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Abstract. Traditional pain assessment tools often rely on subjective
self-reporting methods, hindering the work of healthcare professionals.
However, the patient’s facial expressions and biomedical data provide a
reliable source of information for caregivers. In this work, we present a
multimodal architecture that utilizes both RGB video and biomedical
sensor data from the BioVid Heat Pain dataset. We use video trans-
former architectures in conjunction with a thorough analysis of biomedi-
cal signals, including galvanic skin response, electromyography, and elec-
trocardiogram, for comprehensive feature extraction. These features are
then fused to create a robust model for pain assessment. Experimen-
tal results show that our multimodal architecture outperforms unimodal
video-based methods in pain detection. Furthermore, our study high-
lights the potential of combining non-invasive video analysis with phys-
iological data to facilitate pain prediction and management in clinical
settings, paving the way for more accurate and efficient pain assessment
methods that can be used in various healthcare applications.

Keywords: pain assessment; computer vision; deep learning; sensor data;
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1 Introduction

Pain, an inevitable part of human experience, arises from injury, illness, or med-
ical interventions, often prompting individuals to seek primary care [4]. While
most pain does not escalate to chronic levels, its subjective nature and vari-
ability—shaped by factors such as gender, age, religious beliefs, and ethnic
background—render it a significant concern in healthcare [26]. Chronic pain,
in particular, profoundly affects daily functioning and emotional well-being, un-
derscoring the need for comprehensive management to improve patients’ quality
of life. Accurate pain prediction is critical, especially for those who struggle to
communicate their pain effectively.

Predicting pain not only aids in its management but also enhances medi-
cal care through early and personalized interventions. This approach optimizes
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therapeutic strategies and supports multidisciplinary efforts to address the com-
plexities of pain. Current tools for assessing pain, such as pain scales and ques-
tionnaires [12,23], offer standardized methods to quantify pain intensity and its
impact on life. However, these tools rely heavily on patient self-reporting, which
introduces biases and variability, limiting their predictive accuracy.

Physiological measures present a promising avenue for enhancing pain pre-
diction. Healthcare professionals and researchers can obtain a comprehensive
view by understanding the underlying mechanisms of pain through the integra-
tion of various technologies. Tools such as functional neuroimaging, biosensors,
and electromyography (EMG) offer objective data on pain-related physiological
changes [18]. For example, functional neuroimaging reveals the neuronal circuits
involved in pain perception, while biosensors measure physiological indicators
like heart rate and skin conductance. EMG provides insights into muscle activ-
ity and nerve function, crucial for understanding pain’s impact on the body.

Recognizing the limitations of traditional methods and the potential of phys-
iological approaches, this study employs the BioVid Heat Pain Database [34] to
develop a multimodal model based on a transformer architecture. By examining
correlations from biomedical sensors and utilizing computer vision techniques for
facial expression analysis, we aim to advance pain assessment methodologies. As
a result, we propose the multimodal architecture PainFusion for pain assessment
on 5 different levels, 0 to 4, where 0 represents no pain and 4 represents the most
severe pain.

The remaining of this paper is organized as follows. Section 2 summarizes
relevant work for video understanding and pain assessment. Section 3 presents
the proposed architecture, PainFusion. Experiments and results are detailed in
Section 4. Finally, conclusions from this work are drawn in Section 5.

2 Related Work

This section provides an overview of current methodologies for addressing the
pain estimation problem. Previous work is broad with diverse approaches such
as [33,24,16,10,25,21]. Particularly, pain assessment modalities can be divided
into two main categories: behavioral and physiological. Behavioral modalities
include facial expressions, body movements (such as guarding, rubbing, restless-
ness, and head movements), vocalizations (like crying or moaning), and spoken
words, which can be transcribed via speech recognition to capture self-reported
information. Physiological modalities encompass brain activity, cardiovascular
activity, and electrodermal activity.

Among the existing methods, unimodal approaches consist of leveraging a
single modality as input. One of the leading methodologies to address this chal-
lenge comprises video footage from the face of the person. In this area, convolu-
tional neural networks (CNNs) are widely adopted and extensively discussed in
[28]. Methods such as SANET [9] and SDNET [19] are employed, with SANET
excelling in automatically identifying spatial attributes like color, and SDNET
specializing in extracting shape-related features such as facial contours. These
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networks are crucial in pre-processing input images and extracting significant
features, which are then processed in a learning phase to compute a pain score
according to the Prkachin and Solomon Pain Intensity (PSPI) scale [23].

