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Abstract 

Scope: The physiological relevance of contemporary cell culture studies is often 

perplexing, given the use of unmetabolized phytochemicals at supraphysiological 

concentrations. We investigated the activity of physiologically relevant anthocyanin 

metabolite signatures, derived from a previous pharmacokinetics study of 500 mg 
13C5-cyanidin-3-glucoside in 8 healthy participants, on soluble vascular adhesion 

molecule-1 (VCAM-1) and interleukin-6 (IL-6) in human endothelial cells. 

Methods and results: Signatures of peak metabolites (previously identified at 1, 6 

and 24 h post-bolus) were reproduced using pure standards and effects were 

investigated across concentrations ten-fold lower and higher than observed mean 

(<5 µM) serum levels. Tumor necrosis factor-α (TNF-α)-stimulated VCAM-1 was 

reduced in response to all treatments, with maximal effects observed for the 6 h and 

24 h profiles. Profiles tested at ten-fold below mean serum concentrations (0.19-0.44 

µM) remained active. IL-6 was reduced in response to 1, 6 and 24 h profiles, with 

maximal effects observed for 6 h and 24 h profiles at concentrations above 2 µM. 

Protein responses were reflected by reductions in VCAM-1 and IL-6 mRNA, however 

there was no effect on phosphorylated NFB-p65 expression.  

Conclusion. Signatures of anthocyanin metabolites following dietary consumption 

reduce VCAM-1 and IL-6 production, providing evidence of physiologically relevant 

biological activity. 
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Graphical abstract summary 

A novel approach to exploring the biological activity of flavonoid metabolites in vitro. We investigated 

the activity of anthocyanin metabolite signatures, identified in a previous pharmacokinetic study of 
13

C5-cyanidin-3-glucoside. Here, differing concentrations of metabolite signatures inhibited soluble 

vascular adhesion molecule-1 (VCAM-1) and interleukin-6 (IL-6) in human endothelial cells, providing 

evidence of physiologically relevant biological activity of anthocyanin metabolites. 

 

 

 

Introduction 

The consumption of anthocyanins has been linked to a reduced risk of 

cardiovascular disease [1, 2], though their mechanisms of action are not fully 

understood. Traditionally, in vitro studies have explored the activity of parent 

anthocyanins mechanistically, however their low plasma concentrations and rapid 

clearance kinetics suggests they are not the bioactive forms responsible for in vivo 

activity. It is therefore probable that anthocyanin bioactivity in vivo results from the 

lesser studied, though more bioavailable, phenolic metabolites, and we have recently 

demonstrated they are more active on inflammatory biomarkers than their precursor 

structures [3-5]. 

The understanding of anthocyanin metabolism is relatively contemporary, though it is 

commonly accepted that their degradation is a result of their chemical instability and 

the impact of bacterial catabolism, resulting in a number of circulating phenolic 

metabolites [6, 7]. As anthocyanin metabolites do not circulate in isolation following 

ingestion, but exist as complex mixtures or profiles of metabolites at various 
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concentrations [8-10], it is important that this is also reflected in the design of 

experiments exploring the bioactivity of anthocyanins.  

The metabolism of a common dietary anthocyanin, cyanidin-3-glucoside (C3G), was 

recently investigated and 29 metabolites were identified following the consumption of 

500 mg 13C-labelled cyanidin-3-glucoside (C3G) [8, 11]. Briefly, eight healthy male 

participants were fed a single 500 mg oral bolus dose of isotopically labelled C3G 

(13C5-C3G) following a 7 day washout period (avoiding anthocyanin-rich foods),  

were blood was collected at baseline, 0.5, 1, 2, 4, 6, 24, 48 h. Three distinct peak 

serum metabolite profiles (or signatures) were observed post consumption at 1 h, 6 

h, and 24 h (Figure 1). Similar groupings of metabolites sharing Cmax and producing 

distinct biosignatures or peaks of metabolites during clearance have also been 

observed following consumption of cocoa flavan-3-ols [12] and citrus flavanones 

[13], suggesting this is a common response in the clearance  kinetics of flavonoid 

metabolites. Given that these phenolics circulate at higher concentrations and for 

longer duration relative to their precursor structures, there is scope to investigate the 

collective activity of blood profiles of phenolic metabolites on inflammatory 

processes. 

