
A MIXED-LANGUAGE PROGRAMMING
METHODOLOGY FOR HIGH
PERFORMANCE JAVA COMPUTING*

Vladimir S. Getov
University of Westminster

Northwick Park, Harrow, UK

and

Los Alamos National Laboratory

Los Alamos, NM, USA

Abstract Java is quickly becoming the most popular platform for distributed com­
puting. However, its performance is still subject to concerns in com­
parison to other programming languages such as C and Fortran. As a
consequence, programmers of high-performance applications are usually
reluctant to embrace Java as an alternative language in their work. This
article introduces the Java-to-C Interface (JCI) tool which generates au­
tomatically the wrapper code interfacing existing scientific libraries to
Java. Thus, facilitating rapid development and software reuse, the JCI
tool provides application programmers with immediate accessibility to
existing scientific libraries from Java. While beneficial to the software
developer, the additional advantages of mixed-language programming
in terms of application performance are addressed in detail within the
context of this work. We also present analysis and comparisons of eval­
uation results for mixed-language codes in Java and C/Fortran on a
high-performance distributed memory computer (IBM SP-2). The NAS
Embarrassingly Parallel and Integer Sort benchmarks as well as the Ma­
trix Multiplication kernel from the PARKBENCH suite were selected
for our experiments. The evaluation results demonstrate the feasibility
and efficiency of our mixed-language programming methodology with
Java.

Keywords: Java, mixed-language programming, high-performance computing, au­
tomatic wrapper generation.

• Research supported in part by Higher Education Funding Council for England (UK) un­
der the NFF program and by Los Alamos National Laboratory (USA) under the Exchange
Visitors program.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. F. Boisvert et al. (eds.), �e Architecture of Scienti�c Software

10.1007/978-0-387-35407-1_22

http://dx.doi.org/10.1007/978-0-387-35407-1_22

334 ARCHITECTURE OF SCIENTIFIC SOFTWARE

1. INTRODUCTION
One of the problems facing the Java programming language and its ac­

ceptance for scientific computing is performance. In general, the funda­
mental trade-oft' between portability and performance is very well known
to the high-performance computing community. The Java language de­
signers placed an emphasis on portability (and in particular, mobility)
of code in favour of performance. This is one of the main reasons why
making Java programs run fast is not an easy task.

A closer inspection shows that the Java platform has several built-in
mechanisms which allow the parallelism inherent in scientific programs
to be exploited. Threads and concurrency constructs are well-suited to
shared memory computers, but not large-scale distributed memory ma­
chines. Although sockets and the Remote Method Invocation (RMI) in­
terface allow network programming, they are rather low-level to be suit­
able for the Single-Program-Multiple-Data (SPMD) parallel program­
ming model. Therefore, codes based on them would potentially un­
derperform platform-specific high-performance implementations of stan­
dard scientific and communication libraries.

Nevertheless, as a programming language, Java has the core qualities
needed for writing high-performance applications. With the maturing
of compilation technology, such applications written in Java are starting
to appear. Fortunately, rapid progress is being made in this area by
developing static Java compilers, such as the IBM High-Performance
Compiler for Java (HPCJ), which generates optimized native code for
the RS6000 architecture [11]. Since the Java language is relatively new,
however, it lacks the extensive scientific libraries of other languages such
as Fortran and C. This is one of the major obstacles towards efficient
and user-friendly computationally intensive programming in Java.

Standard libraries often used for high-performance scientific comput­
ing include the Message Passing Interface (MPI), and the Scalable Lin­
ear Algebra PACKage (ScaLAPACK). Providing access to such libraries
seems imperative if Java is to achieve the success of Fortran and C in sci­
entific programming. Access to standard libraries is essential not only for
performance reasons, but also for software engineering considerations. If
available, it would allow the wealth of existing Fortran and C code to
be reused at virtually no extra cost when writing new applications in
Java. In order to overcome these problems, we have applied our JCI
code generating tool to create Java bindings for various legacy libraries
[7].