The authors in [6] explore the use of the self-attention mechanism from trans-
former architectures. Firstly introduced for natural language processing [31],
vision transformers [8,5] have demonstrated remarkable capabilities for feature
extraction. However, as remarked by the authors, analyzing a single frame lacks
temporal context provided by video inputs. Due to this fact, video transformer
architectures [2,29,7,27] were used during experiments on the BioVid dataset [34]
and are also explored, providing better results than single-frame analysis.

Alternatively, instead of RGB data, the use of biomedical sensors to quan-
titatively measure physiological signals is an extended approach, albeit more
invasive to the user than the previous one. Typically, signals are fused in mul-
timodal approaches as presented in prior work. For example, in [35,36] facial
expressions are combined with head poses. Alternatively, [36,1] fuse EDA, ECG
and sEMG signals, and [36,13] leverage the same information with the addition
of video inputs. Kessler et al. [14] propose an architecture that uses video, RSP,
ECG and remote PPG. Audiovisual inputs are especially relevant if we are able
to analyze how a person’s speech changes when subjected to pain [30]. Or body
movements from motion capture and sEMG as the study conducted in [20].

The study on pain, its types, and traditional prediction methodologies em-
phasizes the importance of selecting appropriate datasets for applying machine
learning techniques. Among the most relevant ones we find the Delaware Pain
Database [17], which contains photographs of pain expressions; BP4D [15], fea-
turing a wide range of multimodal data on spontaneous emotions; MIntPAIN [11],
focusing on pain levels via visual, depth, and thermal information; EmoPAIN [3],
which captures natural facial expressions and body movements of chronic pain
sufferers; Sense Emotion [32], distinguishing pain from emotions through mul-
timodal sensory data; X-ITE [22], evaluating pain intensity with various sensor
recordings; and BioVid Heat Pain Database [34], using heat stimuli to study
pain responses. Each dataset offers unique attributes crucial for building effec-
tive predictive models.

3 PainFusion Architecture

In this section we present our PainFusion architecture (Fig. 1) for pain assess-
ment from multimodal data. The following subsections detail each of the compo-
nents of the PainFusion architecture designed for pain assessment on the BioVid
dataset [34].

3.1 BioVid Heat Pain Database

The BioVid dataset [34] contains videos of 90 healthy adults between the ages of
20 and 65. During controlled experiments, participants were exposed to thermal
stimuli on different body regions, such as the forearm and leg. The dataset is
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Fig. 1. Overview of the PainFusion. We first extract video features from RGB
video clips from the face of the patient using a video transformer architecture. These
features are then fused with pre-extracted features from biomedical signals comprising
GSR, ECG and EMG. The resulting vector is fed onto a classifier for discrimination
between no pain and 4 different pain levels.

remarkably diverse, providing detailed participant information, including age,
gender, medical history, and pain sensitivity. It also documents subjective pain
responses, such as ratings of pain intensity and discomfort, as well as objective
data such as ECG, EMG, skin conductance, and heart rate.

The dataset is divided into five subsets, each containing different types of
data. This study focuses on subset A, which provides a balanced collection of
data across five classes: BL0 (no pain) and PA1 to PA4, representing increasing
levels of pain experienced by the participants.

3.2 Video Transformer

As demonstrated by prior work [6,27], video transformers hold remarkable capa-
bilities for feature extraction given their ability to model temporal and spatial
information from video frames adequately. In this work, as in [6], we exploit
3 well-known video transformer architectures: TimeSformer, ViVit and Video-
MAE.

TimeSformer [7]. This architecture, based on the original transformer archi-
tecture introduced for natural language processing [31], is specifically designed
for handling temporal sequences. This model adapts the Vision Transformer [8]
principles for video processing by extending them into the temporal domain. It
relies entirely on self-attention layers, eliminating the need for convolutional lay-
ers. A comparative analysis of different attention mechanisms within this model
was performed by the authors. The divided attention approach, which uses sepa-
rate temporal and spatial attention in different network blocks, yielded the most
favorable results and is the one used in our experiments.