Anthocyanin metabolites have been shown to inhibit the expression of a number of 

inflammatory biomarkers, such as those involved in vascular adhesion and 

chemotaxis, including soluble vascular cellular adhesion molecule-1 (VCAM-1) and 

interleukin-6 (IL-6) [14, 15], both of which are markers of cardiovascular disease risk 

and mortality [16, 17] and logical targets for exploring the potential mechanisms of 

action of anthocyanin metabolites. The aims of the present  study were therefore: 

investigate the effects of unique C3G metabolite signatures, observed to peak in vivo 

at 1 h, 6 h, and 24 h post consumption, on VCAM-1 and IL-6 protein secretion by 2 

cell types, human umbilical vein endothelial cells (HUVEC) and human coronary 

artery endothelial cells (HCAECs); investigate the effects of metabolite signatures 

across a range of concentrations, reflecting levels ten-fold lower (<0.5 µM) and ten-

fold higher (<50 µM) than mean concentrations (<5 µM) observed previously [8, 11]; 

finally, identify mechanistic effects on VCAM-1 and IL-6 mRNA by targeting a key 

inflammatory transcriptional target, NFB. 

Methods 

Materials 

Early passage human umbilical vein endothelial cells (HUVECs) (cryopreserved, 

pooled donors, passage 2), large vessel endothelial growth medium (containing 2% 

fetal calf serum, human epidermal growth factor, human fibroblast growth factor, 25 

µg/mL gentamycin, 50 ng/mL amphotericin, hydrocortisone and heparin) and trypsin 
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passage pack were purchased from Caltag Medsystems (Buckingham, UK). Early 

passage (passage 2) human coronary artery endothelial cells (HCAECs) 

(cryopreserved, single donors), endothelial cell medium MV (containing 5% fetal calf 

serum, endothelial cell growth supplement, recombinant human epidermal growth 

factor, heparin, and hydrocortisone) and Detach Kit were purchased from PromoCell 

GmbH (Heidelberg, Germany). Human-derived fibronectin and TNF-α was 

purchased from Sigma Aldrich (Dorset, UK). The conjugated metabolites, as listed in 

Table 1, were synthesized at the University of St. Andrews (UK) [18]. Human-derived 

fibronectin, TNF-α, and all flavonoids and unconjugated phenolic acids (Table 1) 

were obtained from Sigma Aldrich (Dorset, UK), with the exception of cyanidin-3-

glucoside (Extrasynthase, France). 

Treatment metabolite profiles 

Stock solutions for cell culture experiments were prepared in 100% DMSO at 200 

mM and stored at -80oC with the exception of cyanidin-3-glucoside, which was 

prepared at 40 mM, and the sulfate- conjugated phenolic acids, which were prepared 

at 25 mM in 50% DMSO (50% PBS) to maintain stability whilst reducing final DMSO 

concentrations in working solutions. Working solutions of 1 mM were prepared in 

supplemented media before being diluted to their working concentrations (Table 1) 

and stored at 4oC until experimental commencement (with the exception of cyanidin-

3-glucoside, which was added immediately prior to the final dilutions to maintain 

stability). Solutions were subsequently diluted in supplemented media as required 

(Table 1) immediately prior to experiment commencementt.  

Cell culture  

HUVECs and HCAECs were routinely cultured in fibronectin coated T75 flasks (0.25 

µg/cm2), using large vessel endothelial growth medium and endothelial cell medium 

MV, respectively, at 37°C and 5% CO2. Cells were sub-cultured using a trypsin 

passage pack or Detach Kit, according to the manufacturer’s instructions. HUVECs 

were used at passage 4 and HCAECs were used between passages 3 and 6. All 

cells were incubated in supplemented media for 24 h at 37oC, 5% CO2, in a 

humidified atmosphere, prior to experiment commencement.  

VCAM-1 and IL-6 protein expression 

HUVEC or HCAEC were seeded at 80,000 cells/well in fibronectin coated 24-well 

plates. Cells were treated for 30 min with peak metabolites profiles identified 

previously at 1 h, 6 h, 24 h post consumption (Table 1) or 0.01% DMSO (vehicle 

control) prior to the addition of 10 ng/mL (HUVEC) or 0.1 ng/mL (HCAEC) TNF-α 

(determined as providing maximal induction while maintaining physiological relevant 

concentrations following time- and concentration-response experiments), and 

incubated for 24 h at 37oC, 5% CO2, in a humidified atmosphere.  Supernatants were 
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collected on ice, centrifuged at 2000 x g for 10 min at 4oC, and stored at -80oC prior 

to ELISA. Samples were thawed at room temperature and vortexed for 3 x 5 sec 

immediately prior to analysis. Supernatants were diluted 1:1 in Reagent Diluent 

(R&D Systems) and protein expression of soluble VCAM-1 (sVCAM-1; hereby 

referred to as VCAM-1) and IL-6 were determined by commercially available DuoSet 

enzyme-linked immunosorbent assay (ELISA) (R&D Systems), according to the 

manufacturer’s instructions. Absorbance values for all ELISA plates were recorded 

using an OMEGA plate reader from BMG LABTECH (Bucks, UK). 

