
Research Article
Orchestrated Platform for Cyber-Physical Systems

Róbert Lovas , Attila Farkas , Attila Csaba Marosi , Sándor Ács, József Kovács,
Ádám Szalóki, and Botond Kádár

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), P.O. Box 63, Budapest 1518, Hungary

Correspondence should be addressed to Róbert Lovas; lovas.robert@sztaki.mta.hu

Received 24 November 2017; Revised 21 March 2018; Accepted 19 April 2018; Published 5 July 2018

Academic Editor: Shun-Feng Su

Copyright © 2018 Róbert Lovas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the main driving forces in the era of cyber-physical systems (CPSs) is the introduction of massive sensor networks (or
nowadays various Internet of things solutions as well) into manufacturing processes, connected cars, precision agriculture, and
so on. Therefore, large amounts of sensor data have to be ingested at the server side in order to generate and make the “twin
digital model” or virtual factory of the existing physical processes for (among others) predictive simulation and scheduling
purposes usable. In this paper, we focus on our ultimate goal, a novel software container-based approach with cloud agnostic
orchestration facilities that enable the system operators in the industry to create and manage scalable, virtual IT platforms on-
demand for these two typical major pillars of CPS: (1) server-side (i.e., back-end) framework for sensor networks and (2)
configurable simulation tool for predicting the behavior of manufacturing systems. The paper discusses the scalability of the
applied discrete-event simulation tool and the layered back-end framework starting from simple virtual machine-level to
sophisticated multilevel autoscaling use case scenario. The presented achievements and evaluations leverage on (among others)
the synergy of the existing EasySim simulator, our new CQueue software container manager, the continuously developed
Occopus cloud orchestrator tool, and the latest version of the evolving MiCADO framework for integrating such tools into a
unified platform.

1. Introduction

As indicated in [1], we are the witnesses of a parallel but
strongly interinfluencing development in computer and
manufacturing sciences including the related rapid technol-
ogy evolution. The achievements of computer and ICT
research efforts were directly applied in manufacturing hard-
ware, control systems, and software. Moreover, the complex-
ity and challenges generated in the field of manufacturing
continuously influenced the developments in computer sci-
ence and ICT. In line with the latest research and develop-
ment trends, big data-related tools (see Section 2), such as
predictive analytics and simulations, have been contributing
to the increasingly wider range of sectors, including
manufacturing, agriculture, healthcare, and other services.
In many of those cases, cloud computing serves as an elas-
tic and efficient paradigm for implementing sensor data
ingestion and simulation back-ends. With the emerging
lightweight software container technologies (see Section 2),

the feasible approaches and design options for such plat-
forms have been significantly enriched for cyber-physical
systems (CPSs).

CPSs, relying on such latest and foreseeable further devel-
opments of (i) computer science, (ii) information and com-
munication technologies, and (iii) manufacturing science
and technology, may lead to the 4th Industrial Revolution,
frequently noted as Industry 4.0 [1]. In our paper, we present
the evolution of our ultimate goal, an orchestrated platform
for Industry 4.0, realized first within the Docker@SZTAKI
project (see Section 3), which is responsible for collecting
(among others) sensor data and enables sophisticated simu-
lations using the data. The different versions, namely, the
cloud VM-based and the software containerized variants,
provide the three key requested features, that is, highly scal-
able, vendor-independent (cloud provider/technology agnos-
tic), and open-source facilities that help protect the sensitive
factory data by using, for example, in-house cloud or servers
at the company premises but, at the same time, allow

Hindawi
Complexity
Volume 2018, Article ID 8281079, 16 pages
https://doi.org/10.1155/2018/8281079

http://orcid.org/0000-0001-9409-2855
http://orcid.org/0000-0003-0579-3516
http://orcid.org/0000-0001-9105-6816
https://doi.org/10.1155/2018/8281079
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2018%2F8281079&domain=pdf&date_stamp=2018-07-05


accessing public cloud services seamlessly when it becomes
necessary (e.g., in the case of peek/unpredictable load or for
high-availability functionalities). Therefore, they formed a
robust and adaptive framework for further pilot application
areas, for example, connected cars and precision farming
(see Section 5), as the presented evaluation illustrates, for
example, the elasticity and other parameters of the current
implementation that has been ported under MiCADO (see
Section 4.2).

As a vital part of our back-end platform, the main goal of
the presented orchestrated platform (see Section 3.1) is to reli-
ably receive and store incoming sensor data (including
images) from multiple arrays of configured sensors that are
deployed in the factory, on the trucks, and so on. One of
the most crucial requirements concerning such back-ends is
the capability to scale as the number of sensors and the vol-
ume of incoming data grow rapidly. It can be achieved by
the appropriate architecture, solid fundamental building
blocks, and exhaustive testing. Another important goal of
the sensor data back-end is to serve the collected data for
analytical purposes, for example, to feed the simulators with
initial data or to compare the already collected data with the
simulation results.

As another fundamental component of the orchestrated
back-end platform, a discrete-event simulation (DES) kernel
is utilized to forecast the behavior of a manufacturing system,
denoted as EasySim hereafter (see Section 3.2). Specific
details about the simulation kernel are provided in [2]; here,
we just provide some highlights of EasySim. The simulation
kernel is an implementation of the classical simulation
modeling approach called discrete-event simulation (DES)
and developed earlier in MTA SZTAKI. In a nutshell, the
DES approach utilizes a mathematical/logical model of a
physical system that portrays state changes at precise points
in a simulated time horizon. Both the nature of the state
changes and the time at which the change occurs mandate
precise description. DES models are mainly flow models
tracking the flow of entities through the factory. The tracking
is done using times at which the various events occur and are
sequentially ordered according to their occurrence time. In
the modeling phase, the task of a modeler is to determine
the state variables that capture the behavior of the system,
the events that can change the values of those variables and
the logic associated with each event. Executing the logic asso-
ciated with each event in a time-ordered sequence produces a
simulation of the system. As each event occurs and expires, it
is removed from the sequence called an event list, and the
next event is activated. This continues until all the events
have occurred or an earlier-defined time window limit is
achieved. Statistics are gathered throughout the simulation
and reported with performance measures. Later in the paper,
we provide the simulation scenarios, where the EasySim ker-
nel is applied (see Section 4.1), but the main focus will be on
the scenario generation and the evaluation of the simulation
runs, which, contrary to the initial desktop environment, will
run in parallel on the orchestrated back-end platform. With
the parallelization support of this back-end platform, we
are able to significantly speed up the evaluation of different
scenarios which earlier run only sequentially in desktop

environments. Additionally, it is important to mention that
other simulation engines, even third-party, off-the-shelf sim-
ulation software, would have been suitable to model the sce-
narios presented in Section 3.2. EasySim was selected because
of performance reasons.

2. Related Work

In this section, we discuss popular approaches, methods, and
already-available services related to our ultimate goals and
particularly addressed high-level features: (i) multilevel auto-
scaling in the cloud involving VMs and containers, (ii) cloud
technology/provider agnostic mechanisms including high
portability, and (iii) generic open-source implementation,
which together enable the efficient deployment and opera-
tion of the wide range of CPS services.

Regarding cloud technologies, already, several authors
underlined the fact that cloud computing is playing a signif-
icant role in realizing cyber-physical systems [3–5].

Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud may be considered the three dominant
forces in public cloud computing, and all the three provide
their own IoT [6] platform and services [7–9]. These are
generic, hosted platforms and not available as an on-
premise private solution. There are several proposals avail-
able for data processing that are aimed at providing a
generic architecture rather than one that fits a single-use
case [10–12]; thus, these can be exploited not just for strict
big data scenarios.

The FIWARE big data architecture [13] was created
within the FIWARE (Core Platform of the Future Internet)
project as one of many generic enablers (GEs). A GE repre-
sents a functional building unit. A GE implementation sup-
ports a given set of functions over a set of APIs and
interoperable interfaces that conform to the open specifica-
tions given for that GE [14]. The big data GE architecture
expands the basic Apache Hadoop one. The Master Node
has all management software and acts as a front-end for the
users. Infinity is the permanent storage cluster (based on
HDFS). Computing clusters have a lifecycle: they are created,
they are used for computation, and, finally, they are removed.
All data must be uploaded to Infinity beforehand. Data can
be uploaded to and retrieved from Infinity via WebHDFS
[15] or Cosmos CLI (a command line interface to
WebHDFS). The big data GE specifies the use of SQL-like
analytic tools like Hive, Impala [16], or Shark. Although the
GE is based on Hadoop [17], it proposes several alternatives:
(i) the Cassandra [18] File System can be used instead of
HDFS, (ii) a distributed NoSQL database like HBase can be
installed on top of HDFS, and (iii) use, for example, Cascad-
ing [19] as an extension or replacement.

DICE [20] is an EU Horizon 2020 research project that
is aimed at providing a methodology and framework for
developing data-intensive applications. It offers a frame-
work consisting of an Eclipse-based IDE and tools and sup-
ports Apache Spark [21], Storm [22], Hadoop (MapReduce),
Cassandra, and MongoDB [23]. By using its methodology,
it allows the architecture enhancement, agile delivery, and
testing for batch and stream processing applications.

2 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Building on application containers and orchestration
(e.g., via Docker [24] or Kubernetes [25]), serverless comput-
ing is an execution model for cloud computing where the
cloud provider manages dynamically the underlaying
machine resources. The pricing model is based on the actual
resources consumed during execution (e.g., CPU execution
time, memory, and network). All major public cloud pro-
viders support this model, for example, AWS Lambda,
Google Cloud Functions, or Azure Functions. There are sev-
eral open-source implementations like OpenLambda [26],
OpenFaaS [27] (Open Function as a Service), Kubeless [28],
Funktion, Iron Functions, and Fission.

Terraform [29] is an open-source tool for building, man-
aging, and versioning virtual infrastructures in public or pri-
vate cloud environments. Terraform allows defining whole
virtual infrastructures via a configuration template. This
can contain low-level information like machine types, stor-
age, or network configuration but also high-level compo-
nents like SaaS services or DNS entries. Based on the
configuration, Terraform creates an execution plan and a
resource graph to build the defined infrastructure. Topology
and Orchestration Specification for Cloud Applications
(TOSCA) [30, 31] is a standard language by OASIS [32] for
describing collections or topologies of services, their relation-
ships, components, and so on. It is similar to Amazon Cloud-
Formation, OpenStack Heat, and Terraform. It is aimed at
being an open standard that provides a superset of features
(and grammar).

Regarding the representation and sharing industrial data
in distributed systems, several initiatives exist. The National
Institute of Standards and Technology (NIST) initiated the
Smart Manufacturing Systems (SMS) Test Bed [33] in which
data is collected from the manufacturing lab using the
MTConnect (link is external) standard. That data is aggre-
gated and published internally and externally of NIST via
web services. Other initiative from General Electric is Predix
[34], a huge platform enabling the collection and analysis of
product- and asset-related data in order to improve and
optimize operations. The SMS Test Bed is a source from
where data can be retrieved and analyzed, but the Test Bed
itself does not include solvers or simulators. Predix with its
own multiple layers is designed for collection and analytics
and includes tools for analysis, but building models which
are later applied in the decision support here is also always
necessary and at the same time almost the most difficult
part. How to build these models is still not clear from the
available sources of Predix. In our solution, to be presented
in the simulation scenario, the model in question is built as
discrete-event simulation with a tool developed earlier in
an earlier project at MTA SZTAKI. This model is built auto-
matically based on the Core Manufacturing Simulation Data
(CMSD) standard, specifically designed for manufacturing
simulation studies.

3. Docker@SZTAKI Project

The main motivation behind the Docker@SZTAKI project
was to elaborate and demonstrate a Docker software
container-based platform that can be formed on demand in

a highly portable way, that is, according to the complexity
and the actual needs of the CPS application in various IT
environments. The supported environments (see Figure 1)
include even the user’s laptop, or the on-premise servers
of the institute, and also a wide range of private/public/
community clouds, for example, the Hungarian academic
federated community cloud, the MTA Cloud (based on
OpenStack middleware), or the public Amazon Web Ser-
vices (AWS) cloud.

The Docker@SZTAKI platform (see Figure 1) consist of
a private repository of Docker images, for example, the
EasySim simulator (see Section 3.2), the various components
of the presented sensor data back-end, and further auxiliary
tools, such as the CQueue manager (see Section 3.2) or the
Occopus [35] cloud orchestrator. CQueue plays a crucial
role when the push model of the Docker Swarm clustering
mechanism cannot be applied, and the pull model is more
suitable for the application (e.g., in the case of EasySim).
The Occopus cloud orchestrator is responsible for creating
and managing the required VMs in the selected clouds when
the Docker@SZTAKI user needs extra or 24/7 available IT
capacities for their applications.

The platform has been used for demonstrating two major
pillars of the CPS components: sensor data back-end and
DES simulation.

3.1. Orchestrated Back-End Framework for CPS. The goal of
the framework is to reliably receive and store incoming sen-
sor data (including images) from arrays of configured sensors
and scale the number of sensors as needed. The framework
also includes complementary user and administrative appli-
cations and connected analytics. In this section, we are going
to detail the evolution of the framework in three iterations.
Sensor data is usually generated by small microcontroller-
based devices where usually raw data is from an arbitrary
number of different instruments. Measurements are taken
periodically and, thus, it generates a large number of small
packets. Storing a large volume of this kind of data requires
a tailored infrastructure with the capability to scale out
(horizontally) as the volume of data grows.

3.1.1. Virtual Machine-Based Architecture. The architecture
follows a three-tier layout as depicted in Figure 2. Each com-
ponent of each tier can be deployed on a separate node. This
allows easy scaling of the appropriate tiers.

The delivery tier (shown in Figure 2) accepts incoming
sensor data and forwards it to one of the data collector appli-
cation instances in the aggregation tier. The forwarding deci-
sion is made in two steps. First, based on a round-robin
algorithm, a high-availability proxy and load balancer (based
on HAProxy [36]) are selected. The proxy, in turn, will select
an application server with the lowest load and forward the
request to that one. A data collector instance in the aggrega-
tion tier (shown in Figure 2) will decode the received data
and store them in the database tier (shown in Figure 2).
Besides the data collector, other functionalities are also avail-
able and work similarly. Database services are provided by
the Cassandra or MongoDB [23] database cluster, besides
RDBMS-like MySQL. Cassandra is a decentralized structured

3Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



storage system that is well suited for storing time-series data
like sensor data. As the volume of incoming data changes,
Cassandra allows dynamically adding or removing new
nodes to the database.

