j ≡

Psn and RCtg xLev y ≡ Fld . Therefore, there is always an inherent rlp r that

exist in any PCE for any PCE∆. This inherent relation is “isAssociatedWith ”.

Axiom 16: ∀ PCE∆T if ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Fld.Levj) => ∃ rlpr which

denotes isAssociatedWith where isAssociatedWith(Mbr(inst, Psn.Levj), Mbr(inst,

Fld.Levj))

When an occurrence of Lcn plays a role in a particular PCE∆, a relationship rlp r

exists between the user ins t (Mbr(ins t , Psn)) and the location ins u

(Mbr(ins v, Lcn)) and/or between an object ins v (Mbr(ins t , Ojt)) and the

location ins u (Mbr(ins t , Lcn)).

Axiom 17: If in PCE∆T ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Lcn.Levj) => ∃ rlpr which

denotes isIn where isIn(Mbr(inst, Psn.Levj), Mbr(inst, Lcn.Levj))

When there is an occurrence of Lcn in a particular PCE∆, a relationship rlp r exists

between the real world user Mbr(ins t , Psn) and the real world location

Mbr(ins v, Lcn) and/or between a real world object Mbr(ins t , Ojt) and

Mbr(ins v, Lcn).

Axiom 18: If in PCE∆T ∃ Mbr (inst, Ojt.Levj) and Mbr (inst, Lcn.Levj) => ∃ rlpr which

denotes isCurrentlyIn where isCurrentlyIn (Mbr (inst, Ojt.Levj), Mbr (inst,

Lcn.Levj))

When an occurrence of RCtg i .Lev j ≡ Pfc plays a role in delivering a service in

a particular PCE∆, a relationship rlp r exists between the user ins t (Mbr(ins t ,

Psn)) and the preference ins u (Mbr(ins t , Pfc)).

Chapter 4, A Formalised Computational Model for PCEs

84

Figure 4.8 Relationship rlp r between taxonomical roots

Axiom 19: If in PCE∆T ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Pfc.Levj) => ∃ rlpr which

denotes hasPreference where hasPreference (Mbr(inst, Psn.Levj), Mbr(inst,

Pfc.Levj))

The relationship between taxonomical roots are illustrated in Figure 4.8

4.1.9.1.1 Consequences of the Relationship ‘hasPreference’

For an occurrence Pfc , RCtg i .Lev j ≡ Pfc , according to Axiom 19 a rlp r of

hasPreference must exist between a Mbr (ins t , Psn.Lev j) and a Mbr (ins t ,

Pfc.Lev j). An example for Mbr (ins t , Pfc.Lev j) can be Mbr

(heaterPreference, Pfc.Lev j) which shows a real world instance

“heaterPreference “. This instance which is a user preference for some real

world objects requires more precision. This will result in a subset of Pfc root

category, Pfc.Lev m, that is the abstraction of all real world instances similar to

“heaterPreference ”. We refer to this subset as Pfc.Lev m-1 and named it

Ojt-specific-Pfc . Therefore Pfc.Lev m-1 = Ojt-specific-Pfc which

is itself a Pfc . By the same token we have defined Psn.Lev m-1 = Psn-

specific-Pfc which is a Psn when there are real world instances that can be

abstracted to some preferences for people.

Likewise, Lcn.Lev m-1 = Lcn-specific-Pfc which is a Lcn are used when

there are real world instances that can be abstracted to some preferences for

locations.

Therefore, RCtg i .Lev j ≡ Pfc must have three subsets Pfc.Lev m-1. In other

words in any PCE there exists Mbr(ins t ,Psn-specific-Pfc.Lev m-1),

Psn

Ojt

Fld

R
C

tg
i. Le

v
j

Lcn

Pfc

A
xi

o
m

1
5

A
xi

o
m

1
3

A
xi

o
m

1
2

A
xi

o
m

1
4

Chapter 4, A Formalised Computational Model for PCEs

85

Mbr(ins t ,Ojt-specific-Pfc.Lev m-1), and Mbr(ins t ,Lcn-specific-

Pfc.Lev m-1).

Axiom 20: If in PCE∆T ∃ rlpr which denotes hasPreference where hasPreference

(Mbr(inst, Psn.Levj), Mbr(insu, Pfc.Levk)) holds => ∃ Mbr(insu, Pfc.Levm-1) where

(Pfc.Levm-1 = Psn-specific-Pfc) or ∃ Mbr(insu, Pfc.Levm-1) where (Pfc.Levm-1 = Ojt-

specific-Pfc) or ∃ Mbr(insu, Pfc.Levm-1) where (Pfc.Levm-1 = Lcn-specific-Pfc).

4.1.9.1.2 Consequences of Creating a new Taxonomical Element

The inclusion of the relationship ‘hasPreference ’ resulted in three new Mbr

(ins u, Pfc.Lev m-1) which in turn cause the inclusion of three relationships

rlp r (Mbr(ins t , Ctg i .Lev j), Mbr(ins u, Ctg xLev y)). In these relationships

Mbr (ins t , Ctg i .Lev j) is Mbr (ins t , Pfc.Lev m-1) and Mbr (ins u,

Ctg xLev y) can be either Mbr (ins u, PsnLev y), Mbr (ins u, OjtLev y) or

Mbr(ins u, LcnLev y). These possibilities are shown in the following axioms.

Axiom 21: ∀ PCE∆T if ∃ Mbr (inst, Psn.Levj) and Mbr (insu, Pfc.Levm-1) where

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isAbout where isAbout (Mbr(inst,

Psn.Levj), Mbr(insu, Pfc.Levm-1))

Axiom 22: ∀ PCE∆T if ∃ Mbr (inst, Ojt.Levj) and Mbr (insu, Pfc.Levm-1) where

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isRelatedTo where isRelatedTo

(Mbr(inst, Ojt.Levj), Mbr(insu, Pfc.Levm-1))

Axiom 23: ∀ PCE∆T if ∃ Mbr (inst, Lcn.Levj) and Mbr (insu, Pfc.Levm-1) where

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isFor where isFor (Mbr (inst,

Lcn.Levj), Mbr (insu, Pfc.Levm-1))

 When there exists a relationship rlp r (Mbr(ins t , Ctg i .Lev j), Mbr(ins u,
Ctg xLev y)) then all the subsets of Mbr(ins t , Ctg i .Lev j) and Mbr(ins u,
Ctg xLev y) including the leaves will share the rlp r such that rlp r (Mbr(ins t ,
Ctg i Lev h), Mbr(ins u, Ctg xLev v)) holds for h<j and v<y .

Axiom 24: ∀ PCE∆T if ∃ rlpr(Mbr(inst, Ctgi.Levj), Mbr(insu, CtgxLevy)) => rlpr(Mbr(insv,

CtgiLevh) , Mbr(insw, CtgxLevv))| where h<j, v<y.

4.1.10 Summarising PCE∆∆∆∆T

We have provided in the previous sections (4.1.1 – 4.1.9) seventeen definitions and

twenty four axioms. Through these definitions and axioms we have defined what a

PCE is, what the role of situations in PCEs that determine services to be delivered to

the users of PCEs are. These definitions also set the foundation for what the

Chapter 4, A Formalised Computational Model for PCEs

86

taxonomical structure and elements of a PCE are. We have summarised these

definitions diagrammatically in Figure 4.9.

Figure 4.9: Summarisation of generic PCE∆T

At the left side of Figure 4.9 all five occurrences of RCtg i .Lev j depicted in Figure

4.8 and defined in axioms 12-15 are shown. Out of these occurrences Pfc is the

only one with defined “sub-set” relationship. According to Axiom 20, when there is

an instance of Pfc it must be one of its subset, which are Psn-specific-Pfc,

Ojt-specific-Pfc, and Lcn-specific-Pfc. One of the features of a

PCE is its domain specificity (P18 table 3.3). Domain-specific information in a PCE is

represented as subsets of Fld (Definition 13, Axiom 9). In Figure 4.9 Health

Ctg i .Lev j is shown as an example; it can be any domain of interest.

Relationships, rlp r between RCtg i .Lev j defined in axioms 16-19, and the rlp r

between subsets of Pfc and three RCtg i .Lev j , namely, Psn, Ojt, and

Lcn, axioms 21-23, are also shown in Figure 4.9. For the sake of simplicity and

avoiding a cluttered diagram, characteristics, chr q of Ctg i .Lev j (Definition 16)

are not shown in the diagram.

Chapter 4, A Formalised Computational Model for PCEs

87

We would also like to bring to the attention of reader that we could not possibly

show the extension of PCE∆T for obvious reason that this is solely dependent on

different PCE∆. Nevertheless, examples in Figure 4.5-7 illustrate that the extension

of Figure 4.9 may be required.

In the following section we define steps which secure the creation of the generic

and extended elements of the PCE∆T in order to deliver a situation-specific service.

4.2 Formal Computational Model (FCM) in PCE

The FCM secures the delivery of a situation-specific service(s) in a particular

situation PCE∆ by creating a situation-specific taxonomical structure PCE∆T for the

PCE∆, and the reasoning upon the PCE∆T taxonomical elements in order to deliver a

situation-specific service for the PCE∆.

Formal detailed specification of the computation for a particular PCE∆, to deliver a

service to the user of the PCE is explained in the next section, followed by a section

on the representation of the FCM in pseudo code using OWL terminologies, and a

separate section on the reasoning upon the PCE∆T taxonomical elements in order to

deliver a situation-specific service for the PCE∆.

4.2.1 The FCM with Loops and Steps Towards PCE∆T

Computations which deliver a domain and situation-specific service in a PCE∆ are

divided into three parts as depicted in Figure 4.10. The first part addresses the

creation and/or extension of Ctg i .Lev j , insertion of real world instances

ins t, adding characteristics chr q to Ctg i .Lev j and finally assigning

characteristics’ value vlu q to chr q for each ins t , that is

((Mbr(ins t ,Ctg i .Lev j),chr q,vlu q)).

The second part which is bordered with dashed line addresses the creation of

generic relationships (axioms 16-19, and 21-23), rlp r (Mbr(ins t , Ctg i .Lev j),

Mbr(ins u, Ctg xLev y)). The third part deals with the creation of situation-

specific extended relationships rlp r (Mbr(ins t , Ctg i .Lev j), Mbr(ins u,

Ctg xLev y)).

Chapter 4, A Formalised Computational Model for PCEs

88

Figure 4.10: Formalised Computational Model in PCEs

Select Mbr(inst, CtgiLev1)

Read another

Mbr(insu, CtgiLev1)

Read another

Mbr(insu, CtgiLev1)

If selected Ctgi is PERSON If selected Ctgi is OBJECT

If Ctgi is FIELD add

isAssociatedWith(Mbr(inst,

Psn.Levj), Mbr(inst, Fld.Levj))

If Ctgi is LOCATION add

isCurrentlyIn (Mbr (inst, Ojt.Levj),

Mbr (inst, Lcn.Levj))

If Ctgi is PREFERENCE add

hasPreference (Mbr(inst, Psn.Levj),

Mbr(insu, Pfc.Levk))

If Ctgi ∊ LOCATION add

isIn(Mbr(inst, Psn.Levj),

Mbr(inst, Lcn.Levj))

Create CtgiLevj of a Ctgi

Assert Mbr(inst, CtgiLev1)

Add chrq into CtgiLevj if necessary

Add (Mbr(inst, Ctgi.Levj), chrq, vluq)

Loop Ctgi

Loop inst

Loop CtgiLevj

Loop chrq

Loop1 rlpr

Add rlpr(CtgiLevj, CtgxLevy)

Add (rlpr (Mbr(inst, Ctgi.Levj), Mbr(insu, CtgxLevy))

∑ ((Mbr(inst, Ctgi.Levj), chrq,

vluq)) | t ∊ ℕ0,q = 1..n

∑ Mbr(inst, CtgiLev1)

 | t = 1..n, i = 1..5

Loop Levj

∑rlpr(CtgiLevj, CtgxLevy)

add

isAbout (Mbr(inst, Psn.Levj),

Mbr(ins PCE∆u, Pfc.Levm-1)) or

isRelatedTo (Mbr(inst, Ojt.Levj),

Mbr(insu, Pfc.Levm-1)) or

isFor (Mbr (inst, Lcn.Levj), Mbr

(insu, Pfc.Levm-1))

Loop2 rlpr

∑rlpr(Mbr(inst, Ctgi.Levj),

Mbr(insu, CtgxLevy))

Chapter 4, A Formalised Computational Model for PCEs

89

4.2.1.1 Creation of Ctgi.Levj,insertion of inst,addition of chrq and vluq

The first part of our proposed FCM, which does 1) and 2) from section 4.1.10,

addresses the creation and/or extension of Ctg i .Lev j , insertion of real world

instances, ins t, adding characteristics chr q to Ctg i .Lev j and finally

assigning characteristics’ value, vlu q to chr q for all

ins t ,(Mbr(ins t ,Ctg i .Lev j),chr q,vlu q) when a PCE receives

interpreted contextual data form the environment. Part one of FCM goes through

a series of inner and outer loops as shown in Figure 4.10. In this section we

explain this part of FCM.

The FCM starts with the most inner loop ‘Loop Ctgi.Levj’, which is within three outer

loops, ‘Loop Levj’, ‘Loop inst’ and ‘Loop Ctgi’ as shown in Figure 4.10. As we expect,

for each cycle of the outer loop the inner loop goes through complete cycles. The

loop ‘Loop Ctgi’ starts its first iteration with i = 1. Consequently the ‘Loop inst also

starts its first iteration with t = 1, followed by ‘Loop Levj’ with j=2 in the first

iteration. ‘Loop Levj’ index starts with 2 because in the statement just before the

loop, the leaf category Ctg i .Lev 1 was read. If the read Ctg i Lev 2 meets the

condition statement of the loop, the first Ctg i .Lev j of the RCtg i .Lev j , which is

either Psn, Ojt, Fld, Lcn or Pfc , will be created.

Although receiving an interpreted contextual data of a real world instance ins t is

always accompanied by its leaf category Ctg i .Lev 1 (Definition 9, Axiom 2), the

creation of all Ctg i .Lev j levels that Ctg i .Lev 1 is a subset of always starts with

the creation of the immediate (or first) subset Ctg i .Lev j of any of the five

RCtg i .Lev j . Consequently, once all its higher level Ctg i .Lev j have been

created, a leaf category Ctg i .Lev 1 will be the last Ctg i .Lev j of a Ctg i to be

created. This part of FCM is shown in light blue in Figure 4.10.

Once all Ctg i .Lev j have been created for all real world instance ins t , through

the iterations explained above, all ins t s will be added to the FCM. This part of FCM

is shown in light green in Figure 4.10.

Chapter 4, A Formalised Computational Model for PCEs

90

When an ins t for a particular PCE∆ is received, all characteristics, chr q with their

values, vlu q are also received (Definition 16). For every received chr q, there must

be a place in the corresponding Ctg i .Lev 1 representing the leaf category of the

inst (Definition 9, Axiom 2), that is Mbr(ins t ,Ctg i .Lev 1) . Considering the fact

that there are some intrinsic chr q applicable to Psn, Ojt, Fld, Lcn or

Pfc in all PCEs across domains, and that a Ctg i .Lev j that is a subset of

Ctg i .Lev k inherits all chr q and rlp t of Ctg i .Lev k (Definition 16), sometimes a

received vlu q has an abstract chr q already represented in the corresponding

Ctg i .Lev 1. In this case just(Mbr(ins t ,Ctg i .Lev j),chr q,vlu q) will be

added. Otherwise, if the chr q to resemble the received vluq does not exist, a new

chr q will be added to the Ctg i .Lev 1 first

and(Mbr(ins t ,Ctg i .Lev j),chr q,vlu q) will be added next.

Adding (Mbr(ins t ,Ctg i .Lev j),chr q,vlu q)to FCM, w hether chr q

already exists or added as an extension to Ctg i .Lev 1, the received value vlu q will

be added for the particular ins t . This part of FCM is depicted in Figure 4.11.

Once all (Mbr(ins t ,Ctg i .Lev j),chr q,vlu q) were added to the FCM, the

next round of iteration of the ‘Loop inst’ for the next ins t of the same Ctg i will

take place. When there is no more real world instance of the same Ctg i ,the FCM

will move to the most outer loop which is the ‘Loop Ctgi’ to read the next Ctg i . This

will be repeated for each Ctg i until there are no further Ctg i s.

(Mbr(inst,Ctgi.Levj),

chrq,vluq)

Ctgi.Lev1
already has chr q for

received vluq

Add chrq to
Ctgi.Lev1

Add (Mbr(inst, Ctgi.Levj), chrq, vluq)

Y

N

Figure 4.11: Adding (Mbr(ins t , Ctg i .Lev j), chr q, vlu q) to FCM

Ctg i .Lev j created

through the ‘Loop CtgiLevj’

Chapter 4, A Formalised Computational Model for PCEs

91

4.2.1.2 Creation of Generic Relationships rlpr

PCE∆T relationships rlp r are divided into two types. Relationships, which are by

definition present in any PCE∆, and relationships which are doman and situation-

specific relationships that their existence depend on the domain and the occurrence

of a particular situation ∆. So far as the pre-defined relationships are concerned,

when the ‘Loop Ctgi’ loop is over, ‘Loop1 rlpr’ in Figure 4.10 will be the next step in

FCM. This part of the model is bordered with dashed line. Because these rlp r s are

present in all PCE∆ across domains, FCM might have it already ready for use, and

therefore there is no need for their creation. Otherwise, they have to be created as

prescribed in the FCM.

‘Loop1 rlpr’ box shows that the creation of rlp r s depends on the membership of

ins t . In other words, Mbr(ins t ,Ctg i .Lev j) determines what generic rlp r

is needed to be created.

4.2.1.3 Creation of Extended Relationships rlpr

Following the middle part of the FCM in Figure 4.10, domain and situation specific

relationships rlp r received from PCE for the situation ∆, will need to be

represented for further computation so that all semantically significant information

about the PCE∆ are accounted for. This part of the FCM, which is referred to as

‘Loop2 rlpr’ in Figure 4.10, is again an iterative process in which two real world

instances that have category relation rlp t between them are selected and an rlp t

is added to the model, rlp r (Ctg i Lev j ,Ctg xLev y) . Once the relationship rlp r

is added, the rlp r between the individuals corresponding to the selected instances

will be added, rlp r (Mbr(ins t ,Ctg i .Lev j),Mbr(ins u,Ctg xLev y)) .

4.2.2 The FCM in Pseudo Code Using OWL Terminologies

In chapter 2 we have explained and justified our choice of SWRL-enabled OWL

ontological modelling for knowledge representation and reasoning upon it. To show

the pseudo code for the FCM, Owl Ontology Language (OWL) is used. Considering

that the FCM will start with detected information from the PCE. So far we have

used notions specific to PCE∆T, thus there is a need for mapping taxonomical

Chapter 4, A Formalised Computational Model for PCEs

92

terminologies of this chapter to OWL computation before any code resembling any

implementation can be addressed. In the following section mapping PCE∆T to OWL

terminology is show, followed by the pseudo code of the FCM.

4.2.2.1 Mapping PCE∆∆∆∆T to OWL Terminologies

The mapping provided in this sub-section serves:

- Ease of transformation of the detected information from the environment to OWL

computational model;

- Ease of corresponding notions identified in taxonomy PCE∆T to counterpart

concepts in OWL;

- Ease of understanding the formal pseudo code

Table 4.3 summarises the mapping of these terms. On the left side of the table

notions used for collecting information about any situation ∆ is shown, whereby

their counterpart concepts in OWL is listed on the right.

It is worth stressing that although in the Semantic Web literature, terms such as

category, concept or type are also used for ‘class’ or ‘instance’ and ‘individual’ are

used interchangeably, in this thesis we restrict ourselves to the terms as shown in

table 4.3 without any reservations unless stated otherwise.

Chapter 4, A Formalised Computational Model for PCEs

93

Environment

(User Inputs)

(OWL Terminology)

 Term Abbreviation Term

Category Ctgi Base Class

Level Lev Order

Category level Ctgi.Levj Subclass

Leaf category LCtgi.Levj ≡

Ctgi.Lev1

Subclass

Root category RCtgi.Levj ≡

Ctgi.Levm

Base Class

Category

Relationship

Rlp Object property

Category Instance

characteristic

Chr Data type property

Category Instance

characteristic value

Vlu Range

Real world Instance Ins Individual

Category

membership

Mbr

Taxonomy

PCE∆∆∆∆T

Psn PERSON

OWL

Ontology

Ojt OBJECT

Fld FIELD

Lcn LOCATION

Pfc PREFERENCE

Psn-specific-Pfc PERSON-SPECIFIC-

PREFERENCE

Ojt-specific-Pfc OBJECT-SPECIFIC-

PREFERENCE

Lcn-specific-Pfc LOCATION- SPECIFIC-

PREFERENCE

Table 4.3: Mapping PCE∆T to OWL terminologies

N

o

t

i

o

n

C

o

n

c

e

p

t

Chapter 4, A Formalised Computational Model for PCEs

94

4.2.2.2 The FCM in Pseudo Code

In this section the pseudo code for FCM in PCE is given. The code mirrors figure 4.10

and uses OWL terminology summarised in Table 4.3.