In this article we first describe the design principles of the JCI tool.
We also introduce our methodology for mixed-language software devel-

A Mixed-Language Programming Methodology 335

opment with Java and demonstrate the viability of our approach on a
number of performance evaluation experiments.

2. THE JCI TOOL
At first sight it appears that the binding of a native library to Java

should not be a problem, as Java support the Java Na­
tive Interface (JNI) via which C functions or Fortran subroutines can
be called [9]. There are some hidden problems, however. Complications
stem from the fact that Java data formats are in general different from
those of other languages like C, C++, Fortran, etc. This obviously re­
quires data conversion of both arguments and results in mixed-language
applications. Such conversion is a natural part of the native code if
both parts of a mixed-language piece of software are to be written from
scratch. For legacy codes, however, an additional interface layer called
binding or wrapper must be created which performs data conversion and
other auxiliary functions if necessary.

In principle, the binding of a native library to Java amounts to either
dynamically linking the library to the Java Virtual Machine (JVM), or
linking the library to the object code produced by a static Java compiler.
Binding a legacy library to Java may also be accompanied by portability
problems as the JNI specification is still not fully supported in differ­
ent Java implementations. Thus, in order to maintain the portability of
the binding one may have to cater for a variety of native interfaces. A
large legacy library like MPI, for example, can have over a hundred ex­
ported functions. Therefore, the JCI tool which generates automatically
the additional interface layer plays central role in our mixed-language
programming methodology. In order to call a C function from Java,
the J CI tool has to supply for each formal argument of the C function
a corresponding actual argument in Java. Unfortunately, the disparity
between data layout in the two languages is large enough to rule out a
direct mapping in general. For instance, one has to take into account
that:

• primitive types in C may be of varying sizes, different from the
standard Java sizes;

• there is no direct analog to C pointers in Java;

• multi-dimensional arrays in C have no direct counterpart in Java;

• C structures can be emulated by Java objects, but the layout of
fields of an object may be different from the layout of a C structure;

336 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Table 1 Mapping of compound C types into Java types

C type

char *

struct name *
void *
c_type *
char []
c_type []
struct name

Java type

ObjectOfChar

String
class name

ObjectOfi_type
String
i_type []
class name

Comment

- if at top level and not
the type of a function;
- otherwise.

• C functions passed as arguments have no direct counterpart in
Java.

Therefore, one has to define a specific mapping which is then imple­
mented by the J CI tool. Table 1 shows the scheme currently used to map
C types onto Java types. Primitive types are not listed in this table be­
cause they are to be found in the documentation of each JVM's native
interface. C pointers are represented in a type-safe way by a family of
Java classes generated by JCI. Each such class is named ObjectOfi_type,
and contains a field val of type i_type. Pointer objects can be created and
initialized by Java constructors, or by the overloaded function JCLptr.
They can be dereferenced by accessing the val field. In general, the
defined mapping is not unique - on the contrary - there is a number
of different mappings to choose from. The selection of an appropriate
mapping represents an important trade-off between the extent of the
performance overhead introduced by the binding on the one hand, and
the ease of use of the programming interface from Java on the other.

A block diagram of JCI is shown in Figure 1. The tool takes as input
a header file containing the C function prototypes of the native library.
It outputs a number of files comprising the additional interface: a file
of C stub-functions, files of Java class and native method declarations,
and shell scripts for compiling and linking the binding. The JCI tool
generates a C stub-function and a Java native method declaration for
each exported function of the native library. Every C stub-function
takes arguments whose types correspond directly to those of the Java
native method, and converts the arguments into the form expected by
the C library function.

