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Abstract 

We have categorised the characteristics and the content of pervasive computing 

environments (PCEs), and demonstrated why a non-dynamic approach to 

knowledge conceptualisation in PCEs does not fulfil the expectations we may have 

from them. Consequently, we have proposed a formalised computational model, 

the FCM, for knowledge representation and reasoning in PCEs which, secures the 

delivery of situation and domain specific services to their users. The proposed 

model is a user centric model, materialised as a software engineering solution, 

which uses the computations generated from the FCM, stores them within software 

architectural components, which in turn can be deployed using modern software 

technologies. The model has also been inspired by the Semantic Web (SW) vision 

and provision of SW technologies.  Therefore, the FCM creates a semantically rich 

situation-specific PCE based on SWRL-enabled OWL ontologies that allows 

reasoning about the situation in a PCE and delivers situation specific service. 

The proposed FCM model has been illustrated through the example of remote 

patient monitoring in the healthcare domain. Numerous software applications 

generated from the FCM have been deployed using Integrated Development 

Environments and OWL-API. 
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CHAPTER 1  

INTRODUCTION 
 

1.1  Research Domain 
Pervasive computing is leading the way in a fast-growing trend of integrating 

transparently physical heterogeneous computational devices into our private and 

professional lives. The ubiquity of these devices and advances in developing 

software solutions across domains, have raised hopes for the creation of true 

widespread pervasive computing environments (PCE). The research advances in PCE 

in the last two decades, and the demand growth for computations on mobile, 

wireless and handheld devices has earned a growing eagerness within the software 

and hardware industry for a greater involvement in creating PCEs, particularly in the 

last ten years. The interplay of research and technological achievements along with 

the perpetual effort by researchers and practitioners working on various PCE 

projects on one hand, and maturity of distributed systems and mobile computing on 

the other, have paved the way for the richness of PCEs in the post-PC era. These 

efforts and triumphs not only have brought about technical devices perceived as 

‘exotic’ in the 1980s and even 1990s, but also contributed towards a gradual 

realisation of powerful PCEs spread across many domains. 

 

The changing nature of software applications and pervasiveness of computational 

environment has not and could not have been addressed by traditional computing, 

basically because the nature of computation has changed. Also the way we perceive 

computing today has changed. Not only do we compute with our handheld devices 

at any time, we also have started to become in charge of computations. For 
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example, we recall not long ago, when in a bank in central London a customer who 

did not have any form of identification with him, was begging the fastidious branch 

manager to let him withdraw £50 from his account. Now, provided your mobile 

phone is registered with your bank, you can withdraw cash without a debit card. 

Your only proof of identification is your mobile phone. Until not long ago, we had a 

very systematic and ordered way of computing through business applications, 

which were run somewhere by someone. Leaving us quite isolated from it. Now, we 

are in charge of the way we compute. Mobile Web-based services, mobile shopping, 

trading, commodity market probing, following the news, watching your favourite TV 

program, managing your schedule and appointments with your doctor, monitoring 

local civic services are just a few examples of what users can do whenever they 

want and while on the move. Although the Web has changed our lives, not all 

applications are run on the Web, and even Web applications offer, by and large, 

limited functionality. However, being in a PCE provides users with a different 

experience from being exposed to a Web application.    

 

Considering the far reaching impact of PCEs on our everyday life, their diverse 

characteristics and trans-disciplinary nature, and of course being a relatively new 

topic, it is understandable that the literature does not show any consensus on the 

definition of PCEs. Nevertheless, the user role and involvement in a PCE is generally 

accepted as a key feature of the PCE. This varies in different publications, but by 

and large, the user is an indispensable part of PCEs who expects some kind of 

service from it. Still, the realisation of this objective is viewed from different angles 

by different researchers and practitioners. However, what is commonly accepted is 

the fact that the complexity of the computing infrastructure had to be hidden from 

users for minimal intervention by them to administer computation. This has been a 

reflection of what the visionary Weiser articulated, about the experience users have 

had in the past and the obligations of the computer scientists to avoid such 

complexities (Weiser, 1991).  

 

This lack of clarity, and that sometimes researchers and practitioners focus on 

specific aspect(s) and not PCE as a whole, introduced several synonyms for 



 

 

Chapter 1, Introduction 

 3 

pervasive computing in the literature. The most commonly interchangeable term 

used for pervasive computing is ‘ubiquitous computing’. Other terms include 

‘proactive computing’, ‘ambient computing’; some such as Streitz and Nixon (2005) 

and Lyons (2002), consider ‘ambient intelligence’ is also pervasive computing.  

 

1.2 Research Problem 
In this section we will explain what the core of the research problem is. However, 

prior to that for a better appreciation of the problem we would like to elaborate on 

our motivation, vision, and eventually our concerns for the research. 

 

1.2.1 Research Motivation   

Users are now in charge of the way they compute. In this section, we will look into 

this phenomenon from two perspectives, new role of computing and the 

inescapability of embracing new technologies.  

 

1.2.1.1   A New Role for Computing  

We have to assess new ways of ‘thinking about computers’. In the second decade of 

the 21
st

 century, our attitude towards computing in general and rapidly changing 

perception on what we compute and how we compute must reflect the ever 

changing and increasing demand for computing in general across domains.  In the  

era of daily creation and the availability of new Android or iOS apps which can be 

programmed by users and posted on various open source platforms (at the time of 

writing this the number of app downloads exceeded 25 billion), at the time when 

sensor-equipped smart phones are commonplace, and we are being enabled to 

manage our electronic ‘possessions’ from wherever we are, we really need to re-

think where the computations stand today. The times when we were only 

concerned to compute in an orderly manner, as in traditional business transaction 

or general-purpose processing supported by highly structured database 

repositories, have gone.   

 

We may argue that the Web changed everything and that our software applications 

today are hosted by the internet technologies and numerous solutions which 

perceive software as a service.  However, we still compute in an old manner: 

applications are solely dependent on huge data repositories, and our computation 
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is delivered through traditional programming procedures supported by components 

and service oriented technologies.  Pervasiveness of modern computational spaces 

may use such solutions, but it would be impossible to model user behaviour and the 

environment to constantly address users’ situation-specific expectations. Very often 

we associate the expectations users may have in PCEs with services that may be 

delivered to them. Realizing Weiser’s view to bring computers to users, requires 

timely information on the situation the user is in (Banavar et al., 2000)(Chen et al., 

2004b)(Saha and Mukherjee, 2003)(Sullivan and Lewis, 2003). Users, their location, 

their preference and wishes appropriate to the situation, their activity, the present 

environment, surrounding devices and their up-to-moment state and the like are 

typical necessary information for any reasoning mechanism to compute the 

situation, and to reason upon to deliver a service to the user. Database 

management systems cannot support such requirements.  

 

If we would like to see PCEs as domain and situation-specific environments, then we 

should assume that for each situation a new situation-specific computational space, 

which consists of a situation-specific model, data, and computations, will be 

created. It is also important to address the impact and role of user in the creation of 

instances of PCEs. User adoption of such instances of PCE is crucial for their 

existence. Assuming that we can secure the existence of an situation of PCE without 

user participation is wrong. The user must be willing to co-exist in the situation of 

the PCE, decide when computation should take place, and when necessary, indicate 

their preferences at runtime.  

 

1.2.1.2    Adopting New Technologies  

We have to examine the impact of the software and hardware changes on our way 

to creating situation of PCEs. We know how technology has had impact on our 

lifestyles, businesses, education and governance, and are aware of our dependence 

on the benefits of adopting technological changes as they appear.  It is not the 

question “when and if” we have to embrace new technologies. Changes of modern 

technology in today’s everyday life is drastic. There are always so many of them 

around us that we have opportunities to use them immediately, thanks to their 

modern and easy-to-use interfaces. Taking into account the generation of young 
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people that is growing up with modern gadgets, one can safely argue that 

technology is a ‘must’ and not ‘if’.  We have to envisage how quickly we could 

respond to new technologies and what this means in terms of creating 

computational spaces in PCEs. Will these computational spaces be of the same 

nature as in the environments, which are not pervasive? From that perspective, 

software technologies and the Semantic Web in particular, have delivered 

interesting solutions for PCEs. Solutions that may be able to address the needs of a 

new computational model for supporting situations in PCEs. Increasing popularity of 

the SW technologies shows that such new computational models which focuse on 

the manipulation of the semantics of situations in PCEs work very well, particularly 

if user expectations and involvement in such spaces are taken into account.  

 

We have learned the lessons from the past in terms of standardisation of software 

technologies before we start exploiting them across various domains. Therefore 

W3C attempts is a good example of preparing the Semantic Web technology (SWT) 

stack, which can be used within and outside its original purpose of manipulating the 

meaning within the Web pages across the Internet (Horrocks et al., 2005).  The 

SWTs have brought us new types of computational space which can manipulate the 

meaning of information available on the Web and therefore securing its handling. 

However, we are able to extend the same mechanism of manipulating the 

semantics of the Web towards any other form of computations not necessarily 

related to the Internet.  In other words, we have to pay attention to the power of 

new languages, which do exactly that: handle the semantic of computational spaces 

and allow us to manipulate it outside traditional highly structured repositories of 

databases and SQL like exploitation and manipulation of its content. 

 

So, we are encountered with pervasiveness of modern computational spaces that 

cannot be tackled through traditional computations on one hand, and availability of 

technology on the other. So, these were the triggers to start our thinking.  But 

thinking is just the starting point.  
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1.2.2   Research Vision   

We have to agree that pervasive computing has now penetrated into our everyday 

life in almost all domains of computing and that certain software applications have 

been taken for granted when we create software solutions for PCEs. Examples are 

pervasive healthcare (Thoyib  et al., 2011), (Zhang et al., 2011a), ubiquitous learning 

(Hwang  et al., 2011), (Tsai et al., 2001), ubiquitous manufacturing (Zhang et al., 

2011b), just to name a few. We have also been aware that software production 

today is heavily supported by numerous integrated development environments 

(IDEs), tools, ready-made code available on open sources and forums (Truong and 

Dustdar, 2010), ( Ayala et al., 2011). Most of our modern software applications 

interpret PCE as ‘pervasive spaces’ (Helal, 2011), ‘context-aware smart spaces’ 

(Chen et al., 2011), some offer solutions for the management of pervasive 

environments (Bourcier et al., 2011), some are more technological and domain 

specific such as (Milosevic et al., 2011), and some are more generic (Lukowicz et al., 

2012). As a result, we would like to find out what we can perceive as computation in 

PCEs. We want to find out whether in this modern world of pervasiveness of 

technology we can make successful computations as in the past. We were supposed 

to provide structured data through some interfaces and the computing system was 

supposed to give results at the end. Now, we have to review our perception of 

‘data’ and what ‘computing’ in PCE is.  

 

Therefore, our vision is that computations in PCEs must :  

1) Capture semantics of a situation in a PCE. 

2) Address constant changes of situations that may occur in a PCE, which may 

differ from moment to moment. That is, we may witness many different 

situations in the PCE. 

3) Take into account that understanding situations in a PCE depends on how 

successfully we can model their semantics , manipulate and reason upon it.   

4) Improve earlier research visions on context awareness (Dey, 2001)(Schmidt 

et al., 1999), its implementations and roles in modern pervasive computing 

spaces (Ellenberg et al., 2011)( Gellersen et al., 2002)(Sang et al., 2003)( 
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Adlam and Orpwood 2004). This will help to strengthen our motivations, 

outlined in paragraph 1.2.1.  

 

1.2.3 Concerns  

The feasibility of putting forward our vision on creating computations for PCEs will 

depend on the ability to answer many  questions. 

For example, what is the difference and borderline between collecting interpreted 

contextual-data and defining a situation in a PCE?  Do both of them have any or 

similar impact on the creation of the computationally significant representation of 

PCE?  

If we assume that we would still like to use traditional software engineering (SE) 

principles of applying computations with imperative and declarative programming, 

upon highly structured repositories of databases and Web pages, can we use the 

same principles in defining situations in PCEs and delivery of a situation-specific 

service(s) to users?  Would such SE principles take into account our vision of 

creating computational spaces for PCEs as itemised 1)- 4) in paragraph 1.2.2? 

If we assume that defining a situation in a PCE requires understanding of the 

semantic of the PCE or maybe the meaning/purpose of each situation in PCE (as in 

3) above), then we might need computations with reasoning mechanisms which 

should be a part of our SE principles?    

If we agree that inference and reasoning mechanisms in PCEs would support the 

definition of situations and delivery of a situation-specific service(s) to users in PCEs, 

then what would the computations in PCEs be? 

Finally, if we agree on the presence and the purpose of inference and reasoning in 

PCEs, which technology should be used in order to achieve both: the definition of 

situations and delivery of services in PCEs? 

 

Even if we do not know the immediate answers to our concerns above, we assume 

that the traditional Artificial Intelligence (AI) techniques and methods to reason and 

secure inference might not be the best possible option for defining situations and 

delivering services in PCE.  For example, the evolution from the expert systems 

generation to cognitive systems and then to ‘intelligent systems’ and even 

‘intelligent assistant systems’, and now ‘context-based intelligent assistant systems’ 
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generation, is still following traditional interpretation of context and reasoning 

upon it with minimal regards for users and changes in situations, if at all any. There 

is no evidence that these systems would work in PCEs with 1)-4) in mind.  In a 

testimony of the last 25 years of AI, Brezillon (2011) acknowledges that a radically 

different perception of context, situation and its relationships with users is 

necessary if we wish to address crucial aspects of pervasive computing.   

 

Consequently, we envisage that without SE principles in creating computational 

models, which define situations in PCEs and reason upon them in order to  deliver 

services to users in PCEs, we cannot claim that PCEs exist.  Therefore, the SE 

community has a key role to play to materialise what the AI community regards as 

‘intelligent software systems’ and what could be delivered through defining 

constantly changeable situations of PCEs.  

 

1.2.4. The Core of the Research Problem 

We can summarise from the discussion above that the core of our research problem 

is polarised around thefollowing questions. 

- What would be the computationally significant representation of a situation in 

PCE?  

- If it is a computational model that defines a situation in a PCE and secures 

delivery of situation-specific services to users in PCEs,  what would it consist of? 

- How would we support the semantics in a PCE and what would be our inferring 

mechanism to support reasoning in PCEs?  

- What should we reason about when defining a situation in a PCE?  

- Shall we create new reasoning mechanism which do not rely necessarily on 

reasoning techniques available in AI?  

- Should we strive a formal computational model, which answers all our questions 

and address 1) - 4) in paragraph 1.2.2?  

- How would we use the formalised computations in real life examples and what 

would be needed for their implementations? 

 

Consequently, our research should  
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� Address the role of programming languages in representing situations in PCE and 

their (in)ability to represent the semantic in PCEs.    

� Show that the “intelligence” or “smartness” of PCEs are not always guaranteed 

by computational power of various algorithms which are stored in computational 

models, nor by the management of computations through component and 

service oriented platforms, while perceiving software as a service and using 

excessive object-oriented programming. 

� Contemplate that we must use modern software technologies which allow 

conceptualization of knowledge and reasoning in order to address the 

“intelligence” and “smartness” in PCEs. One of the best options might be the 

SWTs which have been used for interpreting the meaning/semantics of 

numerous websites, where understanding of the website contents has been 

supported by languages and reasoning from the SWT stack.  

 

Therefore, our way forward in proposing a new role for computing, that allows 

adopting transparently new technologies in PCEs, is a formalised computational 

model which address 1) – 4) in 1.2.2, using SWT and utilising the SE principles. 

 

1.3 Research Objectives 
The aim of this research is to specify a formal computational model that can 

represent computationally significant semantics of different situations in domain-

specific PCEs. The model can accommodate semantics of different domains and is 

therefore reusable across any domain of interest. In view of this, the research 

objectives are to:   

1) Analyse and summarise the problems in and shortcomings of pervasive 

computing and assess the way it has been addressed in SE in the last decade. 

2) Create a list of common characteristics of PCE and set the foundation for 

defining situations in PCEs through a formal computational model, which would 

satisfy SE principles. 

3) Define a formal computational model which will allow representation of 

computationally significant semantics of any situation in PCEs for the purpose of 

delivering situation-specific services. 
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4) Illustrate and implement the proposed formal computational model in a domain 

of interest, using SWRL enabled OWL ontology. 

 

1.4 Research Approach 
Following an in depth analysis of PCEs in general and developing a formal 

computational model, we will perform a systematic proof-of-concept 

implementation approach to illustrate the functionality of our proposed formal 

computational model. The model will represent computationally significant 

semantics of different situations in domain-specific PCEs, and support reasoning 

upon it to deliver services to the users of PCEs.  

 

The proof-of-concept implementation will not only validate the proposed model for 

PCEs, but will also demonstrate the potentials of SW technologies in developing 

computational models in PCEs.  

 

1.5 Research Method 
There is no consensus in the software development community on what PCE is. 

Considering the complexity of the subject matter and its multidisciplinary nature we 

start our research by    

1) Investigating what PCE is, and what constitutes a PCE. We explore what the 

characteristics of PCEs are, and what the expected delivered output of a PCE is.  

 

We would like to emphasize that due to the lack of widely accepted PCE definition, 

we provide our own definition and observe it throughout. 

Despite being a relatively new topic in the realm of computer science, there has 

been growing attention to PCE by the research community and equally by 

practitioners. Therefore, the next aspect of the research method is to  

2) study how in the past situations in PCEs have been formally defined 

(presented), and what are their weaknesses considering 1) above and lack of 

widely accepted definition of PCEs. 

Rather than providing a specific solution to a problem-specific and domain-specific 

situation, we favour a SE solution to the creation of PCE situations. This entails a 

model that is generic, i.e. applicable across domains and situations in PCEs, and 
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simple enough to be used for different situations in PCEs. To achieve a generic 

solution for PCEs considering 1) above we need a formal computational model. 

Therefore, our next aspect of the research method is to  

3) develop a formal computational model that allows definition (representation) 

of situations in PCEs, and reasoning upon it to deliver services to the user of 

PCEs.  

 

We would also like to emphasize that our formal computational model should 

primarily serve software engineers and guarantee that certain computations will 

take place with the expected outcome. Consequently, no further proof of the 

formal computational model would be required except introducing its concepts and 

their relationships which will enable the computations typical of SE principles. 

Ultimately, the role of the formal model would be to guide software engineers to 

perform computations in pervasive spaces.   

 

To illustrate the above formal model, it will be applied to an example scenario. 

Therefore, our eventual aspect of the research method is to 

 

4) apply the formal model as a result of 3) in a typical PCE environment.  

 

1.6 Thesis Outline 
Following this introductory chapter, in Chapter 2 background information on 

ubiquitous computing and pervasive computing is provided. In this chapter we also 

elaborate on the perception of context awareness of the past and present. Our 

definition of PCE and what it constitutes, which will be followed throughout the 

thesis, is stated in this chapter.  

 

In Chapter 3 we go through related works that provide any generic solutions to 

address any aspect of PCEs in general. Through the chapter, we point out the 

problems and concerns and contrast our proposal to existing solutions. 

Expectations, limitations of existing solutions, and common characteristics of PCEs  

are summarised in separate tables in this chapter. An explanation on what 

pervasive computing is and how we do it is provided at the end of the chapter to set 

ground for the following chapter. 
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In Chapter 4, we define the formal computational model through definitions and 

axioms. These definitions and axioms will define the creation of domain and 

situation-specific taxonomical structure. The steps towards creation of this 

structure is provided in pseudo code and in diagram format. How reasoning upon 

the taxonomical structure element is done to deliver a service to PCE users is also 

explained in this chapter.  

 

In Chapter 5, we introduce a particular case study in a health domain environment, 

and a software architecture supporting deployment of the formal computational 

model.  Formalism delivered in Chapter 4 are mapped to the case study to illustrate 

how the semantics of the example scenario as a situation are represented by 

following the formal model. The illustration is done through a Java application that 

communicates with the ontological model and SWRL reasoning engine via OWL API.  

 

In Chapter 6, we evaluate and reflect on our achievements through the course of 

this research. We also provide our conclusions of the research including the 

contributions and advantages of the research outcome, followed by future works in 

this chapter.  

 

 



 

 

    

 

 

 

 

 

 

 

 

 

CHAPTER 2  

BACKGROUND OF THE RESEARCH 
 

In Chapter 1 we discussed our motivation for the research and a new role for 

computing in the 21
st

 century. We briefly also stated different experiences users of 

PCEs have comparing with any other form of computations. Pervasive or ubiquitous 

computing has increasingly attracted the attention of researchers in the last two 

decades. Equally, the wide range of applications this promising paradigm has 

offered, has encouraged practitioners and policy makers too. Proactive involvement 

of both public and private sector in the on-going efforts of realising seamless 

integration of heterogeneous computational devices into our everyday personal 

and professional life, is now assuring. Consequently, we need background 

information on ubiquitous and pervasive computing with examples. The context 

awareness that pervasive computing applications entail, along with context 

modelling, is also discussed in this chapter. How SWTs, particularly RDF, OWL 

ontology and SWRL (W3C 2004a,b) have become handy in realising pervasive 

computing applications are elaborated here with inclusion of a comprehensive, 

although not exhaustive, research examples.  

 

2.1 Ubiquitous Computing 
Advances in information systems, technology and communication brought to reality 

the once science-fiction concept of ‘cyberspace’ (Gibson, 1984). In less than a 

decade after William Gibson coined the term cyberspace, the integration of 

communication tools and devices to allow wide range of interactive communication 

was no longer fiction. The advances in microchips and computer industry in general, 
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in parallel with continuing progress in telecommunication brought about a new 

vision of the cyberspace. If three decades ago the ratio of microchips to humans 

was 1 to 100, by mid 90s this was 1 to 1. With the same growth rate the 1 to 1 was 

reversed in 2005 to 100 to 1 (McCullough, 2004). Regardless of the statistics, we do 

feel the saturation of our surroundings with a variety of computational devices as 

they have been integrated into our lives to a point, where it is difficult to imagine 

our lives without them.  

 

2.1.1 Expansion of Computing  

This development and the emergence of relatively affordable computers in the mid 

1970’s, which resulted in the ubiquity of personal computers and devices with 

embedded computational capabilities by the 1980’s, inspired researchers to 

question and attend to some of the deep issues the computing community was 

facing, with the enthusiastic scientists and researchers both in the academia and 

industries starting to talk about a new paradigm or era in computing.  

 

The pervasiveness of personal computers meant that people could easily interact 

with the cyberspace via their computers with a keyboard or a mouse. In other 

words, the whole cyberspace was accessible by everyone at the same time through 

their desktop. These huge steps have gone much further than imaginations of 

visionaries such as Gibson. Computing, not only in personal computers but also as 

embedded microchips or integrated processors in a vast variety of devices, has now 

extended the cyberspace perspective to an extraordinary level.  

 

2.1.2 The New Paradigm and HCI Community  

The concept of the new paradigm, or the new trend advocating a new way of 

thinking about computing was not shared by the human computer interaction (HCI) 

community. The pervasiveness of PCs and the fact that they occupied the ‘centre of 

attention’ of their users was not convincing enough for the HCI community to see 

the new trend, and instead they focused on one side effect of the phenomenon by 

promoting the creation of more intuitive interfaces to ease the interaction with 

computers.  
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Mike Weiser criticised this approach and wrote in his influential article The 

computer of the 21st century (Weiser, 1991) that the deep issue surrounding 

personal computers ‘is not just a user interface problem’. He had a more holistic 

approach to determining the problem. Questions such as why computers are too 

complex and hard to use, too demanding of attention, too isolating from people 

and their activities, and too dominating as they have occupied our desktops and our 

lives (Weiser, 1991), were well received by the computing community.  

 

This view was further elaborated in (Weiser et al., 1999). The focus of the new 

vision was on how transparently technology can be integrated into users’ daily 

social activity wherever they happened to be and whenever it is. A new way of 

thinking about ‘computers’ that took into account the human world, and that 

computers are working transparently at the background was promoted. The HCI 

perception of the problem at hand was inclined towards devices, whereby the more 

open-minded revisionists focused their attention on users in a way that they can 

comfortably perform daily activity without having to bother to attend to direct 

interaction with computers or computing devices. One view was focused on 

computers as a source of information hence justifying their research on how to  

interact with computers, whereas the other view led by Weiser regarded computers 

just as an interface to information and advocated the view that computers should 

not occupy users attention and it is the information that users need to interact with, 

not the computers.  

 

Weiser described the new trend in computing founded on earlier trends: 

mainframe, personal computer, and widespread distributed computing-Internet 

(Weiser and Brown, 1998) and named it ‘ubiquitous computing’ (UC). Therefore, in 

the new paradigm the UC is fundamentally characterised by artefacts, computers or 

devices embedded with processors that are computationally interconnected. This is 

why ubiquity of microprocessor-embedded objects and the Internet are considered 

as forerunners of UC.  
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2.1.3 AI is Challenged 

The emergence of the new trend not only challenged the HCI community’s view but 

the traditional practice of AI was also in question. The UC advocators argue for a 

vision of ‘calm technology’ (Weiser and Brown, 1996) whereby the availability of 

more detailed information to the user puts the ‘user at the centre’ and brings about 

calmness.  

 

The ubiquity of computing-enabled devices that are networked, empower the user 

by expanding his ‘periphery’ so that he can switch his attention from centre to a 

non-centre (periphery) whenever necessary (Weiser and Brown, 1998). Pousman 

and Stasko (2006) state that with such technologies ‘users are more able to focus 

on their primary work tasks while staying aware of non-critical information that 

affects them’. As an analogy to appreciate the difference between these two views 

consider the following scenario. You are making breakfast for yourself just before 

setting off to work. The centre of your attention is making breakfast. 

Simultaneously, you are listening to the traffic radio station so as not to miss any 

warning that might affect your daily route to work. The TV set is also switched on so 

that you will notice when your long awaited program on mortgage advice, which is 

scheduled to be on the morning program appears on screen. You are exposed to 

various periphery data without attending to them, but as soon as, for example, you 

see that your expected TV program is showing, your attention will be diverted to 

the TV. This availability and not overloading of information gives one a sense of 

serenity.  

 

A network of microprocessor embedded devices in a UC environment gives exactly 

that unobtrusive serenity to users. Weiser calls this awareness of periphery without 

explicit attention ‘locatedness’. In their criticism against the AI community, 

defenders of the new vision believed that if a computer device becomes aware of 

only where it is located, (locatedness), it can adapt its behaviour significantly 

“without even a hint of AI” (Weiser, 1991). McDermott (1981) complained also that 

programs in AI to a great degree are “problems rather than solutions”. 
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2.1.4 Recognition of the New Paradigm  

This shift of paradigm towards UC as a result of the new thinking about computing 

was sensed by ACM (Association for Computing Machinery) when they organised in 

March 2000 a conference expertly entitled ‘Beyond Cyberspace’. In an editorial 

note (Crawford, 2000), this vision was stated as “The era of pointing, clicking, or 

typing is giving way to new seamless, intuitive links between the two worlds 

(humans and computers)… It’s clear we’ve reached a turning point in the way we 

interact with computers.” 

 

In March 2000 Intel’s persuasion of participants at Intel's Computer Continuum 

(Intel 2000) to explore future computing possibilities reads  

 

“Computing, not computers, will characterize the next era of the 

computer age. The critical focus in the near future will be on 

ubiquitous access to pervasive and largely invisible computing 

resources. A continuum of information processing devices ranging 

from microscopic embedded devices to giant server farms will be 

woven together with a communication fabric that integrates all of 

today's networks with networks of the future. Adaptive software 

will be self-organizing, self-configuring, robust and renewable. At 

every level and in every conceivable environment, computing will 

be fully integrated with our daily lives”. 

 

Therefore, the penetration of a wide variety of networking devices, wireless 

networks, personal digital assistants, sensors, actuators, and numerous other 

mobile embedded devices into the field of computing, together with their increased 

deployment by users, have all led to the emergence of UC. The new trend started in  

the nineties but became the focus of the research community’s attention in the 

following decade. Furthermore, it aims to integrate computing and communication 

devices in and with the environment transparently so as to enable users to focus 

their attention on what they actually want to know or to do rather than on their 

interaction with computing devices per se. 

 

The increasing attention to UC has introduced new terminologies, sometimes as 

synonyms for UC. Some of these are more commonly used than others in the 

literature , among which is pervasive computing.  
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2.2 Pervasive Computing 
The new vision about computers and computing in general, along with the 

unprecedented advancement and expansion of technology of various types of 

devices with embedded microprocessors, extending from domestic every-day use to 

sophisticated professional tools in the healthcare domain, manufacturing, defence, 

public transport systems, public offices and similar, has inspired more and more 

researchers to divert their attention to this vision. The emergence of serious 

research and applied projects such as ParcTab(Schilits et al., 1993), Stick-e 

Note(Brown et al., 1997),  Personal Tour Guide (Abowd et al., 1997), Intelligent 

Room (Coen, 1998), Bat (Harter et al., 1999), Context Toolkit(Salber et al., 1999b), 

Aura (Garlan et al., 2002), Vivago(Korhonen et al., 2003), One World (Grimm, 2004), 

CoBrA Intelligent Meeting Room (Chen et al., 2003a), CareMedia(Bharucha, 2006) 

made it clear to those still in doubt that the new vision is not hype and it is here to 

stay and prosper.  

 

2.2.1 Launch of Pervasive Computing 

At the start of the 21
st

 century, coincidentally two articles were published, one from 

IBM (2001) and another from Satyanarayanan from Carnegie Mellon University 

(Satyanarayanan, 2001) both addressing their perception of the required 

infrastructure of the future networks of computers and computationally enabled 

devices. The former introduced the term ‘autonomic computing’ and the latter 

ironically advocated ‘pervasive computing’ that IBM had publicised. The first  

evidence of the appearance of the term “pervasive computing” in the literature 

appears to be in 1999 when IBM devoted one issue of its journal, ‘IBM Systems 

Journal’ to this topic. In an editorial article, Ark and Selker (1999) considered the 

emergence of the term pervasive computing as a continuation of the work by the 

HCI community on the interaction of users with pervasive computers.  

 

Throughout this issue of the journal, the terms pervasive  and ubiquitous computing 

were used interchangeably. Both articles addressed equally low and high level 

aspects of the new computing era, i.e. the technical structure and deployment of 

technologies along with the design and creation of software architectures 
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supporting environments in which users are empowered by receiving necessary 

services without disturbances.  

 

IBM has stated in its manifest that the growing complexity of the IT industry has 

hindered its purpose which is to serve people. They suggested that their proposed 

architecture of autonomic computing would deal with the complexity of existing 

computing infrastructure systems rather than relying on human intervention and 

administration. Both (IBM, 2001) and (Satyanarayanan, 2001) were in favour of 

embedding the complexity in the software and hardware system infrastructure and 

automating its administration. To allow users to concentrate on what they want to 

do and not how they want to do it, exactly what Weiser was trying to convince the 

HCI community.  

 

When we look at the eight characteristics that IBM proposed for their vision, 

however, little on dealing with users’ expectations of the ‘autonomic computing’ 

system is found. From the same perspective Satyanarayanan demonstrates 

consideration for the user and wrote that a PCE system subsumes all the known 

features of distributed and mobile computing and therefore it must be scalable 

while allowing environments with different physical and computational provisions 

to communicate. He summarised PCE systems to be proactive systems which allow 

linking knowledge from different parts to infer knowledge and anticipate with 

minimal user distraction (Satyanarayanan, 2001; 2011).  

2.2.2 Review of PCE Perceptions   

Viewing the system from users’ perspective has attracted a growing number of 

researchers. Henricksen et al. (2002) emphasises that pervasive computing 

demands applications that are capable of operating in highly dynamic environments 

and of placing fewer demands on user attention, hence PCE needs to be sensitive to 

its context that is ‘highly interrelated’, ‘imperfect, and that exhibits a range of 

‘temporal characteristics’ and that has many ‘alternative representations’. 

 

In their expectations of the kind of support PCE should provide, Abowd and Mynatt 

(2000) describe activities in such environments as ‘rarely have a clear beginning or 
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end’, ‘interruption is expected’, ‘multiple activities operate concurrently’ and 

‘context-shifting among multiple activities is assumed’. Knowledge on ‘user 

preferences’, ‘device capabilities’, and ‘application requirements’ are considered by 

Arbanowski et al. (2004) as the key requirements for PCE systems. 

 

These spaces have characteristics. Bacon (2002) and Intille (2002) have listed a 

number of features for a pervasive computing environment. Intille declared a PCE 

as a ‘Non-intrusive’ environment with abilities to ‘empower’ and help people, and 

learn from the behaviour of its inhabitants. In a separate paper he raises his 

concern about the level of presence of such systems in people’s lives and warns that 

PCEs should not “… strip people of their sense of control over their environment’ 

(Intille, 2006). 

 

A PCE system according to Satyanarayanan (2001, 2011) has to be context-aware to 

be minimally intrusive. In his paper, how context is internally represented, how 

frequently the context information has to be consulted and where to store it, 

whether historical context is useful are also outlined. Saha and Mukherjee (2003)  

add the need for perceptual information about the environment as another 

differentiating feature of PCE and traditional computing.  

 

Chen et al. (2004b), who believe that PCE system is a natural extension of mobile 

computing, describe their vision of PCE as computer systems seamlessly integrated 

into the life of everyday users, providing them with services and information in an 

“anywhere, anytime” fashion. Communication between different pervasive 

computing environments, PCEs, according to (Chen et al. 2004b) requires 

interoperable devices and sensors with computing capabilities involved in such 

environments to be able to ‘share knowledge’, and ‘reason about their 

environment’. 

 

From this perspective Sullivan and Lewis (2003) considered ‘massive scalability’, 

‘heterogeneity of processor forms’, ‘poor application portability over embedded 

processors’, ‘heterogeneity of access networks’ as the most challenging tasks in 

developing PCEs. Hellenschmidt (2006) outlined the requirements for the assembly 
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of ‘intelligent’ environments from distributed devices and components to achieve 

pervasive software infrastructures. He summarised these as extensibility, to add 

devices at runtime, exchangeability of devices, autonomy of devices from each 

other, decentralization, provision of conflict resolution mechanisms, ease of 

implementation of software applications using the environment, and real-time 

responses to support users. Ark and Selker (1999) in their leading article highlight 

four major aspects of PCE. Computing being spread throughout the environment; 

users being mobile; increasingly information appliances become available; and 

communication between the elements of the system including users is made easier. 

They stress that users should not carry with them devices containing their personal 

information, and at the same time a device will be more aware of its user and 

surroundings. Hence they called this type of computing ‘context-based computing’. 

Cassou et al. (2009), on the other hand, stress on the heterogeneity’, ‘dynamicity’, 

and ‘lack of structuring’ between interrelated components of PCE as the main 

features. Saha and Mukherjee (2003) characterise PCE with proactivity, scalability, 

heterogeneity, integration and invisibility. They consider ‘intelligent environment’ 

as a prerequisite to PCE systems. 

 

Along the same line, researchers generally view the unprecedented ubiquity of 

computing capabilities and advances in semantic web technologies as an 

unprecedented opportunity for designing and deploying systems in PCEs that 

empower end-users doing their day-to-day activities with greater comfort, 

simplicity and support (Yoo, 2010; Romero et al., 2011; and Rolim et al., 2011).  