Input

∑ Mbr(inst, Ctgi.Lev1) | t = 1..n, i = 1..5

∑ (inst, chaq, vluq) | t∊ℕ0,q = 1..n

∑rlpr(Ctgi.Levj, CtgxLevy)

∑rlpr(inst, insu)

Begin

For i = 1..5 Loop **Loop Ctgi

 For t = 1..v Loop **Loop inst

Read Mbr(inst, Ctgi.Lev1)

 For j= 2..n Loop **Loop Levj

 Read Ctgi.Levj

 If Ctgi.Levj = Psn Then

 Create subclass Ctgi.LevJ-1 of PERSON

 For k = j-2..1 Loop **Loop1 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1

 k = k-1

 End Loop1 Ctgi.Levj subclass

 Else If Ctgi.Levj = Ojt Then

 Create subclass Ctgi.LevJ-2of OBJECT if it doesn’t exist(if ∄)

 For k = j-3..1 Loop **Loop2 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop2 Ctgi.Levj subclass

 Else If Ctgi.Levj = Fld Then

 If Ctgi.LevJ-1 = Health Then

 Create subclass Ctgi.Levj-2 of HEALTH if ∄

 For k = j-3..1 Loop **Loop3 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop3 Ctgi.Levj

 Else If Ctgi.Levj-1 = Education Then

 Create subclass Ctgi.Levj-2 of EDUCATION

 For k = j-3..1 Loop **Loop4 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop4 Ctgi.Levj

 Else If Ctgi.Levj-1 = Manufacturing Then

 Create subclass Ctgi.Levj-2 of MANUFACTURING if ∄

There can be as many number of

domains as necessary. The

enumerated list of domains is

thorough to cater for any

possible environment.

Chapter 4, A Formalised Computational Model for PCEs

95

 For k = j-3..1 Loop **Loop5 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop5 Ctgi.Levj

Else If Ctgi.Levj = Lcn Then

 Create subclass Ctgi.Levj-1 of LOCATION

 For k = j-2..1 Loop **Loop6 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop6 Ctgi.Levj subclass

 Else If Ctgi.Levj = Pfc Then

If Ctgi.Levj-1 = Psn-specific-Pfc Then

 Create subclass Ctgi.Levj-2 of

 PERSON_SPECIFIC_PREFERENCE if ∄

 For k=j-3..1 Loop **Loop7 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop7 Ctgi.Levj subclass

Else If Ctgi.Levj-1 = Ojt-specific-Pfc Then

 Create subclass Ctgi.Levj-2 of

OBJECT_SPECIFIC_PREFERENCE if ∄

 For k=j-3..1 Loop **Loop8 Ctgi.Levj

 Create subclass CtgiLevk of CtgiLevk+1 if ∄

 k = k-1

 End Loop8 Ctgi.Levj subclass

Else Ctgi.Levj-1 = Lcn-specific-Pfc Then

Create subclass Ctgi.Levj-2 of

LOCATION_SPECIFIC_PREFERENCE if ∄

 For k =j-3..1 Loop **Loop9 Ctgi.Levj

 Create Subclass CtgiLevk of CtgiLevk+1 if∄

 k = k-1

 End Loop9 Ctgi.Levj

Else

 j = j + 1

 End Loop Levj

 Assert Individual inst into Subclass Ctgi.Lev1

 Select Subclass Ctgi.Lev1

 For q = 1..n Loop ** Loop chrq

 Read (inst, chrq, vluq)

 If ∃(chrq,Ctgi.Lev1)|chrq is characteristic of Ctgi.Lev1 Then

 Add(chrq, vluq) to Individual inst

Chapter 4, A Formalised Computational Model for PCEs

96

 Else

 Add Datatype Property chrq into Subclass Ctgi.Lev1

 Add (chrq, vluq) to Individual inst

 q = q +1

 End Loop datatype property

 t = t+1

End Loop inst

i = i +1

End Loop Ctgi

For t = 1..w Loop ** Loop individual

Select individual inst which is ∊ Ctgi.Lev1

 If Ctgi.Lev1 ⊑ PERSON Then

 For u = 1..x Loop ** Loop1 rlpr

 Select (insu, CtgxLev1)

 If CtgxLev1 ⊑FIELD Then

 Add Object Property isAssociatedWith(inst, insu)

 Else If CtgxLev1 ⊑ PREFERENCE Then

 Add Object Property hasPreference(inst, insu)

 Else If CtgxLev1 ⊑ LOCATION Then

 Add Object Property isIn(inst, insu)

 u = u +1

 End Loop1 object property

 Else If Ctgi.Lev1 ⊑OBJECT Then

 For u = 1..x Loop ** Loop2 rlpr

 Select (insu, Ctgi.Lev1)

 If Ctgi.Lev1 ⊑ LOCATION Then

 Add Object Property isCurrentlyIn(inst, insu)

 u = u + 1

 End Loop2 object property

 t = t + 1

End Loop individual

For i = 1..5 Loop ** Loop domain

 For x = 1..5 Loop ** Loop range

 For r = 1..n Loop ** Loop3 rlpr

Read rlpr(Ctgi.Lev1, CtgxLev1)

 If Ctgi.Lev1 ⊑ PERSON Then

 If rlpr ∊{isAssociatedWith,isIn,hasPreference}Then

 Nothing

 Else

 Create Object Property rlpr(Ctgi.Lev1,CtgxLev1)

Chapter 4, A Formalised Computational Model for PCEs

97

 Else If Ctgi.Lev1 ⊑ OBJECT Then

 If rlpr = isCurrentlyIn Then

 Nothing

 Else

 Create Object Property rlpr(Ctgi.Lev1,CtgxLev1)

 Else If Ctgi.Lev1 ⊑ PREFERENCE Then

 If rlpr∊ {isAbout, isRelatedTo, isFor} Then

 Nothing

 Else

 Create Object Property rlpr(Ctgi.Lev1,CtgxLev1)

 Else

Create Object Property rlpr(Ctgi.Lev1, CtgxLev1)

 Read rlpr (inst, insu)

 Add Object Property rlpr(inst, insu)

 r = r + 1

End Loop3 rlpr

x = x + 1

 End Loop range

 i = i + 1

End Loop domain

4.2.3 The FCM and Delivering a Situation-specific Service in a PCE

As explained in the previous sections, the power of the proposed FCM is creating a

semantically rich taxonomical structure, without which we cannot secure the

delivery of a situation-specific service. However, the FCM cannot fully specify the

exact computation of services to be delivered, because services are domain and

situation specific. PCE∆T, ensured by the FCM, is semantically rich that may trigger

automatically reasoning for the delivered service. Therefore PCE∆T can have

additional rules to trigger the situation-specific services.

We have explained in Chapter 2 that our SE solution in PCEs is influenced by the SW

technologies, particularly OWL ontology. Considering that the W3C recommended

ontology language OWL is based on DL, any rule used in the FCM must be based on

DL. Given that DL is based on propositional logic, the propositions that define a DL

argument must be found in the taxonomical structure PCE∆T. For example, “if

Margaret is in her room and she is laying on the floor, her caregiver must be

alerted” is an argument. In this argument “Mrgaret is in her room”, and

“she(Margaret) in laying on the floor” are two propositions that make the premises

Chapter 4, A Formalised Computational Model for PCEs

98

of the argument. The conclusion of the argument is that “her caregiver must be

alerted”. The semantics of these three propositions in the premises and the

conclusion must be found in the PCE∆T.

If the delivery of a service in a PCE depends on the conditions set for the activation

of that service, then all the conditions for a particular situation must be present in

the PCE∆T, which entails that the taxonomical structure is correct. When the

conditions are met, then the service expected for that situation will be delivered.

Therefore, there is a need for a logical “argument”, in which premises are the

conditions that have to be “true” for the “conclusion” of the argument to be also

true.

The PCE∆T that is created for a situation is fundamentally setting the premises of

the “argument”. In other words, each instance Mbr(ins t , Ctg i .Lev j),

instance characteristic ((Mbr(ins t , Ctg i .Lev j), chr q, vlu q)), and

relationship between instances rlp r (Mbr(ins t , Ctg i .Lev j), Mbr(ins u,

Ctg xLev y)) represented in situation-specific PCE∆T is a proposition of the

premises of the argument that defines the service for the situation, as the

conclusion of the argument. The conclusion itself, whether a single proposition or

a multiple, needs to be represented in the situation-specific PCE∆T.

Although each proposition of the premises of the argument is represented inside

the situation-specific PCE∆T, and the PCE∆T itself is a situation-specific model, the

propositions are not collectively represented as a Ctgi.Levj representing the

situation. The propositions represented in the PCE∆T are provided by the PCE as

situational information, but the “conclusion” has to be computed.

Within the PCE∆T, the only inference that can take place is to infer an instance

Mbr (ins t , LCtg i .Lev j) to be an instance for all available values of j (Axiom

4). Therefore, considering the existence of multiple relationships between

different Ctg i .Lev j imposed by the situation-specific “argument”, it is not

possible to represent it in the generic taxonomical structure PCE∆T, nor can it be

Chapter 4, A Formalised Computational Model for PCEs

99

defined in the extended taxonomical structure PCE∆T. A situation-specific “rule”

has to augment the PCE∆T to address the delivery of the service for the situation.

4.3 Summary
In this chapter, we have defined a formalised computational model for delivering

services in PCEs. We have defined formal terms used in the taxonomical structure

PCE∆T of the FCM. The FCM consists of PCE∆T for a particular PCE∆, and reasoning

upon it in order to deliver a situation-specific service for the user of PCE. We have

defined the FCM in boxes as technology independent steps, and in pseudo code

influenced by SWT.

Chapter 5

Evaluation of the Proposed Model

by Implementation

In this chapter, a real world scenario in healthcare domain is presented to

demonstrate how the proposed formal computational model in PCE works. The

model allows computations around any real world situation that takes place in a

PCE. We will show through a scenario the creation of a situation PCE∆ from which

point in time the FCM creates the domain and situation-specific taxonomical

structure PCE∆T to deliver a service to the user of the PCE for that particular PCE∆.

The example scenario will illustrate the reasoning upon the taxonomical elements

of the PCE∆T through the the FCM computations in order to deliver an expected

service to the user for the particular PCE∆. We show, step by step, how the PCE∆can

be modelled as a PCE∆T and how to compute the domain and situation-specific

service. We exemplify the cyber-physical objects that exist and participate in the

situation, who the user of the PCE in the particular PCE∆ is, and the service(s) that

are expected by the user to be delivered in that PCE∆.

5.1 Setting the Scene
To illustrate the FCM we need to set the scene. The rationale behind using

healthcare domain for the running example is briefly explained first, followed by

describing a particular PCE environment within the healthcare domain. A real life

Chapter 5, Evaluation of the Proposed Model by Implementation 101

scenario that the example is based on is stated in the third subsection, to be

followed by a recapitulation of the terms used in Chapter 4 To facilitate better

connection between the rest of this chapter and the definitions and axioms

provided in Chapter 4. Finally, the software architecture, part of which is the

computational model, is addressed at the end of this section.

5.1.1 Healthcare Domain

The healthcare domain gives some of the most successful examples where the

application of pervasive computing has materialised (Arnich et al., 2010) (Coronato,

2010) (Bardram, 2007) (Romero, et al., 2011), (Rolim, et al. 2011), (Varshne, 2007),

(Zhang et al., 2011). The issue of having enormous number of devices with variable

communication and computational power embedded into our everyday life

environments, thus providing various types of PCEs, has become almost common in

healthcare. In support of the technological advances, new software solutions also

have been developed which support deliveries of health services, remote patient

monitoring, remote management of diseases, self-care systems, and patient tele-

monitoring. These have resulted the consequent claim that pervasive healthcare

has become a scientific discipline (Bardram, 2008). This means that we are now able

to turn our traditional general practitioner’s surgeries, clinical interventions, patient

monitoring and public health protection into e-health services, delivered at any

time, in any place with the involvement of empowered patients interested in self-

management of their health. In the following sections our software solution which

would guarantee delivery of services is demonstrated through an example of a

situation in a healthcare environment.

Despite the fact that security is a major issue in PCEs (Campbell et al 2002), people

might be willing to compromise and give up considerable amount of their privacy

for the sake of medical treatment (Bohn et al 2004). As the computing boundaries

are extended through PCEs and include physical spaces, people who are interacting

with the devices might not be aware of the amount of information about them that

are being collected, exchanged and processed. Hence the issue of privacy and

security arises. In health care domain, nevertheless, if provision of personal health

information reassure people of their helath, and timely medical treatment when

Chapter 5, Evaluation of the Proposed Model by Implementation 102

required, they might be more prepared to compromise their privacy. It is no wonder

why by far the number of applications built for the healthcare domain is more than

of that in any other domain, and why we have chosen this domain for our example

scenario.

5.1.2 SeCH Environment

Self Care Home, SeCH, is a physical environment, inhabitants of which are people

who need constant care. These can be people who suffer from chronic illnesses and

conditions which require medical attention, or senior citizens who require constant

or occasional support. SeCH is equipped with sensors which detect the whereabouts

of its residents and monitor their activities and physiological functions. When

prospective residents are admitted to SeCH, they will be allocated a room and their

belongings will be tagged. They will also receive specific items such as sensorised

garments and hand-held communicators. Other cyber-physical objects such as

clothes, furniture, appliances and similar will be available in SeCH. Constant

monitoring facilities in SeCH were attractive to its residents; therefore they all

agreed in advance that their health status and activities would be monitored.

Residents also stated their preferences in terms of using and agreeing upon the

facilities available in SeCH, which means that the software system which supports

SeCH is less intrusive and more personalised to residents’ own needs. Devices in

SeCH are either embedded with computational capabilities, or are attached to

actuators, which can trigger the delivery of SeCH services. SeCH is therefore, a PCE

where sensors, devices, and actuators are connected through a wireless network to

a gateway as shown in Figure 5.1. The system architecture of SeCH is beyond the

scope of this thesis.

Examples of services delivered in SeCH are:

1) Recommending residents to wear their coat, to take due medication or to stop a current

social/physical activity;

2) Informing residents of any changes to their daily routine due to the change of their

circumstances, such as sending a new schedule for daily geriatric exercises or modifying

their prescription medicine;

Chapter 5, Evaluation of the Proposed Model by Implementation 103

3) Activating a device within SeCH automatically, such as switching a heater on in a

resident’s room;

4) Issuing an alarm for the medical staff on duty because urgent medical attention is

needed, after detecting anomalies in a resident’s health status, such as a sudden fall in

blood sugar level.

Figure 5.1 SeCH environment as an example of a PCE

We hasten to add that these four types of services are merely examples that we

have chosen for the SeCH and therefore, reader should treat these as typical non-

exclusive examples of services in a PCE. Different environments in the same domain

may serve their users differently, hence services may vary for different PCEs. This is

to say that, services delivered in any PCE are domain specific (Definition 13 , Axiom

9 in Chapter 4). This specificity indicates that these services cannot be represented

in advance in any formal computational model for PCEs. This is why PCE∆T can have

additional rules to trigger the situation-specific services.

In SeCH, the formal model will provide a computational foundation that is capable

of deciding what specific service of type 1) – 4) above, given a situation, should be

delivered. In the following section a domain-specific scenario projecting a precise

situation within SeCH environment demanding a particular service is explained. This

scenario is the basis of this chapter’s running example.

5.1.3 The Scenario

Margaret, John, Peter and Paul are residents of SeCH. Their morning routine starts

with having a shower, followed by breakfast, and taking morning medicine. Then,

Chapter 5, Evaluation of the Proposed Model by Implementation 104

they have free time to take part in a physical and social activity suitable for their

health condition and preferences. Every day a balance exercise class for senior

residents takes place in the ‘Function’ room. Attendance is compulsory for geriatric

residents, but other residents attend if they wish. Margaret, usually takes part in

the ‘walking-for-all’ activity in the adjacent park. This morning, however, she did not

feel well and decided to go to her bedroom and read the daily paper. Margaret like

all other residents of SeCH is being monitored so as to be attended to whenever

there is a change in her health situation. The sensorised garment Margaret is

wearing shows that she is feverish. When she was admitted in SeCH, Margaret has

indicated that she would prefer to have her allocated heater in her room to be

turned on, if it is off, when she feels cold. One of the contextual information that is

produced in SeCH is to inform whether an allocated room is cold, normal or hot

considering the body temperature of the person the room is allocated to, provided

the person is currently inside the room. This sensor device indicates that the room

is cold for Margaret.

As mentioned in the previous section, “recommending”, “informing”, “activating a

device”, or “issuing an alarm” is the action taken in SeCH for any particular

situation. Considering the new situation created when Margaret being feverish is

detected, and given that she would expect the heater in her room to be turned on

in the situation she is in, the expected service to be delivered is “Activating a

device”. The computation that the formal model prepares the ground for, is

therefore expected to trigger an actuator within SeCH that turns on the heater in

Margaret’s room.

In the following section we summarise the formal model process from the moment

a situation is created until the end of the computation that triggers an expected

service for the user. Without going into intricacies, we encapsulate key terms

introduced in the previous chapter in a paragraph or two to set the scene for more

elaborations of the proposed model.

Chapter 5, Evaluation of the Proposed Model by Implementation 105

5.1.4 Recapitulation of the FCM Terminologies

The purpose of this section is recapitulation of the terms used in Chapter 4, vis-à-vis

the FCM, to facilitate the description of how the domain and situation-specific PCE∆,

detailed above, is translated into a detailed specification of the situation in PCE∆T.

The PCE∆T will lend itself to the reasoning required to deliver a service to the user of

the PCE; i.e. trigger an actuator within SeCH that turns on the heater in Margaret’s

room.

The detection of PCE∆ in the PCE takes place when there is a change in the SeCH

environment, in our case Margaret being feverish, is outside the scope of this

thesis. This thesis is about FCM and the computations it does once a PCE receives

interpreted situational information. The creation of PCE∆T and reasoning upon its

taxonomical elements for a particular PCE∆ is what this thesis is after, thus the

detection of PCE∆ is not within the remit of the thesis. When a PCE∆ is detected we

know exactly which and in what locations cyber-physical objects participate in the

PCE∆, who and where the user of the PCE is, what the preferences of the user are,

and which services that are expected by the user will be delivered in that PCE∆. We

also know some domain-specific information such as Margaret’s general health.

Knowing all these at this particular moment triggers the existence of a particular

situation in the PCE, PCE∆ (Chapter 4, Definition 1).

A participant in PCE∆, such as Margaret, is referred to as instance ins t . Instances

are members of categories(Chapter 4, Definition 5) and represented as Mbr(ins t ,

Ctg i .Lev j) where Ctg i .Lev j represents the category that ins t is a member of

(Chapter 4, Definition 7). For example, in Mbr(margaret,Resident),

Resident is a category represented as Psn.Lev 1 or in Mbr(feverish,

General Health) General Health is a category represented as

Fld.Lev 1. The category membership Mbr(ins t , Ctg i .Lev j) of real world

participants ins t of the PCE∆ necessitates a PCE∆T (Chapter 4, Definition 8) in

which all Ctg i .Lev j are modelled.

Therefore, for the given scenario and its particular PCE∆ a PCE∆T is abstracted to be

reasoned upon its taxonomical elements in order to deliver an expected service; i.e.

Chapter 5, Evaluation of the Proposed Model by Implementation 106

triggering an actuator within SeCH that turns on the heater in Margaret’s room.

Characteristics Chqr and its value vlu r that describe category memberships

(Chapter 4, Definition 16), and relationships rlp q between taxonomical elements

(Chapter 4, Definition 17) are other aspects of PCE∆T contributing towards the

computation of PCE∆. The Chqr is used in (Mbr(ins t ,

Ctg i .Lev j),chq r ,vlu r) format, for example, (Mbr(margaret,

Resident),“gender”,“female”) which shows margaret is a member of

the category “Resident ” and has a gender characteristic which has the value

female , or (Mbr(heater152,Heater),status,“off”) which shows

heater152 is a member of the category Heater and has status characteristic

which has the value off .

The FCM computation to achieve PCE∆T is essential for the FCM to reason upon its

elements to deliver a service to the user of the PCE∆. Computations from the

moment situational information of a PCE∆ is received by the PCE was shown in

Figure 4.1 in Chapter 4. Here, in Figure 5.2 we present the application of the

diagram to the example scenario. a leading to delivery of a service prepares the

foundation for the computational model which is instrumental to deciding what

domain and situation specific service(s) is (are) to be delivered to the user of the

situation created by a change in the PCE environment as shown in Figure 5.2.

Figure 5.2: FCM computations for the example scenario PCE∆

Margaret

is feverish

The heater in Margaret’s room

is turned on

Expected service is delivered

Computing PCE∆ to deliver

a service for Margaret

PCE∆∆∆∆T is reasoned upon

All taxonomical elements added

((Mbr(inst, Ctgi.Levj), chrq, vluq))

rlpr(Mbr(inst, Ctgi.Levj), Mbr(insu,

CtgxLevy))

PCE∆∆∆∆T is created

Relevant situational

information received

Mbr(inst, Ctgi.Levj)

PCE∆∆∆∆ is created

Margaret

P
 C

 E

Chapter 5, Evaluation of the Proposed Model by Implementation 107

5.1.5 ASeCS Software Architecture

Cyber-physical objects of SeCH that participate in ∆ create particular “situational

information” PCE∆ which is abstracted to PCE∆T. As stressed earlier, how these

objects are networked and managed, and in general the mechanism of the system

architecture is not the concern of this thesis. However, the cyber-physical objects

supply software applications with domain and situation-specific semantics which

secures the delivery of services for a particular PCE∆ within SeCH.

