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ABSTRACT Along with the rapid growth of cloud environments, rises the problem of secure data storage–
a problem that both businesses and end-users take into consideration before moving their data online.
Recently, a lot of solutions have been proposed based either on Symmetric Searchable Encryption (SSE) or
Attribute-Based Encryption (ABE). SSE is an encryption technique that offers security against both internal
and external attacks. However, since in an SSE scheme, a single key is used to encrypt everything, revoking a
user would imply downloading the entire encrypted database and re-encrypt it with a fresh key. On the other
hand, in an ABE scheme, the problem of revocation can be addressed. Unfortunately, though, the proposed
solutions are based on the properties of the underlying ABE scheme and hence, the revocation costs grow
along with the complexity of the policies. To this end, we use these two cryptographic techniques that
squarely fit cloud-based environments to design a hybrid encryption scheme based on ABE and SSE in such
a way that we utilize the best out of both of them. Moreover, we exploit the functionalities offered by Intel’s
SGX to design a revocation mechanism and an access control one, that are agnostic to the cryptographic
primitives used in our construction.

INDEX TERMS Access control, attribute-based encryption, cloud, data sharing, scope, secure storage, SGX,
symmetric searchable encryption.

I. INTRODUCTION
Over the past few years, cloud computing has grown to an
extent that affects the day-to-day life of almost everyone.
From big corporations to casual internet users the cloud has
become an integral part of our lives. However, many users
still feel reluctant about outsourcing their personal files since
cloud services are hosted and run by third untrusted parties
and thus, the files are vulnerable to internal attacks. To this
end, both key industrial players as well as researchers have
turned for solutions to the promising technique of Symmetric
Searchable Encryption [8], [9] and to the well-studied field
of Attribute-Based Encryption [10].

In an SSE scheme, users encrypt their files locally before
outsourcing them to the Cloud Service Provider (CSP). Thus,
the CSP who does not possess the encryption key cannot
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extract any valuable information about the users’ data. How-
ever, the most fascinating property about SSE, is that it allows
users to search directly on their encrypted data for those that
contain specific keywords. Unfortunately, SSE schemes do
not support the revocation of users – a problem of paramount
importance in cloud-based environments. Hence, revoking
a user is equivalent to downloading the entire database and
re-encrypt it with a fresh key.

Another technique that fits cloud-based environments is
ABE. In ABE schemes, all files are encrypted using a master
public key, but in contrast to traditional public key cryptosys-
tems, the resulted ciphertext is bound by a policy. Moreover,
each user has a unique secret key associated with the user’s
attributes (e.g. id, age, organization, etc.). Thus, decrypting a
file is possible if and only if the user’s attributes satisfy the
policy bound to the ciphertext. However, using an asymmetric
encryption scheme to encrypt large volumes of data, is rather
inefficient.
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Contribution: We propose a revocable hybrid encryption
scheme combining ABE and SSE. In our construction,
the ABE scheme is used as a tool that allows efficient sharing
of the SSE key between legitimate users. Having identified
both the advantages and disadvantages of SSE and ABE,
we propose a solution that uses the best out of both tech-
niques. More specifically, the only access control in search-
able encryption occurs only in those schemes that are set in
the public-key setting [13]. To solve this, we encrypt the SSE
symmetric key, using ABE. Hence, the key can be decrypted
if and only if the decryptor satisfies the policy specified by the
ABE policy. Moreover, as pointed out in [10], key revocation
in ABE schemes can be tricky and inefficient. To overcome
this problem, we design a revocation mechanism that is solely
based on the functionalities offered by Intel SGX and is
agnostic to the aforementioned cryptographic primitives. Our
design is accompanied by a detailed and to the depth security
analysis, where we prove the security of our construction
against various attacks, where an adversary targets different
components of our architecture. Finally, we provide a theoret-
ical evaluation of the SSE scheme used in this construction
and an extensive experimental control with very promising
results.
Organization: The rest of the paper is organized as follows:
In Section 2, we describe important works that address the
problem of secure cloud storage. In Section 3, we present a
detailed description of the system model, while in Section 4,
we provide formal definitions of the cryptographic primitives
used in our protocol. In Section 5, we present a formal con-
struction of our scheme, followed by its security analysis in
Section 6. Section 7 consists of our experimental results and
finally, Section 8 concludes the paper.

II. RELATED WORK
In [21] authors present HardIDX, a scheme that supports
range queries by utilizing the functionality offered by SGX.
Their construction minimizes the leakage by hiding the
search pattern but the proposed scheme is static, thus file
additions and deletions are not supported. A dynamic SSE
with stronger security guarantees is presented in [14], where
the authors presented Sophos. Sophos is a forward pri-
vate SSE scheme in the sense that newly added keywords
cannot be linked to previous queries. A more efficient
forward private scheme was presented in [19] where the
authors improved the search time by presenting a paral-
lelizable scheme. However, all the aforementioned schemes
only support the single-client model where the only occur-
ring communication is between a data owner and a cloud
service provider. For this work, since we are interested in
a multi-client scheme, we chose the scheme we designed
and presented in [9], which is an extension of [19], in the
multi-client model.
A promising scheme is presented in [20] where authors
present IRON, a functional encryption scheme based on SGX.
IRON’s main functionalities (such as decryption of a file and
application of a function on the decrypted file) are executed in

the isolated environment offered by SGX. In our construction,
we use the same hardware principles to design our revocable
hybrid encryption scheme and we further exploit SGX by
designing a revocation mechanism that is solely based on
SGX enclaves.

In [28], authors try to tackle the problem of storing
data on untrusted clouds, by designing a revocable hybrid
encryption scheme, enhanced with a key rotation mecha-
nism to avoid key scraping attacks. Authors use an All-
or-Nothing-Transformation (AONT) [16] to prevent revoked
users from accessing the stored data. In particular, they use
Optimal Asymmetric Encryption Padding (OAEP) as the
AONT, since reversing OAEP requires the entire output to
be known. Thus, by changing random bits, reversing OAEP
becomes infeasible. Naturally, to decrypt a file, the changed
bits need to be stored, so that the AONT could be later
reversed. However, this implies that with each re-encryption,
the size of the ciphertexts grows and, as a result, decrypting a
file that has been re-encrypted multiple times, becomes an
expensive operation. Moreover, to make the scheme more
efficient, the authors suggest that the AONT could be applied
by the online storage server. However, this implies the exis-
tence of a fully trusted server and hence, the scheme can be
vulnerable to internal attacks.

A revocable Ciphertext-Policy Attribute-based Encryption
(CP-ABE) presented in [23] proposes to embed the revoca-
tion list in the ciphertexts. However, this embedding results
in bigger ciphertexts, deeming the decryption and file mod-
ification operations much more demanding. To overcome
this problem, authors in [12] propose a method based on
Hierarchical Identity Based Encryption (HIBE). In their con-
struction, the users’ secret keys, expire after a specified
period of time. Thus, the revocation list only contains the
keys revoked before the expiration time. Similarly, in [11]
authors constructed a Key-Policy ABE (KP-ABE) by extend-
ing their work on Revocable Identity Based Encryption.
In their design, the revocation of users relies on frequent key
updates for all the different attributes; hence, their solution
does not scale well for practical usage.