,

A Mixed-Language Programming Methodology 337

C library
function prototypes

Java code
generator

C

Fortran library
function prototypes

JeI

Ccode
generator

------------ ------------ --------- -- ------------

Native library binding

Figure 1 JCI block diagram

Thanks to the JCI tool our bindings are easily adaptable to various
platforms. As we mentioned already, different Java native interfaces
exist, and thus separate code may have to be generated for binding a
given legacy library to different Java implementations. We have tried to
limit the dependence of JCl's output on the native interface version to a
set of macro definitions describing the particular native interface. Thus,
it may be possible to re-bind a library to a new Java platform simply by
providing the appropriate macros.

The tool also provides a good deal of flexibility for generating Java
wrappers to native libraries. For example, by using different library
header files as input, one can create bindings for multiple versions of a
library, such as MPI-1.1, MPI-1.2, MPI-2.0. Furthermore, JCI can be
used to generate Java bindings for libraries written in languages other
than C, provided that the library can he linked to C programs, and
prototypes for the library functions are given in C. This is how we have

338 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Table It LegaCy libraries bound to Java

Size of Java binding
library written in functions Clines Java lines

MPI C 125 4434 439
BLACS C 76 5702 489
BLAS F77 21 2095 169
PBLAS C 22 2567 127
PB-BLAS F77 30 4973 241
LAPACK F77 14 765 65
ScaLAPACK F77 38 5373 293

created Java bindings for the ScaLAPACK constituent libraries written
in Fortran-77: BLAS Level 1-3, PB-BLAS, LAPACK, and ScaLAPACK
itself [7]. The C prototypes for the Fortran library functions have been
inferred following the methodology adopted in the Fortran-to-C trans­
lator [5].

Table 2 gives some idea of the sizes of JCI-generated bindings for in­
dividual libraries. In addition, there are some 2280 lines of Java class
declarations produced by JCI which are common to all cases. The au­
tomatically generated bindings are fairly large in size because they are
meant to be portable, and to support different data formats. On a par­
ticular hardware platform and JNI implementation, much of the binding
code may be eliminated during the preprocessing phase of its compila­
tion.

Even though JCI does a lot to smooth out the interface between Java
and legacy codes, calling native library functions may not be as straight­
forward and elegant as calling Java functions. Some peculiarities and
difficulties encountered while writing Java programs which access native
libraries are listed below.

Pointers/addresses. A pointer to a value of type i_type is represented
in JCI-generated bindings as a class with a single field val of type
i_type. Pointer objects can be created and initialized by Java con­
structors, or by the overloaded function JCI. ptr. They can be
dereferenced by accessing the val field. In addition, there is some
specific peculiarity when accessing a Fortran native library because
arguments in Fortran are always passed by reference. Therefore, all
scalar arguments to a Fortran native function must be enclosed in

A Mixed-Language Programming Methodology 339

pointer objects, regardless of whether they are intended for input
or output of values.

Array offsets. In both C and Fortran, one can pass the address of an
array element as an actual argument to a function or subroutine.
This is not possible in Java. Subsequently, a Java program can­
not pass part of an array starting at a certain offset to a (native
library) function. One way round this restriction is to add one in­
teger "offset" argument for each array argument of a function [2].
The JCI-generated wrapper code supports a more elegant solution
as well, which does not involve extra arguments to native library
functions. The elements of an array arr of any type starting at
offset i can be passed to a native library function by

JCI.section (arr. i)

where JCI. section is an overloaded method whose definition is
generated by JCI. For example, passing an array section to a native
library function can be done by

blas.idamax (JCI.ptr(n-k). JCI.section(col_k. k). one)

The array col_k starting at offset k is passed to the BLAS function
idamax. Type safety with JCI. section is guaranteed, because
the compiler will check if the array has the required type. This
example also illustrates one unfortunate consequence of accessing
a Fortran function as discussed above - all scalars must be passed
by reference (i. e. be wrapped in objects, for example by JCI . ptr).