Although the software architecture is not domain specific and is reusable for

different environments, in our running example we refer to this architecture as

Assistive Self Care System (ASeCS) just because the scenario takes place in a care

home environment, SeCH.

Figure 5.2 illustrates the ASeCS software architecture. It is component based and

layered and each layer has its own purpose and role in the overall ASeCH

architectural style.

Figure 5.3: ASeCS software architecture

Context Management Layer (CML) and Application Layer (AL) have specific roles

compared to other ASeCS layers. The ASeCS software architecture hosts software

applications that primarily support SeCH and trigger the delivery of its services.

Therefore a set of various software applications and their interfaces are stored

within the AL. They are all are able to communicate with software components

stored in the lower ASeCS layers and interpret and manipulate any type of input or

user interaction we may have in various situations in SeCH.

Context Management

APP1

OWL DC

SWRL DC

APP2 APPn Application Layer

 Inference and

 Reasoning Layer

 Ontology Layer

 PCE∆T Layer

Context

Management Layer

APP3

A
S

e
C

S
 C

o
re

 La
y

e
rs

O
W

L
A

P
I

. . .

Generic

GOnto

Generic

PCE∆T

Extended

SeCHOnto

Extended

PCE∆T

Chapter 5, Evaluation of the Proposed Model by Implementation 108

However, the CML has a completely different role. The availability of information

about PCE∆ or “situational information” is essential to provide timely and

appropriate service to the user. Therefore, acquiring contextual data from the

environment is an indispensable part of any PCE (Schmidt et al., 1999), (Henricksen

and Indulska, 2006), (Sabagh et al., 2011). Sensorised garments, tagged heater,

persistent data repositories, and software programs which integrate various devices

into a PCE, are examples of cyber-physical devices in SeCH which provide some form

of contextual data to the ASeCS architecture. For PCE∆ in SeCH, information on who

the user is (Margaret), where she is, is the room she is in cold given her body

temperature, is the heater in her room on or off, would she prefer the heater in her

room to be turned on if it is off when she is feverish, are some of the “situational

information” examples necessary to acquire in order to define the situation in SeCH

to deliver a service to fulfil Margaret’s expectation. Consequently, such contextual

data have to be managed, i.e. captured and interpreted (Day 2000), (Day, 2001),

(Strang and Linhoff-Popien, 2004), (Bettini et al., 2010) and therefore the CML

stores, represents and manages data received from the Cyber-Physical Objects and

prepares the “situational information” for the ASeCS upper layers. This is in line

with many other similar solutions which require interpreting the meaning of the

collected contextual data, and which has been exercised in context aware software

applications for more than a decade ((Gu et al., 2004), (Davis et al., 2005), (Gua et

al., 2005), (Ellenber et al., 2011), (Sang et al., 2003), (Wu et al., 2007). For example,

the detection whether Margaret is “feverish” or not is the responsibility of the CML,

and should be given to the upper ASeCS layers as a part of particular “situational

information”. Consequently, the CML makes sure that sensed data is qualified with

some significant semantics for further computation; i.e. interpreted.

Computationally significant semantics provided by the CML is managed in the ASeCS

core layers, which comprises PCE∆T, Ontology, and Inference and Reasoning Layers

as depicted in Figure 5.3.

Chapter 5, Evaluation of the Proposed Model by Implementation 109

It is important to note that the ASeCS core layers are essential for exploiting the

“situational information” generated by the CML and delivering services within the

SeCH through the applications Appn.

The PCE∆T layer stores taxonomies of PCE∆ which may be generic, i.e. may contain

enough taxonomical elements which could be used for describing any situation

PCE∆ in SeCH. However, possible extensions of the generic situational information

in PCE∆ may be needed for two important reasons: the situational information

generated by the CML may require to create more PCE∆T elements in order to

secure the delivery of services in SeCH and the generic PCE∆T might not be sufficient

to accommodate the specificity of the semantics in this particular domain (SeCH).

We illustrate the former in the paragraph below.

 All real world instances that participate in ∆ and create PCE∆ are accommodated in

the taxonomical structure PCE∆T. The PCE∆T layer is responsible for arranging and

organising all detected Mbr(ins t ,Ctg i .Lev j) participating in the PCE∆. In

Chapter 4 section 4.3 we have axiomatised (Axiom 6, 8, 10, 12, and 14) the category

membership such that for Mbr(x,y) where x is a real world instance, y is

Psn,Ojt,Fld,Pfc, or Lcn . The Generic PCE∆T of this layer allows

representation of general instances. For example, any real person in the SeCH

without any specificity could be presented as an instance of Psn , i.e Mbr(x,Psn) .

However, Margaret is a specific inhabitant of SeCH. She is a Resident , where the

scenario says “Margaret, … are residents of SeCH”. This requires the Generic PCE∆T

to be extended to allow specific Ctg i .Lev j Resident as an extension to Psn .

Figure 5.4: Part of PCE∆ showing instance “margaret ” and its category “Resident ”

name: “Margaret”

gender: “female”

Psn
Resident

paul

john

margaret

Chapter 5, Evaluation of the Proposed Model by Implementation 110

Figure 5.4 shows (Mbr(margaret,Resident) as an extension of

Mbr(margaret,Psn).

The Ontology Layer has a similar role to the The PCE∆T Layer. The only difference is

that the taxonomy of the situational Information from the PCE∆T Layer is

transferred into OWL classes and properties. Similar to the PCE∆T Layer the

Ontology Layer hosts a generic OWL ontology. However, the generic ontology

GOnto can be extended ONLY by adding the specificity of SeCH and therefore the

extended ontology must be called SeCHOnto. The generic ontology GOnto

represents “bare-minimum” of OWL concepts applicable to all PCEs depicted in

Figure 4.9 in Chapter 4. The development of GOnto was explained thoroughly in

Chapter 4 and summarised in Figure 4.8 where a generic taxonomical model for any

PCE∆ is given. Extension of GOnto to achieve SeCHOnto is discussed in the

subsequent sections.

The inference and Reasoning Layer provides an essential functionality for delivering

services in SeCH. OWL ontologies are based on Description Logic and therefore

inference on the concepts within GOnto or SeCHOnto is feasible using DL reasoning

mechanism of OWL. However, when there is a need for reasoning about a complex

semantic involving several concepts, OWL falls short and SWRL rules, which are also

based on DL, have to be used. This is why the Ontology Layer is complemented with

the Inference/Reasoning Layer to cover for the reasoning aspect of the ASeCS

architecture.

Finally, the applications from the Application Layer are able to communicate with

Ontology and Inference/Reasoning layers, through OWL-API. It enables that

software applications in ASeCS “know” SeCH inhabitants’ precise location, their

current activities, and present physiological vital sign measurements, and they can

“react” in order to assist residents in their everyday lives. In other words,

“reacting” means delivery of personalised service(s) to the user of the PCE∆ in SeCH.

Chapter 5, Evaluation of the Proposed Model by Implementation 111

5.2 Illustration of the FCM in a PCE

The previous section has set the scene for a specific user in a particular situation ∆

in SeCH. However, as stated in Chapter 4, FCM creates abstraction of situational

information received by the PCE. We start this section with explaining what and

how the situational information for the creation of PCE∆T is established. Then, the

parts of the FCM as explained in section 4.2 in the previous chapter will be

illustrated.

The illustration of the FCM requires deployment of technologies. The background

research in section 2.4 and the overview of the FCM in section 3.4.3 has highlighted

that the use of SWTs particularly SWRL enabled OWL ontology is the way forward, if

we desire to create a new era of SE solutions based on the semantics and

understanding of our computational environments across domains. That said, by

knowing that we will use the SWT stack, FCM and situational information should be

expressed in vocabulary of and following terms of the opted-for technology to

secure the implementations of the FCM. Therefore, considering the ASeCS

architecture (Figure 5.2) in which CML is responsible for the provision of

interpreted contextual data , we need to use competency question (CQ) which is

another OWL ontology terminology to establish situational information PCE∆ for a

particular situation ∆.

Identification of interpreted contextual data to achieve PCE∆ is not within the remit

of FCM and it cannot work without that. In the following section we briefly explain

the role of CQs and how it leads to the creation of PCE∆T. However, reader is

reminded that the mechanism through which “words” of the CQ are automatically

translated into machine understandable terms for FCM to work, is outside the

scope of this thesis.

5.2.1 Formulating the Competency Question (CQ)

The previous section has set the scene for a specific user in a particular situation ∆

in SeCH. Designing a domain-specific computational model pertinent to the

situation requires clarification and verification of data the computational model

needs. Some, for example (Chen et al., 2004b) use ‘use case scenario’ to verify the

appropriateness of their ontological vocabularies structure. However, we use

Chapter 5, Evaluation of the Proposed Model by Implementation 112

‘competency question’ as used in the realm of Semantic Web and explained in

Chapter 2 to verify input data to the computational model.

We have explained in Chapter 2 what the role of CQ is in realization of Semantic

Web technologies. In SeCH, we associate the role of CQ with three issues

1) the detection of real world instances and the creation of PCE∆T (PCE∆T Layer)

2) a selection and extension of GOnto classes important for creating SeCHOnto

(Ontology Layer), and

3) the reasoning process we perform upon SeCHOnto concepts in order to

deliver a service.

Therefore, a correct CQ is of upmost importance for our process of extending GOnto

to SeCHOnto. We show how our CQ helps to perform 1), 2) and 3) above.

The scenario from 5.3 gives a clear CQ:

CQ: Which device(s) should be activated when there are some feverish individuals

inside their assigned room, who would prefer the heater in their room (if it is cold) to

be turned on (if it is off).

The above CQ can be rephrased as follows to illustrate necessary information

needed to be collected for a particular PCE∆. As any PCE∆ is focused on one and only

one user (Chapter 4, Axiom 6), in the re-phrased format, the CQ will reflect a real

PCE∆ in SeCH.

Re-phrased CQ: Margaret is a resident in SeCH. (As soon as a new PCE∆ is created,

information such as Margaret’s gender, her name and her assigned room in SeCH

become available at once.) SeCH is a care home in the UK and therefore it follows

the UK health policy and procedures. It is detected that Margaret is feverish. Her

current location is “Room101” which is a private location (bedroom) inside SeCH.

This location (Room101) is “cold” now considering Margaret’s body temperature. A

heater, “heater152”, is present in Room101. The status of this heater, which belongs

to Margaret, is “off”. Margaret has indicated when she was admitted to SeCH some

object preferences. One of these preferences is that she prefers the heater in her

room to be turned on, if it is off, when she is feverish.

Therefore, the new situation (Margaret beeing feverish) creates a new PCE∆, as

shown in Figure 5.2. As soon as this piece of information (Margaret is feverish) is

sensed, a collection of other semantically significant pieces of information relevant

Chapter 5, Evaluation of the Proposed Model by Implementation 113

to the CQ becomes available to the computational model. We must give more

information about a particular PCE∆ in SeCH. This is essential for two reasons. We

must know which exact inputs we give to the ASeCS application, and which output

we expect from it (which is usually the result of delivering a service).

 Competency Question Segments

A Margaret is a resident in SeCH.

B Margaret’s name, gender and her assigned room are examples of available information from

C SeCH is in the UK and therefore it follows the UK health policy and procedures.

D SeCH is a care home.

E Margaret is feverish.

F Her current location is “Room 101”

G which is a private physical location (bedroom) inside SeCH.

H This location (Room101) is “cold” (considering Margaret’s body temperature).

I A heater “heater152” is present in Room101.

J The status of this heater is “off”.

K This heater belongs to Margaret.

L Margaret has indicated when she was admitted to SeCH some object preferences.

M One of these preferences is the heater in her room to be turned on, if it is off, when she is

Table 5.1, Segments of the running example competency question

The breakdown of the CQ into 13 segments (A to M) is shown in Table 5.1. The

purpose of this breakdown is to demonstrate how each piece of information, a

word, a phrase or a complete sentence in the CQ can be mapped to PCE∆T

elements.

The following section will show how the situational information PCE∆ of the

example scenario received by the PCE is computed by the FCM to create PCE∆T and

to reason upon it to deliver a service to the user (Margaret).

5.2.2 Illustration of FCM Loops and Steps

In this section steps explained in section 4.2.1 about the development of FCM is

explained. In the following subsections we will show how the words that appear

within the CQ (section 5.2.1) - in the form of nouns, verbs, proverbs and adjectives -

found their space within PCE∆T.

Chapter 5, Evaluation of the Proposed Model by Implementation 114

How PCE∆ is abstracted to generic taxonomical structure, how generic taxonomical

structure is extended to PCE∆T, and how PCE∆T paves the way to reason to deliver a

situation-specific service, is also explained in this section.

5.2.2.1 Illustration of Creation of ctgi.Levj, Insertion of inst, and addition of

chrq,vluq

Here, we would like to go through all the statements regarding the creation of a new

ctg i .Lev j , Mbr(ins t ,ctg i .Lev j) , and(Mbr(ins t ,Ctg i .Lev j),

chr q,vlu q) listed in Table5.1.

Statement A: Margaret is a resident in SeCH.

According to Definition 11-15 detailed in section 4.3 (Chapter 4) the only

occurrences of root category are Psn, Fld, Ojt, Lcn , and Pfc . Every real

world instance, ins t , is therefore an instance of one of these root categories.

Considering that, ins t is identified along its ctg i .Lev j (Definition 7), when the

ctg i .Lev j of an instance is given in a CQ, for example “resident” in the first

sentence of the CQ in Table 5.1, its root category is assumed. Therefore, for the

sentence “Margaret is a resident in SeCH” we know that Resident is of root

category Psn and given Axiom 2, we can conclude that Resident is Psn.Lev 1.

The ins t of Psn.Lev 1 according to the statement is Margaret with capital “M”.

There is a subtle concern here. “Margaret” is actually the “name” of the real world

person and it is not the instance itself. To differentiate between these we refer to

the instance ins t as margaret with lowercase “m” and the name of the person as

Margaret with capital letter “M”. The first sentence of the CQ should have read

“margaret is a resident in SeCH”, but merely because of linguistic concerns we left it

with capital M. The contextual representation of this, based on Definition 7, is

therefore Mbr(margaret,Resident) .To summarise, for the statement

Margaret is a resident in SeCH, the following is represented in the taxonomical

structure PCE∆T:

Mbr(margaret,Resident) where Resident is Psn.Lev 1.

Statement B: Margaret’s name, gender, and her assigned room are some examples

of available information from CML.

For every Mbr(ins t ,Ctg i .Lev j) in the PCE∆T all available instance

Chapter 5, Evaluation of the Proposed Model by Implementation 115

characteristics chr q are represented according to Definition 16. Therefore for

Mbr(margaret,Resident) the “name”,”gender ”, and “assignedRoom ”

characteristics are represented in the PCE∆T as :

(Mbr(margaret,Resident),name,“Margaret”)
(Mbr(margaret,Resident),gender,“female”)
(Mbr(margaret,Resident),assignedRoom,“Room101”)

Statement A and B are depicted in blue in Figure 5.5. “margaret ”, “john ” and

“paul ” are different inst of Resident . “margaret ” oval is bolded to indicate

the ins t of concern for the particular PCE∆. Characteristics chr q of “margaret ”

and their values are shown inside the broken-line-border box.

Statement C: SeCH is in the UK and therefore it follows the UK health policy and

procedures.

The provision of services in any PCE according to Definition 2 and 3 is domain-

specific. The specificity of any domain is represented in the PCE∆T under the Fld

root category. Statement “C” indicates the environment is within the health

domain. The representations of the “Health” Ctg i .Lev j and an ins t of it in the

PCE∆T similar to that of statement A are:

Mbr(UK-health,Health) where Health is Fld.Lev 3.

We would like to attract the reader’s attention to the level that Health belongs to

in the PCE∆T. The Ctg i .Lev j for Resident in statement “A” was defined as

Psn.Lev 1 as the precision of abstraction required for instance “margaret ”.

However, different precisions are required for different ins t of Fld occurrence.

The higher the precision required the lower the level of Ctg i .Lev j . Defining

Health at level 3 (Fld.Lev 3) indicates that for the particular PCE∆ specified in

the CQ there are two more precise levels (Fld.Lev 2 and Fld.Lev 1)which are

more specific than the Health . Lack of any characteristics of UK-health in the

CQ is a good indication that it belongs to a high-level of abstraction, i.e. no detailed

precision required.

Statement D: SeCH is a care home.

Similar to UK-health instance, no characteristics are given for SeCH instance in

the CQ. The only extra feature available for SeCH is that it is a subset of UK-

Chapter 5, Evaluation of the Proposed Model by Implementation 116

health . This explains why Care Home is Fld.Lev 2. These representations in

the PCE∆T is:

Mbr(SeCH,Care Home) where Care Home is Fld.Lev 2.

Statement E: Margaret is feverish.

As shown in Figure 5.5 real world instances “feverish ”, “normal ”, “critical ”

are abstracted as “General Health ”. The ins t which is available as a result of

the particular situation PCE∆ of the CQ is “feverish ”. As there are some

characteristics available for “feverish ”, General Health ought to be at the

lowest level of abstraction (high precision). This representations in the PCE∆T is:

Mbr(feverish, General Health) where General Health is

Fld.Lev 1.

In Figure 5.5, Fld and all its Ctg i .Lev j are shown in amber.

Statement F and G: Her current location is “Room 101 which is a private physical location

(bedroom) inside SeCH.

The same explanation about the formation of different Ctg i .Lev j of Fld root

category is applicable here for Lcn . All Ctg i .Lev j , of Lcn with some instances

are shown in green in Figure 5.5; their representations in the PCE∆T are:

Mbr(insideSeCH,PhysicalLocation) where Physical Location is

Lcn.Lev 2.

Mbr(room101,Private) where Private is Lcn.Lev 1.

Statement H: This location (Room101) is “cold” considering Margaret’s body

temperature.

The Ctg i .Lev j of Private is Lcn.Lev 1 which suggest that there are some

characteristics available for the instance room101 of this Ctg i .Lev j . The implicit

indication of the CQ is that the location or room temperature is cold . Therefore,

the roomTemperature characteristic of the instance needs to be represented in

the PCE∆T:

(Mbr(room101, Private),roomTemperature,“cold”).

Statement I and J: A heater “heater152” is present in Room101. The status of this

heater is “off”.

Chapter 5, Evaluation of the Proposed Model by Implementation 117

These statements are quite similar to statements A and B except that here the ins t

is of root category Ojt . Considering that even the structure of all Ctg i .Lev j of

both occurences of Psn and Ojt are similar, there is no need of any further

explanation for this part of the CQ. Their representations in the PCE∆T are:

Mbr(heater152,Heater) ,

(Mbr(heater152, Heater),type,“heater”),
(Mbr(heater152, Heater),status,“off”).

Statement L: Margaret has indicated when she was admitted to SeCH some object

preferences.

Some of the real world instances that can be abstracted to a Ctg i .Lev j of the

Pfc root category are shown in Figure 5.5 in purple. The Ctg i .Lev j is named

Ojt-specific-Pfc . In this particular PCE∆ the bolded heaterPreference is

the available instance of this Ctg i .Lev j . The representations in the PCE∆T are

Mbr(heaterPreference,Ojt-specific-Pfc) where Ojt-specific-

Pfc is Pfc.Lev 1.

Statement M: One of these preferences is the heater in her room to be turned on, if

it is off, when she is feverish.

As we have seen earlier, since heaterPreference is a member of a leaf

Ctg i .Lev j (that is Pfc.Lev 1) some characteristics of the inst should also be

available. These characteristics are presented in the PCE∆T as:

(Mbr(heaterPreference,Ojt-specific-Pfc),objectType, “heater”)
(Mbr(heaterPreference,Ojt-specific-Pfc),objectNewSt atus,“on”).

Chapter 5, Evaluation of the Proposed Model by Implementation 118

Fld
Health

Care Home
General Health

normal critical

Nightingale care

feveris

We-

SeCH

US-EU-health
UK-

name: “Margaret”

gender: “female”

assignedRoom: “Room 101”

Psn
Resident

paul

john

margaret

locationTemperature:

“cold”

Lcn

Physical Location
Private

room10
closet10

room10

local park

garden

insideSeCH

status: “off”
Ojt

Heater

laungeHeater

Heater14

Heater15

objectType: “heater”

objectNewStatus:

“on”

Pfc
Ojt-specific-Pfc

iPadPreferenc

TVPreference

heaterPreferenc

Figure 5.5: PCE∆T representation of instances and Ctg i .Lev j characteristics of the scenario CQ

Ctgi.Levj

inst

chrq

Mbr(inst,

bodyTemperature: “feverish”

Chapter 5, Evaluation of the Proposed Model by Implementation 119

5.2.2.2 Illustration of Generic Relationships rlpr,

Here, we would like to go through all the statements regarding the creation of

generic relationships rlp r (Mbr(ins t ,Ctg i .Lev j),Mbr(ins u,Ctg xLev y))

listed in Table5.1.