Another promising technique is presented in [30], where
authors propose a Traceable CP-ABE scheme that supports
the revocation of malicious users. In particular, in their con-
struction, they design a mechanism that can trace users that
have leaked information about the key from the system.
However, on each revocation, a new group key, for a group
of users, needs to be generated and then distributed to all
eligible users. Moreover, authors place sensitive operations
such as the re-encryption and partial decryption of cipher-
texts, in untrusted entities. In our construction, even if a
malicious adversary cannot be traced, we ensure that no
adversary will be able to tamper with a user’s access rights to
bypass the system’s authentication. Moreover, in our scheme,
even if we make use of the trusted execution environment
offered by Intel’s SGX, all sensitive operations occur on
the user’s side to minimize the leakage from side-channel
attacks.
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This work is an extension of [7], [24], [26], [27] where
authors presented a hybrid encryption scheme based on ABE
and SSE. The constructions in [7], [24], lacked a proper
implementation as well as an access control mechanism like
the one we introduce in this paper. Apart from that, our work
differentiates from the schemes presented in [26], [27] since
we extend the underlying access control mechanism while
at the same time we enable users to search over multiple
datasets in one round. Moreover, in contrast to all previous
works, the entire protocol is redesigned to support symmetric
key cryptography instead of asymmetric. Hence, resulting in
a much more efficient approach. In addition to that, we used
a far more modern SSE scheme, presented in [9] which sup-
ports forward privacy [15]. On top of this, to further examine
the efficiency of our construction, we used a more efficient
CP-ABE scheme presented in [5]. This waywe could evaluate
the performance of our construction even under the most
demanding policies.

III. ARCHITECTURE
The underlying architecture consists of different components
which are described as below.

Cloud Service Provider (CSP)
We consider a cloud computing environment similar to the
one described in [29]. We assume that the CSP is SGX-
enabled, and that core entities will be running in the trusted
execution environment offered by SGX.

Master Authority (MS)
Similarly to CSP, MS is SGX-enabled and running in an
enclave called the Master Enclave. MS enclave generates and
distributes ABE keys to registered users.

Key Tray (KT)
KT is also SGX-enabled and running in an enclave called
the KT Enclave. KT enclave is responsible for storing the
ciphertexts of the symmetric keys generated by data owners.
Such symmetric keys are needed to decrypt the data.

Revocation Authority (REV)
Similarly, REV is also SGX-enabled and running in an
enclave called the REV Enclave. REV is responsible for
maintaining the valid scopes of users.

User (ui )
In our scenario, a user interacts with the CSP to manage
certain files that has access to. A user can (1) store data in the
cloud and (2) share data with other users. A user is referred
to as a data owner when she is storing data in the cloud.

Moreover, we assume the existence of a registration author-
ity that is responsible for the registration of users. However,
registration is out of the scope of this paper and we assume
that all users have been already registered.

SGX:We briefly present the main SGX functionalities which
are used for our construction. Further detailed description can
be found in [17], [20].
Isolation: Enclaves are located in a hardware guarded area

of memory of 128MB in which only 90MB can be used by the
software. The processor tracks which parts of memory belong
to which enclave, and ensures that only enclaves can access
their own memory.
Attestation: SGX supports attestation between enclaves of

the same (local attestation) and different platforms (remote
attestation). In local attestation, an enclave enci can verify
another enclave encj and the program/software running in the
latter through a report generated by encj. The report contains
information about the enclave and the program running in it
and is signed with a secret key skrpt. This key is the same
for all enclaves of the same platform. In the case of remote
attestation, the verification is performed through a report
signed with a special private key provided by Intel. Therefore,
it requires contacting Intel’s Attestation Server.
Sealing: As being stored in untrusted memory, data is

encrypted with a Root Seal Key provided with every SGX
processor. The sealed data can be recovered even after an
enclave is destroyed and rebooted on the same platform.

IV. BACKGROUND
A. NOTATION
The set of all users is U = {u1, . . . , un}. The public/private
key pair of a user ui is denoted by (pki, ski) and the signature
of ui on a message m is σi(m). The Symmetric key of ui is
denoted byKi. The access rights of a ui are denoted by a list of
valid scopes SCi such that SCi = {(j, sli), (z, s

k
i ), . . . (k, s

z
i )},

in which j, k, . . . , z represent a collection of files encrypted
under the symmetric keys Kj,Kk, . . . ,Kz and sji is a one
dimensional bit array of length five that represents the scopes
(i.e. view, add, delete, manager, owner) assigned to ui. For
instance, in case ui has access rights view and delete for data
encrypted under the symmetric key Kj, then s

j
i = [10100].

The output y of an algorithm A is denoted by y ← A if A is
probabilistic, and by A→ y if A is deterministic. A function
negl(·) is called negligible, if ∀n > 0, ∃Nn such that ∀x >
Nn: |negl(x)| < 1/poly(x). A probabilistic polynomial time
(PPT) adversary ADV is a randomized algorithm for which
there exists a polynomial poly(·) such that for all input x,
the running time of ADV(x) is bounded by poly(|x|).

B. CRYPTOGRAPHIC PRIMITIVES
We now present the cryptographic primitives used in our
construction. As already mentioned, we make use of an ABE
scheme and a dynamic SSE scheme. We now proceed with
the corresponding definitions as described in [10] and [9]
respectively.
Definition 1 (Ciphertext-Policy ABE): A revocable CP-

ABE scheme is a tuple of the following four algorithms:

• CPABE.Setup is a probabilistic algorithm that takes as
input a security parameter λ and outputs a master public
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key MPK and a master secret key MSK. We denote this
by

(
MPK,MSK

)
← Setup(1λ).

• CPABE.Gen is a probabilistic algorithm that takes
as input a master secret key, a set of attributes A ∈
� and the unique identifier of a user and outputs
a secret key which is bound both to the correspond-
ing list of attributes and the user. We denote this by(
skA,ui

)
← Gen(MSK,A, ui).

• CPABE.Enc is a probabilistic algorithm that takes as
input a master public key, a message m and a policy P ∈
P . After a proper run, the algorithm outputs a ciphertext
cP which is associated to the policy P. We denote this by
cP ← Enc(MPK,m,P).

• CPABE.Dec is a deterministic algorithm that takes as
input a user’s secret key and a ciphertext and outputs
the original message m iff the set of attributes A that
are associated with the underlying secret key satisfies
the policy P that is associated with cp. We denote this by
Dec(skA,ui , cP)→ m.

Definition 2 (Dynamic Index-based SSE (DSSE)): A dyn-
amic index-based symmetric searchable encryption scheme
is a tuple of five polynomial algorithms

DSSE = (KeyGen, InGen,AddFile,Search,Delete)
such that:
• DSSE.KeyGen is probabilistic key-generation algo-
rithm that takes as input a security parameter λ and
outputs a secret key K. It is used by the client to generate
her secret key.

• DSSE.InGen is a probabilistic algorithm that takes as
input a secret keyK and a collection of files f and outputs
an encrypted index γ and a sequence of ciphertexts c.
It is used by the client to get ciphertexts corresponding
to her files as well as an encrypted index which are then
sent to the storage server.

• DSSE.AddFile is a probabilistic algorithm that takes as
input a secret keyK and a file f and outputs an add token
τα(f ) and a ciphertext cf . The token and the ciphertext
are then sent to the storage server, where cf will be
added to the collection of ciphertexts and the index γ
will be updated accordingly.

• DSSE.Search is a deterministic algorithm that takes
as input a secret key K and a keyword w and outputs a
search token τs(w). The token is then sent to the storage
server who will output a sequence of file identifiers
Iw ⊂ c.

• DSSE.Delete is a deterministic algorithm that takes as
input a secret keyK and a file identifier id(f ) and outputs
a delete token τd (f ) for f . The token will be sent to the
storage server, who will delete cf and update the index
γ accordingly.

The security of aDSSE scheme is based on the existence of a
simulator that is given as input information leaked during the
execution of the protocol. In particular to define the security
ofSSEwemake use of the leakage functionsLin,Ls,La,Ld
associated to index creation, search, add and delete
operations [9].