Multi-dimensional arrays. Many scientific library functions take as
arguments multi-dimensional arrays such as matrices. The JCI
tool supports multi-dimensional arrays, but a run-time overhead is
incurred because such arrays must always be relocated in memory
in order to be made contiguous before being supplied to a native
function. When large data arrays are involved the inefficiency can
be significant. In order to avoid to some extent this problem,
in our ScaLAPACK library bindings we have chosen to represent
matrices in Java as one-dimensional arrays. On the other hand,
in the Java binding for MPI [12] multi-dimensional arrays are left
intact without significant inefficiency. Large arrays used as data
buffers can have their layout described by an MPI derived data
type, and the Java binding performs no conversion for them. Other
multi-dimensional arrays used in MPI as descriptors are relatively
small and therefore not important from performance point of view.

340 ARCHITECTURE OF SCIENTIFIC SOFTWARE

Array indexing/layout. This problem is specific to native libraries
written in Fortran, where arrays are normally indexed starting
from 1, while in Java as in C indices start from O. Java programs
calling Fortran native functions that receive or return an array
index must be aware of the difference. Another point to bear in
mind when accessing a Fortran library is the inverse order of array
layout in comparison with C.

3. EVALUATION RESULTS
In this section we present performance analysis and comparisons of

evaluation results for both Java and C/Fortran on a high-performance
distributed memory computer (IBM SP-2). The NASparallel Embar­
rassingly Parallel (EP) and the Integer Sort (IS) benchmarks were used
initially in our performance experiments. The EP kernel provides an
estimate of the upper achievable limits for floating point performance,
but requires minimal communications. The IS routine evaluates integer
operations and bi-directional communications when the sorted keys are
exchanged between nodes. The NAS version of IS is written in C, while
the EP code is in Fortran. The NAS parallel benchmarks methodology
specifies several problem sizes called "classes" in order to ensure com­
parative measurements across different platforms and environments. In
our study, we present evaluation results for class B (230 data points) of
the EP kernel and class A (223 data points) for the IS benchmark.

The JVM and the Java compiler used on the IBM SP-2 machine were
part of the JDK for AIX. The execution environment consisted of IBM's
Parallel Operating Environment (POE), which supports the loading and
execution of parallel processes across the nodes of the IBM SP-2. The
machine is built of thin nodes with Power-2 Super Chip (P2SC) pro­
cessors and 256 Mbytes of memory on each node. The communication
subsystem of the SP-2 features a high-performance switch which was
used throughout the experiments. The message-passing library we have
used with Java is the Local Area Multiprocessor (LAM) implementation
of MPI from the Ohio Supercomputer Center [3]. Performance measure­
ments for the corresponding Fortran or C code under both LAM and
IBM's native MPI implementation are also given for comparison.

The evaluation results for the EP kernel (Figure 2) show good scal­
ability for up to 128 nodes on the SP-2. The substantial difference is,
however, the fact that benchmarks using LAM MPI for message-passing
run approximately 2.5 times slower in Java than their corresponding
Fortran counter part. This is not a surprise, but shows the performance
penalty that one should expect from a direct port of computationally

A Mixed-Language Programming Methodology 341

1200

1 ()()()

-- JDK + LAM MP!

! 800 0-<> Fort ... + LAM MPI
....... Fortran + IBM MPI

= 800

j
;:,

¥ 400
><

W

200

0
10 100

Number of processors

Figure 2 Execution times for the NPB EP kernel (class B) on the IBM SP-2

intensive code to Java. Of course, this is not the best mixed-language
performance one can obtain as demonstrated by our further experiments.

After the initial period when the first versions of the Java platform
were built for portability, the Java compiler technology has now entered
a second phase where the new versions are also targeting higher per­
formance. For example, Just-in-time (JIT) compilers have dramatically
improved their efficiency, and are now challenging mature C++ compil­
ers. Furthermore, to gain even faster execution times, the developers of
HPCJ have adopted the static compilation approach [11]. Their compiler
which generates native code for the RS6000 architecture was also used
in this evaluation in order to compare the conventional native execution
with the interpreted execution provided by JVMs.