Statement E: Margaret is feverish.

We have already created Mbr(feverish,General Health) in the previous

section. However, considering that there is always a relationship

“ isAssociatedWith ” between Mbr(ins t ,Psn.Lev j) and

Mbr(ins t ,Fld.Lev k) according to Axiom 16, the following is also established:

isAssociatedWith(Mbr(margaret,Resident),Mbr(feveris h,

General Health)).

Statement F and G: Her current location is “Room 101 which is a private physical location

(bedroom) inside SeCH.

We have already created Mbr(insideSeCH,PhysicalLocation),

Mbr(room101,Private) and Mbr(room101,Private) in the PCE∆T. However,

once Mbr(room101,Private) is represented in the PCE∆T then a relationship

between Mbr(room101,Private) and a previously represented

Mbr(margaret,Resident) can be established according to Definition 17 as

isIn(Mbr(margaret,Resident),Mbr(room101,Private)).

Statement I and J: A heater “heater152” is present in Room101. The status of this

heater is “off”.

We have already created Mbr(heater152,Heater) and added

(Mbr(heater152, Heater),type,“heater”),
(Mbr(heater152, Heater),status,“off”) in the PCE∆T. However

according to Axiom 18 we need to add a relationship FCM prescribe between the

object and the location it is in. This is illustrated as

isCurrentlyIn(Mbr(heater152,Heater),Mbr(room101,Pri vate))

Statement L: Margaret has indicated when she was admitted to SeCH some object

preferences.

We have already created Mbr(heaterPreference,Ojt-specific-Pfc).

Chapter 5, Evaluation of the Proposed Model by Implementation 120

Given Axiom 20, there is always a relationship hasPreference between Mbr(ins t ,

Psn.Lev j) and Mbr(ins u,Pfc.Lev k) , therefore we also have the following in

the taxonomical structure:

hasPreference(Mbr(margaret,Resident),Mbr(heaterPref erenc,

Ojt-specific-Pfc)).

Statement M: One of these preferences is the heater in her room to be turned on, if

it is off, when she is feverish.

We have already added the following two characteristic values,

(Mbr(heaterPreference,Ojt-specific-Pfc),objectType, “heater”)
(Mbr(heaterPreference,Ojt-specific-Pfc),objectNewSt atus,“on”).

However, given Axiom 22, there is always a relationship isRelatedTo between

Mbr(ins t , Ojt.Lev j) and Mbr(ins u, Pfc.Lev k) , therefore we also have

to add the following in the taxonomical structure:

isRelatedTo(Mbr(heaterPreference,Ojt-specific-

Pfc),Mbr(heater152,Heater)).

5.2.2.3 Illustration of Extended Relationships rlpr,

Here, we would like to go through any statement regarding the creation of new

relationships rlp r (Mbr(ins t ,Ctg i .Lev j),Mbr(ins u,Ctg xLev y)) listed in

Table5.1 that extends PCE∆T .

Statement K: This heater belongs to Margaret.

We have already created Mbr(heater152,Heater) and

Mbr(margaret,Resident) in section 5.2.2.1. The relationship “belongs to” is

not currently available in the taxonomical structure and therefore a new rlpr has to

be added to the PCE∆T as an extension. This new relationship is

belongsTo(Mbr(ins t ,Heater),Mbr(ins u,Resident)). Once the

relationship is available the following will be added according to Definition 17:

belongsTo(Mbr(heater152,Heater),Mbr(margaret,Reside nt))

5.2.2.4 Summarising all PCE∆∆∆∆T Elements for the Running Scenario

The content of the PCE∆T as explained above in section 5.2.2.1, 5.2.2.2, and 5.2.2.3

is summarised in Table 5.2 in the order FCM prescribes and were followed above.

Chapter 5, Evaluation of the Proposed Model by Implementation 121

 Contextual Data

1 Mbr(margaret,Resident)

2 (Mbr(margaret,Resident),name,“Margaret”)

3 (Mbr(margaret,Resident),gender,“female”)

4 (Mbr(margaret,Resident),assignedRoom,“Room101”)

5 Mbr(UK-health, Health)

6 Mbr(SeCH, Care Home)

7 Mbr(feverish,General Health)

8 Mbr(heater152,Heater)

9 (Mbr(heater152,Heater),status,“off”)

10 (Mbr(heater152,Heater),type,“heater”)

11 Mbr(insideSeCH,Physical Location)

12 Mbr(room101,Private)

13 Mbr(heaterPreference,Ojt-specific-Pfc)

14 (Mbr(heaterPreference,Ojt-specific-Pfc),objectType, “heater”)

15 (Mbr(heaterPreference,Ojt-specific-Pfc), objectNewS tatus,“on”)

16 (Mbr(room101, Private),roomTemperature,“cold”)

17 isAssociatedWith(Mbr(margaret,Resident),Mbr(feveris h,General Health))

18 isIn(Mbr(margaret,Resident),Mbr(room101,Private))

19 isCurrentlyIn(Mbr(heater152,Heater), Mbr(room101,Pr ivate))

20 hasPreference(Mbr(margaret,Resident), Mbr(heaterPre ference,Ojt-

specific-Pfc))

21 isRelatedTo(Mbr(heaterPreference,Ojt-specific-Pfc), Mbr(heater152,

Heater))

22 belongsTo(Mbr(heater152,Heater), Mbr(margaret,Resid ent))

Table 5.2 Content of the PCE∆T of the running example

In the previous section we explained the derivation of different elements of PCE∆T

from statements of Table 5.1, whereas in Table 5.2 the content of PCE∆T for the CQ

of Table 5.1 is listed. For ease of reference, the summary of mapping between these

two tables, i.e. CQ statements to the corresponding FCM representation, is also

provide in Table 5.3.

 Mapping of Competency Questions to their Corresponding Contextual Data

CQ A B C D E F G H I J K L M

PCE∆∆∆∆T 1 2,3,4 5 6 7,,17 18 11,12 16 8,10 9 22 13,20 14,15,21

Table 5.3: Mapping situational information of Table 5.1 to PCE∆T taxonomical element of Table 5.2

Chapter 5, Evaluation of the Proposed Model by Implementation 122

5.2.3 Summarising the Creation of PCE∆∆∆∆T

As we have illustrated above, the creation of a PCE∆T encounters the following

- Ctg i .Lev j and rlpr are already available in the taxonomical structure that FCM

is initially consist of;

- the generic model has to be extended to cater for any situation-specific

Ctg i .Lev j for the precision required;

- the generic model has to be extended to cater for any situation-specific rlp r for

the precision required.

In the following subsections we will go through the above for the running example.

5.2.3.1 Using Existing Ctgi.Levj and rlpr

Apart from the root Ctg i .Lev j the only other Ctg i .Lev j available in the generic

taxonomy are Ojt-specific-Pfc and Health as shown in Figure 5.6.

Figure 5.6: The generic PCE∆T

These are based on Definition 11, 12, 13, 14, 15 and Axiom 6, 8, 10, 12, 14 and 20.

Similarly, based on Axiom 16, 17, 18, 19 and 22, there are already five existing

relationships rlpr, which are hasPreference, isAssociatedWith,

isIn, isCurrentlyn and isRelatedTo . The existance of these

Ctg i .Lev j and rlp r means that creation of situation-specific extensions to the

PCE∆T will not be delayed for the creation of the currently available elements of the

PCE∆T.

Chapter 5, Evaluation of the Proposed Model by Implementation 123

5.2.3.2 Extension of of PCE∆T with Situation-specific Ctgi.Levj in SeCH

The generic taxonomy has to be extended to cater for any necessary Ctg i .Lev j .

As shown earlier in Figure 5.5, there are quite a few Ctg i .Lev j that will have to be

added to the taxonomy to cater for all necessary precisions for ins t of the PCE∆.

Extensions of Psn to include Resident and of Ojt to include Heater are only

required one level down. This means that the root category Psn will be Psn.Lev 2

and its extension Resident will be Psn.Lev 1. Likewise, the root category Ojt

will be Ojt.Lev 2 and its extension Heater will be Ojt.Lev 1.

The extension of the Lcn root category happens twice, so structurally it is deeper

than Psn and Ojt root category in this particular PCE∆T. In this occasion Lcn will

be Lcn.Lev 3 and its first extension Physical Location will be Lcn.Lev 2,

and its second extension Private will be Lcn.Lev 1.

The Fld root category already has some enumerated Ctg i .Lev j for variety of

domains such as health, education, and manufacturing. In the running example, the

domain is health therefore if Fld is Fld.Lev m, Health would be Fld.Lev m-1.

Any extension in this part of PCE∆T has to be an extension of Health . At the

bottom of the extensions is General Health which will be Fld.Lev 1. The

Care Home extension would be Fld.Lev 2 which is the immediate subset of

Health . Therefore Health would be Fld.Lev 3 and the root would be

Fld.Lev 4. So, structurally Fld is deeper than any other root category in this

particular PCE∆T. These extensions are depicted in Figure 5.7.

Figure 5.7 Extension of generic PCE∆T to accommodate new Ctg i .Lev j

Chapter 5, Evaluation of the Proposed Model by Implementation 124

5.2.3.3 Extension of PCE∆T with Situation-specific rlpr in SeCH

The only necessary relationship rlp r that is situation-specific and needs to be

added to the taxonomy is belongsTo(Mbr(heater152,Heater),

Mbr(margaret,Resident)) . This is shown in Figure 5.8 in red.

 In the following section the transformation of the taxonomical notions to OWL

ontological concepts are explained.

5.2.4 Illustration of Mapping PCE∆T to OWL Ontological Concepts

As discussed in Chapter 2, OWL ontologies are modelled around four concepts.

These concepts are individual, class, object property, and data type property. Variety

of features that OWL supports for each one of these concepts is not the concern of

this thesis. What is, however, important is to establish a mapping between each and

every notion of the PCE∆T and a sister OWL ontological model. Every piece of

information represented in PCE∆T must be reflected in the ontological model which

in turn provides concepts necessary for delivering a service for a particular PCE∆

(Definition 3).

The counterpart of Ctg i .Lev j of PCE∆T in ontology is “class”. Although classes can

have different relationships with each other in an OWL ontology, here we are only

Psn

Ojt

CtgiLevj

‘a subset of’

relation

Relationship

rlpq

Lcn

Fld

isAssociatedWith

isCurrentlyIn

Pfc

hasPreference

isIn

Health

Ojt-specific-Pfc

isRelatedTo

Resident
Psn.Lev1Psn.Lev2

Care Home General Health

Fld.Lev1

Fld.Lev4

Fld.Lev3 Fld.Lev2

Heater

Ojt.Lev2

Ojt.Lev1

Physical Location Private

Lcn.Lev1Lcn.Lev2

Lcn.Lev3

Pfc.Lev1

Pfc.Lev2

belongsTo

Figure 5.8 Extension of generic PCE∆T to accommodate the new rlp r

Chapter 5, Evaluation of the Proposed Model by Implementation 125

interested in the is-a (or subsumption) relationship, and when relationships is

defined through object properties.

Every ins t of PCE∆T has some characteristics chr q. These are defined as data type

properties. The domain of a data type property is the class which is the mapping of

the Ctg i .Lev j of the Mbr(ins t ,Ctg i .Lev j) . The range value of data type

properties can be of different types, but we restrict to “string” type.

Instances ins t in PCE∆T becomes assertion of “individuals” in OWL ontology. When

an individual is asserted, the class it is a member of has to be stated. Once an

individual is asserted, its data type properties’ value can also be asserted.

Similar to relationship rlp r in PCE∆T that is a relationship between two ins t ,

object properties in Owl ontology are also relationships between individuals. The

object property is defined by its domain and range, which by definition are classes.

When individuals are asserted if there are any relationships between them, object

properties will be asserted.

For ease of reference the mapping of key constructs of PCE∆T and OWL ontology is

given in Table 5.4.

 Key Constructs of PCE∆∆∆∆T and OWL ontology

PCE∆∆∆∆T Ctgi.Levj Relationship rlpr Characteristic chrq Real world instance inst

OWL ontology Class Object Property Data Type Property Individual

Table 5.4: Mapping of key elements of PCE∆T and constructs OWL ontology

Following the above mapping guideline, the generic PCE∆T shown in Figure 5.6 is

represented as shown in Figure 5.9 for the generic OWL ontology. We name this

generic ontology GOnto. The name of classes in GOnto, unlike in PCE∆T, have been

deliberately chosen from real terms in spoken English. The reason for this rational

was to make these as close to terms used in a competency question as possible.

Consequently, this will lend itself to easier writing, and interpretation of rules which

are based on the ontological concepts and are governing the delivery of services to

users of PCEs.

Chapter 5, Evaluation of the Proposed Model by Implementation 126

Figure 5.9: The generic GOnto OWL ontology

The object and data type properties name remain as in the PCE∆T as they are

already close to the speaking language.

In the following section the development of the extended ontology based on given

GOnto, and the CQ reflected in the PCE∆T is discussed.

The steps for the transformation of PCE∆T to OWL ontological model is summarised

in Table 5.5. These steps are based on definitions and axioms, and the processing

procedure stated in Chapter 4. As a result of these steps an extended ontology

based on GOnto is developed. The availability of concepts in GOnto does not mean

that every one of them have to be used. The PCE∆ determines which ones need to

be used. The extended ontology, named SeCHOnto, will provide all the concepts

necessary for the delivery of services. The SeCHOnto ontological model is given in

Figure 5.10. In this figure, the extended concepts representing the particular

situation PCE∆ are depicted in red.

Chapter 5, Evaluation of the Proposed Model by Implementation 127

Contextual Data Based on Sub-procedure Location in the Processing

Model Resident is Psn.Lev 1

Mbr(Margaret,Resident)
Axiom 1, 2, 5

Definition 7, 8, 11

Create subclass Resident of PERSON

Assert margaret into Subclass Resident

Create subclass Ctgi.LevJ-1 of

PERSON

Assert Individual inst into

Subclass Ctgi.Lev1

 (Mbr(margaret,Resident),name,“Margaret”) Definition 16

Add (name, “Margaret”) to Margaret If ∃(chrq,Ctgi.Lev1)|chrq is

characteristic of Ctgi.Lev1 Then

Add(chrq, vluq) to Individual inst (Mbr(margaret,Resident),gender,“female”) Add (gender, “female”) to Margaret

 (Mbr(margaret,Resident), assignedRoom ,

“Room101”)

Add Datatype Property assignedRoom

into Subclass Resident

Add (assignedRoom, “Room101”) to

Margaret

Add Datatype Property chrq into

Subclass Ctgi.Lev1

Add(chrq, vluq) to Individual inst

Health is Fld.Lev 3

Mbr(UK-health, Health)
Axiom 1

Create subclass Health of FIELD If Ctgi.LevJ-1 = Health Then

Create subclass Ctgi.Levj-2 of

HEALTH

Care Home is Fld.Lev 2

Mbr(SeCH, Care Home)
Create subclass Care Home of FIELD Create subclass CtgiLevk of Field

if ∄

 General Health is Fld.Lev 1

Mbr(feverish, General Health)
Axiom 1, 2, 9

Definition 7, 8, 13

Create subclass General Health of FIELD

Assert feverish into Subclass Resident

Heater is Ojt.Lev 1

Mbr(heater152, Heater)
Axiom 1, 2, 7

Definition 7, 8, 12

Create subclass Heater of OBJECT

Assert heater152 into Subclass Heater

Create subclass Ctgi.LevJ-2of

OBJECT if ∄

Assert Individual inst into

Subclass Ctg .Lev(Mbr(heater152,Heater),status,“off”) Definition 16 Add (status, “off”) to heater152 If ∃(chrq,Ctgi.Lev1)|chrq is

characteristic of Ctgi.Lev1 Then

Add(chrq, vluq) to Individual inst

(Mbr(heater152,Heater),type,“heater”) Add (type,“heater”) to heater152

Physical Location is Lcn.Lev 2

Mbr(insideSeCH,Physical Location)
Axiom 1, 2, 13

Definition 7, 8, 15

Create subclass Physical Location of

LOCATION

Create subclass Ctgi.LevJ-1 of

LOCATION

Private is Lcn.Lev 1

Mbr(room101,Private)
Create subclass Private of LOCATION

Assert room101 into Subclass Private

Create subclass Ctgi.LevJ-1 of

LOCATION

Assert Individual inst into

Subclass Ctg .Lev

Chapter 5, Evaluation of the Proposed Model by Implementation 128

Contextual Data Based on Sub-procedure Location in the Processing

Model Ojt-specific-Pfc is Pfc.Lev 1

Mbr(heaterPreference,Ojt-specific-Pfc)
Axiom 1, 2, 11

Definition 7, 8, 15

Create subclass Object-specific-

Preference of PREFERENCE

Assert heaterPreference into Subclass

Object-specific-Preference

Create subclass Ctgi.LevJ-1 of

PREFERENCE

Assert Individual inst into

Subclass Ctgi.Lev1

 (Mbr(heaterPreference,Ojt-specific-Pfc),
objectType,“heater”

Definition 16 Add Datatype Property objectType into

Subclass Object-specific-Preference

Add (objectType, “heater”) to

heaterPreference

Add Datatype Property chrq into

Subclass Ctgi.Lev1

Add (chrq, vluq) to Individual inst (Mbr(heaterPreference,Ojt-specific-Pfc),
objectStatus, “on”)

Add Datatype Property objectStatus into

Subclass Object-specific-Preference

Add (objectNewStatus, “on”) to

heaterPreference (Mbr(room101, Private), roomTemperature,
“cold”)

Add Datatype Property

roomTemperature into Subclass Private

Add (roomTemperature, “cold”) to

room101 isAssociatedWith(Mbr(margaret,Resident),
Mbr(feverish, General Health))

Definition 17 Axiom 16 Add Object Property isAssociatedWith

between margaret and feverish

Add Object Property

isAssociatedWith (inst, insu)

isIn(Mbr(margaret,Resident),
Mbr(room101,Private))

Axiom 17 Add Object Property isIn between

margaret and room101

Add Object Property isIn (inst,

insu)

isCurrentlyIn(Mbr(heater152, Heater),
Mbr(room101,Private))

Axiom 18 Add Object Property isCurrentlyIn

between

heater152 and room101

Add Object Property

isCurrentlyIn (inst, insu)

hasPreference(Mbr(margaret,Resident),
Mbr(heaterPreference,Ojt-specific-Pfc))

Axiom 19,

20

Add Object Property hasPreference

between

margaret and heaterPreference

Add Object Property

hasPreference (inst, insu)

isRelatedTo(Mbr(heaterPreference,Ojt-
specific-Pfc), Mbr(heater152, Heater))

Axiom 22 Add Object Property isRelatedTo

between

heaterPreference and heater152

Add Object Property isRelatedTo

(inst, insu)

belongsTo(Mbr(heater152,Heater),
Mbr(margaret,Resident))

Extension create Object Property belongsTo

between

heater152 and margaret

Create Object Property

belongsTo (Ctgi.Lev1, CtgxLev1)

Add Object Property belongsTo

(ins , ins)

Table 5.5 Transformation of detected contextual data to ontological concepts

Chapter 5, Evaluation of the Proposed Model by Implementation 129

Figure 5.10: The SeCHOnto OWL ontology

5.2.5 Illustration of Delivering a Service in a PCE∆

If we were to prepare a SWRL rule, which could support the CQ stated in section

5.5, then Table 5.6 illustrates the mapping between the text in the CQ and the

atoms of that SWRL rule. In other words, the second column in Table 5.6 gives us

directly the syntax and semantics of the SWRL rule ensuring the delivery of the

service that the heater in Margaret’s room should be turned on;

ToBeTurnedOnObject(?h) .

Preparation of Table 5.5 from Table 5.1 goes through a filtering process. Segments

of the CQ which are not situation-specific but rather structural statements shall not

have any place in the SWRL rule. After all, SWRL rule is about a specific situation ∆.

This is why statements C, D and G which are structural statements without any

corresponding SWRL rule atoms are faded out in Table 5.6.

The SWRL rule corresponding to the CQ is:

General_Health(?gh),Heater(?h),LOCATION(?l),OBJECT-
SPECIFIC-PREFERENCE(?osp),Resident(?r),belongsTo(?h ,?r),
hasPreference(?r,?osp),isAssociatedWith(?r,?gh),
isCurrentlyIn(?h,?l),isIn(?r,?l),isRelatedTo(?osp,? h),
assignedRoom(?r,?ln),bodyTemperature(?gh,"feverish"),
locationName(?l,?ln),objectNewStatus(?osp,"on"),
roomTemperature(?l,"cold"),status(?h,"off")->
ToBeTurnedOnObject(?h)

Chapter 5, Evaluation of the Proposed Model by Implementation 130

The SWRL rule has in its body a set of OWL restrictions which we explain in their

order of appearance in Table 5.6.

The CQ begins with the statement “Margaret is a resident in SeCH”. This justifies the

presence of a Resident class inside the body (antecedent) of the rule as a unary

predicate, Resident(?r) . As the rule is general and should be applied to any

individual of the Resident class, the argument of the atom is not an actual value

such as “margaret ” and therefore a variable ?r is used instead.

