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Abstract  

This thesis explores inequalities in educational attainment by family 

background, focusing on three specific aspects of this important issue.  

University participation is one outcome which displays large gaps by 

family background. I examine the effect of debt aversion on university 

participation and find firstly, that young people from all family backgrounds 

who are debt averse are less likely to attend university when they finish 

school, and secondly, that the size of this effect does not differ substantially 

by family background. Thus whilst debt aversion poses a barrier to entry into 

university, it doesn’t explain the gap in participation rates by family 

background. In fact, these gaps open up much earlier and are already 

apparent when the children are still very young.  

The second empirical chapter uses data at ages 5 and 7 to explore 

this further, and shows that family income itself seems to have a direct 

impact on children’s cognitive test scores at these ages, with other important 

influential factors including the stability of the child’s environment, the 

presence of the natural father, and parental behaviours such as taking the 

child to the library regularly. As well as highlighting the importance of these 

and other factors, this chapter makes a methodological contribution by 

introducing an augmented random effects model which helps address issues 

of endogeneity and a lack of within-variation in key variables that have faced 

similar studies in the past. 

Finally, children’s test scores demonstrate substantial stochastic 

variation, with the implication that the development trajectories of groups 

divided according to ability and family background may demonstrate 

regression to the mean effects. Dealing with this statistical phenomenon 

using various methods in order to isolate the substantive effects of family 

background confirms that bright children from poorer families do drop behind 

their peers, providing justification for a continued policy focus on this group.  

The existence of inequalities in educational outcomes by family 

background also has implications for social mobility, which further highlights 

the importance of investing in the cognitive development of young children 

from disadvantaged backgrounds.  
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1 Introduction 

1.1 Family Income and Children’s Outcomes in the UK 

This thesis examines the relationship between parental income and 

certain educational and cognitive outcomes of their children. A long tradition 

of research has established that there is a clear link between the socio-

economic background of one’s parents, and the prospects of that individual 

in regards to their education and other outcomes later in life (e.g. see 

Hanushek, 1986; Haveman and Wolfe, 1995; Dearden et al, 2011b). 

Examining outcomes for individuals grouped according to their family 

background demonstrates large gaps between people from the most 

advantaged and most disadvantaged families. More recent research has 

attempted to establish when these gaps appear and to trace them 

throughout an individuals’ lifetime. For example, the following figure, using 

data from three large-scale longitudinal surveys, indicates that although 

there are already gaps in cognitive achievement by socio-economic 

background at age 3, these are substantially larger by age 16.   

Figure 1-1 Cognitive Achievement outcomes by socio-economic position 
quintile, across surveys and ages 

 

Source: Goodman et al (2011), p5. Longitudinal and Life Course Studies special edition on 

“The socio-economic gradient in cognitive and educational achievement” 
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The effect of family income on children’s achievements is complex 

and works through a large number of economic and social variables – from 

experiences in the womb, to family structure and the home environment, 

and to the variations in financial support that it also implies. Various studies 

have attempted to identify which factors have the greatest impact (e.g. 

Gregg et al, 2007, Violato et al, 2011). One important question is the issue 

of whether family income itself has a causal impact on children’s cognitive 

outcomes or whether it merely reflects other influences (Mayer, 1997). 

Since family income is strongly correlated with many other aspects of family 

background and the home environment, this introduces methodological 

issues which must be addressed in order to reach clear conclusions on the 

true mechanisms behind the relationship between parent’s income and their 

children’s educational and cognitive outcomes.  

This thesis will contribute to the current literature on this topic by 

examining three specific aspects of the relationship between parental 

income and outcomes.  

 In Chapter 3, I undertake an analysis of what determines the university 

participation decision, with a particular focus on the effect of debt 

aversion on this decision. Participation in HE is an important avenue for 

progression for those from poorer families, and it is possible that 

differential perceptions of debt act as a barrier.  

 Chapter 4 then analyses the early years of a child’s life, with a focus on 

differences in the cognitive development of children from different family 

backgrounds between ages 5 and 7 when the children have just started 

school. I look at the role played by various factors in explaining this gap, 

examining the influence of family income per se, school related factors 

as well as a broad range of other individual, family and environmental 

factors.  

 Chapter 5 then revisits the work of Feinstein (2003) in examining 

trajectories in the development of children from different family income 

groups. In particular, I use methods that are robust to regression to the 

mean, given the recent assertion (see for instance, Jerrim and Vignoles, 
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2013) that this phenomenon has led to a mistaken view of the relative 

progress of bright children from disadvantaged backgrounds.  

The relationship between the income and outcomes of individual 

parents and children is of course related to the larger issue of 

intergenerational mobility in society as a whole. This will be discussed in 

more detail in the following section, with particular emphasis on the role of 

education as a facilitator or possible hindrance to social mobility.  

1.2 The Role of Education in Social Mobility 

In recent years, there has been a significant government policy interest 

in social mobility and the links between the economic success or failure of 

family members from consecutive generations. One key element of this is 

education, however, the role of education has been described as “one of 

the great unsolved debates in our thinking about social mobility” (Major, 

2012). On the one hand, there is a general consensus amongst 

policymakers and academics that education can play a key role in breaking 

the inter-generational transfer of social disadvantage, and allow each 

individual (no matter what their background) to reach the level of 

achievement that reflects their own abilities and talents, rather than their 

parents’. On the other hand however, it is also the case that research can 

cast education as a perpetuator of social (dis)advantage, as socio-

economic background is highly correlated with educational achievement at 

various stages of the lifecycle. Put differently, the key question in this 

debate is whether education functions as “the great social leveller” or rather 

“enables the privileged to consolidate their position in society” (Major, 2012, 

pp. 155). Although it is generally assumed that education is the key which 

provides a way out of inherited disadvantage, much of the empirical 

literature on this point has actually indicated that, at least in the UK and the 

US, education has played a strong and even increasing role in perpetuating 

socio-economic advantage in recent decades and has thus been a force for 

social immobility.  

Possible mechanisms behind the inheritance of inequality in the 

United States are explored in Bowles and Gintis (2002), examining a 
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heterogeneous collection of mechanisms, including the genetic and cultural 

transmission of cognitive skills and non-cognitive personality traits in 

demand by employers, the inheritance of wealth and income-enhancing 

group memberships, such as race, and the superior education and health 

status enjoyed by the children of higher status families. They find that 

education, race and wealth have been the key drivers of income 

persistence. This is supported by findings from Restuccia and Urrutia 

(2004) who find that approximately one-half of the intergenerational 

correlation in earnings in the US is accounted for by parental investment in 

education, in particular early education. In terms of policy 

recommendations, they find that the impact of an increase in public 

resources devoted to early education is greater than that of an increase in 

college subsidies. 

Key factors determining the degree of social mobility in the UK are 

examined in Blanden et al (2007). They focus in particular on non-cognitive 

traits, cognitive skills, educational attainment and labour market attachment 

and employ a decomposition approach to evaluate the relative contributions 

of these factors. By estimating the univariate relationship between parental 

income and each of these variables individually and then combining these 

results with the return on each variable from an earnings equation, they find 

that education is the key transmission mechanism for the persistence in the 

socio-economic outcomes considered (income and social class), as 

parent’s income affects children’s educational outcomes and this in turn 

affects their own earnings. Non-cognitive variables and cognitive skills are 

also important contributors, accounting for 0.06 points (19%) and 0.09 

points (27%) of the 0.32 intergenerational co-efficient respectively. It should 

be noted, furthermore, that these factors also have an important indirect 

role in determining educational attainment. In addition, the authors explore 

the factors which contributed to the decline in intergenerational income 

mobility between the 1958 cohort and the 1970 cohort. Of particular 

significance is the decline in the importance of ability and rise in the 

importance of parent’s income in the determination of children’s educational 

outcomes.  
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Further evidence which portrays education as a perpetrator of social 

advantage is provided in Lindley and Machin (2012) which shows that 

“people from already-rich family backgrounds … are increasingly reaping 

higher rewards in the labour market from their higher qualifications” (p283). 

The large increase in university participation, and especially more recently 

of post-graduate qualifications, has occurred primarily among people from 

rich backgrounds. Coupled with rising wage differentials for the more 

educated, this has led to increasing inequality within generations, and since 

this has reinforced existing inequalities, the end result has been a fall in 

social mobility. Blanden and Macmillan (2004) describes this as an 

unintended but nonetheless very real consequence of education policy in 

the UK.  

Education has been targeted as a policy instrument for improving 

social mobility in many countries and for some time. However, Esping-

Anderson (2004) argues that this focus has been misguided. He points out 

that the Netherlands, for example, has seen a clear increase in mobility 

despite spending less than the OECD average on education, and argues 

further that while educational-system characteristics such as tracking or the 

mix of public and private schools may help account for group-specific 

mobility patterns, they generally fail to explain overall mobility differences. 

Through a detailed analysis of education and social mobility in the OECD 

countries, he concludes that “social inheritance remains as pervasive as 

ever in large part because education systems largely reproduce pre-

existing inequalities” (p309). He argues that the assumption that formal 

education can completely undo these inequalities has led to a misplaced 

focus of public policy on education (be it through redistributive investment 

as in the Becker model or through system reform). Rather than continuing 

this narrow focus, he recommends a shift to other mechanisms including 

the early years, “cultural capital”, cognitive ability and parenting.  

In the past, the role of education in social mobility may have been 

conceived of rather simplistically, as in the following model. In this diagram, 

there is a single arrow from parent’s income to their children’s education, 

which can also be substituted by public investment such as government 

grants to higher education. This model implies that the only hindrance to 
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increased educational attainment by young people from disadvantaged 

families is their inability to invest in their desired level of education (due to 

credit constraints) and that government funds can be injected to substitute 

family resources.  

Figure 1-2: Simple model of the role of education in social mobility  

 

Source: own representation 

However, there has been a government policy focus on widening 

participation for some time, and the link between children’s education and 

parental income has actually strengthened despite this. This could in part 

be related to changes to the education system, such as the decline of 

grammar schools, for example. More broadly, it also could be because the 

above model is too simplistic and ignores many other factors that are 

strongly correlated with parents’ income and affect both the children’s 

education and their final outcomes. The influence of parent’s income on 

their children’s education is much more complex than the simplistic 

representation above implies. Parents’ income is both correlated directly 

with children’s educational attainment and also with a whole host of other 

characteristics. These characteristics influence children’s educational 

attainment, and also have a direct impact themselves on the children’s later 

incomes. This can be represented by the following diagram.  

Figure 1-3: Extended model of education and other factors affecting social 
mobility 

 

Source: Own representation 
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This demonstrates the importance of other factors that are correlated with 

family income. In particular, arrows 3 and 4 are neglected in the above, 

more simplistic, conception of this relationship, and will be examined in 

detail in this thesis.  

Education is and remains a key determinant of labour market access 

and wage levels. For children from disadvantaged backgrounds, it can help 

them leave their background behind and make a way for themselves 

according to their own talents and abilities, while for children from 

advantaged backgrounds, it helps them to maintain this standing and even 

capitalise on it further. However, looking at the evidence for the UK over the 

past few decades, the relationship between parent’s income and children’s 

education has strengthened, despite widening participation policies which 

have aimed to reduce the gap in educational attainment between children 

from more or less advantaged families (Galindo-Rueda and Vignoles, 2005; 

Blanden and Machin, 2004), such that education has acted as a strong 

force to perpetuate advantage, rather than being an effective mechanism to 

increase social mobility.  

This thesis will examine the gaps in educational attainment between 

children and young people from different family backgrounds and explore 

barriers which exist to improved attainment and increased participation. 

These issues will be explored within the framework of human capital theory, 

which will be described in the following section.  

1.3 Theoretical Framework: The Human Capital Model 

This thesis examines young people’s decision regarding whether or 

not to participate in university and also explores gaps in cognitive ability 

that open up between children from different family backgrounds very early 

in life. These are two key points in the educational process where outcomes 

have a strong influence on the ability of poorer children to progress in the 

labour market later in life, and where there has been some lack of success 

of government policy in equalizing outcomes between children from 

different family backgrounds. Both of these issues can be understood within 

the theoretical framework of human capital theory.  
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This theory regards education as more than a consumption good – 

much more as an investment which makes people more productive and 

generates a return in the labour market. It also provides insights into the 

rise and fall of families and the determinants of intergenerational mobility. 

Following a brief overall introduction to the theory of human capital, two 

models that have been proposed to explain the university participation 

decision and intergenerational mobility from this theoretical perspective will 

be briefly laid out. This will be followed by a brief discussion of some very 

recent papers giving a modern perspective on human capital. 

Human capital theory was first introduced in the late 1950s and early 

1960s especially through the work of Jacob Mincer, Theodore Schultz and 

Gary Becker. These economists discussed the importance of investments 

in human beings, such as training, education and health services. Starting 

to view activities such as education as investments in man provided 

answers to an array of phenomenon for which there had been ad hoc 

theories, or no real answers at all (Becker, 1962). This approach also gave 

insight into two key paradoxes – the growth of the economy relative to the 

growth of physical capital (Schultz, 1961); and the skewness of the income 

distribution relative to the distribution of ability (Mincer, 1958). Human 

capital theory has continued to develop over the last half-century and has 

become a core area of analysis within economics.  

The key idea is that investments in human beings, such as 

education, on-the-job-training and so on can be seen as analogous to 

investments in physical capital such as factories and machines. Activities 

which “influence future real incomes through the imbedding of resources in 

people” (Becker, 1962, p9) can be seen as investments in human capital. 

According to this theory, people will invest in human capital to the point 

where their marginal cost of investing is equal to the marginal return of this 

investment. Returns to human capital are most often in the form of higher 

wages and a faster increase in wages over the lifetime. Young people have 

a greater incentive to invest in human capital as they will be able to accrue 

the benefits of this over a longer period, and also because their opportunity 

cost of taking time away from work to improve their skills and increase their 

knowledge is lower than for people who have already spent some 
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considerable time in the workforce. In terms of measuring human capital, 

one common approach is to measure inputs, e.g. years of post-secondary 

education or months on the job, whilst an alternative approach is to itemize 

certain achievements, such as degrees attained (Blair, 2011). Both 

approaches have limitations however, as “human capital takes many forms, 

including skills and abilities, personality, appearance, reputation, and 

appropriate credentials” (Becker and Tomes, 1986).  

  The human capital approach has been applied to a diverse array of 

phenomena. The following sections describe how it has provided insights 

into the two main questions of this thesis: the decision concerning whether 

or not to progress from school to university; and the factors affecting the 

cognitive outcomes of children in relation to the income of their parents.  

1.3.1 The University Participation Decision 

Since education can be viewed as an investment good which derives a 

return in the labour market, it can be assumed that people will decide on an 

optimal amount of education where the marginal benefit is equal to the 

marginal cost. Another way to look at this is to consider the present value of 

lifetime earnings which a person would receive under various scenarios. 

Education is chosen to maximise the expected present value of the stream 

of future incomes, up to retirement, net of the costs of education so that at 

its optimum the present value of the ith year of schooling just equals the cost 

of the ith year of education. The present value summarises three elements, 

firstly, the returns to education, which accrue through higher wages, 

secondly, the costs, including direct costs such as fees and text books as 

well as opportunity costs i.e. the wages foregone to that person during the 

time of their studies, and thirdly, the person’s discount rate, which reflects 

not only the market rate of interest but also the person’s time preferences. 

Lower costs, higher returns and lower discount rates will lead to additional 

investment in education.  

Figure 1.4 below shows the economic trade-off in a person’s decision to 

continue in education after they finish school or to enter the labour force at 

that point. It shows the age-earnings profile associated with each 

alternative. On the one hand, the worker can enter the workforce 
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immediately after finishing school. Assuming that there is no on-the-job 

training and the skills learned at school do not depreciate over time, the 

worker’s productivity and real earnings will be constant over the life cycle. 

They will earn a lower level of wages than what they would have earned 

had they invested in further education. On the other hand, the person could 

decide to remain in education and undertake a university qualification. This 

involves both direct  

Figure 1-4 Potential Earnings Streams Faced by a High School Graduate 

 

Source: Own representation, based on Borjas (2010) 

and indirect costs initially – direct costs are shown by the negative value H 

while indirect costs are represented by WHS (the earnings of the person who 

entered the labour force straight after school). However, this model 

indicates that someone who attends university will earn a higher wage after 

graduation until retirement. This higher wage is something firms must pay 

to induce graduates to work for them and is a compensating differential that 

compensates graduates for their training costs. Individuals will weigh up the 

present value of the net earnings they could generate from the two paths 

and make their decision accordingly. Human capital theory suggests that 

each person’s decision will depend on the rate of discount they apply in the 
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calculation of present value. Direct and opportunity costs must be 

outweighed by the benefits in terms of future discounted returns. 

 This figure shows flat lines for each income path, however, this is an 

oversimplifying assumption which implies that wages do not increase over 

the lifetime, and furthermore that all workers have the same ability. Wages 

will typically increase over the lifetime since working also increases human 

capital by giving workers skills and experience and because workers often 

receive on-the-job training. However, they will increase at a decreasing 

rate, reflecting diminishing returns to investment in human capital, similar to 

the case of physical capital. Furthermore, the rate of increase in wages will 

be positively linked to a person’s ability level since more able persons will 

get relatively more from additional investments in human capital.  

Age-earnings profiles using real life data and illustrating the way that 

the wages of workers with a particular level of schooling change over their 

lifetimes typically have properties which reflect these theoretical ideas - 

they show that highly educated workers earn more than less educated 

workers; they show that earnings rise over time, but at a decreasing rate, 

and they show that the earnings pathways of groups with different levels of 

schooling diverge from each other (Mincer, 1958).   

 An alternative theory of how people make the decision as to how 

much education to invest in is called signalling theory (Spence, 1973; Arrow 

1973; Sitglitz, 1975). Whereas human capital theory is based on the idea 

that education raises a worker’s productivity, signalling is based on the idea 

that employers cannot directly observe a worker’s ability and instead use 

their education as a signal to determine who will be a productive worker. It 

can be assumed that the cost of achieving a university education is lower 

for more able or high-productivity individuals, for example because they will 

not have to spend as much time studying. For this reason, high-productivity 

workers will be willing to incur the costs involved in higher education and 

attain the qualification, which acts as a signal to employers and secures 

them a higher wage. Although low-productivity workers would also like to 

earn the higher wage, it is too costly for them to attain the university 

qualification. In this way, university qualifications act as an effective signal 
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that helps the firm correctly distinguish between high and low productivity 

workers.   

