

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Integrated framework for development and execution of
component-based Grid applications

Vladimir Getov

Harrow School of Computer Science

Copyright © [2008] IEEE. Reprinted from IEEE International Symposium on
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE, pp. 1-3. ISBN
9781424416936.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Integrated Framework for Development and Execution of Component-based
Grid Applications

Vladimir Getov
Harrow School of Computer Science, University of Westminster,
Watford Rd, Northwick Park, Harrow, London, HA1 3TP, U.K.

V.S.Getov@westminster.ac.uk

Abstract

Component-based software technologies have

emerged as a modern approach to software
development for distributed and Grid applications.
However, the lack of longer-term experience and the
complexity of the target systems demand more research
results in the field. This paper provides an overview of
three different approaches to developing component-
based Grid applications. In order to re-use legacy
codes, the wrapper software approach can be adopted
in its two flavours – hand-written or automatically
generated wrapper code. Another approach applicable
to existing object-oriented software is to componentise
the code by introducing appropriate modifications. The
third approach is component-oriented development
from scratch. We compare and contrast the three
approaches and highlight their advantages and
weaknesses.

1. Introduction

It is generally accepted that component-based
software development is becoming the most cost-
effective approach to application construction for
complex distributed and Grid systems. This, however,
makes the search for the most appropriate
programming model and corresponding programming
environments even more important than before.
Arguably the most serious obstacle to the acceptance
of modern component technologies is the so-called
software crisis. Software, in general, is considered the
most complex artefact in distributed computing; since
the lifespan of Grid infrastructures has been so brief,
their software environments rarely reach maturity
making the software crisis especially acute. Hence,
portability and support for dynamic properties, in
particular, are critical issues in enabling large Grid
computing systems.

The wide adoption of component-based software
development and in particular the use of suitable
programming models for compatibility and
interoperability are key issues towards building
effective future Grids. Examples of component models
applicable to this field include the Common
Component Architecture (CCA) [1], the CORBA
Component Model (CCM) [6], and the emerging Grid
Component Model (GCM) [4]. The main aim of this
work is to present our experience in applying
component-based development using different
approaches depending on the status and the properties
of different application codes.

The rest of this paper is structured as follows.
Section 2 provides background about the major
component models in the field. Section 3 presents the
wrapper generation approach for re-using legacy codes.
Section 4 describes the second approach to
reengineering existing object-oriented applications,
which comprises a general componentisation process.
Section 5 presents the third approach for developing
component-oriented application codes from scratch.
Finally, Section 6 concludes the paper.

2. Background

The Fractal specification [3] proposes a generic,
typed component model in which components are
runtime entities that communicate exclusively through
interfaces. One of the crucial features of this model is
its support for hierarchical composition. Another key
feature is its support for extensible reflective facilities:
each component is associated with an extensible set of
controllers that enable inspecting and modifying
internal features of the component. Controllers provide
a means for capturing extra-functional behaviours such
as varying the sub-components of a composite
component dynamically or intercepting incoming and
outgoing operation invocations. The GCM proposal [4]

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 05:56 from IEEE Xplore. Restrictions apply.

is an extension of the Fractal component model that
specifically targets Grid environments.

The Common Component Architecture (CCA) [1]
specifies the means for interaction among components.
In CCA, components interact using ports, which are
interfaces pointing to method invocations. Components
in this model define provides-ports to provide
interfaces and uses-ports to make use of non-local
interfaces. The enclosing framework provides support
services such as connection pooling, reference
allocation and other relevant services. Dynamic
construction and destruction of component instances is
also supported along with local and non-local binding.
Though CCA enables seamless runtime
interoperability between components, one of the main
weaknesses of the CCA is the lack of support for
hierarchical component composition and for control
mechanisms thereof.

The CCM [6] is a language-independent, server-
side component model which defines features and
services to enable application developers to build,
deploy and manage components to integrate with other
CORBA services. The CCM is an extension of the
CORBA object model defined to overcome its
complexities. The CCM specification introduces the
concept of components and the definition of a
comprehensive set of interfaces and techniques for
specifying implementation, packaging, and deployment
of components. The CCM provides the capabilities for
composing components (through receptacles) and
permits configuration through attributes. However, in
contrast to the Fractal component model, the CCM
does not permit hierarchical composition; that is,
recursively composing components to form more
complex, composite components.