Definition 3 (Dynamic CKA 2-Security): Let
DSSE = (KeyGen, InGen,AddFile,Search,Delete) be
a dynamic index based symmetric searchable encryption
scheme and Lin,Ls,La,Ld be leakage functions associated
to index creation, search, add and delete operations. We con-
sider the following experiments between an adversary ADV
and a challenger C:

C runs Gen(1λ) to generate a key K.ADV outputs a file f and
receives (γ, c)← Enc(K, f ) from C.ADV makes a polynomial
time of adaptive queries q = {w, f1, f2} and for each q he
receives back either a search token for w, τs(w), an add token
and a ciphertext for f1, (τα(f1), c1) or a delete token for f2,
τd (f2). Finally,ADV outputs a bit b.

RealADV (λ)

ADV outputs a file f. S is given Lin and generates (γ, c)
which is sent back toADV .ADV makes a polynomial time of
adaptive queries q = {w, f1, f2} and for each q,S is given either
Ls(f,w),La(f, f1) or Ld (f, f2). S then returns a token and,
in the case of addition, a ciphertext c. Finally, ADV outputs
a bit b.

IdealADV,S (λ)

We say that theSSE scheme isL-i secure if for all probabilis-
tic polynomial adversaries ADV , there exists a probabilistic
simulator S such that:

|Pr[(Real) = 1]− Pr[(Ideal) = 1]| ≤ negl(λ)
In the cases of file addition and deletion, the simulator must
also generate ciphertexts and update the current indexes.
In addition to ABE and SSE, we rely on SGX functionalities
to attest among the components.

During the execution of the protocol, all parties have
access to the secure hardware as defined in [20]. In the
beginning, HW.Setup runs to produce the secret key needed
to verify reports. Each enclave is then initialized by load-
ing a program P and producing a handle hdl which is
used as an identification for the enclave running P. This
is done by running the HW.Load interface. After the ini-
tialization of the enclave, HW.Run is executed with dif-
ferent inputs. For simplicity, we assume that all enclaves
run on the same host, so they only perform local attesta-
tions with each other. To do so, an enclave (enci) first runs
HW.RunReport which produces a report (rpti) that is sent
to encj. Upon reception, encj executes HW.ReportVerify
and verifies the validity of rpti. A more detailed descrip-
tion of the hardware algorithms used by the enclaves is
given below:
• HW.Load(Q): Takes as input a program Q. An enclave
enci is created in which Q will be loaded. Moreover a
handle hdlenc is created that will be used as an identifier
for the enclave.

• HW.Run(hdl, in): Takes as input a handle hdl and some
input in. It runs the program in the enclave specified by
hdl with in as input.

• HW.RunReport(hdl, in): Takes as input a handle hdl
and some input in. It will output a report that is ver-
ifiable by any other enclave on the same platform.
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FIGURE 1. High-Level Approach.

The report contains information about the underlying
enclave signed with skrpt.

• HW.ReportVerify(hdl′, rpt): Takes as input a handle
hdl′ and a report rpt. Uses skrpt generated byHW.Setup
to verify the MAC of the report.

V. THE CLOUD WE SHARE (CLASH)
In this section, we present The Cloud we Share (CLASH) –
the core of this paper’s contribution.

A. HIGH-LEVEL OVERVIEW
Before we proceed to the formal description of our construc-
tion, we present a high-level overview. CLASH is divided in a
Setup phase and fourmain phases: Initialization, Key Sharing,
Data Processing and Scope Management. In the Setup phase,
all entities receive a public/private key pair that will be used to
establish secure communication channels. During the Initial-
ization phase, a data owner encrypts her data using the SSE
scheme, uploads the encrypted files to the CSP, and encrypts
the SSE key using an ABE key. The ciphertext of the key is
bound by a policy specified by the user and it is stored on the
Key Tray. In the Key Sharing phase, different users contact
the Key Tray and request for the ciphertext of the symmetric
key. Upon receiving the ciphertext, they can decrypt it if and
only if their attributes satisfy the policy bound to the key.
If the decryption of the key is successful, then the Data Pro-
cessing phase commences where the users can search for dif-
ferent files, add new ones or delete existing ones, according to
their access right (scopes). Finally, in the Scope Management
phase, a data owner can modify the scopes of the users and
even fully revoke their right to access the encrypted dataset.
This high-level approach of our construction is depicted
in Figure 1.

B. FORMAL CONSTRUCTION
Setup Phase: In the Setup phase each enclave is ini-
tialized and generates a public/private key pair (pk, sk)
for a CCA2 secure public key cryptosystem and sign-
ing/verification key pair for a EUF-CMA secure signature
scheme. An enclave is initialized as follows:
CLASH.Setup(‘‘initialize", 1λ): Each enclave is initialized
by loading the program Qinit

ID :

• On input (‘‘initialize", 1λ):
1) Run (pk, sk)← PKE.KeyGen(1λ).
2) Output pk.

Run hdl← HW.Load(Qinit
ID ).

Qinit
ID

Moreover, the MS enclave loads a program QSetup
MS that

outputs the master public/private key pair (MPK,MSK).

• On input (‘‘initialize", 1λ):
1) Run (MPK,MSK)← PKE.KeyGen(1λ).
2) Output MPK.

Run hdlMS ← HW.Load(QSetup
MS ).

QSetup
MS

Finally, MS is responsible for generating secret ABE keys
for registered users. To do so, MS retrieves MSK and a list of
attributes A associated with each user.
CLASH.ABEUserKey(‘‘KeyRequest",MSK, u,A, 1λ): The
program QsKey

MS , which is responsible for generating secret
ABE keys to registered users, is defined as follows:

Finally, the different entities, including the users, use their
public key pairs to establish secure channels between them.
This way, all the exchanged messages will be encrypted
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symmetrically. Clearly, all the symmetric keys will be dif-
ferent. For example, KiREV denotes the symmetric key shared
between the user ui and the REV enclave.

On input (‘‘KeyRequest",MSK, u,A, 1λ):
1) Verify that u is registered. If not, output ⊥
2) Run skA,u ← CPABE.Gen(MSK,A, u)
3) Compute and output c = PKE.Enc(pki, skA,ui ).

Run c← HW.Run(hdlMS, (‘‘KeyRequest",MSK,u,A)).

QsKey
MS

Initialization Phase:During the initialization phase, the data
owner, ui stores her encrypted data on the cloud and stores
the secret key Ki to the KT so that it can be shared with
other users. To do so, she first runs CLASH.Store and then
CLASH.KeyTrayStore.
CLASH.Store("store", credi): Assuming that all the enclaves
are already initialized and that all registered users have
received their secret ABE keys, a data owner, ui, can start
interacting with the CSP to store her files. To this end she con-
tacts CSP by sending mreq = 〈r1,E(KiCSP , credi), StoreReq,
HMAC(KiCSP , r1||credi||StoreReq)〉 where r1 is a random
number generated by ui. Upon reception, CSP verifies ui
as a registered user and sends mver = 〈r2,E(KiCSP ,Auth),
HMAC(KiCSP , r2||ui||Auth)〉 to ui. After ui gets the autho-
rization message from the CSP, she generates a DSSE
key Ki and its unique index idxKi , encrypts her files,
fi, with the key and sends them to the CSP via
mstore = 〈r3,E(KiCSP , idxKi ), γi, ci,HMAC(KiCSP , r3||γi
||ci||idxKi )〉 where γi is the encrypted DSSE index. CSP will
finally store {idxKi , γi, ci}.