It is very difficult to see which of these theories is “true” using 

empirical methods as both have the same implications, for example that 

more educated workers earn higher wages and that people will invest most 

heavily in human capital when they are young. Whilst various innovative 

ideas have been used to try to determine which is more accurate (e.g. see 

Tyler et al, 2000, which uses difference-in-difference methodology to 

ascertain the signalling effect of the GED1), the evidence is still divided. In 

fact, it is likely that both explanations play a role, i.e. that education 

increases worker’s productivity and also sends a signal as to their ability 

level.  

 The third chapter of this thesis explores the university participation 

decision in the context of human capital theory. The focus is not on the 

returns to education, but rather on the costs of university and especially the 

young person’s perception of these costs. Only the path where they attend 

university involves negative earnings for some period, and the research in 

this thesis focuses on the issue of debt aversion and the young person’s 

attitude to this period of negative earnings.  

1.3.2 The Rise and Fall of Families 

The fourth and fifth chapters of this thesis are concerned with the early 

years’ cognitive development of children from different family backgrounds. 

My analysis explores the extent to which children from well-off families 

perform better than children from disadvantaged families in cognitive 

assessments up to age 7, focusing on the mechanisms behind this. 

Furthermore, I examine whether the rate of development differs for children 

from different family background and ability groups. This is closely linked to 

the question of intergenerational mobility, since the educational attainment 

of children is linked to their own future labour market outcomes (e.g. see 

                                                           
1
 The GED, or General Educational Development tests are available for US and Canadian citizens 

who have not graduated from high-school. The GED is designed to provide an alternative 
qualification which indicates an equivalent level of academic skills to a high-school diploma.  
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Blanden and Machin, 2008, which exploits this link to derive current 

estimates of intergenerational income mobility). 

A general framework for understanding intergenerational mobility, 

presented in Becker and Tomes (1986), relates the rise and fall of families 

to investments in human capital and other factors. A greatly simplified 

version of this model is presented below. Although my research is not 

based directly on this model, some important implications of the model are 

very relevant for my work and it provides a general framework where the 

relationship between parent’s income and their children’s outcomes is 

directly linked to investments in human capital, along with other factors.  

Becker and Tomes’ (1986) model starts with a simple Markov equation 

expressing the relationship between the incomes of parents and children, 

such as 

���� = � + ��� + ����              (1.1) 

where ����	is the income of the second generation (the children), and �� is 

the parents’ income. This equation can refer to the change in overall 

inequality in a society over time and also the relationship between the 

incomes of different generations of a family. If �  were exactly equal to 1, it 

would imply that parents and their children enjoy the same incomes. On the 

other hand, a value of the parameter � of less than one implies that the 

correlation between the incomes of parents and children is less than 

perfect, i.e.  children of rich parents are less rich than their parents whilst 

children of poor parents are better off than their parents. A relationship like 

this would lead to a constant (or declining) level of inequality, whereas a 

value of  � larger than unity would imply a growing level of inequality in the 

society, with the children of rich parents becoming even richer and the 

children of poor parents becoming even poorer.  

What are the determinants of the incomes of children compared to 

the incomes of their parents? In Becker and Tomes’ model, the degree of 

intergenerational mobility, or the rise and fall of families, is determined by 

the interaction of utility maximizing behaviour with investment and 

consumption opportunities in different generations and with different kinds 
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of luck. A child’s human capital is determined by their endowments and the 

investments of their parents and society. Their human capital in turn 

influences their earnings, which are the main determinant of their total 

income (together with bequests received from their parents). These factors 

will now be described in more detail.  

 Endowments can entail both cultural and genetic components, and it 

is assumed that both are automatically transferred from parents to children, 

according to some degree of “inheritability”. As a first approximation, it is 

assumed that both are transmitted by a stochastic-linear or Markov 

equation:  

��
� = �� + ℎ����

� + ��
�    (1.2) 

 where  ��
� is the endowment (or vector of endowments) of the �th family in 

the �th generation, ℎ is the degree (or vector of degrees) of "inheritability" of 

these endowments, and ��
� measures unsystematic components or luck in 

the transmission process.  

 The model is developed further through the inclusion of investments 

in human capital. Human capital depends not only on endowments but also 

on investments by parents (�) and the society (�). Much research (both 

before and after Becker and Tomes (1986) was published) shows that 

investments during childhood are imperative for later developments. On this 

basis, the model makes the assumption that the total amount of human 

capital accumulated throughout a person’s life, including on-the-job training, 

is proportional to the amount accumulated during childhood. As such, total 

human capital accumulated is a function of endowments, parental 

investment and public expenditures, i.e.  

�� = �(����,����,��),				���ℎ	�� > 0,				� = �,�,�  (1.3) 

Endowments including ability, early learning, and other aspects of a family’s 

cultural and genetic “infrastructure”, in general raise the marginal effect of 

family and public expenditures on the production of human capital, such 

that 
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����

��������
= 	��� > 0,				� = �,�  (1.4) 

This is similar to the idea of dynamic complementarity introduced in Cunha 

and Heckman (2007). Indeed, several of the ideas contained in their later 

model appear to have their roots in this early work of Becker and Tomes.  

 The parents’ influence on their children’s human capital is thus (at 

least) twofold, working through the endowments and also through their 

investment. Under the assumption of perfect capital markets where funds 

can be borrowed for investment in human capital, parents can decide on 

the optimal amount of investment in the human capital of a child by 

equating the marginal rate of return and the interest rate.  

 The marginal rate of return on parental expenditures (�� ) is defined 

by the equation 

���

�����
=

���

�����
= �� = 1 + �� (����,����,��)   (1.5) 

where 
���

��
> 0 by inequality (1.4). As the marginal rate of return is positively 

linked with endowments, better endowed children will accumulate more 

human capital. This point has important implications as inequalities would 

be increased if both ability and resources are transmitted from parents to 

children.  

Earnings are defined as  

�� = 	�(��,��)��� + ��           (1.6) 

where the earnings of one unit of human capital (�) are determined by 

equilibrium in factor markets and depends positively on technological 

knowledge (�) and negatively on the ratio of the amount of human capital to 

nonhuman capital in the economy (	�); and where � represents market luck. 

As such, children who accumulate more human capital will therefore have 

higher earnings. The positive relationship between endowments and 

expenditures raises the total effect of endowments on earnings, and the 

inequality and skewness in earnings relative to that in endowments. 

Although the research in chapters four and five relates to children’s 
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cognitive outcomes in the early years, when they are still far from entering 

the labour market themselves, the skewness and inequality in the 

distribution is already very marked.  

 Under the assumption of perfect capital markets, children’s earnings 

would not be affected directly by their parent’s income because parents 

would be able to borrow to finance investment in their children’s human 

capital. There would be an indirect effect on children’s human capital and 

earnings however, working through the inheritability of endowments. The 

higher the degree of inheritability, the more closely correlated the human 

capital and earnings of parents and children would be. Furthermore, 

children’s income would be affected by parents’ earnings and wealth 

because of gifts and bequests.  

 Under the more realistic assumption that parents have difficulties 

borrowing for investments in human capital (because it is poor collateral), 

such investments would have to be self-financed. While rich families would 

have no difficulties with this, poor families would only be able to invest in 

their children’s human capital to the extent that they were able and willing to 

limit their own or their children’s consumption. Capital market restrictions 

would therefore lower investments in children from poorer families. A small 

redistribution of human capital away from rich families and towards poor 

families would raise the average marginal rate of return across families. 

Importantly, there would be no conflict between equity, as measured by 

inequality, and efficiency because this redistribution is equivalent to an 

improvement in the efficiency of capital markets. The fact that investing in 

the human capital of children from poor families does not present a trade-

off between efficiency and equity is one of the key points made in Cunha 

and Heckman (2007).  

 Other factors covered in Becker and Tomes (1986) include decisions 

regarding the number of children and the influence of family size, marriage 

decisions and the effect of imperfect assortative mating, and parental 

altruism regarding gifts and bequests. If wealth is positively related to 

fertility, family size can increase regression to the mean in wealth by 

diluting the assets of rich families who make bequests. Imperfect positive 

assortative mating also tends to cause consumption and wealth to regress 
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towards the mean. As such, their analysis indicates that these factors work 

to decrease intergenerational mobility, although these effects are complex 

and not unambiguous.  

 This model presents a framework to interpret findings on 

intergenerational mobility. It is based on utility-maximising behaviour by all 

participants, equilibrium in different markets and stochastic forces (notably 

luck) with unequal incidence among participants. It shows how parents 

income is related to the income of their children and indicates the key 

mechanisms for this, in particular the endowments that are passed on to 

the children, parents’ investment in children’s further human capital 

accumulation, and the effect of this on children’s earnings. The key 

implications arising from this model which have relevance for the empirical 

work in chapters four and five are:  

1) the positive relationship between endowments and investment raises 

the marginal return on investments and causes these children to 

accumulate more human capital; 

2) children’s earnings would depend indirectly on their parent’s 

earnings through the inheritability of endowments even if there were 

perfect capital markets which facilitated an optimal investment in 

children’s human capital; and 

3) in regards to policy, there is no trade-off between equity and 

efficiency in redistributing human capital from rich families to poorer 

families. 

1.3.3 Selected Recent Work  

One recent, highly influential, paper within the area of human capital 

theory is Cunha and Heckman (2007), which presents a technology of skill 

formation featuring self-productivity, dynamic complementarity and skill 

multipliers. Their framework explains a variety of findings from literature not 

just within empirical economics but also child development and cognitive 

science. Their model centres on the formation of human capital, estimating 

for example which periods of a child’s life are most productive in ensuring a 

return to investments in the development of human capital. One clear 
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difference to the early human capital literature, however, is that they state 

that “the sharp distinction between acquired skills and ability featured in the 

early human capital literature is no longer tenable” and as such make a 

clear departure from traditional, “additive” nature and nurture models. In 

terms of policy recommendations, they argue that a balanced investment 

strategy that “optimally distributes the resources spent over the full life cycle 

of the child” is most efficient in achieving reductions in income inequality. 

This implies the importance of early and continued investments in children’s 

human capital formation.   

Currie and Almond’s chapter in the 2011 Handbook of Labor 

Economics (Currie and Almond, 2011) reports that a growing concern in the 

empirical economics literature has been the early years of a child’s life, and 

in particular how children’s human capital accumulation responds to their 

environment before age five. Building on the idea of complementarity as 

discussed in Cunha and Heckman (2007), they develop a model which 

makes it possible to assess the impact of negative shocks and the extent to 

which this can be remediated. They find such shocks have a large influence 

on later outcomes, explaining as much variation in income (for example) as 

more traditionally examined factors such as years of education. However, 

they also find that damage can be remediated, although the question of 

which programs are most effective in doing this remains open. They 

demonstrate that using a production function approach to human capital 

development is a useful analytical tool, but that the actual estimation of 

such a function is difficult due to data constraints that are unlikely to be 

overcome in practice.  

Furthermore, the ability of families to invest in their children’s human 

capital development is investigated in Caucutt and Lochner (2012). They 

find that capital constraints do bind for some families (especially young 

parents at the start of their careers), restricting their ability to invest 

optimally in their children’s human capital development; and also find 

evidence of dynamic complementarity of investments, which means that 

later investments build on earlier investments. These two factors together 

imply that early interventions tend to be more successful than later 

interventions at improving human capital outcomes.  
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These three papers demonstrate that a focus on the early years is a 

current theme in the human capital literature. Regarding the 

responsiveness of human capital accumulation to a child’s early 

environment, Currie and Almond (2011) report that although there were no 

papers on this topic in the top economics journals in 2000, there have been 

a steady stream of them since 2005 and following. This area is of growing 

interest in the academic arena and equally so among policy makers. This 

thesis will contribute further to this body of research, using the human 

capital framework as described above.  

1.3.4 Summary 

Human capital theory has become a core theory within economics 

and has implications for many important empirical questions. As has been 

discussed above, it demonstrates where people’s motivation comes from to 

invest in education; both their own (university) and their children’s. The link 

between investment in education and later returns via higher wages is 

analogous to the returns in the form of profits to investments in physical 

capital such as machinery. The decision mechanism for how much to invest 

is also equivalent, as this theory postulates that people will invest in human 

capital to the point where the marginal benefit is equal to the marginal 

return. This has important implications for an individual’s decision regarding 

whether to progress to university education after completing school, and 

also affects the transmission of earnings and wealth between generations 

of a family since investments in human capital are a key element of this 

relationship. Investments in human capital in the early years of a child’s life 

have become an important theme in recent empirical literature in this area.  

The theory of human capital provides the broad framework and 

theoretical perspective for the following chapters. Chapter 3 of this thesis 

extends the analysis of the university participation decision to include debt 

aversion, while chapters 4 and 5 examine the relationship between family 

income and children’s cognitive development up to age 7. Some important 

implications of the basic human capital model for the following analysis 

have been highlighted above.   
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1.4 Policy Context: Recent Relevant Policy Changes and Initiatives 

The existence of gaps in educational attainment between children from 

different family backgrounds has been recognised as a serious social issue. 

The current government has various policies in place to address 

educational inequalities at various stages of childhood into adulthood. In 

order to provide a context for the research contained in this thesis, this 

section provides a brief overview of certain relevant policy changes and 

initiatives.  

1.4.1 Policies Relating to the Early Years 

The current government has continued support for Sure Start 

Children’s Centres, which are an initiative that was initially introduced by 

the previous labour government. Sure Start children’s centres offer 

universally accessible services but focus in particular on those in greatest 

need. They work to make sure all children are properly prepared for school, 

address health and other developmental issues, and also offer support to 

parents. However, although Sure Start is supported officially, the 

programme has reportedly seen substantial budget cuts, leading to the 

closure of an estimated 400 centres (Butler, 2013). On the other hand, 

certain policies introduced by the current government indicate an increased 

emphasis on the early years. This includes, for example, increasing the 

status of early years education professionals to be equal to teachers in 

primary schools and introducing initiatives to encourage more high-quality 

graduates to work in the sector (DfE, 2013a).   

1.4.2 The Pupil Premium 

 The pupil premium provides schools with extra funding to raise the 

attainment of disadvantaged pupils.  It is designed to address the current 

inequalities in educational attainment by attaching greater funding for pupils 

with disadvantaged backgrounds. In this context, disadvantaged children 

are defined as those children who have been eligible for free school meals 

at any point in the past 6 years, as well as children who have been looked 

after for 6 months or longer. It is in place from reception to year 11 and in 

the 2013-14 financial year, funding for the pupil premium increased to 
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£1.875 billion, such that schools receive £900 per pupil, plus an additional 

£53 for primary school pupils (DfE, 2013b).  

 The pupil premium is paid to schools and there are no requirements 

for how it is to be spent. However, there is an emphasis on the 

achievement of results, as Ofsted inspections report on how schools’ use of 

the funding affects the attainment of their disadvantaged pupils and new 

measures on the attainment of pupils attracting the Pupil Premium have 

been included in the performance tables (ibid.). An Ofsted report describing 

how schools view the Pupil Premium has reported that schools for which 

the total amount received was not large often did not disaggregate it from 

the rest of their budgets. School leaders reported that the funds were often 

used to maintain or enhance existing provision rather than investing in new 

initiatives and that the most common usage was to pay for teaching 

assistants (Ofsted, 2012). 

  More recently, certain resources have become available to help 

schools direct the funding towards practices which will be most effective for 

raising the attainment of disadvantaged pupils in particular, such as the 

‘Education Endowment Foundation toolkit’  developed by the Sutton Trust 

and Durham University. This is a tool which ranks various educational 

approaches according to their effectiveness, cost, and the strength of the 

evidence relating specifically to that practice (Education Endowment 

Foundation, 2014). The Pupil Premium has been praised as having the 

potential to be very effective in facilitating social mobility,  although with the 

caveat that this will require ‘more training, frameworks and parental 

engagement’ (Sobel, 2013). 

1.4.3 The Removal of Education Maintenance Allowance 

The Education Maintenance Allowance was previously available to 

people aged 16 to 18 years of age and enrolled in either a full-time further 

education course at a school or college, a course leading to an 

apprenticeship or a Foundation Learning Programme. The maximum 

amount of £30 per week was available to young people whose families had 

an annual income below £20, 817. Young people from families earning up to 

£25,521 were eligible to receive £20 per week while young people from 
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families earning up to £30,810 were eligible to receive £10 per week. These 

funds were paid directly to the young person and could be used at their 

discretion, for example to fund travel, lunches or other requirements. 

The EMA has now been removed and replaced by the 16 to 19 

Bursary Fund. Under the current scheme, the most vulnerable young people 

are eligible to receive a bursary of £1,200 per year (equivalent to £23 per 

week), whilst any remaining funds can be disbursed at the discretion of the 

local authorities, schools, colleges and other education providers (DfE, 

2013c). The major difference is in terms of funding levels, as whilst the EMA 

amounted to £564 million in 2010/11, the new Bursaries Fund totalled only 

as much as £180 million at its introduction (Coughlan, 2011). Regarding the 

bursary scheme now operated by further education and Sixth form providers 

in the city of Manchester, Manchester city council has reported that 

“because of limited funding, neither the scheme itself nor the reach is as 

extensive as the EMA …. For example, the Manchester College is 

supporting circa 250 young people with its bursary scheme, as opposed to 

the circa 1,000 supported with Educational Maintenance Allowance” 

(Manchester City Council Economic Scrutiny Committee, 2012).  

The government’s stated aim was indeed to reduce the deadweight 

loss of the program and make it more targeted to those who were most in 

need. Whilst this cut came alongside the raft of heavy cuts made in 

response to the financial crisis, it was justified based on reports that 88% of 

young people receiving the grant would have participated in post-

compulsory education anyway, even without the financial support the EMA 

provided. This finding came from a report which documented that 12% of 

respondents who received EMA agreed with the statement ‘I would not have 

done a course or training, if I had not received an EMA.’ (Spielhofer et al, 

2010) However, the IFS has pointed out that many public policies have a 

high deadweight cost and that EMAs could have other benefits such as 

improving attendance or allowing students to spend more time studying and 

less on part-time work. They have also said that the benefits of EMA in 

terms of higher wages ‘completely offset’ the costs, based on earlier 

research on the impact of EMA on participation (Chowdury et al, 2007; 

Chowdury and Emmerson, 2010). In any case, the effect of this type of 
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funding on the 16 – 18 participation rate is soon to become a non-issue, as 

the statutory participation rate is being raised in England to 18 as of 2015. 