2.2.3 Pervasive Computing Versus Ubiquitous Computing 

The Oxford Dictionary defines ubiquitous as “present, appearing, or found 

everywhere” and explains pervasive as “(especially of an unwelcome influence or 

physical effect) spreading widely throughout an area or a group of people”. The 

English Collins Dictionary defines ubiquitous as “having or seeming to have the 

ability to be everywhere at once” and includes it in the list of synonyms for 

pervasive.  

 

Both in academia (Chen and Kotz, 2000; Satyanarayanan, 2001; Intille, 2002; 
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Sullivan and Lewis, 2003; Henricksen and Indulska, 2006; Bettini et al., 2010) and 

industry (Kephart and Chess, 2003; Mühlhäuser and Gurevych, 2008) pervasive and 

ubiquitous computing are used, by and large, interchangeably. Nevertheless, some 

including Singh et al. (2006) believe in disparity between pervasive and ubiquitous 

computing, and stress that when the former is combined with mobile computing, 

the latter is achieved. To emphasise on the importance of pervasive computing for 

UC, they perceive realization of ‘true’ UC through knowledge sharing between 

individual PCEs. At the same time some authors are more lenient when using UC, 

for example, to Walker et al. (2001) any ubiquity of computing devices where their 

performance is transparent is a UC environment.  

 

To summarise, going through research publications, for example those mentioned 

already, one can arguably state that pervasive computing is now being commonly 

used in the literature as a ‘welcome influence’ and as synonym for ubiquitous 

computing. Therefore, in this thesis we are not differentiating between PCE and UC. 

We attempt to use PCE throughout this document as it is more commonly used in 

the literature. Nevertheless, at times the term UC might be used interchangeably 

without any intention to indicate any difference unless otherwise stated.  

 

We have mentioned in section 1.2.1.1 that the computational spaces in PCEs consist 

of model, data and computations. The data of a situation in a PCE is referred to in 

the literature as context.  We have said in section 1.2.2 that we would like to 

witness improvement  of earlier visions on context awareness and its 

implementations and roles in modern pervasive computing spaces in PCEs. We 

would also like to know  what the difference and borderline between collecting 

interpreted contextual-data and defining a situation in a PCE is (section 1.2.3). This 

leads us to the next section on context.   

 

2.3 Context in Computing 
The term context means ‘the circumstances that form the setting for an event’ in 

the Oxford dictionary and ‘the situation within which something exists or happens, 

and that can help explain it’ in the Cambridge dictionary. Despite this general 

understanding of what context is, in the computer science discipline the perception 
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is different. There has been growing research in this area, but to the best of our 

knowledge there is yet an agreed upon definition of context to emerge. In this 

section some of the most referenced definitions and views in the literature are 

presented.  

 

We would like to point out here that in the literature sometimes the term ‘situation’ 

is being used for ‘context’. However, some publications like (Gessler et al., 2005), or 

(Coutaz et al., 2005) distinguish these from each other. They regard situation is 

related to location only, and context is related to conditions such as temperature, 

weather, or lighting in that location. To Dey and Abowd (1999), these two terms are 

different when they say context ‘characterize the situation’.     

 

2.3.1 Definition and Categories of Context 

The definitions of context in different publications are presented here in 

chronological order. The earliest publication on context in computing is a 1994 

research paper by Schilits et al. (1994). Without providing any definition for context 

they stated their perception of context in terms of three important aspects of 

context which are ‘where you are’, ‘who you are with’, and what resources are 

nearby’. They categorised context into three categories,  computing context, user 

context, and  physical context and listed some examples such as ‘lighting’, ‘noise 

level’, network connectivity’, ‘social situation’ to emphasise that context involves 

more than just the user’s location.  

 

Reviewing the research publications since then until 1999 shows no consensus on 

the definition of context. In their 1999 survey examining fourteen ‘context-aware’ 

applications, Dey and Abowd (1999) have concluded that researchers including 

themselves (Dey, 1998) have either provided definition of context ‘by example’ or 

provided synonyms rather than offering a concrete definition.  After their view of 

the past they presented their definition of context as ‘any information that can be 

used to characterize the situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a user and an application, 

including the user and applications themselves’ (Dey et al., 1999). To Dey et al. the 

situation of a particular entity is characterized by location, identity, time and 
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activity.    

Chen and Kotz (2000) adopted (Schilits et al., 1994) categories and added two more 

categories, time context, and context history. ‘Time’ to represent the timing of 

when the contextual information was collected, and ‘history’ to refer to any past 

information saved in a persistent repository. Not convinced of the existing 

definition of context, Chen and Kotz gave their definition of context as ‘context is 

the set of environmental states and settings that either determines an application’s 

behaviour [active context] or in which an application event occurs and is interesting 

to the user [passive context]’.  

 

Although further elaborations are given in the following chapters regarding 

‘situation’ as opposed to ‘context’  we would like to make a clear distinction here 

between these two terms as far as PCEs are concerned. We refer to context as any 

useful piece of information that describes a particular element in a PCE. Whereas  

situation is referred to the collection of all contextual information and also 

information acquired through inference on the collected context.   

 

Schmidt (2000) describes four different types of context. One is when the 

environment is active and detects a device and communicates with the detected 

device. The inverse case of the first type is the second in which the device senses 

the environment. Third, is a direct input by user to the application, and the forth is 

information retrieved from a database.   

 

In response to (Dey et al., 2001), Winograd (2001) disputes their definition of 

context and argues that terms such as ‘any information’ or ‘characterize’ the 

situation that they use in their definition are broad. He goes on and says that 

context should be used in a more specific way, to characterize its role in  

communication. Acording to Winograd ‘context is an operational term’, that is, 

something is context because of the way it is used in interpretation, not due to its 

inherent properties. Interestingly, Roy et al. (2011) subscribe to the Winograd 

definition of context in their context-aware agent system.   
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Henricksen et al. (2002) refer to context as circumstances or situations in which a 

computing task takes place. They stress on the lack of clarity in the literature about 

context and instead of offering their definition, they have provided some 

characteristics of context information in terms of association, which is a uni-

directional relationship linking an entity to its attributes or other entities. They 

consider context information is more than the ‘current state’ of the context and 

therefore, can vary from ‘atomic facts’ to ‘complex histories’. In (Henricksen and 

Indulska 2004; 2005), and (Henricksen et al. 2005) they categorise context 

according to their distinctive characteristics into four groups: sensed, static, user-

supplied, and derived information.  

 

Ranganathan and Campbell (2003) define context as the information “… about the 

circumstances, object, or conditions surrounding a user that is considered relevant 

to the interaction between the user and the ubiquitous computing environment”. 

 

Chen and Finin (2003) in their context broker architecture CoBrA define context as 

any information that can be used to characterise the situation of a person, a 

computing device, or a software agent. In another publication Chen et al. (2003a, 

2003b) expressed their meaning of context as a location, its environmental 

attributes such as noise level or temperature, and the people, devices, objects and 

software agents it contains. 

 

Ranganathan and Campbell (2003) divide the context into seven categories of 

physical (e.g. time, location), environmental (e.g. weather, light), informational (e.g. 

stock exchange information), personal (e.g. health, mood), social (e.g. group 

activity), application related (e.g. email) and system related (e.g. network traffic). 

  

In an article about the importance of context in UC, Coutaz et al. (2005) explained 

why context is not merely the current state of a predefined environment and wrote 

that context is ‘part of a process of interacting with an ever-changing environment’. 

They believe context is too complex to be pre-programmed and suggested explicitly 

coded responses to ‘situations and contexts’ should be replaced with ‘a higher level, 

more knowledge-intensive use of machine- readable strategies coupled with 
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reasoning and learning’(Coutaz et al., 2005). 

 

Khedo (2006) categorises use of context in context aware applications into three 

different classes: presenting information and services, automatically executing a 

service, and tagging detected context information for future use.  

 

Xiaosheng et al. (2006) have categorized context as manually acquired (e.g. the 

information provided by user) and automatically acquired (e.g. user’s identity, 

location, or activity). They argue that many context elements are “raw” (e.g. time, 

location, temperature) because they are simply acquired through various forms of 

sensors; thus such elements are regarded as ‘low-level’ context. On the other hand, 

elements like activity are ‘synthetic’ context which is inferred through reasoning 

based on raw context; thus they are regarded as ‘high level’ context.  

 

Paganelli et al. (2006) refer to the overall contextual information of an ‘entity’ as 

‘entity context’ and any specific characteristic of the entity as ‘context item’. 

According to them context items are of location, physical data, activity, 

instrumental context, or social context category, and context entity is composed of 

one or more of these context items.   

 

Bolchini et al. (2007) who provide a survey of context models, distance themselves 

from the Dey and Abowd view and seems to subscribe to the (Coutaz et al., 2005) 

view that context is not just a ‘profile’ but it is also an ‘active process’. They regard 

context as the element which impacts ‘the way humans (or machines) act and how 

they interpret things.’ With regards to the complexity of context representation, 

they advocate models that support only a specific context sub-problem and do not 

condone systems with a completely general aim that support any possible 

application (Bolchini et al., 2007).  

 

Nguyen and Choi (2008) describe context as always-changing-phenomena where its 

change leads to a change of behaviour by the people who are subjected to it. Roy et 

al. (2008) define context as a set of data that provides a model of the real world and 

therefore they don’t make any distinction between different types of information as 
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far as context is concerned. To them the data related to a location is as important as 

the data related to what happens within the location. 

 

In recent publications it seems that (Chen and Kotz, 2000) definition received more 

attention. For example Bellavista et al. (2012) in a survey of context data 

distribution for mobile ubiquitous systems adopted Chen’s and Kotz’s definition of 

contexts according to which context is a four dimensional space composed of 

computational context, physical context, time context and user context.  Chen and 

Kotz consider context history applicable to some applications also, but Bellavista et 

al. have disregarded this dimension.  

 

Mehra (2012) describes context as the information halo that implicitly surrounds 

objects of interest and includes those pertinent supplementary facts, rules or 

axioms whose consideration makes our situations understandable by devices, 

people, or organisations seeking to provide us with content or services. Mehra 

argues that in addition to ‘situational context’ there is also the ‘large context’ which 

is a historically, socially and semantically expanded model of a user’s context. 

Educational affiliation, sports team loyalty, locations visited are some of the 

examples of ‘large context’ that their inclusion not only will improve personalisation 

of delivered ‘content, alert and advertisement’ but will also simplify the interaction 

with users.  

 

We have mentioned in section 1.3 in Chapter 1 that one of the objectives of this 

thesis is to define a formal computational model which will allow representation of 

computationally significant semantics of any situation in PCEs for the purpose of 

delivering situation-specific services. The representation of the semantics of a 

situation requires correct contextual information about the particular situation in 

the PCE. Availability of context is therefore, essential for the success of PCEs. In the 

literature, ‘context awareness’ is used as a qualifying adjective for describing 

software applications capable of adapting themselves to the context.   Our view of 

awareness and use of context in PCEs is different, but in the following section we 

present what is commonly perceived as context awareness.  
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2.3.2 Context Awareness 

Schilits et al. (1994) define this form of computing based on their PARCTab pioneer 

experiment (Schilits et al., 1993) as systems that adapt according to the location of 

use, the collection of nearby people, and accessible devices. Such systems will react 

automatically, according to them, to any changes to the environment. They have 

categorised context-aware applications into four categories.  These categories are 

proximate selection, automatic contextual reconfiguration, contextual information 

and commands, and context-triggered actions.  In the proximate selection category, 

the user’s current location determines the area from which located objects will be 

identified for ease of selection by the user. In the automatic contextual 

reconfiguration, the connectivity of devices in the environment is managed 

automatically. That is, adding or removing components or changing connections 

between existing components. The contextual information and commands category 

exploits the user’s current location to respond to context information queries and 

commands. Shilits et al. describe the context-triggered actions category of 

applications as systems that support ‘simple IF-THEN rules used to specify how 

context-aware systems should adapt’.   

 

Pascoe (1998) identifies four generic contextual capabilities when he describes his 

prototypical development of a wearable computing system. Sensing, adaptation, 

resource discovery, and augmentation are these capabilities that context-aware 

applications should support. Harter et al. (1999) considers context-aware 

applications as those which adapt their behaviour to a changing environment.  

 

Dey and Abowd (1999) believe the goal of context-aware computing ‘should be to 

make interacting with computers easier’. They recommended that a context-aware 

application should collect contextual information ‘through automated means’ and 

let the application designer decide what information is relevant and how to deal 

with it’. They express the relevance of context-awareness to UC as ‘to best support 

the human–computer interaction’. With regards to features of context-aware 

applications, Dey and Abowd combined ideas from (Schilit et al., 1994) and (Pascoe, 

1998) and suggested three key categories of context-aware features that a context-
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aware application should support. These are ‘presentation of information and 

services to a user, automatic execution of a service, and tagging of context to 

information for later retrieval’ (Dey and Abowd, 1999). 

 

Chen and Kotz (2000) provide two context-aware computing definitions to reflect 

their active and passive definition of context. They define active context awareness 

as an application that automatically adapts to discovered context, by changing the 

application’s behaviour, and define passive context awareness as an application 

that presents the new or updated context to an interested user or makes the 

context persistent for the user to retrieve later. 

 

Dey (2001) gives a more generalized description of a system to be context-aware. 

He believes if the system uses context ‘to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task’, then it is a 

context-aware system.  In describing their context broker architecture, CoBrA, Chen 

and Finin (2003) describe context-aware computing as allowing systems to act more 

autonomously and take initiative, but informed by a better model of what their 

users need and want.  This is an example of context model inflexibility. 

 

The environment according to Khedr and Karmouch (2004) becomes context-aware 

when it can capture, interpret, and reason about physical characteristics, such as 

location, the system, such as applications running, and the user such as presence.   

 

Hong et al. (2009) adopted the definition by Byun and Cheverst (2004) and also 

Khedo (2006) that a system is context aware if it can adapt its functionality to the 

current context it detects and interprets. Mehra (2012) emphasizes that the real 

power of context-aware computing is in its automated reasoning based on facts and 

rules describing the environment around a user or event. He considers ‘gathering, 

sharing and obtaining’ data about ‘large context’ is the challenge the community is 

facing to realize context-aware computing.  

 

Hong et al. (2009) provides a literature review of 237 journal articles between 2000 

and 2007 in which context-awareness is a core essence of the article. They have 

categorised the focus of this research into five abstract layers. These layers in order 
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of number of publications are, concept and research, application, network 

infrastructure, middleware, and with the least publication user interface.  

There have been many suggestions by researchers designing and implementing 

context-aware PCE about the way different elements of a PCE communicate with 

each other to support the context-aware applications. To this end, several 

architectures, frameworks or middleware tools were developed and surveyed 

(Henricksen et al., 2005), (Singh and Conway, 2006), (Baldauf et al. 2007), (Kjær, 

2007), (Miraoui et al., 2008). We found Henricksen et al. and Miraoui et al. more 

detailed in terms of categorisation of the architecture according to the essential 

features pertinent to PCE. The comparison of different architectures that authors of 

(Miraoui et al., 2008) have done is based on context abstraction level, 

communication model, reasoning system, extensibility and reusability.     

 

Even by 2012 there is no agreed upon definition on context and context awareness. 

In their survey on current research on context data distribution in mobile ubiquitous 

environment, Bellavista et al. (2012) acknowledge this lack of consensus and offer 

their own definition.  According to them, context awareness is ‘the ability to provide 

services with full awareness of the current execution environment’.  

 

2.3.3 Context Modelling 

Context aware application systems are qualified with detecting, collating, storing 

and disseminating contextual information at the lowest level and aggregating it into 

increasingly more abstract models (Khedo 2006). To support such a system a 

context model is required to handle contextual information.  

 

Harter et al. (1999) present a platform that enables applications to constantly 

monitor users as they move around a building. Their location-aware system is based 

on ‘a persistent distributed object system’ which will provide context accessible to 

various applications. They used object-oriented approach to model the contextual 

information since they view the environment to consist of a collection of real 

objects.  
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Henricksen et al. (2002), after exploiting Entity relationship model and the class 

diagram of UML, have concluded that these information systems modelling 

techniques are ‘neither natural nor appropriate’ for describing context. To 

overcome the shortcomings of these techniques they have devised their own 

object-based modelling technique using special constructs designed with the 

characteristics of context in mind. According to their abstract directed graph model 

for context information in terms of its characteristics in PCE systems, context is 

characterised through a number of associations, which is a uni-directional 

relationship linking an entity to its attributes or other entities. These associations 

are divided at a high-level abstraction as static or dynamic associations. The 

dynamic association is divided further to sensed, derived and profiled association. 

Temporal association which is attached to a time interval and dependencies 

between associations also play a role in their model.     

 

In a follow up work to (Henricksen et al. 2002), McFadden et al. (2004) developed a 

context modelling technique that provides two levels of abstractions. They called 

these levels as ‘facts’ and ‘situations’. Situations, according to them, are defined by 

constraints on context facts expressed using predicate logic. In their distributed 

approach to the development of context-aware communication applications, they 

used their own developed Context Modelling Language (CML) and some Java 

technologies such as JDBC and RMI.  

 

Chen et al. (2003a and 2004b) have expressed their reason for using OWL ontology 

to model context for 1) it is much more expressive than RDF or RDF-S (Brickley and 

Guha, 2010) allowing to build more knowledge into the ontology, 2) OWL has been 

suggested by W3C as the standard language, 3) OWL provides a means to share 

context knowledge, and 4) OWL ontology helps their CoBrA context broker to 

reason about context and detect knowledge inconsistency.   

 

In SOCAM, at the bottom of the architecture (Gu et al., 2004) are ubiquitous 

sensors. These sensors will feed the internal context service providers. The internal 

and external context providers deliver their service to the middleware, which is 

called context interpreter. The context interpreter consists of a context knowledge 
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base and a reasoning engine, which is based on some inference rules. At the top of 

the architecture are the context–aware services that can use contextual information 

directly from the context providers or from the middleware and adapt themselves 

to the context. In SOCAM context knowledge base stores contextual facts in a 

persistent relational database. Context ontologies are divided into upper ontology 

and domain specific ontologies. The former has computing entity, location, person 

and activity as its key classes that Gu et al. consider to be common in all PCEs. 

Preferences of the user are not represented in the upper ontology of SOCAM. 

Although the authors acknowledge that ‘context may quickly become out-of-date’, 

they do not offer any solution for this key issue. This is an example of contextual 

information in traditional context-aware applications can quickly become outdated. 

As SOCAM is service oriented, it has to offer a service-locating service to discover 

available contextual information. It is not clear how SOCAM can maintain this 

provision in PCEs where different services are required at any given moment. This is 

an example of Provision of insufficient contextual information will result in delivery 

of unexpected services to the user.  

 

The ontology-based CoBrA architecture (Chen et al 2003a) serves agents, which 

could be applications within a device or services provided by devices, through a 

centralised broker. The reasoning mechanism that CoBrA developers offer over 

context information for resolving inconsistent context information, applying privacy 

policies and inferring additional context information, is within OWL ontologies 

without additional rule support. Provision of contextual information to distributed 

agents when CoBrA encounters complex situation in which multiple context 

information are interlinked, is therefore limited. CoBrA uses a central database to 

store and fuse collected contextual information. The COBRA-ONT (Chen et al 2004a) 

ontologies, in which time is an important concept, is predefined and in all situations 

all contextual information, even if they may not be relevant to the situation, are 

collected from various devices distributed in the PCE. This unnecessary information 

overload would make processing the context to deliver expected service to the user 

very expensive. This is an example of Unnecessary information overload caused by 

pre-defined contextual model and architecture that detects all contextual 
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information would make processing the context to deliver expected service to the 

user very expensive. 

 

SOCAM and CoBrA are examples of PCE architectures for context-aware 

applications that are specific for a domain and therefore require additional effort 

for their adaptation to other domains. 

 

Sense Everything Control Everything, SECE (Boyaci, et al 2012) although categorised 

in the literature under context-aware computing, has little to offer to represent a 

holistic view of the context. SECE is designed to facilitate user’s communication and 

is an event-driven system which acts on user’s behalf automatically, and is a non-

user involvement system. It is a rule based system in which actions take place 

without any interaction from the user on the basis of the description of the event as 

the body of a rule.   

 

As Khedo (2006) indicates a challenge in making context aware applications is to go 

beyond reading one sensor data and act upon it. It is more about ‘context 

recognition’ to detect for example complex activities and to differentiate between 

different users not defined by a single sensor. SECE is an example of a simplistic 

view of PCEs in which context awareness is more than localization. 

 

(Henricksen and Indulska 2004; 2005), and (Henricksen et al. 2005) present a 

different context modelling approach. They adopted and extended Object-Role 

Modelling and developed a graphical context modelling approach CML. They have 

implemented their prototyping system in Java, and used a relational database 

management system to store contextual information to be queried by context-

aware applications. This is another example of unnecessary information 

overloading.  

 

Earlier ‘context-aware’ applications that were more localization-aware applications 

such as The Active Badge (Want et al., 1992), ParcTab (Schilits et al., 1993), Stick-e 

Note (Brown et al., 1997), and Cyberguide (Abowd et al., 1997) did not support 

context abstraction and therefore, no context model for context representation is 

present.  
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Fahy and Clarke (2004) provide an abstraction of contextual information for their 

CASS system that was modelled using object oriented techniques. Hydrogen three-

layered architecture (Hofer et al. 2002) also uses an object oriented model to 

represent context. (Wang et al., 2004), (Nguyen and Choi, 2008), and (Khalil et al., 

2008) provide more detailed insight into the process of modelling context, but  

(Strang and Linhoff-Popien, 2004) and (Bolchini et al., 2007) provide more detailed 

analysis on different classes of context models.  

 

Strang and Linhoff-Popien (2004) classify Context models by the “scheme of data 

structures used to exchange contextual information” and provide six categories as: 

Key-Value Models, Mark-up Scheme Models, Graphical Models, Object Oriented 

Models, Logic Based Models, and the last but surely not the least, Ontology Based 

Models.  Strang and his colleague evaluate instances of their classification based on 

six criteria of a) compatibility with a distributed application environment, b) 

capability to partially validate contextual knowledge on structure, c) richness and 

quality of information, d) model’s ability to compensate data incompleteness or 

ambiguity due to hardware inefficiencies, e) level of formality and finally f) 

applicability to existing environments. In their evaluation they brand key-value 

models as “weak” due to disability to fulfil the first five criteria and regard the 

ontology modelling as “the most promising asset” for context modelling in PCE. 

 

In their survey of context models Bolchini et al. (2007) have evaluated and classified 

sixteen applications based on a proposed analysis framework; the classification is 

made based on the use of context (i.e. context as a matter of channel-device 

presentation, as a matter of location and environment, as a matter of user activity, 

as a matter of agreement on sharing a context). They have concluded that systems 

which are aimed at providing non-proprietary support to context data tend to be 

ineffective. They state: “Different context sub problems and applications have 

almost incompatible requirements…; as a consequence the context model should 

be chosen depending on the target application.” This survey shows how common 

the issue of the inflexibility of context models is in context-aware applications.  
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Baldauf et al. (2007) also provide a brief survey of context-aware systems. Authors 

review the architecture design and context modelling of some of the solutions and 

concluded that in the reviewed models although abstract context sources are 

used,but only physical sensors (detecting from physical sensors) are mainly used in 

practice, and virtual (context information detected from software applications or 

services) and logical (inferring additional information based on physical and virtual 

information and some other pre-defined information) sensors need to be looked at 

too. The other observation they made is that every system uses its own format to 

describe context and its own communications mechanisms between context 

sources and users.   

Having different format to describe context in a PCE that naturally deals with 

heterogeneous devices has raised concern among the researchers. Roy et al. (2008) 

stress on this issue and point out that moving from controlled intelligent spaces to 

open intelligent spaces will create more problems if the heterogeneity of context 

models is not addressed.  

 

We would like to conclude this section by referring to the joint view of three 

renowned researchers, who first coined the term Semantic Web in 2001, on 

traditional knowledge representation. Considering the requirements of the 

Semantic Web, Berners-Lee et al. (2001) dismissed the traditional knowledge-

representation systems for being capable of handling the ever expanding web of 

information. These systems’ centralized nature that requires all users ‘to share 

exactly the same definition of common concepts’ is their major concern. They 

believe such systems will be ‘unmanageable’ and concluded that ontologies are the 

most appropriate way of modelling when complex set of concepts are involved.  

 

2.4 Semantic Web 
Visionary Tim Berners-Lee depicted his thoughts about the future Web in 1989 as 

shown in Figure 2.1. The links between the nodes in the diagram, like ‘wrote’, 

‘refers to’ and ‘describes’, show his proposal to his employer on how to annotate  

documents in the Web. The motivation for his proposal was increasing amount of  

unstructured information in the company’s intranet network which was not 

supported by any meta data. Tim Berners-Lee was proposing that his idea will 
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improve collaboration beween different departments and staff as they would have 

more information about each document they access. The immediate solution to the 

HTML-encoded Web was XML technology (W3C). Although the design objective of 

the new language was encoding for machine processing, it does not have the 

necessary sound formalism to provide meaning of the terms, for example, ‘wrote’, 

‘refers to’ and ‘describes’ are meaningless to a machine processing the XML code.  
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Figure 2.1: Tim Berners-Lee’s original Web information management view (Berners-Lee, 1989)  

 

In other words, XML and XML-Schema could not attribute meaning to tagged terms 

of a document to be able to share knowledge. However, the other issue with XML 

was that it could only tagged the internal content of a document and therefore 

external sources linked to a document could not be represented. To address this 

issue the RDF (Resource Description Framework)(W3C, 2004c) was promoted. RDF 

is graph-based and comprised of nodes and edges. Each edge is a binary 

relationship between two nodes. The complete graph is a set of binary statements 

based on XML syntax. The structure of each statement is a triple: subject, predicate, 

object. The structure, therefore, provides a data model represented in triples. 

Subjects and objects are the nodes and predicates are the edge linking subjects to 
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objects. Subjects and predicates are URI (Uniform Resource Identifier) resources but 

an object can be either a URI resource or literal values.    

 

So, when the Semantic Web (Berners-Lee et al., 2001) was introduced XML and RDF 

technologies were already available. Tim Berners-Lee’s and his colleagues’ vision 

about the Semantic Web was to improve the traditional Web so that the huge 

amount of information available in the Web can be shared. Enterprises, businesses, 

public offices, health centres, or individuals can then be strengthening by 

exchanging and sharing their knowledge with each other. To this end, XML, RDF and 

RDF-Schema were not sufficient. The philosophy they were advocating was a ‘Web 

of data’ that is structured and formalised to be processed by computers. Given that 

XML and RDF were both machine processable and available at the time, any new 

formalism had to be based syntactically on these technologies.  

 

To ascribe meaning to sources of RDF triples, Berners-Lee et al. recommended the 

Semantic Web stack shown in Figure 2.2. Ontology layer is a key layer of this 

architecture. Although AI community has used ontology modelling for quite some 

time, there was no standard and guideline on use of a formal specification language 

for ontology. It did not take long before W3C announced its standard Web ontology 

language, OWL (W3C, 2004), (W3C, 2004a), (Kadak, T. and Kleerova, 2006) and only 

recently suggested OWL2 as the revised ontology language (Grau et al. 2008). The 

use of ontology in the stack is to provide vocabulary and formal meaning to concept 

used in the taxonomical structure of the ontology. To infer new knowledge based 

on existing knowledge, using ontological model, a logical rule layer was felt 

necessary. A compatible rule engine with OWL ontology that execute the logical 

rules reason about the semantics of the environment to deliver a situation-specific 

service. The stack depicted in Figure 2.2 also shows that any rule to support 

reasoning is based nontology.   

 

Like any other technology, the rate of SW technology success depends on how 

widely it has been adopted by key industries. SW technologies have already started 

conquering various computing domains and have shown that, apart from managing  



 

 

Chapter 2, Bckground of the Research 

 

38

 

Figure 2.2: Semantic Web Stack (W3C 2004b) 

the semantics of the Web, and bringing ‘structure to the meaningful content of 

Web pages’, they can be extremely powerful for building semantics of any 

computational environment.  Applications of SWTs across domains range from 

business intelligence and semantic management to interoperability, 

communications, and data sharing. The expressive capability of OWL to allow 

context information to be represented for context-aware applications, on one hand, 

and the formalised structure of knowledge representation allowing reasoning upon 

acquired contextual information, on the other, demonstrated that SW technologies, 

including OWL, are suitable technologies for the SW requirements. 

 

2.4.1 Ontology Definition 

In the information systems community the term ontology refers to a particular type 

of conceptual model of some entities of interest or ‘concepts’ as in the famous 

‘Ogden Triangle’ (Ogden 1923). The model represents the entities in a way that it 

facilitates shared understanding and sharing information about the entities. The  

representation is formalised by following some standard set of constructs. Gruber 

(1993) describes ontology as ‘specification of conceptualisation’. Formal 

specification of domain ontological models requires a language. The language has to 

be expressive enough to allow the representation of the domain but at the same 

time decidable to allow reasoning on existing contextual information to detect any 
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inconsistencies among acquired information, but also to infer new knowledge from 

the existing knowledge.  

 

2.4.1.1 OWL Ontology  

The first ontology language recommended by W3C was RDF (W3C, 2004c). Another 

recommendation of W3C is RDF Schema (W3C, 2004d) that adds some features as 

metadata to RDF to complement it. Same as RDF, the statements in RDFS are binary 

relationships; i.e. predicates are binary. However, despite some added features to 

RDF, RDFS is undecidable because of the fragment of the logic it is based on. 

Decidability however, is a key feature of applications generated upon ontologies. 

Any fully-fledged PCE system built on ontologies require support for reasoning, 

without which the extent of support they provide for users will be limited. This 

shortcoming in RDFS necessitates the development of a new language. The first 

version of OWL introduced in 2004, then in 2009 the second version was announced 

followed by W3C announcement in December 2012, to make OWL2 as the 

consortium’s recommendation for ontology language (W3C, 2009).   

 

The first OWL (OWL 1 as now recognised by W3C) has three varients, OWL Lite, 

OWL DL, and OWL Full. OWL Lite is subset of OWL DL, and OWL DL is a subset of 

OWL Full. In OWL 2, where new features and new vocabularies have been 

introduced, three more sublanguages of OWL DL are also offered. It is outside the 

scope of this thesis to elaborate more on this, but keen readers are referred to 

(Baader et al., 2007) for more detailed information on Description Logic (DL), to 

(W3C, 2004e) for OWL in general, and to (W3C, 2012a) for more information on 

OWL 2 new features and vocabularies. 

 

We provide here a brief explanation of some of the constructs of OWL, and refer 

interested readers to (W3C, 2012b) for extensive information. As Figure 2.1 shows 

and mentioned earlier OWL ontology is based on RDF and the data model 

represented in RDF is a set of triples. Therefore, as it is for RDF, it is the same for 

OWL that resources whether being ‘subject’ or ‘object’ or ‘predicate’ are the key 

building blocks of OWL. The terminology W3C uses for these resources in OWL is 

‘entity’ and considers entities as ‘fundamental building blocks of OWL’ (W3C, 
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2012b). As depicted in Figure 2.3 an ‘entity’, or ‘concept’ as is sometimes referred 

to in the literature, can be a ‘class’, ‘object property’, ‘data property’, a ‘data type’, 

or ‘named individual’. Unlike other entities, ‘annotation property’ entity is not 

expressed formally in OWL. In that, we will not discuss this type of entity any 

further. As the diagram shows each entity has one Internationalized Resource 

Identifier (IRI). IRI has replaced URI in OWL2 (W3C, 2012b).  

 

2.4.1.2 Constraints and Assertions with OWL 

As literals are not individuals in OWL, they are not shown as a specialised type of 

‘Entity’. In OWL only individuals make members of an OWL class. It is worth 

mentioning here that although the ontology schema is represented in OWL the 

individuals that populate the ontology are represented in RDF.  

 

 

Figure 2.3: Building blocks of OWL using UML notations (W3C, 2012b) 

 

An object property is a binary predicate that relates two individuals being member 

of the same or different classes. Each object property has two predefined 

properties, rdfs:domain  and rdfs:range . Domain restricts the subject of the 

predicate to be an individual of a particular class, likewise, range restricts the object 

of the predicate to be an individual of a particular class. In Listing 2.1 the description 

of two object properties, belongsTo and isCurrentlyIn  in RDF/XML 

format are presented. The first object property indicates that the ‘subject’ of the 

predicate belongsTo  is always an individual of class OBJECT, and the ‘object’ of 

the predicate is always an individual of class PERSON.  



 

 

Chapter 2, Bckground of the Research 

 

41

 

 

 

 

 

 

Listing 2.1: An example of description of two object properties in RDF/XML format 

 

An example of asserting named individual in OWL in RDF/XML format is shown in 

Listing 2.2. In this example an individual of class Heater , heater152 is asserted.   

 

 

 

 

 

Listing 2.2: An example of asserting a named individual in OWL 

 

 

The object properties described in Listing 2.2 in addition to some datatype 

properties are added to describe and represent the object heater152 . 

The Listing 2.1 and 2.2 is shown in graphics in Figure 2.4. Please note that the 

Heater class is related to OBJECT class through the following predicate: 

<rdfs:subClassOf rdf:resource="&Ontology13560225922 95;OBJECT"/> 

because of this subclass relationship any individual of Heater  is also an individual 

of OBJECT . 

                      PERSON 

       OBJECT 

          belongsTo 

        rdfs:range 

isCurrentlyIn 

  LOCATION 

status                   rdfs:range 

                    literal string              

Figure 2.4: Graphical representation of Listings 2.1 & 2.2 

 

 

<owl:ObjectProperty rdf:about="&Ontology13560225922 95; belongsTo"> 
        <rdfs:domain 
rdf:resource="&Ontology1356022592295; OBJECT"/> 
        <rdfs:range rdf:resource="&Ontology13560225 92295; PERSON"/> 
</owl:ObjectProperty> 
 
<owl:ObjectProperty 
rdf:about="&Ontology1356022592295; isCurrentlyIn"> 

  <rdfs:range 
rdf:resource="&Ontology1356022592295; LOCATION"/>  

<owl:NamedIndividual rdf:about="&Ontology1356022592 295;heater152"> 
    <rdf:type rdf:resource="&Ontology1356022592295; Heater"/> 
    <status rdf:datatype="&xsd;string">off</status>  
    <belongsTo rdf:resource="&Ontology1356022592295 ;margaret"/> 
    <isCurrentlyIn rdf:resource="&Ontology135602259 2295;room101"/> 
</owl:NamedIndividual> 

 

Heater 
   

heater152  

   margaret  

room101  rdfs:domain 

“off” 
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2.4.2 SWRL Rule 

OWL ontologies cannot provide advanced reasoning when complex 

interrelationships between several concepts of ontology are involved. Whether SW 

tecknologies are used to add structure to the content of the Web, or are used in any 

PCEs for making use of the semantics of the computational environment, 

shortcomings of ontologies for reasoning upon existing context are compensated 

with some deductive rules. Rules are a set of IF, THEN statements where one or 

more than one statement (or premises) represent the condition (also known as 

body or antecedent of the rule), and one or more statements represent the action 

(also known as head or consequent of the rule). These rules can be set for a variety 

of purposes. They can be used, for example, to apply user preferences, to apply 

business or service policies, to implement some security measures, to maintain 

smooth network operation, or they can be set to trigger an actuator in response to 

a particular situation in a PCE.  