Performance evaluation experiments with both the original C and the
Java versions of the IS kernel were carried out on the IBM SP-2 machine.
The results obtained are shown in Figure 3. When using the JVM for
AIX for interpreted execution with the JIT compiler enabled, the Java
IS benchmark is around two times slower than the original C code. In
order to gain a more detailed insight and to ensure fair comparisons,
we have run the C code with both the native IBM and LAM MPI im­
plementations. As expected, the LAM-based experiment is slower but
provides a basis for comparison with the Java version of the IS ker­
nel which also uses LAM for message-passing. The performance of this

342 ARCHITECTURE OF SCIENTIFIC SOFTWARE

..... JDK + LAM MPI
'9'-"V HPCJ + LAM MPI

2' C+LAMMPI
.! +_ _--+-1--_+-_-1--1 0-<> C + IBM MPI I 30

-=
6

o 2 4 6 8 10 12 14 1& 18

Number of processor.

Figure:1 Execution time for the NPB IS kernel (class A) on the IBM SP-2

latter code is very impressive when compiled staticly with HPCJ. The
timing results almost overlap with those delivered by the C version and
provide evidence that Java can be used successfully in high-performance
computing.

Further experiments on the IBM SP-2 were conducted with a Java
translation of the Matrix Multiplication (MATMUL) benchmark from
the PARKBENCH suite [13]. The original benchmark is written in
Fortran-77 and performs dense matrix multiplication in parallel. It ac­
cesses the BLAS, BLACS and LAPACK libraries included in the PARK­
BENCH 2.1.1 distribution. MPI is also used but indirectly through the
BLACS native library. The default problem size (N) is N = 1000.

Changing the balance between the two parts of a given code written
in both Java and C or Fortran changes also the performance penalty
for using Java. For example, within the MATMUL benchmark most
of the performance-sensitive calculations are carried out by the native
library routines rather than by the Java part of the program. Therefore,
the Java MATMUL execution times are only 5-10% longer than the
measurement results obtained with the original Fortran code as shown
in Figure 4. In both experiments for the above comparison we have
used LAM as a message-passing environment. Results obtained with the
original kernel and the native IBM MPI are also given for completeness.

A Mixed-Language Programming Methodology 343

15

I
I
;: 10
c
.2 -::lI
¥
>C

W 5

o 2 4 6 8 10 12 14 16 18

Number of processors

Figure 4 Execution time for the PARKBENCH MATMUL kernel on the IBM SP-2

The observations of the above experiment clearly demonstrate another
dimension of flexibility for our mixed-language programming methodol­
ogy. In this case, excellent performance results can be achieved even
without using a static Java compiler like HPCJ. Instead, the relatively
small (5-10%) performance penalty is incurred by the interpreted ex­
ecution using standard JVM with the JIT compiler enabled. Such
small overhead can be achieved by keeping the calculation-intensive code
within the native library.

Thus, one can apply the J CI tool to wrap up the time-consuming part
of a software system as a native library and implement the rest of it in
Java. In such cases, the inefficient interpreted execution of the JVM is
only used for a front-end Java code that provides coordination functions
and interactive interfaces. Clearly, our mixed-language programming
methodology does not impose any restrictions or requirements regarding
the implementation level of the wrapper code. This gives the flexibility
to select the most appropriate and efficient balance of different program­
ming languages within each individual software development project.

4. DISCUSSION AND RELATED WORK
Many research groups and vendors are pursuing research to improve

Java's performance which would enable more scientific and engineering

344 ARCHITECTURE OF SCIENTIFIC SOFTWARE

applications to be solved on Java platforms. The need for access to
legacy libraries is one of the burning problems in this area. Several
approaches can be taken in order to make the libraries available from
Java:

• Rewriting by hand existing libraries in Java. Considering the size
of the available codes and the number of years that were invested
in their development, rewriting the libraries would require an enor­
mous amount of manual work [2].