This is discussed in the following sub-section.  

1.4.4 Raising of the Participation Age to 18 

Although currently most 17 and 18 year old participate in post-

compulsory education (88% and 76% respectively), legislation is being 

introduced which will make it a statutory requirement for 17 and 18 year olds 

to engage in either full-time education at a school or college, an 

apprenticeship or alternatively part-time education or training together with 

employment, self-employment or voluntary work of at least 20 hours a week. 

This is partly based on the decline in unskilled jobs available and the need 

for young people to be equipped for modern day employment. This will most 

likely benefit young people from disadvantaged backgrounds, as they are 

the most likely to be NEET (not in employment, education, or training) or in 

JWT (jobs without training). However, concerns have already been raised 

highlighting the need to provide suitable post-16 pathways, and high-quality 

guidance and support. It is expected that the young people affected by the 

change are likely to undertake jobs with training, vocational courses or 

courses leading to low-level qualifications, and that the main benefit will be 

in terms of increased future earnings. Although the changes will make 

participation compulsory by law, it is unclear how effective sanctions will be, 

and there is a strong wish to encourage voluntary participation (Spielhofer, 

2007).  

1.4.5 Change to University Funding Arrangements 

In 2012/13, the Government raised the cap on tuition fees to £9,000 

and cut most ongoing direct public funding for tuition. It also changed loan 

repayment terms by increasing the repayment threshold to £21,000, 

charging a real rate of interest on loans for those making repayment, and 

extending the maximum duration of loans from 25 to 30 years. A further 

major change was that fee loans are now available to part-time students. 

Institutions charging annual fees of over £6,000 have to spend some of this 

additional income on widening participation. Most universities decided to 
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charge the maximum £9000 fee. Changes to maintenance loans and grants 

have also been introduced as per the below, with an increase in the total 

available to those on the lowest incomes and some simplifications to the 

system.  

Figure 1-5: Changes to Maintenance Grants and Loans 

 

Source: Bolton (2011) 

1.4.6  Summary  

 These are some of the policies which are currently applicable or 

indicate recent changes. They all deal with issues of educational inequality, 

although at various stages of the educational journey. There are two main 

themes which come out of this brief overview – firstly the intense pressure 

on government budgets after the financial crisis which resulted in heavy 

cuts, and on the other hand, an ambition to provide support for pupils from 

disadvantaged backgrounds. This aims to reduce and even remove the 

attainment gap between these students and the remaining cohort. The 

policies discussed above have been described in order to provide a policy 

context for the following research, which focuses on differences in 

educational outcomes according to family background and socio-economic 

status and seeks to provide further insights, leading to more effective 

support for young people from disadvantaged backgrounds.  

1.5 Outline of Research  

This thesis examines various aspects of the relationship between family 

background and children’s outcomes. Three separate, empirical chapters 

contribute to the existing literature on the relationship between parent’s 

Previous Current 
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income and their children’s cognitive and educational outcomes by 

examining three specific aspects of this relationship. By expanding the 

traditional view of the role of education to a more complex picture of a 

broad range of forces with various impacts on education and further 

outcomes, it provides scope for potentially more effective policies to meet 

the specific needs of disadvantaged children, in particular in the early years 

of their lives when gaps in educational attainment are starting to open up. 

Further detail on each chapter is provided below. 

1.5.1 Debt Aversion and University Participation 

The first empirical chapter examines debt aversion as a possible factor 

behind the substantial gap in university participation rates between young 

people from rich and poor families. One measure puts this gap at 38 

percentage points, with 19% of young people from the most disadvantaged 

neighbourhoods participating in university at ages 18/19, compared to 57% 

from the most advantaged neighbourhoods2. The analysis is based on the 

idea that concerns about getting into debt may lead young people to 

choose not to participate in university, and the hypothesis that this effect 

may be more severe for young people from disadvantaged backgrounds.  

The increase in undergraduate fees up to £9,000 per annum as of 2013 

further increases the potential impact of this factor, since it means that large 

debts are becoming an inescapable aspect of obtaining a university 

education. There is substantial anecdotal evidence that concerns about 

debt pose a far greater barrier to university participation for young people 

from lower income families (e.g. Burdmann, 2005), however, it has been 

difficult to attain robust quantitative estimates of this effect due to data 

limitations. To date, the only paper to address this question directly 

(Callendar and Jackson, 2005) focused on a small sample of young people 

pursuing a HE entrance qualification and could only report on their 

participation intention, since the young people were only interviewed in one 

period.  

                                                           
2
 HEFCE Trends in Young Participation, 2010 
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In chapter three, I take the opportunity provided by the LSYPE dataset 

to examine this important issue in a more robust way than has been 

possible to date. This dataset has several advantages, in that it is based on 

a nationally representative sample of young people (including weights that 

align it more fully with the total population), rather than a sample made up 

of students or young people pursuing HE entrance qualifications, and 

furthermore follows these young people over time allowing us to observe 

actual university participation (or not) as opposed to participation intention. 

The richness of the data also makes it possible to control for a wide range 

of personal and family characteristics. In particular, the fact that the dataset 

is linked to the National Pupil Database provides test statistics that can be 

used as proxies for innate ability in order to address the potential 

endogeneity of the family income variable.  

The main method employed in this chapter is logistic regression. This is 

supplemented by various other techniques in order to examine whether the 

effects of debt aversion are more severe for poorer families. This chapter 

makes an important contribution in measuring the effect of one factor which 

may pose a substantial barrier to university participation, and potentially 

more so for young people from poor families, but has not been estimated 

using robust econometric methods in the past.  

1.5.2 Factors Affecting Cognitive Development in the Early Years  

Some economists have argued strongly that investments in education 

that are made early in a child’s life make sense in terms of both equity and 

efficiency (Becker and Tomes, 1986; Cunha and Heckman, 2007).  By the 

time a child is of university age, their family background has already 

strongly influenced their educational outcomes, and it may in fact be too 

late for government policies to be effective in opening up options for them in 

regards to higher education. This chapter focuses on the first few years of 

school (between the ages of 5 and 7) and explores factors that contribute to 

children’s cognitive development in this important period of their lives.   

There are three sets of factors explored in this chapter. Firstly, family 

income is examined to explore whether or not this has a direct, independent 

effect on children’s outcomes. The second set of factors examined are 
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school related factors, such as whether or not the school charges fees and 

is co-educational, and the years of experience of the child’s teacher. To my 

knowledge, this is the first analysis of the impact of family background on 

children’s outcomes to use the fourth wave of data from the Millennium 

Cohort Study, and as such the first study of school effects that is able to 

control for such a vast array of potential correlates. And finally, an extensive 

list of other factors is also tested, including factors relating to the child’s 

own characteristics, the family structure, parental behaviours and attitudes, 

the home environment, the neighbourhood, and money related factors such 

as car usage and home ownership amongst others.  

This chapter uses panel data methods to address the endogeneity of 

key variables arising from unobserved individual heterogeneity correlated 

with family income and other factors. Other authors using panel techniques 

with this dataset (e.g. see Violato et al, 2011) encountered an issue of 

limited within-subject variation in the key variables. In this chapter, I 

introduce an augmented random effects model which addresses this issue 

whilst maintaining the consistency achieved through a fixed effects 

framework.  

As well as this methodological contribution, this chapter makes a further 

contribution to the current literature by identifying key factors, alongside 

family income, which impact on children’s development between ages 5 

and 7 and can potentially be targeted for government policy interventions. It 

takes a broad view of the impact of family background on educational 

attainment and attempts to identify important contributing factors.  

1.5.3 Trajectories of Development and Regression to the Mean 

The third empirical chapter examines differences in the trajectories of 

cognitive development of young children from different family income 

groups. It has been found that if children are divided into groups based on 

their family background and an early test score, change measured from this 

point shows a sharp increase in the performance of low ability children from 

well-off families and a sharp decrease in the performance of high ability 

children from poor families (Feinstein, 2003). However, a pattern such as 

this often merely reflects regression to the mean, which is a statistical 
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artefact occurring for individual data measured at more than one point in 

time and containing random variation. Jerrim and Vignoles (2011) suggest 

that this differing pattern for children from rich and poor families no longer 

occurs once RTM is accounted for. Blanden (2012) has called for further 

research to be carried out on this issue.  

Early years test scores are a prime candidate for RTM effects because 

of the high variability in children’s performance between tests. I employ two 

techniques to deal with the RTM effect and isolate the true effect of family 

income on the children’s rates of cognitive development at these ages. Both 

techniques have their roots in epidemiology, where this issue is often 

discussed in studies examining relative change over time in a certain 

outcome. The first technique is discussed and briefly applied to the MCS 

data in Jerrim and Vignoles (2013). This chapter provides much greater 

detail on the various effects operating in that data set, quantifies the RTM 

effect for different groups, and employs an extra wave of data which makes 

it possible to use an alternative cognitive ability test. The second technique 

involves using a value-added functional form and I show how this can be 

effective in dealing with RTM.  

 The chapter contributes to the existing literature on the relationship 

between family income and children’s cognitive outcomes by clarifying the 

relative effects of random statistical variation and real substantive benefits 

accruing from additional family income. I provide a detailed analysis of 

these trends using data from the Millennium Cohort Study, with the aim of 

attaining estimates of the relative rates of cognitive development of children 

from different family backgrounds, which are robust to the phenomenon of 

RTM. The development of bright children from disadvantaged backgrounds 

is an important economic and societal issue, and accurate measures of the 

development of different ability and family income groups is an important 

foundation for the discussion of this issue and policies relating to this group.  

1.6 Aims and Objectives 

This thesis examines the influence of family income on children’s 

educational and cognitive outcomes in their early years and at the point of 
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entry to university. The aim is to investigate two key points in the 

educational process where (i) there is general agreement that outcomes 

are key in determining the ability of poorer children to progress in the labour 

market and (ii) there has been some lack of success of government policy 

(and therefore some need for additional insight). University participation is 

one outcome where the gap between young people from rich and poor 

backgrounds is still very substantial despite having been a government 

policy focus for some time. Social and environmental factors in the early 

years of a child’s life are seen as essential in explaining subsequent 

success in the education system and thus the labour market. As the 

discussions in this introduction underline, various government programmes 

have failed to narrow the gap in performance between those from more and 

less affluent backgrounds in these early years. To shed light on this issue, 

we need to view through a clear lens and I therefore examine whether 

children from different backgrounds show different rates of development or 

whether these patterns merely reflect random variation within individuals 

over time. 

The aims of the thesis can therefore be summarised as:  

 To examine the effect of debt aversion on university participation and 

whether this effect differentially impacts on children from different 

family income  groups  

 To explore which factors are the key determinants of children’s 

cognitive development in the first few years of school 

 To test if children from different family income groups have different 

trajectories of development (in terms of the change in their cognitive 

test scores over time) or whether observed differences are merely a 

statistical artefact 

The results of these three questions, taken together, help to focus 

attention on the key issues relating to family income and children’s 

cognitive and educational outcomes. In particular, they show that a broad 

view of the influence of family background and a focus on the early years of 
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a child’s life are justified and furthermore point to specific areas that can be 

targeted in order to reduce inequalities in children’s academic outcomes.  

 The availability of high quality longitudinal datasets on children and 

young people in the UK makes it possible to examine these issues in great 

detail. For the first empirical chapter, I use data from the Longitudinal Study 

of Young People in England (LSYPE), which is the first dataset I am aware 

of with a large nationally representative sample and data on debt aversion, 

family income and university participation. For the final two chapters, I use 

the Millennium Cohort Study (MCS), a very rich dataset with multiple tests 

of cognitive ability at ages 3, 5 and 7 as well as data on a vast array of 

other factors related to the child, their family, their neighbourhood, their 

school and so on. Each chapter uses various methodological techniques to 

answer the questions of interest. Methodologically, one issue that affects all 

empirical work in this area is the endogeneity of family income in the sense 

that it is not possible to control for all individual heterogeneity that is 

correlated with the outcome measure and with family income. I take a 

variety of approaches to dealing with this issue in this research, such as 

including a wide range of control variables including proxies for unobserved 

ability, and applying panel data techniques to difference out any time-

invariant individual effect, in particular an innovative augmented random 

effects model.  

This thesis is structured as follows. In chapter 2, I review some of the 

existing literature on the determinants of children’s development and 

educational success, focusing on family income. Chapter 3 starts with the 

gap in university participation between children from rich and poor families 

and examines the influence of debt aversion on the university participation 

decision. Given the evidence that this gap actually opens up much earlier in 

life, chapter 4 examines a wide range of factors that influence children’s 

development in the first few years of school. Chapter 5 focuses on 

differential trajectories of development in the early years and the potential 

for regression to the mean effects to wrongly influence the measurement of 

these changes. Chapter 6 concludes with a summary and suggestions for 

how government policies can be most effective in encouraging the success 

of young children from disadvantaged families.  
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2 Literature Review 

The previous chapter introduced the key themes of this thesis, focusing 

on the relationship between family background and educational outcomes, 

and the implications this has for social mobility. A large body of work has 

contributed to understanding the determinants of children’s educational and 

cognitive outcomes. This chapter will start by reviewing some important 

contributions to the literature on the determinants of children’s outcomes 

more generally, before focusing on the role of family income. The 

discussion of the role of family income will be divided according to various 

themes.  

2.1 Factors Affecting Child Development and Educational Attainment 

The question of which factors are most important in facilitating children’s 

development has been addressed by well-known economists for some 

time. Hanushek (1986), on the economics of schooling, provides a thorough 

review of research on the determinants of educational success. He writes 

that educational attainment depends on a broad array of individual, family, 

peer and school related factors. Family factors most frequently include 

parents’ education and wealth, as well as more specific issues such as the 

influence of parental divorce or the number of siblings, whilst the school 

related inputs include teacher salaries and pupil/teacher ratios. His paper 

furthermore discusses various methodological issues related to the 

estimation of an education production function, such as difficulties in 

specifying and measuring what the output should be. He reviews 147 

papers published between 1966 and 1986 and reports that findings on 

school and teacher quality as well as expenditure on schools are somewhat 

ambiguous, but that family background has a clear and important role in 

explaining differences in achievement. 

A further review of current literature on the determinants of children’s 

attainments was given in Haveman and Wolfe (1995). They briefly describe 

the econometric framework introduced by Gary Becker as well as 

approaches from other disciplines. They suggest that a complete 

framework would consider the influence of the society first (as expressed in 
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government policy which determines the “social investment in children”), 

the choices parents make in regards to the quality and quantity of family 

resources devoted to the children, and finally the choices and opportunities 

of children themselves. In terms of particular determinants of children’s 

attainments, they find a strong consensus regarding poverty and growing 

up in a low-income family. In particular, it is clear that lower educational and 

labour market attainment is associated with parental choices or attributes 

which result in reduced access by children to economic resources or 

opportunities.  

Other determinants they consider include whether or not the mother 

works, and when in the child’s development she (re)enters the labour 

market; family structure such as single-parenthood and the number of 

siblings; and stressful events during childhood such as moving home. They 

find that single-parenthood, stressful events and the mother working all 

have negative effects in the studies surveyed, although if the mother works 

when the child is already a teenager there appears to be a positive effect 

due to the extra income and the positive role-modelling. Growing up in a 

neighbourhood with “good” characteristics such as lower unemployment 

and where the residents are more educated is also found to have a positive 

effect on the children’s outcomes.  

A further important finding of the paper is that earlier studies may have 

overestimated the degree of intergenerational mobility in the society. Two 

key changes relate, on the one hand, to improvements in the data used (in 

particular the use of panel data which made it possible to use longer-term 

measures of income and reduced measurement error by removing the need 

to rely on proxy reports by adult children of their parents incomes), and 

furthermore to the use of more sophisticated methodologies. These two 

developments have led to more recent estimates of intergenerational 

mobility which are much lower than the early findings and in fact call into 

question the idea that society is highly mobile.  

2.2 Family Background and Child Outcomes  

One factor which is consistently highlighted in papers on the 

determinants of child development is family background. Without exception, 
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it can be seen that children with richer and more educated parents achieve 

better outcomes across a broad range of education related measures. The 

next section will review the literature on the relationship between family 

background and children’s outcomes, from various angles. I first explore the 

effect on various outcomes from the early years into adulthood. Secondly, I 

review papers that have tried to establish whether there is a causal impact 

of income in itself or whether the effect of income actually works through 

other channels. The third section explores one of these mediating factors in 

more detail, namely the intergenerational transfer of cognitive ability. 

Finally, I look into the literature on social mobility over generations.   

2.2.1 From Birth into Employment 

A large number of papers have been written on the relationship 

between family background and children’s outcomes. Some use 

longitudinal datasets to look at how outcomes progress over time, while 

many focus on an outcome at a single point in time. Blanden et al (2007), 

for example, discusses the fact that children from well-off families have 

better non-cognitive traits and perform better in all cognitive tests; achieve 

more at all levels of education as they grow up; and have greater labour 

market attachment in their teens and 20s. Reviewing the literature in 

general, it is clear that family income has a substantial and continued effect 

on a wide range of outcomes from birth into adulthood. In this section, I will 

briefly discuss this evidence starting with gaps in cognitive test scores and 

academic achievement between young children from different backgrounds. 

I then move on to looking at school related outcomes, such as GSCE 

attainment and choices about staying on in post-compulsory schooling and 

the type of qualifications to pursue (i.e. academic or vocational 

qualifications). There is also a great deal of evidence linking family 

background to university related outcomes such as participation, 

graduation, degree class and university quality. Finally, family income is 

also related to adult labour market outcomes such as the return to 

education.       