 

Despite its expressive power and reasoning mechanism, complex rules where 

several OWL ‘entities’ are involved cannot be handled by OWL ontology. This 

deficiency on one hand, and the necessity for any rule to be added on top of the 

ontology to run using the same reasoning engine, on the other, required a new 

language for writing rules in SW.  Therefore, W3C recommended the Semantic Web 

Rules Language, SWRL, as another language that allows the integration of OWL 

ontology and a rule layer that sits on top of it (Horrocks, et al. 2004). SWRL, which is 

also based on DL, complements OWL ontology. How non-monotonic SWRL and 

monotonic OWL can work together hand in hand to offer a decidable reasoning 

system is outside the scope of this thesis. Interested readers are referred to (Eiter et 

al. 2007) which provides a good overview of rules and ontologies for the SW. 

 

2.4.2.1 The Role of Competency Question (CQ)  

The competency questions provide the information necessary to develop a new 

ontology or extend an existing one. The set of CQs will therefore specify the criteria 

for the design of the ontology in terms of its terminology and constraints; i.e. to 

ensure the design decisions made for the ontology are correct. This means that the 

CQs are to verify whether the ontology meets the requirements specified in the 
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questions, and not to direct towards a particular design. In other words, any 

particular set of CQs cannot be related to one and only one ontological model. As 

the ‘words’, or ‘phrases’ used in the CQs will form the terminologies used in the 

formal ontology specification, the formulation of the competency questions to 

capture all necessary requirements for the design of the ontology is very important.  

 

CQs are usually defined in a stratified manner (Uschold and Gruninger, 1996), so 

that the rational for the lower level questions is how the answer to the CQ is used 

to answer a higher level, more complex CQ.  We have explained the role of RDF 

technology in SW in previous sections. Sentences, phrases and words in CQs will 

determine the RDF triples (subject, predicate, object). For example, the informal 

sentence “the status of the heater is off”, which is an excerpt from a CQ is translated 

into a formal CQ: status (? h,"off") . This entails that the concept Heater 

must have data type property status.  

We conclude this section with a statement from Tim Berners-Lee (2000) to stress on 

the importance of capturing terms of the CQ to realize the SW vision and use of SW 

technologies in PCE.  

“The philosopy was: What matters is in the connections. It isn’t the 

letters, it’s the way they’re strung together into words. It isn’t the 

words, it’s the way they’re strung together into phrases.  It isn’t the 

phrases, it’s the way they’re strung together into document.”  

  

 

2.4.3 Ontology Applications 

OWL ontologies are increasingly being used across domains, more noticeably in 

health domain. Ontologies, particularly in the health care domain, are used mostly 

for vocabulary specification or for serving context aware applications. Examples for 

the former are, the well-known Gene Ontology Consortium with the role to produce 

a dynamic, controlled vocabulary for all being gene (GO, 2000), a big biomedical 

vocabulary like Thesaurus for cancer research (Hartela et al., 2005), large scale 

clinical terms SNOMED (Spackman et al., 2000), or more to serve the needs of a 

particular community such as phenotype ontologies (Mungall et al., 2010). 

Examples where ontologies are used for more than vocabulary purposes, and used 

in PCE applications to serve users are (Chen and Finin, 2003), (Wang et al. 2004), 
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(Ko, et al., 2007), (Paganelli and Giuli, 2007), (Bardram and Christensen, 2007), 

(Niyato et L., 2009), (Arnich et al., 2010), (Polza et al., 2010), (Coronato, 2010), 

(Romero, et al., 2011), and (Zhang et al., 2011). 

 

Chen and Finin (2003) have used ontology for modeling contexts using OWL 

language.  They consider ontologies as ’key requirements’ for building context-

aware PCE systems. In another project Chen et al. (2004b) have developed a shared 

ontology SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) for 

supporting UC and PCE applications. They believed that their generic ontological 

model, that was developed using OWL, can be a step towards the standardization of 

a shared ontology to be reused by ontology-driven application developers.  

 

In their agent-based system to negotiate context information, Khedr and Karmouch 

(2004) use an ontology agent that provides the semantic functionalities that other 

agent can use to represent and share context in the system. To represent a unified 

context model, they have taken an ontology-based approach, and defended their  

choice by arguing that other approaches do not support extensibility and 

interoperability with other context-aware systems.  

 

Wang et al. (2004) use a set of ontologies to describe and represent contextual 

information within their architecture, SOCAM. These ontologies are divided into 

domain-specific and generalised ontologies.  

 

In the ontology based U-HealthCare, Ko et al. (2007) have defined three context 

ontologies for Person, Device and Environment, and their model does not include 

the element of time. Their ontologies are semantically divided into general context 

ontologies and domain context ontology, similar to (Wang et al., 2004).  

 

Paganelli and Giuli (2007) provide a more detailed ontological model than (Ko et al., 

2007) for their ‘Kamer’ project. They have provided four ontologies to represent 

patients, other people patient encounters with, the physical environment, and an 

alarm management ontology. In the ‘Patient Personal Domain Ontology’ they 

include patients physiological information. They have used OWL language and some 

first order logic rules to reason upon the context. Some of ontological entities, 
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particularly classes are being repeated in different ontologies to run predefined 

rules.  

 

A very detailed, and yet, general view of the ontologies for pervasive systems is 

explained by (Stevenson et al., 2009). They have adapted requirements for 

modelling context that (Strang and Linnho- Popien, 2004) and (Henricksen et al., 

2005) have elaborated in terms of “capturing the quality of data and supporting 

temporal data”.  In addition to these requirements for capturing properties of 

sensed data, Stevenson et al added requirements for modelling properties and 

capabilities of sensors too. Some of the ontologies in the Stevenson et al.’s 

Ontonym model are Time, Location, People, Event, Resource, and Device. They 

suggest that an approach to evaluate a context model is through the application 

that is supposed to use it, and how the model “fits” the application.  

 

We would like to add that not all ontology based applications and context 

management use OWL language. Korpipää et al. (2003) for example use RDF for 

context representation. Jahnke et al. (2004) also offers an ontology-based context 

aware system in which the context representation is divided into two ontologies, 

domain dependent and domain independent ontology. They have used a graph-

based database for storing contextual facts. They are using their own encoding for 

contextual representation and for communication between the context sensors and 

the context users. However, since W3C recommendation in 2004 endorsing OWL as 

the ontology language standard, efforts to develop ontologies in other languages 

have declined.  

 

2.5 Summary 

In this chapter, we have provided different perspectives of pervasive and ubiquitous 

computing, and how this new paradigm challenged previous views on computing. 

The diverse characterisation of pervasive computing environments and systems, 

gathered through a collection of published documents was also given in this 

chapter. Realisation of pervasive computing depends on context-awareness. 

Various definitions and viewpoints of this concept is reflected in several prototypes 

developed. In most early context-aware applications and in mobile-computing the 
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study reveals that context-awareness is used as a synonym for location-awareness.  

There is a growing trend in the pervasive computing community to look far beyond 

location as context. Different approaches to context modelling and growing interest 

in use of ontologies to abstract contextual data was also covered. 

 

Increasing inclination towards the use of Semantic Web technology as a software 

solution to problems and concerns of pervasive computing systems is also covered 

in this chapter. A brief explanation of some of the SW technologies that interest us, 

particularly RDF, OWL ontology and SWRL rule along with concept and vocabulary 

used in the realm of SW is also given in the chapter.   

 

 

 

 

 

 

 

 

 

 



 

 

    

 

 

 

 

 

 

 

 

 

CHAPTER 3  

PROBLEMS WITH PERVASIVE COMPUTING 
 

In this chapter we analyse the research problem from two different 

perspectives.  Firstly, in section 3.1. we debate expectations we all have from 

pervasive computing and we single out only those which cannot be delivered 

through the traditional approach to creating computing environments.  We use 

word “traditional” to refer to all computing practices, which have existed in SE for 

developing applications in businesses, science, governance and leisure, in the last 3 

decades.  They all heavily depend on numerous transaction processing, 

manipulation of databases and knowledgebases, information retrieval, scientific 

calculations and similar.  We do not wish to claim that PCE cannot be developed 

using the traditional SE principles, but we wish to point out that computational 

environments have changed significantly and our well established way of creating 

computational solutions may not be appropriate for creating PCE.  Secondly, in 

section 3.2 we look at pitfalls in the field of context awareness, which promised to 

address the real nature of PCE, but delivered results only fractionally.  Consequently 

in section 3.3 we summarise the shortcomings of pervasive computing. 

 

We would like to think that the way forward is to create a common consensus on 

the characteristics of PCE (Section 3.4.1) and define the role of situations in them 

(section 3.4.2.). We would also like to bring forward our vision on what exactly we 

need to compute in PCE (section 3.4.3).  Our perception of PCEs is drawn from our 

own research (Shojanoori et al. 2010, 2012),(Shojanoori and Juric, 2013) and 

outcome of discussions in section 3.2.1 and 3.2.2.   
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3.1 Expectations from Pervasive Computing 

It is difficult to find published sources of information which itemise expectations we 

all have from pervasive computing.  However, from the background reading and 

experiences of defining pervasiveness across different domains (Shojanoori et al. 

2010, 2012),(Shojanoori and Juric, 2013) (Koay et al., 2010a,b), we have grouped 

and contrast them with common perceptions of traditional computing in the 

paragraphs below.   

 

Defining inputs dynamically: Computing, from the outset until very recently, has 

been regarded as the process of achieving some desired output when some pre-

defined set of inputs is provided. Programmers have to define and program 

functions that convert the inputs to outputs. The computers were designed to be 

general-purpose computers, which at the same time are expected to compute 

different functions, and therefore have, sometimes “difficult-to-design” algorithms, 

ready.  Obviously, these programmed algorithms would work only if the input to 

them is known and very well defined.  By contrast, in the 21
st

 century computing, 

the set of inputs for computation is not always known in advance. For example, in 

an intensive care unit, where the health status of patients are constantly 

monitored, different supporting devices, depending on the patient’s current status, 

might be needed and consequently they might produce different types of input 

which should be accepted at run time.  Also, the choice of devices might not be 

known in advance, i.e. before we set up a PCE, but we should be able to use these 

devices as situation requires.  In cases of using biometrics and similar technologies 

in Border Control environments, when we identify a passenger through face or iris 

recognition, they both produce viable input sources for the recognition system, 

which can be used interchangeably or altogether.  In some cases we may use iris 

recognition because of relatively lower reliability of face recognition, which simply 

might not work for all passengers.   

 

Computing output not guaranteed: The general-purpose computers always return 

a result, be it information retrieved from a persistent repository or some physical 

output such as dispensed money at the end of a transaction using an automated 
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teller machine. Although individual computational devices in PCEs may have 

outputs, computing functions may not have any output at all. For example, if there 

is no change of condition of a particular patient who is monitored remotely, his/her 

PCE will not take any “action”, which means that PCE will produce no output.  

However, this lack of “output” doesn’t mean that there has not been any 

computation at all. Computing to infer that “there has not been any changes” is an 

example of not having any output as a result of the computation.  

 

Distribution of devices and computing: In traditional computing, computation  is 

limited to general-purpose computers. Their centralised functionality is not 

distributed among devices embedded with computing capabilities designed for a 

specific task. By contrast computing devices in pervasive computing are equipped 

with their own microprocessor and therefore have a specific purpose, which is 

defined within their own computing function. This is actually a key feature that may 

distinguish pervasive from traditional computing. For example, a thermometer 

sensor that provides body temperature of a person could be augmented to produce 

contextual information rather than raw data.  That is, instead of providing the exact 

number (e.g. temperature, in remote patient monitoring) it may give an information 

whether the person’s body temperature is normal, high, or low.    

 

Pervasiveness of user-specific devices: In traditional computing many users share 

the same general-purpose computing device. Opposite to the practice in traditional 

computing, computing devices, or devices embedded with some computational 

power, by and large, are user-specific and therefore are not shared by several users.  

At the same time each user is surrounded by numerous devices, which makes 

his/her environment pervasive, but full of user-specific devices.  For example, a 

patient in a hospital ward, who has just had an operation, may carry or be attached 

to a number of devices, and each of them may monitor some aspect of the patient’s 

health.  They are all specific to that patient and not shared by anyone else.   

 

Flexible interfaces: Software applications generated from a traditional computing 

system make use of very limited ways of interaction with the environment. Direct 

keyboard or mouse input from the user are by far the most common ways of 
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providing input to computing functions in traditional computing. However, to 

support users of pervasive computing system with as much flexibility as possible, 

there cannot be constraints on the type of interfaces between the devices 

generating information and the software applications that are making use of them. 

For example, identifying people in a particular PCE can be done through face 

recognition, by voice tone, by finger print, or by iris of the eye.  In all these cases we 

use devices with completely different interfaces for achieving the same goal: 

identify a person. Normally all these interfaces are parts of various devices, 

integrated into a PE, which enable the recognition. 

 

 Implicit interaction: While in traditional computing the interaction between human 

and computer is explicit, in pervasive computing where the user is surrounded by 

devices embedded with computing capabilities, the interaction between the human 

user and information is implicit. For example, a patient who is being monitored 

remotely and falls unexpectedly may not interact with any system to notify his 

unfortunate incident. The sudden change of the patient’s body position can alert 

the remote monitoring system and there will be an implicit interaction between the 

patient and his/her PCE.  

 

Redundancy of historical information: Traditional computing applications, more 

often than not, rely on persistent data, whereas pervasive computing may compute 

the moment without any regard to the historical information. This, by no means 

dismisses the usefulness of historical information in a PCE. The issue is that the PCE 

is not responsible for it, and its provision has to be taken care of at the level where 

we run a software application which supports the PCE.  For example, a PCE user 

might decide to block incoming calls, and right at the next moment he/she changes 

his/her mind and wants to receive calls. The decision made in the previous moment 

cannot be judged for the next. Or even if he/she blocks incoming calls at a particular 

time of day in the last month, this historical information cannot be considered as a 

basis for inferring the same action at any other moment in future without the PCE 

user’s consent.  
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Premature end of computing procedure: There is always a pre-defined start-to-end 

procedure in traditional computing, but in pervasive computing activities may end 

prematurely. Our everyday life is full of examples of opting for one task and then, 

without completing it, switching to another is very common.  One of the best 

examples are user clicks on the web.  We very often end-up retrieving information 

form websites which we did not plan at the beginning of our retrieval session.  A 

user of a PCE shall not coordinate himself/herself with PCE, it is the other way 

round.    

 

User-centric computing: In traditional computing user is in the “background”. The 

general-purpose computing devices carry out computations with minimal, if at all 

any, user involvement.  However, in pervasive computing environments, computing 

often does not happen without user consent. User preferences, requirements and 

requests have a role to play in PCE and they determine which services should be 

provided to them. No action can take place in a PCE without the user consent or 

authorisation. This may be in advance when users subscribe to the PCE and/or at 

the time the PCE is being used. A resident of a care home might have given in 

advance an authorisation to be remotely monitored while asleep, but he/she can 

change his/her mind at any moment. 

   

Computing transparency: In traditional computing, applications are device-

oriented, whereas in environments where users are empowered by the surrounding 

wireless and mobile computational devices, applications become user-oriented.  

Transparency of computations in traditional computing is a non-existent feature, 

but important in PCE because users have to interact with the PCE at all times.  They 

are well aware of their interaction, and they may persist until the desired output is 

produced.  Computing transparency involves automatic and seamless integration of 

computing devices, as its key feature, which is essential in PCE.  For example, 

monitoring the presence and location of inhabitant of a homecare, their activity, 

who they are with at a particular moment can be handled in a PCE without the 

users being disturbed or even noticing it. 
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In Table 3.1 we summarise the expectations debated in this section and give their 

brief explanations.   

 

 Expectation Description 

E1 Defining inputs 

dynamically 

Inputs to computers to perform a task cannot be limited to a 

prescribed list of inputs given in advance; inputs should be defined 

dynamically at run-time. 

E2 Computing output 

not guaranteed 

In pervasive computing we may not have any output at all.  

E3 Distribution of 

devices and 

computing 

Centralising computing functionality, particularly when lots of 

computation takes place at any moment is not feasible, practical any 

demanded any more.  Computing responsibility can be delegated to 

variety of devices, with a variable computational power and each of 

them can be designed for a specific task. 

E4 Pervasiveness of 

user-specific  

devices 

Computing devices are user-specific and each user may also use 

multiple devices. Identifying users from each other to deliver services 

appropriate for one and not the other is typical of pervasive 

computing. 

E5 Flexible interfaces  There cannot be constraints on the type of interfaces used in pervasive 

computing.  Devices and applications can use use numerous and 

constantly changeable devices (as they change). 

E6 Implicit interaction Interaction between human and computer may be historically seen as 

explicit, but in pervasive computing, where user is surrounded by 

computational devices, the interaction between may often be implicit. 

E7 Redundancy of 

historical 

information 

Pervasive computing is not responsible for historical information; they 

have to deal with situation they encounter in PCEs.  Each situation in 

PCE might require different computations and services to be delivered. 

E8 Premature end of 

procedure 

In traditional computing there is always a pre-defined start-to-end 

procedure, but in pervasive computing activities may end prematurely. 

E9 User-centric 

computing 

Pervasive computing applications are user-oriented rather than device-

oriented.  

E10 Computing 

transparency 

Seamless integration of devices with minimal user explicit interaction 

is a key feature of pervasive computing. 

 

Table 3.1: Expectations from pervasive computing 

 

3.2 Problems with Context-Awareness in Pervasive Computing  
In chapter 2, section 2.3 we elaborated on the research relevant for contexts in 

computing.  We highlighted the lack of common consensus on what exactly context 

may mean; we discussed the complexity and limitations of software applications 

which are developed with ‘context in mind’ and which consequently become 

‘context-aware’ and we also looked at the issue of ‘context modelling’ in such 

applications.  Al three of them have highlighted a range of limitations of context 

aware applications. In this section we elaborate on problems in context aware 

computing and give our further justification on why ‘context awareness’ has not 

delivered most of expectations E1-E10 form Table 3.1.  
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Imperfection of context awareness:  (Henricksen et al. (2002) argue that because 

PCEs are highly dynamic, information describing them can quickly become out of 

date.   According to them ‘context histories (past and future)’ will frequently form 

part of the context description and therefore applications in PCE are interested in 

more than the ‘current state of the context’. We agree with (Henricksen et al., 

2002) that information describing an situation of a PCE can quickly become out of 

date, but question their view that software applications in PCE are interested in 

more than the current state of the context.  We believe that situation specificity is a 

key feature of context-awareness in PCE, which changes constantly and at any given 

time we may encounter a different situations in the same PCE. We would also like 

to think that one change in a PCE must trigger the existence of a new situation and 

the acquired information of the situation is always related to one moment in a PCE, 

which might be completely immaterial for the next one. From that perspective, 

situation might be much more than “the current state of the context”, as 

Hendrickson claims, but not in terms of relying on historical information and 

“previous” contexts.  The appropriateness of the information generated in and by 

PCE and their usage by software applications, will always depend on the situation 

triggered by a change in the PCE. Whenever there is a need for historical 

information in PCEs, we can deal with it at the application levels, i.e. applications 

can make the right decision in situations where another source of information is 

required, such as a piece of data retrieved from a database, what  (Bellavista et al, 

2012) refers to as ‘virtual sensors’. We would like to emphasise that by looking at 

various situations in PCE we come closer to the idea of situation awareness, as 

defined and exploited in (Matheus  et al., 2003)(Matheus, 2005)(Bahrami, et al., 

2007)(Gauvin, et al., 2003). According to their contextualisation of information in 

pervasive computing, situations describe pervasiveness “better than context”, 

which is close to our own idea of creating a PCE based on ‘a situation’ in it.   

 

Localisation-aware systems dominate: Most of the available and fully developed 

context-aware applications are not actually context aware but are rather 

‘localization-aware’ systems.  Active Badge (Want et al 1992), ParcTab (Schilits et 

al., 1993), Cyberguide (Abowd et al 1997), the Intelligent Room (Coen, 1998), the 
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Bat (Harter, et al 1999), the Context Toolkit (Salber et al 1999b), (Garlan et al 2002), 

CASS (Fahy and Clarke 2004) are primarily concerned about the location context of 

the user in order to make a decision. Most of these localization-aware systems are 

systems that adapt themselves to only the new location of the user, so as to provide 

mobile functionality appropriate to the location. Although location-aware systems 

have gained popularity in recent years when using mobile devices, we believe 

information generated in context-aware PCEs is far more diverse and complicated, 

i.e. context awareness in PCEs is more than localization.  

 

Contextual information is not always abstracted: Some proposed context-aware 

architectures, including the above examples, are dependent on the hardware 

infrastructure. Consequently in software applications generated form such 

architectures do not support context abstract at all, or at best to a limited extent. 

For example, the location information detected from sensors is not interpreted to 

produce a higher level of abstraction and physical sensors are also not hidden 

behind needed abstraction.  As a consequence we created systems which were NOT 

scalable; i.e. capable to allow expansion.  In other words the system was not able to 

accommodate any additional sensors and could not cope with the dynamic nature 

of PCEs. We believe that the way out is in abstracting contextual information 

through models which can be materialised with appropriate languages that allow 

reasoning upon detected contextual information and infer situational information.   

 

Lack of context reasoning: Some proposed architectures, such as The Context 

Toolkit (Salber et al 1999b) do not have an easy-to-apply context reasoning 

mechanism to infer either “high context information” or situational information. 

Toolkit represents context using key-value model of context representation. The 

keys do not have meanings and therefore do not allow further than basic reasoning 

upon contexts. Hydrogen architecture (Hofer et al 2002) is also short of a reasoning 

mechanism. Although it uses an object oriented model to represent context, each 

sensor is being interpreted through a highly coupled adaptor and therefore its 

software architecture does not provide a good abstraction of context. In the CASS 

architecture (Fahy and Clarke, 2004) the contextual information which is limited to 
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location is passed to a relational database. This means that the context processing 

takes place in a relational data model which cannot support any reasoning 

mechanism.  It is also important to note that most of the available architectures for 

context-aware applications in PCE are specific to an application domain and, as 

Miraoui et al (2008) have concluded in their survey, they require additional effort 

for their adaptation to other domains. With regards to the healthcare domain, 

although many research papers can be found on pervasive healthcare systems, few 

of them focus on the context model and its structure.   

 

The lack of high level abstraction: When the processing of context is done in a key-

value model, relational model or object-oriented model, because the terms used do 

not have meaning, reasoning to infer higher-level context, if it exists at all, must be 

done through programming. This lack of high-level abstraction requires the context 

models to be highly coupled with the rest of the system and therefore the addition 

of more devices dynamically is not supported. We believe that due to the rich 

formalism available in ontologies for representing contextual information, we 

should use them for reasoning upon contex and to inferring situational information 

in PCEs. Service oriented context-aware middleware, SOCAM (Gu et al., 2004), 

(Wang et al., 2004), and context broker architecture, CoBrA (Chen et al., 2003a), 

(Chen et al., 2004a) are among the most cited examples in the literature that have 

used OWL ontology for processing the contextual information. However, these are 

not examples which can model a situation in PCE for two reasons. The first one is 

that their interpretation and manipulation of contextual data is focused on 

managing the sensor generated data, which is not always sufficient for interpreting 

situation in PCEs. There is an abundance of data in PCEs, which is NOT generated by 

sensors, but play an important role for defining the semantics of the situation in 

PCE. The second is that, all these solutions are knowledge based systems that 

manage enormous amount of data. This has been considered as cumbersome SE  

solutions which are very difficult to manage. Even if we assume that we can 

distribute such complex SE  solutions across clouds, then it is questionable how 

could these distributed computations answer the our view that PCEs exist because 
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they can accommodate constantly changing and seamlessly integrated devices of 

variable computational power.  

Table 3.2. summarises the shortcomings of context awareness in addressing needs 

of PCEs. 

� Limitation Description 

L1 outdated 

contextual 

Information  

Contextual information in traditional context-aware applications can 

quickly become out of date. 

L2 Domination of 

localisation-aware 

systems 

context awareness in PCEs is more than localization. 

L3 Lack of context  

abstraction 

physical sensors are not hidden behind abstractions. 

L4 Lack of context 

reasoning 

Inappropriate context model is used that does not support context 

reasoning mechanism to infer high-level context and reason about 

complex situations. 

L5 Insufficient context-

information 

Provision of insufficient situational information will result in delivery of 

unexpected services to the user. 

L6 Information 

overloading 

Unnecessary information overload caused by pre-defined contextual 

model and architecture that detects all contextual information would 

make processing the context to deliver expected service to the user 

very expensive. 

L7 Context model 

inflexibility 

Most of the available architectures for context-aware applications in 

PCE are specific to an application domain; they require additional 

effort for their adaptation to other domains. 

 

Table 3.2: Limitations of context-aware applications 

 

3.3 Summarising Shortcomings of Pervasive Computing 

The analysis of current problems in Pervasive computing itemised in Table 3.1, and 

the limitations of well-known applications of context awareness listed in table 3.2, 

have polarised our research problem and send two important messages. 

Firstly, however hard in the past we tried to create new SE  solutions which respond 

to either technological changes or ever changing business demands, it is always 

difficult to predict that such software solutions will be a definitive answer to 

problems we experience in new computing environments.  Building Context 

Awareness in computing is not a silver bullet for creating PCE, as highlighted in the 

previous section.  It is difficult to imagine that we can exploit the 15 years of 

research in modelling and managing context, which mainly manipulates sensor 

generated data, when modelling and manipulating PCE and, at the same time, 

achieve expectations E1-E10 from Table 3.1.  
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Secondly, the list of expectations from table 3.1 is not ‘science fiction’.  It is more a 

common perception of modern computational environments.  We can claim that it 

is difficult to perceive modern computing without having pervasiveness in mind.  

Therefore if we advocate that our PCE exist because we can seamlessly integrate 

numerous heterogeneous devices into our everyday life, and compute with them at 

any time and place, then we will immediately stumble upon the traditional 

perception of contextualising PCE.  Tables, 3.1 and 3.2 send clear messages: 

I. Traditional context are not sufficient for defining and manipulating PCE and 

therefore we should replace it with situations in PCE, as found in Table 3.2 and in 

Objective 2 on page 9. 

II. We should re-think or re-assess the way we perceive computing in PCE.  This is 

obvious from Table 3.1 but also dictated by Objective 3 on page 10. 

3.4 The Way Forward in This Research 

In this section we pave the way towards a possible solution which can address I. and 

II. from  section 3.3.  We have to identify the way of meeting expectations E1-E10 

from Table 3.1. and addressing limitations L1-L8 from Table 3.2.  The outcome is a 

list of categorised characteristics of PCE itemised in Table 3.3, which should be used 

when addressing I. and II. 

 

3.4.1 What would be Common Characteristics of PCE? 

In this section we create a set of categorised PCE characteristics which are based on 

expectation we itemised in Table 3.1.  

 

When addressing E10 (Computing transparency in PCEs), we primarily need a 

seamless integration of devices within a particular PCE. However, if we would like 

to think that PCEs are physical environments which are augmented with numerous 

heterogeneous devices with embedded computational power, then these devices 

should be interconnected with each other. They can be stationary or mobile, and 

there is no restriction on the number of them.  However, the existence of their 

computational and communicational power is essential in order to have them 

seemingly integrated into PCE.  Hence, we have characteristics P1 and P2 in Table 
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3.3.  In addition if we assume that any number of devices can comprise a particular 

PCE then we would like to think that no pre-defined device setting is needed. The 

setting of heterogeneous computational devices in a PCE is not definite. That is, 

adding a new device, replacing a malfunctioning device with a working one, or 

removing a device without replacement is possible in a PCE at runtime with ease 

and without affecting any other part of the PCE.  There is no pre-defined structure 

between devices of a PCE, and there is no operational dependency between 

devices. Otherwise devices would be highly coupled with each other and therefore 

their replacement or removing from the setting would be difficult if not impossible.  

Thus characteristics P3 in Table 3.3.  

When addressing E9 (User-centric computing) we have to create computational 

environment which serves the user.  We would like to think that the PCE empowers 

its users at any time/place, favours unobtrusiveness and respects/adopts user 

preferences as they interact within PCE.  Consequently, the devices integrated into 

a PCE penetrate into our private and professional lives and enable us to perform our 

daily tasks comfortably.  Thus P8, P9, P11, P12 in Table 3.3.  

When addressing E6 (Implicit interaction) we would like to think that, apart from 

securing as minimal intrusion for the user as possible, the PCEs guarantees implicit 

and not solely explicit interactions between users and PCE.  This may mean that 

users may use and be a part of a PCE without “attending” to any device.  Devices 

are transparently integrated into a PCE in order to secure the delivery of expected 

services and  the most important outcome is that these services should exactly 

match users expectations and preferences, without assuming that the interaction 

between users and PCE is explicit.   The user in a PCE can focus on what they want 

to do, not how to do it.  Thus characteristics  P12, P13, P14 in Table 3.3. 

When addressing E7 (Redundancy of historical information), we need to be 

concerned only about the situation specific information within a particular PCE.  We 

would like to think that the availability of an extensive amount of information, 

which might have been cumulated within the PCE will overload the user and is not 

in itself a virtue.  This may mean that the power of PCE is in its ability to handle a 

particular “moment” or a situation, which may not depend on historic information 

at all.  What matters is to have all the relevant information about the situation that 
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makes a difference to the user.  Consequently, we would like to think that a 

situation in a PCE is based on information, which is important for that “moment” 

and may be completely immaterial for the next one.  If any monitoring, tracking, or 

historical information is indeed needed in PCEs, it may be managed by other means, 

e.g. through a separate or additional software applications which run in PCE.  

Finally, we would like to think that a PCE will make use of the information provided 

by its seamlessly integrated devices (also referred to as ‘information appliances’ 

(Norman 1999)) in a particular situation and make a decision on appropriate service 

to the user for that situation.  Thus characteristics P14, P16, P19, P20, P21 in Table 

3.3. 

When addressing  E1 and E8 we need proactivity in PCE whilst not being 

autonomous.  We would like to think that PCEs in spite of being user-centric 

environments, should also be “proactive systems”, i.e. they may take actions 

without being instructed.  Although users’ serenity and composure necessitates 

their minimal distraction in PCEs, which is also supported by PCEs unobtrusiveness, 

we would like to believe that it is not very wise to condone a completely 

autonomous PCE where users’ changing preferences and dynamic input into a PCE 

do not play any role.  We can also add that, as a consequence, we might witness a 

premature end of computing procedures in PCE because it would be difficult and 

inappropriate to predict exactly what a particular situation in PCE would be and 

which decisions are to be taken in that PCE.  Thus characteristics P3, P5, P6, P7, P17 

in Table 3.3.  

However, we would like to think that PCE accommodates intelligence which enable 

us to address E1, and E6-E10.  We do need provision of some reasoning mechanism 

that can infer new knowledge (we may call it higher level, i.e. situational 

information) from the collected contextual information (we may call it “low level”).  

Furthermore, supporting execution of reasoning rules in situations where several 

pieces of situational information are related to each other and where the 

relationships cannot be represented in any abstract PCE model, will result in 

addition of a set of reasoning rules to the semantic of PCEs.  Thus characteristics P8-

P17 and P19-22 in Table 3.3. 



 

 

Chapter 3, Problems with Pervasive Computing 

 

60

Finally, all PCEs are domain specific. The setting of devices and information in a PCE 

is determined by the domain. Conceptualisation of a PCE without a domain is not 

possible and we would like to think that it is not practically possible to have a 

generic PCE applicable to all domains.  The pre-defined situations are difficult to 

enumerate and not advisable.  Therefore, there cannot be any predefined PCE 

“model” applicable across domains.  Thus characteristics P18 in Table 3.3.  

In Table 3.3 we summarise the characteristics of PCE which is done according to the 

analysis above and in sections 3.1. We have 4 groups of PCE characteristics which 

focus on different aspects of PCEs.  We can look at 

• PCEs from the perspective and nature of devices which are seamlessly 

integrated into them and consequently create various computational / 

communication settings;  

• PCEs from the user perspective because users are a major driving force behind 

the creation of any particular PCE. 

• the performance of PCEs in terms of the nature of software solution which 

accompany PCE and focus on the fact that situations in PCE are to be modelled 

and computed in order to justify their existence: the delivery of 

expectations/services to their users. 

 

Each line in Table 3.3. is labelled as a particular “P” which should be taken into 

account if we wish to address the shortcomings of pervasive computing as itemised  

in I and II from section 3.3.  We highlight that most of the “Ps” in Table 3.3 are 

consequences of EXPECTATIONS we have in PCE, i.e. all L1-L10 which appeared in 

Table 3.1.  However, the issue of situation awareness and capability of reasoning in 

computations within PCE are consequences of limitations of the current context-

aware solutions in pervasive computing, as itemised in Table 3.2. If we wish to 

create a SE  solution which deals with P1-P18, we will implicitly address the issue of 

creating and manipulating situational information.  In other words, focusing on 

devices and users in and performance of PCE would implicitly require the existence 

of situational information. 
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 PCE/Device/User/Situation Characteristic 

P1 PCE (and devices) is a physical environment with seamlessly integrated 

devices. 

P2 contains heterogeneous networked devices with various 

computational and communicational power. 

P3 is scalable to allow extension of devices dynamically at 

runtime. 

P4 PCE (and computational/ 

communication setting) 

 

are stationary or mobile. 

P5 have no definite setting. 

P6 have no pre-defined structure between them. 

P7 have no operational dependency between them. 

P8 PCE (and its users) 

 

is to empower the user. 

P9 is to empower the user anywhere anytime. 

P10 is to avoid information overloading. 

P11 is user-centric. 

P12 is non-autonomous, adopts user desire and preferences. 

P13 PCE (and its performance) 

 

is unobtrusive. 

P14 has minimal distraction to the user. 

P15 has no tracking of user behaviour. 

P16 has no interest of historical information. 

P17 is proactive. 

P18 is domain specific. 

P19 

PCE (and its situation) 

 

is situation-aware. 

P20 is situation specific. 

  

P21 is capable of inferring situational information.  

P22 is capable of reasoning upon situations. 

 

Table 3.3: Summary of PCE characteristics 

 

It is also important to note, that not all “P” from Table 3.3. are essential in the 

creation of PCE.  Therefore it remains to be discovered how to approach the 

implementation of these requirements itemised in P1-P22 and how to find out 

which one of them is more important than other.  Obviously, P1-P7 are solely 

related to the existence, purpose and capabilities of various heterogeneous devices 

which surround us, but P8-P22 are more focused on software solutions which we 

must develop in order to materialise PCE.  They are more focused on the semantics 

which will be stored in PCEs and manipulated though computations in order to 

deliver expected services to users involved in the PCE.  

3.4.2 What Would be the Role of situations in Pervasive Computing? 

PCE, based on our discussions in the previous sections, can be seen as a physical 

environment that contains a collection of heterogeneous computational devices, 

which are seamlessly networked and integrated.  The collection or setting of devices 

in a PCE, which can be stationary or mobile, can change even at runtime, owing to 
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the fact that there is no pre-defined structure and operational dependency 

between devices. Systems designed with PCE in mind are user-centric and they 

observe user preferences; PCE without a user is inconceivable. The purpose of PCE, 

as a non-autonomous environment, is to empower users, without overloading them 

with information, at anytime and anywhere.  PCE ARE proactive and, at the same 

time, unobtrusive, with minimal distraction to their users. They are also domain and 

situation specific.  This means that they are situation-aware and capable of inferring 

situational information from low-level contextual data and able to reason about 

situations Thus P19, 16, 21 and 22 in Table 3.3. 