VCAM-1 and IL-6 mRNA expression 

HCAEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells 

were pre-treated for 30 min with the highest working concentrations of the metabolite 

profiles (19 µM, 20 µM, 44 µM, reflecting serum concentrations at 1 h, 6 h, 24 h 

respectively) of each serum profile or 0.01% DMSO (vehicle control) prior to the 

addition of 0.1 ng/mL TNF-α, and incubated for 4 h at 37oC, 5% CO2, in a humidified 

atmosphere. Cell culture supernatants were removed and cells washed 3 x with 

PBS. Total RNA was extracted from HUVECs and reverse transcribed to cDNA 

using conditions previously described [3].Real-time quantitative PCR (RT-qPCR) 

was carried out using 25 ng cDNA with the addition of VCAM-1 primers (forward 

primer, 5’-CAGGCTAAGTTACATATTGATGACAT-3’; reverse primer, 5’-

GAGGAAGGGCTGACCAAGAC-3’), or IL-6 primers (forward primer, 5’-

GCAGAAAACAACCTGAACCTT; reverse primer, 3’-

ACCTCAAACTCCAAAAGACCA-5’) and real time PCR Precision master mix with 

SYBR green (Primer Design, UK). RT-qPCR was carried out using the ABI7500 

(Applied Biosystems, UK) system, using cycle methods previously described [3]. 

Relative changes in gene expression from the TNF-α control were quantified using 

the comparative Ct method [19]. The difference between recorded Ct values for 

treatment and positive control samples were calculated in the first instance for all 

genes. geNORM analysis was carried out using qbasePLUS software (version 2.3; 

Biogazelle, Belgium) to determine stable reference genes (VIPAS39 and PRDM4), 

the geometric mean of which were used to normalize the data in subsequent 

experiments. 

Phospho-NFB p65 expression  

HCAEC were seeded at 200,000 cells/well in fibronectin coated 6-well plates. Cells 

were pre-treated for 30 min with the highest working concentrations of each serum 

profile (19 µM, 20 µM, 44 µM, reflecting 1 h, 6 h, and 24 h serum concentrations 

respectively) or 0.01% DMSO (vehicle control) prior to the addition of 10 ng/mL TNF-

α, and incubated for 15 min at 37oC, 5% CO2, in a humidified atmosphere. Cells 

were washed 3 x with PBS and lysed with NP-40 lysis buffer; total protein 
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concentrations were determined by BCA assay, and proteins were separated and 

probed by SDS-PAGE and Western blotting, respectively, as described previously by 

this group [20]. Primary antibody solution contained 0.1% PBS with 20% T20 

Blocking Buffer (Thermoscientific, UK), with rabbit polyclonal anti-NFB p65 

(Ser536) antibody (ab28856; Abcam, UK; 1:2000 dilution) and chicken polyclonal 

anti-GAPDH (AB2302; Millipore, UK; 1:15000 dilution) and secondary antibody 

solutions contained 0.1% PBS with 20% T20 Blocking Buffer and 0.1% SDS, with 

goat anti-rabbit (IRdye 800CW; Li-Cor, UK; 1:15000 dilution) and donkey-anti-

chicken (IRdye 680LT; Li-Cor, UK; 1:15000 dilution). Membranes were imaged and 

quantified by densitometry at 700 nm and 800 nm using Odyssey Infrared Imaging 

System and Odyssey Infrared Imaging System Application Software, respectively (Li-

Cor; version 3.0.21). 

Data analysis 

VCAM-1 and IL-6 protein (pg/mL) or mRNA (fold change) were recorded as the 

mean of two technical duplicates, and reported relative to the TNF-α positive control 

(containing TNF-α without DMSO) as the mean of three independent experiments. 

Phospho-NFB p65 expression (infrared density) data were normalized to GAPDH 

reference gene and data were presented graphically as a fold change of vehicle 

control (DMSO). Treatment effects were established by one-way analysis of variance 

(ANOVA) with post-hoc least significant difference (LSD) conducted using SPSS for 

Windows (version 22.0; IBM, New York, USA). Untreated controls were not included 

in the ANOVA for treatment effect but presented graphically, where Students t-test 

established difference relative to vehicle control (DMSO). All data represents the 

mean ± SD of three biological replicates (n=3). 

Results 

Effect of peak cyanidin-3-glucoside metabolite signatures on VCAM-1 protein 

expression.  