Data submission is initiated by the client tier resolving
the DNS endpoint of a given service. The DNS endpoint
may contain one or more load balancer address; in turn, they
distribute the load between the available receiver instances.
Using round-robin DNS techniques, it is possible to scale
the number of load balancer nodes. It is a well-known simple
method for load sharing, fault tolerance, and load distribu-
tion for making multiple redundant service hosts available.
Next, HAProxy servers are responsible for balancing the load
across multiple application servers (e.g., data collectors)
after through the round-robin DNS the client contacts one.

HAProxy also continuously monitors the health and perfor-
mance of the application servers connected.

A data receiver application and connected components
are depicted in Figure 3. It consists of the following: Chef is
used as a deployment orchestrator for bootstrapping new
nodes for the different tiers. The data processing component
and Cassandra connector are implemented using the Flask
web framework and Python. The sensor metadata decoder
is responsible for interpreting the incoming data and passing
it to the Cassandra connector. The Cassandra connector is
used to store the decoded metadata in the database cluster.
uWSGI [37] is used as a WSGI [38] application server, and,
finally, Nginx [39] is connected to the wire protocol of
uWSGI to achieve a high-performance WSGI-based web
front-end.

CQueue

Occopus

Occopus

AWS

Private repository

Swarm

Figure 1: Docker@SZTAKI: main components with their typical usage scenarios.

Client tier Delivery tier Aggregation tier Service tier

Database

...

Cassandra/MongoDB
database cluster

Node
Node

Node

A
na

ly
tic

s

Object storage (Ceph)

...

...OSD

MODRa
do

sG
W

(S
3)

Monitoring

Storage
service

Data
collectors

(TCP/
HTTP)

HAProxy
(TCP/
HTTP)

HAProxy
(TCP/
HTTP)

...

Backoffice

...
Round-
robin
DNS

Sensors

IoT

Mobile
devices

Figure 2: General architecture of the framework.

4 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.1.2. Container-Based Architecture. The original data collec-
tor framework is based on virtual machines, and the compo-
nents are run on separate nodes. This architecture is ideal to
scale out or scale in the components based on the application
utilization. On the other hand, this separation might have a
negative effect on the resource utilization. To achieve better
resource utilization, we have created the Docker version of
the data collector infrastructure with smaller granularity.
With the Docker container technology [24], the components
of the architecture can be separated into containers; there-
fore, we can run more than one collector component on
one particular virtual machine. The Docker version of the
collector provides more efficient resource utilization than
the virtual machine-based solution.

To create the Docker-based version, we built container
images from each of the infrastructure components. We
extended the application with a new configuration file
which can be customized through the environment vari-
ables on the container start. This configuration is per-
formed by the Docker entry point script at the start (this
is the main configuration method in the Docker ecosystem).
For the Cassandra Docker version, the official Cassandra
image was selected from the Docker Hub but we applied
some modifications; the official entry point script was
extended to support the automatic Cassandra cluster crea-
tion at the start time on a Docker Swarm cluster. With
these images, we created a Docker compose file to provide
a simple container orchestration method. With the com-
pose file, the main part of the collector infrastructure can
be deployed by the service operator on one machine or on

a Swarm cluster as a Docker stack, and the containers can
be easily configured through the compose file with various
environment variables.

The service operator can deploy the data collector frame-
work as a Docker stack from the described Docker compose
file on a cluster managed by Docker Swarm. Another impor-
tant feature of Docker Swarm is the provided overlay net-
work between the Swarm nodes for the containers. In this
network, the containers can access each other like they are
on one virtual machine. Furthermore, Swarm provides an
ingress routing mesh on this network. With the routing
mesh, the Swarm services can expose their ports on the vir-
tual machines so they can be reached on every Swarm node
from outside of the cluster. With that feature, Swarm pro-
vides an external load balancer between the application con-
tainers within a Docker service. Therefore, we decided to
replace the HAProxy in the data collector infrastructure with
the above-described routing mesh facility of Swarm. The
resulting architecture is demonstrated in Figure 4. Prome-
theus [40] is used for monitoring the infrastructure with
agents deployed on the nodes.

The infrastructure is deployed andmanaged by the Occo-
pus [35] cloud orchestrating tool. Occopus is open-source
software providing features to orchestrate, configure, and
manage virtual infrastructures. It allows describing virtual
infrastructures in a cloud agnostic way. We created the nec-
essary description files to build and maintain the collector
framework. As an additional benefit, the number of Swarm
workers in the framework can be automatically scaled based
on their CPU load.

3.1.3. Extended Architecture. In the next iteration of the data
collector, we improved the data storage layer and separated
the functions of the data collector layer to improve the disad-
vantages of the framework. In the first version, all metadata
about the sensors and the measured data are stored in the
Cassandra database. This is not an optimal database schema
to store related data in a NoSQL database; therefore, we sep-
arated the stored data into two databases. The information
and the corresponding metadata of the sensors are stored in
an SQL database, and measurement data will be stored in a
NoSQL database or distributed file system. Originally, data
collectors served multiple purposes: receiving, processing,
and storing the data in a database. These functions have been
separated into distinct components. These streaming compo-
nents push data to a streaming component, and dedicated
processors store the data for further analytics or process them
in-stream. This greatly reduces the stress on the data collec-
tor and furthers the architecture. The extended collector
architecture is demonstrated in Figure 5.

3.2. EasySim Discrete-Event Simulation for CPS

3.2.1. CQueue and Its Pull Execution Model for Tasks. Since
Docker does not provide a pull model for task execution
(Swarm uses a push execution model), the new CQueue
framework provides a lightweight queue service for process-
ing tasks via application containers. The framework consists
of four main components (see Figure 6): (i) one or more

HAProxy
load balancer

CPPS camera sensor receiver

NGINX web server

uWSGI application server

Python flask web framework

Camera sensor
image/video

receiver
CQLEngine

Image
converter

Chef deployment tool

Cassandra cluster

Figure 3: Architecture of a web-based data collector application for
sensor image data.

5Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CQueue server, which acts as a front-end and receives the
container-based task requests; (ii) a queue server which
schedules the task requests for workers; (iii) CQueue workers
that pull tasks from the queue server; and (iv) a key-value
store that stores the state and the output of the finished tasks.
Currently, queuing is handled by RabbitMQ, and Redis is
used as the key-value store. The front-end server and the
worker components are written in Golang, and they have a
shared code base. All of the components are running inside
Docker containers and can be scaled based on their utiliza-
tion. The design goals of the framework are to use standard
interfaces and components to create generic job processing
middleware.

The framework is built for executing Docker container-
based tasks with their specific inputs. Also, environment var-
iables and other input parameters can be specified for each
container. CQueue uses a unique ID to identify the pushed
tasks, and the user has to specify it. The ID, the application
container, and the inputs of the task must be specified in
the standard JSON (JavaScript Object Notation) format.
The CQueue server receives the tasks via a REST-like API.
After this step, the server transforms the JSON-formatted
tasks to standard AMQP (Advanced Message Queuing Pro-
tocol) messages and pushes them to the queue server. The
workers pull the registered tasks from the queue server via
the same AMQP protocol and execute them. One worker
processes one task at a time. After the task is completed,
the workers send a notification to the queue server, and this
task will be removed from the queue. The worker continu-
ously updates the status (registered, running, finished, or
failed) of the task with the task’s ID in the key-value store.
When the task is finished or failed, the worker stores the
stdout and stderr of the task in the key-value store as well.