 

3.4.3 What Do We Compute in PCEs and Why? 

If we wish to address the shortcomings of pervasive computing as underlined in 

section 3.3 and pave the way towards creating PCEs which can fit all situations we 

may encounter within them, then we need primarily a SE  solution, with its 

computations, which can generate both: a definition of the semantics in a particular 

situation in a PCE and the delivery of services within it.  The way forward would be 

to create the formal computational model, which should be materialised through a 

SE  solution, which 

A. uses the computations generated from the formal model 

B. is built from a software architectural model which accommodates the 

computations defined in the formal model and 

C. secures the deployment of software architectural elements, by using the 

available technologies. 

Without A.-C above we cannot claim that we offer a SE  solution which creates a 

PCE.  The formalised computational model per se is no guarantee that we will be 

able to deliver results.  We need a software architecture which accommodates 

proposed computations created form the formal model, which in turn guarantees 

that its components will be deployable with available software technologies.  

 

The background research in section 2.4 has highlighted that the use of SWTs is the 

way forward, if we wish to create a new era of SE  solutions based on the semantic 

and understanding of our computational environments across domains.  The SWT 

stack (W3C 2004b) has been created with semantic “Web” in mind, but the same 
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philosophy, ideas and languages in particular can be re-used outside the semantic 

Web domain.  If we can transfer the interpretation of and reasoning upon the 

content of web and its URLs to any computational environment, then we can 

achieve almost identical result as on the Web.  In our particular domain of creating 

situations in PCEs and reasoning upon them in order to deliver services, we need the 

same mechanism: describe the domain (situation within a PCE) using SWT 

languages, and reason upon it using SWRL in order to create a computational result 

(“deliver a service”). 

 

The common characteristics of PCEs from Table 3.3 might be sufficient to manage 

the description of semantics in situations we may encounter in PCEs.  However, 

without having a formal model which will define exactly  

1) which elements we must have, and  

2) which computational steps we must perform in order to secure the 

computations which deliver a service, 

we may not claim that the we have created a PCE with characteristics itemised in 

Table 3.3. This type of formalisation might have a double purpose: 

a) it may systemise our perception on what PCEs are and what we expect from 

them across wider research community, and  

b) it may guarantee that, if we follow the formalised model, we will be able to 

define and  create a situation in a PCE which will deliver an expected service. 

 

Furthermore, by knowing that we will use the SW technology stack, the formal 

model should be expressed in vocabulary and following the terms of the suitable 

technology, which can secure the implementations of formalised computations 

through the deployment of software architectural components.  Both of them, 

vocabulary and terms, must influence and determine the format and the content of 

the formal computational model, which should not be confused with numerous 

formalisations available in (Baader, et al., 2011), (Krdzavac and Gasevic, 2010), 

(Klinov and Parsia, 2008), (Pan et al., 2006). 

 

It is expected that our formalised model should give a finite set of definitions and 

axioms which will help us to formalise the knowledge on PCE.  We also need a 
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structure within the model which can create and manage formalised knowledge. 

From that respect OWL as a language and OWL ontologies in general, as a 

formalisation of the knowledge we wish to define and manipulate, seems to be a 

perfect choice.  At the same time we have to think how to use the formalised model 

for computing implicit consequences or knowledge the model describes or creates.  

Implicit consequences are beneficial in SE because they can successfully be 

implemented and can support any automation we may create through our 

computations, which is very important in PCEs. 

 

Furthermore, our formal model should create cheap computations, i.e. our 

solutions should be computationally cheap.  This means that building any 

knowledge base and excessive persistence, which could underpin the delivery of 

services in PCEs, is out of question.  In the era of highly accessible mobile and 

wireless computing, we should assume that all our implementations should run on 

mobile devices. Therefore, we should be very cautious with the possibility of 

hosting our SE solution in various clouds and using application hosts as an answer to 

the deployment of our computations.  

 

3.6 Summary 
This section itemises expectations we have in pervasive computing environments 

and analyses limitations encountered in software solutions focused on context 

awareness which attempted to address the complexity of pervasive computing.   

Therefore we pushed forward the issue of situation in PCEs and created a common 

set of PCE characteristics which could help us to achieve one of the objectives of our 

research and pave the way for the creation of the formal computational model 

which can create a PCE and which can be deployable using SE  principles and 

modern software technologies. 



 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

A Formalised Computational  

Model for PCEs 
 

In this chapter, we propose a formal computational model (FCM) for delivering a 

situation-specific service in PCEs. 

The formal computational model (FCM) secures the delivery of a situation-specific 

service(s) in a particular situation PCE∆ by 

1) creating a situation-specific taxonomical structure PCE∆T for the PCE∆; and     

2) reasoning upon the PCE∆T taxonomical elements in order to deliver a 

situation-specific service for the PCE∆. 

Consequently, the purpose of computations in FCM is to secure  

a) the existence of a generic taxonomical structure PCE∆T, which can fit any 

situation PCE∆ found in PCE. However, each PCE is always domain-specific 

(P18, Table 3.3) and when dealing with a situation PCE∆ in PCE, we have to 

have domain and situation-specific taxonomical elements, as noted in 1) 

above.  This implies that the FCM should be able to create the exact PCE∆T 

for each detected situation, i.e. to create a situation-specific taxonomical 

structure, which may be extended from the generic taxonomical structure 

PCE∆T.    

b) the delivery of a situation-specific service for PCE∆, based on the semantics 

found in the (possibly) extended generic taxonomical structure PCE∆T.  This 

implies that in each situation PCE∆, the FCM must be able to manipulate the 

semantics of the situation PCE∆, through reasoning upon PCE∆T elements. 
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Obviously the result of such reasoning is always a delivery of a situation-

specific service(s). 

 

If the FCM has to give us a formal computation for a) and b) above, then we must 

define it in either pseudo code or in a graphical format.  In both cases each part of 

FCM should be self-explanatory and each term of the FCM should be defined 

through either definitions or axioms.  Therefore in section 4.1. we give a set of 

definitions and axioms which are essential for understanding the FCM.  They are 

summarised into a generic taxonomical structure PCE∆T,  which can be extended by 

the FCM into a situation-specific taxonomical structure.  In section 4.2. we define 

steps which secure the creation of the generic and extended (i.e. situation-specific) 

elements of the PCE∆T in order to deliver a situation-specific service. 

 

It is important to note that the creation of a situation-specific taxonomical structure 

is a powerful mechanism for delivering a correct service(s). The power of the 

proposed FCM is creating a semantically rich taxonomical structure in the first 

place, without which we cannot secure the delivery of the service, because it is 

based on the semantics found in the taxonomical structure. 

 

 

 

 

 

 

 

 

 

Figure 4.1: FCM computation of a situation-specific service in a PCE 
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is sufficiently rich and may trigger reasoning for the delivered service(s) 

automatically. Figure 4.1 shows that once a change in a PCE is detected, The PCE 

receives interpreted contextual data to create a situation PCE∆. Based on the 

situation PCE∆, the FCM will create the taxonomical structure PCE∆T. The FCM will 

also reason upon the elements of the PCE∆T to trigger a domain and situation-

specific service(s) to be delivered to the user of the PCE.    

 

4.1 Taxonomical Structure of PCE 

Terms used in FCM, irrespective of whether it is defined in pseudo code or in a 

graphical format, must be defined in advance for the FCM to be self-explanatory.   

Therefore, we give a set of definitions and axioms which are essential for 

understanding the FCM.  These definitions and axioms are summarised into a 

generic taxonomical structure PCE∆T,  which can be extended by the FCM into a 

domain and situation-specific PCE∆T.   

4.1.1 Definitions of PCE, Situations and Delivered Services in PCE 

PCE is a cyber-physical environment in which there are various devices with 

computation and communication power, and people who wish to be empowered by 

the advanced technologies surrounding them. Given that PCEs are cyber-physical, 

they are naturally occupied with physical and tangible objects that do not 

necessarily bear any resemblance to a device. These objects could be tagged and 

equipped with appropriate microchips and sensor pads to act like a device, lending 

themselves to a more diverse and expanded PCE. There are also intangible objects 

present within PCEs. Software programs (computing entities) which support PCEs, 

including those that integrate various devices into a PCE, or software applications 

which generate and manipulate data created within the environment are examples 

of such cyber objects. Each of these cyber and physical objects that are seamlessly 

interconnected through a wireless network and allow pervasiveness of computing 

and communication of data at anytime and anywhere, have a purpose and role to 

play in various situations users may encounter within a PCE.  Their main role is to 

deliver services to a user of a particular PCE.  This means that in each situation in 

PCEs we know exactly which cyber physical objects are interconnected with the 

user, and what the user expects from the PCE at that moment.  User’s expectations 
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are very often associated with services which should be delivered by a particular 

PCE in a particular situation. Based on our description of PCE in section 3.4.1, and 

P1, P2, P9, P11 in Table 3.3 section 3.4.1,     

 

Definition 1: PCEs are cyber-physical environments that allow pervasiveness of 

computing and communication of data at anytime and anywhere to support 

users who are in charge of such environments. 

 

If we say that in each situation within a PCE, we may have any number of cyber-

physical objects, interconnected with the user, who is in charge of that particular 

PCE and expects services from it, then we should assume that in each situation 

within a PCE we have only one user.  Therefore, In each situation in a PCE we 

should know  

1)       who the user is,  

2)       which services the user expects from the PCE and  

3)       which cyber-physical objects are interlinked in that PCE to deliver the    

services. In other words we should always know exactly what a particular 

PCE “contains” in a particular situation and how it supports the user of 

the particular PCE. 

 

In order to address 1)-3) above we introduce a situation ∆ in PCE as “a particular 

moment in real world”. Each situation ∆ within a specific domain triggers the 

existence of a particular PCE which we name PCE∆. In each PCE∆ we consequently 

know exactly which cyber-physical objects exist, who is in charge of it (who is “the 

user”) and which services will be delivered, i.e. expected by the user. Therefore, 

cyber-physical objects and the user are essential participants in PCE∆ and the 

situation ∆ consequently creates “user-centric” PCE∆; i.e. user decides on 

participation in the PCE∆ and on the number and type of cyber-physical objects 

within PCE∆ from the domain-specific PCE (P3, P11, P20, and P18 of Table 3.3 in 

Chapter 3).  

Definition 2: PCE∆ is a particular situation ∆ in a PCE, i.e. it is a specific PCE 

where any number of cyber and physical objects coexists for the purpose of 

delivering a domain-specific service to the user, who is in charge of the PCE∆ .   
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For each situation ∆, we will have one and only one user of the PCE∆, who will be 

surrounded by the chosen cyber and physical objects, and will expect services from 

the PCE.  These “expected services” from the PCE are often associated with 

functionalities defined within it.  They are always domain-specific and situation-

specific; therefore we can say that in each PCE∆ we may have various domain 

specific services delivered to the user of the PCE∆.  However, delivering of services 

in PCEs is always based on the situation. We have to decide how a situation creates 

a particular PCE∆ (“what are its participants?”) and how to secure the delivery of 

appropriate services in the PCE∆ (“what does user expect from the PCE∆?”). Based 

also on P9, P17, and P18 of Table 3.3 section 3.4.1,        

 

Definition 3: A domain and situation-specific service for the user of a PCE∆ is a 

functionality triggered by computations in the PCE in order to provide timely 

and appropriate assistance to the user. 

 

Finally, recognising situations ∆ in real world, and PCE∆ created by them, depends 

on data and information we must have on PCE and main participants of PCE∆ .  If we 

really want to know which choices of cyber and physical objects we may have for 

the creation of a particular PCE∆ and which user is in charge of it, we should be able 

to “detect” them from within the PCE.  In other words their availability for and 

presence in a particular PCE∆ should be detected, or “known” if we wish to deliver 

services to the user (P2, P3, P11, and P19 in Table 3.3). The “detection” itself may 

have various forms and may result in various data being available in the PCE∆.  We 

may be able to detect PCE∆ participants by 

(i) using sensors and sensor generated data; 

(ii) exploiting users’ inputs, which may often carry information on users’ 

preferences and intentions in a particular PCE∆; 

(iii) retrieving any persistent data which might be available in semantically rich 

PCE environments. It is important to note that the richer “detection”, the 

more successful delivery of services in a PCE∆  will be.  

Therefore any combination of (i)-(iii) is assumed when creating a PCE∆ .  
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4.1.2 Instance inst and Category Ctgi as Abstractions in PCE∆∆∆∆T 

Each PCE∆ comprises a finite number of real world instances. The obvious examples 

are the PCE∆’s user or the cyber and physical objects involved in the PCE∆. Where 

real world instances share the same features, they are grouped together under an 

encompassing abstract name.  The most important rationale behind grouping real 

world instances is to facilitate the delivery of domain-specific services (Definition 3). 

If we know that real world instances, ins t s, share semantics, they might be 

grouped together to enhance the delivery of domain specific services to different 

users in different PCE∆s.  We group real world instances into categories Ctg i  where 

i ∊ ℕ.  In other words, group of real world instances which are abstracted into a 

category Ctgi are actually its instances, ins t s, participating in a PCE∆. 

 

Definition 4: An instance inst is a real world participant in a PCE∆. The set of all 

instances of a PCE∆ is INS = {inst | t = 1 .. n, n ∊ ℕ } where n denotes the 

number of instances participating in a particular PCE∆.  
 

Definition 5: A category Ctgi is an abstraction of a subset of INS.  Ctgi are 

classified into CTG, representing all abstractions of subsets of INS in a 

particular PCE∆; i.e. the set of all categories in a particular PCE∆ is CTG = {Ctgi | 

i = 1 .. n, n ∊ ℕ } where n denotes the number of subsets (categories) of the set 

of all real world instances of the PCE∆.    

 

4.1.3 Levels λ of Categories Ctgi in PCE∆∆∆∆ 

If we see Ctg i s as abstractions of real world instances inst then we have to bear in 

mind that the higher the level of abstraction, the less the precision of the semantics 

of its instances ins ts. When more precision is required to represent the semantics 

of some real world instances, lower levels of abstractions are needed. Categories 

{Ctg i , I i ∊ ℕ } should therefore, have subsets which allow for levels of 

abstraction. These subsets should also allow richer interpretation of semantics of 

instances ins t  which make {Ctg i , I i ∊ ℕ }; i.e. an instance ins t  being 

represented by a lower level abstract category is semantically richer than by a 

higher level abstract category.       

When an inst of a Ctg i  is detected in a PCE∆,  

1) all subset categories of the Ctg i   are also detected; 
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2) ins t  may belong to any subset of its Ctg i , depending on the situation ∆ and 

the precision of abstraction required.  

We must know exactly which subset of category Ctgi  the ins t  belongs to. To 

differentiate between different subsets of a Ctg i , each of them is levelled. For each 

Ctg i  there are a finite number of ordered levels, λ  

λ = (Lev 1, Lev 2, . . Lev j , . . Lev m-1, Lev m), 1 ≦ j ≦ m 

which determines, to which subset of Ctg i  real world instance ins t  belongs. Each 

level will encompass its lower levels as depicted in Figure 4.2.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: An ins t  being a “Subset of” a number of Ctg i . Lev j 

 

λ is an order set with a binary relation “a subset of”between each two elements. 

This indicates the order among any two members (two subsets of the Ctg i ) of λ 

such that for all 1<j<m, Lev 1 is “a subset of” Lev j  and Lev j is “a subset of”  

Lev m as shown in Figure 4.3.  

 

Definition 6: λ is an order set of subsets of a Ctgi of m levels where “a subset 

of” relation exists between each two subsets.  

 

 

 

Figure 4.3: Each “subsets of” a Ctg i . Lev j  is qualified with a level λ 

The association of the qualifying factor of each subset of a Ctg i  with a level means 

that each Ctg i  and its subsets will have to be denoted with two values.  One of 

these values is for Ctg i  and the other for its Lev j .  Therefore, all categories in 
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PCE∆ are shown as category level Ctg i .Lev j  where i, j ∊ ℕ, if we wish them to 

accommodate instances ins t . The set of all Ctg i .Lev j  is shown as CTG.λ. 

Axiom 1: ∀ x ∊ CTG ,  ∃ Levj ∊ λ where x. Levj  ∊ CTG.λ  

This implies that an inst is always known by the Ctg i .Lev j  that it is a member of. 

This membership is called Mbr . 

Definition 7: A category membership Mbr is the membership of an instance 

inst in a category level Ctgi.Levj and denoted as  Mbr (inst, Ctgi.Levj) where i, t, j 

= 1 .. n, n ∊ ℕ.  

 

Definition 7 lends itself to a new inevitability. Combination of detected ins t s, 

their Ctg i .Lev j  and Mbr(ins t , Ctg i .Lev j ) in a PCE∆ necessitates a need for 

a taxonomical structure which can hold ins t s and Ctg i .Lev j s with their Mbr 

together. This taxonomical structure is called PCE∆T.      

4.1.4 Taxonomical Structure PCE∆∆∆∆T with Leaf and Root Categories 

Definition 8: PCE∆T is the taxonomical structure of the real world participants 

in PCE∆ described through INS, CTG.λ and Mbr (inst, Ctgi.Levj).   

PCE∆T = {Mbr (x, y) | x ∊ INS, y ∊ CTG.λ} 

 

When abstracting real world instances, the most specialised Ctg i .Lev j  of a real 

world inst is where j = 1; that is Mbr  (ins t , Ctg i .Lev 1). This special category, 

Ctg i .Lev 1, is called leaf category and is shown as LCtg i .Lev j . On the other 

hand, the most generic Ctg i .Lev j  that the real world ins t  has Mbr is where j = 

m, the maximum level in λ. This special category, Ctg i .Lev m, is called root 

category and is shown as RCtg i .Lev j . 

 

Definition 9: A leaf category LCtgi.Levj ∊ CTG.λ  is a category where Levj ∊ λ and 

it is the infimum (Levj ≡ Lev1). 

 

Consequently, Axiom 2 says that for each instance ins t  ∊ INS , there will always 

be one and only one leaf category where Mbr(ins t , LCtg i .Lev j ).    

 

Axiom 2: ∀x ∊ INS , ∃! Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is LCtgi.Levj } 

For each inst there is always one and only one element of taxonomical structure 

that is a leaf category where Mbr(inst, LCtgi.Levj) holds.   

 

Definition 10: A root category RCtgi.Levj ∊ CTG.λ  is a category where Levj ∊ λ, 

and it is the supremum(Levj ≡ Levm).   
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Consequently, Axiom 3 says that for each instance inst there is always one and only 

one element of taxonomical structure which is a root category where Mbr(ins t , 

RCtg i .Lev j ) holds.    

Axiom 3: ∀x ∊ INS , ∃! Mbr(x, y) ∊ { PCE∆T | x ∊ INS, y is RCtgi.Levj }   

Considering Definition 6 and Axiom 1, we can deduce Axiom 4 which states that 

for every ins t  ∊ INS  we will have Mbr  (ins t , Ctg i .Lev j ) for all available 

values of j.  

  

Axiom 4: ∀ x where Mbr(x, LCtgi.Levj) holds ∃	∑ 	�
��� Mbr (x, Ctgi.Levj)  

4.1.5 Occurrence of Root categories RCtgi.Levj, in PCE∆∆∆∆T   

The root RCtg i .Lev j  is a very important element of CTG.λ because we know 

that   

- RCtg i .Lev j  is not a subset of another category         (Definition 10); 

- RCtg i .Lev j  embrace all insts of Ctg i .Lev j    (Axiom 4);  

- each ins t  is inevitably a member of a RCtg i .Lev j    (Axiom 3).    

 

Therefore we need to illustrate the power of RCtg i .Lev j  by defining its 

occurrences. They will also allow us to  

1) illustrate abstraction of inst into different Ctg i ; and 

2) axiomatise different Ctg i    

There are many occurrences of RCtg i .Lev j  in a PCE. We denote “occurrence” 

with the symbol “≡”.  First example of RCtg i .Lev j  occurrence is an abstraction of 

users in PCE∆ (see Definitions 1-3). There is always a user who is in charge of the 

PCE∆. However, users can have distinguishing roles, and therefore should have 

different ins t s. Whatever the role of the user is, he or she is a person and in that 

the RCtg i .Lev j  of all ins t  of users in a PCE∆ is named Psn  for Person.  

 

Definition 11: Psn is an occurrence of RCtgi.Levj encompassing all possible 

abstractions of real world instances of users, insts, in any PCE∆. 

 

For each situation PCE∆T there exists one and only one occurrence Psn  of 

RCtg i .Lev j .   
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Axiom 5: ∀ PCE∆T,  ∃! Psn, where Psn ≡ RCtgi.Levj 

 

For each situation PCE∆T there exists one and only one instance ins t ∊ INS  

where Mbr  (ins t , Psn ) holds.  

 

Axiom 6: ∀ PCE∆T, ∃! Mbr(x, y)  ∊ { PCE∆T | x ∊ INS, y is Psn}     

For all PCE∆ there exists one and only one inst of Psn 

 

The second example of RCtg i .Lev j  occurrence is an abstraction of cyber and 

physical objects in the PCE∆. We name such occurrence Ojt  for Object.  

 

Definition 12: Ojt is an occurrence of RCtgi.Levj encompassing all possible 

abstractions of real world instances, insts, of cyber and physical objects in any 

PCE∆.  

 

For each situation, PCE∆ there exists one and only one occurrence Ojt  of 

RCtg i .Lev j .  

 

Axiom 7: ∀ PCE∆T, ∃! Ojt, where Ojt ≡ RCtgi.Levj 

For each situation PCE∆ there exists at least one instance ins t ∊ INS , where 

Mbr  (ins t , Ojt ).  

Axiom 8: ∀ PCE∆T, ∃ x, where Mbr(x, y) ∊ {PCE∆T | x ∊ INS, y is Ojt}     

 

The Third example of RCtg i .Lev j  occurrence is an abstraction of all domain-

specific information. Every service offered by a PCE∆ to the user is related to 

information specific to the domain in which the PCE∆ has occurred. We named such 

occurrence Fld  for Field.  

 

Definition 13: Fld is an occurrence RCtgi.Levj encompassing all possible 

abstractions of real world instances, insts, of domain-specific information in 

any PCE∆.  

 

Axiom 9: ∀ PCE∆T, ∃! Fld, where Fld ≡ RCtgi.Levj 

For each situation PCE∆ there exists at least one instance ins t ∊ INS , where 

Mbr  (ins t , Fld ).  

Axiom 10: ∀ PCE∆T, ∃ x, where Mbr(x, y)  ∊ { PCE∆T | x ∊ INS, y is Fld}     
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Therefore, according to Axiom 6, 8, and 10 it is reasonably justifiable to conclude 

that it is not conceivable at all to have a PCE∆T without three specific Mbr(ins t , 

RCtg i .Lev j ) where RCtg i .Lev j  occurrence for the first instance is Psn , for 

the second instance is Ojt , and for the third instance is Fld.  

More often than not the set INS  of a PCE∆ has insts of other occurrence of 

RCtgi.Levj than Psn , Ojt  and Fld  (P12 of Table 3.3 Chapter 3). Therefore the next 

example of the RCtg i .Lev j  occurrences might be 

(i) preferences of the user of Psn , 

(ii) his/her location within PCE∆, 

(iii) the position of the ins t s of Ojt  involved in a PCE∆.  

(i)-(iii) may also have an important part in delivering a particular service in the PCE∆.  

 

Therefore, the fourth example of RCtg i .Lev j  occurrence is an abstraction of all 

user preferences as in i) above. We name such occurrence Pfc for Preference. 

Inclusion of preferences means that the software system which supports the user in 

a PCE∆ is less intrusive and more personalised. 

 

Definition 14: Pfc is an occurrence of RCtgi.Levj encompassing all possible 

abstractions of real world instances, insts, of preferences of users in any PCE∆.  

 

For each situation in PCE∆ there may exist one and only one occurrence Pfc  of 

RCtg i .Lev j . 

 

Axiom 11: ∀ PCE∆T, may ∃! Pfc, where Pfc ≡ RCtgi.Levj 

 

For each situation PCE∆ there may exist an instance ins t ∊ INS , where Mbr  (ins t , Pfc).  

 

Axiom 12: ∀ PCE∆T, may ∃ x, where Mbr(x, y) ∊ {PCE∆T| x ∊ INS, y is Pfc}     

Finally, the fifth example of RCtg i .Lev j  occurrence is an abstraction of all 

locations as in (ii) and (iii) above. We name such occurrence Lcn  for Location.  

Definition 15: Lcn is an occurrence of RCtgi.Levj encompassing all possible 

abstractions of real world instances, insts, of physical or cyber locations  in any 

PCE∆.  

 

For each situation in PCE∆ there may exist one and only one occurrence Lcn  of 

RCtg i .Lev j . 
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Axiom 13: ∀ PCE∆, may ∃! Lcn, where Lcn ≡ RCtgi.Levj 

For each situation PCE∆ there may exist at least one instance ins t ∊ INS , 

where Mbr  (ins t , Lcn ).  

Axiom 14: ∀ PCE∆T, may ∃ x, where Mbr(x, y) ∊ {PCE∆T| x ∊ INS, y is Lcn}     

 

 

 

 

 

 

 

Figure 4.4: RCtg i .Lev j  of a PCE 

 

All possible occurences of RCtg i .Lev j , outlined in 1) above, are shown in 

Figure 4.4 whereas axiomatisation of different Ctg i s, outlined in 2) above, are 

shown in Axioms 5-14. Boxes with stronger border lines depict their essential 

presence in any PCE∆T.    

4.1.6 Combining Occurences of Ctgi.Levj in PCE∆∆∆∆T 

It is worth reiterating Axiom 6, 8, and 10 in which we state that a PCE∆ cannot 

emerge without the presence of  

- inst where Mbr(ins t , Psn ) is true,  

- insu where Mbr(ins u,  Ojt ) is true, and  

- insv where Mbr(ins v, Fld ) is true;  

It is, however, acceptable to encounter a PCE∆ without any references to any ins x 

or insy where Mbr(ins x, Lcn ) and Mbr(ins y, Pfc ) as stated in axioms 12 and 

14.  

4.1.6.1 Finding Combinations of Root Occurrences RCtgi.Levj, in PCE∆∆∆∆T 

If we were to assume that a PCE∆ could be created by combination of any two, 

three, four or five RCtgi.Levj then there are 26 possible ways that RCtgi.Levjs could 

make a PCE∆ as the calculations below shows. The number of variations when we 
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have combinations without repetition and where order doesn’t matter can be 

calculated according to the formula 

���� = �!/�! �� − ��! 

Where ‘n’ is the number of possible RCtg i .Lev j  which is 5, and ‘r’ is the number 

of different RCtg i .Lev j  selected from ‘n’. ‘n’ is always 5, but ‘r’ can vary from 2 to 

5. For n=5 and r = 2 the number of combinations would be  

�52� =
5!
2! 3! 	= 10 

Likewise, �53� = 10, �54� = 5, �55� = 1. Therefore the total combination would be 

10+10+5 +1 = 26. If we were to allow ins t s of the same RCtg i .Lev j  to make a 

PCE∆, then we would have to add �51� = 5 to 26 to get a total of 31 combinations.  

However, considering Axiom 11 that a PCE∆ must have at least one occurrence of 

three specific RCtg i .Lev j s namely, Psn , Ojt  and Fld , the total number of 

possibilities is actually limited to the presence of Lcn , Pfc , both Lcn  and Pfc , or 

neither. According to the above formula this is �20� + �21� + �22� = 1 + 2 + 1 = 4.  

Therefore, there are always four possibilities of a PCE∆. These possibilities are: 

(1) { Psn, Ojt, Fld },  

(2) { Psn, Ojt, Fld, Lcn },  

(3) { Psn, Ojt, Fld, Pfc }, or  

(4) { Psn, Ojt, Fld, Lcn, Pfc }.  

We illustrate (4) in figure 4.5 showing examples of ins t s of some occurrences of 

RCtg i .Lev j  which make a particular PCE∆. In this figure, RCtg i .Lev j s are 

shown at the left and Mbr for each real world instance ins t  is depicted to their 

right. Considering Definition 7 and Axiom 3, readers should interpret Figure 4.5 as 

Mbr(margaret, Psn ), Mbr(heater152, Ojt ), Mbr(feverish, Fld ), 

Mbr(room101, Lcn ), and Mbr(heaterPreference, Pfc ). 

 

 

 

 

 

Figure 4.5: RCtg i .Lev j  of a PCE with Mbr(ins t , Ctg i .Lev j ) examples  
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4.1.6.2 Illustrating Subsets of RCtgi.Levj, Occurences in PCE∆∆∆∆T 

We illustrate possible subsets of RCtg i .Lev j  occurrences in a particular PCE∆, 

using the Fld  occurrence, in order to explain how a detailed abstraction of 

instances ins t  and Mbr(ins t , RCtg i .Lev j ) work for a particular value of ‘i’ 

(i.e. Mbr(ins t , Fld.Lev j )).  In other words, whenever a particular ins t  is 

detected, we should be able to determine two things: 

1) To which occurrence the ins t  is a member of (we use the example of 

Mbr(ins t , Fld.Lev j ) 

2) The leaf where Mbr(ins t , Fld.Lev 1) is true. 

 

However, if there is more than one instance inst detected in a particular situation 

which belongs to the subset of Fld.Lev m (Fld  occurrence at the root level) then 

we must know, for each detected instance ins t , which precision (i.e. Lev j ) we 

need to satisfy when creating Mbr(ins t , RCtg i .Lev j ).  

 

In our example of detecting Mbr(ins t , Fld.Lev j ), we would like to know 

exactly which Lev j  is applicable to each particular instance ins t  detected.  In 

other words, instances ins t  may belong to any level from Lev 1 (the case of 

Mbr(inst, LFld.Levj) and Lev m (the case of Mbr(ins t , RFld.Lev j )).   

 

Let us say that we detected instances form INS : 

� feverish, critical, normal 

� diabetes, hypertension, stroke 

� residential care, nursing care, continuing care 

� NHS, private 

The first three can be abstracted into General Health  category, the second 

three into Helath Condition  category, the third three into Care Home  

category, and the last two into Health  category.  However, at the same time, for 

all of these instances Mbr(ins t , Fld.Lev j ) must hold.  Because our Ctg i  is 

actually determined by an occurrence (Fld ), each of these detected instances must 

satisfy one of the following:  Mbr(ins t , Fld.Lev 1), Mbr(ins t , Fld.Lev 2), 

Mbr(ins t , Fld.Lev 3), or Mbr(ins t , Fld.Lev 4). Figure 4.6 shows exactly 
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how the detected instances inst are placed correctly within different subsets of the 

Fld occurrence. 

 

 

 

 

 

 

 

 

 

Figure 4.6: An example of a five-level λ Ctg i Lev j    

 

The representation of Figure 4.6 in Mbr(ins t , Ctg i .Lev j ) format would be 

Mbr(feverish,General health),Mbr(critical,General 

health),Mbr(normal,General health)  

Mbr(diabetes,Health Condition), Mbr(hypertension,He alth 

Condition), Mbr(stroke,Health Condition) 

Mbr(residential care,Care Home),Mbr(nursing care, C are 

Home),Mbr(continuing care,Care Home) 

Mbr(NHS, Health), Mbr(Private, Health)   

Where General health  is  Fld.Lev 1 , Health Condition  is Fld.Lev 2 , 

Care Home  is Fld.Lev 3, and Health  is Fld.Lev 4.  

 

In other words we have a four-level subset of a RCtg i .Lev j , where λ = { Lev 5, 

Lev 4, Lev 3, Lev 2, Lev 1}. This implies that Fld.Lev 1 is “a subset of” 

Fld.Lev 2 which is “a subset of” Fld.Lev 3 that is “a subset of” Fld.Lev 4 

which is  “a subset of” Fld.Lev 5. 

 

In any PCE∆ therefore, when an ins t  is detected, we will also know, in addition to 

Mbr(ins t , LCtg i .Lev j ) all other Ctg i .Lev j  that LCtg i .Lev j  is a “subset 

of”.  The successive detection of Ctg i .Lev j  (reader is reminded that the term 

‘successive’ is not used pedantically as detection takes place all at once) ends when 
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the last detected ins t  satisfies Mbr(ins t , RCtg i .Lev j ), i.e. any of the 

following Mbr(inst, Psn.Levj), Mbr(ins t , Ojt i .Lev j ), Mbr(ins t , Fld.Lev j ), 

Mbr(ins t , Lcn.Lev j ) or Mbr(ins t , Pfc.Lev j ). 

 

If ins t  ‘feverish’ was detected at LCtg i .Lev j  in the example shown in Figure 4.6, 

then we expect the detected information shown in Table 4.1 to be available for 

further computation: 

 

Expected Information Based on  

Mbr(feverish, General Health) Definition 7, Axiom 2 

Lev1 ≺ Lev2 ≺ Lev3  ≺ Lev4  ≺ Lev5     Definition 6 

Mbr(feverish, Health Condition), Mbr(feverish, Care Home), 

Mbr(feverish, Health), Mbr(feverish, Fld), 

Axiom 4 

 

Table 4.1: An example of situational information received by a PCE 

 

 

It is worth stressing again that in any particular PCE∆T an instance ins t  of a 

LCtg i .Lev j  cannot be an instance of another leaf at the same level of the same 

root. To clarify with an example consider an environment in which a user can have 

different roles and therefore can be of different LCtg i .Lev j . In higher education 

environment, for example, a research student can be a lecturer (LCtg i .Lev j  to be 

lecturer). So, the user has two roles, student and lecturer. Nevertheless, at any 

particular moment as soon as s/he takes charge of a PCE∆, s/he has to indicate 

which hat s/he has on. So, one and only one of the roles is present at any moment 

in time. In other words, a detected LCtg i .Lev j , in this example, will always have 

one and only one of Psn as its RCtg i .Lev j .  

Axiom 15: ∀ inst , ∃! (x, y) ∊ {PCE∆T| x = LCtgi.Levj,  y = RCtgi.Levj }   

 

4.1.7 An Instance Characteristics of a Taxonomical Element  

The taxonomical structure PCE∆T contains a set of Mbr(ins t , Ctg i .Lev j ) which 

were abstracted from real world instances.  However, each PCE∆ may contain 

additional semantics, which may have not been captured when (a) abstracting 

instances ins t  into Ctg i .Lev j  and (b) securing that for each detected ins t  the 
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Mbr(ins t , Ctg i .Lev j ) is true. Therefore, if we had any additional semantics in 

PCE∆, which is either 

1) not captured by initial abstractions from real world instances or 

2) too specific to be captured in our initial abstractions because we might 

decide not to abstract them into any Ctg i .Lev j  

we introduce another element of PCE∆T, which cover cases in 1) and 2). These cases 

will be easily found when detecting main participants in the PCE∆. 

 

If detected information in a particular situation ∆, which creates the PCE∆ shows 

that it can not be abstracted into any of the occurrences RCtg i .Lev j  and their 

subsets, then we should be able to find an element within the taxonomical 

structure PCE∆T which may accommodate such semantics.   

 

Therefore, we introduce characteristic chr q of Mbr(ins t ,Ctg i .Lev j ) as a new 

taxonomical element to be a description of a particular Mbr(ins t ,Ctg i .Lev j ).  It 

is natural to expect that these characteristics are initially reserved for the leaves of 

our taxonomical structure, i.e. we will always need characteristics of LCtg i .Lev j  

with value vlu q describing (ins t , LCtg i .Lev j ).  However, they may appear as 

an additional semantics for any other taxonomical element Mbr(ins t , 

Ctg i .Lev j ). 