• On input (‘‘StoreReq",mreq):
1) Open mreq; verify the messagea; if the verification

fails, output ⊥.
2) Compute and output mver .

Run mver ← HW.Run(hdlCSP, (‘‘StoreReq",mreq)).
• On input ("store",mstore):

1) Openmstore; verify the message; if the verification
fails, output ⊥.

2) Store (idxKi
, ci, γi).

Run HW.Run(hdlCSP, (‘‘store",mstore)).
aBy this, we mean that the entity receiving the message verifies
the freshness and the integrity of the message and it can also
authenticate the sender.

QStore
CSP

CLASH.KeyTrayStore("store",Ki,p): To enable efficient
sharing of Ki between registered users, the data owner
ui encrypts Ki under the ABE master public key MPK
and binds it with a policy P, resulting to a cipher-
text cKi

p of Ki. As a next step, ui sends cKi
p to KT

via mkeystore =
〈
r4,E(KiKT , ui||idxKi ), c

Ki
p ,HMAC(KiKT ,

r4||ui||c
Ki
p ||idxKi )

〉
. Upon reception, KT runs QStore

KT to
store (ui, c

Ki
p , idxKi ). Finally, ui sends the list of valid

scopes, Lvs for every registered user to REV via
mscope = {r5,E(KiREV ,

(
idxKi ||u1||s

i
1||u2||s

i
2|| . . .

)
,HMAC(

KiREV , r5||idxKi ||u1||s
i
1||u2||s

i
2|| . . .

)
} to REV, where

{u1, u2, . . . } are identifiers of the registered users, and
{si1, s

i
2, . . . } are arrays specifying each user’s access rights.

The programs QStore
KT and QScope

REV are defined as follows:

• On input (‘‘store",mkeystore):
1) Open mkeystore; verify the message. If the verifica-

tion fails, output ⊥.
2) Store

(
ui, c

Ki
p , idxKi

)
.

Run
(
ui, c

Ki
p , idxKi

)
←

HW.Run(hdlKT, ("store",mkeystore)).

QStore
KT

• On input (‘‘scope",mscope):
1) Openmscope; verify themessage. If the verification

fails, output ⊥.
2) Store

(
idxKi

, {
(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . .}

)
into the list

of valid scopes LVS.

Run
(
idxKi

, {
(
u1, s

i
1),

(
u2, s

i
2
)
, . . .}

)
←

HW.Run(hdlREV, ("scope",mscope)).

QScope
REV

Key Sharing Phase: The goal of this phase is to share
data between legitimate users. This is done by running
CLASH.KeyShare. For a registered user uj to access files
encrypted by ui, she first needs to acquire the symmet-
ric key Ki. With Ki in her possession, uj will be able
to both generate the DSSE tokens required to access the
encrypted database and to decrypt the files she receives
back from the CSP. To this end, uj sends a request to KT
via mverReq =

〈
r6,E(KjKT , uj||ui),HMAC(KjKT , r6||uj||ui)

〉
.

Upon receiving the message, the Key Tray will reply with
midxkey = 〈r7,E(KKTREV , uj||idxKi )), c

Ki
p ,HMAC(KKTREV ,

uj||idxKi ||c
Ki
p ))〉 to the user, who then forwards this message

to REV. REV then locates sij and will create a report rptREV

containing mrev =
〈
r8,EpkKT

(
sij
)
, σREV

(
H

(
r8||sij

))〉
that will

be sent to KT. At this point, KTwill verify rptREV, retrieve c
Ki
p

and send mkey =
〈
r9,EpkCSP(uj, t, s

i
j, idxKi ), c

Ki
p , σKT (H (r9||

uj||t||sij||idxKi ||c
Ki
p )

〉
to uj. Finally, uj uses her private CP-ABE

key to recover Ki.
CLASH.KeyShare(‘‘share",mverReq): The KT and REV
programs, QShare

KT and QShare
REV are defined as follows:

Data Processing Phase:
In the Data Processing Phase a user uj that already

received and successfully decrypted cKi
P can start interacting

with the CSP to access files encrypted under Ki. To this
end, uj can either run CLASH.Search,CLASH.Update
and CLASH.Delete, depending on her access rights.
CLASH.Search, allows users to search directly on the
encrypted files, for those that contain a specific keyword
w. User uj first needs to create a search token for a key-
word, τs(w). After the search token is created, uj sends
msearch = 〈τs(w),mkey,HMAC(KjCSP , τs(w)||mkey)〉, where
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mkey is received in the Key Sharing Phase, to CSP. Upon
reception, CSP opens mkey to check the freshness of the
timestamp and to verify that sij[0] = 1. Finally, the CSP will
search for the files containing w and it will send back to uj
a sequence of files identifiers. This is done by loading the
program QSearch

CSP to the CSP enclave:

• On input (‘‘KeyRequest",mkeyReq):
1) Open mkeyReq; verify the message; if the verifica-

tion fails, output ⊥.
2) Compute and output midxkey.

Run midxkey ← HW.Run(hdlKT, (‘‘verify",mkeyReq)).
• On input (‘‘token", rptREV):

1) Verify rptREV. If the verification fails, output ⊥.
2) Open mrev; verify the message; if the verification

fails, output ⊥
3) Check access rights based on sij
4) Compute and output mkey

Run mkey ← HW.Run(hdlKT, (‘‘token", rptREV)) who
will internally run HW.ReportVerify(hdlKT, rptrev)

QShare
KT

• On input (‘‘share",midxkey):
1) Open midxkey; verify the message; if the verifica-

tion fails, output ⊥.
2) Identify sij based on idxKi
3) Compute mrev.
4) Generate and output rptREV containing mrev

Run rptREV ← HW.RunReport(hdlREV,
(‘‘share",midxkey)).

QShare
REV

• On input (‘‘search",msearch):
1) Open msearch; verify the message; if the verifica-

tion fails, output ⊥.
2) Identify (γi, ci) based on idxKi

.
3) Run Iw ← DSSE.Search(γi, ci, τs(w))
4) Output Iw.

Run HW.Run(hdlCSP, (‘‘search",msearch).

QSearch
CSP

By running CLASH.Update(‘‘update", f ) a user uj can add
new files to ui’s encrypted databases. For uj to success-
fully run CLASH.Update she first needs to create an add
token. To this end, she generates

(
τα(f ), cf

)
for a file f

and sends it to the CSP via madd =
〈
mkey, τα(f ), cf ,

HMAC(KjCSP , τα(f )||cf ||mkey)
〉
. Upon reception, the CSPwill

check the freshness of the message and that sij[1] = 1. If the
verifications are successful, the new file will be added to the
database. This is done by loading the programQUp

CSP program
in the CSP enclave:
CLASH.Delete(‘‘delete", f ): A user uj can also delete files
from the database (provided that sij[2] = 1) by running
CLASH.Delete. To do so, uj first generates a delete token
τd (d) for a file f and sends it to the CSP via mdel =〈
mkey, τd (f ),HMAC(KjCSP , τd (f )||mkey)

〉
. CSP then verifies

the timestamp and uj’s access rights and proceeds with delet-
ing the specified file. This is done by loading the program
QDel

CSP to the CSP enclave.

• On input (‘‘update",madd ):
1) Open madd to retrieve mkey and the add token(

τα(f ), cf
)

2) Verify mkey. If the verification fails, output ⊥.
3) Run

(
γ ′i , c

′

i
)
← DSSE.AddFile

(
γi, ci, τα(f ), cf

)
.

Run HW.Run(hldCSP, (‘‘update",madd ).