Table 5.6: Mapping the CQ semantics with the atoms of SWRL rule

There are varieties of information available about ?r as soon a PCE∆ is created. To

name a few, the individual’s name, gender , d.o.b. are some examples.

However, despite their availability some of them are not semantically useful

C Competency Question Statement SWRL Rule Atoms

A Margaret is a resident in SeCH. Resident(?r)

B Margaret’s name, gender and her assigned room

are examples of available information from SeCH.

assignedRoom(?r,?ln)

C SeCH is in the UK and therefore it follows the UK

health policy and procedures.

D SeCH is a care home.

E Margaret is feverish. General_Health(?gh)
bodyTemperature(?gh,
"feverish")
isAssociatedWith(?r,?gh)

F Her current location is “Room 101” LOCATION(?l)
isIn(?r,?l)

G which is a private physical location (bedroom)

inside SeCH.

H This location (Room101) is “cold” (considering

Margaret’s body temperature).

roomTemperature(?l,"cold")

I A heater “heater152” is present in Room101. Heater(?h)

J The status of this heater is “off”. status(?h,"off")

K This heater belongs to Margaret. belongsTo(?h,?r)

L Margaret has indicated when she was admitted to

SeCH some object preferences.

OBJECT-SPECIFIC-PREFERENCE(?osp)
hasPreference(?r,?osp)

M One of these preferences is the heater in her room

to be turned on, if it is off, when she is feverish.

isRelatedTo(?osp,?h)
isCurrentlyIn(?h,?l)
objectNewStatus(?osp,"on")

Chapter 5, Evaluation of the Proposed Model by Implementation 131

information as far as the CQ is concerned. In other words, whether the person is

male or female, young or old, the SWRL rule holds. There is, never the less, one

piece of information about a resident ?r which is important as far as the CQ is

concerned. This is the resident’s assigned room. When residents are registered in

SeCH their bedroom which is their assigned room is known. This, therefore, justifies

the presence of the binary predicate assignedRoom(?r,?ln) in the body of

the rule. This predicate is a data type property which has Resident as its defined

domain. Its range value is of type string, which means the variable ?ln can only

take string values.

The CQ states that the device activation takes place when there is a change in SeCH; i.e.

Margaret is feverish. We have seen before the justification for the FIELD hierarchy.

General Health is the bottom level class of FIELD . When the Context

Management detects the change, it produces the information about the

feverishness of the person. Consequently an individual “feverish ” of class

General Health is created, as shown in Figure 5.5. This therefore verifies the

presence of General_Health(?gh) . Instead of “feverish ” a general variable

“gh” is used for this unary predicate. The General_Health class has a

bodyTemperature data type property which has string range value. In this

particular case the range is “feverish ”, that is bodyTemperature(?gh ,

"feverish "). An individual of FIELD must always be associated with a PERSON,

as discussed before. In OWL ontology, it is always an object property that links two

individuals together. In this case the object property isAssociatedWith links

an individual of Resident (as the domain) to an individual of General Health (as

the range). Object properties are always shown in binary predicate,

isAssociatedWith (?r , ?gh).

Next statement in the CQ is “Her current location is “Room 101”. The inevitability of

having a unary predicate, similar to Resident(?r) for LOCATION is evident,

hence the atom LOCATION(?l) . It is important to note that ?l is an individual of

the class LOCATION unlike the variable ?ln in assignedRoom(?r,?ln) that is

a string type for the name of a location. Similar to object property

Chapter 5, Evaluation of the Proposed Model by Implementation 132

isAssociatedWith , there is a need to link the LOCATION and Resident

individuals. This is the reason for the inclusion of isIn(?r,?l) in the SWRL rule.

The statement “This location is ‘cold’” bring about the atom

roomTemperature(?l,"cold") in which roomTemperature is a data type

property of LOCATION class which has string range value.

The next statement is “A heater “heater152” is present in Room101”. This gives

enough ground to have Heater as a class predicate inside the body of the rule.

The following statement, “The status of this heater is ‘off’.” requires the predicate

status(?h,"off") . Considering that OBJECT class has status data type

property and that Heater is a subclass of OBJECT, it is fine to have ?h individual

which is of type Heater as the domain argument.

The CQ imposes that the heater has to belong to Margaret to be activated, where

it says “This heater belongs to Margaret.“. This requires an object property with

Heater as its domain and Resident as its range. This is precisely why we have

belongsTo (?h,?r) as an atom in the SWRL rule.

“Margaret has indicated … some object preferences.” clearly justifies OBJECT-

SPECIFIC-PREFERENCE (?osp) . As before, to relate the individual ?osp

with individual ?r a binary object property predicate is used,

hasPreference(?r, ?osp) . The last statement specifies what type of object

this preference is referring to where it says “One of these preferences is the

heater…”. The object property isRelatedTo which has OBJECT-SPECIFIC-

PREFERENCE as its domain and OBJECT as its range is used, hence

isRelatedTo(?osp,?h) .

Further down the CQ adds that “…the heater in her room to be turned on…”.

Considering that earlier we have used the variable ?l for the location of

Margaret , now the same variable has to be used in the rule for the location of the

heater object. As before, for this purpos isCurrentlyIn which is another object

property, is used. That is why isCurrentlyIn(?h,?l) is part of the rule.

The preference is to turn the heater “on”. So this information is available as a string

value for a data type property of ?osp individual of OBJECT-SPECIFIC-

Chapter 5, Evaluation of the Proposed Model by Implementation 133

PREFERENCE class. This is shown as objectNewStatus(?osp,"on") which is

a binary predicate among the premises of the SWRL rule.

So far we have covered only the atoms of the body of the rule. All the atoms of the

body must be true for the rule to trigger the action specified in the head

(consequent) of the rule. When all the atoms of the body of the rule corresponding

to the CQ are true, then the specific heater in Margaret’s room that is currently off

has to be turned on (item iii in section 5.3). The physical process of turning the

heater on is not the responsibility of ASeCS. What is its responsibility is to deliver

the service that triggers an actuator (item 3 in section 5.3). For this purpose, we

have extended the OBJECT class horizontally to have a subclass of OBJECT called

ToBeTurnedOnObject . This class will accommodate all individual objects which

have to be turned on. In this particular CQ when all the conditions are met, the

heater ?h which is a member of the class Heater will be also a member of the

class ToBeTurnedOnObject . This is why ToBeTurnedOnObject(?h) by

itself defines the head of the SWRL rule.

5.2.6 Running the Rule

Once all the necessary GOnto concepts (including classes, object property, data type

property, and individuals) have been identified, and where necessary the GOnto is

extended to have all necessary concepts required for the SWRL rule, a reasoner

engine can run the rule to reason upon the assertions to infer new knowledge about

already existing individuals. We used the built-in Pellet reasoner (Pellet, 2004) in

Protégé 4.0 (Protégé, 2009) ontology editor to run the SWRL rule. We show the final

result of running the rule in Figure 5.11.

Figure 5.11: The result of running the SWRL rule for the running example CQ

Chapter 5, Evaluation of the Proposed Model by Implementation 134

The screen shots of steps that the FCM is being applied for the running example

through a Java application is shown in Appendix A, and the software application

with GOnto is supplied in Appendix B.

5.3 Summary

In this chapter, we have set the scene for a successful implementation of the FCM.

As PCE systems are domain-specific, the evaluation had to be done within a specific

domain. Considering the increasing demand for PCE systems in healthcare domain

we have chosen a care home environment and stated an example scenario. The

scenario is simple but comprehensive to address all elements of PCE∆T.

An example of a software application of ASeCS architecture was developed using

Java technologies. We have shown through a CQ the situational information of the

example scenario that have to be detected for the computational model to be able

to reason about the situation. This is illustrated through several interactions using

SWRL enabled OWL ontology.

 135

Chapter 6

Evaluation and Reflection

In this chapter, we evaluate and reflect on achievements against objectives set in

Chapter 1; explaining how the FCM addresses concerns of Chapter 1 and views in

Chapter 3. We will discuss design decisions in modelling the Generic PCE∆T.

Problems encountered during implementation are also pointed out in the chapter.

The aim of this research was to specify a formal computational model that can

represent an abstraction of computationally significant semantics of situations in

domain-specific PCEs. In this chapter therefore, we also elaborate on other

achievments in our journey towards the creation of the FCM.

6.1 EVALUATION

6.1.1 Meeting Objectives

In Chapter 2 we have reviewed some examples of solutions in creating intelligent

applications in PCEs, with the intention that they could help us with our vision of

PCEs outlined in Chapter 1. In section 3.2 and 3.3 we have analysed particularly

shortcomings of the current software technologies in PCEs, and the limitations of

context-aware applications respectively. The review of related work and our earlier

experiences (Shojanoori, et al. 2008, 2009) lend themselves to the conclusion that

we could not use existing software solutions to address problems and shortcomings

in pervasive computing. In the following subsections the four objectives of the

thesis are evaluated.

 136

6.1.1.1. Outlining Problems in PCE Research and their Shortcomings

The first objective of the research was to analyse and summarise the problems in

and shortcomings of pervasive computing, and assess the way they have been

addressed in SE in the last decade. We started our background reading from the

time when the vision of ubiquity of computing emerged (section 2.1.1), which was

in the mid ‘70s. The vision challenged the HCI and AI communities by asking them

to focus on users (section 2.1.2) and make computing devices, which have become

mobile and wireless, more aware of their environments (section 2.1.3). The gradual

recognition of ubiquitous computing (section 2.1.4) which led to the emergence of

pervasive computing in 2001 (section 2.2.1) created numerous and different

perceptions of PCEs. The examples are: users should be in control of non-intrusive

PCEs; PCEs should provide services to users anywhere and at anytime; preferences

of users should be observed in PCEs; PCEs should be context-aware; PCE devices

should be able to share knowledge and to reason about the environment; PCE

applications should operate in highly dynamic environments and many more

(section 2.2.2). Despite various perceptions of PCEs, context-awareness has been a

defacto necessity of such environments. We anticipated, therefore, that without

correct contextual information we could not secure the delivery of the service to

the users in PCEs, thus a thorough analysis of context-aware applications was

necessary in order to understand their extent of usefulness for PCEs (section 2.3).

However, the available research on context awareness was rather disappointing.

We have highlighted the lack of common consensus on what exactly context may

mean and have become aware that context-aware software applications and

context modelling in such applications did not guarantee the delivery of the

expected outcome in PCEs. Imperfection of context information, inflexibility of

context models, domination of localisation-aware systems, the lack of high-level

abstraction and consequently the lack of context reasoning, were identified as

stumbling issues in the realisation of PCEs, if the traditional context awareness is

being used.

6.1.1.2. Agreeing on Common Characteristics of and Situations in PCEs

The second objective of the research was to create a list of common characteristics

of PCEs which may systemise our perception on what PCEs are and what we expect

 137

from them. These common characteristics should also be useful in the FCM, which

in turn will help us to define and create a situation in a PCE which will deliver an

expected service. The common characteristics of PCEs are derived in Chapter 3

from both expectations we may have from PCEs and limitations of current context

aware software solutions in pervasive computing. Therefore in Chapter 3, we focus

on expectations from pervasive computing and focused on issues such as: a very

short time span of information, which describes a situation in PCEs, problems with

‘location-aware only’ mobile applications that are perceived as context-aware

applications, context-aware applications with fixed hardware infrastructure with no

regard to the abstraction of situational knowledge in PCEs and consequently are

incapable of supporting scalability which is a key issue in PCEs. We have also shown

the lack of support for inference and reasoning in context aware applications; a

necessity in PCEs to infer new knowledge and reason about situations to deliver

services expected by their users.

We advocate that PCEs are user-centric, have dynamically defined inputs, require

flexible interfaces, implicit interaction between users and pervasive computational

devices, and might not depend on historical information accumulated in PCEs at all

because they focus on a particular situation in PCE. Consequently, traditional

contexts are not sufficient to define and manipulate PCE and therefore we should

augment or replace it with situations in order to deliver expected services to the

users of PCEs. The purpose of PCEs has become more clear: this is a non-

autonomous environment, which empowers its users, without overloading them

with information, behaves as a proactive environment and, at the same time,

unobtrusive with minimal distraction to their users. The common characteristics of

PCEs might be sufficient to manage the description of semantics of situations we

may encounter in PCEs. However, a formal computational model is needed in order

to define which of its elements we must have, and which computational steps we

must perform in order to secure the existence of computations, that deliver a

service in PCEs.

 138

6.1.1.3. Defining the FCM

The third objective of the research is to define an FCM which will allow

representation of computationally significant semantics of any situation in PCEs

for the purpose of delivering situation-specific services. In Chapter 4 we have

provided 17 definitions and 24 axioms about notions and contributing elements

of the formal computational model for defining situations in PCEs, and reason

about them to deliver services to their users.

We started our journey towards the creation of formal computational model by

defining what PCEs, situation encountered in them and services, which are

expected to be delivered to PCE users, are. Consequently, we require that each

situation PCE∆ comprises a finite number of real world instances, and for all ins t

that share the same features, we have defined category Ctg i as an important

abstraction in the PCE. When more precision is required for representation of the

semantics of an ins t , lower levels of abstractions are needed. Category Ctg i

should therefore be seen as having subsets which allow for various levels of

abstraction. We must know exactly which subset of category Ctgi the ins t

belongs to. To differentiate between different subsets of a Ctg i , each of them is

qualified with a level Lev j (Definition 6). When an ins t is detected, it is always

at the “leaf” level LCtg i .Lev j (Definition 9) of its “root” category

RCtg i .Lev j (Definition 10).

Creating a situation-specific taxonomical structure PCE∆T for a PCE∆ is an

important step towards a FCM. PCE∆T, as the taxonomical structure of the real

world participants in PCE∆ is described through memberships of instances within

categories Mbr(ins t ,Ctg i .Lev j) and we have defined (Definition 11-15)

five RCtgi.Levj occurrences in PCE∆T, namely Psn (for person as users have a

central role in PCEs and existence of one without user is not possible, P8 and P11

in Table 3.3), Fld (for field, encompassing all possible abstractions of ins t s, of

domain-specific information in any PCE∆, P18 in Table 3.3), Ojt(for object,

encompassing all possible abstractions of ins t s of cyber and physical objects in

 139

any PCE∆, P1, P2 and P3 in Table 3.3), Pfc (for preferences, encompassing all

possible abstractions of ins t s of preferences of users in any PCE∆, P12 in Table

3.3), and Lcn(for location, encompassing all possible abstractions of ins t s of

physical or cyber locations in any PCE∆ , P1, P9 and P19).

If detected information in a particular PCE∆ cannot be abstracted into any of the

occurrences RCtg i .Lev j and their subsets, then we should be able to find an

element within the PCE∆T which may accommodate such semantics. An instance

characteristic chr q which is a description of a Mbr(ins t ,Ctg i .Lev j) with value

vlu q and represented in a triplet does exactly that (Definition 16).

We have also defined binary relationship rlp r between PCE∆T elements (Definition

17) to allow relationships within the PCE∆T between Mbr(ins t ,Ctg i .Lev j). We

have summarised these definitions and axioms of section 4.1 in Figure 4.9.

The formal computational model (FCM) is presented in section 4.2. Loops and steps

towards the creation of PCE∆T to deliver a domain and situation-specific service in a

PCE∆ are divided into three parts and depicted in Figure 4.10. The first part

addresses the extension of Ctg i .Lev j , insertion of ins t, adding chr q to

Ctg i .Lev j and finally assigning vlu q to chr q for each ins t . The second part

addresses the creation of generic relationships, rlp r (Mbr(ins t , Ctg i .Lev j),

Mbr(ins u, Ctg xLev y)). The third part addresses the creation of situation-specific

extended relationships. The FCM shown in Figure 4.10 is a programming language-

independent model which has the flexibility of accommodating any changes to the

generic PCE∆T in terms of adding new occurrences RCtg i .Lev j , new rlp r or

chr q.

Knowing that we will use the SW technology stack as the result of the background

research (section 2.4), the FCM should also be expressed in vocabulary and

following the terms of the suitable technology to secure the implementations of

formalised computations. Both vocabulary and terms of OWL ontology language

have influenced the format and the content of the FCM shown in pseudo code in

 140

section 4.2.2.2. Unlike boxes of Figure 4.10, which represent a generic formal

computational model, the FCM pseudo code is tailored to the proposed model

prescribed in section 4.1.

To complete the journey towards creation of the FCM, here we would like to

reiterate that the power of the FCM is creating a semantically rich PCE∆T, without

which we cannot secure the delivery of a situation-specific service in PCE. However,

the FCM cannot fully specify the exact computation of services to be delivered,

because services are domain and situation-specific. PCE∆T, ensured by the FCM, is

semantically rich that may trigger automatically reasoning for the delivered service.

Therefore, PCE∆T can have additional rules to trigger the situation-specific services.

6.1.1.4. Illustrating the FCM

The fourth objective of the research was to illustrate and implement the proposed

FCM in a domain of interest, using SWRL enabled OWL ontology. We have set the

scene for the application of the FCM in section 5.1. by choosing remote patient

monitoring from the healthcare domain (section 5.1.1). We introduce healthcare

environment of Self-care homes (SeCH), with residents who require constant or

occasional support. SeCH is equipped with sensors, which detect the whereabouts

of its residents and monitor their activities and physiological functions (Figure 5.1).

Issuing a health related recommendation to residents (users), informing them of

any changes that concern them, activating devices around them automatically,

raising an alarm for the medical staffs on duty, are some examples of the services

delivered in SeCH.

The example scenario that is relatively humble is about Margaret who is a resident

in SeCH and like all other residents is being monitored so as to be attended to

whenever there is a change in her health situation.

Illustration of PCE∆∆∆∆T creation according to the scenario is given in section 5.2, in

which we have explained how the situational information for the creation of PCE∆T

is established through the use of CQ. We have formulated the CQ and segmented it

in Table 5.1 and showen how it is used to detect ins t s and subsequently to create

PCE∆T. The breakdown of the CQ in Table 5.1 demonstrates how each piece of

 141

information, a word, a phrase or a complete sentence in the CQ can be mapped to a

formal element of PCE∆T as prescribed in three parts of Figure 4.10.

Part 1 of Figure 4.10: In section 5.2.2.1, we went through all the segments of the

CQ and subsequently created new ctg i .Lev j , Mbr(ins t ,ctg i .Lev j) ,

and(Mbr(ins t ,Ctg i .Lev j),chr q,vlu q) and represented them in formal

specification in terms of a formal element of PCE∆T.

Part 2 of Figure 4.10: Then in section 5.2.2.2, we went through all the segments of

the CQ and created generic relationships

rlp r (Mbr(ins t ,Ctg i .Lev j),Mbr(ins u,Ctg xLev y)).

Part 3 of Figure 4.10: In section 5.2.2.3 we finally went through all the segments of

the CQ and created domain and situation-speciic relationships of the PCE∆T.

The formal content of PCE∆T is summarised in Table 5.2, and a mapping between

them and the situational information of Table 5.1 is presented in Table 5.3.

The use of existing generic Ctg i .Lev j , and generic rlp r for the example scenario

is depicted in Figure 5.6, extension of PCE∆T with situation-specific Ctg i .Lev j is

shown in Figure 5.7, and extension of PCE∆T with situation-specific rlpr in illustrated

in Figure 5.8. The generic GOnto ontology and the extended situation-specific

SeCHOnto ontology mapping the PCE∆T taxonomical elements for the example

scenario situation are summarised in Figure 5.9 and 5.10 respectively.

Transformation of PCE∆T taxonomical elements to OWL ontology entities (or

concepts) had to be done to perform the implementation of Margaaret’s situation

outlined in the CQ. OWL ontologies are modelled around four concepts: individual,

class, object property, and data type property (section 2.4.1). Every piece of

information represented in PCE∆T is mapped and represented in SeCHOnto, which

in turn provides semantics necessary for delivering the service Margaret expects for

her situation. For example, the counterpart of Ctg i .Lev j of PCE∆T in ontology is

“class”. Although classes can have different relationships with each other in an OWL

ontology, we are only interested in the is-a (or subsumption) relationship.

Transformation of situational information to OWL ontological concepts is provided

 142

in Table 5.5. Every ins t of PCE∆T has some characteristics chr q. These are defined

as data type properties in OWL. The domain of a data type property is the class

which is the mapping of the Ctg i .Lev j of the Mbr(ins t ,Ctg i .Lev j) . The

range value of data type properties can be of different types, but we restrict to

“string” type. Instances ins t in PCE∆T have become assertion of “individuals” in

OWL ontology. When an individual is asserted, the class it is a member of has to be

stated. Once an individual is asserted, its data type properties’ value can also be

asserted. Similar to rlp r relationship between two ins t in PCE∆T, object

properties in Owl ontology are also relationships between individuals. The object

property is defined by its domain and range, which by definition are classes. Their

counterparts in PCE∆T are the two Ctg i .Lev j that the ins t at both sides of the

corresponding rlp r are member of.