The status of a task and the result can be queried from the
key-value store through the CQueue server. The output of
the task is not processed; it is stored in the key-value store
in its original format.

3.2.2. Architecture from the Simulation Point of View.
Figure 7 illustrates the overall architecture of the system from
a simulation experiment point of view. The graphical user
interface, denoted by GUI in Figure 7, is the place where
the configuration of an experiment with different parameters
can be defined. The Experiment Manager then forwards the
complete setup of the simulation and initiates the parallelized
simulation runs accordingly. The main database is given by
the DB symbol in the bottom of the figure, storing both the
structural input of the simulation and the parameters of the
simulation instances, and, later, after the simulation runs
are terminated, all the outputs are streamed by the simulation
runs. To better understand the process within this structure,
the following section gives the details of the modules intro-
duced above.

3.2.3. Standardized Database. Concerning the implementa-
tion of the persistence layer, MySQL has been selected to
store all the necessary back-end information.

Regarding the standardization of manufacturing and
logistic systems, there are different standards approved and
offered by different organizations; the most known one is
ISA 95, provided by the International Society of Automation
[41]. Having a comparison on the base of applicability,
finally, we selected the standard for Core Manufacturing
Simulation Data (CMSD) [42] in order to have a standard-
ized system with reusable components. In this way, we
applied standard data formats for representing certain struc-
tures of the system related to the simulation module,
namely, the SISO-STD-008-2010; the standard for Core
Manufacturing Simulation Data (SISO CMSD) provided by
SISO (http://www.sisostds.org, visited 2017-11-01) is applied
in the research.

This standard addresses interoperability between simula-
tion systems and other manufacturing applications. As such,
it inherently includes the most relevant and simulation-
related data for the simulation of manufacturing systems.
The CMSD model is a standard representation for core
manufacturing simulation data, providing neutral structures
for the efficient exchange of manufacturing data in a simula-
tion environment. These neutral data structures are applied
to support the integration of simulation software with other
manufacturing applications.

The CMSD standard has several packages, but not all
of them are necessary in this application. Just as an exam-
ple, the layout package was not used, as in our scenario the
focus of the experiment which is the layout is not relevant.
The standard itself is described as a UML model; further-
more, there are XML and representations in different pro-
gramming languages. Within the context of the research,
the back-end database was designed and implemented with
an implementation of the CMSD standard in a relational
database format, based on the initial UML version, forming
the main data storage of different simulation forecasting

Docker engine

Occopus

Prometheus Backoffice

Swarm manager

Docker engine Swarm mode

Docker engine Swarm mode Docker engine Swarm mode

Swarm worker 1 Swarm worker 2

Data
collector Cassandra Data

collector Cassandra

…

Monitoring

Create/delete
node 

Swarm overlay network

Figure 4: Container-based architecture of the sensor data back-end
framework with VM-level autoscaling.

6 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.sisostds.org


scenarios. All the data about the resources, the entities or
workpieces traveling in the manufacturing system, the rout-
ings, the sequence of operations, the control logic, and the
manufacturing orders to be completed are all stored in the
database according to the CMSD specification. One of the
nonfunctional requirements for selecting this solution,
namely, the direct implementation of SQL database tables
and relations, was the speed of building and updating simu-
lation models instantly.

According to the nature of the data stored in the MySQL
database, two types of tables can be distinguished. On the one
hand, the implementation of the CMSD standard provides
the information related to simulation. On the other hand,
there are tables, which store specific information necessary
for the application itself in this new environment.

3.2.4. Data Access Layer. Both the higher-level GUI that is
responsible for setting up the input parameters and visualiz-
ing the results of simulation scenarios and the Docker Con-
tainer Manager (currently CQueue) are connected to the
main database with a data access layer (DAL) (see Figure 7).

The correspondence, the bidirectional match between
classes in the system and data in the database, is assured by
the data access layer which is implemented with the Entity
Framework. This allows a higher level of abstraction when
dealing with data and supports the creation and maintenance
of data-oriented applications with less code than in tradi-
tional applications. The objects linked to relational data are
defined just like normal objects and decorated with attributes
to identify how properties correspond to columns in the
database tables.

Data stream

Data stream

Data stream

Data collector

D
at

a
pr

oc
es

so
r

D
at

a
pr

oc
es

so
r

D
at

a
re

ce
iv

er
D

at
a

re
ce

iv
er

... ...

Database

Analytics

Figure 5: Data collectors in the extended sensor data back-end architecture.

SIM
2 

SIM
...

SIM
1 

CQueue servers

Push tasks written in JSON/query results via HTTP(S)

Key-Value store
(Redis)

Queue servers
(RabbitMQ)

CQueue workers

Push tasks via AMQP 

Pull tasks/send
notifications via

AMQP 

Push results to key-value store

Query/pull results 

Database

Private
repository

Figure 6: CQueue architecture in the context of simulation.

7Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Evaluation of CPS Use Cases

4.1. EasySim: The Modeled System and Its Simulation
Experiments.As mentioned in the introductory part, the rea-
son for using EasySim instead of any other existing DES
tools is the difference in performance. EasySim is a simula-
tion kernel providing only the core functionality of a DES
tool. No graphical user interface had been developed for it,
and we believe that one the most promising data structures
had been selected to represent the event list because its prop-
erties (size, the speed of accessing its content) can highly
influence the speed of the simulation. Furthermore, EasySim
had been developed for building a DES model in the most
direct way with programming. The overall intention to
develop EasySim in such way was to achieve fast simulation
runs, and because EasySim is our own implementation, we
could be sure that the integration with the other tools in
this paper would be in the most convenient way. Again, it
is true that the simulation model presented below would have
been implemented in any other simulation software. EasySim
was selected because of its flexibility to be integrated in the
back-end platform.

Regarding the simulation model, it implements a produc-
tion line which contains eight workstations connected to
each other in a linear way, called a flow-shop line. The mod-
eled production line is part of a real manufacturing factory,
and operation times were given for each workstation pro-
vided by the factory. Additionally, the model implements
some kind of stochastic behavior such as failure of worksta-
tions which can be optionally used in the simulation. This

capability of stochastic behavior has been realized by inte-
grating a mathematical software package during the develop-
ment of EasySim which ensures proper random number
handling and different mathematical functions to approxi-
mate reality as much as it is possible. The operations on each
workstation are different andmay require the presence of one
or more human workers who perform the manufacturing of
the assembly task at the given station. As in a real production
system, the workers are also different; for each specific task at
a workstation, a worker needs to have a specific skill. More-
over, the operators are assigned to specific shifts meaning
that shift by shift we can have different teams, grouping dif-
ferent workers with different skills. As Figure 8 illustrates, it
is a linear, acyclic production line which contains eight work-
stations (WS1, WS2, etc.). Below each workstation, there is a
required skill name which indicates that a worker can operate
on the workstation only if the worker has the specific skill. A
worker can have multiple different skills meaning that he can
operate on different workstations. An evident solution is to
have one worker for each workstation with the required skills
of course, but in reality, factories have less workers available
to allocate them, so the task is to find an optimal worker set
which is able to carry the order out with a minimal number
of workers.