QUp
CSP

• On input (‘‘delete",mdel ):
1) Open mdel to retrieve mkey and the delete token

τd (f )
2) Verify mkey. If the verification fails, output ⊥.
3) Run

(
γ ′′i , c

′′

i
)
← DSSE.Delete

(
γ ′i , c

′

i, τd (f )
)
.

Run HW.Run(hdlCSP, (‘‘delete",mdel ).

QDel
CSP

Scope Management Phase: The last phase of our construc-
tion focuses on the revocation and assignment of users’
scopes through CLASH.Manage.
CLASH.Manage(‘‘assign/revoke", u`, n): A user uj can
revoke and assign scopes such as search, update and delete
to another user u` if and only if sij[3] = 1 and si` 6= [11111]
(i.e. u` does not have owner’s rights over the encrypted
files). To revoke the scope manager, uj must have owner’s
rights. Finally, ownership rights are assigned and revoked
only by the data owner (i.e. ui). In particular, for uj to revoke
a scope from a user u` she first contacts REV by send-
ing mmanage =

〈
r10,E(KjREV , uj||u`||n||‘‘assign/revoke"),

cKi
p ,HMAC(KjREV , r10 ||uj || u`|| n || c

Ki
p || ‘‘assign/revoke")

〉
,

where n ∈ [0, 4] is an index of the one dimensional bit array
si` and specifies which bit of the array will be flipped. Upon
reception, REV will verify the message and it will generate a
report rptREV containing midx.req =

〈
r11,E(KKTREV , u`), c

Ki
p ,

HMAC(KKTREV , r11||c
Ki
p ||u`)

〉
that will be sent to KT. After

KT verifies rptREV, it will send a report rptKT containing
idxKi back to REV. REV then verifies rptKT and uses idxKi
to identify the bit arrays sij and si`, and checks whether uj
has the right to revoke or assign scopes to other users. If so,
REV revokes/ assigns the requested scope from u` by setting
si`[n] = 0/ si`[n] = 1. In case of assigning the scope owner
(n = 4), REV further sets si` = [11111]. The programs
QRev

REV and Qidx
KT responsible for handling this procedure are

the following:

C. SEARCHING ON MULTIPLE DATASETS
In a realistic scenario, a user would want to perform a
search operation on multiple data sets at once. However,
our construction focuses on the problem of searching on
a single dataset per search query. The problem that arises
is that each data owner is using a different symmetric key
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to encrypt her data and thus, to perform a global search
the CSP would require all the indexes idxKi . To solve
this problem, we slightly modify the key sharing proto-
col as follows: uj sends a request to KT via mverReq =〈
r6,E(KjKT , uj||Lu),HMAC(KjKT , r6||uj||Lu)

〉
, where Lu is a

list containing unique identifiers of data owners that have
granted uj with at least one scope. Upon reception, KT replies
with midxkey =

〈
r7,E(KKTREV , uj||LidxK ),LcK

p
,HMAC(

(KKTREV , uj||LidxK ||LcK
p
), where LcK

p
is the list of all the cor-

responding ciphers of the symmetric keys. The user then
forwards this message to REV, who will locate sij,∀i such

that cKi
p ∈ LcK

p
and store them in a list Lsij . Finally,

after the KT and REV enclaves execute the local attesta-
tion protocol just like in the original construction, uj will
receivemkey =

〈
r9,EpkCSP(uj, t,Lsij ,LidxKi

),L
c

Ki
p
, σKT (H (r9||

uj||t||Lsij ||LidxKi
||L

c
Ki
p
)
〉
. At this point, uj decrypts all c

Ki
p ∈ LcKi

p
to recover the different symmetric keys. To perform a search
operation on multiple datasets, uj can now send the new mkey
to the CSP as part of msearch, and the CSP will proceed with
searching on every dataset specified by LidxKi

.

• On input (‘‘idx",mmanage):
1) Verify the message. If the verification fails, output
⊥.

2) Generate rptREV containing midx.req
Run HW.Run(hdlREV, (‘‘idx",mmanage)),
and rptREV ←

HW.RunReport(hdlREV, (‘‘idx",mmanage)).
• On input (‘‘revoke/assign", rptKT):

1) Verify rptKT. If the verification fails, output ⊥.
2) Check the scope of uj and u`. If uj is not eligible

to revoke/ assign u`, output ⊥.
3) Set s`i [n] = 0 in case of revocation; otherwise, set

s`i [n] = 1. If n = 4 and in case of assignment, set
s`i = [11111].

Run HW.Run(hdlREV, (‘‘revoke/assign", rptKT)) who
will internally run HW.ReportVerify(hdlREV, rptKT).

QRev
REV

• On input (‘‘idx.request", rptREV):
1) Verify rptREV. If the verification fails, output ⊥.
2) Get cKip and identify idxKi , ui.
3) Check whether u` 6= ui. If the verification fails,

output ⊥.
4) Generate and output a report rptKT containing

idxKi .
Run HW.ReportVerify(hdlKT, rptREV), then rptKT ←
HW.RunReport(hdlKT, (‘‘idx.request", rptREV)).

Qidx
KT

VI. SECURITY ANALYSIS
A. SIMULATION-BASED SECURITY
To prove the security of our construction, we assume the
existence of a simulator S. The main purpose of S is to
simulate the algorithms of the real protocol in such a way
that any polynomial time adversary ADV will not be able to

distinguish between the real protocol and S. We assume that
S intercepts ADV’s communication with the real protocol
and replies with simulated outputs. Before we proceed with
the proof, we define the capabilities of S and ADV .

1) EverythingADV’s observes in the real experiment can
be simulated by S.

2) ADV intercepts all communication between different
entities. Sincewe use an IND-CCA2 public key encryp-
tion scheme, if ADV can distinguish between real and
simulated answers, then she can also break the IND-
CCA2 security.

3) ADV can load different programs in the enclaves
and record the output. This assumption significantly
strengthens ADV since we need to ensure that only
honest attested programs will be executed in the
enclaves.

Definition 4 (Sim-Security): We consider the following
experiments. In the real experiment, all algorithms run as
defined in our construction. In the ideal experiment, a simu-
lator S intercepts ADV’s queries and replies with simulated
responses.

Real Experiment

1) EXPrealCLASH (1λ) :
2) (MPK,MSK)← CLASH.Setup(1λ)
3) (γ, c)← ADVDSSE.InGen(K,f)

4) CLASH.Search(‘‘search",ms)→ Iw
5) CLASH.Update(‘‘update",madd )→ (γ ′, c′)
6) CLASH.Delete(‘‘delete",mdelete)→ (γ ′, c′)
7) Output b

Ideal Experiment

1) EXPidealCLASH (1λ) :
2) (MPK)← S(1λ)
3) (γ, c)← ADVS(Lin(f))

4) S(‘‘search",ms)→ Iw
5) S(‘‘update",madd )→ (γ ′, c′)
6) S(‘‘delete",mdelete)→ (γ ′, c′)
7) Output b′

We say that CLASH is sim-secure if for all PPT adversaries
ADV:

|Pr[(Real) = 1]− Pr[(Ideal) = 1]| ≤ negl(λ) (1)
At a high-level, we construct a simulator S that will
replace the CLASH algorithms. In particular, in the real
experiment, the adversary ADV observes the algorithms
being executed honestly, while in the ideal experiment S
responds with simulates answers. The idea is the follow-
ing: ADV has full control of the client. Thus, she can trig-
ger Setup,Search,Update and Delete operations for the
DSSE scheme. For each of these operations, S gets as input
the corresponding leakage function Li and simulates the
CLASH.Search,CLASH.Update andCLASH.Delete ora-
cles. Finally, we exclude the KeyShare and Manage oracles
from the security game as they do not require to produce
any simulated output for ADV . However, for purposes of
completeness, we include them in the proof of the theorem
provided below.
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Theorem 1: Assuming that PKE is an IND-CCA2 secure
public key cryptosystem,SKE is an IND-CPA secure symmet-
ric key cryptostystem andSign is an EUF-CMA secure signa-
ture scheme then CLASH is a sim-secure protocol according
to Definition 4.