The literature on cognitive achievement in the early years shows a 

clear consensus that there is a significant gap between the test scores of 
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children from high and low income groups. For example, Feinstein (2003) 

uses data from the BCS and illustrates clear differences by family socio-

economic status (SES) in an ability index at 22 months. Dearden et al 

(2011) shows with data from the MCS that cognitive test scores at age 3 

and age 5 are strongly correlated with family income, as are a wide range 

of other family and child characteristics and the child’s home learning 

environment. They show that children from poor families are not only more 

likely to be in the bottom quintile of achievement at age 3, they are also less 

likely to escape from this category by age 5.  There is thus a very early gap 

in achievement and a widening of this gap as children grow up.  

This gap continues to widen during the school years. The empirical 

evidence has focused in particular on GCSE attainment, the staying on 

decision and the choice of academic or vocational tracks and shows that 

these factors are also highly correlated with the child’s family background. 

Mickelwright (1988) uses data from the NCDS to explore the determinants 

of staying on in post-compulsory education. Looking firstly at the effect of 

parents’ education and social class, he finds there is both a direct effect 

and a secondary effect working through school type and ability. Focusing 

on family income however (with a reduced sample for whom this is 

available), he finds that it has no direct effect for boys, above and beyond 

the effects of social class and parents education and the child’s ability and 

school type.  

Conlon (2005), also using data from the NCDS, finds that family 

background3 is an important determinant of the type of post-compulsory 

qualification pursued (i.e. academic or vocational). Although prior ability is 

key in determining the level of qualification attained (for both tracks), he 

finds that the choice of track is more related to parents’ background and 

local labour market opportunities than to prior ability. Lenton (2005) also 

finds that socioeconomic background is an important determinant of young 

people’s choices at age 16, and in particular that having a father or mother 

in a professional or managerial occupation greatly increases the likelihood 

of tacking an academic track. Gregg et al (2012) attempt to estimate the 

                                                           
3
 Defined in this paper as a vector of family background characteristics including number of 

siblings, father’s social class and parent’s interest in the child’s education (among others). 
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causal impact of father’s income on children’s GCSE attainment by 

focusing on the recession of the 1980s and isolating the effect of job loss 

associated with major industry contractions, mainly in manufacturing. They 

map data on industry-level employment change into the BCS which 

contains data on father’s industry and employment and their children’s 

outcomes and find that a child with a displaced father obtained, on average, 

18 grade points lower or half a GCSE at grades A*-C less than their 

otherwise-identical counterparts.  

Feinstein and Symonds (1999) examine performance at secondary 

school and find that parental inputs, including parental expectations, are 

among the most important factors that determine this. They also find that 

peer effects have an important role to play, whilst schooling inputs (such as 

the pupil/teacher ratio) are not found to have a significant impact. In terms 

of A-level results, Bekhradnia (2003) shows that the majority of students 

attaining zero to 12 A level points are from the lower socio-economic 

classes, while the majority of students attaining 27 to 30 A level points are 

from the higher socio-economic classes. These studies all demonstrate 

clear links between family background and children’s outcomes in regards 

to their choices at age 16 and other outcomes at school. 

               Another key area examined in the empirical literature is university 

participation. For example Dearden et al (2011) describes a 28% point gap 

in university participation by family background, with 12.2% of 18-19 year 

olds from low-income families studying for a degree compared to 30.4% 

from high-income backgrounds. Blanden and Machin (2004) show that the 

relationship between family income and both participation in full time 

education at age 19 and degree attainment at age 23 strengthened as 

university participation expanded in the 1980s and 1990s.  

Furthermore, Galindo-Rueda and Vignoles (2005) also found that the 

influence of family background is growing and show how the decline in the 

importance of ability in explaining university participation (relative to the 

influence of family background) is partly due to the fact that low ability 

children with high economic status have experienced the largest increases 

in educational attainment in recent years.  
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The literature on other university related outcomes is reviewed by 

Adnett and Slack (2007) who show that these outcomes also vary by family 

background. For example, Johnes and McNabb (2004) find that students 

from poorer backgrounds are more likely to drop out of university (for 

women this is predominantly for non-academic reasons); Smith and Naylor 

(2001) find that social class has a strong effect on degree performance and 

Smith, McKnight and Naylor (2000) find that graduates from poorer 

backgrounds have a lower probability of finding employment in graduate 

occupations. 

 In terms of the returns to education, there is some evidence that 

these are also related to family background. Dearden et al (2004a) use data 

from the 1970 British Cohort Study to estimate the returns to a “marginal 

learner” and find in regards to father’s social class that returns to staying on 

in post-compulsory education are higher for men from a high socio-

economic background (at 13-14%) than for men from a low socio-economic 

background (8-11%), although this difference is not statistically significant. 

For women, they find returns of 17-19% and 15-16% for higher and lower 

socio-economic classes respectively. On the other hand, they also estimate 

returns to achieving a higher education qualification (compared to a level 2 

qualification) and find that the returns to males from a low income family are 

actually higher than for males from a higher income family (at 23-24% 

verses 9-11%). However, it should be noted that the returns are measured 

as the percentage gain from the baseline ‘counterfactual’ and the 

comparison groups in each case are quite different, with low income males 

earning around 20% lower hourly wages as a baseline. For females, the 

returns to higher education are found to be similar across family income 

and social class groups.  

A different line of inquiry is pursued in Adnett and Slack (2007) which 

takes as their starting point the substantial gap in university participation 

rates between young people from more or less advantaged backgrounds 

and proposes that insufficient monetary returns to a degree for young 

people from disadvantaged backgrounds may be the reason for their 

decision not to participate. By comparing returns to entrants from a 

disadvantaged background with non-entrants from a similar background, 
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they find there are in fact significant incentives to undertaking higher 

education for disadvantaged young people, although they acknowledge that 

data and methodological issues put a caveat on the robustness of this 

finding.  

An alternative approach would be to compare returns for HE 

participants from advantaged and disadvantaged backgrounds. This is the 

approach undertaken in Altonji and Dunn (1996), who use sibling pairs from 

the Panel Study of Income Dynamics and the National Longitudinal Surveys 

of Labor Market Experience of Young Men and Young Women to explore 

the question of whether parental education raises the return to education. 

Their results are mixed, as some specifications indicate there is a 

significant positive interaction effect between parent’s income and 

children’s returns to an additional year of education, especially in the 

models that include family fixed effects, however, the authors express 

concern that these results are biased upwards. Other specifications, without 

fixed effects, return insignificant results indicating the returns may in fact be 

constant across different levels of parental education.  

On the other hand, Dale and Krueger (2002) explore the payoff to 

attending a more selective college and find that there is a negative 

interaction between parental income and school-average SAT, which 

means that students from poor backgrounds benefit more from attending a 

more selective college. Since there is no clear pattern of lower returns to 

higher educational qualifications for young people from disadvantaged 

backgrounds, it appears that the mechanism of inequality is the fact that 

young people from these backgrounds are less likely to pursue these 

qualifications in the first place, for example because they didn’t achieve 

high A level scores.  

2.2.2 A Causal Influence?   

One important question addressed in the literature is whether 

income in itself causally influences children’s outcomes. The key 

methodological issue is being unable to control satisfactorily for unobserved 

heterogeneity among children and families i.e. the endogeneity of family 

income. Parents’ incomes are not random, but are determined by their own 
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characteristics, which they pass genetically to their children and which 

affect the way they raise them and the home and learning environment they 

provide for them. Shea (2000) writes that intergenerational transmission of 

ability, either genetically or through culture, will lead to intergenerational 

persistence in income, ‘even if parents’ income per se doesn’t matter’. It is 

therefore an important empirical issue. Various strategies have been 

employed to try to identify the causal effect of income on children’s 

cognitive and educational outcomes, although this remains a very difficult 

task.  

Mayer (1997) is a very thorough study which employs five strategies 

to separate out the effect of parent’s income per se and their other 

characteristics. Firstly, she looks at income from different sources, i.e. 

welfare, earned income and “other” income. Secondly, the effect of parental 

income before and after an outcome is examined. If earnings after the 

outcome strongly affect the outcome, this implies it is the traits associated 

with permanent income that affected the outcome, rather than the income 

itself. Thirdly, she explores parents’ specific purchases and activities and 

the relationship between parent’s income and their psychological well-being 

and therefore their parenting behaviours. The fourth method is to examine 

trends in parental income and children’s outcomes since the 1950s. Finally, 

she uses exogenous sources of variation such as different benefits across 

states. While none of these approaches is conclusive in itself, taken 

together, they provide a strong impression that it is not money itself that is 

driving the test score gap, but rather the factors correlated with income 

including parental characteristics and behaviours.  

One paper which tries to identify the causal effect by using a quasi-

experiment is Copeland and Costello (2010). They demonstrate how the 

opening of a casino on tribal land in North Carolina exogenously increased 

incomes of American Indian families, and that this had significant effects on 

the years of educational attainment and crime rates of the children in these 

families. The authors use data from the Great Smoky Mountains Study of 

Youth, a longitudinal study including American Indian and non-Indian 

children in North Carolina. Their identification strategy centres on the fact 

that after a casino was opened on the Eastern Cherokee reservation, a 
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portion of the profits was distributed regularly based purely on pre-existing 

American Indian status and independent of potential recipients employment 

status, income or other household characteristics. The authors use two 

estimation strategies, a difference-in-differences approach and a fixed 

effects estimation and show that the transfer, which is relatively large and 

also considered to be a permanent increase in incomes, had positive and 

statistically significant effects on education and crime related outcomes. 

They furthermore show there is some indication that the mechanism 

mediating this effect was an improvement in parenting quality.  

A very similar approach is adopted in Loken (2007), which treats the 

Norwegian oil boom of the 1970s and 80s as a natural experiment that 

exogenously increased the incomes of families living in certain parts of 

Norway. However, they find that income has no causal effect on 

educational attainment. This finding may be quite specific to Norway, 

however, due to institutional factors such as the availability of student 

grants and maintenance.   

Other papers which also use an instrumental variables approach to 

identify the causal effect of income per se on children’s outcomes include, 

for example, Shea (2000), which focuses on influences on father’s income 

that are due to “luck” such as his union membership status, the industry he 

works in and any job loss due to plant closure or the death of the business. 

His identifying assumption is that these instruments are all uncorrelated to 

that father’s own ability, making it possible to abstract from inherited ability 

and estimate the effect of income per se. Nonetheless, he himself admits 

that any wage premia accruing to the father through his union status and 

industry may indeed be partly related to ability. He finds that changes in 

parents’ income due to luck have no significant effect on children’s wages, 

earnings, years of schooling, and total family income. This finding is stable 

when using all three instruments together or each one at a time.  

Chevalier et al (2011) also use union membership as an instrument 

to identify the causal effect of parents’ income, in this case on post-

compulsory schooling. They instrument both parents’ education (using the 

raising of the school leaving age in 1952) and parents’ income (using union 

membership) and find that maternal education has a causal impact but that 
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the other variables (including parents’ income) become insignificant. Finally, 

Dahl and Lochner (2005) used large, non-linear changes in the Earned 

Income Tax Credit over two decades in the United States as their 

instrument for family income. They find that a $1,000 increase in income 

raises combined math and reading test scores by 6% of a standard 

deviation in the short-run and that test gains are larger for children from 

disadvantaged families.  

In general, it is very difficult to find a plausible instrument for family 

income that is not subject to criticism or highly dependent on a particular 

set of circumstances (e.g. the potential relationship of union status and 

ability; or the difficulties in applying the circumstances of the Norwegian oil 

boom more generally). Another popular approach to dealing with the 

endogeneity of family income is to use fixed effects models. Possibly the 

most famous paper to take this approach is Blau (1999) which uses 

matched mother–child data from the National Longitudinal Survey of Youth 

(NLSY) to examine the relationship between parents’ income and children’s 

test scores. Her results indicate a small positive effect of income on test 

scores in OLS regressions controlling for parental characteristics, but no 

effect in regressions controlling for child fixed effects. These fixed effects 

models identify the effect of income by comparing test results in years of 

high parental income to results for the same child in years of low income, 

which has been criticised (see Shea, 2000) for focusing attention on short-

run variation in parents’ income which could have less impact on children 

than cross section variation in long-run income for several reasons, i.e. 

because parents can borrow and save, because income may be measured 

with error, and because children’s outcomes may depend on lagged as well 

as current income.  

Dooley and Stewart (2004 and 2007) also adopt a fixed effects 

approach to address the question of whether the link between family 

income and child outcomes constitutes a causal relationship rather than 

simply being due to unobserved heterogeneity. Using Canadian data, they 

in fact implement a series of empirical strategies starting with simple OLS, 

then using a fixed effects model, going on to compare parameters on 

variables measured before and after an outcome and finally including 
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indicators of the family’s consumption pattern. Their 2004 paper focuses on 

cognitive outcomes, and they find a positive but small direct effect of 

income, while their 2007 paper, focusing on behavioural-emotional 

outcomes, finds no effect for income but an important role for parenting 

style.  

The literature also contains various examples of ingenious though 

possibly less robust or reliable methods for estimating the causal effect of 

family income on children’s educational outcomes. Ermisch and 

Francesconi (2001), for example, provides mathematical models of the 

effects on educational attainment of parents’ education, experience of a 

single parent family and family income in a more restricted sense and 

makes the argument that such associations can be given a causal 

interpretation wherever parents are ‘too poor’ to make financial transfers to 

their children, or if their preferences have earnings separable from financial 

transfers.  

Chevalier and Lanot (2002) explore the relative importance of family 

characteristics and financial constraints on schooling attainment, firstly 

using the NCDS and BCS, and follow this up by using the Family 

Expenditure Survey (FES) to simulate the effect of a financial transfer 

similar to the EMA. By adding £30 per week to the father’s weekly earnings 

while keeping the other family characteristics constant, they attempt to 

separate the effects of family characteristics from financial constraints. 

They find that the effect of the transfer are minimal across the board and 

conclude therefore that children’s schooling achievement is dominated by 

the effect of family characteristics.  

Finally, Aughenbaugh and Gittleman (2003) compares and contrasts 

the effect of income on child development in the United States and the 

United Kingdom and finds that for both countries, income generally has an 

effect on child development that is positive and significant, but whose size 

is small relative to other family background variables.  Although they 

discuss extensively and attempt to deal with the endogeneity of family 

income, all they can really do is to restrict the covariates to a “core” set that 

are arguably exogenous. They argue this is partly due to data limitations in 

the dataset they use (i.e. siblings are interviewed but on the same day so 
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there is no within-family variation in income and they cannot use sibling 

fixed effects as per Shea 2000), however, it also demonstrates the 

difficulties in estimating the causal effect of income more generally.  

2.2.3 Intergenerational Transfer of Ability 

Family income and children’s achievement may also be joint 

outcomes of parents own characteristics, such as cognitive ability. What 

parents earn is determined to a large extent by their personal 

characteristics, which are also strong determinants of who their children 

are. That means that there would most likely be a strong link between 

parents’ income and variables that describe their children (e.g. early years 

test scores), even if money did not exert an independent influence.  Recent 

papers linking parents IQ or other measures of cognitive ability to their 

children’s include Anger and Heineck (2010), who find that individuals’ 

cognitive skills are positively related to their parents’ abilities, despite 

controlling for educational attainment and family background and Brown et 

al (2011), who find that how the parent performs in reading and 

mathematics during their childhood is positively related to the 

corresponding test scores of their offspring as measured at a similar age. 

Since higher IQ is generally associated with higher income (e.g. see 

Feinstein and Bynner, 2004), one reason for the link between parent’s 

income and children’s cognitive ability is thus the genetic transfer of this 

innate ability from parents to children.  

Evidence regarding the genetic transfer of ability does not preclude 

the importance of the home environment however, as several papers find 

that both nature and nurture contribute significantly to their children’s 

outcomes. For example, Bjorklund et al (2010) compares intergenerational 

correlations in IQ with correlations between siblings and finds that siblings, 

who share both parental factors and neighbourhood influences, show a 

stronger correlation – as much as 50%, while the intergenerational 

correlation is around one third. De Coulon et al (2011) includes reading and 

numeracy skills of the parents measured when they are adults and also 

from when they themselves where still children and find that both have a 

significant impact on their children’s reading and numeracy outcomes. This 



51 
 

implies it is not only genetically transferred ability that affects the children’s 

outcomes but that parents adult skills also matter. Furthermore, Bjorklund 

et al (2007) uses data on the rearing and bearing parents of children in 

different family situations (looking at six family types including the child 

being raised by both biological parents, by the biological mother / father 

with or without a partner, and by two adoptive parents) and finds a 

significant role for both pre-birth and post-birth influences.  

Crawford, Goodman and Joyce (2010) explores the intergenerational 

transmission of cognitive skills as a possible explanatory factor determining 

the socio-economic gradient in child outcomes. They use data from the 

BCS70 which contains ability measures and other important information for 

two generations of the same family as the children of cohort members were 

also surveyed and tested. They find that parental cognitive ability accounts 

for 50 per cent of the raw gap in cognitive test scores between children 

from rich and poor families and 16 per cent of the gap after controlling for a 

wide range of mechanisms through which ability may be transmitted across 

generations (such as differences in the home learning environment). 

However, inclusion of the parental ability variables does not substantively 

change the results for the other covariates, such as family structure, the 

child’s social skills, and attitudes of both the child and the parent towards 

education.  

Several authors have used adoption as an identification strategy to 

quantify the relative contribution of nature and nurture to children’s 

outcomes. Since adopted children experience the benefits of higher family 

income that are expressed in the family environment and parenting 

practices but do not share the same genes as their adoptive parents, 

adoption provides an effective way of estimating how much of the effect of 

family income on educational and other outcomes is due to each of these 

factors respectively. Das and Sjogren (2002) presented the first of these 

using a small sample of families from Minnesota and found that the genetic 

transmission of ability is important for future incomes. Other papers which 

use data on adoptees include Bjorklund et al (2007), who use Swedish data 

and find that both nature and nurture are important and that there is also an 
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interaction effect and Plug and Vijverberg (2003), who use US data and find 

that 55-60 per cent of parental ability is genetically transmitted.  