• Automatically translating Fortran or C libraries into Java. We
are aware of two groups that have been working in this area -
University of Tennessee [4] and Syracuse University [6]. This ap­
proach offers an important long-term perspective as it preserves
Java portability, while achieving high performance in this case
would obviously be more difficult.

• Manually or automatically creating a Java wrapper for an existing
native Fortran or C library. Obviously, by binding legacy libraries,
Java programs can gain in performance on all those hardware plat­
forms where the libraries are efficiently implemented. The price to
be paid for this clear advantage, however, is the use of native code
which breaks the Java security model and does not allow work with
applets.

The automatic binding, which we are primarily interested in, has the
obvious advantage of involving the least amount of work, thus reduc­
ing dramatically the time for development. Moreover, it guarantees
the best performance results, at least in the short term, because the
well-established scientific libraries usually have multiple implementa­
tions carefully tuned for maximum performance on different hardware
platforms. Last but not least, by applying the software re-use tenet,
each native legacy library can be linked to Java without any need for
re-coding or translating its implementation.

While automatic binding is certainly convenient, sometimes the data
conversion may impose a bigger performance penalty. As described in
section 2 we have addressed several issues potentially contributing to a
bigger time overhead of our mixed-language programming approach. As
a result of that, our experiments on IBM SP-2 machines have shown a
negligible amount of time spent in the binding itself during the execution
of Java programs.

One of the primary goals of our approach has been to gain faster
execution times by using Java and legacy scientific libraries written in
C or Fortran without sacrificing performance from the available highly

A Mixed-Language Programming Methodology 345

optimized native code. The use of the JCI tool clearly extends Java's
usefulness and provides rapid solution to the mixed-language interfac­
ing problem, but the JNI-wrapping techniques introduce certain limita­
tions on application portability and mobility. One possible solution to
this problem can be achieved by extending the functionality within the
boundaries of a metacomputing environment [8].

5. CONCLUSIONS
This article presents a general approach to combine Java and exist­

ing code written in Fortran and/or C into mixed-language applications
where Java serves as a front-end component for legacy native libraries.
We also show that with these existing performance-tuned libraries al­
ready available on different platforms and the wrapper interfaces gen­
erated by the J CI tool, one can build different kinds of mixed-language
software systems for high-performance Java computing in a flexible and
elegant way. The JCI tool for automatic creation of interfaces to such
libraries {whether for scientific computation or message-passing} plays
central role in our mixed-language programming methodology.

In addition to the JCI-generated bindings, other basic components
used in our high-performance Java programming methodology include
performance-tuned implementations of scientific and communications li­
braries available on different machines, and a native Java compiler such
as IBM's HPCJ. We also believe that our approach is practical in a sense
that legacy code is ubiquitous and it would be much too tedious to port
all of it to Java. If Java is to gain acceptance as a high-performance
language it has to interface with such existing libraries.

Acknowledgments
The author would like to thank Sava Mintchev (University of Westminster) for his

significant contribution in the development and implementation of the JCI tool. Spe­
cial thanks also go to Susan Flynn-Hummel (IBM T.J. Watson Research Center) who
invested a lot of time and energy in the experiments with HPCJ, and to Mary Thomas
(San Diego Supercomputer Center) for her determination to run the scalability tests
on up to 128 IBM SP nodes.

References

[1] Bailey, D., E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T.
Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga {1994}. The NAS parallel benchmarks, Tech-

346 ARCHITECTURE OF SCIENTIFIC SOFTWARE

nical Report RNR-94-007, NASA Ames Research Center.
http:// science.nas.nasa.gov /Software/NPB /

[2] Bik A. and D. Gannon (1997). A note on native level 1 BLAS in
Java, Concurrency: Pract. Exper. 9:11, 1091-1099.

[3] Burns G" R. Daoud, and J. Vaigl (1994). LAM: An open cluster
environment for MPI, in Proceedings of Supercomputing Symposium
'9./., Toronto.