Proof: We start by defining the algorithms used by the
simulator. Then, we will replace them the real algorithms
with the ones executed by the simulator. The algorithms not
mentioned below, work just like in the real experiment. This
does not affect the security of our construction as we are
mainly focusing on the access control mechanism and the
SSE scheme. For example, to further strengthen the threat
model, we assume that the adversary has a real SSE key.
Thus, there is no point in providing her with a simulated
ABE secret key. However, in the security proof, we show that
ADV cannot tamper with any of the messages that are being
exchanged during a run of the protocol. With the help of a
Hybrid Argument, we will prove that the two distributions
are indistinguishable.
• CLASH.Setup∗: Will only generate MPK that will be
given to ADV .

• CLASH.Store∗: S generates a dictionary that will
enable it to consistently reply to search queries even after
file additions and deletions. In particular when ADV
triggers CLASH.Store, she actually triggers the InGen
algorithm of the SSE scheme. Thus, S gets as input the
corresponding leakage function and simulates the SSE
indexes.

• CLASH.KeyShare∗: S encrypts KADV under MPK
and sends it back to ADV . Moreover, S simulates and
sends toADV midxkey and mkey. Finally mkey and midxkey
are stored in a list L in order to prevent an attack in which
ADV would try to use a different set of valid scopes than
the one she received.

• CLASH.Search∗: WhenADV performs a search oper-
ation for the files containing a keywordw,S gets as input
the leakage function Ls and outputs a simulated token
τs(w). Based on the simulated τs(w) can retrieve the files
ADV is looking for without performing the real search
operation.

• CLASH.Update∗: When ADV generates an add token
τα(f ), S gets as input the leakage function La and out-
puts a simulated response. S will simulate the add token,
the ciphertext to be added to the database, and will also
update the encrypted index.

• CLASH.Delete∗: When S generates a delete token, S
gets as input the leakage function Ld and outputs a
simulated response. Apart from τd (f ), S will also update
the encrypted index so that if ADV performs a search
operation in the future, for a keyword that is contained
in the deleted file, the file will not be included in the
result.

• CLASH.Manage∗: S gets as input the list LVS .
By getting this list, an attack in which ADV would
try to assign/revoke scopes from a legitimate user
can be avoided. In contrast to the real algorithm,

CLASH.Manage∗ does not assign/revoke any scopes
from other users.

In a pre-processing phase, S runs HW.Setup(1λ), just as in
the real experiment, in order to acquire skrpt. ADV outputs
a file collection f and it encrypts it using SSE. Finally, she
receives a set of scopes SCADV , that she can use during the
run of the game. We will now use a hybrid argument to prove
that ADV cannot distinguish between the real and the ideal
experiments.

CLASH runs normally.
Hybrid 0

Everything runs like in Hybrid 0, but we replace
CLASH.Setup with CLASH.Setup∗.

Hybrid 1

The difference betweenCLASH.Setup andCLASH.Setup∗

is that in CLASH.Setup∗, S only generates a key MPK
instead of a (MPK,MSK) pair. Since in the real experiment,
MSK is not given to ADV anyway, MPK ADV cannot dis-
tinguish between the two hybrids. Hence:

|Pr[(Hybrid 1) = 1]− Pr[(Hybrid 0) = 1]| ≤ negl(λ) (2)

Like Hybrid 1, but CLASH.KeyShare∗ runs instead of
CLASH.KeyShare. Also, the algorithm outputs ⊥ if
HW.ReportVerify is queried with (hdlKT, ("share", rptREV))
but ADV never contacts REV.

Hybrid 2

Lemma 1: Hybrid 2 is indistinguishable from Hybrid 1.
Proof: The simulator encrypts KADV with MPK and

sends it to ADV . Moreover since ADV does not posses
KKTREV then she can only generate midxkey with negligible
probability. Finally, ADV can only generate a valid MAC of
the report sent from KT to REV with negligible probability.
Hence:

|Pr[(Hybrid 2) = 1]− Pr[(Hybrid 1) = 1]| ≤ negl(λ)

(3)

�
At this point, ADV can start making search, add and delete
queries. The simulator now gets access to all leakage func-
tions L from the SSE scheme.

Like Hybrid 2, but when HW.Run is queried with
(hdlCSP, ("search", msearch)), S is given the leakage
function LS and generates a simulated search token.
Moreover, the algorithm outputs ⊥ if the mkey message it
receives is different than the one stored in L.

Hybrid 3

Lemma 2: Hybrid 3 is indistinguishable from Hybrid 2.
Proof: The algorithm already outputs ⊥ if mkey is dif-

ferent than the one stored in L since the verifications would
fail. Assuming theLi− security of theSSE scheme, the token
sent byADV to the CSP, as part of msearch, is generated by S
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with Ls as input. As a result, when the CSP receives msearch,
it will send back to ADV the correct files without running
DSSE.Search. ADV cannot distinguish between the real
and the ideal experiment since she receives a sequence of
files corresponding to a search token that was simulated by
S given Ls as input. Moreover, ADV can only generate
msearch without having contacted KT earlier with negligible
probability, since she does not possess the secret key used to
mac this message, and as a result ADV can only distinguish
between hybrids 3 and 2 with negligible probability. Thus:

|Pr[(Hybrid 3) = 1]− Pr[(Hybrid 2) = 1]| ≤ negl(λ) (4)

�

Like Hybrid 3, but when HW.Run is queried with
(hdlCSP, (‘‘update", madd )), S is given the leakage
function La and tricks ADV into thinking that she updated
the database. Moreover, the algorithm outputs ⊥ is the mkey
message it receives is different than the one stored in L.

Hybrid 4

Lemma 3: Hybrid 4 is indistinguishable from Hybrid 3.
Proof: The proof is similar to the previous one but

simpler since ADV does not expect an output from this
algorithm. So, by assuming the Li− security of the SSE
scheme, we know that ADV will not be able to distinguish
between the real add token and the simulated one. Addition-
ally, the CPA-security of the symmetric encryption scheme,
ensures thatADV cannot distinguish between the encryption
of an actual file and that of zeros. Moreover, if ADV can
generatemadd without having contacted KT, then she can also
forge KT’s MAC – which can only happen with negligible
probability. Finally, the ciphertext sent along with the add
token is stored in a list L, so that the simulator will answer
consistently future search queries. Hence:

|Pr[(Hybrid 4) = 1]− Pr[(Hybrid 3) = 1]| ≤ negl(λ) (5)

�

Like Hybrid 4, but when HW.Run is queried with
(hdlCSP, ("delete",mdel )), S is given the leakage function Ld
and simulates the delete token.

Hybrid 5

Lemma 4: Hybrid 5 is indistinguishable from Hybrid 4.
Proof: Just like before, the algorithm already outputs

⊥ if mkey is different than the one stored in L. By assum-
ing the Li− security of the SSE scheme, we know that
ADV will not be able to distinguish between the real delete
token and the simulated one. Thus, ADV can only distin-
guish between Hybrids 5 and 6 with negligible probability.
Thus:

|Pr[(Hybrid 5) = 1]− Pr[(Hybrid 4) = 1]| ≤ negl(λ) (6)

�

Like Hybrid 5 but instead of CLASH.Manage, S executes
CLASH.Manage∗.