The effects of signatures of cyanidin-3-glucoside metabolites  (Figure 1) on TNF-α 

stimulated VCAM-1 secretion was explored at the mean concentrations observed 

clinically, as well as concentrations ten-fold lower and ten-fold higher (Table 1), in 

HUVEC and validated in HCAEC. No treatments were cytotoxic at any tested 

concentration as established utilizing the WST-1 cytotoxicity assay (Roche, United 

Kingdom). HUVEC-secreted VCAM-1 (Figure 2A) was reduced relative to the 

vehicle control in response to all treatments at all tested concentrations, with the 

maximal effects observed for 6 h and 24 h metabolite signatures (-65.12 ± 0.37% 

and -66.24 ± 2.88, respectively; p≤0.001) at cumulative concentrations of 20 µM and 

44 µM (respectively). The activity expressed in HCAEC was slightly less than that of 
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the HUVEC, however similarly, inhibition of HCAEC-secreted VCAM-1 (Figure 2B) 

was greatest for treatments reflecting the 6 h and 24 h metabolite signatures (-30.07 

± 11.41% and -27.84 ± 3.09%, respectively; p≤0.001). For both cell lines, even the 

profiles tested at concentrations 10-fold below the mean serum levels reported (0.19 

µM, 0.20 µM, 0.44 µM reflecting serum profiles at 1 h, 6 h, and 24 h, respectively) 

significantly reduced VCAM-1 secretion (p≤0.05).  

Effect of peak cyanidin-3-glucoside metabolite signatures on IL-6 protein 

expression.  

The effects of cyanidin-3-glucoside metabolite signatures (Figure 1) on TNF-α 

stimulated IL-6 secretion was explored at the mean concentration observed clinically 

(Table 1), as well as ten-fold lower and ten-fold higher concentrations in HUVEC and 

validated in HCAEC. HUVEC-secreted IL-6 (Figure 3A) was reduced relative to the 

vehicle control in response to all treatments, with the exception of the concentrations 

tested 10-fold below the mean serum levels (0.19 µM, 0.20 µM, 0.44 µM reflecting 

serum concentrations at 1 h, 6 h, and 24 h, respectively). Maximal effects on IL-6 

were observed in response to the three metabolite signatures (1 h, 6 h, 24 h) at 

cumulative concentrations of 2 µM, 20 µM, 44 µM, respectively (-36.63 ± 3.73%, -

31.26 ± 8.06%, -35.56 ± 0.70%; p≤0.001). Activity was not reduced in HCAEC in 

response to any treatment (p>0.05; Figure 3B). Maximal concentrations of each 

metabolite signature (19 µM, 20 µM, 44 µM), reflecting serum concentrations at 1 h, 

6 h, and 24 h, respectively) were taken forward to confirm their effect on VCAM-1 

and IL-6 mRNA in HCAEC. 

Effect of peak cyanidin-3-glucoside metabolite profiles on VCAM-1 and IL-6 

mRNA expression 

Peak metabolite signatures were used to determine whether TNF-α stimulated 

VCAM-1 and IL-6 protein secretion was reflected by mRNA expression in HCAEC 

(Figure 4). Here TNF-α stimulated VCAM-1 mRNA expression was reduced by 0.55 

± 0.25 fold, 0.49 ± 0.13 fold, and 0.36 ± 0.21 fold in response to 19 µM, 20 µM, 44 

µM concentrations as observed clinically at 1 h, 6 h, and 24 h (respectively), 

compared to the vehicle control (Figure 4A).  TNF-α stimulated IL-6 mRNA 

expression was reduced by 0.93 ± 0.10 fold, 1.18 ± 0.30 fold, and 1.01 ± 0.54 fold in 

response to 19 µM, 20 µM, 44 µM treatment profiles as observed clinically at 1 h, 6 

h, and 24 h, respectively (p≤0.05; Figure 4B). 
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Effect of peak cyanidin-3-glucoside metabolite signatures on phosphorylated 

NFB p65 expression. 

Peak metabolite signatures were further explored for their effect on TNF-α stimulated 

NFB transcription factor p65 in HCAEC (Figure 5), where there was no apparent 

activity beyond that of the vehicle control (p>0.05). 

Discussion 

The present study is the first to explore the activity of physiologically relevant 

signatures of anthocyanin metabolites. Here we utilized three unique treatments 

based on peak concentrations observed in serum post consumption (Figure 1) [8, 

11], with the aim of elucidating in vivo activity. Peak signatures of metabolites (Table 

1) displayed significant inhibitory effects on VCAM-1 protein secretion (Figure 2) at 

concentrations observed in vivo [11], suggesting physiologically achievable 

bioactivity. The greatest inhibition of VCAM-1 was observed in response to the 24 h 

metabolite signature, suggesting metabolites of lower intestinal microbial origin are 

responsible for fasting or chronic anti-inflammatory effects.  