ViVit [2]. The authors of this architecture presented a novel approach in re-
sponse to the success of transformers in the image domain. Four different models
were proposed depending on how temporal modeling is performed for the video
classification task:
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– Transformer-Encoder: this architecture comprises an extension of the Vision
Transformer (ViT) [8] into the temporal domain.

– Factorized Encoder: unlike the naive transformer-encoder, this approach does
not use a single encoder for all videos. Instead, each video is divided into mul-
tiple chunks. Spatial attention is first applied to each clip, and the resulting
vectors are fed into a second encoder with a temporal focus. Positional en-
coding is used for proper identification of video clips, i.e. an index is assigned
for identification.

– Factorized Self-Attention: this approach presents a similar architecture to
the Transformer-Encoder although introducing a two-stage attention com-
putation. First spatial attention for frame level video features, and second
temporal attention for modeling of past events.

– Factorized Dot-Product: the naive version of the Transformer-Encoder is
leveraged in this approach after low-level modifications. In the attention
layers, the dot-product operations are divided so that half of the operations
are performed on spatial tokens and the remaining half on temporal ones.

Among these architectures, the Factorized Encoder yields the best results
and consequently is the one used for experimentation in this work.

VideoMAE [29]. While not a transformer itself, this method leverages trans-
former based models to achieve state-of-the-art results. In their paper authors
explore the use of autoencoders for the self-supervised pre-training task essen-
tial for transformers. Frame-level features are extracted using the aforementioned
ViT [8].

3.3 Biomedical Signal Analysis

We conduct an extensive analysis over the biomedical signal data provided in
the BioVid dataset [34], extending the analysis over this signals conducted in
[6], we extract the features from each signal as follows:

Galvanic Skin Response (GSR). For the analysis of GSR signals the following
features are extracted:

– Maximum Value (Gmax): The highest value within the signal.

– Mean Value (Ḡ): The average value of the signal, calculated as:

Ḡ =
1

N

N∑
i=1

Gi

where Gi represents the individual signal values and N is the total number
of samples.
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– Slope Changes: These are detected using the second derivative of the sig-

nal. Changes in the sign of d2G
dt2 indicate alterations in the slope. To formally

detect these changes, we define the second derivative at sample i as:

d2G

dt2

∣∣∣∣
i

≈ Gi+1 − 2Gi +Gi−1

Slope changes occur where the sign of d2G
dt2 changes:

Slope Change at i if

(
d2G

dt2

∣∣∣∣
i

· d
2G

dt2

∣∣∣∣
i−1

< 0

)
Smoothing is applied to the signal to reduce noise and avoid detecting ex-
cessive slope changes.

Electromyogram (EMG). The EMG signal analysis included the following fea-
tures:

– Mean (Ē): The average value of the EMG signal.
– Variance (σ2

E): The measure of signal variability, given by:

σ2
E =

1

N

N∑
i=1

(Ei − Ē)2

– Kurtosis: A statistical measure of the “tailedness” of the signal distribution.
In other words, we measure the shape of the signal’s distribution, particularly
focusing on the presence and extremity of outliers in the data.

– Peak Detection: Peaks were identified using a threshold set at half the
maximum amplitude:

Ethreshold = 0.5 · Emax

– Slope Changes: Identified using the first derivative dE
dt . Slope changes occur

where the sign changes:

Slope Change at i if

(
dE

dt

∣∣∣∣
i

· dE
dt

∣∣∣∣
i−1

< 0

)
– Peak Density: The number of peaks per second, considering a sampling

frequency of 512 Hz.

Electrocardiogram (ECG). For the last signal the extracted features are as fol-
lows:

– Mean Value (C̄): The average value of the ECG signal.
– Peak Detection: Key peaks (R, P, and T) were identified after slight

smoothing of the signal. The R peak corresponds to the depolarization of the
ventricles, indicating ventricular contraction. The P peak represents atrial
depolarization, occurring just before atrial contraction. Lastly, the T peak
signifies ventricular repolarization, occurring as the ventricles prepare for
relaxation after contraction.
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– Intervals and Amplitudes: Distances between peaks (e.g. RR interval)
and their amplitudes were calculated. The mean values for both intervals
and amplitudes were computed. The heart rate was derived from the RR
interval.

The resulting vector contains 27 features that represent the lower branch in
Figure 1 (colored in green).