Two interesting papers by Bruce Sacerdote use data from an 

adoption agency in the US who assign families to children in a first-come, 

first-served basis, thereby ensuring a random allocation of children to 

families, which would remove any potential bias caused by families 

selecting children based on certain characteristics. Sacerdote (2002) 

examines the effect of being adopted into a high-socioeconomic-status 

(SES) family versus a lower-SES family on a range of outcomes including 

test scores, educational attainment, the selectivity of college attended and 

marital status and finds that the SES of the adoptive family is strongly 

associated with college attendance and the selectivity of the college. This 

paper also uses the British NCDS, and argues that children were randomly 

assigned to adoptive parents in this dataset too as adoptive-family SES is 

uncorrelated with birth mother’s SES, birth mother’s smoking status or 

child’s birthweight. His results from the two datasets highlight the 

importance of the environment a family provides for children, quite separate 

from any transfer of genetic ability.  

Sacerdote (2007) uses a larger and more robust dataset from the 

same adoption agency as the previous paper. His results in this paper 

reemphasise the shared role of nature and nurture on children’s outcomes. 

He shows that of the variation in educational attainment, shared family 

environment explains 16 per cent and genetic factors explain 44 per cent; 

of variation in the adoptees family income, shared environment explains 14 

per cent, and genetic factors 33 per cent. Thus there is a strong role for 

genetic factors in determining these outcomes. By contrast, other outcomes 

such as drinking, smoking, the selectivity of college attended and marital 

status appear to be more nurture based. He also finds that parental 

education and family size are much more influential than family income, 

which suggests the quality and quantity of parental attention may be two 

important underlying factors explaining the importance of family 

environment on child outcomes. In general, papers using data on adopted 

children to overcome the endogeneity of the family income variable all find 

that the family environment and the child’s genetic makeup both make an 
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important and statistically significant contribution to the children’s future 

outcomes.   

The intergenerational transfer of ability is just one mechanism which 

may be mediating the relationship between parent’s income and children’s 

cognitive development. Other possible mechanisms include parental 

behaviours and attitudes, educational resources and investment in a 

stimulating home environment, parent’s psychological functioning, 

neighbourhoods and schools etc. The literature on the various factors 

mediating the relationship between family income and children’s cognitive 

and educational outcomes will be reviewed in more detail (in particular in 

regards to the early years) in chapter five.  

2.2.4 Social Mobility and Intergenerational Transfer 

The relationship between the income and ability of the parents and 

their children’s outcomes on an individual level is of course also related to 

the broader question of intergenerational mobility in the society as a whole. 

A strong correlation between inequality in the income distribution and 

immobility in terms of incomes and occupations has been documented (e.g. 

Ermisch et al, 2012). Furthermore, many of the mechanisms appear to be 

the same in both cases, notably education and cognitive ability.  

Early measures of intergenerational mobility were included in work 

on human capital theory. Becker and Tomes (1986), for example, 

calculated an intergenerational income coefficient of 0.15 for the United 

States. It was thus thought that the US was a highly mobile society, where 

‘almost all earnings advantages and disadvantages are wiped out within 

three generations’ (ibid, p1). However, later developments showed that 

measurement error was artificially reducing this figure and that the true 

value was actually much higher. There is now somewhat of a general 

consensus that the intergenerational income coefficient lies around 0.4 

(Esping-Andersen, 2004), which can be interpreted as saying that 40% of 

the gap in incomes in the parent’s generation is passed down to the 

children’s generation.  

 Looking at data for the UK, Dearden et al (1997) use two methods to 

estimate the degree of intergenerational mobility in Britain using data from 



54 
 

the 1958 NCDS. Their paper includes a discussion of the difficulties 

involved in accurately measuring the intergenerational transmission 

coefficient including the bias introduced by using transitory rather than 

permanent income, for example, and the fact that parents have children at 

different ages, introducing the need to control for age effects. They find that 

intergenerational mobility in Britain is limited, with clear intergenerational 

correlations between fathers and both sons and daughters regarding labour 

market earnings and years of schooling. Depending on the methodology 

used, they estimate an intergenerational mobility parameter of between 0.4 

and 0.6 for men and 0.45 and 0.7 for women. They also uncover a further 

interesting feature, namely that upward mobility from the bottom of the 

earnings distribution is much more likely than downward mobility from the 

top.   

Although this already indicates a highly immobile society, Blanden et 

al (2004) documents a further fall in mobility between 1958 and 1970. Using 

data from two of the large British longitudinal surveys - the National Child 

Development Study (NCDS), where the children were born in March 1958, 

and the British Cohort Study (BCS), where the children were born in April 

1970 – they show that the economic status of the 1970 cohort was much 

more strongly connected to parental economic status than the 1958 cohort. 

This fall in intergenerational income mobility is confirmed by both 

regression and transition matrices approaches. They found, furthermore, 

that the increased educational attainment of the younger birth cohort is a 

large contributor to this, due to the fact that a greater share of the rapid 

educational upgrading of the British population has taken place among 

people with rich parents.  

Whilst the existence of the two longitudinal cohort surveys for 1958 

and 1970 make it possible to estimate intergenerational earnings mobility 

for these years, Nicoletti and Ermisch (2007) supplement this finding by 

estimating intergenerational mobility for the period 1950 – 1972. Although 

there is no dataset available for this period which contains information on 

earnings for two generations, the authors are able to overcome this by 

using a two sample two stage least squares estimator to impute father’s 

earnings using the information that is available on their education and 
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occupation. They also use various techniques to deal with potential age 

bias arising from the way earnings change over the life cycle and the fact 

that fathers have children at different ages. They find that earnings mobility 

didn’t change substantially over the period 1950 to 1960, but that it declined 

between 1961 and 1972.  

Blanden et al (2013) provided further detail on these trends by 

contrasting the decline in earnings mobility for these cohorts with the steady 

figures for mobility relating to social class, where the degree of 

intergenerational mobility was found to be unchanged between the two 

cohorts. They test various hypotheses regarding this and find evidence that 

the permanent component of income that is unrelated to social class is a 

key driver of this result. The distinction between income mobility and social 

class mobility permeates the literature, with papers from a more 

sociological slant often focusing on social class whist from an economics 

perspective income seems to be the main variable, although there is also 

overlap between the two areas. The effect of class concepts on mobility 

was highlighted specifically by Deputy Prime Minister Nick Clegg in a recent 

speech (in September 2012) where he identified class as a real barrier to 

mobility (Clegg, 2012).  

Looking ahead to future trends in social mobility, Blanden and 

Machin (2008) predict that mobility is likely to remain close to the low level 

observed for the 1970 birth cohort. They examine the relationships between 

parent’s incomes, intermediate outcomes (such as degree attainment, test 

scores and non-cognitive abilities) and children’s later earnings in the 1958 

and 1970 cohorts and note that the decline in mobility between these 

cohorts was accompanied by a strengthening of the relationship between 

parent’s income and intermediate outcomes. The earnings of children in the 

Millennium Cohort are not yet available (as these children are still too 

young to have entered the labour force). However, since examining the 

relationship between parents’ income and intermediate outcomes shows no 

further strengthening between the 1970 and 2000 birth cohorts, the authors 

predict that the social mobility coefficient is also likely to have remained 

steady.  
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More recent evidence on this is provided in Blanden and Macmillan 

(2012) which discusses the effects of policies that have been introduced 

specifically to encourage social mobility in recent years. Policies focusing 

on the early years, such as Sure Start, have yet to demonstrate a concrete 

contribution to mobility. For example, whilst results from the National 

Evaluation of Sure Start (NESS) show some effects on behavioural 

variables they show no effects on language skills. There has been no 

overall change in the correlation between early years test scores and family 

income across the children of the NCDS and BCS cohort members and the 

MCS cohort, which suggests that society is yet to see the returns, in terms 

of reducing inequality in outcomes, of the increased investment in Early 

Years.  

Regarding schooling, policies such as increased expenditure in 

schools, reduced class-sizes and other interventions such as the literacy 

hour do appear to be reducing educational  differences  across  family  

backgrounds at age 16  (Gregg and Macmillan, 2010). However, there is no 

improvement as yet for post-16 attainments - for example, there is no 

evidence so far of an increase in lower social class groups attaining a 

degree. AimHigher, a program designed to ensure fair access and support 

the progression onto Higher Education for young people from non-

traditional backgrounds, has shown mixed evidence (qualitative research 

indicates positive results but there are difficulties in identifying this in 

quantitative studies), and in any case AimHigher has now been closed 

down (Passy and Morris, 2010, Emmerson et al, 2006). 

Finally, in regards to access to top professions, evidence had shown 

that when comparing the 1958 and 1970 cohorts, those entering the top 

professions looked less like the average in terms of family incomes, but 

more like the average in terms of ability. This was true especially for 

doctors, lawyers, bankers and accountants. Partly in answer to this 

evidence, a Social Mobility and Child Poverty commission was established, 

chaired by Alan Milburn MP and addressing fair access to the professions, 

among other things. Recommendations included moves towards more 

transparency regarding internships to address the nepotism that is rife 

within this practice (Blanden and Macmillan, 2012). To date there are no 
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indications of how effective such policies may be in improving social 

mobility. Blanden and Macmillan (2012) argues that the picture is mixed– 

with positive change around age 16, but less clarity in the early years, for 

post-16 qualifications and in access to the professions. The impact 

improvements in age-16 outcomes will have on future mobility levels 

depends partly on how the returns to GCSEs change over time and 

whether or not this improvement feeds through to A-levels results and 

university access.  

2.2.5 Summary 

The literature reviewed in this section has shown that there is clear 

evidence of differences in children’s outcomes when measured according 

to their family background. This applies from outcomes in the very early 

years of life, throughout school, and even in the labour market. Literature 

on two key mechanisms behind this have been explored: the money itself 

(although evidence on this is still divided); and the intergenerational transfer 

of ability. Examining trends in social mobility shows that the UK is quite an 

immobile society and that this is unlikely to change in the near future. In 

summary, the literature reviewed in this section shows that children’s 

outcomes are determined to a large extent by their background. The 

research that follows explores three more specific angles of this 

relationship. Literature relevant to each of these aspects is included, along 

with the methodology, results and discussion, in the following chapters.  
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3 The Contribution of Debt Aversion to Lower University Participation 

Rates among Poorer Families 

3.1 Introduction 

Many countries have experienced a long term trend away from a 

model of fully state funded university education to more privately funded 

models, with students or their families contributing an increasing proportion 

of the costs through fees. Higher Education financing in England has 

certainly moved along these lines, moving from fee-free education until 

1998 to increasing fee levels and greater dependency on loans for 

students’ living and accommodation expenses (Adnett, 2006; Blanden et 

al., 2003).  After being introduced at a level of £1000 per annum in 1998, 

fees were allowed to increase in 2006 to a maximum of £3000 per annum. 

This figure increased in line with inflation, up to £3375 in 2011/12. However, 

following the publication of the findings of Brown Review in 2010, it was 

decided to increase undergraduate fees to a cap of £9000 from October 

2012 (Wilkins et al, 2013).  One main reason for this shift in funding is that 

many studies have shown high positive returns to education (e.g. Blundell 

et al, 2000; Walker and Zhu, 2011) such that there is an argument for 

students to bear more of the fee burden themselves on equity grounds. 

These changes are also a consequence of increased participation, due to 

the need for increased funding as student numbers continue to grow.  

This raises the question of the role that fees play as a determinant of 

participation, especially for young people from disadvantaged family 

backgrounds. There is a substantial gap between the university 

participation rates of young people in the highest and lowest family income 

groups / socio-economic backgrounds. This can be seen from Table 3.1 

below which draws on two sources. The BIS statistics show the estimated 

percentage of maintained school pupils aged 15 who had entered higher 

education by age 19. It shows a participation rate gap of around 18 

percentage points between pupils who did and did not receive Free School 

Meals (a commonly used proxy measure for family background), which has 

remained steady since 2007/8. Participation rates are higher for students at 

independent schools, but this data has not been made available by FSM 
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status. The HEFCE Trends in Young Participation is based on 

characteristics of the neighbourhood where the young people live4. 

Table 3-1 HE Participation Rates 

2006/07 2007/08 2008/09 2009/10 2010/11

Progression to HE by FSM status

Source: BIS

FSM 14% 15% 17% 18% 20%

Non-FSM 33% 33% 35% 36% 38%

Gap (pp) 19 18 18 18 18

Trends in Young Participation

Source: HEFCE

Low Part. (Q1) 16% 17% 18% 19% ..

High Part. (Q5) 55% 56% 58% 57%

Gap (pp) 39 39 40 38 ..
  

FSM: Free School Meal status.    ..  Not available 

It is clear that there are large differences in the proportion of young people 

entering HE by neighbourhood. Whilst fewer than one in five young people 

from the most disadvantaged areas enter higher education, more than one 

in two young people in the most advantaged areas do so, making them 

nearly three times more likely to enter higher education. Nonetheless, since 

the 2004/05 cohort the most disadvantaged quintile has shown a larger 

participation rate increase compared to the most advantaged areas, of 4.7 

percentage points compared with 2.4 percentage points. Both the large gap 

in participation rates and the slightly faster increase among young people 

from disadvantaged backgrounds are visible if the areas are classified 

according to participation rates, parental education, parental occupation or 

family income.  

There are many factors which contribute to this gap, and many of 

them take effect in early childhood or in the first few years of school. Much 

research (e.g. see Chowdry et al., 2010) shows that children from poorer 

backgrounds achieve less well throughout their schooling and are much 

                                                           
4
 The above figures use POLAR2, where participation rates themselves are used to 

classify areas into quintiles, removing the need to impose assumptions as to the underlying 
factors behind the participation rates. The figures have been adjusted to deal with 
distortions arising from regression to the mean. 
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less likely to continue into post-compulsory schooling and to achieve good 

A-levels. In fact, participation rates of A-level students from different 

backgrounds do not display large gaps (Corver, 2010). The decision 

whether or not to participate in university does not therefore simply occur 

when someone is 17, but is determined much earlier on in life. Carneiro and 

Heckman (2002) provides a review of empirical work which indicates that 

family income influences university participation primarily through long run 

factors rather than through introducing short run credit constraints at the 

point of entry. The long-term influence of family socio-economic 

background and family income on a person’s educational path is related to 

factors such as the parents’ own levels of educational attainment, their 

expectations for the child, their ability to pay for extra tuition or public 

schooling and the learning environment in the home (Blanden and Gregg, 

2004).  

Apart from these formative aspects and the issue of credit constraints, a 

family’s income may still have a direct effect at the point of decision to enrol 

in university once the child has completed secondary education. The 

current model in the UK is that fees that are paid through government loans 

and repaid to the government by the student after graduation depending on 

their earnings. In this context, family income could have an effect on 

participation through  

1) affecting the level of debt the young person incurs at university (as 

access to credit is more limited and thus possibly more expensive 

and there is less possibility of depending on family resources) 

2) influencing their attitude towards debt -  if young people from poorer 

families are more concerned about accumulating debt, this may act 

as a barrier to participation (Callender and Jackson, 2005).   

3) affecting their expected earnings on graduation (Altonji and Dunn, 

1996) 

4) influencing their time preferences (if poorer families tended to prefer 

short-term gains) and thereby making them more likely to opt for 

positive income in the short run, despite total life-time income 

generally being lower for workers without a university qualification 
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Debt aversion is the factor I am primarily interested in exploring in this 

chapter, as there has been little econometric analysis of this in the UK to 

date and it is likely to be of growing importance in the coming years given 

the increases in undergraduate fee levels that have been introduced. There 

is anecdotal evidence that concerns about debt pose a far greater barrier to 

university participation for young people from lower income families 

(Burdmann, 2005) and surveys of students have shown that students from 

poorer backgrounds are more averse to debt than students from higher 

income backgrounds (Callender et al, 2003). While the possibility of taking 

out a student loan to cover fees and (at least partly) living expenses 

reduces the financial risks and barriers involved in completing a degree, it 

provides little comfort for someone who is debt averse rather than risk-shy 

or liquidity constrained.  

Under the legislation that took effect in 2012/13, some estimates put 

expected student debt at the completion of a three year undergraduate 

degree at as much as £40,000. It has also been shown that currently, 

students from lower income backgrounds graduate with higher debt levels 

than students from wealthier backgrounds, despite being eligible to receive 

maintenance grants which do not need to be repaid (Callender et al, 2003). 

The expected debt levels for students from low income families under the 

new system are thus quite significant, both relative to the income levels of 

their parents and their own expected income on graduation. This chapter 

seeks to measure the impact of greater levels of debt aversion among 

lower income families on the children’s university participation decision.  

In the next section, a simple theoretical model will be developed which 

extends the traditional model of university choice in human capital theory to 

include debt aversion. Debt aversion is defined as associating greater 

negative utility to negative assets than the positive utility associated with 

positive assets of the same absolute value. Family income affects almost 

every parameter of the model, demonstrating how intrinsically it is linked to 

the university participation decision. Following this section, I use a 

representative dataset of young people in England (the LSYPE) to analyse 

the effect of debt aversion on the university participation decision. The data 

set is longitudinal and follows young people who have chosen differing 
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pathways in terms of work/ further education. It also provides an extensive 

source of information on their family background (including parents’ income 

and SEC), their attitudes towards debt and controls such as key stage 2 

test scores, ethnicity, gender, parent’s educational attainment etc.  

As well as estimating the effect of debt aversion on university 

participation generally, I explore whether this effect is stronger for young 

people from disadvantaged backgrounds. Furthermore, in order to account 

for the intrinsic link between family income and debt attitudes, this chapter 

will apply decomposition techniques to split out the effect of family income 

on university participation into its direct effect and the indirect effect coming 

through debt aversion, and to test if the effect of debt aversion is more 

severe for lower income families.  