 

Definition 16: An instance characteristic chrq is a description of a Mbr(inst, 

Ctgi.Levj) with value vluq  in the format of a triplet ((Mbr(inst, Ctgi.Levj), chrq, 

vluq)). 

 

4.1.8 Illustrating an Instance Characteristics chrq of a Taxonomical Element   

A particular PCE∆ has occurred in a health domain. This is known when an ins t  of 

Fld  which is an occurrence of RCtg i .Lev j  (Definition 13), is detected. As the 

Mbr  (inst, RCtg i .Lev j ) nor any other Ctg i .Lev j  of Fld  are shown in Figure 

4.7, it is not clear how many Ctg i .Lev j  there are between LCtg i .Lev j  and 

RCtg i .Lev j  ≡ Fld . That is why there is ‘?’  in the FldLev ?.  
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Figure 4.7: Partial graphical representation of an example of a PCE∆ 

 

The representation of what is illustrated in Figure 4.7, and what definitions and 

axioms they are based on is shown in Table 4.2.  

 

 Representation of Detected Information Based on 

a an instance margaret, Mbr (margaret, Resident), LCtgi.Levj ≡ PsnLev1 = 

Resident ≺ RCtgi.Levj ≡ PsnLev2 = Psn, are detected.  

Definition 7, Axiom 

2, 4 

b The name and gender which are chrq describing ‘margaret’ become 

(margaret, name, “Margaret”) and (margaret, gender, “female”) 

Definition 16 

c an instance heater152, Mbr (heater152, Heater),  LCtgi.Levj ≡ OjtLev1 

=Heater ≺ OjtLev2 = Allocated Object ≺ RCtgi.Levj ≡ OjtLev3 = Ojt are 

detected. 

Definition 7, Axiom 

2, 4 

d The state chrq that describes ‘heater152’ becomes (heater152, state, 

“off”).  

Definition 16 

Table 4.2: PCE∆T situational information of Figure 4.7 

4.1.9 Relationships rlpr in PCE∆∆∆∆T  

In each PCE∆ we have to allow relationships within the PCE∆T between taxonomical 

Mbr  (ins t , Ctg i .Lev j ). For example, we may have a relation between Mbr  

(heater152, Heater ) and Mbr(margaret, Resident ), representing the 

semantics of a relationship rlp r  between these  two taxonomical elements. 

 

Definition 17: A relationship rlpr between PCE∆T elements is a binary relationship 

between Mbr(inst, Ctgi.Levj) and Mbr(insu, CtgxLevy) and denoted as rlpr(Mbr(inst, 

Ctgi.Levj), Mbr(insu, CtgxLevy)). This implies that these two instances inst and insu 

which are members of category Ctgi.Levj and CtgxLevy are related by rlpr.  

 

We have to think about a set of particular rlp r  which should be applied to 

occurrences of the RCtg i .Lev j . We illustrate and define essential rlp r  through 

axioms below in order to emphasise that in a particular PCE∆T there are additional 
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domain and situation-specific semantics, and that there are domain and situation-

specific rlp r  due to the existence of domain and situation-specific occurrences of 

RCtg i .Lev j .  

 

Consequently characteristics, (Mbr(ins t , Ojt.Lev j ), chr q, vlu q) from section 

4.4 and relationships rlp r  are bringing more semantics to the taxonomical 

elements of PCE∆T.  However, the former is defined solely on Mbr(ins t , 

Ctg i .Lev j ) and latter on RCtg i .Lev j  occurrences. 

4.1.9.1 Relationships between Taxonomical Elements at the Root of PCE∆∆∆∆T   

As any PCE is about a specific domain, and given that it is impossible to think of a 

PCE∆ without the presence of user (Axiom 6), there is always a rlp r  between 

Mbr(ins t , RCtg i .Lev j ) and Mbr(ins u, RCtg xLev y) where LCtg i .Lev j  ≡ 

Psn and RCtg xLev y ≡ Fld . Therefore, there is always an inherent rlp r  that 

exist in any PCE for any PCE∆. This inherent relation is “isAssociatedWith ”. 

Axiom 16: ∀ PCE∆T  if ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Fld.Levj) => ∃  rlpr which 

denotes isAssociatedWith where isAssociatedWith(Mbr(inst, Psn.Levj), Mbr(inst, 

Fld.Levj)) 

When an occurrence of Lcn plays a role in a particular PCE∆, a relationship rlp r  

exists between the user ins t  (Mbr(ins t , Psn ))  and the location ins u 

(Mbr(ins v, Lcn )) and/or between an object ins v (Mbr(ins t , Ojt )) and the 

location ins u (Mbr(ins t , Lcn )).  

 

Axiom 17: If in PCE∆T ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Lcn.Levj) => ∃ rlpr which 

denotes isIn where isIn(Mbr(inst, Psn.Levj), Mbr(inst, Lcn.Levj)) 

When there is an occurrence of Lcn in a particular PCE∆, a relationship rlp r  exists 

between the real world user Mbr(ins t , Psn ) and the real world location 

Mbr(ins v, Lcn ) and/or between a real world object Mbr(ins t , Ojt ) and 

Mbr(ins v, Lcn ).  

  

Axiom 18: If in PCE∆T ∃ Mbr (inst, Ojt.Levj) and Mbr (inst, Lcn.Levj) => ∃ rlpr which 

denotes isCurrentlyIn where isCurrentlyIn (Mbr (inst, Ojt.Levj), Mbr (inst, 

Lcn.Levj)) 

 

When an occurrence of RCtg i .Lev j  ≡ Pfc  plays a role in delivering a service in 

a particular PCE∆, a relationship rlp r  exists between the user ins t  (Mbr(ins t , 

Psn))  and the preference ins u (Mbr(ins t , Pfc )).  
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Figure 4.8 Relationship rlp r  between taxonomical roots 

 

Axiom 19: If in PCE∆T ∃ Mbr(inst, Psn.Levj) and Mbr(inst, Pfc.Levj) => ∃ rlpr which 

denotes hasPreference where hasPreference (Mbr(inst, Psn.Levj), Mbr(inst, 

Pfc.Levj)) 

The relationship between taxonomical roots are illustrated in Figure 4.8 

 

4.1.9.1.1 Consequences of the Relationship ‘hasPreference’ 

For an occurrence Pfc , RCtg i .Lev j  ≡ Pfc , according to Axiom 19 a rlp r  of 

hasPreference must exist between a Mbr  (ins t , Psn.Lev j ) and a Mbr  (ins t , 

Pfc.Lev j ). An example for Mbr  (ins t , Pfc.Lev j ) can be Mbr  

(heaterPreference, Pfc.Lev j ) which shows a real world instance 

“heaterPreference “. This instance which is a user preference for some real 

world objects requires more precision. This will result in a subset of Pfc root 

category, Pfc.Lev m, that is the abstraction of all real world instances similar to 

“heaterPreference ”. We refer to this subset as Pfc.Lev m-1 and named it 

Ojt-specific-Pfc . Therefore Pfc.Lev m-1 = Ojt-specific-Pfc  which 

is itself a Pfc . By the same token we have defined Psn.Lev m-1 = Psn-

specific-Pfc  which is a Psn  when there are real world instances that can be 

abstracted to some preferences for people.  

 

Likewise, Lcn.Lev m-1 = Lcn-specific-Pfc  which is a Lcn  are used when 

there are real world instances that can be abstracted to some preferences for 

locations. 

Therefore, RCtg i .Lev j  ≡ Pfc  must have three subsets Pfc.Lev m-1. In other 

words in any PCE there exists Mbr(ins t ,Psn-specific-Pfc.Lev m-1), 
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Mbr(ins t ,Ojt-specific-Pfc.Lev m-1), and Mbr(ins t ,Lcn-specific-

Pfc.Lev m-1). 

 

Axiom 20: If in PCE∆T ∃ rlpr which denotes hasPreference where hasPreference 

(Mbr(inst, Psn.Levj), Mbr(insu, Pfc.Levk)) holds => ∃ Mbr(insu, Pfc.Levm-1) where 

(Pfc.Levm-1 = Psn-specific-Pfc) or ∃ Mbr(insu, Pfc.Levm-1) where (Pfc.Levm-1 = Ojt-

specific-Pfc) or ∃ Mbr(insu, Pfc.Levm-1) where (Pfc.Levm-1 = Lcn-specific-Pfc).  

 

4.1.9.1.2 Consequences of Creating a new Taxonomical Element  

The inclusion of the relationship ‘hasPreference ’ resulted in three new Mbr  

(ins u, Pfc.Lev m-1) which in turn cause the inclusion of three relationships 

rlp r (Mbr(ins t , Ctg i .Lev j ), Mbr(ins u, Ctg xLev y)). In these relationships 

Mbr  (ins t , Ctg i .Lev j ) is Mbr  (ins t , Pfc.Lev m-1) and Mbr  (ins u, 

Ctg xLev y) can be either Mbr  (ins u, PsnLev y), Mbr  (ins u, OjtLev y) or 

Mbr(ins u, LcnLev y). These possibilities are shown in the following axioms. 

 

Axiom 21: ∀ PCE∆T if ∃ Mbr (inst, Psn.Levj) and Mbr (insu, Pfc.Levm-1) where 

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isAbout where isAbout (Mbr(inst, 

Psn.Levj), Mbr(insu, Pfc.Levm-1)) 

 

Axiom 22: ∀ PCE∆T if ∃ Mbr (inst, Ojt.Levj) and Mbr (insu, Pfc.Levm-1) where 

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isRelatedTo where isRelatedTo 

(Mbr(inst, Ojt.Levj), Mbr(insu, Pfc.Levm-1)) 

 

Axiom 23: ∀ PCE∆T if ∃ Mbr (inst, Lcn.Levj) and Mbr (insu, Pfc.Levm-1) where 

Pfc.Levm is RCtgi.Levj => ∃ rlpr which denotes isFor where isFor (Mbr (inst, 

Lcn.Levj), Mbr (insu, Pfc.Levm-1)) 

 When there exists a relationship rlp r (Mbr(ins t , Ctg i .Lev j ), Mbr(ins u, 
Ctg xLev y)) then all the subsets of Mbr(ins t , Ctg i .Lev j ) and Mbr(ins u, 
Ctg xLev y) including the leaves will share the rlp r  such that rlp r (Mbr(ins t , 
Ctg i Lev h), Mbr(ins u, Ctg xLev v)) holds for h<j  and v<y .  

  

Axiom 24: ∀ PCE∆T if ∃ rlpr(Mbr(inst, Ctgi.Levj), Mbr(insu, CtgxLevy)) => rlpr(Mbr(insv, 

CtgiLevh) , Mbr(insw, CtgxLevv))| where h<j,  v<y. 

 

4.1.10 Summarising PCE∆∆∆∆T  

We have provided in the previous sections (4.1.1 – 4.1.9)  seventeen definitions and 

twenty four axioms. Through these definitions and axioms we have defined what a 

PCE is, what the role of situations in PCEs that determine services to be delivered to 

the users of PCEs are. These definitions also set the foundation for what the 
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taxonomical structure and elements of a PCE are. We have summarised these 

definitions  diagrammatically in Figure 4.9.   

 

 
 

Figure 4.9: Summarisation of generic PCE∆T  

 

 

At the left side of Figure 4.9 all five occurrences of RCtg i .Lev j  depicted in Figure 

4.8 and defined in axioms 12-15 are shown. Out of these occurrences Pfc  is the 

only one with defined “sub-set” relationship. According to Axiom 20, when there is 

an instance of Pfc  it must be one of its subset, which are Psn-specific-Pfc, 

Ojt-specific-Pfc, and  Lcn-specific-Pfc.   One of the features of a 

PCE is its domain specificity (P18 table 3.3). Domain-specific information in a PCE is 

represented as subsets of Fld  (Definition 13, Axiom 9).  In Figure 4.9 Health 

Ctg i .Lev j  is shown as an example; it can be any domain of interest.  

 

Relationships, rlp r  between RCtg i .Lev j  defined in axioms 16-19, and the rlp r  

between subsets of Pfc  and three RCtg i .Lev j , namely, Psn, Ojt, and 

Lcn,  axioms 21-23, are also shown in Figure 4.9. For the sake of simplicity and 

avoiding a cluttered diagram, characteristics, chr q of Ctg i .Lev j  (Definition 16) 

are not shown in the diagram.   
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We would also like to bring to the attention of reader that we could not possibly 

show the extension of PCE∆T for obvious reason that this is solely dependent on 

different PCE∆. Nevertheless, examples in Figure 4.5-7 illustrate that the extension 

of Figure 4.9 may be required.  

In the following section we define steps which secure the creation of the generic 

and extended elements of the PCE∆T in order to deliver a situation-specific service. 

4.2 Formal Computational Model (FCM) in PCE 

The FCM secures the delivery of a situation-specific service(s) in a particular 

situation PCE∆ by creating a situation-specific taxonomical structure PCE∆T for the 

PCE∆, and the reasoning upon the PCE∆T taxonomical elements in order to deliver a 

situation-specific service for the PCE∆. 

Formal detailed specification of the computation for a particular PCE∆, to deliver a 

service to the user of the PCE is explained in the next section, followed by a section 

on the representation of the FCM in pseudo code using OWL terminologies, and a 

separate section on the reasoning upon the PCE∆T taxonomical elements in order to 

deliver a situation-specific service for the PCE∆.   

 

4.2.1 The FCM with Loops and Steps Towards PCE∆T 

Computations which deliver a domain and situation-specific service in a PCE∆ are 

divided into three parts as depicted in Figure 4.10. The first part addresses the 

creation and/or extension of  Ctg i .Lev j , insertion of real world instances 

ins t, adding characteristics chr q to Ctg i .Lev j  and finally assigning 

characteristics’ value vlu q to chr q for each ins t , that is 

((Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q)).  

The second part which is bordered with dashed line addresses the creation of 

generic relationships (axioms 16-19, and 21-23), rlp r (Mbr(ins t , Ctg i .Lev j ), 

Mbr(ins u, Ctg xLev y)). The third part deals with the creation of situation-

specific extended relationships rlp r (Mbr(ins t , Ctg i .Lev j ), Mbr(ins u, 

Ctg xLev y)). 
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Figure 4.10: Formalised Computational Model in PCEs 

Select Mbr(inst, CtgiLev1)   

Read another  

Mbr(insu, CtgiLev1)   

 

Read another  

Mbr(insu, CtgiLev1)   

 

If selected Ctgi  is PERSON If selected Ctgi  is OBJECT 

If Ctgi  is  FIELD add 

isAssociatedWith(Mbr(inst, 

Psn.Levj), Mbr(inst, Fld.Levj)) 

 

If Ctgi is LOCATION add 

isCurrentlyIn (Mbr (inst, Ojt.Levj), 

Mbr (inst, Lcn.Levj)) 

 

If Ctgi is PREFERENCE add  

hasPreference (Mbr(inst, Psn.Levj),  

Mbr(insu, Pfc.Levk)) 

If Ctgi ∊ LOCATION add  

isIn(Mbr(inst, Psn.Levj),  

Mbr(inst, Lcn.Levj)) 

 

Create CtgiLevj of a Ctgi 

Assert Mbr(inst, CtgiLev1)   

Add chrq into CtgiLevj if necessary 

Add (Mbr(inst, Ctgi.Levj), chrq, vluq) 

Loop Ctgi  

Loop inst  

Loop CtgiLevj  

Loop chrq 

Loop1 rlpr 

Add rlpr(CtgiLevj, CtgxLevy) 

Add (rlpr (Mbr(inst, Ctgi.Levj), Mbr(insu, CtgxLevy)) 

∑ ((Mbr(inst, Ctgi.Levj), chrq, 

vluq))  | t ∊ ℕ0,q = 1..n 

 

∑ Mbr(inst, CtgiLev1) 

 | t = 1..n, i = 1..5 

Loop Levj 

∑rlpr(CtgiLevj, CtgxLevy) 

add  

isAbout (Mbr(inst, Psn.Levj), 

Mbr(ins PCE∆u, Pfc.Levm-1))   or  

isRelatedTo (Mbr(inst, Ojt.Levj), 

Mbr(insu, Pfc.Levm-1))   or 

isFor (Mbr (inst, Lcn.Levj), Mbr 

(insu, Pfc.Levm-1)) 

Loop2 rlpr 

∑rlpr(Mbr(inst, Ctgi.Levj), 

Mbr(insu, CtgxLevy)) 
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4.2.1.1 Creation of Ctgi.Levj,insertion of inst,addition of chrq and vluq  

The first part of our proposed FCM, which does 1) and 2) from section 4.1.10, 

addresses the creation and/or extension of  Ctg i .Lev j , insertion of real world 

instances, ins t, adding characteristics chr q to Ctg i .Lev j  and finally 

assigning characteristics’ value, vlu q to chr q for all 

ins t ,(Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q) when a PCE receives 

interpreted contextual data form the environment. Part one of FCM goes through 

a series of inner and outer loops as shown in Figure 4.10. In this section we 

explain this part of FCM.   

 

The FCM starts with the most inner loop  ‘Loop Ctgi.Levj’, which is within three outer 

loops, ‘Loop Levj’, ‘Loop inst’ and ‘Loop Ctgi’ as shown in Figure 4.10. As we expect, 

for each cycle of the outer loop the inner loop goes through complete cycles. The 

loop  ‘Loop Ctgi’ starts its first iteration with i = 1. Consequently the ‘Loop inst also 

starts its first iteration with t = 1, followed by ‘Loop Levj’ with j=2 in the first 

iteration. ‘Loop Levj’ index starts with 2 because in the statement just before the 

loop, the leaf category Ctg i .Lev 1 was read. If the read Ctg i Lev 2 meets the 

condition statement of the loop, the first Ctg i .Lev j  of the RCtg i .Lev j , which is 

either Psn, Ojt, Fld, Lcn or Pfc , will be created.  

 

Although receiving an interpreted contextual data of a real world instance ins t  is 

always accompanied by its leaf category Ctg i .Lev 1 (Definition 9, Axiom 2), the 

creation of all Ctg i .Lev j  levels that Ctg i .Lev 1 is a subset of always starts with 

the creation of the  immediate (or first) subset Ctg i .Lev j   of any of the five 

RCtg i .Lev j . Consequently, once all its higher level Ctg i .Lev j  have been 

created, a leaf category Ctg i .Lev 1 will be the last Ctg i .Lev j  of a Ctg i  to be 

created. This part of FCM is shown in light blue in Figure 4.10.   

 

Once all Ctg i .Lev j  have been created for all real world instance ins t , through 

the iterations explained above, all ins t s will be added to the FCM. This part of FCM  

is shown in light green in Figure 4.10.  
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When an ins t  for a particular PCE∆ is received, all characteristics, chr q with their 

values, vlu q are also received (Definition 16). For every received chr q, there must 

be a place in the corresponding Ctg i .Lev 1 representing the leaf category of the 

inst (Definition 9, Axiom 2), that is Mbr(ins t ,Ctg i .Lev 1) . Considering the fact 

that there are some intrinsic chr q applicable to Psn, Ojt, Fld, Lcn or 

Pfc  in all PCEs across domains, and that a Ctg i .Lev j  that is a subset of 

Ctg i .Lev k inherits all chr q and rlp t  of Ctg i .Lev k (Definition 16), sometimes a 

received vlu q has an abstract chr q already represented in the corresponding 

Ctg i .Lev 1. In this case just(Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q) will be 

added. Otherwise, if the chr q to resemble the received vluq  does not exist, a new 

chr q will be added to the Ctg i .Lev 1 first 

and(Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q) will be added next. 

 

Adding (Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q)to FCM, w hether chr q 

already exists or added as an extension to Ctg i .Lev 1, the received value vlu q will 

be added for the particular ins t . This part of FCM is depicted in Figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

Once all (Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q) were added to the FCM, the 

next round of iteration of the ‘Loop inst’ for the next ins t  of the same Ctg i  will 

take place. When there is no more real world instance of the same Ctg i ,the FCM 

will move to the most outer loop which is the ‘Loop Ctgi’ to read the next Ctg i . This 

will be repeated for each Ctg i  until there are no further Ctg i s.    

(Mbr(inst,Ctgi.Levj), 

chrq,vluq) 

Ctgi.Lev1 
already has chr q for 

received vluq 

Add chrq to 
Ctgi.Lev1 

Add (Mbr(inst, Ctgi.Levj), chrq, vluq) 

Y 

N 

Figure 4.11: Adding (Mbr(ins t , Ctg i .Lev j ), chr q, vlu q) to FCM 

Ctg i .Lev j  created 

through the ‘Loop CtgiLevj’ 
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4.2.1.2 Creation of Generic Relationships rlpr  

PCE∆T relationships rlp r  are divided into two types. Relationships, which are by 

definition present in any PCE∆, and relationships which are doman and situation-

specific relationships that their existence depend on the domain and the occurrence 

of a particular situation ∆. So far as the pre-defined relationships are concerned, 

when the ‘Loop Ctgi’ loop is over, ‘Loop1 rlpr’ in Figure 4.10 will be the next step in 

FCM. This part of the model is bordered with dashed line. Because these rlp r s are 

present in all PCE∆ across domains, FCM might have it already ready for use, and 

therefore there is no need for their creation. Otherwise, they have to be created as 

prescribed in the FCM.  

 

‘Loop1 rlpr’ box shows that the creation of rlp r s depends on the membership of 

ins t . In other words, Mbr(ins t ,Ctg i .Lev j ) determines what generic rlp r  

is needed to be created.  

 

4.2.1.3 Creation of Extended Relationships rlpr  

Following the middle part of the FCM in Figure 4.10, domain and situation specific 

relationships rlp r  received from PCE for the situation ∆, will need to be 

represented for further computation so that all semantically significant information 

about the PCE∆ are accounted for. This part of the FCM, which is referred to as 

‘Loop2 rlpr’ in Figure 4.10, is again an iterative process in which two real world 

instances that have category relation rlp t  between them are selected and an rlp t  

is added to the model, rlp r (Ctg i Lev j ,Ctg xLev y) . Once the relationship rlp r  

is added, the rlp r  between the individuals corresponding to the selected instances 

will be added, rlp r (Mbr(ins t ,Ctg i .Lev j ),Mbr(ins u,Ctg xLev y)) .   

 

4.2.2 The FCM in Pseudo Code Using OWL Terminologies 

In chapter 2 we have explained and justified our choice of SWRL-enabled OWL 

ontological modelling for knowledge representation and reasoning upon it. To show 

the pseudo code for the FCM, Owl Ontology Language (OWL) is used. Considering 

that the FCM will start with detected information from the PCE.  So far we have 

used notions specific to PCE∆T, thus there is a need for mapping taxonomical 
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terminologies of this chapter to OWL computation before any code resembling any 

implementation can be addressed. In the following section mapping PCE∆T to OWL 

terminology is show, followed by the pseudo code of the FCM.   

 

4.2.2.1 Mapping PCE∆∆∆∆T to OWL Terminologies 

The mapping provided in this sub-section serves:   

- Ease of transformation of the detected information from the environment to OWL 

computational model; 

- Ease of corresponding notions identified in taxonomy PCE∆T to counterpart 

concepts in OWL; 

- Ease of understanding the formal pseudo code 

 

Table 4.3 summarises the mapping of these terms. On the left side of the table 

notions used for collecting information about any situation ∆ is shown, whereby 

their counterpart concepts in OWL is listed on the right.      

 

It is worth stressing that although in the  Semantic Web literature, terms such as 

category, concept or type are also used for ‘class’ or ‘instance’ and ‘individual’ are 

used interchangeably, in this thesis we restrict ourselves to the terms as shown in 

table 4.3 without any reservations unless stated otherwise.  
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Environment 

(User Inputs) 

(OWL Terminology) 

 Term Abbreviation Term  

 

 

 

 

        

 

 

 

  

Category Ctgi Base Class  

 

 

       

       

 

       

   

Level Lev Order 

Category level Ctgi.Levj Subclass 

Leaf category LCtgi.Levj ≡ 

Ctgi.Lev1 

Subclass 

Root category RCtgi.Levj ≡ 

Ctgi.Levm 

Base Class 

Category 

Relationship 

Rlp Object property 

Category Instance 

characteristic 

Chr Data type property 

Category Instance 

characteristic value 

Vlu Range 

Real world Instance Ins Individual 

Category 

membership 

Mbr 

 

 

 

Taxonomy  

PCE∆∆∆∆T 

 

Psn PERSON  

 

 

OWL 

Ontology 

 

Ojt OBJECT 

Fld FIELD 

Lcn LOCATION 

Pfc PREFERENCE 

Psn-specific-Pfc PERSON-SPECIFIC-

PREFERENCE 

Ojt-specific-Pfc OBJECT-SPECIFIC-

PREFERENCE 

Lcn-specific-Pfc LOCATION- SPECIFIC-

PREFERENCE 

 

Table 4.3: Mapping PCE∆T to OWL terminologies 
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4.2.2.2 The FCM in Pseudo Code  

In this section the pseudo code for FCM in PCE is given. The code mirrors figure 4.10 

and uses OWL terminology summarised in Table 4.3. 

 
Input 

∑ Mbr(inst, Ctgi.Lev1) | t = 1..n, i = 1..5 

∑ (inst, chaq, vluq)  | t∊ℕ0,q = 1..n 

∑rlpr(Ctgi.Levj, CtgxLevy) 

∑rlpr(inst, insu) 

Begin 

For i = 1..5 Loop         **Loop Ctgi 

 For  t = 1..v Loop        **Loop inst 

Read Mbr(inst, Ctgi.Lev1) 

 For j= 2..n Loop      **Loop Levj 

  Read Ctgi.Levj 

  If Ctgi.Levj = Psn Then  

   Create subclass Ctgi.LevJ-1 of PERSON 

   For k = j-2..1 Loop     **Loop1 Ctgi.Levj  

    Create subclass CtgiLevk of CtgiLevk+1   

    k = k-1 

   End Loop1 Ctgi.Levj subclass 

  Else If Ctgi.Levj = Ojt Then 

    Create subclass Ctgi.LevJ-2of OBJECT if it doesn’t exist(if ∄) 

    For k = j-3..1 Loop      **Loop2 Ctgi.Levj 

    Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

   k = k-1 

    End Loop2 Ctgi.Levj subclass 

  Else If Ctgi.Levj = Fld Then 

   If Ctgi.LevJ-1 = Health Then 

    Create subclass Ctgi.Levj-2 of HEALTH if ∄ 

    For k = j-3..1 Loop    **Loop3 Ctgi.Levj  

     Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

     k = k-1 

    End Loop3 Ctgi.Levj  

   Else If Ctgi.Levj-1 = Education Then 

    Create subclass Ctgi.Levj-2 of EDUCATION 

    For k = j-3..1 Loop    **Loop4 Ctgi.Levj    

            Create subclass CtgiLevk of CtgiLevk+1 if ∄  

             k = k-1 

    End Loop4 Ctgi.Levj    

   Else If Ctgi.Levj-1 = Manufacturing Then 

    Create subclass Ctgi.Levj-2 of MANUFACTURING if ∄ 

There can be as many number of 

domains as necessary. The 

enumerated list of domains is  

thorough to cater for any 

possible environment.  
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    For k = j-3..1 Loop   **Loop5 Ctgi.Levj    

     Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

     k = k-1 

    End Loop5 Ctgi.Levj    

Else If Ctgi.Levj   = Lcn Then 

    Create subclass Ctgi.Levj-1 of LOCATION 

    For k = j-2..1 Loop   **Loop6 Ctgi.Levj    

     Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

     k = k-1 

    End Loop6 Ctgi.Levj subclass 

   Else If Ctgi.Levj = Pfc Then 

If Ctgi.Levj-1 = Psn-specific-Pfc Then 

     Create subclass Ctgi.Levj-2 of  

  PERSON_SPECIFIC_PREFERENCE if ∄                                                       

         For k=j-3..1 Loop   **Loop7 Ctgi.Levj   

       Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

       k = k-1 

         End Loop7 Ctgi.Levj subclass 

Else If Ctgi.Levj-1 = Ojt-specific-Pfc Then 

     Create subclass Ctgi.Levj-2 of            

OBJECT_SPECIFIC_PREFERENCE if ∄ 

     For k=j-3..1 Loop    **Loop8 Ctgi.Levj  

            Create subclass CtgiLevk of CtgiLevk+1 if ∄ 

             k = k-1 

     End Loop8 Ctgi.Levj subclass 

Else Ctgi.Levj-1 = Lcn-specific-Pfc  Then 

Create subclass Ctgi.Levj-2 of       

LOCATION_SPECIFIC_PREFERENCE if ∄  

        For k =j-3..1 Loop    **Loop9 Ctgi.Levj  

       Create Subclass CtgiLevk of CtgiLevk+1 if∄ 

       k = k-1 

     End Loop9 Ctgi.Levj  

Else 

  j = j + 1 

 End Loop Levj 

  Assert Individual inst into Subclass Ctgi.Lev1 

    

   Select Subclass Ctgi.Lev1 

   For q = 1..n Loop     ** Loop chrq 

       Read (inst, chrq, vluq)   

       If ∃(chrq,Ctgi.Lev1)|chrq is characteristic of Ctgi.Lev1 Then 

     Add(chrq, vluq) to Individual inst  
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      Else 

    Add Datatype Property chrq into Subclass Ctgi.Lev1 

    Add (chrq, vluq) to Individual inst 

      q = q +1 

  End Loop datatype property  

 t = t+1    

End Loop inst 

i = i +1 

End Loop Ctgi 

 

For t = 1..w Loop            ** Loop individual 

Select individual inst which is ∊ Ctgi.Lev1 

 If Ctgi.Lev1 ⊑ PERSON Then 

  For u = 1..x Loop         ** Loop1 rlpr 

  Select (insu, CtgxLev1) 

   If CtgxLev1 ⊑FIELD Then 

    Add Object Property isAssociatedWith(inst, insu) 

   Else If CtgxLev1 ⊑ PREFERENCE Then 

    Add Object Property hasPreference(inst, insu) 

   Else If CtgxLev1 ⊑ LOCATION Then 

    Add Object Property isIn(inst, insu) 

 u = u +1  

 End Loop1 object property 

 Else If Ctgi.Lev1 ⊑OBJECT Then 

  For u = 1..x Loop         ** Loop2 rlpr 

 

  Select (insu, Ctgi.Lev1) 

   If Ctgi.Lev1 ⊑ LOCATION Then 

    Add Object Property isCurrentlyIn(inst, insu) 

   u = u + 1 

  End Loop2 object property 

 t = t + 1 

End Loop individual 

For i = 1..5 Loop                ** Loop  domain  

 For  x = 1..5 Loop            ** Loop range 

  For  r = 1..n Loop              ** Loop3 rlpr 

Read rlpr(Ctgi.Lev1, CtgxLev1)  

   If Ctgi.Lev1 ⊑ PERSON Then 

    If rlpr ∊{isAssociatedWith,isIn,hasPreference}Then 

         Nothing 

    Else  

     Create Object Property rlpr(Ctgi.Lev1,CtgxLev1) 
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   Else If Ctgi.Lev1 ⊑ OBJECT Then 

    If rlpr = isCurrentlyIn Then 

         Nothing 

    Else  

     Create Object Property rlpr(Ctgi.Lev1,CtgxLev1) 

   Else If Ctgi.Lev1 ⊑ PREFERENCE Then 

    If rlpr∊ {isAbout, isRelatedTo, isFor} Then 

         Nothing 

    Else  

     Create Object Property rlpr(Ctgi.Lev1,CtgxLev1) 

   Else 

Create Object Property rlpr(Ctgi.Lev1, CtgxLev1) 

   Read rlpr (inst, insu) 

   Add Object Property rlpr(inst, insu)    

   r = r + 1 

End Loop3 rlpr 

x = x + 1 

 End Loop range 

 i = i + 1 

End Loop domain  

 

4.2.3 The FCM and Delivering a Situation-specific Service in a PCE 

As explained in the previous sections, the power of the proposed FCM is creating a 

semantically rich taxonomical structure, without which we cannot secure the 

delivery of a situation-specific service. However, the FCM cannot fully specify the 

exact computation of services to be delivered, because services are domain and 

situation specific. PCE∆T, ensured by the FCM, is semantically rich that may trigger 

automatically reasoning for the delivered service. Therefore PCE∆T can have 

additional rules to trigger the situation-specific services. 

 

We have explained in Chapter 2 that our SE  solution in PCEs is influenced by the SW 

technologies, particularly OWL ontology. Considering that the W3C recommended 

ontology language OWL is based on DL, any rule used in the FCM must be based on 

DL. Given that DL is based on propositional logic, the propositions that define a DL 

argument must be found in the taxonomical structure PCE∆T. For example, “if 

Margaret is in her room and she is laying on the floor, her caregiver must be 

alerted” is an argument.  In this argument “Mrgaret is in her room”, and 

“she(Margaret) in laying on the floor” are two propositions that make the premises 
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of the argument. The conclusion of the argument is that “her caregiver must be 

alerted”. The semantics of these three propositions in the premises and the 

conclusion must be found in the PCE∆T.     

 

If the delivery of a service in a PCE depends on the conditions set for the activation 

of that service, then all the conditions for a particular situation must be present in 

the PCE∆T, which entails that the taxonomical structure is correct. When the 

conditions are met, then the service expected for that situation will be delivered. 

Therefore, there is a need for a logical “argument”, in which premises are the 

conditions that have to be “true” for the “conclusion” of the argument to be also 

true.  

 

The PCE∆T that is created for a situation is fundamentally setting the premises of 

the “argument”. In other words, each instance Mbr(ins t , Ctg i .Lev j ), 

instance characteristic ((Mbr(ins t , Ctg i .Lev j ), chr q, vlu q)), and 

relationship between instances rlp r (Mbr(ins t , Ctg i .Lev j ), Mbr(ins u, 

Ctg xLev y)) represented in situation-specific PCE∆T is a proposition of the 

premises of the argument that defines the service for the situation, as the 

conclusion of the argument. The conclusion itself, whether a single proposition or 

a multiple, needs to be represented in the situation-specific PCE∆T.  

 

Although each proposition of the premises of the argument is represented inside 

the situation-specific PCE∆T, and the PCE∆T itself is a situation-specific model, the 

propositions are not collectively represented as a Ctgi.Levj representing  the 

situation.  The propositions represented in the PCE∆T are provided by the PCE as 

situational information, but the “conclusion” has to be computed.  

 

Within the PCE∆T, the only inference that can take place is to infer an instance 

Mbr  (ins t , LCtg i .Lev j ) to be an instance for all available values of j (Axiom 

4). Therefore, considering the existence of multiple relationships between 

different Ctg i .Lev j  imposed by the situation-specific “argument”, it is not 

possible to represent it in the generic taxonomical structure PCE∆T, nor can it be 
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defined in the extended taxonomical structure PCE∆T. A situation-specific “rule” 

has to augment the PCE∆T to address the delivery of the service for the situation.  

 

4.3 Summary 
In this chapter, we have defined a formalised computational model for delivering 

services in PCEs. We have defined formal terms used in the taxonomical structure 

PCE∆T of the FCM. The FCM consists of PCE∆T  for a particular PCE∆, and reasoning 

upon it in order to deliver a situation-specific service for the user of PCE. We have 

defined the FCM in boxes as technology independent steps, and in pseudo code 

influenced by SWT.  