Hybrid 6

Lemma 5: Hybrid 6 is indistinguishable from Hybrid 5.
Proof: Since the valid scope list is not retrievable during

the execution of the protocol,ADV can never tell if she really
revoked any scope from a specific user. ADV could try to
bypass KT’s authentication by generating and sending rpt
directly to REV. However, sinceADV does not possess skrpt,
she can only do that with negligible probability. Hence,ADV
can only distinguish between Hybrids 6 and 7 with negligible
probability and as a result:

|Pr[(Hybrid 6) = 1]− Pr[(Hybrid 5) = 1]| ≤ negl(λ) (7)

�
By combining inequalities 2 - 7 and using the triangle

inequality property, we get:

|Pr[(Hybrid 6) = 1]− Pr[(Hybrid 0) = 1]| ≤ 5 · negl(λ)

(8)

However, it is a standard result in analysis that the finite
sum of negligible functions, is still negligible. And thus:

|Pr[(Hybrid 6) = 1]− Pr[(Hybrid 0) = 1]| ≤ negl(λ)

(9)

which implies:

|Pr[(Real) = 1]− Pr[(Ideal) = 1]| ≤ negl(λ)

And hence, our proof is complete. We managed to replace
the expected outputs with simulated responses, in a way that
no PPT ADV cannot distinguish between the real and ideal
experiments. �

B. SGX SECURITY
Recent works [17], [22], [31], [32] have shown that SGX is
vulnerable to software attacks. However, according to [20],
these attacks can be prevented if the programs running in the
enclaves are data-obvious. Thus, leakage can be avoided if
the programs do not have memory access patterns or control
flow branches that depend on the values of sensitive data.
In our construction, no sensitive data (such as decryption
keys) are used by the enclaves. KT acts as a storage space for
the symmetric keys and does not perform any computation
on them. Hence, all the cKi

p are data-obvious. Moreover, LVS
is stored in plaintext and every entry in the list is padded
to achieve same length. Moreover, we can prevent timing
attacks on LVS by ensuring that every time REV accesses the
list, it goes through the whole list. Finally, as also mentioned
in [6], Encryption and Decryption using AES-NI hardware
instruction ensure there is no leakage of the encryption key
during search and update operations. This is because since
AES encryption and decryption using these instructions have
data-independent timing and involve only data-independent
memory access. Thus, by assuming a constant time imple-
mentation, our construction is not vulnerable to side-channel
attacks.
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TABLE 1. `: Number of resulted files after a search query, m: Number of unique keywords in a file, MC: Multi-Client, FP: Forward Privacy.

VII. EVALUATION AND EXPERIMENTAL RESULTS
In this section, we present our experimental results that aimed
at measuring the processing time of our construction. For
the implementation of the SSE scheme, we used the forward
private scheme presented in [9], while for theABE schemewe
used the library provided by [5]. Finally, to construct the cryp-
tographic parts of the protocol within SGX secure containers
(i.e. enclaves), we used the SGX-OpenSSL library in [3].

As we aimed to evaluate the performance of CLASH under
realistic conditions, we used different machines – depending
on the process to be measured. The setup of the SSE scheme
was measured on a Microsoft Surface Book laptop with a
2.1GHz Intel Core i7 processor and 16GB RAM running
Windows 10 64-bit. The reason being that in a practical
scenario, this process would take place on a user’s machine.
Conducting the experiments on a powerful server would
result in a set of non-realistic results. The parts running in an
enclave were measured in a powerful desktop PC with Intel
Core i7-8700 at 3.20GHz (6 cores), 32GB of RAM running
Ubuntu 64-bit, and Intel SGX Hardware Debug mode build
configurations. The reason for running these parts on such a
computer is based on the assumption that these processes will
be running on the CSP.

A. SYMMETRIC SEARCHABLE ENCRYPTION
1) THEORETICAL EVALUATION AND COMPARISON
While our construction can work with any dynamic SSE
scheme, we chose to use the scheme we developed and pre-
sented in [9]. Our SSE scheme is amongst the most efficient
schemes that also support the crucial notion of forward pri-
vacy in the multi-client model. Informally, an SSE scheme
is said to be forward private when the adversary cannot
link newly added keyword to previous search queries. More
information on forward privacy can be found in [9]. More
precisely, our scheme achieves optimal search and update
costsO(`) andO(m) respectively, where ` is the number of the
resulted files on each search operation and m is the number
of unique keywords in a file. Additionally, the scheme is
parallelizable and hence, distributing the load to p processors,
would further improve the search and update operations by
a factor of 1/p, resulting in a search cost of O(`/p) and an
update cost ofO(m/p) respectively. Finally, our scheme in [9]
supports the multi-client model and is SGX-assisted. Hence,
it shares a very similar architecture with the one presented in
this work. In Table 1, we compare the SSE scheme used in
this work with the SSE schemes presented in Section II.

TABLE 2. Size of Datasets and Keywords.

2) EXPERIMENTAL RESULTS
For this part of our experiments, we mainly focused on
(1) Indexing and (2) Searching for a keyword w. The SSE
scheme was implemented in Python 2.7 using the PyCrypto
library [2]. To extensively test the performance of the SSE
scheme, we extracted various datasets, illustrated in Table 2,
from the Gutenberg project [1]. Finally, the dictionaries were
stored in a MySQL database.

a: Indexing & Encryption
This is the setup phase of the SSE scheme. This phase
includes (1) reading plaintext files, extracting the keywords
and creating the necessary dictionaries, (2) encrypting the
files and (3) building the encrypted indexes. We run each
process ten times, for each dataset in Table 2 and measured
the average time. The results are illustrated in Figure 2.
To index and encrypt 1.370.023 keywords, the average time
was measured at 22.48min, while for 12.124.904 keywords,
the corresponding time was 203.28min. Note here, that this
is the most demanding phase of the protocol and that it
only occurs once, on the data owner’s side. As a result,
it does not affect the overall efficiency of our construc-
tion. Moreover, based on the results of other SSE schemes
that are not forward private [18], the times measured are
acceptable. Finally, to recreate a realistic scenario, this
phase of the experiments was measured at a commodity
laptop.

Additionally to the index of unique keywords, the SSE
schemes makes use of one more index containing a mapping
between keywords and file identifiers. The total number of
these mappings can be seen in Table 3.

TABLE 3. Keywords and Filenames pairs.
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FIGURE 2. Indexing and Encrypting Files.

b: Search
To measure the exact time needed to perform a search oper-
ation we need to take into account (1) The time required
to generate a search token and (2) The time needed by the
CSP to find and return the file identifiers of those files that
contain the specified keyword. On average, the creation time
for a search token was measured at 9µs, while searching for a
specific keyword over a set of 12.124.904 distinct keywords
and 39.747.904 addresses required 3.2sec.

B. CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION
For the implementation of CP-ABE, we used the scheme
presented in [5], offered by Charm-Crypto Framework ver-
sion 50.0 in a Docker container. The experiments were imple-
mented in Python 3.6 and conducted on a Desktop machine
with Intel Core i7-8700 at 3.20GHz (6 cores), 32GB RAM.

c: Setup Phase
The first phase of our experiments was devoted to measuring
the time required to generate a master public/private key pair
for a master entity. In our setup, we considered the existence
of a single master entity responsible for the generation of
CP-ABE keys. The time to generate a single pair was less than
a second, while the total time for the generation of 200 master
key pairs was measured at almost 6 seconds. These results are
illustrated in Figure 3.

d: Users Key Generation
In the second phase of the experiments, we measured
the average time needed to generate secret users’ keys.
In particular, we measured the time to generate a user’s key
while increasing the number of attributes associated with it.
As can be seen in Figure 4, the average time to generate
a user key with 1.000 attributes took almost 6.41sec, while
a key with 500 attributes required approximately 3.23sec.
These results are suitable for covering even more complex
cases where big companies are required to generate large keys
based on a wide variety of information. Thus, it can be stated

FIGURE 3. Generation of master public/private key pairs.