3.2 Literature Review 

3.2.1 Studies on the Effects of Debt Aversion on Education-related 

Decisions 

This section provides an overview of five key papers on the effects of 

debt aversion on decision making in regards to education. Oosterbeek and 

van den Broek (2006) examine factors influencing the apparently myopic 

tendency of Dutch students to study for longer than the minimum period 

and finance their studies through part-time work (generally low-paid and 

unrelated to their studies), rather than using student loans to finish studying 

earlier and start working full time in better paid positions. Using data from 

an online survey of students, they find that debt aversion is one of the key 

factors affecting this decision. A student who scores 1 standard deviation 

higher on the debt aversion scale is about 14 percentage points less likely 

to take up a student loan. To separate the causal impact of debt aversion 

on borrowing behaviour, they suggest parental debt aversion as an 

exogenous source of variation in students’ debt aversion that has no direct 

impact on the borrowing decision. Using this as an instrument, their 

estimate of the impact of debt aversion doubles (and remains statistically 

significant). If this indicates some measurement error in the students own 

reported debt aversion, as they suggest, the true effect of debt aversion on 

borrowing may be higher than their initial findings.  
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Field (2009) uses a quasi-experiment at NYU law school whereby a 

lottery determined which type of financial aid students received – one form 

(Public Sector Scholarships) whereby they graduate without debt but have 

a contractual obligation to pay fees retrospectively if they choose a private 

sector career, or an alternate form (Loan Repayment Assistance Program) 

whereby they graduate with significant debt but this is forgiven if they enter 

public law. Although the two forms were intentionally created to be 

equivalent in monetary value, Field shows that the enrolment and career 

choices made by individuals from the two groups are distinct and that this is 

consistent with a model where individuals are both debt averse  and loss 

averse5. In terms of matriculation, she finds that postponing debt made 

applicants twice as likely to enrol at law school. Regarding career choice, 

rates of first job placement in public interest law are 35-46% higher for 

those that enjoyed scholarships rather than loan repayment assistance. 

This behaviour is consistent with students experiencing negative utility from 

carrying debt loads.  

Eckel et al (2007) use experimental methods to explore the effect of 

debt aversion and debt use on demand for different forms of subsidies of 

post-secondary education. They present their sample of Canadian adults 

aged 18 – 55 with a series of choices (one of which is selected at random 

and actually paid) involving trade-offs between cash payments and grants 

or loans for full or part-time education. They combine the results of the 

experiments with answers to a survey covering debt attitudes6 (among other 

things) and run various regressions using this data. Interestingly, they 

report that debt aversion has a significant positive effect on the take-up of 

loans for post-secondary education, which they interpret as showing that 

debt-averse subjects see student loans in a different category of debt. 

Looking only at large amounts of debt ($5000 loans), the debt aversion 

variable has a negative coefficient, although the statistical significance is 

not strong. This does provide some evidence, however, that debt aversion 

                                                           
5 Following Kahneman and Tversky (1984) who define loss aversion as “the disutility of giving up 

an object being greater than the utility associated with acquiring it.” 
6
 the debt attitude questions are mostly related to the possession of credit cards and how the 

respondent would pay for an unexpected expense 
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may limit people’s willingness to take out large student loans. They also find 

that having high debt loads makes people more likely to take up student 

loans. Commenting on this paper, Oosterbeck and van den Broek interpret 

not having high debt loads as an alternative measure of debt aversion, such 

that these results then fall in line with their own findings.  

Linsenmeier, Rosen and Rouse (2006) study the effects of a 

financial aid policy reform at an elite American university in 1998 whereby 

loans were replaced by grants for low-income students. They find that the 

likelihood of matriculation increased by 3 percentage points (though it was 

not precisely measured) while among minority students, the effect was 

statistically significant and as large as 8 – 10 percentage points.  Rothstein 

and Rouse (2011) use data from the same university from a further policy 

change in the early 2000s where the “no-loans” policy was extended to all 

students. Exploring the issue of debt loads and career choice, they find that 

debt on graduation significantly affects career choices, with a noticeable 

shift among aid recipients into non-profit, government and education (“low-

salary”) sectors. They present credit constraints and debt aversion as two 

possible explanations, and find credit constraints to be the more likely 

cause. However, the behaviour is also consistent with debt aversion as 

graduates with high debt levels seek to be debt free as quickly as possible 

by choosing high-salary positions straight out of university. Mincozzi (2005) 

also finds that high levels of student debt on graduation significantly 

influence graduates’ job decisions as they are associated with a higher 

initial wage rate the year after finishing school and lower wage growth over 

the next 4 years. This would also be consistent with debt aversion among 

graduates although that is not mentioned explicitly in her paper.  

Finally, Callender and Jackson (2005) look directly at the question of 

debt aversion and university participation using a sample of young people 

in the UK pursuing HE entrance qualifications (A-levels, NVQs, Access 

courses etc.). Measuring debt aversion through survey responses and 

including in the regressions a wide range of controls for gender, school 

results, school type, parent’s education, ethnicity and age they find that 

students from the lower social classes are more debt averse and more 

likely to be deterred from university participation because of concerns about 



65 
 

debt. Although the study provides clear results, it has several weaknesses. 

Firstly, the cross-sectional nature of their data only allows them to report on 

potential students’ participation intention (rather than actual participation). 

Secondly, their sample consisted only of young people pursing a higher 

education entry qualification rather than a sample drawn from the whole 

population at that age, which introduces sample selection issues given that 

the decision to continue into post-compulsory schooling is determined by 

many of the same factors that affect HE participation decisions. 

Furthermore, their results are based on a survey carried out in 2002 before 

the introduction of variable, deferred fees in 2006. This was a substantial 

change to the system and is likely to have had implications for the 

relationship between debt aversion and participation for the various social 

class groups. The data I will be using in this chapter addresses these 

issues as it covers a representative sample of young people (drawn in year 

9 when they were in compulsory education) and follows them year by year, 

thus being able to report on their actual commencement (or not) of 

university studies at age 18/19 in 2009. 

These papers show that young people’s attitudes towards debts can 

have a significant impact on their behaviours regarding enrolment, length of 

study, take-up of loans and career choice after graduation. This chapter 

seeks to add to this literature by providing a robust estimate of the impact of 

debt aversion on the university participation decision in England.  

3.2.2 Relationship of Family Income and Debt Aversion 

There are very few empirical papers that address the question of 

whether people from disadvantaged backgrounds are more debt averse on 

average; however, some relevant articles will be introduced here. The 

Callender and Jackson (2005) paper discussed above shows a clear 

relationship between family background and debt aversion. They find social 

class (based on the occupation of the main earner in the family) to be a 

statistically significant determinant of debt aversion, controlling for type of 

school, gender, ethnicity and age, with students from the lower social class 

group being more debt averse than students from the middle and upper 

classes. Furthermore, a survey conducted for Universities UK and HEFCE 
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(Callender et al, 2003) with a sample of 1,500 full-time home undergraduate 

students at seven UK universities gives detailed information about debt 

attitudes by social class. In particular, they found that students from 

managerial/professional family backgrounds had more tolerant views on 

debt and more positive views on borrowing money than other students. For 

example, 73% of these students agreed that “It is okay to be in debt if you 

can pay it off” compared to 61% from lower social classes, and 38% agreed 

that “I would rather be in debt than change my lifestyle” compared to 27%. 

Furthermore, 67% compared to 76% were seriously worried about the loans 

they were accumulating at university, whilst 28% agreed they were not 

worried about their loans because they knew they would get a well-paid job 

on graduation, compared to 19% of students from lower occupational social 

class backgrounds. This descriptive report is corroborated by anecdotal 

evidence in Burdman (2005) who shows that debt aversion presents a 

barrier to college participation among low income families through 

interviews with students, counsellors, outreach professionals, and financial 

aid directors. She also describes how familiarity with credit can play a large 

role in young people’s attitudes towards debt.  

Related to debt aversion is the question of time preference, as an 

aversion to borrowing to invest may indicate high discount rates. Delaney 

and Doyle (2012) examines children’s time preferences at age 3 as 

represented by a range of behaviours and summarised in two factors – 

compulsivity, and impulsivity and inhibition. Although the authors write that 

their results provide “very strong evidence for a socioeconomic gradient 

across all measures of time preferences”, I would argue that the results are 

less clear. Maternal education is associated with behaviours belonging to 

both groups, but family income is only associated with impulsivity and 

inhibition. I do not think that maternal education alone provides a good 

measure of family background, especially because of the endogeneity of 

parental education as a determinant of children’s time preferences.  All the 

same, the paper does indicate that young children’s time preferences as 

expressed in certain behaviours are related to family income and maternal 

education, even when a range of other factors are controlled for. On the 

other hand, Levy (1976) found that social class was not a strong predictor 
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of impulse control and found than in an experimental setting, middle-class 

boys were in fact more likely to select an immediate reward than lower-

class boys. Thus whilst there is some support for the idea that time 

preferences may differ systematically by family background factors, 

especially education, this is limited and somewhat ambiguous. Relating to 

one’s own characteristics rather than family background, Becker and 

Mulligan (1997) discuss the determinants of people’s time preferences and 

present several arguments to support the proposition that “wealth causes 

patience”. Furthermore, a paper by Warner and Pleeter (2001) examines 

differential discount rates by various personal characteristics using 

evidence from individual responses to separation packages offered during a 

military downsizing program. They find that more highly educated 

individuals have lower discount rates.  

However, it is important to distinguish between debt aversion and 

time preference, as the two will not necessarily coincide. For example, in 

Oosterbeck and van den Broek (2006), described above, the authors find a 

correlation between their measures of debt aversion and personal discount 

rate of only -0.11. The work that has been done to date is far from providing 

a clear picture on the relationship between socio-economic background and 

degree of debt aversion. This chapter will add further insight in this area.  

3.2.3 Family Income and University Participation  

There is a large raw gap in university participation rates between rich 

and poor, as is documented by various government measures (see 

introduction). This gap has existed for a long time and, despite various 

government policies, does not appear to have fallen substantially. In fact, 

Blanden and Machin (2004) show that the rapid HE expansion that has 

taken place especially since the early 1990s has not been equally 

distributed across people from richer and poorer backgrounds, but has 

disproportionately benefited children from relatively well-off families, leading 

to further increases in educational inequalities. Furthermore, there is 

evidence that the importance of ability in determining participation in higher 

education is declining relative to the importance of family background 

(Galindo-Rueda and Vignoles, 2005). These authors show that low ability 
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children from well-off families have experienced the greatest increases in 

educational attainment.      

Most of the difference in university participation is accounted for by 

prior school attainment. Several studies (including Chowdury et al, 2010; 

Dearden, McGranahan and SIanesi, 2004; Cairnero and Heckman, 2003; 

and Bekhradnia, 2003) have shown how drastically the participation gap is 

reduced when prior educational performance is considered Chowdury et al 

(2010) addresses the question of when educational inequalities arise. 

Including school results at ages 11, 14, 16 and 18 in a regression with 

university participation as the dependent variable raises the R-squared from 

10% when only individual and school characterises are included to 58%. 

The raw gap in participation between the top and bottom income quintiles is 

40%, this falls to 9% when GCSEs and 4% when A level results are 

included. Bekhradnia (2003), writes that “once they have achieved the 

relevant qualifications, students from all social groups are equally likely to 

participate in higher education”, basing this on data from the Youth Cohort 

Surveys (2000). Thus although at face value, school results are the key 

determinant of university participation (i.e. because of entry requirements), 

this in fact captures a lot of the variation in the different participation rates 

between family income groups.  

On the other hand, there is also a link between school results and 

the possibility of debt aversion affecting participation in the sense that both 

are reflections of a young person’s discount rate. Not liking the idea of 

working hard at school now for future returns indicates a high discount rate, 

as does not liking the idea of borrowing to invest (debt aversion). 

Furthermore, school results themselves will also be influenced by the young 

person’s expectations and aspirations regarding higher education, as 

someone who is not intending to go to university will have less motivation to 

attain good A-levels. The data used for this chapter show a very strong 

correlation between school results and family income and the modelling 

strategy employed will attempt to take account of this issue.  

A substantial body of evidence (see Carneiro and Heckman (2003) 

for an in depth review and Dearden, McGranahan and Sianesi (2004), who 

replicate their results with UK data) indicates that family income influences 
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university participation primarily through long run factors rather than 

through introducing short run credit constraints at the point of entry. 

Dearden et al (2004) follows the reasoning and methodology of Cairnero 

and Heckman (2003) to separate the effect of family income on staying at 

school past 16 and on completing a HE qualification into short-term effects 

(credit constraints) and long-term factors. The effect of credit constraints is 

defined as the gap in participation rates that remains when ability, parental 

education, family size and structure, father’s social status at 16, race and 

region of residence at 16 are controlled for. (Since it is not possible to 

control fully for all long-term, formative factors, or indeed to know to what 

extent these have been controlled for, the authors write that the estimates 

are an upper bound to the possible effect of credit constraints). They find 

that once these factors are controlled for, not much difference remains, i.e., 

that credit constraints do not play a big role. They therefore recommend 

that funding be targeted at young people aged 16 or below, when the gaps 

are still emerging.  

Why is debt aversion still an important consideration if credit 

constraints are not the issue? Debt aversion is likely to be more of an issue 

than short-term credit constraints in the UK because of the way student 

finance works – all fees are paid by the government in advance and repaid 

by the student through taxes after graduation. Furthermore, student loans 

for maintenance are readily available to all undergraduates. The burden of 

payment for fees and living expenses therefore falls on the student 

themselves rather than their family and is financed to a large degree 

through debt during their studies. The system effectively deals with the 

issue of liquidity constraints as a hindrance to participation, but introduces 

debt as an almost unavoidable element of undertaking a university 

education.  

Several studies have examined the effect of the introduction of fees 

on participation rates. For the Australian case, Andrews (1999) and 

Chapman and Ryan (2005) both found that the introduction of the Higher 

Education Contribution Scheme (HECS) had no significant impact on the 

participation rates of young people from disadvantaged backgrounds. 

Dwenger et al (2012) study the impact of the introduction of fees in some 
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German states using difference-in-differences methodology, and find young 

people in those states were 2% less likely to apply in their home state, but 

their data prevents them exploring family background effects. In the UK, the 

changes that have taken place essentially reduced the cost to those from 

less affluent families and therefore the impact on participation was felt by 

the more affluent, while there does not appear to have been an impact on 

those from less affluent backgrounds (Urwin et al, 2010). This is confirmed 

by a HEFCE report (Corver, 2010) which shows that after taking changes in 

the population into account, there is no suggestion of any substantial 

reduction in young participation coincident with changes to HE tuition fees 

and student support arrangements.   

There is an extensive literature on family income and university 

participation, exploring many channels through which family income affects 

the university participation decision. This chapter focuses on separating out 

the effect of debt aversion from the other channels through which family 

income affects university participation. 

3.3 Theoretical Model – Defining Debt Aversion 

In his work on loans and grants for university participation in Canada, 

Finnie (2005) defines debt aversion as “situations where individuals are 

unwilling to take out loans to finance their post-secondary schooling even 

though they know the schooling represents a good investment and it could 

be facilitated by the loans in question”. He identifies three distinct kinds of 

debt aversion. These are: 

1. Value-based debt aversion (owing/borrowing money is wrong) 

2. Risk-based debt aversion (e.g. concerns about ability to repay) 

3. Sticker price debt aversion (expected total debt to be incurred seems 

“excessive”) 

Value based risk-aversion is related to personal, religious, class-based or 

other culture-related values. Risk-aversion is unlikely to pose as much of an 

issue in the UK, given the present system of student loans repayment out of 

wages post-graduation and only when wages are above a certain threshold, 

with outstanding debt being cancelled after a certain number of years. 

Sticker price debt aversion is likely to become more of an issue in coming 
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years, due to increases in the fee cap. This kind of debt aversion is also 

related to information as studies have shown that students and their 

families (especially those from lower incomes backgrounds) tend to 

overestimate the debt that is likely to be incurred (Burdman, 2005).  

In this section, I present a simple mathematical model that extends 

the traditional model of university participation choice in human capital 

theory (for example as presented in Borjas, 2001) to include debt aversion, 

based on the idea that people will not make their choice by comparing 

expected income streams absolutely, but rather their interpretation 

(perception, evaluation) of these income streams, and that they derive 

different utility from positive and negative assets of the same absolute 

value. This model draws on insights presented in Tversky and Kahneman 

(1992) regarding prospect theory and the way that people treat losses and 

gains differently.  

In human capital theory, education is seen as an investment that is 

made in order to generate returns at a future point in time, in much the 

same way that investments in physical capital generate profits for 

companies. The decision regarding whether or not to participate in 

university will depend on the costs involved (including opportunity costs) 

and the expected future returns. It is often represented by a simple graph, 

as per the below:  

Figure 3-1: Lifetime Earnings of a Graduate / Non-Graduate 

 

Source:  own representation, based on Borjas (2001) 
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This graph depicts two income streams. One is the income stream of a 

secondary school graduate who does not progress to university, but rather 

starts working straight after secondary school. He enjoys a positive income 

stream for the whole period displayed and sees this rise slightly year by year. 

The other income stream is that of a person who decides to undertake a 

university degree. This person’s earnings are negative for the first few years 

(however long it takes him to complete the degree) due to fees and other 

direct costs. He also forgoes the earnings he would have had from working. 

However, after graduation, his earnings are higher than the other person and 

also increase faster. The decision to participate or not is made by weighing up 

the direct and opportunity costs incurred while studying against the present 

value of the additional earnings enjoyed from the point of graduation until 

retirement.  

Describing this in equations, let the earnings at a given point in time for 

the person who attends university be given by Euni where  

             (3.1) 

and  � (�)= �� � − �� − � (for example)         (3.2) 

and the earnings of the person who does not attend university be given by 

Enouni, where  

������ = �√�  (for example)           (3.3) 

-d is the amount of debt the person incurs at each year of university for fees 

(the direct costs of university attendance). d may be different for each 

individual depending on their access to credit or if there are differential fees 

for different courses/ institutions. Living expenses (which they would have 

incurred either way) are represented by the opportunity cost of what they 

would have earned if working – in reality, the student will need to make up 

these costs through grants or bursaries, taking out a student loan or a bank 

loan, relying on their family, working part-time, using their own personal 

savings, or some combination of these. tG represents the point where the 
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person graduates.  W(t) is the graduate’s wage path and P and Q represent 

individual ability, which affects how much the person earns.  

 Assuming for simplicity that there is no consumption, the net present 

value of the persons total lifetime earnings are defined as A (assets). The 

person who decides to study will have negative assets while they are at 

university and for a period after this until their debt is paid off, namely ��.  

 To allow for different perceptions of assets in periods where the person 

is in the red / in the black, I define 

 

         (3.4) 

and  

         (3.5) 

Integrating the earnings profile gives us an assets profile similar to the graph 

below:  

Figure 3-2: Lifetime Earnings and Assets of a Graduate / Non-Graduate 

 

Source:  own representation 

 This can be represented by the following equations:  
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The net present value of the total lifetime earnings of the person who attends 

university is given by Auni where 

             (3.6) 

or                             (3.6b) 

 

and assuming, once again for simplicity, that debt is only incurred for the 

purposes of studying, the total lifetime assets of the person who does not 

attend university are given by Anouni where  

������ = ∫ ������ =
�

��
∫ �√�����
�

��
                (3.7) 

where δ represents the persons discount rate, including interest rate and time 

preferences.   