Peak metabolite signatures appeared to have biological activity, despite the 

extremely low concentrations of their individual constitutes. Here responses were 

often greater then activities previously reported by our group for the same 

metabolites in isolation or in mixtures at equal molar concentrations [4, 5]. Previous 

studies have explored this concept of physiologically relevant concentrations of 

metabolite profiles by applying extracted serum/plasma to cell culture models. For 

example, Koga et al. found serum containing metabolites of (+)-catechin significantly 

reduced U937 adhesion to human aortic endothelial cells (HAEC) relative to the pure 

metabolites in isolation [21]. Other studies have used both extracted animal and 

human plasma in a similar manner [22-24], however the limitation of this study 

design is that plasma contains many bioactive constituents other than flavonoid 

metabolites, making it difficult to compare treatments to controls and eliminate 

confounders stemming from varying endogenous analytes. There is scope to 

validate the present findings using this model, however, these limitations still exist. 

The novelty of the present study is that the experiments can be appropriately 

controlled for vehicle, which allows a more direct exploration of mechanism of action. 

It could however be argued that this in itself is a limitation, as metabolites may act 

differentially in serum relative in cell culture media; Indeed, certain flavonoids have 

been shown to interact with serum albumin in in vitro or ex vivo conditions [25]. 

Furthermore, in utilizing average reported metabolite concentrations, compositions 

do not reflect individual participants’ blood profiles. Finally, the study design cannot 
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capture the impact of other blood metabolites/analytes escaping sample preparation 

and detection methodologies. 

The highest mean concentration of metabolites detected following the 500 mg bolus 

of 13C-labelled anthocyanins (equivalent to the consumption of approximately 100 g 

of blackberries [26]) was observed at 24 h post consumption and totaled 4.38 µM 

[11]. In this study, a high inter-individual variation in metabolism was observed. For 

example, the serum Cmax for hippuric acid was 1962 ± 1389 nM, indicating the mean 

concentration varies greatly between individuals and could be in excess of 3000 nM 

for a single metabolite. The present study sought to address this issue by utilizing 

treatment concentrations reflecting the lowest and highest concentrations reported 

between individuals (0.80 µM – 13.18 µM [8, 11]). As such, we used three metabolite 

concentrations, representing 10-fold higher and lower concentrations then the 

observed mean. Surprisingly, there was very little difference in the inhibition of 

VCAM-1 protein expression between the mean and ten-fold lower and higher 

concentrations of the metabolites. This suggests that either there is a threshold 

activity or that there is something unique about these mixtures of metabolites which, 

when combined, have some additive or synergistic activity. This outcome is 

important as these concentrations reflect dietary achievable levels [27]. As phenolic 

metabolites are common to a number of dietary flavonoids and food sources [28], it 

is possible that metabolite signature concentrations utilized in the present study 

could be exceeded following a habitual polyphenol-rich diet, given that consumption 

of polyphenols in Europe has been estimated between 744 mg/day - 1786 mg/day 

[29]. As effects were observed at the lowest concentrations in the present study 

(between 0.19 µM and 0.44 µM), even low levels of dietary polyphenol consumption 

would have beneficial effects on inflammatory status. 

Although peak metabolite profiles inhibited IL-6 secretion at 1 h, 6 h and 24 h in 

HUVEC, this was not reflected in HCAEC, though it is possible that effects were 

masked by the large variation between replicates. It is possible that the reduced 

stimulus (TNF-α) concentration (0.1 ng/mL in the present study relative to 10 ng/mL) 

increased variation as a result of low IL-6 induction, making it difficult to quantify 

significant activity. 

The effects of the treatments on VCAM-1 and IL-6 mRNA expression were 

investigated to determine whether these would reflect changes in protein expression. 

In our recent study [5], it was observed that only protocatechuic acid (PCA) inhibited 

VCAM-1 mRNA expression at the highest tested concentration, 100 µM. It is 

interesting that VCAM-1 and IL-6 mRNAs were reduced by half in response to the 3 

metabolite profiles which reflect cumulative total metabolite concentrations of only 19 

µM, 23 µM, and 44 µM, respectively. Given the low concentrations of metabolites in 
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the present treatment mixtures, it appears that certain metabolites are acting 

additively or synergistically, potentially through effecting multiple pathways 

simultaneously. Multiple pathways are indeed thought to be affected following 

anthocyanin metabolite treatment, for example, aortas of ApoE-deficient mice fed an 

anthocyanin-rich bilberry extract, demonstrated the modulation of 1261 genes which 

code for proteins involved in the regulation of cellular processes, including adhesion 

and inflammatory biomarker expression [14].  