The task of the planner is to find the right configuration
of workers for each specific shift. Naturally, the problem
can be formulated as a formalized mathematical problem,
but as the nature of the operation times is stochastic (i.e.,
each operation varies and follows a distribution; additionally,
failures may occur unexpectedly at each workstation), the

Experiment Manager

GUI

DAL (data lccess layer)

DB

Docker container manager

Simulation
model

instance

Simulation
model

instance

Simulation
model

instance …W
at

in
g 

fo
r r

es
ul

ts 
(J

SO
N

) Initialization and parametrization of simulation model instances (JSON)

Figure 7: Web application architecture for simulation management/visualization (extended by the Docker Container Manager).

WS1 WS2 WS3 WS8WS4 WS7WS6WS5

Skill1 Skill2 Skill3 Skill4 Skill5 Skill6 Skill7 Skill8

Figure 8: The layout of the flow-shop system.

8 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



usage of a discrete-event simulation tool is more adequate to
model the line in question. To provide input, control the run
of the simulation model, and visualize the results of the sim-
ulation scenarios, a web application was developed and inte-
grated with the orchestrated back-end platform described
earlier. This is presented in the upper part of Figure 7 and
includes the Experiment Manager and the GUI for visualiza-
tion. The visualized functionality of the EasySim DES kernel
introduced at the beginning of the paper is available through
this web application, and some examples of the GUI of the
system is presented in the figures of the following section.

4.1.1. Parametrization of the System. There are two main
input sets for each simulation experiment. First, the model
should be fed with production orders which are recorded giv-
ing the order IDs, due dates, and product quantities. All other
data describing the products, their routing, and the operation
times are given in advance and stored in the database. The
second input, which is specific to the model, is the matrix
of workers and their skills.

In the example presented in Table 1, Worker1 can work
on WS1, WS4, and WS6 workstations but cannot work on
WS2, WS3, WS5, WS7, and WS8 workstations. A worker
can have multiple different skills, so considering the example
before, a worker can operate both on WS2 and on WS3 only
if he has the Skill2 and Skill3 skills.

Figure 9 shows how the parametrization of the worker’s
skills can be completed with the help of the high-level GUI.

As you can see, there are ten different workers provided
as columns in the matrix while in each configuration—
which will run in parallel on the orchestrated back-end
platform—separate skill patterns can be defined for each
worker. These are denoted by the names of the workstations,
e.g. SV01 and SV02.

4.1.2. Execution of Simulation Runs and the GUI. Having the
input parameter set, the simulation model instances are built
dynamically for each configuration and the simulation runs
start in parallel. One simulation run includes one worker
configuration (a row with a Config X label on the figure of
the worker configuration) with the selected orders. These
instantiated simulations as configurations are detached from
the GUI, and they are handled on the orchestrated back-end
platform as separate workers. When a simulation run is
completed (i.e., the worker with its simulation finishes), the
output statistics are saved into the database for each configu-
ration. After the successful execution of each worker, the
Docker Container Manager notifies the GUI about the com-
pletion of the simulation run, and when all the running
configurations were completed, the GUI can visualize the
simulation results. Figure 10 provides the statistics about
the utilization of the workers in configuration number 3.
The blue part in the top region of the figure illustrates the
percentage the operator was idle while the green part indi-
cates the time where the operator was working. With the
orders completed in this configuration, we can see that by

Table 1: The layout of the flow-shop system.

Skill1 Skill2 Skill3 Skill4 Skill5 Skill6 Skill7 Skill8
Worker1 1 0 0 1 0 1 0 0

Worker2 0 0 0 0 1 0 1 1

Worker3 0 1 1 1 0 1 0 0

Worker configurationConfiguration
simulation Number of configurations:

Worker 1

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

SV01
SV02
SV03
SV06

Config 1

Config 2

Config 3

Config 4

Config 5

Worker 2

5

Worker 4 Worker 5 Worker 6 Worker 7 Worker 8 Worker 9 Worker 10Worker 3

Create

Figure 9: User interface for parameterizing workers’ skills and teams.

9Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



applying seven operators, we will have a very underutilized
environment. Figure 11 gives an overview of how the 3 dis-
tinct orders behaved in the system, mainly meaning that
there were no significant differences between the five differ-
ent configurations. As the main focus of the paper is the
orchestrated back-end, we additionally included some
explanatory charts, but many additional key performance
indicators can be visualized within the GUI. Some of them
visualize aggregated measures while others specific resource,
buffer, or worker-related measures.

4.2. Sensor Data Back-End Experiments: Multilevel
Autoscaling in MiCADO. The developed sensor data back-
end has been successfully migrated under the MiCADO
[43] (Microservices-based Cloud Application-level Dynamic

Orchestrator) framework that attempts to unify and also to
extend the previously described tools including Occopus
and CQueue in a long term. It allowed us to evaluate the sen-
sor data back-end in a more fine-grained way using multi-
level scaling, that is, not only at the VM level but also at the
container level. This approach utilized the two control loops
of MiCADO that led to the presented results.

4.2.1. MiCADO from a Scalability Point of View. MiCADO
[43] (developed by the EU H2020 COLA [44] project)
is a framework performing the execution of compound
microservice-based infrastructure on cloud resources. Beyond
the execution, the most important functionality of MiCADO
is the automatic scaling on two levels. The microservice-
level autoscaling deals with keeping the optimal number of

Worker utilization

Worker configuration: Config 3

100

90

80

70

60

50

40

30

20

10

0

86.48172203% 82.62200779%

33.77249954%

88.0126183%

19.1315643%

0.77472629%
4.23547968% 5.8452403%

0%

100%94.1547597%95.76452032%99.22527371%
80.8684357%

11.9873817%

66.22750046%

17.37799221%13.51827797%

CanvasJS.com

Worker utilization-config 3

Worker skill utilization-config 3

Idle

Working

Worker2 Worker3 Worker4 Worker5 Worker6 Worker7 Worker8 Worker9Worker1

90

80

70

60

50

40

30

20

10

0

Co_1×2_00131__SV01
Co_1×2_00131__SV02

Co_1×2_00131__SV03
Co_1×2_00131__SV06

CanvasJS.com

Worker2 Worker3 Worker4 Worker5 Worker6 Worker7 Worker8 Worker9Worker1

Figure 10: Chart representing the utilization of workers in a configuration.

10 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



container instances for a particular microservice. The
cloud-level autoscaling deals with allocating the optimal
amount of cloud resources for the entire microservice-
based infrastructure.

MiCADO is developed by integrating various tools into a
common framework. For executing microservice infrastruc-
ture, a dynamically extendable and resizable Swarm [45]
cluster is used. Monitoring is performed by Prometheus
[40] with agents on the nodes of the cluster. The communica-
tion with the cloud API and the orchestration of the Swarm
cluster is performed by Occopus [35] mentioned in previous
sections. Each of the components is integrated taking into
account the replaceability in the future in case a better tool
appears in its area. The scaling and optimization logic is built
by the COLA project as well as the submission interface. For
describing the microservice infrastructure, the project has
chosen the TOSCA [31] specification language where the
components, requirements, relations, and so on can be easily
defined in a portable way. The way of describing scaling/opti-
mization policies is developed by the COLA project as an
extension of the TOSCA specification.