 The contribution of this model is to illustrate the effect of the person’s 

interpretation of assets gained under the two income streams on the 

university participation decision. People will not base their decision solely on 

the comparison of Auni and Anouni, but rather on their interpretation of these 

amounts, i.e on U(Auni) and U(Anouni).  

 It is not necessary to fully define the utility function, however, the 

following assumptions are made concerning U(A):  

a) U(0) = 0 

b) U(A) is increasing in A 

 Debt aversion can be said to mean that the negative utility associated 

with a debt will be greater than the positive utility associated with an asset of 

the same absolute value as the debt. As such, it is defined as associating a 

greater absolute value of utility to negative amounts than to the equivalent 

positive amount  

i.e.               (3.8) 
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or alternatively −�� (− �)= �(�)	�ℎ���	� > 1          (3.9) 

 Allowing the person to associate different utility to assets of the same 

absolute value depending if they are negative or positive, I define  

�(�)= −�� (��)+ �(��)                         (3.10) 

 

where �  represents the person’s attitude towards debt and it is assumed that 

�� enters as a positive number.  

The person should be indifferent between attending / not attending 

university if U(Auni) = U(Anouni),  

i.e if �� ���
��� � + ����

��� � = �� ���
����� � + �(��

����� )             (3.11) 

which simplifies to �� ���
��� � + ����

��� � = �(��
����� )       (3.12) 

as the person does not incur any debt unless they attend university, solving 

for K gives,   � =
����

����� ���(��
���)

�(��
���)

        (3.13) 

This shows that the participation decision depends not only on the 

expected earnings differential for graduates / non-graduates, and the 

amount of debt incurred, but also on the way the individual perceives the 

positive utility of greater earnings as a graduate relative to the negative 

utility of being in debt. As debt increases (holding the earnings differential 

constant), the person must be more and more debt tolerant to remain 

indifferent between the two options. There will be a critical level of K such 

that a person will switch their decision from uni to nouni due to debt 

aversion, i.e where U(Auni) < U(Anouni) even though (Auni) > A(nouni).  

Expanding the equations to include the full specification introduced 

at the start of the section, we can also see how family income influences 

almost every parameter. The equation below is a long form of the expected 

utility of participating in university:  
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(3.14) 

Family income will especially affect how a student funds themselves 

while at university: someone who cannot rely on their parents for money is 

much more likely to work part-time during term time, which may have an 

adverse effect on their grades and future earnings, on the other hand, 

grants and bursaries are more readily available for students from poorer 

backgrounds. The level of student loans available also depends on family 

income. Studies have shown that young people from poorer backgrounds 

tend to leave university with more debt and have lower expected earnings 

on graduation (Callender et al, 2003). This relates to parameters d and P in 

the model7. Low family income may also affect a person’s access to credit, 

possibly making it more expensive to borrow, and there is some evidence 

(see Delaney and Doyle, 2012) of a link between family background and 

time preferences, both of which would affect δ. It is the hypothesis of this 

chapter that family income affects K. It could also affect the time taken for 

the studies, tG, especially through part-time work. Thus every parameter is 

influenced by family income. This shows how integral the effects of family 

income are to the university participation decision. 

This simple model expresses the idea that someone’s decision whether 

or not to invest in further education will not depend on the actual total 

lifetime earnings expected for each pathway, but rather their perception of 

these flows. If people associate utility to positive and negative sums 

differently, this will impact on their assessment of the two options, as 

negative assets are only experienced by those who chose to study. Debt 

                                                           
7
 More precisely – it relates to the gap between -d and their potential earnings stream if they had 

not studied, and to a potential employer’s perception of their ability P based on their grades.  
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aversion may thereby act as a barrier to university participation by causing 

those who would otherwise have chosen the stream with higher lifetime 

earnings post-graduation to evaluate this less positively than the alternative 

stream due to the large negative utility experienced at the outset. The 

model also reveals how multifaceted the effect of family income on the 

participation decision is, as it impacts a range of factors associated with the 

decision. 

3.4 Data 

This section provides a brief introduction to the dataset used in this 

analysis and provides descriptive statistics of the key variables.   

3.4.1 Longitudinal Study of Young People in England (LSYPE) 

This study uses data from the Longitudinal Study of Young People in 

England (LSYPE), a large-scale longitudinal panel study of young people 

managed by the Department for Education. It began in 2004 when its 

sample of young people were aged between 13 and 14 and has followed 

them at yearly intervals, called ‘waves’. The fieldwork for the most recent 

wave (wave 6) ran from the 12th of May 2009 to the 14th of October 2009, 

when the sampled young people were aged 18-19 and some were in their 

first year of university. The data have been linked to administrative data 

held on the National Pupil Database (NPD). This is a pupil-level database 

which matches pupil and school characteristic data to pupil-level 

attainment, through which variables such as Key Stage test scores and 

GCSEs gained and grades are available.  

The original sample drawn for the first wave was of over 33,000 

young people in Year 9 attending maintained schools, independent schools 

and pupil referral units (PRUs) in England in February 2004. The final 

issued sample was approximately 21,000 young people. The final issued 

sample was smaller than the initial drawn sample mainly due to school level 

non-response. Of the 892 schools selected in total, 647 schools (73%) co-

operated with the study. In Inner London, only 56 per cent of schools 

responded and in the independent sector, only 57 per cent co-operated. All 

sample members were those born between 1st September 1989 and 31st 
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August 1990. In the maintained sector, they were selected using selection 

probabilities based on ethnicity while at independent schools and PRUs the 

selection was random.  Ethnic minority pupils were over-sampled in the 

maintained sector to ensure an adequate representation of the relevant 

sub-populations in England. Pupils in the 20% of schools with the most 

pupils in receipt of Free School Meals were also over-sampled for the same 

reason. The survey provides weights to deal with this issue and with 

attrition, so that the general population of England for these ages is 

reflected in the data. The regressions included in this chapter are all run 

using the appropriate survey weights. Looking at wave 6, the most recent 

wave for which data is available, 11,225 young people were issued and the 

survey reached 9,799 households (87%). This was made up of 3,803 (39%) 

online interviews, 4,705 (48%) telephone interviews and 1,291 (13%) face 

to face interviews. While in waves 1 to 4, both the young person and their 

parents were interviewed, at waves 5 and 6, only the sampled young 

person completed the interview. 

The advantage of this data set is that it is based on a representative 

sample of students in year 9 and not only those studying HE qualifications 

or those already in HE. To explore the question of university participation 

choice, samples consisting of students are clearly not useful. Furthermore, 

surveys of pupils pursuing HE entrance qualifications (such as A-levels or 

Access courses) suffer from a similar selection issue and unless they are 

longitudinal, can only report on participation intention rather than if the pupil 

actually starts university. Having followed the young people over several 

years, the LSYPE can report on the actual participation (or not) of young 

people from a representative cross-section of society.  

3.4.2 Key Variables Used in the Regressions  

3.4.2.1  University Participation 

The dependent variable used in this analysis is a binary variable 

(which takes the value of either zero or one) describing whether someone is 

at university in wave 6 (age 18). Since this is the earliest year anyone could 

normally have started university, it represents a lower bound on the 
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participation rates of all income groups. This may cause some bias to the 

estimates if people from poorer backgrounds start university slightly later 

(possibly through a different route). On the other hand, young people from 

richer households are more likely to take a gap year. Since it has been 

shown that delaying entrance to university, even by one year, can reduce 

the returns to a degree (Holmlund et al, 2008), it is still of interest to analyse 

participation rates at age 18, even though some young people may still 

enter university at a later date. Importantly, the effects of debt aversion 

should be interpreted as either hindering or delaying entry, as some of the 

young people not at university in wave 6 may still enter university at a later 

date. For reference, HEFCE uses entry at age 18 and 19 into HE 

institutions and FE colleges in the UK. The average participation rate for 

males in the data is 30% and for females is 37%, which is in line with 

overall participation rates in the total population (32% for men and 40% for 

women; Corver, 2010).  

3.4.2.2 Debt Aversion 

The LSYPE contains 6 questions on debt attitudes, although some of 

these are related to university participation as well and are not purely about 

debt. The clearest question is the statement “owing money is always 

wrong” with which students who answered could either strongly agree, 

agree, disagree or strongly disagree. According to the definition of three 

types of debt aversion as per Finnie (2008), this is clearly related to the first 

kind: “value-based debt aversion”. An alternative question posed in the 

survey is “Once you get into debt it is often very difficult to get out of it” with 

the same four possible responses. This is more closely linked to “risk-based 

debt aversion”.   
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Key Relationships in the LSYPE variables: 

Figure 3-3: Debt Attitudes by Family Income Group (Value-based Debt 
Aversion) 

  
Source: LSYPE 

Figure 3-4 University Participation Rates by Debt Attitude and Gender 
(Value-based Debt Aversion) 

 

Source: LSYPE 
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Figure 3-5: Debt Attitudes by Family Income Group (Risk-based Debt 
Aversion)      

  
Source: LSYPE 

Figure 3-6 University Participation Rates by Debt Attitude and Gender 
(Risk-based Debt Aversion) 

 

Source: LSYPE 
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The survey also contains the question, “the idea of leaving university 

with big debts puts people off going there”. Although this could potentially 

relate to sticker-price debt aversion (since it refers to “big” debts), it is a 

much murkier indicator of the young people’s debt attitude as it mixes debt 

attitude and the effect on participation, and refers to “people” generally 

rather than their own personal attitude. I do not use this variable in the 

analysis8.  

There is a clear negative relationship between family income and 

value-based debt aversion in this data: the proportion who disagree that 

owing money is always wrong – i.e. are accepting of debt, rises with 

income, from 45% at the lowest income band to over 60% for the highest 

income band. There is also a clear relationship between this variable and 

university participation, with young people who disagree or strongly 

disagree that “owing money is always wrong” more likely to be at university 

in wave 6 (see graphs above).  

Examining the alternative measure of debt aversion, which is more 

closely related to fear of debt: “once you get into debt it is often very difficult 

to get out of it”, a large portion (around half) of young people from every 

income band selected “agree”, however, we can see that the proportion of 

young people selecting “strongly agree” falls as family income levels rise, 

whereas the proportion selecting “disagree” rises. Nearly a third of young 

people from the poorest families “strongly agree” that it is often very difficult 

to get out of debt once you are in it, compared to 15% from the richest 

families, while nearly a quarter of young people from the richest families 

“disagree” that it is difficult to get out of debt compared to 15% from the 

poorest families. The graph above shows that in general, university 

participation rates rise for both males and females as tolerance to debt 

increases. Furthermore, those that are not at university in wave 6 are more 

likely to strongly agree that it is hard to get out of debt (27% of those who 

                                                           
8
 A further reason for excluding this variable as a possible indicator of sticker price debt aversion is 

that in logistic regressions with the same control variables as the other models, dummies for this 
variable have odds ratios of more than positive 2, which would mean that agreeing that “the idea 
of leaving university with big debts puts people off going there” makes someone much more likely 
to go to university.  
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are not at university strongly agree with the statement compared with 17% 

of those who are at university).  

3.4.2.3 Family Income 

In this chapter, I use total gross income for both parents from wave 4 

(when the young people were around 16). There is a clear positive 

relationship between family income and university participation for both 

males and females.  

The variable is banded, and I create four groups from these bands to 

simplify the analysis. The maximum student grant is available to students 

whose family income lies below £25,000. The cut off of income group 2 is 

the closest possible figure to this amount. Participation rates for males and 

females for each group are shown in Table 3.2 below. 

Table 3-2: Family Income Groups.  

Family 

Income 

Group

Total gross Income

(both parents)

Percentage 

Share

Male 

Participation 

Rate

Female 

Participation 

Rate

. missing 20% - -

1 up to £10,399 12% 18% 25%

2 £10,400 to £25,999 27% 22% 33%

3 £26,000 to 41,599 19% 32% 39%

4 from £41,600 up 22% 45% 49%
 

There is a clear increase in participation rates when moving from the 

poorest to the richest families, for males from 18% to 45% and for females 

from 25% to 49%. The figure below shows the participation rates for all 

groups reported in the raw data.  
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Figure 3-7: University Participation Rates by Family Income Groups  

 
Source: LSYPE 

 

3.4.2.4 Family Socio-Economic Class 

It is also interesting to look at social class as an alternative to family 

income. Although the two measures are correlated, much of the literature 

on the university participation decision (particularly in the field of sociology) 

focuses on social class rather than family income as this affects factors 

such as expectations, aspirations and familiarity with university, all of which 

strongly influence the participation decision (Reay et al, 2005). 

The graph below shows a clear link between socio economic class 

and university participation. Males (females) whose fathers are in higher 

managerial or professional occupations have university participation rates 

of 53% (52%) in this data, compared to fathers in routine occupations, 

where the young people have participation rates of 18% for males and 28% 

for females. 
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Figure 3-8: University Participation Rates by Family Socio-Economic Class  

 

Source: LSYPE 

As per family income, I create sub-groups to simplify the analysis: 

Table 3-3: Family Socio-Economic Class Groups  

Family 
SEC 

Group

Family 
SEC

Percentage 
Share

Male 
Participation 

Rate

Female 
Participation 

Rate

. missing 32% 26% 31%
1 6,7,8 28% 22% 30%

2 3,4,5 17% 29% 38%

3 1,2 22% 41% 47%
 

3.4.2.5 Controls 

All regressions include the following control variables: ethnicity 

dummies with white as the base, number of siblings, an ability proxy (test 

scores at age 11), a dummy variable showing if the young person lives in a 

rural or urban area, region of residence9, a dummy variable indicating if they 

have a long-standing health problem or disability, and dummy variables 

indicating whether or not they come from a non-traditional family and if their 

mother or father has a degree.  

                                                           
9
 An alternative specification using local unemployment rates returned essentially equivalent 

results  
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One important issue relates to the inclusion of school results, since 

we saw above that differences in university participation rates between 

young people from different family backgrounds essentially disappear when 

school results are considered. The LSYPE is linked to the National Pupil 

Database (NPD) and as such, detailed test scores are available in the data. 

These include: key stage 2 test scores (at age 11), GCSE scores and the 

number of A-levels the student is taking at wave 510. It is important to 

include a measure of ability in the regressions as otherwise there will be 

strong omitted variable bias in the key variables – debt aversion and family 

income. For this reason, key stage 2 test scores will be included as they are 

the earliest available measure. 

 On the other hand, there are reasons not to include GCSE results 

and A-levels. Firstly, these are endogenous as they are partly determined 

by the expectations and aspirations of the pupil and their family concerning 

their future pathway - a young person may not be as motivated to achieve 

good results if they have no intention of going to university. Secondly, 

school results will capture much of the formative effect of family income on 

the child such as the influence on their learning environment, school choice 

and so on. Other studies have shown that once school results are 

accounted for, not much variability remains in participation rates across 

family income groups (Chowdury et al, 2010; Bekhradnia, 2003). To allow 

the full influence of these effects to be captured by the family income 

variable, I have chosen not to include school performance results past the 

key stage 2 scores included as a measure of ability.  

All the same, GCSE results and A-levels will not just capture family 

income but are also correlated with debt aversion if both are related to the 

persons discount rate. As a robustness check on the effects of debt 

aversion, a supplementary section will be included in the results section 

that includes models with progressively more measures of performance at 

school, right up to A-levels. This will help to certify that debt aversion itself 

is affecting participation rather than just being a reflection of some other 

factor related to school results.  

                                                           
10

 A level results are being linked and will most likely be available in the future.  
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3.4.3 Missing Data 
 

The discussion and tables above have already indicated that there is 

a not insignificant degree of missing data in the data used for this analysis. 

Data can be missing for various reasons, including non-response, 

questions which are not applicable for certain respondents, and errors with 

data entry. It is important to identify the reasons for which data may be 

missing and in particular for the case of non-response, assess whether this 

is correlated with other variables or with the value of that variable itself.  

Missing data can be classified as Missing Completely at Random 

(MCAR), Missing at Random (MAR) – if the missingness is correlated with 

one of the other explanatory variables, or Missing Not at Random (MNAR) 

– if the missingness is correlated with the value of the variable itself, for 

example, people with low income being less likely to answer questions 

about their income levels (Allison, 2001). The major potential problem 

caused by missing data is this can lead to biased parameter estimates, 

which is especially applicable if the data are MNAR. A further potential 

problem is if cases with missing observations being removed from the 

sample causes either an insufficient sample size for the analysis to be 

performed, a reduction in statistical power such that no statistical 

significance is achieved, or thirdly if the sample becomes unrepresentative 

due to the non-random nature of cases being dropped.  

It is also important to note whether the missing data affects the 

dependent variables or the independent variables. In general, missing data 

on the dependent variable tends to have more severe consequences that 

missing data on the covariates (Lynch, 2003).  For the data in the LSYPE, 

the dependent variable – university participation – is constructed in such a 

way that there are no missing observations for this variable. A participant is 

defined as being at university based on their main current activity. Out of 

the total sample of 9,799 young people, 3,306 people gave a clear 

response indicating that they are at university. All other responses, 

including ambiguous responses such as “waiting for a course or job to start” 

(317) were defined as not at university.  
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The main issue regarding missing responses for this dataset and my 

research question relates to family income and family SEC. As can be seen 

in Tables 3.2 and 3.3 above, 20% of the sample has missing data on Total 

Gross Income (both parents) and 33% has missing data on Family SEC. 

Looking at these jointly, of the people who have missing data for family 

income, half of these also have missing data on family SEC, and the other 

half are more concentrated in the lower SEC group (21%) compared to the 

higher SEC group (9.5%). This (and other characteristics such as parents’ 

education) may indicate that missing data on family income is MNAR, in 

that it depends on the level of family income, with people from lower family 

incomes less likely to report their income.  