Illustration of the reasoning about the situation PCE∆ of the example scenario to

deliver a service to the user of the PCE in that situation is explained in section 5.2.5,

in which the CQ semantics of Table 5.1 is mapped to the premises of a SWRL rule in

Table 5.6. Appendix A contains the screen shots of the implementation of the

example scenario through a Java application, that communicates with the ontology

and inference and reasoning layers of the architecture through OWL API

communication channel.

6.1.2 Impact of Semantic Web Technologies

6.1.2.1 The Impact of SWT on the FCM

In Chapter 3, we have clearly stated that we will use the SWT stack for creating

computations according to the FCM. This demands the use of technology

dependent vocabulary and terms within the FCM. Therefore, SWT must have

influenced the format and the content of the FCM and we have known that from

the start of this research. However, this is not a major issue because the power of

the proposed FCM is in its ability to grasp the semantics of PCEs, specify its

conceptualisation, and perform reasoning upon it in order to deliver services.

Furthermore, we need a technology which will enable us to deploy the

computations from the FCM. Therefore, however influential SWT is in the delivery

 143

of the FCM is, SWT is a technology of choice, because it happens to respond fully to

our needs.

The other impact of SWT on the FCM was attributed to the OWL ontology language.

The syntax and semantics of the language did not have any influence on our

research until section 4.2 where the FCM is formally specified using the “if-then-

else” pseudo code. In other words, the proposed FCM described through a set of

loops for creating categories and asserting instances in Figure 4.10 is not OWL-

dependent. They guide any PCE designer to implement the FCM using any other

languages and technologies rather than the recommended W3C technologies.

However, the FCM pseudo code, which is nothing more than the translation of the

semantics from the set of lopps of Figure 4.10 into OWL terms is OWL specific.

Some readers may argue that the FCM in Figure 4.10 is completely technology

specific, but it will be very difficult today to work differently. It is impossible to find

any SE solution today which is NOT dependent on technology and which is so

“generic”, that actually any available software technology can be used to

implement it.

Finally, the selection of situational information for the creation of PCE∆T is

established through the use of CQs which is, strictly speaking, an OWL term. We

have shown how dividing CQ into segments will eventually form the building blocks

of PCE∆T systemise receiving and formalising situational information by PCEs. This

dependency on OWL when mirroring the semantics of QC in PCE∆T is extremely

important, because it can pave the way of high level of automation based on exact

user preferences, which is very important in PCEs. If OWL and its terminology have

secured such an outcome, then being OWL dependent when defining the FCM is not

unreasonable. In contrary, the power and expressivity of OWL have exceeded our

expectations and however difficult it was to find exactly what we should have in the

FCM, OWL has helped us to successfully structure and evaluate the FCM.

 144

6.1.2.2 The Impact of SWT Stack on the FCM

The SWT stack is extremely rich and offers choices of technology components,

which can be used in understanding and interpreting the Web. Our choice of using

SWRL enabled OWL ontologies was based on both

• the previous experiences of using them as a SE solution across various

problem domains, and

• the relative maturity of OWL and SWRL.

Standardisation in software in general takes very long and we have experienced

considerable discrepancies between different implementations because of the

complexity of software standard. One of the best examples is a painful

standardisation of SQL and numerous SQL dialects which still exist in applications

using SQL. OWL, however, emerged in 2004 as the W3C recommended SW

language (W3C, 2004b) rather quickly. The language is constantly being improved,

but even the initial version was stable and convincing enough to be chosen for the

deployment of the FCM.

Where is OWL in the FCM?

The loops of the FCM (Figure 4.10) are almost OWL and SWRL free because we did

not want that the FCM to be programming language specific. However, the FCM

was developed with the use of SWT in mind. The diagram and description of section

4.2.1 could be easily adapted to any new language should W3C decided to

introduce and replace OWL or SWRL in the SWT stack. However, considering the

existing SWT stack, and knowing that we wanted to implement the FCM using SWT,

we had no choice but to use syntax and semantics of OWL in pseudo code in section

4.2.2.

6.1.2.3 The applicability of the FCM across problem domains

The FCM is applicable across domains because of several factors. Firstly, concepts

which model problem specific semantics are not instantiated in the FCM. The

occurences of RCtg i .Lev j in the Generic PCE∆T have been carefully chosen that

they are applicable to all PCEs and are reflecting common characteristics of PCEs

 145

(Table 3.3). This commonality of RCtg i .Lev j ensures that the reusability of the

formal model in different environments across domains.

Secondly, SE solutions use conceptualised knowledge and only through

implementation and running of application programmes generated from the model,

they become problem specific. This SE principle is observed in the FCM because the

conceptualisation of domain and situation-specific PCE∆ follows the steps shown in

Figure 4.10, which has no specificity about any problem domain.

Thirdly, PCEs we advocate are always associated with a conceptualisation of a

situation PCE∆ within them. It is always the PCE∆, part of which is the user of the

PCE, that manages the behaviour of the PCE. Therefore, if we have a sufficient

mechanism in the FCM to handle any situation in PCE, then the FCM can be used

across domains. Considering the generic PCE∆T (paragraph 4.1.10) that is common

among all PCEs, and the Figure 4.10 steps to extend it with situation-specific

Ctg i .Lev j to create extended PCE∆T, the FCM is applicable across problem

domains.

6.2 Reflection

6.2.1 The FCM and the Generic Taxonomical Structure

6.2.1.1 What Influenced the Generic Taxonomical Structure

The constraints defined in the FCM are summarised in Figures 4.9 and 4.10. We

would like to note that we had to strike a balance between the re-usability of the

FCM and its semantic expression. Too many constraints within the generic

taxonomical structure PCE∆T would minimise the reusability of the FCM across

domains and would not be used across various situations in PCEs. It is true that a

model without constraints is too general to be “decidable”, but too many

constraints might also weaken inference mechanisms or even prevent from

extending the generic taxonomical structure if needed. This is particularly important

for the FCM, as it delivers situation-specific services on an ad-hoc basis (i.e.

generated dynamically), and its concepts in such conceptualisation are usually not

known in advance. Therefore, the generic taxonomical structure PCE∆T should have

“just enough constraints” to enhance its semantics. Adding more concepts to the

 146

vertical taxonomical hierarchy, to remedy the lack of constraints, is not an option

we advocate. The power of constraints in computing in general is rarely replaceable

by the expansion of hierarchical structures, including vertical hierarchies, because

they are simply different mechanisms of expressing semantics in computational

models. They may be interchangeable, but not universally.

When looking at the axiomatisation of the taxonomical structure PCE∆T, the reader

would notice that we rarely used pre-enumerations, which has been a widely

acceptable practice in SE. We have only pre-enumerated the Pfc root category,

which represent preferences of the user. We have found that Pfc semantics is

applicable to all situations in PCEs. We agree that pre-enumeration helps to control

hierarchical levels in the generic taxonomical structure and its extensions, making it

easier to manipulate the PCE semantics and eliminate excessive inference.

Nevertheless, excessive pre-enumeration is dangerous in PCEs if we cannot predict

the semantics of the situation in PCEs and manipulate them though reasoning.

We have also not included ‘time’ in PCE∆T. PCEs, as described in Table 3.3, deal with

one situation at a time and are not responsible for storing historical information.

We do not advocate the use of persistence as in (Paganelli and Giuli, 2007), where a

relational database is part of the ontology manager component. We have already

specified that, considering P15, P16, and P17 in Table 3.3, situational information

acquired for a particular moment might not be relevant for the next. Thus ‘time’

has no role in PCE∆T as a contributing factor, unlike examples from (Chen et al.,

2004b) and (Stevenson et al., 2009).

6.2.1.2 Choice of Root Categories RCtgi.Levj in PCE∆T

The proposed generic taxonomical structure PCE∆T has divided root categories

RCtg i .Lev j into five occurrences: Psn (Person), Ojt (Object), Fld (Field), Pfc

(preference), and Lcn (Location). These five RCtg i .Lev j are natural result of the

five groups of characteristics of PCEs, as evident in Table 3.3. For “PCE and devices”

and “PCE and computational/communication setting” groups in Table 3.3., we have

chosen to use the root category Ojt, which stores all possible abstractions of

 147

ins t s of cyber and physical objects in any PCE∆. For the group “PCE and its users”

(Table 3.3) Psn, and Pfc store all possible abstractions of ins t s of preferences

of users in any PCE∆. For “PCE and its performance” (Table 3.3) the category Fld

stores all possible abstractions of ins t s of domain-specific information in any PCE∆,

and for “PCE and its situation” (Table 3.3) the category Lcn stores all possible

abstractions of ins t s of physical or cyber locations in any PCE∆. We remind the

reader that in Definition 2 of situation in PCEs in Section 4.1.1, we note that location

is not the only contributing factor in defining a situation. However, an intrinsic

attribute of an object or person is their physical or cyber location which might be

semantically important in a PCE∆. This was convincing enough merit for location to

deserve the separate root category Lcn in the generic taxonomical structure.

However, it is worth stressing that situation is represented by PCE∆T, and not just an

instance of RCtg i .Lev j occurrence Lcn.

We would also like to add that occurrence Fld has some distinctive semantics

comparing it with other occurrences of RCtg i .Lev j . It allows Fld to be different

from the other occurrences of RCtg i .Lev j. P18 in Table 3.3 indicates that PCEs

are domain-specific. This characteristic requires some generic information about

the domain, which we depict with Fld, to be available irrespective of situations.

One of the options is to allow programmers, who are using the proposed FCM to

have a generic semantics of the domain, applicable to all application programs

generated from the FCM, to be included in the ontological OWL model associated

with the implementation of computations.

6.2.1.3 Natural Growing of the PCE∆T

Any extension of the generic PCE∆T is natural, as it is domain and situation-specific.

Real world instances create PCE∆T and therefore specialisation of the

conceptualisation is entirely based on real situations. The selection of root

categories RCtg i .Lev j as explained in the previous section, and the generic

relationships rlp r between them was also based on natural development of

situations in PCEs. For example, for an occurrence Lcn , RCtg i .Lev j ≡ Lcn , a

rlp r of isIn or isCurrentlyIn or both must exist. However, the location that

 148

a user is in or an object is at, is naturally either a cyber or physical location.

Therefore, RCtg i .Lev j ≡ Lcn = Ctg i .Lev m must have two Ctg i .Lev j ,

namely Cyber-Lcn and Physical-Lcn . In the current FCM these categories

can be added as extension, but we believe they could have been included in the

generic PCE∆T. In other words the following axiom should have been included in

section 4.1.

Axiom: If ∃(x, y) ∊ {PCE∆T(x, y) | x ∊ INS , y ∊ RCtgi.Levj ≡ Lcn = Ctgi.Levm} =>

∃(x, z) ∊ {PCE∆T(x, z) | z ∊ CTG.λ ≡ Cyber-Lcn = Ctgi.Levm-1} ∪

{PCE∆T(x, z) | z ∊ CTG.λ ≡ Physical-Lcn = Ctgi.Levm-1}

One of the difficulties Chen et al. (2004b) encountered in developing ontologies was

the use of “terms”. Although they have adopted common terms used in ‘consensus’

ontologies, such as Friend-Of-A-Friend ontology (Brickley and Miller 2003), they still

had the difficulty of using terms in their SOUPA, and therefore their solution may

not provide the right answer to software applications in some PCE that have

adopted a different set of vocabularies. In our proposal the structure of the

extended PCE∆T and the terms used are domain and situation-specific. The FCM

complies with the SE practice of conceptualisation of a situation as high-level

abstraction, and natural implementation of the situation as problem domain

specific solution. In other words, names used for subsets of any RCtg i .Lev j is

based on situations and therefore we eliminated the problem of “terms” and

“vocabulary” in our OWL ontologies.

Therefore, the FCM is not a fixed pre-defined model, like the one offered by Chen et

al. (2003a) in their fixed context broker infrastructure CoBrA. In their ontology-

based architecture, the ontology provides a set of ’terms’ for ’describing’ contextual

data. It also allows common understanding of ’terms’ between distributed agents

and reasoning, in order to derive additional knowledge about the pervasive space.

It is also interesting to note, that Chen et al (2004b) developed a set of ‘core’ and

‘extension’ vocabulary ontologies. The fundamental difference between their model

and the FCM is that in our proposal the PCE∆T in any situation PCE∆is dynamically

 149

extended from the generic PCE∆T based on PCE∆, but in SOUPA all extended

ontologies are prepared by application developers in advance.

6.2.1.4 Disjoint Extension of Ctgi.Levj

It can be argued that, similar to the horizontal subsets of Ctg i , Ctg i .Lev j , we

may also have several vertical subsets at each Lev j of a Ctg i as shown in Figure

6.1.

Figure 6.1:Vertical extension of Ctg i .Lev j

However, If we represent disjoint categories of each Lev j of a Ctg i as Dis k, our

argument is that although the “a subset of” relation still holds, the

Ctg i .Lev j .Dis k and Ctg i .Lev j .Dis k+1 do not have any other relation apart

from the “a subset of” relation. Therefore, it is inconsequential to know whether it

is Dis k or Dis k+1 of the level Lev j of the Ctg i that the leaf category of Ctgi is a

classification of for a particular PCE∆. As long as the full path from the leaf to the

root category is preserved, there is no need for any additional information, because

it is irrelevant. Therefore, for any particular PCE∆ it is sufficient and valid to claim

that every category can be represented only by Ctg i .Lev j , where i, j ∊ℕ0. We

would also like to stress that once we have agreed on the generic ontology in the

implementation of the FCM, it cannot be vertically extended; i.e. no new disjoint

concepts can be added to it. The reader should be reminded that we generate

PCE∆T dynamically for every PCE∆. Otherwise, a complete pre-defined PCE∆T

supporting all PCE∆s would be necessary. Nevertheless, a pre-defined PCE∆T

contradicts the characteristics we have set for PCEs, therefore as far as we are

concerned there is no other option but dynamic generation of PCE∆T for PCEs.

6.2.1.5 Depth of Ctgi.Levj Extension

The situational information determines how the generic PCE∆T should be extended

to represent the knowledge about the situation, and to allow reasoning upon it to

 Levm Levm-1 Lev2 Lev1

Dis1

 Disj

 Disn

 Ctgi
Ctg i

Ctg i

Ctg i

 150

deliver situation-specific services to the user of the PCE. A real world instance ins t

is grasped by the PCE together with the category it belongs to,

Mbr(ins t ,Ctg i .Lev 1), and Mbr(ins t ,Ctg i .Lev j) for the particular ‘i’ and

all available values of ‘j’ (Axiom 4. Section 4.1.4). Where exactly Ctg i .Lev 1 is

placed in the PCE∆T of a particular PCE∆ depends entirely on the PCE∆ itself. In other

words, PCE∆ determines the precision required for the particular ins t in PCE∆. The

greater the precision for the PCE∆, the deeper the position of Ctg i .Lev 1.

Therefore, the depth of Ctg i .Lev 1 is situation dependent. This means that a

particular ins t may have different precision in various situations, but in any case

the representation Mbr(ins t ,Ctg i .Lev 1) is valid. What varies is the distance

between the leaf Mbr(ins t ,Ctg i .Lev 1) and its root RCtg i .Lev j , where

j=1..n . In other words the value of j in RCtg i .Lev j can be 1 when the root and

leaf are the same, and n>1 when there is a distance between the root and leaf; the

greater the n, the further the distance.

6.2.2 Role of OWL in Defining THE FCM

We have provided a guideline to map each notion of taxonomical elements of PCE∆T

to standard OWL concept in Table 4.3. As explained in 6.1.2.1 and 6.1.2.2, in spite of

knowing that SWT will be used for implementing the computations generated from

the proposed FCM, the definitions of the FCM terms are independent of OWL and

any other programming languages of the SWT stack. In reality the FCM is

independent from any other formal computing languages. Therefore, the

abbreviations used for PCE∆T notions are absolutely arbitrary. However, the

‘meaning’ attached to them reflects our vision and philosophy of PCEs and summary

of PCE characteristics from Table 3.3. Mapping these terms to OWL concepts was

easy as both are based on hierarchical structures. The mapping in Table 4.3 is firm

for the FCM. However, as mentioned in 6.2.1.1, the FCM and the generic PCE∆T can

be modelled differently. Modifications to generic PCE∆T might require mappings

and therefore, Table 4.3 is not ‘the’ table required for transformation of any FCM in

PCEs to OWL.

 151

6.2.3 Implementation

6.2.3.1 SWRL enabled OWL Ontology

The choice of OWL sublanguages within the SWT stack is impressive. Out of the

three sublanguages: OWL Lite, OWL DL and OWL Full, we have used OWL DL.

Considering that the purpose of the computation in PCEs is to reason upon

taxonomical elements of PCE∆T to deliver a service to the user of a PCE, the variant

of OWL to be chosen should support SWRL as the reasoning language used in the

SWT stack. This requirement automatically dismissed OWL Full, which was not a

suitable candidate because of its unrestricted expressivity. OWL Full allows

restrictions to be defined at the “meta level” and therefore types, such as classes

and individuals, are not separated from each other. Elements of PCE∆T, on the

contrary, are clearly separated from each other and therefore OWL Full could not

be suitable for the mapping outlined in paragraph 6.2.2.

OWL Lite was also disqualified because it would not support decidable

computation. OWL DL, which supports DL, as a decidable fragment of first order

logic that SWRL is also based on, was obviously a preferred language which can be

mapped to hierarchies of PCE∆T.

Although Protégé 4 is user-friendly and the most commonly-used open source

ontology editor, it is still an incomplete and somehow unstable tool. The obvious

example is the “tab” provided in Protégé 4, for editing SWRL rules. There is a limit

to the number of atoms one can employ in each rule; if the number exceeds the

limit, a number of the “consequences” in the rule, would be literally omitted from

the rule’s syntax. Furthermore, editing case-sensitive SWRL built-in functions, used

in our earlier experiments, are also problematic. For example, although we

observed the camel-casing convention for naming built-in functions when we wrote

functions in SWRL rules, Protégé editor changed the format and consequently it did

not realise it as a built-in function.

With regards to the development of a software application in IDEs, such as

NetBeans, using SWRL enabled OWL ontology, we would like to emphasise that

 152

establishing the communication between the application and ontology and the

Pellet reasoner was not a direct task. The use of OWL-API interface to link the

Application Layer of ASeCS (Figure 5.3) with Inference and Reasoning Layers, and

Ontology Layers was not straightforward. There is still a lack of supporting online

documentation to guide developers how to create applications based on SWRL

enabled OWL ontologies.

Although in real life situations all SWRL rules are usually defined in advance and

stored with ontologies, such as GOnto in our case, we have also experienced how

SWRL rule can be defined, created and executed through the ASeCS Application

Layer at run time once SeCHOnto has been created. Readers should notice that the

result of the inference and reasoning of a situation PCE∆ is just for the moment,

when the situation occurs, and as soon as another change in PCE∆ is detected, the

result of the reasoning related to the previous moment has to be deleted. This is

because the inference/reasoning of a particular situation PCE∆ might not be exactly

a correct contextual information or suitable for another situation in the PCE. The

behaviour of Protégé editor towards changes of situation in our solution depends

on how the OWL ontology file is accessed. If changes are modified locally (within

the editor), the update is handled automatically without any need for user

interaction. However, when an OWL file is accessed by an application through OWL

API it is “assumed” that ontology has changed outside of Protégé, therefore the

programmer needs to confirm whether the ontology is to be reloaded. Otherwise,

the changes of situation would be disregarded.

This feature of Protégé supports our view of PCEs that each semantics of PCE∆

should be treated separately. This means that each time a change is detected in a

PCE, applications generated from the FCM must reload GOnto and disregard

situation-specific SeCHOnto once the reasoning about the situation which delivered

a service is done. Nevertheless, accessing GOnto from outside of Protégé to extend

it to SeCHOnto requires somewhat frustrating interaction with confirmation dialog

boxes, because the current version of Protégé does not support its OWL file to be

handled by applications automatically.

 153

6.2.3.2 Mapping CQ to the FCM

The verification of ontologies, in terms of addressing if they really represent what

they are expected to, is usually carried out by Semantic Web designers through CQs.

However, we used a CQ in a situation PCE∆, to establish the situational information

necessary for a reasoning mechanism to to deliver a service to the user in the

situation PCE∆ . Interpretation of the CQ and its conversion into SWRL rule is within

the realm of natural language processing, and well outside the scope of this thesis.

We have, however, rephrased, formulated, and stratified the example scenario CQ

to segments, each of which qualify as a distinctive situational information. These

segments, mapped to formal representation of the PCE∆T as shown in Table 5.2,

collectively form the premises (or atoms) of the SWRL rule. The natural

transformation of the CQ to the creation of a situation to be reasoned upon to

deliver a service, facilitates computation with minimal resources and hence the

applicability of the FCM to be implemented on handheld mobile devices.

6.2.3.3 Mapping Situation-specific CQ to SWRL Rule

In Chapter 5, we have focused on the extension of GOnto to represent all the

premises of the SWRL rule related to the particular PCE∆ of the example scenario

and its CQ. The consequent of running the rule, which is “to turn the heater on”,

ToBeTurnedOnObject(?h) , needs to be also represented in the ontology. This

means that Heater(?h) which is currently “off”, status(?h,"off"), will

change its status from “off” to “on” as a result of the specified action. Reader

should bear in mind that all the computation is for a particular situation and the

status of a device cannot be “off” and “on” simultaneously. Hence, the need for the

separate class ToBeTurnedOnObject. Pre-enumeration of OBJECT or

PERSON to have classes such as ToBeTurnedOnObject,

ToBeTurnedOffObject, ToBeAlertedPerson,

ToBeMonitoredPerson is an alternative that can be looked into in future work.