The conceptual overview of the two control loops imple-
mented by the aforementioned components and tools is
shown in Figure 12. In both control loops, Policy Keeper per-
forms controlling and decision-making on scaling while Pro-
metheus acts as a sensor to monitor the measured targets. In
the microservice control loop, the targets are the microser-
vice containers realizing that the infrastructure can be con-
trolled. Containers are modified (number, location, etc.) by
Swarm playing as an actuator in the loop. A similar control
loop is realized for the cloud resources represented by virtual
machines in our case. Here, Occopus acts as an actuator to
scale up/down the virtual machines (targets). The microser-
vice control loop controls the consumers while the cloud-
level control loop controls the resources. As a consequence,
the microservice loop affects the cloud loop since more con-
sumers require more resources.

The goal of MiCADO control loops is to provide an auto-
matic scaling functionality for an infrastructure built by
microservices. For automatic scaling, there are several differ-
ent scenarios in which scaling can focus on optimizing the
running infrastructure for various goals. The execution of
the microservice infrastructure has different requirements
and different measurable characteristics. For example, pro-
cessing, memory, network bandwidth, and disk i/o are all
resources MiCADO may reserve for the infrastructure while
CPU load, memory usage, response time, or disk usage are
measurable characteristics. Beyond optimizing for some of
the characteristics, MiCADO is also being developed towards
optimizing for costs generated by the usage of (commercial)
cloud resources.

Beyond optimizing for easily measurable external charac-
teristics, MiCADO is prepared to monitor some internal
parameters of the microservice infrastructure. For example,
monitoring the length of a queue enables MiCADO to per-
form optimization in different scenarios like keeping the

Order KPI:

6.000 hrs

5.000 hrs

4.000 hrs

3.000 hrs

2.000 hrs

1.000 hrs

0 hrs

Order statistics about lateness

Lateness
Lateness on order 92662

Config 3: 5105.985888444444 hours
Config 1: 5105.953138061111 hours
Config 4: 5116.953800304722 hours
Config 2: 5105.987793643056 hours
Config 5: 0 hours

Order 92663 Order 92664Order 92662

Config 3
Config 1
Config 4

Config 2
Config 5

CanvasJS.com

Figure 11: Statistics of the orders pulled through the system.

Policy keeper
(controller)

Occopus
(actuator)

Virtual
machines
(measured

target)

Prometheus
(sensor )

Swarm
(actuator)

Containers
(measured

target)

Figure 12: Control loops applied for multilevel autoscaling of
virtual machines and containers in MiCADO.

11Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



0

20

40

60

80

100

0 60 18
0

24
0

36
0

42
0

54
0

60
0

72
0

78
0

90
0

96
0

10
80

11
40

12
60

13
20

14
40

15
00

16
20

16
80

18
00

18
60

19
80

20
40

21
60

22
20

23
40

24
00

25
20

25
80

27
00

27
60

28
80

29
40

30
60

31
20

32
40

33
00

34
20

34
80

36
00

CPU usage per node

Node #1
Node #2
Node #3
Node #4

Node #5
Node #6
Node #7

(a) CPU usage per node

0

5

10

15

20

25

30

35

40

45

0 60 18
0

24
0

36
0

42
0

54
0

60
0

72
0

78
0

90
0

96
0

10
80

11
40

12
60

13
20

14
40

15
00

16
20

16
80

18
00

18
60

19
80

20
40

21
60

22
20

23
40

24
00

25
20

25
80

27
00

27
60

28
80

29
40

30
60

31
20

32
40

33
00

34
20

34
80

36
00

CPU usage per AgroDat receiver container

AgroDAT receiver #1
AgroDAT receiver #2

AgroDAT receiver #3
AgroDAT receiver #4

(b) CPU usage per data receiver container

Figure 13: Continued.

12 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



number of items on a certain level, keeping a predefined pro-
cessing rate of items, or making the items consumed by a pre-
defined deadline. The different scenarios and optimization
strategies are continuously developed and added to the latest
version of MiCADO. The current version of MiCADO (v3)
supports the performance-based policy for containers and
virtual machines.

4.2.2. Results. The multilevel scaling of the back-end is han-
dled by MiCADO. With MiCADO’s dual control loops, we
can scale the container-based data collectors and the host vir-
tual machines as well. The whole data collector infrastructure
is deployed in MiCADO.

All measurements were performed on an OpenNebula-
based cloud within MTA SZTAKI. All nodes ran as virtual
machines on AMDOpteron 6376 CPUs with all virtual CPUs
(VCPUs) mapped to actual physical cores and connected via
a 10Gbit/s network. The virtual machines had 1 VCPU and
2GB RAM allocated. The measured data are exported from
MiCADO’s Prometheus monitoring component. MiCADO
was configured to scale up or down the containers in every
minute and the workers nodes in every third minute. We
only scaled the collector components automatically within
the architecture. The collector components are scaled up
when the average CPU usage of the collectors reaches 30
percent. This allows the saturation of the worker nodes and
distribution of the incoming data between additional collec-
tor containers. The collectors are scaled down at 10-percent

average CPU usage. The MiCADO worker nodes are scaled
up at 60-percent CPU usage and down at 20-percent CPU
usage. Measurements were performed with test sensor data,
and we generated and sent 800 data packages per second to
the framework. We deployed the collector infrastructure ini-
tially with one collector and three database containers. As
shown in Figure 13(c), as the collectors’ average CPU usage
reaches the threshold, MiCADO scaled up the collector con-
tainers, and the incoming data was distributed between the
increased numbers of collector containers. The number of
the collector components can be seen in Figure 14(a). The
balanced CPU usage of the collectors’ database components
can be seen in Figure 13(c). As seen in Figure 13(a) and in
Figure 14(b), when the MiCADO worker nodes’ average
CPU usage reached the threshold, MiCADO automatically
scaled up the worker nodes. Only node #4 had a high CPU
load, because the number of the collector containers was
enough to process the incoming data. The remaining run-
ning nodes can be considered spares in the system, or alter-
natively we can manually reschedule the running collector
components to balance the worker nodes’ CPU usage within
the cluster. As shown in Figure 13(c) and in Figure 14(a),
when the stream of the incoming data finished, the worker
components’ CPU usage lowered and MiCADO scaled
down the collector’s container service to the minimum
number of containers. This scaling down can be observed
in Figures 13(a) and 14(b), with the MiCADO worker nodes
as well.

0

10

20

30

40

50

60

70

80

0
12

0
18

0
30

0
36

0
48

0
54

0
66

0
72

0
84

0
90

0
10

20
10

80
12

00
12

60
13

80
14

40
15

60
16

20
17

40
18

00
19

20
19

80
21

00
21

60
22

80
23

40
24

60
25

20
26

40
27

00
28

20
28

80
30

00
30

60
31

80
32

40
33

60
34

20
35

40
36

00

CPU usage per database container

AgroDAT database #1
AgroDAT database #2
AgroDAT database #3

(c) CPU usage per database container

Figure 13: CPU usage per container.

13Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5. Future Works and Conclusions

This section summarizes further the targeted use cases: (i)
connected cars (see Section 5.1) and (ii) precision agriculture
(see Section 5.2), and contains conclusions for the paper. In
both (connected cars and precision agriculture) CPS areas,
a subset of the presented back-end framework has been
already applied and integrated successfully with other system
components particularly for research and evaluation pur-
poses and also for forming the baseline of new production-
level services.

As additional future work, we have started to study and
elaborate the adaptation of different job-based policies,
including deadline and throughput, in MiCADO over the
CQueue microservice infrastructure. The integration will
lead to an autoscalable CQueue job execution framework
with different strategies on scaling. Furthermore, the adapta-
tion of this sensor data ingestion architecture is already in
progress in two further sectors, namely, connected cars and
precision farming, with some positive preliminary results
based on the outlined sectoral demands.