FIGURE 4. Generation of user key with up to 1000 attributes.

that covering a long list of attributes is realistic and should
not prevent an organization from adopting such an approach.

Moreover, as can be seen from Figure 5, we observe that
the size of the key is almost linear to the number of attributes
associated with it. In particular, the size of a key associ-
ated with 1.000 attributes is around 420KB, while for a key
associated with 500 attributes the disk size was measured at
almost 215KB. Finally, a key associated with 100 attributes
has a size of approximately 45KB on the disk.

e: Encryption & Decryption
CLASH only use CP-ABE to encrypt a symmetric key and
not large volumes of data. Hence, we measured the time
needed to encrypt and decrypt a symmetric key under policies
of different sizes. We used access policies of type {1 AND
2 AND . . . AND n} similar to [5]. Such policies are the
most demanding since all attributes are required for the suc-
cessful decryption. The experiment can be divided into two
stages. In the first stage, we measured the encryption process.
In particular, we ran an encryption algorithm on a message
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FIGURE 5. Disk size of the key as the number of attributes is increasing.

with different policies. In the second stage, we decrypted the
freshly generated ciphertexts with keys that are associated
with a different number of attributes. In addition to that,
we were adding access policies of a different structure to
record the performance of the decryption not only when all
conditions needed to be fulfilled (most demanding case),
but also when a random number of attributes is needed to
satisfy the underlying policy. Figure 6, demonstrates the time
required to encrypt a symmetric key with a random policy of
size up to 1.000 attributes. Similarly, Figure 7 illustrates the
time needed to decrypt a ciphertext by using a key with up
to 1.000 attributes. As can be seen from the figures, the time
to encrypt and decrypt a message depends on the particular
attributes available and the size of the policy. In particular,
the encryption of a key with a policy of 1.000 attributes took
approximately 6.5 seconds while the decryption time was
measured at almost 0.068 seconds. However, for more real-
istic scenarios where policies contain around 200 attributes,
the encryption time was around a second and the decryption
time was almost 0.028 seconds. It is evident that the under-
lying CP-ABE scheme does not add any real computational
burden to the overall performance of the protocol.

In the second stage of the experiment, we focused on
analyzing the behavior of the underlying ABE scheme. More
precisely, we created an algorithm that randomly generates
a policy that contains numerical attributes as well as condi-
tions such as {(1 AND 2) OR (3 AND 4)’}. This condition
required that at least one of two parenthesis are satisfied
by the attributes of a user’s key. Figure 8 shows the time
needed to decrypt a ciphertext bound with a policy of up
to 1.000 attributes. From the result shown in the graph, we can
observe that the decryption time is linear regardless the ran-
domness of the policy.

C. IMPLEMENTATION AND EVALUATION THE
OF Cloud we Share
We used the SGX OpenSSL cryptographic library [3] to
implement RSA with 4096 bit keys. The reason for select-

FIGURE 6. Encryption.

FIGURE 7. Decryption.

ing such a long key size was that we wanted to test the
performance of our construction under the most demanding
circumstances. Additionally, the development was done in
C/C++ using Intel(R) SGX SDK 2.6 for Linux [4].

An SGX application is divided into two different parts;
the trusted part (i.e. the enclave) and the untrusted part (i.e.
application). To make a call to the enclave, the untrusted
application is using the SGX’sECall function, which allows
the application to enter the enclave. Similarly, SGX’s function
OCall is used to exit the enclave back to the untrusted
space.

f: Setup Phase
The setup phase consists of launching the enclaves and
generating all the necessary keys. Each enclave contains
multiple functions that correspond to different parts of our
construction. Therefore, we measured the time taken to
launch each enclave separately. To acquire more accurate
results, each enclave was launched 10.000 times and we
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TABLE 4. Processing time of primitive blocks of The Cloud we Share.

FIGURE 8. Decryption of ciphertext associated with a random policy.

measured the average completion time. The average time to
launch the MS enclave, containing all the functions required
for the generation of the RSA keys was 25.4ms while the
average time to launch the REV enclave was 28ms. Similarly,
the time needed to launch the KT enclave was measured
at 27.6ms, and finally, the launching of the CSP enclave,
required 28ms. Note here that the enclaves can be launched
in parallel. Therefore, the time required to launch all four
enclaves is 28ms. The final step of this setup phase is the
generation of the RSA keys. In our construction, each enclave
generates an 4096-bit RSA key pair. The time required for the
generation of such a pair was measured at 840ms. However,
this procedure can also be run in parallel, since each enclave
generates its own key pair independently from the other
enclaves. These results are illustrated in Table 4, along with
the functions contained in each enclave.

g: Enclave Attestation
Different enclaves can attest to each other to demonstrate
the integrity of their software. SGX offers two different
kinds of attestation, local and remote. Local attestation

occurs between two or more enclaves running on the same
platform, while Remote attestation enables a third party
to attest an enclave. Currently, verifying a quote from a
third party involves contacting Intel’s attestation server - a
process that requires a license. Thus, for our experiments,
we consider the case of local attestation. We measured the
time needed between the KT enclave and the REV one to
attest to each other, as part of CLASH.Manage. We run the
experiment 10.000 times and the average time was measured
at 1.1ms.

h: Execution Time
In the last part of our experiments, we determined the running
time of CLASH’s functions bymeasuring the time required to
(1) generate, (2) exchange and (3) verify all messages of our
protocol. Each experiment was run 100.000 times to achieve
a better estimation of the average time. Our focus was to
measure the application execution time while it was running
in secure containers (i.e. enclaves). Namely, we measured
ECall functions at the moment of entering and exiting
enclaves from the untrusted part of the application.

Our results are presented in Figure 9 by showing the
average time needed for each one of the functions. As can
be seen, CLASH.Manage, CLASH.KeyTrayStore and
CLASH.KeyShare are themost demanding functions as they
were measured at 474µs, 245µs and 81µs respectively. This
result was expected due to the big number of exchanged
messages. Moreover, the CLASH.Store took 23µs. Finally,
the total execution time ofCLASH.Search,CLASH.Update
and CLASH.Delete were measured at 17µs, 17µs and 20µs.

i: Open Science and Reproducible Research
As a way to support open science and reproducible research
and allow other researchers to use, test, and hopefully
extend/enhance our protocol. Our CLASH prototype, as well
as the ABE experiments, have been already uploaded to
GitLab and are publicly available online.1 In addition to that,

1https://gitlab.com/qdalza/clash
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FIGURE 9. Message Creation and Verification.

the dataset that we used to perform the SSE experiments
has been uploaded as a research artifact (Open Access) on
Zenodo [25].

VIII. CONCLUSION
In this paper, we proposed The Cloud we Share, a hybrid
encryption scheme based on SSE and ABE. Our construction
allows a data owner to share her data in a privacy-preserving
way and manage the access rights of the rest of the users.
Moreover, we show that we can rely on the functionalities
offered by Intel SGX, to design an access control mechanism
that is agnostic to the underlying cryptographic primitives.
In addition to that, we strongly believe that cloud-based ser-
vices will rely less on traditional decryption of information,
and more on computations over encrypted data. We hope that
this work will kick-start a period of greater research in the
area of privacy-preserving computations in untrusted clouds.
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