Although we have shown that only one SWRL rule is used in Chapter 5 to reason

about a situation PCE∆, we have used several rules in our previous experiences

(Shojanoori et al., 2010; 2012; Shojanoori and Juric, 2013). Executing several rules

 154

simultaneously, even when we were rule chaining, was not expensive in terms of

resource usage and software application response time.

6.2.3.4 Role of Traditional Computing in Realisation of PCEs

 In Chapter 1 we posed the question of whether we can integrate skills and

experiences of the traditional computing with computations generated from the

FCM, in order to enable inference and reasoning mechanisms of PCEs. Such systems

are expected to support knowledge representation of situations, and to reason

upon it to deliver situation-specific services to users of PCEs. The use of Semantic

Web technologies through IDEs such as NetBeans, as illustrated in Chapter 5 (screen

shots available in Appendix A and application programme available in Appendix B)

shows that we are able to extend the same mechanism of manipulating the

semantics of the Web towards any other form of computations in SE, which does

not have to be related the Internet. However, we have to bear in mind that

traditional software technologies, including Java technologies, cannot manage PCEs

without reference to SWT. Pervasive software applications also cannot rely only on

procedural or object-oriented programming languages alone to address

requirements of PCEs. Managing them though heavy and elaborative knowledge

base systems and making them dependent on constantly growing persistence

would not satisfy a fraction of expectations we have from PCEs.

We are now in a position to debate or answer some of the question in Chapter 1.

The most intriguing one would be to establish exactly where “computing” starts in

our PCEs? Where do we start “computing” if we must deliver services, according to

the computations derived from the proposed FCM? Is it when we start executing

SWRL? Is it when we extend the generic taxonomical structure in order to

accommodate specificity of a situation in PCE? Is it when we start defining

constraints in the taxonomical structure? All three of these may be associated solely

with reasoning mechanisms and inference, but at the same time they could

legitimately correspond to computations in various software applications.

Considering that the implementation of the proposed FCM in software applications

which deliver services in PCEs is feasible, and their running is commercially viable,

 155

the question of where exactly we compute in PCE might be immaterial?

Furthermore, we would not like sideline Java computational power, or marginalise

it, by moving the complexity of computational Java code required in PCE into OWL

ontologies and SWRL rules. However, we demonstrated that the FCM delivers

exactly what we need in PCEs with SWT. If the FCM implementation with SWRL

enabled OWL ontologies gives a viable result, and then we should look at the

proposed architectural solution given through ASeCS and assume that new types of

computations, stored within its architectural core components cannot be ignored.

6.3 Contribution

The proposed FCM in Figure 4.10 is independent of any software technology or

programming language. Although we are confident of the applicability of the FCM

across domains, our intention was to prove that the proposed FCM can work and be

implemented in a particular PCE. That said, while preserving the fundamentals of

the FCM, the generic taxonomical structure of PCE∆T could be altered by

introducing more semantics (axioms) should we be in a situation to revisited it.

The proposed FCM gives instructions on how and which situational information we

need to have. In other words, it is the situation that manages the PCE. The domain

specificity of a PCE indicates which devices and contextual information we may have

in a PCE, but it is the situation that specifies which one of them will be “selected”

for the situation. The Generic PCE∆T guarantees the creation of any situation and

includes its extension if required.

The FCM allows grows of PCE∆T exactly according to expectations a user may have

in a situation PCE∆. This means that the FCM supports the “extend as you go” policy

because its PCE∆T, that makes use of the powerful “is-a”(a subset of) relationship, is

the taxonomical structure of Mbr(ins t ,Ctg i .Lev j) as real world participants in

a PCE∆. Considering that the participation of Mbr(ins t ,Ctg i .Lev j) is

determined by situations, PCE∆T grows naturally the way we, as users of PCE, want

it. Therefore, the FCM guarantees that in PCEs users are and stay really in control.

Considering that PCE∆T grows naturally, based on PCE∆, the computational model

representing the semantics of the situation and infers new knowledge and reason

upon situation is always correct. This entails that the precision of abstraction is

 156

arbitrary and depends on the situation. This humble, but efficient way of knowledge

representation secures expected delivery of services to users of PCEs.

We have to add also the way we address unintentionally one of the major

challenges to the information systems community is information overloading. The

challenges presented by big data inspired the Semantic Web vision. Even though

PCE is in a different league compared to SW, the concept of information

overloading applies to it more than ever. The amount of information in PCEs is too

much to be bearable by any human brain and to some extent by computing

processors, if a timely response is desired. Limiting the computation about any

situation to the situational information that contributes to the situation in PCE is

the solution supported by the FCM. This improves inference and reasoning

processes and generates a response to the situation in a timely manner.

6.4 Research Conclusion and Future Work

This research was a demonstration of the fact that we can use SWT for other forms

of computation than they were originally designed for. We believe this research and

its result will give a pause of thought to the pervasive and ubiquitous computing

community to address the true nature of PCEs. We have achieved all the objectives

set at the beginning. It was a demanding but pleasantly rewarding body of research.

We are pleased with the results of our research and sincerely hope its contribution

to knowledge paves the way for more powerful, user-centric PCEs, the way we have

defined them.

We have shown the role of situation in PCEs and created a common set of PCE

characteristics that helped us in achieving our objectives of the research including

the creation of a formal computational model FCM, which can be deployed using SE

principles and modern software technologies. The FCM advocates formal

representation of situational information, for which current situational information

is meaningless for the next moment, or as worthless as yesterday’s newspaper. The

FCM supports extensibility of devices in PCEs and an extension of the formal model

according to the situation. PCEs do not have boundaries; there is no need to define

the “scope” or “boundary” of a PCE. Situations of a PCE are dynamically created.

 157

This means that boundaries are also changing dynamically. For that reason, a PCE

boundary is defined for every situation at the time the PCE∆ is created. In other

words, It is the situational information that defines the boundary of a PCE and not

the other way round. Software solutions using programming languages and

technologies of traditional computing in conjunction with SWT are instrumental to

interface with these pervasive devices. This means that we will ultimately be able to

run the formal computational model FCM also on mobile and handheld devices.

There is a scope for improvements and future works:

• A PCE must allow its extension, removal and replacement of devices without

any restriction. This requires devices to be self-maintaining in terms of the

meaningful data they provide. The integration of devices in PCE and their

management is another area which would need attention of the FCM.

• We should be looking at implementations of the ASeCS architectures in

mobile environments using Android, iOS and similar operating systems. The

lightness of our computational solution generated from the FCM is encouraging. It

remains to be seen how we can maintain the MVC pattern, so prevalent in modern

computing, and dynamic environments of apps by using the FCM.

• We need to explore the efficacy and efficiency of software application based

on computations generated from the FCM. All our experiments are very

encouraging, but the possible commercialisation of the proposal will require more

attention to interfaces and connection to the interpreted contextual data and

information which feed the FCM. Consequently, we have to add that we should be

able to compare the response time of two PCE systems, one developed with a fixed

conceptual model and the other as we proposed in this research.

Considering the lack of published documentation on use of OWL-API for software

applications to communicate with OWL ontologies and SWRL rule engines, we

intend to provide a guide to help students and researchers to spare the time on

their design ideas.

 158

References

Abhishek, S., Michael, C. (2006) ‘Survey of Context aware Frameworks- Analysis and

Criticism’, (Online) article, UNC-Chapel Hill ITS, The University of North Carolina.

Adlam, T. and R. Orpwood (2004) ‘Taking the Gloucester Smart House from the

Laboratory to the Living Room’, 3rd International Workshop on Ubiquitous

Computing. Atlanta Georgia.

Akyildiz, I. et al. (2002) ‘A Survey on Sensor Networks’, IEEE Communication

Magazine, Vol. 40, No. 8, pp. 102-14.

Albrecht Schmidt, Michael Beigl, Hans-W Gellersen (1999) ‘There is more to context

than location’, Computers & Graphics, 23, Issue 6, pp. 893-901.

Ark, W. and Selker, T. (1999) ‘A look at human interaction with pervasive

computers’, IBM Systems Journal special HCI issue with a focus on Pervasive

Computing, 38(4), pp. 504-507.

Arnrich, B., Mayora, O., Bardram, J. and Tröster, G. (2010) ‘Pervasive healthcare:

Paving the way for a pervasive, user-centered and preventive healthcare model’,

Methods of Information in Medicine, 49:1, pp. 67-73.

Ayala, C.P., Cruzes, D.S., Hauge, O., Conradi, R. (2011) ‘Five Facts on the Adoption of

Open Source Software’, Software, IEEE, Vol. 28, No. 2, pp. 95-99.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (2007)

‘The Description Logic Handbook: Theory implementation and applications’, 2
nd

Edition.

Bacon, J. (2002) ‘Toward Pervasive Computing’, IEEE Pervasive Computing, 1 (2), p.

84.

Bahrami, A., Yuan, J., Smart, P., Shadbolt, N.R.(2007) ‘Context Aware Information

Retrieval for Enhanced Situation Awareness’,IEEE Military Communications

Conference, pp.1-6.

Baldauf, M., Dustdar, S. and Rosenberg, F. (2007) ‘A survey on context-aware

systems’, Int. Journal of Ad Hoc and Ubiquitous Computing, 2(4), pp. 263–277.

Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J., and Zukowski, D. (2000)

‘Challenges: an application model for pervasive computing’, In Proceedings of the

6th Annual international Conference on Mobile Computing and Networking, Boston,

Massachusetts, United States, MobiCom '00. ACM, New York, NY, pp. 266-274.

 159

Bardram, J.E. and Christensen, H.B. (2007) ‘Pervasive Computing Support for

Hospitals: An overview of the Activity-Based Computing Project’, IEEE Pervasive

Computing, 6:1, pp. 44-51.

Barrett, K., Power, R. (2002) ‘State of the Art: Context Management’, M-Zones

Deliverable, pp. 69-87.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) ‘The Semantic Web. Scientific

American’, 284, pp. 34-43.

Berners-Lee, T. (1989) Information Management: A Proposal, W3 Archieve,

Available at http://www.w3.org/History/1989/proposal.html.

Berners-Lee, T. (2001) Weaving the Web: The Past, Present and Future of the World

Wide Web by its Inventor, Harper Collins.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A,

Riboni, D. (2010) ‘Survey of Context Modelling and Reasoning Techniques’,

Pervasive and Mobile Computing, 6, Issue 2, pp. 161-180.

Bharucha, J. A. (2006) ‘CareMedia: Automated Video and sensor analysis for

Geriatric care’.

Bizer, C., Mendes, P.N. and Jentzsch, A. (2012) Introduction to Web of Data. In:

Roberto. De Virgilio, Francesco. Guerra, Yannis. Velegrakis, eds. Available at

http://books.google.co.uk/books?id=aDTDXH0-i-

oC&pg=PC4&lpg=PC4&dq=Google,+Yahoo+and+Microsoft+have+agreed+on+vocab

ularies+for+publishing+structured+data+on+the+Web.&source=bl&ots=OWy8pO0

mh2&sig=WjqYx8_Z_i7HEKrZtt1aG4ZfkxM&hl=en&sa=X&ei=AJViUe-

GGsXmOZW6gOgH&sqi=2&ved=0CEYQ6AEwBA#v=onepage&q=google&f=false.

Bohn, J., Gartner, F. and Vogt, H. (2004) ‘Dependability issues of Pervasive

Computing in a healthcare Environment’.

Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A., and Tanca, L. (2007) ‘A

data-oriented survey of context models’, SIGMOD Rec. 36, 4, pp. 19-26.

Boyaci, O., Martinez, V. B., Schulzrinne, H. (2012) ‘Bridging Communications and the

physical world’.

 160

Brezillon, P. (2011) ‘From expert systems to context-based intelligent assistant

systems: a testimony’, Engineering, 26, pp. 19-24.

Brickley, D., Guha, R.V. (2000) Resource Description Framework (RDF) Schema

Specification 1.0: W3C Candidate Recommendation.

Brickley, D., Miller, L. (2010).FOAF Vocabulary Specification 0.98. Namespace

Document, 9 August 2010 - Marco Polo Edition. Also available at

http://xmlns.com/foaf/spec/.

Brown, P.J., Bovey, J.D., Chen, X. (1997) ‘Context-Aware Applications: From the

laboratory to the Marketplace IEEE Personal Communications’, 4,? New York: IEEE,

pp. 58-64.Cambridge University Press.

Byun, H. E. and Cheverst, K. (2004) ‘Utilizing context history to provide dynamic

Adaptations’, Applied Artificial Intelligence, 18(6), pp. 533-548.

Campbell, R, Al-Muhtadi, J, Naldurg, P, Sampemane, G, Mickunas, M (2002)

‘Towards security and privacy for pervasive computing’, ISSS, Tokyo, Japan, pp. 1-15.

Chen, H., Finin, T., Joshi, A. (2003) ‘An ontology for context-aware pervasive

computing environments’, Special Issue on Ontologies for Distributed Systems,

Knowledge Engineering Review, 18(3), pp. 197-207, Available at:

http://ebiquity.umbc.edu/_file_directory_/papers/63.pdf.

Chen, H. and Finin, T. (2003) ‘An Ontology for Context-aware Pervasive Computing

Environments’.

Chen, H., Finin, T., Joshi, A. (2003b) ‘Using OWL in a Pervasive Computing Broker’.

Chen, G. and Kotz, D. (2000) 'A survey of context-aware mobile computing research

Technical report’, Dept. of Computer Science, Dartmouth College. Available at:

http://www.cs.dartmouth.edu/~dfk/papers/chen:survey-tr.pdf.

Chen, H., Perich, F., Finin, T. W. and Joshi, A. (2004b) ‘SOUPA: Standard ontology for

ubiquitous and pervasive applications’, Proceedings of the First Annual International

Conference on Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous’04), IEEE Computer Society, pp. 258-267.

Chen, H., Finin, T., Anupam, J. (2003d) ‘Semantic Web in a Pervasive Context Aware

Architecture’, In Proceedings of Artificial Intelligence in Mobile System.

 161

Chen, Y., Xu, J., Tang, Y., Fang, Z. (2011) ‘Research on smart space oriented context-

aware system’, Electric Information and Control Engineering (ICEICE), International

Conference. pp. 698-700.

Coen, M. (1998) ‘Design Principles for Intelligent Environments’, Available at:

http://citeseer.ist.psu.edu/cache/papers/cs/2468/http:zSzzSzwww.ai.mit.eduzSzpe

oplezSzmhcoenzSzIEsymposium.pdf/coen98design.pdf.

Coronato, A. and Pietro, G.D.E. (2010) ‘Formal specification of wireless and

pervasive healthcare applications’, ACM Tansaction in Embedded Computing

Systems, 10:1, Article 12.

Coutaz, J., Crowley, J. L., Dobson, S. and Garlan, D. (2005) ‘Context is Key

Communications of the ACM’, 48(3), pp. 49-53.

Crawford, D. (2000) ‘Editorial note, Communications of the ACM’, 43, No. 3.

Damien, C., Benjamin, B., Nicolas, L. and Charles, C. (2009) ‘A generative

programming approach to developing pervasive computing systems’, SIGPLAN

Not. 45, 2, pp. 137-146. Available at:

http://doi.acm.org/10.1145/1837852.1621629.

Declan, S. and David, L. (2003) ‘Semantically driven service interoperability for

pervasive computing’, In Proceedings of the 3rd ACM international workshop

on Data engineering for wireless and mobile access (MobiDe '03). ACM, New

York, NY, USA, pp. 17-24.

Dey, A. K., Abowd, G. D. and Salber, D. (2001) ‘A conceptual framework and a toolkit

for supporting the rapid prototyping of context-aware applications’, Hum.-Comput.

Interact. 16, 2, pp. 97-166.

Dey, A., Abowd, G. (1999) ‘Towards a Better Understanding of Context and Context-

Awareness’, In proceedings of 1st International Symposium on Handheld and

Ubiquitous Computing (HUC '99)1707, pp. 304-307, Available at:

ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf.

Dey, A. K., Abowd, G. D., Wood, A. (1999) ‘CyberDesk: A Framework for Providing

Self-Integrating Context-Aware Services’, Knowledge-Based Systems, 11, pp. 3-13.

Dey, A. K. (1998) ‘Context-Aware Computing: The CyberDesk Project’, AAAI 1998

Spring Symposium on Intelligent Environments, Technical Report SS-98-02, pp. 51-

54.

 162

Dey, A. K. (2001) ‘Understanding and using context’, Personal and Ubiquitous

Computing, 5, No.1, pp. 4-7.

Eiter, T., Ianni, G., Krennwallner, T. and Polleres, A. (2007) ‘Rules and Ontologies for

the Semantic Web’.

Ellenberg, J., Karstaedt, B., Voskuhl, S., Luck, K.V, and Wendholt, B. (2011) ‘An

environment for context-aware applications in smart homes’, in to appear in:

International Conference on Indoor Positioning and Indoor Navigation (IPIN),

Guimaraes, Portugal.

Fahy, P. and Clarke, S. (2004) ‘CASS – a middleware for mobile context-aware

applications’, Workshop on Context-Awareness, MobiSys.

Garlan, D., Siewiorek, D.P., Smailagic, A., Steenkiste, P. (2002) ’Project Aura: toward

distraction-free pervasive computing’, Pervasive Computing, IEEE. 1, No. 2, pp. 22-

31.

Gauvin, M., Boury-Brisset, A.C., Auger, A. (2004) ‘Context, ontology and portfolio:

key concepts for a situational awareness knowledge portal’. System Sciences, 2004.

Proceedings of the 37th Annual Hawaii International Conference on System

Sciences. o., pp.1-10.

Gellersen, H.W., Schmidt, A., Beigl, M. (2002) ‘Multi-Sensor Context-Awareness in

Mobile Devices and Smart Artefacts’, ACM journal Mobile Networks and

Applications (MONET), Vol. 7, No. 5.

Gibson, W. (1984) ‘Neuromancer’, London : HarperCollins, 1995.

GO (2000), Gene Ontology, The Gene Ontology Consortium: tool for the unification

of biology. Nature Genet, 25, pp. 25-29.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. and Sattler, U.

(2008) ‘OWL 2: The next step for OWL’, Web Semant. 6, 4, pp. 309-322.

Gregory, D. A. and Elizabeth, D. M. (2000) ‘Charting past, present, and future

research in ubiquitous computing’, ACM Trans. Comput.-Hum. Interact. 7, 1, pp.

29-58.

Gregory, D. A., Christopher, G. A., J. H., Sue Long, R. K., and Pinkerton, M. (1997)

‘Cyberguide: a mobile context-aware tour guide’, Wirel. Netw. 3, 5, pp. 421-433.

 163

Grimm, R. (2004) ‘One world: Experiences with a Pervasive Computing Architecture’,

IEEE Pervasive Computing 3, pp. 22-30.

Gruber, T.R. (1993) ‘A Translation Approach to Portable Ontology Specification’,

Knowledge Acquisition 5(2), pp. 199-220.

Gu, T., Wang, X., Pung, H. and Zhang, D. (2004) 'An Ontology-based Context Model

in Intelligent Environments’, In Proceedings of Communication Networks and

Distributed Systems Modeling and Simulation Conference, San Diego, California,

USA.

Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P. (1999) ‘The Anatomy of a

Context-Aware Application’, Available at:

http://citeseer.ist.psu.edu/cache/papers/cs/10242/ftp:zSzzSzftp.uk.research.att.co

mzSzpubzSzdocszSzattzSztr.1999.7.pdf/harter99anatomy.pdf.

Hartela, F., W., Coronadoa, S., Dionneb, R., Fragosoa, G., Golbeckc, J. (2005)

‘Modelling a description logic vocabulary for cancer research’, Journal of Biomedical

Informatics, 38, pp. 114-129.

Helal, S. (2011) ‘Programming Pervasive Spaces: Workshop on Semantic

Interoperability in Smart Spaces’, Applications and the Internet (SAINT), IEEE/IPSJ

11th International Symposium. pp. 279-282.

J. Bourcier, A. Diaconescu, P. Lalanda, and J. A. McCann. (2011) ‘AutoHome: An

autonomic management framework for pervasive home applications.’ ACM

Transactions on Autonomous and Adaptive Systems Vol.6(1), pp.1-10 .

Hellenschmidt, M. (2006) ‘Some Issues on Requirements for Pervasive Software

Infrastructures’, Proceedings of the 1st International Workshop on Requirements

and Solutions for Pervasive Software Infrastructures (RSPSI 2006), Dublin, Ireland,

pp. 549-552.

Henricksen, K., Indulska, J. (2004) ‘A Software Engineering Framework for Context-

Aware Pervasive Computing’, Available at:

http://citeseer.ist.psu.edu/cache/papers/cs2/61/http:zSzzSzhenricksen.id.auzSzpub

licationszSzPerCom04.pdf/henricksen04software.pdf.