3.4 Training

As depicted in Figure 1, after extracting the features, these are fused via con-
catenation resulting in a single vector that may be used for classification. To this
end, we employ a Multi-Layer Perceptron (MLP) classifier with Rectified Linear
Unit (ReLU) activation and dropout to avoid overfitting. We use cross-entropy
loss to measure the classification performance.

Formally, let z be the feature vector fed to the classifier whose parameters
are denoted by θ. The output of the MLP, y = f(z; θ), represents the predicted
class probabilities. The cross-entropy loss L is used to evaluate the discrepancy
between the predicted class probabilities and the true class labels. Let ytrue be
the one-hot encoded true class labels. The cross-entropy loss is given by:

L(y,ytrue) = −
C∑
i=1

ytrue,i log(yi)

where C is the number of classes, ytrue,i is the true label for class i, and yi is
the predicted probability for class i.

4 Experiments

This section details the conducted experiments using the BioVid dataset [34],
training details and presents the results obtained from the various modalities.

4.1 Experimental setup

During experiments we split the BioVid dataset [34] in 3 non-overlapping splits
for training (80%), validation (10% of training data) and testing (remaining 20%
of data). We present the results over the validation and test splits. Accuracy is
used as evaluation metric to measure the performance of the models.

The proposed method has been implemented in PyTorch and all experiments
are performed on a NVIDIA RTX 3090 GPU. As a result, there is a limitation
when training video models and we are able to use a maximum batch size of 4.
Notably, when using signal features only the batch size is increased to 16. We
train the models for 20 epochs with a learning rate of 5×10−7 and AdamW opti-
mizer with a decay of 0.01. Video frames undergo a preprocessing step consisting
of a downsampling and defining input windows of 32, 16 and 8 to leverage pre-
trained models from Vivit [2], VideoMAE [29] and Timesformer [7], respectively.
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Our implementation has been open-sourced and may be found in our GitHub
repository3.

4.2 Results

Table 1 presents the results obtained from the experiments. We can conclude
that the features extracted from biomedical signals provide the best result with a
classification accuracy of 62.21%. Additionally, in the test subset of Timesformer
and the validation subset of Vivit and VideoMAE, the use of biomedical signals
improve the results of the unimodal video input.

Video
Transformer

Biomedical
Signals

Validation Test
Accuracy Loss Accuracy Loss

- ✓ 0.60723 0.21624 0.62213 0.16954

TimeSformer
0.56598 0.21121 0.43467 0.20632

✓ 0.48789 0.20690 0.46506 0.21437

Vivit
0.43500 0.22557 0.40485 0.22471

✓ 0.50606 0.21264 0.38709 0.22759

VideoMAE
0.48192 0.22629 0.50686 0.21724

✓ 0.55433 0.22917 0.48059 0.53793
Table 1. Performance comparison of different models on Validation and Test sets.

Despite the lower results for video approaches, it is worth noting the advan-
tages of video approaches over biosensors. While heart rate information can be
obtained from simple smartbands on the patient’s wrist, EMG and GSR sensors
require the participant to be connected to the device. Video approaches, on the
other hand, are less invasive, requiring only a camera pointed at the patient’s
face.

5 Conclusions

This paper presents a multimodal architecture for pain assessment from RGB
videos and biomedical sensor data including galvanic skin response, electromyo-
gram, and electrocardiogram. After a comprehensive review of state-of-the-art
methods, we present PainFusion, an architecture that fuses video transformer
features with manually extracted features after extensive analysis on the pro-
vided signals. The results show that the multimodal architecture improves the
results compared to the unimodal video approach. However, these results present
a lower accuracy compared to the unimodal signal approach. Despite the results
obtained, the use of video as a modality is emphasized for its non-invasive na-
ture and speed in pain detection, reducing the risks associated with invasive
procedures and facilitating faster evaluations in medical care.

3 https://github.com/3dperceptionlab/tfg mdlopez

https://github.com/3dperceptionlab/tfg_mdlopez
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Future work in this area may explore binary approaches for prediction as
prior work to detect the main objective of this problem, gathering information
whether the person is in pain or not. Similarly, exploring other datasets with
different signals such as EEG may be of interest. Finally, it is worth mentioning
that data analysis can be costly thereby, future work may also explore the use
of algorithms for automatic feature extraction (e.g. using convolutions on signal
data) or experimenting with other fusion strategies, such as cross-modal fusion
or early fusion apart from the late fusion strategy proposed in this work.
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