NFB is a key transcription factor pathway in the TNF-α stimulated expression of 

adhesion molecules in endothelial cells [30]. In the present study, no effect was 

observed on the expression of phosphorylated p65, suggesting alternative 

mechanisms which influence adhesion molecule expression are at play, such as AP-

1 activity via p38 and JNK MAP kinase. A recent study of ours [5] as well as that of 

Krga et al. [31] also demonstrated no activity of flavonoid metabolites on  NFB.  

Data from the present study suggest that the metabolite profile with the maximum 

inflammatory effect was observed at 24 h post-consumption, suggesting fasting or 

chronic effects are possible. Conversely, improvements in flow-mediated dilation 

(FMD) and blood pressure in response to feeding anthocyanins are most often 

observed acutely, between 1 h and 6 h post-consumption (maximum response at 2 

h) [32]. In the study of Rodriguez-Mateos et al. [32], following the consumption of a 

drink containing blueberry anthocyanins, benzoic and vanillic acids positively 

correlated with FMD at 1–2 h, whereas hippuric, hydroxyhippuric, and homovanillic 

acids correlated with the FMD at 6 h. These data suggests an acute-phase 

modulatory vascular response of phenol metabolites. Based on these findings and 

those of the present study it is possible that sudden vascular responses are 

mediated by very low levels of parent flavonoids and their rapid degradation 

products, which are succeeded by a delayed anti-inflammatory response, mediated 

by products of lower intestinal bacterial catabolism and hepatic phase II conjugation. 

This ultimately suggests a dual mechanistic activity of flavonoids. This hypothesis 

requires conformation in randomized-control trials designed having inflammation as 

a primary endpoint and utilizing populations both responsive to inflammatory and 

vascular intervention following dietary manipulation (i.e., neither completely healthy 

nor chronically unhealthy), as flavonoids are likely to be effective as a preventative 

strategy rather than a pharmacological therapy.   

In conclusion, the present study identified that signatures of anthocyanin metabolites 

identified post consumption of dietary achievable levels of anthocyanins, have 

inhibitory effects on inflammatory protein secretion. Further work is required to 

elucidate the multiple mechanisms potentially at play, ultimately informing our 

understanding of how anthocyanins and other flavonoids impact health.  
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Figure Legends 

 

Figure 1. Serum pharmacokinetic signatures of C3G and its metabolites in 

humans after the consumption of 500 mg 13C5-C3G in eight healthy male 

participants. Data represent mean concentration of specified metabolites from 8 

participants. Peak signatures (at 1 h, 6 h, and 24 h) are indicated by the dashed-line 

boxes. “/” indicates isomers quantified together. Common name (chemical name): 4-

hydroxybenzyldehyde (4-hydroxybenzoicaldehyde); Benzoic acid-4-glucuronide 

(benzoic acid-4-O-glucuronide); Cyanidin-3-glucoside (2-(3,4-dihydroxyphenyl)-5,7-

dihydroxy-3-chromeniumyl-β-D-glucopyranoside); Ferulic acid (4-hydroxy-3-

methoxycinnamic acid); Hippuric acid (N-benzoylglycine); Isovanillic acid (3-hydroxy-

4-methoxybenzoic acid); Isovanillic acid-3-glucuronide (4-methoxybenzoic acid-3-O-

glucuronide); Isovanillic acid-3-sulfate (4-methoxybenzoic acid-3-sulfate); 

Phloroglucinaldehyde (2,4,6-trihydroxybenzaldehyde); Protocatechuic acid (3,4-

dihydroxybenzoic acid); Protocatechuic acid-3-sulfate (4-hydroxybenzoic acid-3-

sulfate); Protocatechuic acid-4-glucuronide (3-hydroxybenzoic acid-4-O-

glucuronide); Protocatechuic acid-4-sulfate (3-hydroxybenzoic acid-4-sulfate); 