Henricksen, K. and Indulska J. (2006) ‘Developing Context-Aware Pervasive

Computing Applications: Models and Approach’, Pervasive and Mobile Computing,

2, Issue 1, pp. 37-64.

 164

Henricksen, K., Indulska, J., McFadden, T. (2005) ’Modelling Context Information

with ORM’, Available at: http://henricksen.id.au/publications/ORM05.pdf.

Henricksen, K., Livingstone, S., Indulska, J. (2004) ‘Towards a Hybrid Approach to

Context Modeling, Reasoning and Interoperation’, Proc. of the 1st International

Workshop on Advanced Context Modeling, Reasoning and Management, pp. 54-61.

Henricksen, K., Indulska, J., McFadden, T. and Balasubramaniam, S. (2005)

‘Middleware for distributed context-aware systems’, Proc. of On the Move to

Meaningful Internet Systems, LNCS 3760, pp. 846-863.

Henrickcon, K., Indulska, J. and Rakotoniraniny, A. (2002) ‘Modeling context

information in pervasive computing systems’, In Proceedings of the 1st International

Conference on Pervasive Computing Systems, 2414 of Lecture Notes in Computer

Science, pp. 167-180, Zurich, Switzerland, Springer Verlag.

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G. and Altmann, J. (2002)

‘Context-Awareness on Mobile Devices – the Hydrogen Approach’, In Proceedings of

the 36
th

 Hawaii International Conference on System Sciences (HICSS’03).

Hong, J., Suh, E. and Kim, S. (2009) ‘Context-aware systems: A literature review and

classification’, Expert Systems with Applications, 36(4).

Horrocks, I., Patel-Schneider P., Boley, H., Tabet, S., Grosof, B., Dean, M. (2009)

‘SWRL Built-ins’, (online) Available at:

Avahttp://www.daml.org/2004/04/swrl/builtins.html.

Horrocks, I., Parsia, B., Patel-Schneider, P. F. and Hendler, J. (2005) ‘Semantic web

architecture: Stack or two towers?’, In Proc. PPSWR 2005, pp. 37-41, Dagstuhl

Castle, Germany.

Hwang, G. J., Chu, H. C., Lin, Y. S., and Tsai, C. C. (2011) ‘A knowledge acquisition

approach to developing Mindtools for organizing and sharing differentiating

knowledge in a ubiquitous learning environment’, Computers and Education, 57(1),

pp. 1368-1377.

IBM (2001) ‘Autonomic Computing Manifesto’.

Available at: http://www.research.ibm.com/autonomic/manifesto/.

Intille, S. S. (2002) ‘Designing a Home of the Future’, IEEE Pervasive Computing 1, 2,

pp. 76-82.

 165

Intel (2000) ‘Intel's Computing Continuum Conference to Explore New Era of

Computing, Communication and Interaction in the Digital World’, Available at:

http://www.thefreelibrary.com/REMINDER%2FIntel's+Computing+Continuum+Conf

erence+to+Explore+New+Era+of...-a060057131.

Intille, S. S. (2002) ‘Designing a Home of the Future’, IEEE Pervasive Computing, pp.

76-82.

Intille, S. S. (2006) ‘The Goal: Smart People, Not Smart Homes’, Massachusetts

Institute of Technology, Cambridge, USA.

Jahnke, J. H., Bychkov, Y., Dahlem, D. and Kawasme, L. (2004) ‘Implicit,

contextaware computing for health care’, In Proceedings of the 1st Int’l Workshop

on Modeling and Retrieval of Context.

Jahnke, J. H., Bychkov, Y., Dahlem, D. and Kawasme, L. (2004) ‘Implicit,

contextaware computing for health care’, In Proceedings of the 1st Int’l Workshop

on Modeling and Retrieval of Context (MRC 2004). Schulz, S. and Roth-Berghofer,

Th. (Eds.), CEUR Workshop Proceedings, 114.

Jesse, W. (2011) More about Facebook Linked Data, W3C Archive, Available at:

http://lists.w3.org/Archives/Public/public-lod/2011Oct/0032.html.

Kadak, T. and Kleerova, O. (2006) ‘OWL – Ontology Web Language’, Available at:

http://www.pafis.shh.fi/~trikad06/RM.doc.

Kephart, J. O. and Chess, D. M. (2003) ‘The vision of autonomic computing’, IEEE

Computer, pp. 41-50.

Khalil, I., Ali, F.M., Kotsis, G. (2008) ‘A Datalog Model for Context Reasoning in

Pervasive Environments’, ISPA '08. International Symposium on Parallel and

Distributed Processing with Applications. pp.452-459.

Khedo, K. K. (2006) ‘Context-aware systems for mobile and ubiquitous networks’,

International Conference on Networking, International Conference on Systems and

International Conference on Mobile Communications and Learning Technologies, p.

123.

Khedr, M. and Karmouch, A. (2004) ‘Negotiating Context Information in Context-

aware Systems’.

 166

Kjær, K.E. (2007) ‘A survey of context-aware middleware’, Proceedings of 5
th

Conference on IASTED International Multi-Conference: Software Engineering,

pp. 148–155.

Ko, E. J., Lee, H. J. and Lee, J. W. (2007) ‘Ontology-Based Context Modeling and

Reasoning for U-HealthCare’, IEICE - Trans. Inf. Syst. E90-D, pp. 1262-1270.

Koay, N., Kataria, P., Juric, R. (2010a) ‘Semantic Management of Non-Functional

Requirements in e-Health Systems’, in Tele-Medicine and e-Health Journal, 2010

May;16(4): pp.461-71

Koay, N., Syal, P., Juric, R. (2010b) ‘Reasoning in Pervasive Computational Spaces’, in

proceedings of the 17th Automated Reasoning Workshop, University of

Westminster, March 30-31, available at :

http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html

Korhonen, I., Paavilainen, P., Sarela, A. (2003) ‘Application of ubiquitous computing

technologies for support of independent living’.

Korpipää, P. Mantyjarvi, J., Kela, J., Keranen, H. and Malm, E-J. (2003) ‘Managing

context information in mobile devices’, IEEE Pervasive Computing, 2, No.3,pp. 42-51.

LI, F., Sanjin, S., and Schahram, S. (2010) ‘COPAL: An adaptive approach to context

provisioning’, In Proceedings of the IEEE 6th International Conference on Wireless

and Mobile Computing, Networking, and Communications (WiMob‘10), pp. 286-

293.

Lukowicz, P., Pentland, S., Ferscha, A. (2012) ‘From context awareness to socially

aware computing’, Pervasive Computing, Vol. 11, Issue 1, pp. 32-41.

Lyons, M. (2002) ‘Pervasive Computing – Control and Freedom in Cyberspace’, ITS

14th Biennial Conference, Seoul, Korea

Matheus, C. (2005) ‘Using ontology-based rules for situation awareness and

information Fusion’, W3C Work on Rule Languages for Interoperability.

Matheus, C.J., Kokar, M.M. and Baclawski, K. (2003) ‘A Core Ontology for Situation

Awareness’. In Proceedings of the Sixth International Conference on Information

Fusion, pages 545 –552.

McDermott, D. (1981) ‘Artificial intelligence meets natural stupidity’, Mind Design:

Philosophy, Psychology, Artificial Intelligence (Haugeland, J., Ed.) MIT Press,

Cambridge, MA, pp. 143-160.

 167

McFadden, T., Henricksen, K., Indulska, J. and Mascaro, P. (2004) ‘P. Applying

Disciplined Approach to the Development of a Context-aware Communication

Application’.

McGuinness, D.L., Harmelen, F.V. (2003) ‘OWL web Ontology Language Overview ‘,

Available at: www.w3.org.

Mehra, P. (2012) ‘Context-aware Computing Beyond Search and Location-based

Services’, IEEE Internet Computing, pp. 12-16.

Mike Uschold and Michael Gruninger (1996). Ontologies: principles, methods and

applications. The Knowledge Engineering Review, 11, pp 93-136.

Milosevic, M., M. Shrove, T., Jovanov, E. (2011) ‘Applications of Smartphones for

Ubiquitous Health Monitoring and Wellbeing Management’, Journal of Information

Technology and Application (JITA).

Miraoui, M., Tadj C. and Amar, C. B. (2008) ‘Architectural Survey of Context-Aware

Systems in Pervasive Computing Environment’, Ubiquitous Computing and

Communication Journal, 3, No. 3.

Mungall, C.J., Gkoutos, G. V., Smith, C.L., Haendel, M. A., Lewis, S. E., Ashburner, M.

(2010) ‘Integrating phenotype ontologies across multiple species’, Genome Biol, 8,

11(1).

Mühlhäuser, M. and Iryna G. (2008) ‘Introduction to Ubiquitous Computing’,

Handbook of Research on Ubiquitous Computing Technology for Real Time

Enterprises, ed. Max, M. and Iryna, G., pp. 1-20.

Niyato, D., Hossain, E., Camorlinga, S. (2009) ‘Remote Patient Monitoring Service

using Heterogeneous Wireless Access Networks: Architecture and Optimization’,

IEEE Journal on Selected Areas in Communications, 27:4, pp. 412-423.

Nguyen, T. V., Deok-Jai, C. (2008) ‘Context Reasoning Using Contextual Graph’,

Computer and Information Technology Workshops, 2008. CIT Workshops, IEEE 8th

International Conference on Computer and Information Technology Workshops.

pp.488-493.

Norman, D.A. (1999) ‘The Invisible Computer’, Cambridge, MA: The MIT Press.

 168

Ogden, C. K. and Richards, I. A. (1923) ‘The Meaning of Meaning: A Study of the

Influence of Language Upon Thought and of the Science of Symbolism’, London:

Routledge and Kegan Paul.

Paganelli, F., Bianchi, G. and Giuli, D. (2006) ‘A Context Model for Context-aware

System Design towards the Ambient Intelligence Vision: Experiences in the eTourism

Domain’, in Proc. of 9th ERCIM Workshop "User Interfaces For All", Special Theme:

“Universal Access in Ambient Intelligence Environments”, Königswinter (Bonn),

Germany.

Paganelli, F. and Giuli, D. (2007) ‘An Ontology-Based Context Model for Home Health

Monitoring and Alerting in Chronic Patient Care Networks’, Proceedings of the 21
st

international Conference on Advanced information Networking and Applications

Workshops, AINAW. IEEE Computer Society, Washington DC, pp. 838-845.

Pascoe, J. (1998) ‘Adding Generic Contextual Capabilities to Wearable Computers’,

2nd International Symposium on Wearable Computers, pp. 92-99.

Pascoe, J. (1998) ‘Adding generic contextual capabilities to wearable computers’,

Wearable Computers, 1998. Digest of Papers. Second International Symposium.

pp.92-99.

Polze, A., Tröger, P., Hentsche, U., Heinze, T. (2010) ‘A scalable, self-adaptive

architecture for remote patient monitoring’. 13th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops’,

pp. 204-210.

Ranganathan, A. and Campbell, R. (2003) ‘An infrastructure for context-awareness

based on first order logic’, Personal Ubiquitous Comput. 7, 6, pp. 353-364.

Rolim, C. O., Kochy, F.L., Black, J. and Geyer, C. F. R. (2011) ‘Health Solutions Using

Low Cost Mobile Phones and Smart Spaces for the Continuous Monitoring and

Remote Diagnostics of Chronic Diseases’, In Proceedings of eTELEMED 2011, The

Third International Conference on eHealth, Telemedicine, and Social Medicine,

Guadeloupe, France.

Romero L.M.R., Tosina L. J. R., Valderrama M.A.E., Arbizu J.C. and Martíne I.R.

(2011) ‘A Comprehensive View of the Technologies Involved in Pervasive Care’,

Communications in Medical and Care Compunetics, pp. 3-19.

Roy, P., Abdulrazak, B., Belala, Y. (2011) ‘A Distributed Architecture for Micro

Context-aware Agents’, Procedia Computer Science, 5, pp. 296-303.

 169

Saha, D. and Mukherjee, A. (2003) ‘Pervasive computing: A paradigm for the 21st

century’, IEEE Computer, 36(3), pp. 25-31.

Sang, P., So, W., Jong, L., Sung, K. (2003) ‘Smart home – digitally engineered

domestic life’, Personal and Ubiquitous Computing. pp. 189-196.

Satyanarayanan, M. (2011) ‘Mobile computing: the next decade’, ACM SIGMOBILE

Mobile Computing Communications Review, pp. 2-10.

Satyanarayanan, M. (2001) ‘Pervasive Computing Vision andChallenges’, IEEE

Personal Comm., vol. 6, no. 8, Aug. 2001, pp. 10–1.

Salber, D., Dey, A., Abowd, G. (1999) ‘The Context Toolkit: Aiding the Development

of Context-enabled Applications’, Proceedings of CHI'99, pp. 434-441.

Schulz, S. and Roth-Berghofer, Th (2005) ‘ Context-based Retrieval for Explainable

Reasoning Applying Context Management’ Revue d’intelligence artificelle RIA, Vol.

19 issue 3.

Schilit, B.N., Adams, N., Want, R. (1994) ‘Context-Aware Computing Applications’,

Proc. of the Workshop on Mobile Computing Systems and Applications, Santa Cruz,

CA, IEEE Computer Society, pp. 85-90.

Schilit, B. N., Adams, N., Gold, R., Tso, M. M. and Want, R. (1993) ‘The PARCTab

Mobile Computing System’, Technical Report CSL-93-20, Xerox Palo alto Research

Center.

Schmidt, A. (2000) ‘Implicit Human-Computer Interaction through Context’,

PersonalTechnologies, 4 (2 & 3), pp. 191-199.

Shojanoori, R. Juric, R., Lohi, M (2010) ‘Reasoning and Decision Making in Managing

Pervasive Computational Spaces’ in proceedings of the 17th Automated Reasoning

Workshop, University of Westminster, March 30-31, available at

http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html

Shojanoori, R., Juric, R. and Lohi, M. (2012) ‘Computationally Significant Semantics

in Pervasive Healthcare’, Transactions of the SDPS: Journal of Integrated Design and

Process Science, 16 (1), 43-62.

Shojanoori, R. and Juric, R. (2013) ‘Semantic Remote Patient Monitoring System’,

Telemedicine and e-Health, 19 (2), 1-8.

 170

Shojanoori, R., Juric, R., and Tourani, B. (2010) ‘Experiences of building assisted self

care systems within smart home environment’. In: Proceedings of the 15
th

International Conference on System Design and Process Science, 06 – 11, Dallas,

USA.

Singh, S., Puradkar, S., Lee, Y. (2006) ‘Ubiquitous computing: connecting Pervasive

computing through Semantic Web’, Int. Journal on Information Systems and E-

Business Management, Springer, 4, N4, pp. 421-439.

Spackman, K. (2000) ‘SNOMED RT and SNOMED CT’, Promise of an international

clinical ontology, M. D. Computing 17.

Stevenson, G., Knox, S., Dobson, S. and Nixon, P. (2009) ‘ Ontonym: a collection of

upper ontologies for developing pervasive systems’, In Proceedings of the 1st

Workshop on Context, information and ontologies (Heraklion, Greece, J. M. Gomez-

Perez, P. Haase, M. Tilly, and P. Warren, Eds. CIAO '09. ACM, New York, NY, 1-8.

Strang, T. and Linnhoff-Popien, C. (2004) ‘context modelling survey’, In 1st Int.

Workshop on Advanced Context Modelling, Reasoning and Management.

Comm, 6, No. 8, pp. 10–15.

Streitz, N. and Nixon, P. (2005) ‘The Disappearing Computer’, ACM Communications,

48, pp. 33-35.

Thoyib, W., Lee, E.S., Park, M.G. (2011) ‘Ubiquitous Healthcare system: A design on

the remote monitoring based on walking activities’, Electrical Engineering and

Informatics (ICEEI), 2011 International Conference. pp. 1-6.

Truong, H.L., Dustdar, S. (2010) ‘Cloud Computing for Small Research Groups in

Computational Science and Engineering: Current Status and Outlook’, Computing

Archives for Scientific Computing, Springer-Verlag.

Tsai, C. C., Lin, S. S. J. and Tsai, M. J. (2001) ‘Developing an Internet attitude scale for

high school students’, Computers & Education, 37(1), pp. 41-51.

W3C, XML Technology, Available at: http://www.w3.org/standards/xml/, (accessed

8 March 2013).

W3C (2012a) ‘OWL 2 Web Ontology Language Quick Reference Guide (Second

Edition)’, Available at: http://www.w3.org/TR/owl2-quick-reference/ (accessed 8

March 2013).

 171

W3C (2012b) ‘OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax (Second Edition)’, Available at: http://www.w3.org/TR/owl2-

syntax/ (accessed 8 March 2013).

W3C (2011), SWEO community Project , Available at:

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

W3C (2009) ‘OWL 2 Web Ontology Language Document Overview (Second Edition)’,

Available at: http://www.w3.org/TR/owl2-overview/ (accessed 8 March 2013).

W3C (2004a) ‘OWL Web Ontology Language Overview’, Available at:

http://www.w3.org/TR/owl-features/, (accessed 8 March 2013).

W3C (2004b) ‘Semantic Web Stack’, Available at:

http://www.w3.org/2004/Talks/1117-sb-gartnerWS/slidC18-0.html, (accessed 8

March 2013).

W3C (2004c) ‘The Resource Description Framework’, Available at: www.w3.org/RDF

(accessed 8 March 2013).

W3C (2004d) ‘RDF Vocabulary Description Language 1.0: RDF Schema’, Available at:

http://www.w3.org/TR/rdf-schema/ (accessed 8 March 2013).

W3C (2004e) ‘OWL Web Ontology Language Reference’, Available at:

http://www.w3.org/TR/owl-ref/, (accessed 8 March 2013).

Walker, G. H., Stanton, N. A., Young, M. S. (2001) ‘Where is Computing Driving Cars’,

Int. J Human-Computer Interaction, 13(2), pp. 203-229.

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K. (2004) ‘Ontology based context

modelling and reasoning using OWL’, Pervasive Computing and Communications

Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pp. 18-22.

Want, R., Hopper, A., Falcão, V., and Gibbons, J. (1992) ‘The active badge location

system. ACM Trans. Inf. Syst. 10, 1, pp. 91-102.

Weiser, M., Gold, R., Brown, J.S. (1999) ‘The origins of ubiquitous computing

research at PARC in the late 1980s’, IBM Systems Journal, 38, No. 4.

Weiser, M. (1991) ‘The computer of the 21st century’, Scientific American, 265 (3),

pp. 66-75.

 172

Weiser, M. and Brown, J.S. (1996) ‘Designing Calm Technology’, PowerGrid Journal,

1:1.

Weiser, M. and Brown, J. S. (1998) ‘The coming age of calm technology’, P. J.

Denning and R. M. Metcalfe (Eds.), Beyond calculation: The next fifty years of

computing, New York, pp. 75-85.

Winograd, T. (2001) ‘Architectures for Context Uuman Computer interaction’, 16(2),

pp. 401-419, Available at:

http://hci.stanford.edu/winograd/papers/context/context.pdf.

Xiaosheng, T., Qinghua, S., Ping, Z. (2006) ‘A distributed context aware model for

pervasive service environment’, Wireless Pervasive Computing, 2006 1st

International Symposium, pp. 16-18.

Yoo, Y. (2010) ‘Computing in Everyday Life: A Call for Research on Experiential

Computing’, MIS Quarterly, 34, No. 2, pp. 213-231.

Zhang Y., Jia Z. and Chen Y. (2011a) ‘A thought on the goals & realization of

pervasive healthcare’, Scientific Research & Essays, Vol. 6 (13), pp. 2752-2756.

Zhang, Y., Huang, G.Q., Qu, T., Ho, O., Sun, S. (2011b) ‘Agent-based smart objects

management system for real-time ubiquitous manufacturing, Robotics and

Computer-Integrated Manufacturing’, Vol. 27, Issue 3, pp. 538-549.

 173

Appendix A

In this appendix some screen shots of the implementation of the FCM through the

example scenario in section 5.1.3 are presented.

Figure A.1: Classes of GOnto and their display in a drop-down menu of the the Java application

Figure A.2: Extending SeCHOnto by adding “Private” as a subclass of “Physical-Location”

Each time the ontology changes the dialog box of Figure A.3 appears as the

ontology was changed through the application and not locally.

Figure A.3: Reloading of changed ontology dialog box

 174

Once all new classes have been added, the SeCHOnto structure is as shown in Figure A:4.

Figure A.4: SeCHOnto when all new classes have been added to the structure

Figure A.5: Asserting an individual “room101” as a member of Private class

 175

Figure A.6: Asserting an individual “room101” is reflected in SeCHOnto ontology

Figure A.7: Asserting of feverish as an individual of Care_Home

Figure A.8: Asserting of an individual of Resident along with generic data type properties

 176

Figure A.9: Reloading the ontology after action of Figure A.8

Figure A.10: Display of extending SeCHOnto with an object property

 177

Figure A.11: Display of updated SeCHOnto after extension of figure A.10

Figure A.12: Addition of situation-specific data type property “assignedRoom” to “margaret”

Figure A.13: The result of running the SWRL rule for the running example CQ

 178

Appendis B

The software application.