  



 

 

 

 

 

 

 

 

 

 

Chapter 5 

Evaluation of the Proposed Model  

by Implementation 
 

 

In this chapter, a real world scenario in healthcare domain is presented to 

demonstrate how the proposed formal computational model in PCE works. The 

model allows computations around any real world situation that takes place in a 

PCE. We will show through a scenario the creation of a situation PCE∆ from which 

point in time the FCM creates the domain and situation-specific taxonomical 

structure PCE∆T to deliver a service to the user of the PCE for that particular PCE∆. 

The example scenario will illustrate the reasoning upon the taxonomical elements 

of the PCE∆T through the the FCM computations in order to deliver an expected 

service to the user for the particular PCE∆. We show, step by step, how the PCE∆can 

be modelled as a PCE∆T and how to compute the domain and situation-specific 

service. We exemplify the cyber-physical objects that exist and participate in the 

situation, who the user of the PCE in the particular PCE∆ is, and the service(s) that 

are expected by the user to be delivered in that PCE∆.   

 

5.1 Setting the Scene 
To illustrate the FCM we need to set the scene. The rationale behind using 

healthcare domain for the running example is briefly explained first, followed by 

describing a particular PCE environment within the healthcare domain.  A real life 
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scenario that the example is based on is stated in the third subsection, to be 

followed by a recapitulation of the terms used in Chapter 4 To facilitate better 

connection between the rest of this chapter and the definitions and axioms 

provided in Chapter 4. Finally, the software architecture, part of which is the 

computational model, is addressed at the end of this section.  

5.1.1 Healthcare Domain 

The healthcare domain gives some of the most successful examples where the 

application of pervasive computing has materialised (Arnich et al., 2010) (Coronato, 

2010) (Bardram, 2007) (Romero, et al., 2011), (Rolim, et al. 2011), (Varshne, 2007), 

(Zhang et al., 2011). The issue of having enormous number of devices with variable 

communication and computational power embedded into our everyday life 

environments, thus providing various types of PCEs, has become almost common in 

healthcare. In support of the technological advances, new software solutions also 

have been developed which support deliveries of health services, remote patient 

monitoring, remote management of diseases, self-care systems, and patient tele-

monitoring. These have resulted the consequent claim that pervasive healthcare 

has become a scientific discipline (Bardram, 2008). This means that we are now able 

to turn our traditional general practitioner’s surgeries, clinical interventions, patient 

monitoring and public health protection into e-health services, delivered at any 

time, in any place with the involvement of empowered patients interested in self-

management of their health. In the following sections our software solution which 

would guarantee delivery of services is demonstrated through an example of a 

situation in a healthcare environment.  

Despite the fact that security is a major issue in PCEs (Campbell et al 2002), people 

might be willing to compromise and give up considerable amount of their privacy 

for the sake of medical treatment (Bohn et al 2004). As the computing boundaries 

are extended through PCEs and include physical spaces, people who are interacting 

with the devices might not be aware of the amount of information about them that 

are being collected, exchanged and processed. Hence the issue of privacy and 

security arises. In health care domain, nevertheless, if provision of personal health 

information reassure people of their helath, and timely medical treatment when 
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required, they might be more prepared to compromise their privacy. It is no wonder 

why by far the number of applications built for the healthcare domain is more than 

of that in any other domain, and why we have chosen this domain for our example 

scenario.  

5.1.2 SeCH Environment 

Self Care Home, SeCH, is a physical environment, inhabitants of which are people 

who need constant care. These can be people who suffer from chronic illnesses and 

conditions which require medical attention, or senior citizens who require constant 

or occasional support. SeCH is equipped with sensors which detect the whereabouts 

of its residents and monitor their activities and physiological functions. When 

prospective residents are admitted to SeCH, they will be allocated a room and their 

belongings will be tagged. They will also receive specific items such as sensorised 

garments and hand-held communicators. Other cyber-physical objects such as 

clothes, furniture, appliances and similar will be available in SeCH.  Constant 

monitoring facilities in SeCH were attractive to its residents; therefore they all 

agreed in advance that their health status and activities would be monitored. 

Residents also stated their preferences in terms of using and agreeing upon the 

facilities available in SeCH, which means that the software system which supports 

SeCH is less intrusive and more personalised to residents’ own needs. Devices in 

SeCH are either embedded with computational capabilities, or are attached to 

actuators, which can trigger the delivery of SeCH services. SeCH is therefore, a PCE 

where sensors, devices, and actuators are connected through a wireless network to 

a gateway as shown in Figure 5.1. The system architecture of SeCH is beyond the 

scope of this thesis.  

Examples of services delivered in SeCH are:  

1) Recommending residents to wear their coat, to take due medication or to stop a current 

social/physical activity; 

2) Informing residents of any changes to their daily routine due to the change of their 

circumstances, such as sending a new schedule for daily geriatric exercises or modifying 

their prescription medicine; 
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3) Activating a device within SeCH automatically, such as switching a heater on in a 

resident’s room; 

4) Issuing an alarm for the medical staff on duty because urgent medical attention is 

needed, after detecting anomalies in a resident’s health status, such as a sudden fall in 

blood sugar level. 

 

 

 

 

 

 

 

 

Figure 5.1 SeCH environment as an example of a PCE 

 

 

We hasten to add that these four types of services are merely examples that we 

have chosen for the SeCH and therefore, reader should treat these as typical non-

exclusive examples of services in a PCE. Different environments in the same domain 

may serve their users differently, hence services may vary for different PCEs. This is 

to say that, services delivered in any PCE are domain specific (Definition 13 , Axiom 

9 in Chapter 4). This specificity indicates that these services cannot be represented 

in advance in any formal computational model for PCEs. This is why PCE∆T can have 

additional rules to trigger the situation-specific services. 

In SeCH, the formal model will provide a computational foundation that is capable 

of deciding what specific service of type 1) – 4) above, given a situation, should be 

delivered. In the following section a domain-specific scenario projecting a precise 

situation within SeCH environment demanding a particular service is explained. This 

scenario is the basis of this chapter’s running example.    

 

5.1.3 The Scenario 

Margaret, John, Peter and Paul are residents of SeCH. Their morning routine starts 

with having a shower, followed by breakfast, and taking morning medicine. Then, 
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they have free time to take part in a physical and social activity suitable for their 

health condition and preferences. Every day a balance exercise class for senior 

residents takes place in the ‘Function’ room. Attendance is compulsory for geriatric 

residents, but other residents attend if they wish. Margaret, usually takes part in 

the ‘walking-for-all’ activity in the adjacent park. This morning, however, she did not 

feel well and decided to go to her bedroom and read the daily paper. Margaret like 

all other residents of SeCH is being monitored so as to be attended to whenever 

there is a change in her health situation. The sensorised garment Margaret is 

wearing shows that she is feverish. When she was admitted in SeCH, Margaret has 

indicated that she would prefer to have her allocated heater in her room to be 

turned on, if it is off, when she feels cold. One of the contextual information that is 

produced in SeCH is to inform whether an allocated room is cold, normal or hot 

considering the body temperature of the person the room is allocated to, provided 

the person is currently inside the room. This sensor device indicates that the room 

is cold for Margaret.  

As mentioned in the previous section, “recommending”, “informing”, “activating a 

device”, or “issuing an alarm” is the action taken in SeCH for any particular 

situation. Considering the new situation created when Margaret being feverish is 

detected, and given that she would expect the heater in her room to be turned on 

in the situation she is in, the expected service to be delivered is “Activating a 

device”. The computation that the formal model prepares the ground for, is 

therefore expected to trigger an actuator within SeCH that turns on the heater in 

Margaret’s room.   

 

In the following section we summarise the formal model process from the moment 

a situation is created until the end of the computation that triggers an expected 

service for the user. Without going into intricacies, we encapsulate key terms 

introduced in the previous chapter in a paragraph or two to set the scene for more 

elaborations of the proposed model.    
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5.1.4 Recapitulation of the FCM Terminologies 

The purpose of this section is recapitulation of the terms used in Chapter 4, vis-à-vis 

the FCM, to facilitate the description of how the domain and situation-specific PCE∆, 

detailed above, is translated into a detailed specification of the situation in PCE∆T. 

The PCE∆T will lend itself to the reasoning required to deliver a service to the user of 

the PCE; i.e. trigger an actuator within SeCH that turns on the heater in Margaret’s 

room. 

The detection of PCE∆ in the PCE takes place when there is a change in the SeCH 

environment, in our case Margaret being feverish, is outside the scope of this 

thesis. This thesis is about FCM and the computations it does once a PCE receives 

interpreted situational information. The creation of PCE∆T and reasoning upon its 

taxonomical elements for a particular PCE∆ is what this thesis is after, thus the 

detection of PCE∆ is not within the remit of the thesis. When a PCE∆ is detected we 

know exactly which and in what locations cyber-physical objects participate in the 

PCE∆, who and where the user of the PCE is, what the preferences of the user are, 

and which services that are expected by the user will be delivered in that PCE∆. We 

also know some domain-specific information such as Margaret’s general health. 

Knowing all these at this particular moment triggers the existence of a particular 

situation in the PCE, PCE∆ (Chapter 4, Definition 1).  

A participant in PCE∆, such as Margaret, is referred to as instance ins t . Instances 

are members of categories(Chapter 4, Definition 5) and represented as Mbr(ins t , 

Ctg i .Lev j )  where Ctg i .Lev j  represents the category that ins t  is a member of  

(Chapter 4, Definition 7). For example, in Mbr(margaret,Resident),  

Resident  is a category represented as Psn.Lev 1  or  in Mbr(feverish, 

General Health) General Health is a category represented as 

Fld.Lev 1. The category membership Mbr(ins t , Ctg i .Lev j ) of real world 

participants ins t  of the PCE∆ necessitates a PCE∆T (Chapter 4, Definition 8) in 

which all Ctg i .Lev j  are modelled.  

 

Therefore, for the given scenario and its particular PCE∆ a PCE∆T is abstracted to be 

reasoned upon its taxonomical elements in order to deliver an expected service; i.e. 
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triggering an actuator within SeCH that turns on the heater in Margaret’s room. 

Characteristics Chqr  and its value vlu r  that describe category memberships 

(Chapter 4, Definition 16), and relationships rlp q between taxonomical elements 

(Chapter 4, Definition 17) are other aspects of PCE∆T contributing towards the 

computation of PCE∆. The  Chqr  is used in (Mbr(ins t , 

Ctg i .Lev j ),chq r ,vlu r )  format, for example, (Mbr(margaret, 

Resident),“gender”,“female”)  which shows margaret  is a member of 

the category “Resident ” and  has a gender characteristic which has the value 

female , or (Mbr(heater152,Heater),status,“off”) which shows 

heater152  is a member of the category Heater  and  has  status  characteristic 

which has the value off .   

 

The FCM computation to achieve PCE∆T is essential for the FCM to reason upon its 

elements to deliver a service to the user of the PCE∆. Computations from the 

moment situational information of a PCE∆  is received by the PCE was shown in 

Figure 4.1 in Chapter 4. Here, in Figure 5.2 we present the application of the 

diagram to the example scenario.  a leading to delivery of a service prepares the 

foundation for the computational model which is instrumental to deciding what 

domain and situation specific service(s) is (are) to be delivered to the user of the 

situation created by a change in the PCE environment as shown in Figure 5.2. 

 

 

 

 

  

 

   

 

 

Figure 5.2: FCM computations for the example scenario PCE∆   
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5.1.5 ASeCS Software Architecture  

Cyber-physical objects of SeCH that participate in ∆ create particular “situational 

information” PCE∆ which is abstracted to PCE∆T. As stressed earlier, how these 

objects are networked and managed, and in general the mechanism of the system 

architecture is not the concern of this thesis. However, the cyber-physical objects 

supply software applications with domain and situation-specific semantics which 

secures the delivery of services for a particular PCE∆ within SeCH.  

 

Although the software architecture is not domain specific and is reusable for 

different environments, in our running example we refer to this architecture as 

Assistive Self Care System (ASeCS) just because the scenario takes place in a care 

home environment, SeCH.  

Figure 5.2 illustrates the ASeCS software architecture.  It is component based and 

layered and each layer has its own purpose and role in the overall ASeCH 

architectural style.    

 

 

 

 

 

 

 

 

Figure 5.3: ASeCS software architecture 

Context Management Layer (CML) and Application Layer (AL) have specific roles 

compared to other ASeCS layers.  The ASeCS software architecture hosts software 

applications that primarily support SeCH and trigger the delivery of its services.  

Therefore a set of various software applications and their interfaces are stored 

within the AL.  They are all are able to communicate with software components 

stored in the lower ASeCS layers and interpret and manipulate any type of input or 

user interaction we may have in various situations in SeCH.   
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However, the CML has a completely different role. The availability of information 

about PCE∆ or “situational information” is essential to provide timely and 

appropriate service to the user. Therefore, acquiring contextual data from the 

environment is an indispensable part of any PCE (Schmidt et al., 1999), (Henricksen 

and Indulska, 2006), (Sabagh et al., 2011). Sensorised garments, tagged heater, 

persistent data repositories, and software programs which integrate various devices 

into a PCE, are examples of cyber-physical devices in SeCH which provide some form 

of contextual data to the ASeCS architecture. For PCE∆ in SeCH, information on who 

the user is (Margaret), where she is, is the room she is in cold given her body 

temperature, is the heater in her room on or off, would she prefer the heater in her 

room to be turned on if it is off when she is feverish, are some of the “situational 

information” examples necessary to acquire in order to define the situation in SeCH 

to deliver a service to fulfil Margaret’s expectation.  Consequently, such contextual 

data have to be managed, i.e. captured and interpreted (Day 2000), (Day, 2001), 

(Strang and Linhoff-Popien, 2004), (Bettini et al., 2010) and therefore the CML 

stores, represents and manages data received from the Cyber-Physical Objects and 

prepares the “situational information” for the ASeCS upper layers.  This is in line 

with many other similar solutions which require interpreting the meaning of the 

collected contextual data, and which has been exercised in context aware software 

applications for more than a decade ((Gu et al., 2004), (Davis et al., 2005), (Gua et 

al., 2005), (Ellenber et al., 2011), (Sang et al., 2003), (Wu et al., 2007).  For example, 

the detection whether Margaret is “feverish” or not is the responsibility of the CML, 

and should be given to the upper ASeCS layers as a part of particular “situational 

information”.  Consequently, the CML makes sure that sensed data is qualified with 

some significant semantics for further computation; i.e. interpreted.  

 

Computationally significant semantics provided by the CML is managed in the ASeCS 

core layers, which comprises PCE∆T, Ontology, and Inference and Reasoning Layers 

as depicted in Figure 5.3. 
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It is important to note that the ASeCS core layers are essential for exploiting the 

“situational information” generated by the CML and delivering services within the 

SeCH through the applications Appn.  

The PCE∆T layer stores taxonomies of PCE∆ which may be generic, i.e. may contain 

enough taxonomical elements which could be used for describing any situation 

PCE∆ in SeCH.  However, possible extensions of the generic situational information 

in PCE∆ may be needed for two important reasons: the situational information 

generated by the CML may require to create more PCE∆T elements in order to 

secure the delivery of services in SeCH and the generic PCE∆T might not be sufficient 

to accommodate the specificity of the semantics in this particular domain (SeCH).  

We illustrate the former in the paragraph below.  

 

 All real world instances that participate in ∆ and create PCE∆ are accommodated in 

the taxonomical structure PCE∆T.  The PCE∆T layer is responsible for arranging and 

organising all detected Mbr(ins t ,Ctg i .Lev j )  participating in the PCE∆.  In 

Chapter 4 section 4.3 we have axiomatised (Axiom 6, 8, 10, 12, and 14) the category 

membership such that for Mbr(x,y)  where x  is a real world instance, y  is 

Psn,Ojt,Fld,Pfc, or Lcn . The Generic PCE∆T of this layer allows 

representation of general instances. For example, any real person in the SeCH 

without any specificity could be presented as an instance of Psn , i.e Mbr(x,Psn) . 

However, Margaret is a specific inhabitant of SeCH. She is a Resident , where the 

scenario says “Margaret, … are residents of SeCH”. This requires the Generic PCE∆T 

to be extended to allow specific Ctg i .Lev j  Resident as an extension to Psn . 

 

 

 

 

 

Figure 5.4: Part of PCE∆ showing instance “margaret ” and its category “Resident ” 

 

 

name: “Margaret” 

gender: “female” 

Psn 
Resident 

paul 

john 

margaret 



 

Chapter 5, Evaluation of the Proposed Model by Implementation         110 

Figure 5.4 shows (Mbr(margaret,Resident) as an extension of  

Mbr(margaret,Psn).  

The Ontology Layer has a similar role to the The PCE∆T Layer.  The only difference is 

that the taxonomy of the situational Information from the PCE∆T Layer is 

transferred into OWL classes and properties. Similar to the PCE∆T Layer the 

Ontology Layer hosts a generic OWL ontology.  However, the generic ontology 

GOnto can be extended ONLY by adding the specificity of SeCH and therefore the 

extended ontology must be called SeCHOnto. The generic ontology GOnto 

represents “bare-minimum” of OWL concepts applicable to all PCEs depicted in 

Figure 4.9 in Chapter 4. The development of GOnto was explained thoroughly in 

Chapter 4 and summarised in Figure 4.8 where a generic taxonomical model for any 

PCE∆ is given. Extension of GOnto to achieve SeCHOnto is discussed in the 

subsequent sections. 

  

The inference and Reasoning Layer provides an essential functionality for delivering 

services in SeCH. OWL ontologies are based on Description Logic and therefore 

inference on the concepts within GOnto or SeCHOnto is feasible using DL reasoning 

mechanism of OWL. However, when there is a need for reasoning about a complex 

semantic involving several concepts, OWL falls short and SWRL rules, which are also 

based on DL, have to be used.  This is why the Ontology Layer is complemented with 

the Inference/Reasoning Layer to cover for the reasoning aspect of the ASeCS 

architecture.  

 

Finally, the applications from the Application Layer are able to communicate with 

Ontology and Inference/Reasoning layers, through OWL-API. It enables that 

software applications in ASeCS “know” SeCH inhabitants’ precise location, their 

current activities, and present physiological vital sign measurements, and they can 

“react” in order to assist residents in their everyday lives.  In other words, 

“reacting” means delivery of personalised service(s) to the user of the PCE∆ in SeCH.   
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5.2 Illustration of the FCM in a PCE 

The previous section has set the scene for a specific user in a particular situation ∆ 

in SeCH. However, as stated in Chapter 4, FCM creates abstraction of situational 

information received by the PCE.  We start this section with explaining what and 

how the situational information for the creation of PCE∆T is established. Then, the 

parts of the FCM as explained in section 4.2 in the previous chapter will be 

illustrated.  

 

The illustration of the FCM requires deployment of technologies. The background 

research in section 2.4 and the overview of the FCM in section 3.4.3 has highlighted 

that the use of SWTs particularly SWRL enabled OWL ontology is the way forward, if 

we desire to create a new era of SE solutions based on the semantics and 

understanding of our computational environments across domains.  That said, by 

knowing that we will use the SWT stack, FCM and situational information should be 

expressed in vocabulary of and following terms of the opted-for technology to 

secure the implementations of the FCM. Therefore, considering the ASeCS 

architecture (Figure 5.2) in which CML is responsible for the provision of  

interpreted contextual data , we need to use competency question (CQ) which is 

another OWL ontology terminology  to establish situational information PCE∆ for a 

particular situation ∆.  

Identification of interpreted contextual data to achieve PCE∆ is not within the remit 

of FCM and it cannot work without that. In the following section we briefly explain 

the role of CQs and how it leads to the creation of PCE∆T. However, reader is 

reminded that the mechanism through which “words” of the CQ are automatically 

translated into machine understandable terms for FCM to work, is outside the 

scope of this thesis.  

  

5.2.1 Formulating the Competency Question (CQ)  

The previous section has set the scene for a specific user in a particular situation ∆ 

in SeCH. Designing a domain-specific computational model pertinent to the 

situation requires clarification and verification of data the computational model 

needs. Some, for example (Chen et al., 2004b) use ‘use case scenario’ to verify the 

appropriateness of their ontological vocabularies structure. However, we use 
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‘competency question’ as used in the realm of Semantic Web and explained in 

Chapter 2 to verify input data to the computational model.   

 

We have explained in Chapter 2 what the role of CQ is in realization of Semantic 

Web technologies. In SeCH, we associate the role of CQ with three issues 

1) the detection of real world instances and the creation of PCE∆T (PCE∆T Layer)  

2) a selection and extension of GOnto classes important for creating SeCHOnto 

(Ontology Layer), and  

3) the reasoning process we perform upon SeCHOnto concepts in order to 

deliver a service.  

Therefore, a correct CQ is of upmost importance for our process of extending GOnto 

to SeCHOnto.  We show how our CQ helps to perform 1), 2) and 3) above. 

 

The scenario from 5.3 gives a clear CQ: 

 

CQ: Which device(s) should be activated when there are some feverish individuals 

inside their assigned room, who would prefer the heater in their room (if it is cold) to 

be turned on (if it is off). 

The above CQ can be rephrased as follows to illustrate necessary information 

needed to be collected for a particular PCE∆. As any PCE∆ is focused on one and only 

one user (Chapter 4, Axiom 6), in the re-phrased format, the CQ will reflect a real 

PCE∆ in SeCH.  

Re-phrased CQ: Margaret is a resident in SeCH. (As soon as a new PCE∆ is created, 

information such as Margaret’s gender, her name and her assigned room in SeCH 

become available at once.) SeCH is a care home in the UK and therefore it follows 

the UK health policy and procedures. It is detected that Margaret is feverish. Her 

current location is “Room101” which is a private location (bedroom) inside SeCH. 

This location (Room101) is “cold” now considering Margaret’s body temperature. A 

heater, “heater152”, is present in Room101. The status of this heater, which belongs 

to Margaret, is “off”. Margaret has indicated when she was admitted to SeCH some 

object preferences. One of these preferences is that she prefers the heater in her 

room to be turned on, if it is off, when she is feverish. 

 

Therefore, the new situation (Margaret beeing feverish) creates a new PCE∆, as 

shown in Figure 5.2.  As soon as this piece of information (Margaret is feverish) is 

sensed, a collection of other semantically significant pieces of information relevant 
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to the CQ becomes available to the computational model. We must give more 

information about a particular PCE∆ in SeCH. This is essential for two reasons. We 

must know which exact inputs we give to the ASeCS application, and which output 

we expect from it (which is usually the result of delivering a service).  

 

  Competency Question Segments 

A Margaret is a resident in SeCH. 

B Margaret’s name, gender and her assigned room are examples of available information from 

C SeCH is in the UK and therefore it follows the UK health policy and procedures.   

D SeCH is a care home. 

E Margaret is feverish. 

F Her current location is “Room 101” 

G which is a private physical location (bedroom) inside SeCH. 

H This location (Room101) is “cold” (considering Margaret’s body temperature). 

I A heater “heater152” is present in Room101. 

J The status of this heater is “off”. 

K This heater belongs to Margaret. 

L Margaret has indicated when she was admitted to SeCH some object preferences. 

M One of these preferences is the heater in her room to be turned on, if it is off, when she is 

 

Table 5.1, Segments of the running example competency question   

The breakdown of the CQ into 13 segments (A to M) is shown in Table 5.1. The 

purpose of this breakdown is to demonstrate how each piece of information, a 

word, a phrase or a complete sentence in the CQ can be mapped to PCE∆T 

elements.  

 

The following section will show how the situational information PCE∆ of the 

example scenario received by the PCE is computed by the FCM to create PCE∆T and 

to reason upon it to deliver a service to the user (Margaret).   

 

5.2.2 Illustration of FCM Loops and Steps 

In this section steps explained in section 4.2.1 about the development of FCM is 

explained. In the following subsections we will show how the words that appear 

within the CQ (section 5.2.1) - in the form of nouns, verbs, proverbs and adjectives - 

found their space within PCE∆T.  
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How PCE∆ is abstracted to generic taxonomical structure, how generic taxonomical 

structure is extended to PCE∆T, and how PCE∆T paves the way to reason to deliver a 

situation-specific service, is also explained in this section.  

5.2.2.1 Illustration of Creation of ctgi.Levj, Insertion of inst, and addition of 

chrq,vluq  

Here, we would like to go through all the statements regarding the creation of a new 

ctg i .Lev j , Mbr(ins t ,ctg i .Lev j ) , and(Mbr(ins t ,Ctg i .Lev j ), 

chr q,vlu q) listed in Table5.1.     

 

Statement A: Margaret is a resident in SeCH. 

According to Definition 11-15 detailed in section 4.3 (Chapter 4) the only 

occurrences of root category are Psn, Fld, Ojt, Lcn , and Pfc . Every real 

world instance, ins t , is therefore an instance of one of these root categories. 

Considering that, ins t  is identified along its ctg i .Lev j  (Definition 7), when the 

ctg i .Lev j  of an instance is given in a CQ, for example “resident” in the first 

sentence of the CQ in Table 5.1, its root category is assumed. Therefore, for the 

sentence “Margaret is a resident in SeCH” we know that Resident  is of root 

category Psn  and given Axiom 2, we can conclude that Resident  is Psn.Lev 1. 

The ins t  of Psn.Lev 1 according to the statement is Margaret with capital “M”. 

There is a subtle concern here. “Margaret” is actually the “name” of the real world 

person and it is not the instance itself. To differentiate between these we refer to 

the instance ins t  as margaret with lowercase “m” and the name of the person as 

Margaret with capital letter “M”. The first sentence of the CQ should have read 

“margaret is a resident in SeCH”, but merely because of linguistic concerns we left it 

with capital M. The contextual representation of this, based on Definition 7, is 

therefore Mbr(margaret,Resident) .To summarise, for the statement 

Margaret is a resident in SeCH, the following is represented in the taxonomical 

structure PCE∆T: 

Mbr(margaret,Resident)  where Resident  is Psn.Lev 1. 

 

Statement B: Margaret’s name, gender, and her assigned room are some examples 

of available information from CML.     

For every Mbr(ins t ,Ctg i .Lev j )  in the PCE∆T all available instance 
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characteristics chr q are represented according to Definition 16. Therefore for 

Mbr(margaret,Resident) the “name”,”gender ”, and “assignedRoom ” 

characteristics are represented in the PCE∆T as :  

(Mbr(margaret,Resident),name,“Margaret”) 
(Mbr(margaret,Resident),gender,“female”) 
(Mbr(margaret,Resident),assignedRoom,“Room101”)  
 

Statement A and B are depicted in blue in Figure 5.5. “margaret ”, “john ” and 

“paul ” are different inst of Resident . “margaret ” oval is bolded to indicate 

the ins t  of concern for the particular PCE∆. Characteristics chr q of “margaret ” 

and their values are shown inside the broken-line-border box.   

Statement C: SeCH is in the UK and therefore it follows the UK health policy and 

procedures.   

The provision of services in any PCE according to Definition 2 and 3 is domain-

specific. The specificity of any domain is represented in the PCE∆T under the Fld  

root category. Statement “C” indicates the environment is within the health 

domain. The representations of the “Health” Ctg i .Lev j  and an ins t  of it in the 

PCE∆T similar to that of statement A are:     

Mbr(UK-health,Health)  where Health  is Fld.Lev 3. 

We would like to attract the reader’s attention to the level that Health  belongs to 

in the PCE∆T. The Ctg i .Lev j  for Resident  in statement “A” was defined as 

Psn.Lev 1 as the precision of abstraction required for instance “margaret ”. 

However, different precisions are required for different ins t  of Fld occurrence. 

The higher the precision required the lower the level of Ctg i .Lev j . Defining 

Health  at level 3 (Fld.Lev 3) indicates that for the particular PCE∆ specified in 

the CQ there are two more precise levels (Fld.Lev 2 and Fld.Lev 1)which are 

more specific than the Health . Lack of any characteristics of UK-health  in the 

CQ is a good indication that it belongs to a high-level of abstraction, i.e. no detailed 

precision required.   

 

Statement D: SeCH is a care home. 

Similar to UK-health  instance, no characteristics are given for SeCH instance in 

the CQ. The only extra feature available for SeCH is that it is a subset of UK-
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health . This explains why Care Home  is Fld.Lev 2. These representations in 

the PCE∆T is:   

Mbr(SeCH,Care Home)  where Care Home is Fld.Lev 2. 

 

Statement E: Margaret is feverish. 

As shown in Figure 5.5 real world instances “feverish ”, “normal ”, “critical ” 

are abstracted as “General Health ”. The ins t  which is available as a result of 

the particular situation PCE∆ of the CQ is “feverish ”. As there are some 

characteristics available for “feverish ”, General Health  ought to be at the 

lowest level of abstraction (high precision). This representations in the PCE∆T is:   

Mbr(feverish, General Health)  where General Health  is  

Fld.Lev 1. 

 

In Figure 5.5, Fld  and all its Ctg i .Lev j  are shown in amber.  

 

Statement F and G: Her current location is “Room 101 which is a private physical location 

(bedroom) inside SeCH. 

The same explanation about the formation of different Ctg i .Lev j  of Fld  root 

category is applicable here for Lcn . All Ctg i .Lev j , of Lcn  with some instances 

are shown in green in Figure 5.5; their representations in the PCE∆T are:   

Mbr(insideSeCH,PhysicalLocation)  where Physical Location  is  

Lcn.Lev 2. 

Mbr(room101,Private)  where Private  is  Lcn.Lev 1. 

 

Statement H: This location (Room101) is “cold” considering Margaret’s body 

temperature. 

The Ctg i .Lev j  of Private is Lcn.Lev 1 which suggest that there are some 

characteristics available for the instance room101  of this Ctg i .Lev j . The implicit 

indication of the CQ is that the location or room temperature is cold . Therefore, 

the roomTemperature  characteristic of the instance needs to be represented in 

the PCE∆T: 

(Mbr(room101, Private),roomTemperature,“cold”).  

Statement I and J: A heater “heater152” is present in Room101. The status of this 

heater is “off”. 
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These statements are quite similar to statements A and B except that here the ins t  

is of root category Ojt . Considering that even the structure of all Ctg i .Lev j  of 

both occurences of Psn  and Ojt  are similar, there is no need of any further 

explanation for this part of the CQ. Their representations in the PCE∆T are:  

Mbr(heater152,Heater)  , 

(Mbr(heater152, Heater),type,“heater”),  
(Mbr(heater152, Heater),status,“off”). 
 

Statement L: Margaret has indicated when she was admitted to SeCH some object 

preferences. 

Some of the real world instances that can be abstracted to a Ctg i .Lev j  of the 

Pfc  root category are shown in Figure 5.5 in purple. The Ctg i .Lev j  is named 

Ojt-specific-Pfc . In this particular PCE∆ the bolded heaterPreference  is 

the available instance of this Ctg i .Lev j .  The representations in the PCE∆T are 

Mbr(heaterPreference,Ojt-specific-Pfc) where Ojt-specific-

Pfc is Pfc.Lev 1. 

 

Statement M: One of these preferences is the heater in her room to be turned on, if 

it is off, when she is feverish. 

As we have seen earlier, since heaterPreference  is a member of a leaf 

Ctg i .Lev j  (that is Pfc.Lev 1) some characteristics of the inst should also be 

available. These characteristics are presented in the PCE∆T as:   

(Mbr(heaterPreference,Ojt-specific-Pfc),objectType, “heater”) 
(Mbr(heaterPreference,Ojt-specific-Pfc),objectNewSt atus,“on”). 
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5.2.2.2 Illustration of Generic Relationships rlpr,  

Here, we would like to go through all the statements regarding the creation of 

generic relationships rlp r (Mbr(ins t ,Ctg i .Lev j ),Mbr(ins u,Ctg xLev y))  

listed in Table5.1.     

 

Statement E: Margaret is feverish. 

We have already created Mbr(feverish,General Health)  in the previous 

section. However, considering that there is always a relationship 

“ isAssociatedWith ” between Mbr(ins t ,Psn.Lev j )  and 

Mbr(ins t ,Fld.Lev k)  according to Axiom 16, the following is also established: 

isAssociatedWith(Mbr(margaret,Resident),Mbr(feveris h, 

General Health)). 

 

Statement F and G: Her current location is “Room 101 which is a private physical location 

(bedroom) inside SeCH. 

We have already created Mbr(insideSeCH,PhysicalLocation), 

Mbr(room101,Private)  and  Mbr(room101,Private)  in the PCE∆T. However, 

once Mbr(room101,Private) is represented in the PCE∆T then a relationship 

between Mbr(room101,Private) and a previously represented 

Mbr(margaret,Resident) can be established according to Definition 17 as   

isIn(Mbr(margaret,Resident),Mbr(room101,Private)). 

 

Statement I and J: A heater “heater152” is present in Room101. The status of this 

heater is “off”. 

We have already created Mbr(heater152,Heater) and added 

(Mbr(heater152, Heater),type,“heater”),  
(Mbr(heater152, Heater),status,“off”)  in the PCE∆T. However 

according to  Axiom 18 we need to add a relationship FCM prescribe between the 

object and the location it is in. This is illustrated as  

isCurrentlyIn(Mbr(heater152,Heater),Mbr(room101,Pri vate)) 

 

Statement L: Margaret has indicated when she was admitted to SeCH some object 

preferences. 

We have already created Mbr(heaterPreference,Ojt-specific-Pfc).  
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Given Axiom 20, there is always a relationship hasPreference between Mbr(ins t , 

Psn.Lev j )  and Mbr(ins u,Pfc.Lev k) , therefore we also have the following in 

the taxonomical structure: 

hasPreference(Mbr(margaret,Resident),Mbr(heaterPref erenc,

Ojt-specific-Pfc)). 

Statement M: One of these preferences is the heater in her room to be turned on, if 

it is off, when she is feverish. 

We have already added the following two characteristic values, 

(Mbr(heaterPreference,Ojt-specific-Pfc),objectType, “heater”) 
(Mbr(heaterPreference,Ojt-specific-Pfc),objectNewSt atus,“on”). 
 

However, given Axiom 22, there is always a relationship isRelatedTo  between 

Mbr(ins t , Ojt.Lev j )  and Mbr(ins u, Pfc.Lev k) , therefore we also have 

to add the following in the taxonomical structure: 

isRelatedTo(Mbr(heaterPreference,Ojt-specific-

Pfc),Mbr(heater152,Heater)).  

5.2.2.3 Illustration of Extended Relationships rlpr,  

Here, we would like to go through any statement regarding the creation of new  

relationships rlp r (Mbr(ins t ,Ctg i .Lev j ),Mbr(ins u,Ctg xLev y)) listed in 

Table5.1 that extends PCE∆T . 

 

Statement K: This heater belongs to Margaret. 