3. Wrapping legacy software

Giving high level of attention and support to legacy
applications by providing enabling approaches and
tools for their seamless integration into state-of-the-art
component-oriented systems is a high priority issue.
Depending on the properties and the development
status of different legacy codes two approaches can be
considered – automatically generated wrapping [5],
and hand-coded wrapping [8]. In both cases the
wrapper development process can significantly be
simplified by adopting the most efficient strategy and
using various tools for reducing the time for
development. An important aspect of this strategy is to
guarantee relatively small overhead introduced by the
wrapper software layer.

4. Componentizing existing applications

This approach consists of a general
componentisation process in order to transform an
object-based system into a component-based system.
The process assumes that the target component
platform allows connecting components via provided
and required interfaces, and that it minimally supports
the same communication styles as the object platform
(e.g., remote method invocation, streams, and events)
[7].

5. Developing component-based codes

The development process for new application codes
can be simplified by following the component-oriented
development paradigm [2]. This approach normally
involves the use of a component-based Grid integrated
development environment (GIDE), which supports
component-oriented development and post-
development functionalities such as deployment,
monitoring and steering. These functionalities target
different user groups of the Grid – developers,
application users and data-centre operators.
Furthermore, the philosophy of the GIDE is to provide
enhanced support with user-friendly graphical interface
while enabling direct code editing. This means that a
developer can freely switch between graphical
development and direct coding of the required
artefacts.

6. Conclusions

This paper provides an overview of three different
approaches to developing component-based Grid
applications. In order to re-use legacy codes, the
wrapper software approach can be adopted in its two
flavours – hand-written or automatically generated
wrapper code. Another approach applicable to existing
object-oriented software is to componentise the code
by introducing appropriate modifications. The third
approach is component-oriented development from
scratch. We compare and contrast the three approaches
and highlight their advantages and weaknesses. We
present our experience in selecting and applying the
most appropriate approach depending on the status and
the properties of different application codes. The three
main approaches can be integrated into a single
development framework. The paper can also serve as a
starting point for future developments in the area of
component-based methodologies for constructing Grid
applications.

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 05:56 from IEEE Xplore. Restrictions apply.

Acknowledgement

This research work was carried out under the FP6
network of excellence CoreGRID (Contract IST-2002-
004265) and the FP6 research and development project
GridCOMP (Contract IST-2005-034442) funded by the
European Commission.

References

[1] R. Armstrong et al, “Toward a Common Component
Architecture for High-Performance Scientific Computing”,
Proc. of IEEE HPDC Conference, IEEE CS Press, 1999.

[2] A. Basukoski, V. Getov, and J. Thiyagalingam,
“Component-oriented Development Environment for Grid:
Design and Implementation”, in Making Grids Work,
Springer, 2008 (to appear).

[3] E. Bruneton, T. Coupaye, and J.B. Stefani, “Recursive
and dynamic software composition with sharing”, Proc. 7th
Int. Workshop on Component-Oriented Programming, 2002.

[4] CoreGrid NoE – Institute on Programming Model, “Basic
Features of the Grid Component Model”, Deliverable Report
D.PM.04, 2007.

[5] V. Getov, “A Mixed-Language Programming
Methodology for High Performance Java Computing”, in The
Architecture of Scientific Software, Kluwer Academic
Publishers, 2001, pp. 333-347.

[6] Object Management Group Inc, The CORBA Component
Model, Revision V4.0, 2006, http://www.corba.org/.

[7] N. Parlavantzas, V. Getov, M. Morel, F. Baude, and D.
Caromel, “Design Support for Componentising and Grid-
enabling Scientific Applications”, Proc. ACM CompFrame’07
Symposium, ACM Press, 2007, pp. 31-38.

[8] J. Thiyagalingam, V. Getov, S. Panagiotidi, O.
Beckmann, and J. Darlington, “Domain-Specific Metadata
for Model Validation and Performance Optimisation”, In:
Achievements in European Research on Grid Systems,
Springer, 2007, pp. 165-178.

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 05:56 from IEEE Xplore. Restrictions apply.