Vanillic acid (3-methoxy-4-hydroxybenzoic acid); Vanillic acid-4-glucuronide (3-

methoxybenzoic acid-4-O-glucuronide); Vanillic acid-4-sulfate (3-methoxybenzoic 

acid-4-sulfate). Adapted from de Ferrars et al. [11]. 
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Figure 2. Effect of peak metabolite signatures on TNF-α stimulated VCAM-1 

secretion by A) HUVEC, B) HCAEC. Cells were treated with 3 concentrations of 3 

serum metabolite profiles (representing ten-fold lower and ten-fold higher 

concentrations than the mean concentrations observed by Czank et al. [8]; Table 1) 

prior to the addition of 10 ng/mL or 0.1 ng/mL TNF-α for 24 h. Data were normalized 

to a TNF-α control (no DMSO) and columns represent the mean ± SD, n = 3 

biological replicates. Labelled means without a common letter differ, p≤ 0.05 

(ANOVA with post hoc LSD). *Different from DMSO, p≤ 0.05 (t-test). Abbreviations: 

HUVEC, human umbilical vein endothelial cells; TNF-α, tumor necrosis factor-α; 

VCAM-1, soluble vascular adhesion molecule-1. 

 

A

***

a

b

b

c

b

c

d

b

b

d

0

20

40

60

80

100

120

140

Basal Vehicle control0.19 µM P-1h1.9 µM P-1h19 µM P-1h0.2 µM P-6h2.0 µM P-6h20 µM P-6h0.4 µM P-24h4.4. µM P-24h44 µM P-24h

s
V

C
A

M
-1

 p
ro

te
in

 e
x
p

re
s
s
io

n
 (

%
)

DMSO

TNF-α (10 ng/mL)

1h profile

6 h profile

24 h profile

-

-

-

-

-

+

+

-

-

-

-

+

0.1x

-

-

-

+

1x

-

-

-

+

10x

-

-

-

+

-

0.1x

-

-

+

-

1x

-

-

+

-

10x

-

-

+

-

-

0.1x

-

+

-

-

1x

-

+

-

-

10x

B

0

20

40

60

80

100

120

140

Basal VC 1h 0.1x 1h 1x 1h 10x 6h 0.1x 6h 1x 6h 10x 24h 0.1x 24h 1x 24h 10x

s
V

C
A

M
-1

 p
ro

te
in

 e
x
p

re
s
s
io

n
 (

%
)

***

a

b

a,b
a,b

a,b

c
c

b

c
c

DMSO 

TNF-α (0.1 ng/mL) 

1 h profile

6 h profile

24 h profile

-

-

-

-

-

+

+

-

-

-

-

+

0.1x

-

-

-

+

1x

-

-

-

+

10x

-

-

-

+

-

0.1x

-

-

+

-

1x

-

-

+

-

10x

-

-

+

-

-

0.1x

-

+

-

-

1x

-

+

-

-

10x

 

 



www.mnf-journal.com Page 19 Molecular Nutrition & Food Research 

19 

 

 

This article is protected by copyright. All rights reserved. 

 

Figure 3. Effect of peak metabolite signatures on TNF-α stimulated IL-6 

secretion by A) HUVEC, B) HCAEC. Cells were treated with 3 concentrations of 3 

serum metabolite profiles (representing ten-fold lower and ten-fold higher 

concentrations than the mean concentrations observed by Czank et al. [8]; Table 1) 

prior to the addition of 10 ng/mL or 0.1 ng/mL TNF-α for 24 h. Data were normalized 

to a TNF-α control (no DMSO) and columns represent the mean ± SD, n = 3 

biological replicates. Labelled means without a common letter differ, p≤ 0.05 

(ANOVA with post hoc LSD). *Different from DMSO, p≤ 0.05 (t-test). Abbreviations: 

HCAEC, human coronary artery endothelial cells; TNF-α, tumor necrosis factor-α; IL-

6, interleukin-6. 
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Figure 4. Effect of peak metabolite signatures on TNF-α stimulated VCAM-1 

and IL-6 mRNA expression in HCAEC A) VCAM-1, B) IL-6.  Cells were treated 

with the highest concentration signature metabolites (19 µM, 20 µM, 44 µM reflecting 

1 h, 6 h, and 24 h serum profiles respectively; Czank et al. [8]) and stimulated with 

0.1 ng/mL TNF-α for 4 h. Amplification values were normalized to the geometric 

mean of two stable reference genes, VIPAS39 and PRDM4. Data where normalized 

to a TNF-α control (no DMSO) and columns represent the mean ± SD, n = 3 

biological replicates. Labelled means without a common letter differ significantly, p≤ 

0.05 (ANOVA with post hoc LSD). *Different from DMSO, p≤ 0.05 (t-test). 