We have already created Mbr(heater152,Heater) and 

Mbr(margaret,Resident) in section 5.2.2.1. The relationship “belongs to” is 

not currently available in the taxonomical structure and therefore a new rlpr has to 

be added to the PCE∆T as an extension. This new relationship is  

belongsTo(Mbr(ins t ,Heater),Mbr(ins u,Resident)). Once the 

relationship is available the following will be added according to Definition 17: 

belongsTo(Mbr(heater152,Heater),Mbr(margaret,Reside nt)) 

5.2.2.4 Summarising all PCE∆∆∆∆T  Elements for the Running Scenario 

The content of the PCE∆T as explained above in section 5.2.2.1, 5.2.2.2, and 5.2.2.3 

is summarised in Table 5.2 in the order FCM prescribes and were followed above.  
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 Contextual Data 

1 Mbr(margaret,Resident) 

2 (Mbr(margaret,Resident),name,“Margaret”) 

3 (Mbr(margaret,Resident),gender,“female”) 

4 (Mbr(margaret,Resident),assignedRoom,“Room101”) 

5 Mbr(UK-health, Health) 

6 Mbr(SeCH, Care Home) 

7 Mbr(feverish,General Health) 

8 Mbr(heater152,Heater) 

9 (Mbr(heater152,Heater),status,“off”) 

10 (Mbr(heater152,Heater),type,“heater”) 

11 Mbr(insideSeCH,Physical Location) 

12 Mbr(room101,Private) 

13 Mbr(heaterPreference,Ojt-specific-Pfc) 

14 (Mbr(heaterPreference,Ojt-specific-Pfc),objectType,  “heater”) 

15 (Mbr(heaterPreference,Ojt-specific-Pfc), objectNewS tatus,“on”) 

16 (Mbr(room101, Private),roomTemperature,“cold”) 

17 isAssociatedWith(Mbr(margaret,Resident),Mbr(feveris h,General Health))  

18 isIn(Mbr(margaret,Resident),Mbr(room101,Private)) 

19 isCurrentlyIn(Mbr(heater152,Heater), Mbr(room101,Pr ivate)) 

20 hasPreference(Mbr(margaret,Resident), Mbr(heaterPre ference,Ojt-

specific-Pfc)) 

21 isRelatedTo(Mbr(heaterPreference,Ojt-specific-Pfc), Mbr(heater152, 

Heater))  

22 belongsTo(Mbr(heater152,Heater), Mbr(margaret,Resid ent)) 

 

Table 5.2 Content of the PCE∆T of the running example  

 

In the previous section we explained the derivation of different elements of PCE∆T 

from statements of Table 5.1, whereas in Table 5.2 the content of PCE∆T for the CQ 

of Table 5.1 is listed. For ease of reference, the summary of mapping between these 

two tables, i.e. CQ statements to the corresponding FCM representation, is also 

provide in Table 5.3.   

 Mapping of Competency Questions to their Corresponding Contextual Data 

CQ  A B C D E F G H I J K L M 

PCE∆∆∆∆T  1 2,3,4 5 6 7,,17 18 11,12 16 8,10 9 22 13,20 14,15,21 

 

Table 5.3: Mapping situational information of Table 5.1 to PCE∆T taxonomical element of Table 5.2   
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5.2.3 Summarising the Creation of PCE∆∆∆∆T 

As we have illustrated above, the creation of a PCE∆T encounters the following   

- Ctg i .Lev j  and rlpr are already available in the taxonomical structure that FCM 

is initially consist of; 

- the generic model has to be extended to cater for any situation-specific 

Ctg i .Lev j  for the precision required;  

- the generic model has to be extended to cater for any situation-specific rlp r  for 

the precision required.  

 

In the following subsections we will go through the above for the running example. 

 

5.2.3.1 Using Existing Ctgi.Levj and rlpr  

Apart from the root Ctg i .Lev j  the only other Ctg i .Lev j  available in the generic 

taxonomy are Ojt-specific-Pfc  and Health  as shown in Figure 5.6.  

 

Figure 5.6: The generic PCE∆T 

 

These are based on Definition 11, 12, 13, 14, 15 and Axiom 6, 8, 10, 12, 14 and 20. 

Similarly, based on Axiom 16, 17, 18, 19 and 22, there are already five existing 

relationships rlpr, which are hasPreference, isAssociatedWith, 

isIn, isCurrentlyn and isRelatedTo  . The existance of these 

Ctg i .Lev j  and rlp r  means that creation of situation-specific extensions to the 

PCE∆T will not be delayed for the creation of the currently available elements of the 

PCE∆T.  
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5.2.3.2 Extension of of PCE∆T with Situation-specific Ctgi.Levj in SeCH 

The generic taxonomy has to be extended to cater for any necessary Ctg i .Lev j .  

As shown earlier in Figure 5.5, there are quite a few Ctg i .Lev j  that will have to be 

added to the taxonomy to cater for all necessary precisions for ins t  of the PCE∆. 

Extensions of Psn  to include Resident  and of Ojt  to include Heater  are only 

required one level down. This means that the root category Psn  will be Psn.Lev 2 

and its extension Resident  will be Psn.Lev 1. Likewise, the root category Ojt  

will be Ojt.Lev 2 and its extension Heater  will be Ojt.Lev 1. 

The extension of the Lcn  root category happens twice, so structurally it is deeper 

than Psn  and Ojt  root category in this particular PCE∆T. In this occasion Lcn  will 

be Lcn.Lev 3 and its first extension Physical Location  will be Lcn.Lev 2, 

and its second extension Private  will be Lcn.Lev 1.  

The Fld  root category already has some enumerated Ctg i .Lev j  for variety of 

domains such as health, education, and manufacturing. In the running example, the 

domain is health therefore if Fld  is Fld.Lev m, Health  would be Fld.Lev m-1. 

Any extension in this part of PCE∆T has to be an extension of Health .  At the 

bottom of the extensions is General Health  which will be Fld.Lev 1. The 

Care Home  extension would be Fld.Lev 2 which is the immediate subset of 

Health . Therefore Health  would be Fld.Lev 3 and the root would be 

Fld.Lev 4. So, structurally Fld  is deeper than any other root category in this 

particular PCE∆T. These extensions are depicted in Figure 5.7. 

 

Figure 5.7 Extension of generic PCE∆T to accommodate new Ctg i .Lev j 
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5.2.3.3 Extension of PCE∆T with Situation-specific rlpr in SeCH 

The only necessary relationship rlp r  that is situation-specific and needs to be 

added to the taxonomy is belongsTo(Mbr(heater152,Heater), 

Mbr(margaret,Resident)) . This is shown in Figure 5.8 in red.  

 

 

 

 In the following section the transformation of the taxonomical notions to OWL 

ontological concepts are explained. 

 

5.2.4 Illustration of Mapping PCE∆T to OWL Ontological Concepts 

As discussed in Chapter 2, OWL ontologies are modelled around four concepts. 

These concepts are individual, class, object property, and data type property. Variety 

of features that OWL supports for each one of these concepts is not the concern of 

this thesis. What is, however, important is to establish a mapping between each and 

every notion of the PCE∆T and a sister OWL ontological model. Every piece of 

information represented in PCE∆T must be reflected in the ontological model which 

in turn provides concepts necessary for delivering a service for a particular PCE∆ 

(Definition 3).  

The counterpart of Ctg i .Lev j  of PCE∆T in ontology is “class”. Although classes can 

have different relationships with each other in an OWL ontology, here we are only 

Psn

Ojt

CtgiLevj

‘a subset of’ 

relation

Relationship 

rlpq

Lcn

Fld

isAssociatedWith

isCurrentlyIn

Pfc

hasPreference

isIn

Health

Ojt-specific-Pfc

isRelatedTo

Resident
Psn.Lev1Psn.Lev2

Care Home General Health

Fld.Lev1

Fld.Lev4

Fld.Lev3 Fld.Lev2

Heater

Ojt.Lev2

Ojt.Lev1

Physical Location Private

Lcn.Lev1Lcn.Lev2

Lcn.Lev3

Pfc.Lev1

Pfc.Lev2

belongsTo

Figure 5.8 Extension of generic PCE∆T to accommodate the new rlp r  
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interested in the is-a (or subsumption) relationship, and when relationships is 

defined through object properties.  

Every ins t  of PCE∆T has some characteristics chr q. These are defined as data type 

properties.  The domain of a data type property is the class which is the mapping of 

the Ctg i .Lev j  of the Mbr(ins t ,Ctg i .Lev j ) . The range value of data type 

properties can be of different types, but we restrict to “string” type.            

Instances ins t  in PCE∆T becomes assertion of “individuals” in OWL ontology. When 

an individual is asserted, the class it is a member of has to be stated. Once an 

individual is asserted, its data type properties’ value can also be asserted.  

Similar to relationship rlp r  in PCE∆T that is a relationship between two ins t , 

object properties in Owl ontology are also relationships between individuals. The 

object property is defined by its domain and range, which by definition are classes. 

When individuals are asserted if there are any relationships between them, object 

properties will be asserted.  

For ease of reference the mapping of key constructs of PCE∆T and OWL ontology is 

given in Table 5.4.     

 Key Constructs of PCE∆∆∆∆T and OWL ontology 

PCE∆∆∆∆T Ctgi.Levj Relationship rlpr Characteristic chrq Real world instance inst 

OWL ontology Class Object Property Data Type Property Individual 

 

Table 5.4: Mapping of key elements of PCE∆T and constructs OWL ontology 

 

Following the above mapping guideline, the generic PCE∆T shown in Figure 5.6 is 

represented as shown in Figure 5.9 for the generic OWL ontology. We name this 

generic ontology GOnto. The name of classes in GOnto, unlike in PCE∆T, have been 

deliberately chosen from real terms in spoken English. The reason for this rational 

was to make these as close to terms used in a competency question as possible. 

Consequently, this will lend itself to easier writing, and interpretation of rules which 

are based on the ontological concepts and are governing the delivery of services to 

users of PCEs. 
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Figure 5.9: The generic GOnto OWL ontology 

 

 

The object and data type properties name remain as in the PCE∆T as they are 

already close to the speaking language.  

 

In the following section the development of the extended ontology based on given 

GOnto, and the CQ reflected in the PCE∆T is discussed.  

The steps for the transformation of PCE∆T to OWL ontological model is summarised 

in Table 5.5. These steps are based on definitions and axioms, and the processing 

procedure stated in Chapter 4. As a result of these steps an extended ontology 

based on GOnto is developed. The availability of concepts in GOnto does not mean 

that every one of them have to be used. The PCE∆ determines which ones need to 

be used. The extended ontology, named SeCHOnto, will provide all the concepts 

necessary for the delivery of services. The SeCHOnto ontological model is given in 

Figure 5.10. In this figure, the extended concepts representing the particular 

situation PCE∆ are depicted in red.     
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Contextual Data Based on Sub-procedure Location in the Processing 

Model Resident  is  Psn.Lev 1 

Mbr(Margaret,Resident) 
Axiom 1, 2, 5 

Definition 7, 8, 11 

Create subclass Resident of PERSON 

Assert margaret into Subclass Resident 

Create subclass Ctgi.LevJ-1 of 

PERSON 

Assert Individual inst into 

Subclass Ctgi.Lev1 

 (Mbr(margaret,Resident),name,“Margaret”) Definition 16 

 

Add (name, “Margaret”) to Margaret If ∃(chrq,Ctgi.Lev1)|chrq is 

characteristic of Ctgi.Lev1 Then 

Add(chrq, vluq) to Individual inst  (Mbr(margaret,Resident),gender,“female”) Add (gender, “female”) to Margaret 

 (Mbr(margaret,Resident ), assignedRoom , 

“Room101”) 

Add Datatype Property assignedRoom 

into Subclass Resident 

Add (assignedRoom, “Room101”) to 

Margaret 

Add Datatype Property chrq into 

Subclass Ctgi.Lev1 

Add(chrq, vluq) to Individual inst 

Health  is Fld.Lev 3 

Mbr(UK-health, Health) 
Axiom 1 

 

Create subclass Health of FIELD If Ctgi.LevJ-1 = Health Then 

Create subclass Ctgi.Levj-2 of 

HEALTH 

Care Home  is Fld.Lev 2 

Mbr(SeCH, Care Home) 
Create subclass Care Home of FIELD Create subclass CtgiLevk of Field  

if ∄ 

 General Health  is Fld.Lev 1 

Mbr(feverish, General Health) 
Axiom 1, 2, 9 

Definition 7, 8, 13 

Create subclass General Health of FIELD 

Assert feverish into Subclass Resident 

Heater  is Ojt.Lev 1 

Mbr(heater152, Heater) 
Axiom 1, 2, 7 

Definition 7, 8, 12 

Create subclass Heater of OBJECT 

Assert heater152 into Subclass Heater 

Create subclass Ctgi.LevJ-2of 

OBJECT if ∄ 

Assert Individual inst into 

Subclass Ctg .Lev(Mbr(heater152,Heater),status,“off”) Definition 16 Add (status, “off”) to heater152 If ∃(chrq,Ctgi.Lev1)|chrq is 

characteristic of Ctgi.Lev1 Then 

Add(chrq, vluq) to Individual inst 

(Mbr(heater152,Heater),type,“heater”) Add (type,“heater”) to heater152 

Physical Location  is  Lcn.Lev 2 

Mbr(insideSeCH,Physical Location) 
Axiom 1, 2, 13 

Definition 7, 8, 15 

 

Create subclass Physical Location of 

LOCATION 

Create subclass Ctgi.LevJ-1 of 

LOCATION 

Private is  Lcn.Lev 1 

Mbr(room101,Private) 
Create subclass Private of LOCATION 

Assert room101 into Subclass Private 

Create subclass Ctgi.LevJ-1 of 

LOCATION 

Assert Individual inst into 

Subclass Ctg .Lev
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Contextual Data Based on Sub-procedure Location in the Processing 

Model Ojt-specific-Pfc  is Pfc.Lev 1 

Mbr(heaterPreference,Ojt-specific-Pfc) 
Axiom 1, 2, 11 

Definition 7, 8, 15 

Create subclass Object-specific-

Preference of PREFERENCE 

Assert heaterPreference into Subclass 

Object-specific-Preference 

Create subclass Ctgi.LevJ-1 of 

PREFERENCE 

Assert Individual inst into 

Subclass Ctgi.Lev1 

 (Mbr(heaterPreference,Ojt-specific-Pfc), 
objectType,“heater” 

Definition 16 Add Datatype Property objectType into 

Subclass Object-specific-Preference 

Add (objectType, “heater”) to 

heaterPreference 

Add Datatype Property chrq into 

Subclass Ctgi.Lev1 

 

Add (chrq, vluq) to Individual inst (Mbr(heaterPreference,Ojt-specific-Pfc), 
objectStatus, “on”) 

Add Datatype Property objectStatus into 

Subclass Object-specific-Preference 

Add (objectNewStatus, “on”) to 

heaterPreference (Mbr(room101, Private), roomTemperature, 
“cold”) 

Add Datatype Property 

roomTemperature into Subclass Private  

Add (roomTemperature, “cold”) to 

room101 isAssociatedWith(Mbr(margaret,Resident), 
Mbr(feverish, General Health))   

Definition 17 Axiom 16 Add Object Property isAssociatedWith 

between margaret and feverish 

Add Object Property 

isAssociatedWith (inst, insu) 

isIn(Mbr(margaret,Resident), 
Mbr(room101,Private)) 

Axiom 17 Add Object Property isIn between  

margaret and room101 

Add Object Property isIn (inst, 

insu) 

isCurrentlyIn(Mbr(heater152, Heater), 
Mbr(room101,Private)) 

Axiom 18 Add Object Property isCurrentlyIn 

between  

heater152 and room101 

Add Object Property 

isCurrentlyIn (inst, insu) 

hasPreference(Mbr(margaret,Resident), 
Mbr(heaterPreference,Ojt-specific-Pfc)) 

Axiom 19, 

20 

Add Object Property hasPreference 

between  

margaret and heaterPreference 

Add Object Property 

hasPreference (inst, insu) 

isRelatedTo(Mbr(heaterPreference,Ojt-
specific-Pfc), Mbr(heater152, Heater))  

Axiom 22 Add Object Property isRelatedTo 

between  

heaterPreference and heater152 

Add Object Property isRelatedTo 

(inst, insu) 

belongsTo(Mbr(heater152,Heater), 
Mbr(margaret,Resident)) 

Extension create Object Property belongsTo 

between  

heater152 and  margaret 

Create Object Property 

belongsTo (Ctgi.Lev1, CtgxLev1) 

Add Object Property belongsTo 

(ins , ins )  

Table 5.5 Transformation of detected contextual data to ontological concepts 
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Figure 5.10: The SeCHOnto OWL ontology 

 

5.2.5 Illustration of Delivering a Service in a PCE∆ 

If we were to prepare a SWRL rule, which could support the CQ stated in section 

5.5, then Table 5.6 illustrates the mapping between the text in the CQ and the 

atoms of that SWRL rule. In other words, the second column in Table 5.6 gives us 

directly the syntax and semantics of the SWRL rule ensuring the delivery of the 

service that the heater in Margaret’s room should be turned on; 

ToBeTurnedOnObject(?h) .  

Preparation of Table 5.5 from Table 5.1 goes through a filtering process. Segments 

of the CQ which are not situation-specific but rather structural statements shall not 

have any place in the SWRL rule. After all, SWRL rule is about a specific situation ∆.  

This is why statements C, D and G which are structural statements without any 

corresponding SWRL rule atoms are faded out in Table 5.6.  

The SWRL rule corresponding to the CQ is:  

General_Health(?gh),Heater(?h),LOCATION(?l),OBJECT-
SPECIFIC-PREFERENCE(?osp),Resident(?r),belongsTo(?h ,?r), 
hasPreference(?r,?osp),isAssociatedWith(?r,?gh), 
isCurrentlyIn(?h,?l),isIn(?r,?l),isRelatedTo(?osp,? h), 
assignedRoom(?r,?ln),bodyTemperature(?gh,"feverish" ), 
locationName(?l,?ln),objectNewStatus(?osp,"on"), 
roomTemperature(?l,"cold"),status(?h,"off")-> 
ToBeTurnedOnObject(?h) 
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The SWRL rule has in its body a set of OWL restrictions which we explain in their 

order of appearance in Table 5.6. 

The CQ begins with the statement “Margaret is a resident in SeCH”. This justifies the 

presence of a Resident class inside the body (antecedent) of the rule as a unary 

predicate, Resident(?r) . As the rule is general and should be applied to any 

individual of the Resident class, the argument of the atom is not an actual value 

such as “margaret ” and therefore a variable ?r  is used instead.  

 

Table 5.6: Mapping the CQ semantics with the atoms of SWRL rule 

 

There are varieties of information available about ?r  as soon a PCE∆ is created. To 

name a few, the individual’s name, gender , d.o.b.  are some examples. 

However, despite their availability some of them are not semantically useful 

C Competency Question Statement SWRL Rule Atoms 

A Margaret is a resident in SeCH. Resident(?r) 

B Margaret’s name, gender and her assigned room 

are examples of available information from SeCH. 

assignedRoom(?r,?ln) 

C SeCH is in the UK and therefore it follows the UK 

health policy and procedures.   

 

D SeCH is a care home.  

E Margaret is feverish. General_Health(?gh) 
bodyTemperature(?gh, 
"feverish") 
isAssociatedWith(?r,?gh) 

F Her current location is “Room 101” LOCATION(?l) 
isIn(?r,?l) 

G which is a private physical location (bedroom) 

inside SeCH. 

 

H This location (Room101) is “cold” (considering 

Margaret’s body temperature). 

roomTemperature(?l,"cold") 

I A heater “heater152” is present in Room101. Heater(?h)  

J The status of this heater is “off”. status(?h,"off") 

K This heater belongs to Margaret. belongsTo(?h,?r) 

L Margaret has indicated when she was admitted to 

SeCH some object preferences. 

OBJECT-SPECIFIC-PREFERENCE(?osp)  
hasPreference(?r,?osp)  

M One of these preferences is the heater in her room 

to be turned on, if it is off, when she is feverish. 

isRelatedTo(?osp,?h) 
isCurrentlyIn(?h,?l)  
objectNewStatus(?osp,"on") 
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information as far as the CQ is concerned. In other words, whether the person is 

male or female, young or old, the SWRL rule holds. There is, never the less, one 

piece of information about a resident ?r  which is important as far as the CQ is 

concerned. This is the resident’s assigned room. When residents are registered in 

SeCH their bedroom which is their assigned room is known. This, therefore, justifies 

the presence of the binary predicate assignedRoom(?r,?ln) in the body of 

the rule. This predicate is a data type property which has Resident  as its defined 

domain. Its range value is of type string, which means the variable ?ln  can only 

take string values.          

 

The CQ states that the device activation takes place when there is a change in SeCH; i.e. 

Margaret is feverish. We have seen before the justification for the FIELD  hierarchy. 

General Health  is the bottom level class of FIELD . When the Context 

Management detects the change, it produces the information about the 

feverishness of the person. Consequently an individual “feverish ” of class 

General Health  is created, as shown in Figure 5.5. This therefore verifies the 

presence of General_Health(?gh) . Instead of “feverish ” a general variable 

“gh” is used for this unary predicate. The General_Health  class has a 

bodyTemperature  data type property which has string range value. In this 

particular case the range is “feverish ”, that is bodyTemperature(?gh , 

"feverish "). An individual of FIELD  must always be associated with a PERSON, 

as discussed before. In OWL ontology, it is always an object property that links two 

individuals together. In this case the object property isAssociatedWith  links 

an individual of Resident (as the domain) to an individual of General Health  (as 

the range). Object properties are always shown in binary predicate, 

isAssociatedWith (?r , ?gh ).   

 

Next statement in the CQ is “Her current location is “Room 101”. The inevitability of 

having a unary predicate, similar to Resident(?r)  for LOCATION is evident, 

hence the atom LOCATION(?l) . It is important to note that ?l  is an individual of 

the class LOCATION unlike the variable ?ln  in assignedRoom(?r,?ln) that is 

a string type for the name of a location. Similar to object property 
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isAssociatedWith , there is a need to link the LOCATION and Resident 

individuals. This is the reason for the inclusion of isIn(?r,?l)  in the SWRL rule.  

The statement “This location  is ‘cold’” bring about the atom 

roomTemperature(?l,"cold")  in which roomTemperature  is a data type 

property of LOCATION class which has string range value.      

 

The next statement is “A heater “heater152” is present in Room101”. This gives 

enough ground to have Heater  as a class predicate inside the body of the rule. 

The following statement, “The status of this heater is ‘off’.” requires the predicate 

status(?h,"off") . Considering that OBJECT class has status  data type 

property and that Heater  is a subclass of OBJECT, it is fine to have ?h  individual 

which is of type Heater  as the domain argument.  

 

The CQ imposes that the heater has to belong to Margaret  to be activated, where 

it says “This heater belongs to Margaret.“. This requires an object property with 

Heater  as its domain and Resident  as its range. This is precisely why we have 

belongsTo (?h,?r)  as an atom in the SWRL rule. 

“Margaret has indicated … some object preferences.” clearly justifies OBJECT-

SPECIFIC-PREFERENCE (?osp) . As before, to relate the individual ?osp  

with individual ?r  a binary object property predicate is used, 

hasPreference(?r, ?osp) . The last statement specifies what type of object 

this preference is referring to where it says “One of these preferences is the 

heater…”. The object property isRelatedTo  which has  OBJECT-SPECIFIC-

PREFERENCE as its domain and OBJECT as its range is used, hence 

isRelatedTo(?osp,?h) .  

Further down the CQ adds that “…the heater in her room to be turned on…”. 

Considering that earlier we have used the variable ?l  for the location of 

Margaret , now the same variable has to be used in the rule for the location of the 

heater object. As before, for this purpos isCurrentlyIn  which is another object 

property, is used. That is why isCurrentlyIn(?h,?l) is part of the rule.  

The preference is to turn the heater “on”. So this information is available as a string 

value for a data type property of ?osp  individual of OBJECT-SPECIFIC-
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PREFERENCE class. This is shown as objectNewStatus(?osp,"on") which is  

a binary predicate among the premises of the SWRL rule.  

 

So far we have covered only the atoms of the body of the rule. All the atoms of the 

body must be true for the rule to trigger the action specified in the head 

(consequent) of the rule. When all the atoms of the body of the rule corresponding 

to the CQ are true, then the specific heater in Margaret’s room that is currently off 

has to be turned on (item iii in section 5.3). The physical process of turning the 

heater on is not the responsibility of ASeCS. What is its responsibility is to deliver 

the service that triggers an actuator (item 3 in section 5.3). For this purpose, we 

have extended the OBJECT class horizontally to have a subclass of OBJECT called 

ToBeTurnedOnObject . This class will accommodate all individual objects which 

have to be turned on. In this particular CQ when all the conditions are met, the 

heater ?h  which is a member of the class Heater  will be also a member of the 

class ToBeTurnedOnObject . This is why ToBeTurnedOnObject(?h) by 

itself defines the head of the SWRL rule.           

 

5.2.6  Running the Rule 

Once all the necessary GOnto concepts (including classes, object property, data type 

property, and individuals) have been identified, and where necessary the GOnto is 

extended to have all necessary concepts required for the SWRL rule, a reasoner 

engine can run the rule to reason upon the assertions to infer new knowledge about 

already existing individuals. We used the built-in Pellet reasoner (Pellet, 2004) in  

Protégé 4.0 (Protégé, 2009) ontology editor to run the SWRL rule. We show the final 

result of running the rule in Figure 5.11. 

 
Figure 5.11: The result of running the SWRL rule for the running example CQ 
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The screen shots of steps that the FCM is being applied for the running example 

through a Java application is shown in Appendix A, and the software application 

with GOnto is supplied in Appendix B.  

5.3  Summary 

In this chapter, we have set the scene for a successful implementation of the FCM. 

As PCE systems are domain-specific, the evaluation had to be done within a specific 

domain. Considering the increasing demand for PCE systems in healthcare domain 

we have chosen a care home environment and stated an example scenario. The 

scenario is simple but comprehensive to address all elements of PCE∆T. 

An example of a software application of ASeCS architecture was developed using 

Java technologies. We have shown through a CQ the situational information of the 

example scenario that have to be detected for the computational model to be able 

to reason about the situation. This is illustrated through several interactions using 

SWRL enabled OWL ontology.  
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Chapter 6 

Evaluation and Reflection 
 

In this chapter, we evaluate and reflect on achievements against objectives set in 

Chapter 1; explaining how the FCM addresses concerns of Chapter 1 and views in 

Chapter 3. We will discuss design decisions in modelling the Generic PCE∆T. 

Problems encountered during implementation are also pointed out in the chapter.      

The aim of this research was to specify a formal computational model that can 

represent an abstraction of computationally significant semantics of situations in 

domain-specific PCEs. In this chapter therefore, we also elaborate on other 

achievments in our journey towards the creation of the FCM.   

 

6.1 EVALUATION 

6.1.1 Meeting Objectives 

In Chapter 2 we have reviewed some examples of solutions in creating intelligent 

applications in PCEs, with the intention that they could help us with our vision of 

PCEs outlined in Chapter 1. In section 3.2 and 3.3 we have analysed particularly 

shortcomings of the current software technologies in PCEs, and the limitations of 

context-aware applications respectively. The review of related work and our earlier 

experiences (Shojanoori, et al. 2008, 2009) lend themselves to the conclusion that 

we could not use existing software solutions to address problems and shortcomings 

in pervasive computing. In the following subsections the four objectives of the 

thesis are evaluated. 
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6.1.1.1. Outlining Problems in PCE Research and their Shortcomings 

The first objective of the research was to analyse and summarise the problems in 

and shortcomings of pervasive computing, and assess the way they have been 

addressed in SE in the last decade. We started our background reading from the 

time when the vision of ubiquity of computing emerged (section 2.1.1), which was 

in the mid ‘70s.  The vision challenged the HCI and AI communities by asking them 

to focus on users (section 2.1.2) and make computing devices, which have become 

mobile and wireless, more aware of their environments (section 2.1.3). The gradual 

recognition of ubiquitous computing (section 2.1.4) which led to the emergence of 

pervasive computing in 2001 (section 2.2.1) created numerous and different 

perceptions of PCEs.  The examples are: users should be in control of non-intrusive 

PCEs; PCEs should provide services to users anywhere and at anytime; preferences 

of users should be observed in PCEs; PCEs should be context-aware; PCE devices 

should be able to share knowledge and to reason about the environment; PCE 

applications should operate in highly dynamic environments and many more 

(section 2.2.2). Despite various perceptions of PCEs, context-awareness has been a 

defacto necessity of such environments. We anticipated, therefore, that without 

correct contextual information we could not secure the delivery of the service to 

the users in PCEs, thus a thorough analysis of context-aware applications was 

necessary in order to understand their extent of usefulness for PCEs (section 2.3). 

However, the available research on context awareness was rather disappointing.  

We have highlighted the lack of common consensus on what exactly context may 

mean and have become aware that context-aware software applications and 

context modelling in such applications did not guarantee the delivery of the 

expected outcome in PCEs. Imperfection of context information, inflexibility of 

context models, domination of localisation-aware systems, the lack of high-level 

abstraction and consequently the lack of context reasoning, were identified as 

stumbling issues in the realisation of PCEs, if the traditional context awareness is 

being used.  

6.1.1.2. Agreeing on Common Characteristics of and Situations in PCEs 

The second objective of the research was to create a list of common characteristics 

of PCEs which may systemise our perception on what PCEs are and what we expect 
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from them.  These common characteristics should also be useful in the FCM, which 

in turn will help us to define and create a situation in a PCE which will deliver an 

expected service.  The common characteristics of PCEs are derived in Chapter 3 

from both expectations we may have from PCEs and limitations of current context 

aware software solutions in pervasive computing.  Therefore in Chapter 3, we focus 

on expectations from pervasive computing and focused on issues such as: a very 

short time span of information, which describes a situation in PCEs, problems with 

‘location-aware only’ mobile applications that are perceived as context-aware 

applications, context-aware applications with fixed hardware infrastructure with no 

regard to the abstraction of situational knowledge in PCEs and consequently are 

incapable of supporting scalability which is a key issue in PCEs. We have also shown 

the lack of support for inference and reasoning in context aware applications; a 

necessity in PCEs to infer new knowledge and reason about situations to deliver 

services expected by their users.  

We advocate that PCEs are user-centric, have dynamically defined inputs, require 

flexible interfaces, implicit interaction between users and pervasive computational 

devices, and might not depend on historical information accumulated in PCEs at all 

because they focus on a particular situation in PCE. Consequently, traditional 

contexts are not sufficient to define and manipulate PCE and therefore we should 

augment or replace it with situations in order to deliver expected services to the 

users of PCEs. The purpose of PCEs has become more clear: this is a non-

autonomous environment, which empowers its users, without overloading them 

with information, behaves as a proactive environment and, at the same time, 

unobtrusive with minimal distraction to their users. The common characteristics of 

PCEs might be sufficient to manage the description of semantics of situations we 

may encounter in PCEs.  However, a formal computational model is needed in order 

to define which of its elements we must have, and which computational steps we 

must perform in order to secure the existence of computations, that deliver a 

service in PCEs.   
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6.1.1.3. Defining the FCM 

The third objective of the research is to define an FCM which will allow 

representation of computationally significant semantics of any situation in PCEs 

for the purpose of delivering situation-specific services. In Chapter 4 we have 

provided 17 definitions and 24 axioms about notions and contributing elements 

of the formal computational model for defining situations in PCEs, and reason 

about them to deliver services to their users.  

 

We started our journey towards the creation of formal computational model by 

defining what PCEs, situation encountered in them and services, which are 

expected to be delivered to PCE users, are. Consequently, we require that each 

situation PCE∆ comprises a finite number of real world instances, and for all ins t  

that share the same features, we have defined category Ctg i  as an important 

abstraction in the PCE. When more precision is required for representation of the 

semantics of an ins t , lower levels of abstractions are needed. Category Ctg i  

should therefore be seen as having subsets which allow for various levels of 

abstraction. We must know exactly which subset of category Ctgi  the ins t  

belongs to. To differentiate between different subsets of a Ctg i , each of them is 

qualified with a level Lev j  (Definition 6). When an ins t  is detected, it is always 

at the “leaf” level LCtg i .Lev j  (Definition 9) of its “root” category 

RCtg i .Lev j  (Definition 10).  

 

Creating a situation-specific taxonomical structure PCE∆T for a PCE∆ is an 

important step towards a FCM. PCE∆T, as the taxonomical structure of the real 

world participants in PCE∆ is described through memberships of instances within 

categories Mbr(ins t ,Ctg i .Lev j )  and we have defined (Definition 11-15)  

five RCtgi.Levj occurrences in PCE∆T, namely Psn (for person as users have a 

central role in PCEs and existence of one without user is not possible, P8 and P11 

in Table 3.3), Fld (for field, encompassing all possible abstractions of ins t s, of 

domain-specific information in any PCE∆, P18 in Table 3.3), Ojt(for object, 

encompassing all possible abstractions of ins t s of cyber and physical objects in 
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any PCE∆, P1, P2 and P3 in Table 3.3), Pfc (for preferences, encompassing all 

possible abstractions of ins t s of preferences of users in any PCE∆, P12 in Table 

3.3), and Lcn(for location, encompassing all possible abstractions of ins t s of 

physical or cyber locations  in any PCE∆ , P1, P9 and P19). 

 

If detected information in a particular PCE∆ cannot be abstracted into any of the 

occurrences RCtg i .Lev j  and their subsets, then we should be able to find an 

element within the PCE∆T which may accommodate such semantics. An instance 

characteristic chr q which is a description of a Mbr(ins t ,Ctg i .Lev j )  with value 

vlu q  and represented in a triplet does exactly that (Definition 16). 

We have also defined binary relationship rlp r  between PCE∆T elements (Definition 

17) to allow relationships within the PCE∆T between Mbr(ins t ,Ctg i .Lev j ). We 

have summarised these definitions and axioms of section 4.1 in Figure 4.9.   

 

The formal computational model (FCM) is presented in section 4.2. Loops and steps 

towards the creation of PCE∆T to deliver a domain and situation-specific service in a 

PCE∆ are divided into three parts and depicted in Figure 4.10. The first part 

addresses the extension of Ctg i .Lev j , insertion of ins t, adding chr q to 

Ctg i .Lev j  and finally assigning vlu q to chr q for each ins t . The second part 

addresses the creation of generic relationships, rlp r (Mbr(ins t , Ctg i .Lev j ), 

Mbr(ins u, Ctg xLev y)). The third part addresses the creation of situation-specific 

extended relationships. The FCM shown in Figure 4.10 is a programming language-

independent model which has the flexibility of accommodating any changes to the 

generic PCE∆T in terms of adding new occurrences RCtg i .Lev j , new rlp r  or 

chr q.   

 

Knowing that we will use the SW technology stack as the result of the background 

research (section 2.4), the FCM should also be expressed in vocabulary and 

following the terms of the suitable technology to secure the implementations of 

formalised computations. Both vocabulary and terms of OWL ontology language 

have influenced the format and the content of the FCM shown in pseudo code in 
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section 4.2.2.2. Unlike boxes of Figure 4.10, which represent a generic formal 

computational model, the FCM pseudo code is tailored to the proposed model 

prescribed in section 4.1.     

 

To complete the journey towards creation of the FCM, here we would like to 

reiterate that the power of the FCM is creating a semantically rich PCE∆T, without 

which we cannot secure the delivery of a situation-specific service in PCE. However, 

the FCM cannot fully specify the exact computation of services to be delivered, 

because services are domain and situation-specific. PCE∆T, ensured by the FCM, is 

semantically rich that may trigger automatically reasoning for the delivered service. 

Therefore, PCE∆T can have additional rules to trigger the situation-specific services.  