5.1. Connected Cars. Connected car technologies have been
rapidly advancing with several new digital solutions and

autonomous driving features. Connected cars collect and
make interpretable massive amounts of data—mostly from
digital sensors of IoT systems by exchanging useful data
(e.g., alerts) between other vehicles, stoplights, and back-
end services [33, 46]. Even though automobiles today are
equipped with significant amount of processing and storage
capacities, the rapidly growing amount of raw data and the
higher-level functionalities require robust and scalable
back-end technologies that can handle the underlaying
sophisticated processing and analytical functions. Relying
on the basic principles and some components of the pre-
sented sensor data back-end architecture, our current
research focuses on CAN data collection, remote device
flashing, Eco-driving, and weather report and forecast with
some promising initial achievements (see details in [47]).

5.2. Precision Agriculture. The ultimate aim of the Agro-
Dat.hu project [48] is to create a knowledge center for preci-
sion agriculture based on the local sensor data (and also
integrating semi- or unstructured data from international
repositories). Concerning the sensors, more than 1000 com-
plex sensor pillars have been deployed at various selected
locations covering more than 8000 hectares of 58 farmers.
The sensor pillars have modular structure [49] with facilities

0

1

2

3

4

5

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40
21

60
22

80
24

00
25

20
26

40
27

60
28

80
30

00
31

20
32

40
33

60
34

80
36

00

Number of receiver containers

(a) Total number of data receiver containers

2

3

4

5

6

7

8

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40
21

60
22

80
24

00
25

20
26

40
27

60
28

80
30

00
31

20
32

40
33

60
34

80
36

00

Number of nodes

(b) Total number of all containers (nodes)

Figure 14: Number of containers.

14 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



to measure environmental factors (weather, soil moisture,
etc.), phenotypes (sensor image data), and other parameters
continuously for at least 3 years. The communication network
is based on a 4G GSM network and M2M communication-
enabled SIM cards. For processing and storing data and also
for providing services for researchers, farmers, decision-
makers, and so on, a new big data center is in operation based
on the OpenStack [50] cloud. It is responsible for providing
an elastic and flexible framework for the higher-level software
services: (among others) back-end for data collection, pro-
cessing, and decision support systems.

The back-end architecture of AgroDat.hu contains the
two main functionalities: (i) data collectors for processing
incoming sensor and sensor image data and (ii) a Backoffice
system for additional functionalities and administrative func-
tions. The obtained raw data is then made available for pro-
cessing and analytics in the big data center.

(1) First, the data collectors are responsible for gathering
and storing sensor messages in the cloud for further process-
ing. They preprocess the data and store it in a structured for-
mat for the other cloud-based functions. Additionally, it is
also stored directly in the input format to have backup for
security reasons and to be available for future implemented
functions and statistics. (2) The collected data can be visual-
ized within a Backoffice application and is also available for
further processing by analytical tools. The detailed descrip-
tion of these results can be found in [51].

5.3. Conclusions. In this paper, we presented different vari-
ants (based on orchestrated VMs and containers) and also
the major implementation steps of a scalable sensor data
back-end and predictive simulation architecture that can be
adapted with low-entry barriers to other use case scenarios
as well.

According to the evaluation of the orchestrated back-end
framework, the solution is highly scalable and the back-end
facilitates the transfer of the results achieved in the field of
digital factory (DF), namely, the DES solution presented in
the paper, by allowing much faster, parallelized behavior
forecasting of manufacturing systems. We strongly believe
that the orchestrated cloud and container-based back-end
platform support industrial applications by providing the
required up-to-date and cutting-edge ICT technologies.

The novelties of our cloud orchestration solution are
mostly described in [35]. However, the combination of the
key features such as (i) multilevel autoscaling including
VMs and containers, (ii) cloud agnostic approach, and (iii)
generic open-source solutions for such wide scope including
various CPS problems makes our solution innovative.

We are just in the initiating phase of creating and oper-
ating the Centre of Excellence in Production Informatics and
Control (EPIC CoE), and the integrated solution presented
in the paper already allows us to offer complex, powerful,
and affordable Industry 4.0 solutions to all stakeholders,
especially to SMEs. Moreover, we recently started the inno-
vation and knowledge transfer activities in the “Cloudifica-
tion of Production Engineering for Predictive Digital
Manufacturing” (CloudiFacturing) consortium [52] in order
to adapt the presented sensor data back-end and predictive

simulation architecture by the help of digital innovation
hubs across Europe.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially funded by the European “COLA
(Cloud Orchestration at the Level of Application)” project
(Grant Agreement no. 731574 (H2020ICT-2016-1)), by the
National Research, Development and Innovation Fund of
Hungary (Grant no. VKSZ 12-1-2013-0024) (Agrodat.hu),
and by the International Science andTechnologyCooperation
Program of China (Grant no. 2015DFE12860). On behalf of
the project Occopus, the authors thank for the usage of the
MTA Cloud [53] that significantly helped us achieve the
results published in this paper. The research conducted with
the scope of the discrete-event simulation was supported by
the European Commission through the H2020 project EPIC
(http://www.centre-epic.eu) (Grant no. 739592).

References

[1] L. Monostori, B. Kádár, T. Bauernhansl et al., “Cyber-physical
systems in manufacturing,” CIRP Annals, vol. 65, no. 2,
pp. 621–641, 2016.

[2] C. Kardos, G. Popovics, B. Kádár, and L. Monostori, “Method-
ology and data-structure for a Uniform System's Specification
in Simulation Projects,” Procedia CIRP, vol. 7, pp. 455–460,
2013.

[3] A. Gupta, M. Kumar, S. Hansel, and A. K. Saini, “Future of all
technologies-the cloud and cyber physical systems,” Interna-
tional Journal Of Enhanced Research In Science Technology &
Engineering, vol. 2, p. 2, 2013.

[4] I. Mezgár and U. Rauschecker, “The challenge of networked
enterprises for cloud computing interoperability,” Computers
in Industry, vol. 65, no. 4, pp. 657–674, 2014.

[5] R. Gao, L. Wang, R. Teti et al., “Cloud-enabled prognosis for
manufacturing,” CIRP Annals, vol. 64, no. 2, pp. 749–772,
2015.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (IoT): a vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[7] “AWS Internet of Things,” October 2017, http://aws.amazon.
com/iot.

[8] “Azure IoT Suite - IoT Cloud Solution,” October 2017, http://
www.microsoft.com/en-us/internet-of-things/azure-iot-suite.

[9] “Google IoT Core,” October 2017, http://cloud.google.com/
iot-core.

[10] “FIWARE architecture description: big data,” October 2017,
https://forge.fiware.org/plugins/mediawiki/wiki/fiware.

[11] N. Marz and J. Warren, Big Data: Principles and Best Practices
of Scalable Real-time Data Systems, Manning Publications Co.,
2015.

[12] “Highly scalable blog. In-stream big data processing,” October
2017, https://highlyscalable.wordpress.com/2013/08/20/in-
stream-big-data-processing/.

15Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.centre-epic.eu
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
http://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
http://cloud.google.com/iot-core
http://cloud.google.com/iot-core
https://forge.fiware.org/plugins/mediawiki/wiki/fiware
https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/
https://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/


[13] “FIWARE architecture description: big data,” October 2017,
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.
php/FIWARE.ArchitectureDescription.Data.BigData.