Abbreviations: HCAEC, human coronary artery endothelial cells; TNF-α, tumor 

necrosis factor-α; IL-6, interleukin-6; VCAM-1, vascular adhesion molecule-1. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Basal VC 1 h 6 h 24 h

V
C

A
M

-1
 m

R
N

A
 e

xp
re

ss
io

n
 (

fo
ld

 c
h

a
n

g
e

)

b

b
a,b

*

0

0.5

1

1.5

2

2.5

Basal VC 1 h 6 h 24 h

IL
-6

 m
R

N
A

 e
xp

re
ss

io
n

 (
fo

ld
 c

h
a

n
g

e
)

b

a

b

b

*

A

B TNF-α (0.1 ng/mL)

TNF-α (0.1 ng/mL)

a

 



www.mnf-journal.com Page 21 Molecular Nutrition & Food Research 

21 

 

 

This article is protected by copyright. All rights reserved. 

 

Figure 5. Effect of peak metabolite signatures on TNF-α stimulated phosphor-

NFB p65 expression in HCAEC. Cells were treated with the highest concentration 

signature metabolites (19 µM, 20 µM, 44 µM reflecting 1 h, 6 h, and 24 h serum 

profiles respectively; Czank et al. [8]), and stimulated with 10 ng/mL TNF-α  for 15 

min. Data were normalized to the vehicle control (DMSO) and columns represent the 

mean ± SD, n = 3 biological replicates. Blots are representative of one of three 

replicates. Density values were normalized to reference protein, GAPDH. Labelled 

means without a common letter differ significantly, p≤0.05 (ANOVA with post hoc 

LSD). Comparisons of untreated cells to vehicle control (DMSO) were established 

via Student’s t-test, *p≤ 0.05. Abbreviations: HCAEC, human coronary artery 

endothelial cells; TNF-α, tumor necrosis factor-α. 
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Analyte 

 

Final  profile concentration (nM) 

1 h profile 6 h profile 24 h profile 

4-Hydroxybenzyldehyde 1 10 100 1 10 100 1 10 100 

Benzoic acid-4-glucuronide  1 10 100 4 40 400 4 40 400 

Cyanidin-3-glucoside  5 50 500 0 0 0 0 0 0 

Ferulic acid 29 290 2900 21 210 2100 59 590 5900 

Hippuric acid  7 70 700 23 230 2300 194 1940 19400 

Isovanillic acid 12 120 1200 0 0 0 0 0 0 

Isovanillic acid-3-glucuronide   1 10 100 2 20 200 0 0 0 

Isovanillic acid-3-sulfate  0 0 0 0 0 0 17 170 1700 

Phloroglucinaldehyde 3 30 300 55 550 5500 5 50 500 

Protocatechuic acid 4 40 400 8 80 800 1 10 100 

https://doi.org/10.1002/mnfr.201700053
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Protocatechuic acid-3-sulfate  7 70 700 2 20 200 2 20 200 

Protocatechuic acid-4-glucuronide  2 20 200 3 30 300 0 0 0 

Protocatechuic acid-4-sulfate  7 70 700 2 20 200 2 20 200 

Vanillic acid  110 1100 11000 80 800 8000 136 1360 13600 

Vanillic acid-4-O-glucuronide  1 10 100 2 20 200 0 0 0 

Vanillic acid-4-sulfate  0 0 0 0 0 0 17 170 1700 

Total 190 1900 19000 203 2030 20300 438 4380 43800 

Table 1. Serum profile constituents and concentrations 

Common name (chemical name): 4-hydroxybenzyldehyde (4-hydroxybenzoicaldehyde); Benzoic acid-4-glucuronide (benzoic acid-4-

O-glucuronide); Cyanidin-3-glucoside (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-chromeniumyl-β-D-glucopyranoside); Ferulic acid (4-

hydroxy-3-methoxycinnamic acid); Hippuric acid (N-benzoylglycine); Isovanillic acid (3-hydroxy-4-methoxybenzoic acid); Isovanillic 

acid-3-glucuronide (4-methoxybenzoic acid-3-O-glucuronide); Isovanillic acid-3-sulfate (4-methoxybenzoic acid-3-sulfate); 

Phloroglucinaldehyde (2,4,6-trihydroxybenzaldehyde); Protocatechuic acid (3,4-dihydroxybenzoic acid); Protocatechuic acid-3-sulfate 

(4-hydroxybenzoic acid-3-sulfate); Protocatechuic acid-4-glucuronide (3-hydroxybenzoic acid-4-O-glucuronide); Protocatechuic acid-

4-sulfate (3-hydroxybenzoic acid-4-sulfate); Vanillic acid (3-methoxy-4-hydroxybenzoic acid); Vanillic acid-4-glucuronide (3-

methoxybenzoic acid-4-O-glucuronide); Vanillic acid-4-sulfate (3-methoxybenzoic acid-4-sulfate). 