[4] Casanova H., J. Dongarra, and D. Doolin (1997). Java access to
numerical libraries, Concurrency: Pract. Exper. 9:11, 1279-1291.

[5] Feldman, S.I. and P.J. Weinberger (1990). A Portable Fortran 77
Compiler, in UNIX Time Sharing System Programmer's Manual,
Tenth Edition. AT&T Bell Laboratories.

[6] Fox G., X. Li, Z. Qiang, and W. Zhigang (1997). A prototype of
Fortran-to-Java converter, Concurrency: Pract. Exper. 9:11, 1047-
1061.

[7] Getov, V., S. Flynn-Hummel, and S. Mintchev (1998). High­
performance parallel programming in Java: Exploiting native li­
braries, Concurrency: Pract. Exper. 10:11-13, 863-872.

[8] Getov, V., P. Gray, S. Mintchev, and V. Sunderam (1999). Multi­
Language Programming Environments for High Performance Java
Computing, it Scientific Programming 7:2, 139-146.

[9] Gordon, R. (1998). Essential JNI: Java Native Interface. Prentice­
Hall.

[10] Gosling, J., W. Joy, and G. Steele. (1996). The Java Language Spec­
ification, Version 1.0, Addison-Wesley, Reading.

[11] IBM Corp. (1997). High-performance compiler for Java: An opti­
mizing native code compiler for Java applications. White paper.
http://www.alphaWorks.ibm.com/formula/

[12] Mintchev S. and V. Getov (1997). Towards portable message pass­
ing in Java: Binding MPI, in Recent Advances in PVM and MPI
(M. Bubak, J. Dongarra, and J. WaSniewski, eds.), LNCS 1332,
Springer-Verlag, Berlin, 135-142.

[13] PARKBENCH Committee (assembled by R. Hockney and M.
Berry) (1994). PARKBENCH report-I: Public international bench­
marks for parallel computers, Scientific Programming 3:2, 101-146.

A Mixed-Language Programming Methodology 347

DISCUSSION

Speaker: Vladimir Getov

Scott Kohn : What are the memory costs and overheads for using Java
for HPC?
Vladimir Getov : This is an interesting but a rather general question.
There is a number of issues related to the memory costs and overheads
when using Java. First of all, each JVM has its own memory require­
ments that come in addition to the memory needed by the operating
system. Subsequently, the remaining memory available for applications
is smaller in comparison to the conventional case of static compilation,
including the use of native Java compilers such as HPCJ. For Java appli­
cation codes in particular running within a JVM, the available memory
is defined by the allocated heap size. 'funing the heap size for bigger
applications may turn out to be very important in order to utilize the
available RAM efficiently. When using the JCI tool, one has to take into
account also the JNI overhead and the linking of the specified native
libraries at run-time. The wrapper software overhead is relatively very
small and can be neglected. In most of the cases the memory costs and
overheads vary significantly between different vendors and versions of the
Java platform. Therefore, quoting quantitative results should always be
accompanied with information about the product, version, release, etc.
Morven Gentleman: Does JCI generate wrappers that can accom­
modate the need of legacy libraries that require typeless containers, e.g.,
to support persistent data lifetimes across reverse communication calls?
Vladimir Getov : The JCI tool generates the wrapper code on the
basis of mapping between various data types and structures between
two given target languages. This mapping can be changed by the user
depending on the specific characteristics of the two programming lan­
guages and the requirements of the application area. For example, we
have used three different mappings so far, but none of them accommo­
dates typless containers. However, typeless containers can be included
into a new mapping definition for automatic generation of wrappers to
relevant legacy libraries.

	A MIXED-LA
NGUAGE PROGRAMMING METHODOLOGY FOR HIGH PERFORMANCE JAVA COMPUTING*
	1. INTRODUCTION
	2. THE JCI TOOL
	3. EVALUATION RESULTS
	4. DISCUSSION AND RELATED WORK
	5. CONCLUSIONS
	Acknowledgments
	References
	DISCUSSION