 

6.1.1.4. Illustrating the FCM 

The fourth objective of the research was to illustrate and implement the proposed 

FCM in a domain of interest, using SWRL enabled OWL ontology. We have set the 

scene for the application of the FCM in section 5.1. by choosing remote patient 

monitoring from the healthcare domain (section 5.1.1). We introduce healthcare 

environment of Self-care homes (SeCH), with residents who require constant or 

occasional support. SeCH is equipped with sensors, which detect the whereabouts 

of its residents and monitor their activities and physiological functions (Figure 5.1). 

Issuing a health related recommendation to residents (users), informing them of 

any changes that concern them, activating devices around them automatically, 

raising an alarm for the medical staffs on duty, are some examples of the services 

delivered in SeCH.  

The example scenario that is relatively humble is about Margaret who is a resident 

in SeCH and like all other residents is being monitored so as to be attended to 

whenever there is a change in her health situation.   

 

Illustration of PCE∆∆∆∆T creation according to the scenario is given in section 5.2, in 

which we have explained how the situational information for the creation of PCE∆T 

is established through the use of CQ. We have formulated the CQ and segmented it 

in Table 5.1 and showen how it is used to detect ins t s  and subsequently to create 

PCE∆T.  The breakdown of the CQ in Table 5.1 demonstrates how each piece of 
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information, a word, a phrase or a complete sentence in the CQ can be mapped to a 

formal element of PCE∆T as prescribed in three parts of Figure 4.10.  

 

Part 1 of Figure 4.10:  In section 5.2.2.1, we went through all the segments of the 

CQ and subsequently created new ctg i .Lev j , Mbr(ins t ,ctg i .Lev j ) , 

and(Mbr(ins t ,Ctg i .Lev j ),chr q,vlu q) and represented them in formal 

specification in terms of a formal element of PCE∆T.  

Part 2 of Figure 4.10: Then in section 5.2.2.2, we went through all the segments of 

the CQ and created generic relationships 

rlp r (Mbr(ins t ,Ctg i .Lev j ),Mbr(ins u,Ctg xLev y)).  

Part 3 of Figure 4.10: In section 5.2.2.3 we finally went through all the segments of 

the CQ and created domain and situation-speciic relationships of the PCE∆T. 

The formal content of PCE∆T is summarised in Table 5.2, and a mapping between 

them and the situational information of Table 5.1 is presented in Table 5.3.  

The use of existing generic Ctg i .Lev j , and generic rlp r  for the example scenario 

is depicted in Figure 5.6, extension of PCE∆T with situation-specific Ctg i .Lev j  is 

shown in Figure 5.7, and extension of PCE∆T with situation-specific rlpr in illustrated 

in Figure 5.8. The generic GOnto ontology and the extended situation-specific  

SeCHOnto ontology mapping the PCE∆T taxonomical elements for the example 

scenario situation are summarised in Figure 5.9 and 5.10 respectively.  

 

Transformation of PCE∆T taxonomical elements to OWL ontology entities (or 

concepts) had to be done to perform the implementation of Margaaret’s  situation 

outlined in the CQ.  OWL ontologies are modelled around four concepts: individual, 

class, object property, and data type property (section 2.4.1). Every piece of 

information represented in PCE∆T is mapped and represented in SeCHOnto, which 

in turn provides semantics necessary for delivering the service Margaret expects for 

her situation. For example, the counterpart of Ctg i .Lev j  of PCE∆T in ontology is 

“class”. Although classes can have different relationships with each other in an OWL 

ontology, we are only interested in the is-a (or subsumption) relationship. 

Transformation of situational information to OWL ontological concepts is provided 
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in Table 5.5. Every ins t  of PCE∆T has some characteristics chr q. These are defined 

as data type properties in OWL.  The domain of a data type property is the class 

which is the mapping of the Ctg i .Lev j  of the Mbr(ins t ,Ctg i .Lev j ) . The 

range value of data type properties can be of different types, but we restrict to 

“string” type. Instances ins t  in PCE∆T have become assertion of “individuals” in 

OWL ontology. When an individual is asserted, the class it is a member of has to be 

stated. Once an individual is asserted, its data type properties’ value can also be 

asserted. Similar to rlp r  relationship between two ins t  in PCE∆T, object 

properties in Owl ontology are also relationships between individuals. The object 

property is defined by its domain and range, which by definition are classes. Their 

counterparts in PCE∆T are the two  Ctg i .Lev j  that the ins t  at both sides of the 

corresponding rlp r  are member of.  

 

Illustration of the reasoning about the situation PCE∆ of the example scenario to 

deliver a service to the user of the PCE in that situation is explained in section 5.2.5, 

in which the CQ semantics of Table 5.1 is mapped to the premises of a SWRL rule in 

Table 5.6. Appendix A contains the screen shots of the implementation of the 

example scenario through a Java application, that communicates with the ontology 

and inference and reasoning layers of the architecture through OWL API 

communication channel.       

 

6.1.2 Impact of Semantic Web Technologies 

6.1.2.1 The Impact of SWT on the FCM 

In Chapter 3, we have clearly stated that we will use the SWT stack for creating 

computations according to the FCM. This demands the use of technology 

dependent vocabulary and terms within the FCM. Therefore, SWT must have 

influenced the format and the content of the FCM and we have known that from 

the start of this research.  However, this is not a major issue because the power of 

the proposed FCM is in its ability to grasp the semantics of PCEs, specify its 

conceptualisation, and perform reasoning upon it in order to  deliver services. 

Furthermore, we need a technology which will enable us to deploy the 

computations from the FCM.  Therefore, however influential SWT is in the delivery 
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of the FCM is, SWT is a technology of choice, because it happens to respond fully to 

our needs.  

The other impact of SWT on the FCM was attributed to the OWL ontology language. 

The syntax and semantics of the language did not have any influence on our 

research until section 4.2 where the FCM is formally specified using the “if-then-

else” pseudo code.  In other words, the proposed FCM described through a set of 

loops for creating categories and asserting instances  in Figure 4.10 is not OWL-

dependent.  They guide any PCE designer to implement the FCM using any other 

languages and technologies rather than the recommended W3C technologies.  

However, the FCM pseudo code, which is nothing more than the translation of the 

semantics from the set of lopps of Figure 4.10 into OWL terms is OWL specific.  

Some readers may argue that the FCM in Figure 4.10 is completely technology 

specific, but it will be very difficult today to work differently.  It is impossible to find 

any SE  solution today which is NOT dependent on technology and which is so 

“generic”, that actually any available software technology can be used to 

implement it.  

 

Finally, the selection of situational information for the creation of PCE∆T is 

established through the use of CQs which is, strictly speaking, an OWL term.  We 

have shown how dividing CQ into segments will eventually form the building blocks 

of PCE∆T systemise receiving and formalising situational information by PCEs. This 

dependency on OWL when mirroring the semantics of QC in PCE∆T is extremely 

important, because it can pave the way of high level of automation based on exact 

user preferences, which is very important in PCEs. If OWL and its terminology have 

secured such an outcome, then being OWL dependent when defining the FCM is not 

unreasonable. In contrary, the power and expressivity of OWL have exceeded our 

expectations and however difficult it was to find exactly what we should have in the 

FCM, OWL has helped us to successfully structure and evaluate the FCM.   
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6.1.2.2 The Impact of SWT Stack on the FCM 

The SWT stack is extremely rich and offers choices of technology components, 

which can be used in understanding and interpreting the Web. Our choice of using 

SWRL enabled OWL ontologies was based on both 

• the previous experiences of using them as a SE  solution across various 

problem domains, and 

• the relative maturity of OWL and SWRL. 

Standardisation in software in general takes very long and we have experienced 

considerable discrepancies between different implementations because of the 

complexity of software standard. One of the best examples is a painful 

standardisation of SQL and numerous SQL dialects which still exist in applications 

using SQL.  OWL, however, emerged in 2004 as the W3C recommended SW 

language (W3C, 2004b) rather quickly. The language is constantly being improved, 

but even the initial version was stable and convincing enough to be chosen for the 

deployment of the FCM.        

 

Where is OWL in the FCM?  

The loops of the FCM (Figure 4.10) are almost OWL and SWRL free because we did 

not want that the FCM to be programming language specific.  However, the FCM 

was developed with the use of SWT in mind. The diagram and description of section 

4.2.1 could be easily adapted to any new language should W3C decided to 

introduce and replace OWL or SWRL in the SWT stack. However, considering the 

existing SWT stack, and knowing that we wanted to implement the FCM using SWT, 

we had no choice but to use syntax and semantics of OWL in pseudo code in section 

4.2.2.  

6.1.2.3 The applicability of the FCM across problem domains 

The FCM is applicable across domains because of several factors. Firstly, concepts 

which model problem specific semantics are not instantiated in the FCM. The 

occurences of RCtg i .Lev j  in the Generic PCE∆T have been carefully chosen that 

they are applicable to all PCEs and are reflecting common characteristics of PCEs 
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(Table 3.3). This commonality of RCtg i .Lev j  ensures that the reusability of the 

formal model in different environments across domains.  

Secondly, SE solutions use conceptualised knowledge and only through 

implementation and running of application programmes generated from the model, 

they become problem specific. This SE principle is observed in the FCM because the 

conceptualisation of domain and situation-specific PCE∆ follows the steps shown in 

Figure 4.10, which has no specificity about any problem domain.  

Thirdly, PCEs we advocate are always associated with a conceptualisation of a 

situation PCE∆ within them. It is always the PCE∆, part of which is the user of the 

PCE, that manages the behaviour of the PCE. Therefore, if we have a sufficient 

mechanism in the FCM to handle any situation in PCE, then the FCM can be used 

across domains. Considering the generic PCE∆T (paragraph 4.1.10) that is common 

among all PCEs, and the Figure 4.10 steps to extend it with situation-specific 

Ctg i .Lev j to create extended PCE∆T, the FCM is applicable across problem 

domains.  

6.2 Reflection 

6.2.1 The FCM and the Generic Taxonomical Structure   

6.2.1.1 What Influenced the Generic Taxonomical Structure 

The constraints defined in the FCM are summarised in Figures 4.9 and 4.10. We 

would like to note that we had to strike a balance between the re-usability of the 

FCM and its semantic expression. Too many constraints within the generic 

taxonomical structure PCE∆T would minimise the reusability of the FCM across 

domains and would not be used across various situations in PCEs. It is true that a 

model without constraints is too general to be “decidable”, but too many 

constraints might also weaken inference mechanisms or even prevent from 

extending the generic taxonomical structure if needed. This is particularly important 

for the FCM, as it delivers situation-specific services on an ad-hoc basis (i.e. 

generated dynamically), and its concepts in such conceptualisation are usually not 

known in advance. Therefore, the generic taxonomical structure PCE∆T should have 

“just enough constraints” to enhance its semantics.  Adding more concepts to the 
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vertical taxonomical hierarchy, to remedy the lack of constraints, is not an option 

we advocate.  The power of constraints in computing in general is rarely replaceable 

by the expansion of hierarchical structures, including vertical hierarchies, because 

they are simply different mechanisms of expressing semantics in computational 

models. They may be interchangeable, but not universally. 

 

When looking at the axiomatisation of the taxonomical structure  PCE∆T, the reader 

would notice that we rarely used pre-enumerations, which has been a widely 

acceptable practice in SE. We have only pre-enumerated the Pfc  root category, 

which represent preferences of the user.  We have found that Pfc  semantics is 

applicable to all situations in PCEs.  We agree that pre-enumeration helps to control 

hierarchical levels in the generic taxonomical structure and its extensions, making it 

easier to manipulate the PCE semantics and eliminate excessive inference.  

Nevertheless, excessive pre-enumeration is dangerous in PCEs if we cannot predict 

the semantics of the situation in PCEs and manipulate them though reasoning.  

 

We have also not included ‘time’ in PCE∆T. PCEs, as described in Table 3.3, deal with 

one situation at a time and are not responsible for storing historical information.  

We do not advocate the use of persistence as in (Paganelli and Giuli, 2007), where a 

relational database is part of the ontology manager component.  We have already 

specified that, considering P15, P16, and P17 in Table 3.3, situational information 

acquired for a particular moment might not be relevant for the next.  Thus ‘time’ 

has no role in PCE∆T as a contributing factor, unlike examples from (Chen et al., 

2004b) and (Stevenson et al., 2009).     

6.2.1.2 Choice of Root Categories RCtgi.Levj in PCE∆T 

The proposed generic taxonomical structure PCE∆T has divided root categories  

RCtg i .Lev j  into five occurrences: Psn (Person), Ojt  (Object), Fld  (Field), Pfc  

(preference), and Lcn  (Location). These five RCtg i .Lev j  are natural result of the 

five groups of characteristics of PCEs, as evident in Table 3.3. For “PCE and devices” 

and “PCE and computational/communication setting” groups in Table 3.3., we have 

chosen to use the root category Ojt,  which stores all possible abstractions of 
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ins t s of cyber and physical objects in any PCE∆. For the group “PCE and its users” 

(Table 3.3) Psn,  and Pfc  store all possible abstractions of ins t s of preferences 

of users in any PCE∆. For “PCE and its performance” (Table 3.3) the category Fld  

stores all possible abstractions of ins t s of domain-specific information in any PCE∆, 

and for “PCE and its situation” (Table 3.3) the category Lcn stores all possible 

abstractions of ins t s of physical or cyber locations in any PCE∆. We remind the 

reader that in Definition 2 of situation in PCEs in Section 4.1.1, we note that location 

is not the only contributing factor in defining a situation. However, an intrinsic 

attribute of an object or person is their physical or cyber location which might be 

semantically important in a PCE∆. This was convincing enough merit for location to 

deserve the separate root category Lcn  in the generic taxonomical structure. 

However, it is worth stressing that situation is represented by PCE∆T, and not just an 

instance of RCtg i .Lev j  occurrence Lcn.     

 

We would also like to add that occurrence Fld has some distinctive semantics 

comparing it with other occurrences of RCtg i .Lev j  .  It allows Fld  to be different 

from the other occurrences of RCtg i .Lev j.  P18 in Table 3.3 indicates that PCEs 

are domain-specific. This characteristic requires some generic information about 

the domain, which we depict with Fld,  to be available irrespective of situations.  

One of the options is to allow programmers, who are using the proposed FCM to 

have a generic semantics of the domain, applicable to all application programs 

generated from the FCM, to be included in the ontological OWL model associated 

with the implementation of computations.    

6.2.1.3 Natural Growing of the PCE∆T  

Any extension of the generic PCE∆T is natural, as it is domain and situation-specific. 

Real world instances create PCE∆T and therefore specialisation of the 

conceptualisation is entirely based on real situations. The selection of root 

categories RCtg i .Lev j  as explained in the previous section, and the generic 

relationships rlp r  between them was also based on natural development of 

situations in PCEs. For example, for an occurrence Lcn , RCtg i .Lev j ≡ Lcn , a 

rlp r  of isIn  or isCurrentlyIn  or both must exist. However, the location that 
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a user is in or an object is at, is naturally either a cyber or physical location. 

Therefore, RCtg i .Lev j ≡ Lcn = Ctg i .Lev m must have two Ctg i .Lev j , 

namely Cyber-Lcn and Physical-Lcn . In the current FCM these categories 

can be added as extension, but we believe they could have been included in the 

generic PCE∆T. In other words the following axiom should have been included in 

section 4.1.  

Axiom:     If  ∃(x, y) ∊ {PCE∆T(x, y) | x ∊ INS , y ∊ RCtgi.Levj  ≡ Lcn = Ctgi.Levm} =>  

∃(x, z) ∊ {PCE∆T(x, z) | z ∊ CTG.λ ≡ Cyber-Lcn = Ctgi.Levm-1} ∪   

{PCE∆T(x, z) | z ∊ CTG.λ ≡ Physical-Lcn = Ctgi.Levm-1} 

 

One of the difficulties Chen et al. (2004b) encountered in developing ontologies was 

the use of “terms”. Although they have adopted common terms used in ‘consensus’ 

ontologies, such as Friend-Of-A-Friend ontology (Brickley and Miller 2003), they still 

had the difficulty of using terms in their SOUPA, and therefore their solution may 

not provide the right answer to software applications in some PCE that have 

adopted a different set of vocabularies. In our proposal the structure of the 

extended PCE∆T and the terms used are domain and situation-specific. The FCM 

complies with the SE practice of conceptualisation of a situation as high-level 

abstraction, and natural implementation of the situation as problem domain 

specific solution. In other words, names used for subsets of any RCtg i .Lev j  is 

based on situations and therefore we eliminated the problem of “terms” and 

“vocabulary” in our OWL ontologies.  

 

Therefore, the FCM is not a fixed pre-defined model, like the one offered by Chen et 

al. (2003a) in their fixed context broker infrastructure CoBrA. In their ontology-

based architecture, the ontology provides a set of ’terms’ for ’describing’ contextual 

data. It also allows common understanding of ’terms’ between distributed agents 

and reasoning, in order to derive additional knowledge about the pervasive space.  

It is also interesting to note, that Chen et al (2004b) developed a set of ‘core’ and 

‘extension’ vocabulary ontologies. The fundamental difference between their model 

and the FCM is that in our proposal the PCE∆T in any situation PCE∆is dynamically 



 

 149 

extended from the generic PCE∆T based on PCE∆, but in SOUPA all extended 

ontologies are prepared by application developers in advance. 

6.2.1.4 Disjoint Extension of Ctgi.Levj 

It can be argued that, similar to the horizontal subsets of Ctg i , Ctg i .Lev j , we 

may also have several vertical subsets at each Lev j  of a Ctg i  as shown in Figure  

6.1. 

 

 

 

 

Figure 6.1:Vertical extension of Ctg i .Lev j  

 

However, If we represent disjoint categories of each Lev j  of a Ctg i  as Dis k, our 

argument is that although the “a subset of” relation still holds, the 

Ctg i .Lev j .Dis k and Ctg i .Lev j .Dis k+1  do not have any other relation apart 

from the “a subset of” relation. Therefore, it is inconsequential to know whether it 

is Dis k or Dis k+1  of the level Lev j  of the Ctg i  that the leaf category of Ctgi is a 

classification of for a particular PCE∆. As long as the full path from the leaf to the 

root category is preserved, there is no need for any additional information, because 

it is irrelevant. Therefore, for any particular PCE∆ it is sufficient and valid to claim 

that every category can be represented only by Ctg i .Lev j , where i, j ∊ℕ0. We 

would also like to stress that once we have agreed on the generic ontology in the 

implementation of the FCM, it cannot be vertically extended; i.e. no new disjoint 

concepts can be added to it. The reader should be reminded that we generate 

PCE∆T dynamically for every PCE∆. Otherwise, a complete pre-defined PCE∆T 

supporting all PCE∆s would be necessary. Nevertheless, a pre-defined PCE∆T 

contradicts the characteristics we have set for PCEs, therefore as far as we are 

concerned there is no other option but dynamic generation of PCE∆T for PCEs.  

 

6.2.1.5 Depth of Ctgi.Levj Extension 

The situational information determines how the generic PCE∆T should be extended 

to represent the knowledge about the situation, and to allow reasoning upon it to 
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deliver situation-specific services to the user of the PCE. A real world instance ins t  

is grasped by the PCE together with the category it belongs to, 

Mbr(ins t ,Ctg i .Lev 1), and Mbr(ins t ,Ctg i .Lev j ) for the particular ‘i’ and 

all available values of ‘j’ (Axiom 4. Section 4.1.4). Where exactly Ctg i .Lev 1 is 

placed in the PCE∆T of a particular PCE∆ depends entirely on the PCE∆ itself. In other 

words, PCE∆ determines the precision required for the particular ins t  in PCE∆. The 

greater the precision for the PCE∆, the deeper the position of Ctg i .Lev 1. 

Therefore, the depth of Ctg i .Lev 1 is situation dependent. This means that a 

particular ins t  may have different precision in various situations, but in any case 

the representation Mbr(ins t ,Ctg i .Lev 1) is valid. What varies is the distance 

between the leaf Mbr(ins t ,Ctg i .Lev 1) and its root RCtg i .Lev j , where 

j=1..n . In other words the value of j  in RCtg i .Lev j  can be 1 when the root and 

leaf are the same, and n>1  when there is a distance between the root and leaf; the 

greater the n, the further the distance. 

 

6.2.2 Role of OWL in Defining THE FCM  

We have provided a guideline to map each notion of taxonomical elements of PCE∆T 

to standard OWL concept in Table 4.3. As explained in 6.1.2.1 and 6.1.2.2, in spite of 

knowing that SWT will be used for implementing the computations generated from 

the proposed FCM, the definitions of the FCM terms are independent of OWL and 

any other programming languages of the SWT stack.  In reality the FCM is 

independent from any other formal computing languages. Therefore, the 

abbreviations used for PCE∆T notions are absolutely arbitrary. However, the 

‘meaning’ attached to them reflects our vision and philosophy of PCEs and summary 

of PCE characteristics from Table 3.3. Mapping these terms to OWL concepts was 

easy as both are based on hierarchical structures. The mapping in Table 4.3 is firm 

for the FCM. However, as mentioned in 6.2.1.1, the FCM and the generic PCE∆T can 

be modelled differently. Modifications to generic PCE∆T might require mappings 

and therefore, Table 4.3 is not ‘the’ table required for transformation of any FCM in 

PCEs to OWL.  
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6.2.3 Implementation  

6.2.3.1 SWRL enabled OWL Ontology  

The choice of OWL sublanguages within the SWT stack is impressive.  Out of the 

three sublanguages: OWL Lite, OWL DL and OWL Full, we have used OWL DL. 

Considering that the purpose of the computation in PCEs is to reason upon 

taxonomical elements of PCE∆T to deliver a service to the user of a PCE, the variant 

of OWL to be chosen should support SWRL as the reasoning language used in the 

SWT stack. This requirement automatically dismissed OWL Full, which was not a 

suitable candidate because of its unrestricted expressivity. OWL Full allows 

restrictions to be defined at the “meta level” and therefore types, such as classes 

and individuals, are not separated from each other. Elements of PCE∆T, on the 

contrary, are clearly separated from each other and therefore OWL Full could not 

be suitable for the mapping outlined in paragraph 6.2.2. 

 

OWL Lite was also disqualified because it would not support decidable 

computation. OWL DL, which supports DL, as a decidable fragment of first order 

logic that SWRL is also based on, was obviously a preferred language which can be 

mapped to hierarchies of PCE∆T.    

 

Although Protégé 4 is user-friendly and the most commonly-used open source 

ontology editor, it is still an incomplete and somehow unstable tool.  The obvious 

example is the “tab” provided in Protégé 4, for editing SWRL rules. There is a limit 

to the number of atoms one can employ in each rule; if the number exceeds the 

limit, a number of the “consequences” in the rule, would be literally omitted from 

the rule’s syntax.  Furthermore, editing case-sensitive SWRL built-in functions, used 

in our earlier experiments, are also problematic. For example, although we 

observed the camel-casing convention for naming built-in functions when we wrote 

functions in SWRL rules, Protégé editor changed the format and consequently it did 

not realise it as a built-in function.  

With regards to the development of a software application in IDEs, such as 

NetBeans, using SWRL enabled OWL ontology, we would like to emphasise that 
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establishing the communication between the application and ontology and the 

Pellet reasoner was not a direct task. The use of OWL-API interface to link the 

Application Layer of ASeCS (Figure 5.3) with Inference and Reasoning Layers, and 

Ontology Layers was not straightforward. There is still a lack of supporting online 

documentation to guide developers how to create applications based on SWRL 

enabled OWL  ontologies.  

 

Although in real life situations all SWRL rules are usually defined in advance and 

stored with ontologies, such as GOnto in our case, we have also experienced how 

SWRL rule can be defined, created and executed through the ASeCS Application 

Layer at run time once SeCHOnto has been created.  Readers should notice that the 

result of the inference and reasoning of a situation PCE∆ is just for the moment, 

when the situation occurs, and as soon as another change in PCE∆ is detected, the 

result of the reasoning related to the previous moment has to be deleted. This is 

because the inference/reasoning of a particular situation PCE∆ might not be exactly 

a correct contextual information or suitable for another situation in the PCE. The 

behaviour of Protégé editor towards changes of situation in our solution depends 

on how the OWL ontology file is accessed. If changes are modified locally (within 

the editor), the update is handled automatically without any need for user 

interaction. However, when an OWL file is accessed by an application through OWL 

API it is “assumed” that ontology has changed outside of Protégé, therefore the 

programmer needs to confirm whether the ontology is to be reloaded.  Otherwise, 

the changes of situation would be disregarded.  

This feature of Protégé supports our view of PCEs that each semantics of PCE∆ 

should be treated separately. This means that each time a change is detected in a 

PCE, applications generated from the FCM must reload GOnto and disregard 

situation-specific SeCHOnto once the reasoning about the situation which delivered 

a service is done. Nevertheless, accessing GOnto from outside of Protégé to extend 

it to SeCHOnto requires somewhat frustrating interaction with confirmation dialog 

boxes, because the current version of Protégé does not support its OWL file to be  

handled by applications automatically.    
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6.2.3.2 Mapping CQ to the FCM 

The verification of ontologies, in terms of addressing if they really represent what 

they are expected to, is usually carried out by Semantic Web designers through CQs. 

However, we used a CQ in a situation PCE∆, to establish the situational information 

necessary for a reasoning mechanism to to deliver a service to the user in the 

situation PCE∆ . Interpretation of the CQ and its conversion into SWRL rule is within 

the realm of natural language processing, and well outside the scope of this thesis. 

We have, however, rephrased, formulated, and stratified the example scenario CQ 

to segments, each of which qualify as a distinctive situational information. These 

segments, mapped to formal representation of the PCE∆T as shown in Table 5.2, 

collectively form the premises (or atoms) of the SWRL rule. The natural 

transformation of the CQ to the creation of a situation to be reasoned upon to 

deliver a service, facilitates computation with minimal resources and hence the 

applicability of the FCM to be implemented on handheld mobile devices.    

 

6.2.3.3 Mapping Situation-specific CQ to SWRL Rule 

In Chapter 5, we have focused on the extension of GOnto to represent all the 

premises of the SWRL rule related to the particular PCE∆ of the example scenario 

and its CQ. The consequent of running the rule, which is “to turn the heater on”, 

ToBeTurnedOnObject(?h) , needs to be also represented in the ontology. This 

means that Heater(?h) which is currently “off”, status(?h,"off"), will 

change its status from “off” to “on” as a result of the specified action. Reader 

should bear in mind that all the computation is for a particular situation and the 

status of a device cannot be “off” and “on” simultaneously. Hence, the need for the 

separate class ToBeTurnedOnObject.  Pre-enumeration of OBJECT or 

PERSON to have classes such as ToBeTurnedOnObject, 

ToBeTurnedOffObject, ToBeAlertedPerson, 

ToBeMonitoredPerson is an alternative that can be looked into in future work.  

Although we have shown that only one SWRL rule is used in Chapter 5 to reason 

about a situation PCE∆, we have used several rules in our previous experiences 

(Shojanoori et al., 2010; 2012; Shojanoori and Juric, 2013). Executing several rules 
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simultaneously, even when we were rule chaining, was not expensive in terms of 

resource usage and software application response time. 

 

6.2.3.4 Role of Traditional Computing in Realisation of PCEs 

 In Chapter 1 we posed the question of whether we can integrate skills and 

experiences of the traditional computing with computations generated from the 

FCM, in order to enable inference and reasoning mechanisms of PCEs. Such systems 

are expected to support knowledge representation of situations, and to reason 

upon it to deliver situation-specific services to users of PCEs.  The use of Semantic 

Web technologies through IDEs such as NetBeans, as illustrated in Chapter 5 (screen 

shots available in Appendix A and application programme available in Appendix B) 

shows that we are able to extend the same mechanism of manipulating the 

semantics of the Web towards any other form of computations in SE, which does 

not have to be related the Internet.  However, we have to bear in mind that 

traditional software technologies, including Java technologies, cannot manage PCEs 

without reference to SWT. Pervasive software applications also cannot rely only on 

procedural or object-oriented programming languages alone to address 

requirements of PCEs. Managing them though heavy and elaborative knowledge 

base systems and making them dependent on constantly growing persistence 

would not satisfy a fraction of expectations we have from PCEs. 

 

We are now in a position to debate or answer some of the question in Chapter 1.  

The most intriguing one would be to establish exactly where “computing” starts in 

our PCEs?  Where do we start “computing” if we must deliver services, according to 

the computations derived from the proposed FCM?  Is it when we start executing 

SWRL? Is it when we extend the generic taxonomical structure in order to 

accommodate specificity of a situation in PCE?  Is it when we start defining 

constraints in the taxonomical structure? All three of these may be associated solely 

with reasoning mechanisms and inference, but at the same time they could 

legitimately correspond to computations in various software applications.  

Considering that the implementation of the proposed FCM in software applications 

which deliver services in PCEs is feasible, and their running is commercially viable, 
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the question of where exactly we compute in PCE might be immaterial?  

Furthermore, we would not like sideline Java computational power, or marginalise 

it, by moving the complexity of computational Java code required in PCE into OWL 

ontologies and SWRL rules.  However, we demonstrated that the FCM delivers 

exactly what we need in PCEs with SWT. If the FCM implementation with SWRL 

enabled OWL ontologies gives a viable result, and then we should look at the 

proposed architectural solution given through ASeCS and assume that new types of 

computations, stored within its architectural core components cannot be ignored. 

 

6.3 Contribution 

The proposed FCM in Figure 4.10 is independent of any software technology or 

programming language.  Although we are confident of the applicability of the FCM 

across domains, our intention was to prove that the proposed FCM can work and be 

implemented in a particular PCE.  That said, while preserving the fundamentals of 

the FCM, the generic taxonomical structure of PCE∆T could be altered by 

introducing more semantics (axioms) should we be in a situation to revisited it.  

The proposed FCM gives instructions on how and which situational information we 

need to have.  In other words, it is the situation that manages the PCE.  The domain 

specificity of a PCE indicates which devices and contextual information we may have 

in a PCE, but it is the situation that specifies which one of them will be “selected” 

for the situation. The Generic PCE∆T guarantees the creation of any situation and 

includes its extension if required.   

The FCM allows grows of PCE∆T exactly according to expectations a user may have 

in a situation PCE∆.  This means that the FCM supports the “extend as you go” policy 

because its PCE∆T, that makes use of the powerful “is-a”(a subset of) relationship, is 

the taxonomical structure of Mbr(ins t ,Ctg i .Lev j ) as real world participants in 

a PCE∆. Considering that the participation of Mbr(ins t ,Ctg i .Lev j ) is 

determined by situations, PCE∆T grows naturally the way we, as users of PCE, want 

it. Therefore, the FCM guarantees that in PCEs users are and stay really in control.  

Considering that PCE∆T grows naturally, based on PCE∆, the computational model 

representing the semantics of the situation and infers new knowledge and reason 

upon situation is always correct. This entails that the precision of abstraction is 
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arbitrary and depends on the situation. This humble, but efficient way of knowledge 

representation secures expected delivery of services to users of PCEs. 

We have to add also the way we address unintentionally one of the major 

challenges to the information systems community is information overloading. The 

challenges presented by big data inspired the Semantic Web vision. Even though 

PCE is in a different league compared to SW, the concept of information 

overloading applies to it more than ever. The amount of information in PCEs is too 

much to be bearable by any human brain and to some extent by computing 

processors, if a timely response is desired. Limiting the computation about any 

situation to the situational information that contributes to the situation in PCE is 

the solution supported by the FCM. This improves inference and reasoning 

processes and generates a response to the situation in a timely manner.  

 

6.4 Research Conclusion and Future Work 

This research was a demonstration of the fact that we can use SWT for other forms 

of computation than they were originally designed for. We believe this research and 

its result will give a pause of thought to the pervasive and ubiquitous computing 

community to address the true nature of PCEs.  We have achieved all the objectives 

set at the beginning. It was a demanding but pleasantly rewarding body of research. 

We are pleased with the results of our research and sincerely hope its contribution 

to knowledge paves the way for more powerful, user-centric PCEs, the way we have 

defined them.   

 

We have shown the role of situation in PCEs and created a common set of PCE 

characteristics that helped us in achieving our objectives of the research including 

the creation of a formal computational model FCM, which can be deployed using SE  

principles and modern software technologies. The FCM advocates formal 

representation of situational information, for which current situational information 

is meaningless for the next moment, or as worthless as yesterday’s newspaper.  The 

FCM supports extensibility of devices in PCEs and an extension of the formal model 

according to the situation. PCEs do not have boundaries; there is no need to define 

the “scope” or “boundary” of a PCE. Situations of a PCE are dynamically created. 
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This means that boundaries are also changing dynamically. For that reason, a PCE 

boundary is defined for every situation at the time the PCE∆ is created. In other 

words, It is the situational information that defines the boundary of a PCE and not 

the other way round. Software solutions using programming languages and 

technologies of traditional computing in conjunction with SWT are instrumental to 

interface with these pervasive devices. This means that we will ultimately be able to 

run the formal computational model FCM also on mobile and handheld devices.  

 

There is a scope for improvements and future works: 

• A PCE must allow its extension, removal and replacement of devices without 

any restriction. This requires devices to be self-maintaining in terms of the 

meaningful data they provide. The integration of devices in PCE and their 

management is another area which would need attention of the FCM.  

• We should be looking at implementations of the ASeCS architectures in 

mobile environments using Android, iOS and similar operating systems.  The 

lightness of our computational solution generated from the FCM is encouraging.  It 

remains to be seen how we can maintain the MVC pattern, so prevalent in modern 

computing, and dynamic environments of apps by using the FCM. 

• We need to explore the efficacy and efficiency of software application based 

on computations generated from the FCM.  All our experiments are very 

encouraging, but the possible commercialisation of the proposal will require more 

attention to interfaces and connection to the interpreted contextual data and 

information which feed the FCM.   Consequently, we have to add that we should be 

able to compare the response time of two PCE systems, one developed with a fixed 

conceptual model and the other as we proposed in this research.  

 

Considering the lack of published documentation on use of OWL-API for software 

applications to communicate with OWL ontologies and SWRL rule engines, we 

intend to provide a guide to help students and researchers to spare the time on 

their design ideas.  
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Appendix A 

In this appendix some screen shots of the implementation of the FCM through the 

example scenario in section 5.1.3 are presented.   

 

Figure A.1: Classes of GOnto and their display in a drop-down menu of the the Java application  

 

 

Figure A.2: Extending SeCHOnto by adding “Private” as a subclass of “Physical-Location”  

Each time the ontology changes the dialog box of Figure A.3 appears as the 

ontology was changed through the application and not locally.  

 

Figure A.3: Reloading of changed ontology dialog box 
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Once all new classes have been added, the SeCHOnto structure is as shown in Figure A:4. 

 

 

Figure A.4: SeCHOnto when all new classes have been added to the structure 

 

 

Figure A.5: Asserting an individual “room101” as a member of Private class 
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Figure A.6: Asserting an individual “room101” is reflected in SeCHOnto ontology 

 

 

Figure A.7: Asserting of feverish as an individual of Care_Home 

 

Figure A.8: Asserting of an individual of Resident along with generic data type properties 
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Figure A.9: Reloading the ontology after action of Figure A.8 

 

 

Figure A.10: Display of extending SeCHOnto with an object property  
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Figure A.11: Display of updated SeCHOnto after extension of figure A.10  

 

Figure A.12: Addition of situation-specific data type property “assignedRoom” to “margaret”  

 

Figure A.13: The result of running the SWRL rule for the running example CQ 
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Appendis B 

 

The software application. 

 