[14] “FIWARE glossary,” October 2017, https://forge.fiware.org/
plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.
Global.

[15] “Hadoop: WebHDFS REST API,” October 2017, http://
hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/WebHDFS.html.

[16] M. Kornacker, A. Behm, V. Bittorf et al., “Impala: a mod-
ern, open-source SQL engine for Hadoop,” in 7th Biennial
Conference on Innovative Data Systems Research (CIDR’15),
Asilomar, CA, USA, January 2015.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), pp. 1–10,
Incline Village, NV, USA, May 2010.

[18] “The Apache Cassandra project,” October 2017, http://
cassandra.apache.org.

[19] “Cascading: application platform for enterprise big data,”
October 2017, http://www.cascading.org.

[20] G. Casale, D. Ardagna, M. Artac et al., “DICE: quality-driven
development of data-intensive cloud applications,” in 2015
IEEE/ACM 7th International Workshop on Modeling in Soft-
ware Engineering, pp. 78–83, Florence, Italy, May 2015.

[21] “The Apache Spark project,” October 2017, http://spark.
apache.org.

[22] “The Apache Storm project,” October 2017, http://storm.
apache.org.

[23] V. Abramova and J. Bernardino, “NoSQL databases: Mon-
goDB vs Cassandra,” in C3S2E '13 Proceedings of the Interna-
tional C∗ Conference on Computer Science and Software
Engineering, pp. 14–22, Porto, Portugal, July 2013.

[24] “Docker-build, ship, and run any app, anywhere,” October
2017, https://www.docker.com/.

[25] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes,” Communications of the ACM,
vol. 59, no. 5, pp. 50–57, 2016.

[26] “OpenLambda,” October 2017, https://open-lambda.org/.

[27] “OpenFaaS: Functions as a Service,” October 2017, https://blog.
alexellis.io/introducing-functions-as-a-service/.

[28] “A Kubernetes native serverless framework,” October 2017,
http://kubeless.io/.

[29] “Terraform by HashiCorp,” October 2017, https://www.
terraform.io/.

[30] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA:
portable automated deployment and management of cloud
applications,” Advanced Web Services, pp. 527–549, 2013.

[31] “OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA),” October 2017, https://www.oasis-
open.org/committees/tosca.

[32] “OASIS - advancing open standards for the information
society,” October 2017, https://www.oasis-open.org/.

[33] T. Haberle, L. Charissis, C. Fehling, J. Nahm, and F. Leymann,
“The connected car in the cloud: a platform for prototyping
telematics services,” IEEE Software, vol. 32, no. 6, pp. 11–17,
2015.

[34] “GE. Predix platform: the foundation for digital industrial
applications,” March 2018, https://www.ge.com/digital/predix-
platform-foundation-digital-industrial-applications.

[35] J. Kovács and P. Kacsuk, “Occopus: a multi-cloud orchestrator
to deploy and manage complex scientific infrastructures,”
Journal of Grid Computing, vol. 16, no. 1, pp. 19–37, 2017.

[36] “HAProxy: the reliable, high-performance TCP/HTTP load
balancer,” October 2017, http://www.haproxy.org/.

[37] “The uWSGI project. uWSGI 2.0 documentation,” October
2017, https://uwsgi-docs.readthedocs.io.

[38] J. Gardner, “The Web Server Gateway Interface (WSGI),” The
Definitive Guide to Pylons, pp. 369–388, 2009.

[39] W. Reese, “Nginx: the high-performance web server and
reverse proxy,” Linux Journal, vol. 2008, no. 173, p. 2, 2008.

[40] “The Prometheus monitoring tool,” November 2017, https://
prometheus.io/.

[41] International Society of Automation, “ISA95, enterprise-
control system integration,” November 2017, https://www.isa.
org/isa95/.

[42] R. Bloomfield, E. Mazhari, J. Hawkins, and Y.-J. Son, “Interop-
erability of manufacturing applications using the Core
Manufacturing Simulation Data (CMSD) standard informa-
tion model,” Computers & Industrial Engineering, vol. 62,
no. 4, pp. 1065–1079, 2012.

[43] T. Kiss, P. Kacsuk, J. Kovacs et al., “MiCADO—Microservice-
based Cloud Application-level Dynamic Orchestrator,” Future
Generation Computer Systems, 2017, http://www.sciencedirect.
com/science/article/pii/S0167739X17310506.

[44] “COLA: Cloud Orchestration at the Level of Application,”
November 2017, http://www.project-cola.eu.

[45] “Swarm mode of Docker,” November 2017, https://docs.
docker.com/engine/swarm/.

[46] W. He, G. Yan, and L. Da Xu, “Developing vehicular data
cloud services in the IoT environment,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 2, pp. 1587–1595, 2014.

[47] C. Marosi, R. L. Attila, A. Kisari, and S. Erno, “A novel IoT
platform for the era of connected cars,” in 2018 IEEE Interna-
tional Conference on Future IoT Technologies (Future IoT),
pp. 1–11, Eger, Hungary, January 2018.

[48] “Agrodat.hu project website,” October 2017, http://www.
agrodat.hu.

[49] P. Gábor, S. Péter, and É. Gábor, “Power consumption consid-
erations of GSM-connected sensors in the AgroDat.hu sensor
network,” Sensors & Transducers, vol. 189, no. 6, pp. 52–60,
2015.

[50] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of
open-source cloud management platforms: OpenStack and
OpenNebula,” in 2012 9th International Conference on Fuzzy
Systems and Knowledge Discovery, pp. 2457–2461, Sichuan,
China, May 2012.

[51] C. Marosi, A. F. Attila, and R. Lovas, “An adaptive cloud-based
IoT back-end architecture and its applications,” in Proceedings
of The 26th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP 2018),
Cambridge, UK, March 2018.

[52] “CloudiFacturing project website,” May 2018, http://
cloudifacturing.eu.

[53] “MTA Cloud,” October 2017, https://cloud.mta.hu.

16 Complexity

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/8281079 by T

est, W
iley O

nline L
ibrary on [31/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.BigData
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.BigData
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Glossary.Global
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://cassandra.apache.org
http://cassandra.apache.org
http://www.cascading.org
http://spark.apache.org
http://spark.apache.org
http://storm.apache.org
http://storm.apache.org
https://www.docker.com/
https://open-lambda.org/
https://blog.alexellis.io/introducing-functions-as-a-service/
https://blog.alexellis.io/introducing-functions-as-a-service/
http://kubeless.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.oasis-open.org/committees/tosca
https://www.oasis-open.org/committees/tosca
https://www.oasis-open.org/
https://www.ge.com/digital/predix-platform-foundation-digital-industrial-applications
https://www.ge.com/digital/predix-platform-foundation-digital-industrial-applications
http://www.haproxy.org/
https://uwsgi-docs.readthedocs.io
https://prometheus.io/
https://prometheus.io/
https://www.isa.org/isa95/
https://www.isa.org/isa95/
http://www.sciencedirect.com/science/article/pii/S0167739X17310506
http://www.sciencedirect.com/science/article/pii/S0167739X17310506
http://www.project-cola.eu
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://www.agrodat.hu
http://www.agrodat.hu
http://cloudifacturing.eu
http://cloudifacturing.eu
https://cloud.mta.hu