The rate of missingness for the debt aversion variables is much 

lower, as for value-based debt aversion only 3.27% of observations are 

missing, and this is similar, at 3.56%, for the risk-based debt aversion 

variable. Most other variables have low rates of missingness as well, 

including gender (0%), ethnicity (0%), having a health problem or disability 

(0.96%), number of siblings (1.22%), urban dwelling and region of 

residence (both 2.7%), not living in a traditional family (5.46%), mother’s 

education (6.2%) and key stage two test scores (7.82%). Apart from family 

income / family SEC, the control variable with the highest rate of 

missingness is father’s education, at 29.7%. This is due to two reasons – 

firstly, where there is no father present in the household, and secondly, 

where the father is present but his education is not reported. The second 

reason is quite minor, with the father’s education level generally being 

reported if he is present in the household.  

In all, 11.49% of the sample of 9,699 has a missing observation for at 

least one variable, excluding family income, family SEC, parents’ education 

and the debt aversion variables. Once these are also considered, the 

percentage of observations missing data rises to 53.22%. This indicates 

that missing data is quite a serious issue for this data set, particularly in 

regards to family income and family SEC. Methods to address this issue will 

be discussed in the methodology section.  
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3.5 Methodology 

There will be two stages to the investigation. Firstly, I will examine whether 

or not debt aversion has an impact on university participation straight out of 

school. Secondly, I will seek to determine if this effect differs by family 

background.  

3.5.1 Logistic Regression 

The first stage of analysis involves regression analysis with 

university participation as the dependent variable of the model. This 

variable takes on either the value of one if the subject is attending 

university, or otherwise zero. The two standard choices for regressions with 

binary dependent variables are probit and logit models. Both of these are 

special cases of a more general latent variable model such as  

� ∗	= �� + �,� = 1{� ∗> 0],          (3.15) 

where � takes the value of 1 or 0 depending on an underlying, generally 

unobserved, latent variable � ∗. Based on the assumption that � is a 

continuously distributed variable independent of � and where �	(.) is the 

cumulative distribution function of � and takes on values in the open unit 

interval 0 < �(�)< 1	for all �	∈ ℝ , it can be shown that 

�(� = 1|�)= �(� ∗> 0|�)= �(� − ��|�)= 1 − �(−��)= �(��)	    (3.16) 

The logit model arises from this more general form when it is assumed that  

� has a standard logistic distribution. It takes the form 

�(�)= 	Λ(�)= exp(�)/[1 + exp(�)]        (3.17) 

Thus in logistic regression, the conditional probabilities are transformed into 

log-odds ratios. The main assumption required for the logit model is that the 

true conditional probabilities are a logistic function of the independent 

variables. Other standard assumptions required are that no important 

variables are omitted from and no extraneous variables are included into 

the vector �, the independent variables are measured without error and are 

not linear combinations of each other (to avoid multicollinearity), and that 
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the observations are independent. Logistic regression assumes a linear 

relationship between the logit of the independent variables and dependent 

variables, but does not assume a linear relationship between the dependent 

and independent variables themselves. Furthermore, there is no 

assumption of normality, linearity or homogeneity of variance for the 

independent variables.  

 The interpretation of partial effects is more complicated than in a 

standard OLS or a limited dependent variable (LDV) model, since the 

partial effect of �� depends on the values of the other explanatory variables. 

Where �(� = 1|�)= �(��)≡ �(�), the partial effect of �� on �(�) depends 

on � through �(��), i.e. 
��(�)

���
= �(��)��, where �(�)=

��

��
(�) for continuous 

variables ��. For binary explanatory variables, the partial effect is equal to 

�(�� + ���� + ⋯ + �������� + ��)-	�(�� + ���� + ⋯ + ��������). This is 

true for both logit and probit models, however, since logit allows the 

possibility of comparing odds ratios for the independent variables, i.e 

between different family income groups, social class groups, ethnicities 

etc., the effects are easier to interpret than in a probit model. Facilitation of 

the interpretation of results is one reason I have chosen logistic regression 

over probit regression for the analysis in this chapter.  

The econometric model in this chapter will have the form: 

  (3.18) 

where atuni is a binary variable of the form 

�� = 	�
�														�������	��	��������� 	����������

�						�������	��	���	��������� 	����������
� and the variables on family income 

groups and debt aversion are sets of dummy variables. There are three 

dummy variables for family income groups since all young people were 

divided into one of four groups and one group is excluded to avoid perfect 

collinearity. The debt attitude questions have four possible responses so 

there are three dummy variables included for debt aversion as well. The �s 

are controls including ethnicity, gender and other factors. A further set of 

3 3

1 1 1

n

j k l
j k l

atuni famigrps debtaversion X    
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regressions will be run with social class dummies rather than family income. 

The i notation has been dropped for convenience.  

The dependent variable in the regressions is a binary variable 

indicating whether or not the young person is at university at age 18 (wave 

6). The parameters of interest are the parameters on the debt aversion 

dummies, with the other variables acting as controls. I argue these provide 

a good indication of the causal effect of debt aversion on university 

participation straight out of school. This is discussed later in more detail.   

Whilst the parameters of interest are the parameters on the debt 

aversion variables, it is also interesting to examine the effect on the family 

income dummies when debt aversion is/is not included in the model, since 

we have seen that there is a strong relationship between family income and 

debt aversion, both in the data at hand and according to the theoretical 

model. For this reason, regressions including family income or father’s SEC 

(and the other controls) are initially run without the debt aversion variables, 

and these are then included subsequently to show not only their own 

effects but also the change in the family income variables. The second 

stage of the analysis will be to further explore the combined effects of family 

income and debt aversion through decomposition analysis based on the 

initial logit models.  

3.5.2 Dealing with Endogeneity 

One issue with this model is the problem of endogeneity, as family 

income and debt aversion can both be seen as being endogenous. This is a 

common issue in this area and I discuss below some implications and 

possible solutions, as well as the issues in applying these.  

Family income is endogenous if it is correlated with unobserved 

omitted variables contained in the error term (such as parents’ 

expectations). Estimating the equation without dealing with this issue would 

cause the parameter estimates to be biased. The extent of bias in the 

family income variables will depend on the strength of correlation between 

this variable and the omitted variables, as well as the explanatory power of 

the omitted variables themselves. Various solutions to the issue of 
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endogeneity present themselves, with the first being the possibility of using 

proxy variables for the unobserved (and therefore omitted) variables.  

In this model, one of the key issues is unobserved ability, which is 

correlated with both family income and the error term. Omitted variable bias 

would certainly arise if no proxy for unobserved innate ability could be 

found. However, using a variable which is strongly correlated with the 

young person’s ability mitigates this bias. I use their key stage 2 tests 

scores (an average of their standardised English, math and science scores 

at age 11) as a proxy for ability. This is the earliest measure available in the 

data, which also contains GCSE results and some information about A- 

levels. Using the earliest possible measure minimises the influence of 

school type etc. as we are primarily interested in capturing the individual’s 

innate ability.  

If there are still other factors (besides ability) contained in the error 

term that are correlated with family income, we need to explore further 

possibilities for dealing with the endogeneity of the family income variable.  

With panel data, it is possible to deal with this issue by using fixed-effects 

models or first differencing to eliminate individual time-invariant unobserved 

heterogeneity. However, that is not an option in this case as the data is not 

true panel data, with each wave containing different variables (for example 

my family income variables are derived from a question that only appeared 

in wave 4).  

One popular means of dealing with endogeneity is to use an 

instrumental variables approach. Certain papers have applied this method 

in schooling choice models to deal with the endogeneity of family income, 

although it is not easy to find an instrument for family income that is both 

relevant (i.e. correlated with the variable you want to instrument) and 

uncorrelated with the error term (this second condition requires that the only 

channel through which the instrument affects the dependent variable is 

through its influence on the endogenous explanatory variable, Angrist and 

Pischke, 2008).  

Blanden et al (2003) acknowledges the difficulties in separating out 

income effects from other characteristics associated with income. To 

abstract from this difficulty, they focus on describing the way that the effect 
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of income is changing over time rather than attempting to quantify 

absolutely the effect of an additional pound of income. However, to check 

the robustness of their results, they apply instrumental variable 

methodology, using as an instrument for parental income the usage of 

computers in the parents industry (arguing that technology has been a 

factor driving inequality in incomes). The first stage is reasonably strong, 

which is important as using weak instruments, i.e. instruments that are not 

strongly correlated with the endogenous variable they are instrumenting, 

can lead to large asymptotic biases in the presence of even minor 

correlation between the instrument and the error term.  All the same, this 

seems a strange choice of instrument given the broad array of industries 

and differing uses of computers within these, and highlights the difficulties 

in finding appropriate instruments for family income.  

In general, most studies simply try to include as broad a range of 

variables relating to family background as possible in order to reduce the 

effects of omitted variable bias (e.g. Carneiro and Heckman, 2003). That is 

the approach I have chosen to follow as well. As well as the ability proxy, 

the regressions also contain parent’s education, number of siblings, 

ethnicity, health, region of residence, whether the person comes from a 

non-traditional family and whether they live in an urban or rural area as 

control variables. The richness of the LSYPE dataset makes it possible to 

include a broad range of control variables, thereby strongly mitigating any 

potential omitted variable bias relating to the family income variables.  

Debt aversion is endogenous if it is determined within the system – it 

is not clear if debt aversion affects participation or if participation affects 

debt aversion (i.e. – if starting to have a student loan changes people’s 

attitudes towards debt, possibly making them more debt tolerant as their 

attitudes change to reflect their situation; Davies and Lea, 1995). Debt 

attitudes are recorded for the entire sample in wave 6, and in wave 5 for 

those young people who had applied to university or stated that they were 

likely to do so in the future. Comparing the debt attitudes in waves 5 and 6 

for this sub-sample reveals that: 
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1) There was very little change between waves for those who 

disagreed or strongly disagreed that “owing money is always wrong” 

in wave 5.  

2) For those who agreed with this statement in wave 5, 51% disagreed 

or strongly disagreed in wave 6. This raises the question of whether 

commencing university and starting to have a student loan had 

affected the debt attitudes of these young people. However, looking 

at the 582 people who agreed with the statement in wave 5 but 

disagreed with it in wave 6, only 48% of them were at university in 

wave 6. The split between participation / non-participation for these 

people is very even (around half-half), suggesting it was not 

university participation itself that had affected this change in 

attitudes.  

Another issue is that of selection into university. If there are 

unobservables that affect the university participation decision and also debt 

attitudes, the debt variables will be endogenous for this reason also. In 

particular, one could argue that debt aversion is negatively related to 

intelligence, as being debt friendly (or neutral) postulates the ability to 

smooth income by using future income streams although they have not yet 

been realised – on the other hand, it could be positively related to self-

discipline, if getting into debt is the inability to postpone current spending 

until funds are available. Intelligence and self-discipline could both be 

positively correlated with university participation as both are characteristics 

of successful students.  

One paper that uses instrumental variable methods to deal with the 

possible endogeneity of debt aversion is Oosterbeek and van den Broek 

(2009) who use parents’ debt attitudes as an exogenous source of variation 

in students’ debt attitudes. This is a valid instrument assuming that “given 

parents’ income, parents with a higher degree of debt aversion take no 

actions to affect their children’s borrowing behaviour other than through 

their debt aversion … [and] …parents’ debt aversion is not affected by their 

children’s borrowing behaviour” (p175). Using parent’s debt attitudes as an 

instrument for the debt attitudes of the young people in the survey, they find 

that the effects of debt aversion are even greater than in the original 
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specification. In fact, the size of the effect of debt aversion doubles after 

instrumenting – they conclude there may be measurement error in the 

student’s debt aversion variable. Unfortunately, the LSYPE does not 

contain any indication of parents’ attitudes towards debt. It is very difficult to 

think of another variable that is correlated strongly enough with debt 

aversion, uncorrelated with participation, and for which data is available, 

making it difficult to apply instrumental variable techniques.  

Belzil and Leonardi (2007) deal with the endogeneity of their 

measure of risk in a study on risk-aversion11 and university participation by 

developing a complex mathematical model where risk aversion is allowed 

to depend on wealth and background risk variables. They find that 

accounting for endogeneity changes the sign of their results such that 

higher education is seen as a risky investment and risk aversion decreases 

the probability of participation. Such methodology is beyond the scope of 

this chapter. The approach I adopt instead is detailed below.  

We have seen that endogeneity can cause bias in the model’s 

parameters and that both family income and debt aversion are potentially 

endogenous in this model. Regarding family income, I include in the model 

a proxy variable for ability as well as control variables broadly covering 

family background and a variety of individual characteristics. The richness 

of the LSYPE data makes it possible to control for a wide range of personal 

and family characteristics and the fact it is linked with the National Pupil 

Database furthermore provides test scores that act as a proxy for innate 

ability. Both of these precautions should serve to strongly mitigate the 

effects of omitted variable bias.  

Regarding debt aversion, the direction of causality seems to be that 

debt attitudes affect the participation decision. Although it cannot be ruled 

out a priori that students adjust their attitude to debt to maintain consistency 

once they find themselves in debt, examining the debt attitudes in wave 5 of 

the subsample of which debt attitude questions were asked, with the debt 

attitudes in wave 6 of the same sample indicates that any shift in the debt 

attitudes of these young people was not caused by starting to attend 

                                                           
11

 Their measure of risk aversion is endogenous as it is measured quite late in life after the person 
has finished education  
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university (as those who changed their minds were split half-half between 

university participants and non-participants). Furthermore, the inclusion of 

the ability proxy should help to deal with any relationship between debt 

aversion, intelligence (and potentially also self-discipline) and university 

participation.  

Although both debt aversion and family income are potentially 

endogenous, the control variables capture a large amount of the 

unobserved heterogeneity. This remains a limitation of the analysis, 

however, the breadth of control variables available gives confidence in 

asserting that the effect of debt aversion captured here is close to the 

causal effect. 

3.5.3 Dealing with Missing Data 

As discussed in Section 3.4.3 above, there is a substantial degree of 

missing data for the explanatory variables, especially family income. There 

are various ways of dealing with this issue, including listwise deletion, using 

indicator variables, and multiple imputation or maximum likelihood 

estimation. These will now be discussed in turn.  

Listwise deletion means that observations for which there is missing 

data for at least one variable are dropped from the sample, such that only 

complete cases are used (Allison, 2001). For logistic regression, this has 

the advantage of maintaining the unbiasedness of parameter estimates and 

appropriateness of standard error estimates if the missing data is missing at 

random, however, it leads to a fall in sample size and a loss of statistical 

power, especially where there is a large amount of missing data.  

Another method is dummy variable adjustment, or the use of 

indicator variables, where the variable takes the value of 1 if the data is 

missing for that observation and zero otherwise. An equivalent approach for 

categorical variables is to add an extra category to indicate missingness. 

This method preserves the sample size and uses all available information, 

but has been criticised for producing bias in coefficient estimates (see 

Jones, 1996). Despite this criticism, it is still appropriate for “does not apply” 

data, such as the case where father’s education is not reported because 

the father is not present in the household.  
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Other more complex but more robust methods include multiple 

imputation and maximum likelihood. These both have the properties that 

they are consistent, asymptotically efficient and asymptotically normal. 

Maximum likelihood requires a likelihood function which expresses the 

probability of data being missing as a function of the data and the unknown 

parameters which would, if true, maximise the probability of observing what 

has been observed. The likelihood function is maximised to uncover these 

parameter estimates. Multiple imputation builds on standard regression 

imputation (which leads to bias especially in the standard errors) by adding 

a random component and repeating the process multiple times to       

improve efficiency. For the research question in this chapter, the main issue 

is the missing data on family income. A future development for this 

research would be to use a maximum likelihood or multiple imputation 

methodology for the family income variable using the data that is available 

on family SEC, parents’ education and labour force attachment, and family 

structure, for example.  

Due to the large proportion of observations that have missing data 

for at least one variable, I have used the dummy variable adjustment 

method rather than listwise deletion in this chapter. As such, I create a 

missing variable for each continuous or binary explanatory variable, such 

that this additional variable takes the value of 1 if the data is missing for that 

observation and 0 otherwise; and similarly for the categorical variables, I 

create an extra category to indicate missingness. Although this approach is 

effective in preserving the original sample, it can lead to some degree of 

bias. An important future development would thus be to impute the values 

of the family income variable where they are missing. This would then 

mean that using listwise deletion to deal with the other missing data would 

not impact as strongly on the sample size. Such an approach would 

improve the reliability of the reported results and would be a useful future 

development for this research.   

3.5.4 Interaction Effects in Non-linear Models and the Use of Sub-Samples 

In order to explore the relationship between the effects of debt 

aversion and family income as part of the second stage of the investigation, 



98 
 

I will examine interaction effects between these variables. Interaction 

effects can be used when it is expected that the effect of one variable 

depends on the size or existence of another factor. In this case, I want to 

test if the effect of debt aversion differs depending on the young person’s 

family income group. Ai and Norton (2003) show that while there is a simple 

interpretation of interaction effects in linear models, in non-linear models, 

the effect is more complicated. This is because the full interaction effect is 

not reflected in the marginal effect of the interaction term itself only, but 

rather by the full cross-partial derivative of the expected value of the 

dependent variable. Interaction effects will therefore also depend on the 

values of the covariates. I take account of this in my model and report 

interaction effects across the range of predicted values of the dependent 

variable.  

 Secondly, I divide the sample into groups depending on family 

income and run regressions separately for these groups in order to 

compare the size and significance of the effect of debt aversion across 

regressions. Because the sample size is limited, I divide the sample into 

“rich” and “poor” by gender rather than reporting results for each of the four 

family income groups. “Poor” means the young person belongs to family 

income group 1 or 2 (£0 to £25,999), while “rich” means they belong to 

family income group 3 or 4 (£26,000 and above). The cut off is the closest 

possible point to the amount (£25,000) below which young people are 

entitled to the maximum possible maintenance grant12. I also include more 

or less school performance variables in different specifications and restrict 

the sample according to school results and participation intention to further 

explore the relationship between family background and debt aversion on 

the participation decision.  

3.5.5 Direct and Indirect Effects: A Decomposition Analysis 

The theoretical model presented in section 3 shows how family 

income influences the participation decision through its impact on factors 

such as time preferences, access to credit or family resources, and debt 

                                                           
12

 This refers to the system that was in place at the time that the survey was carried out 
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aversion. Having seen in the LSYPE data that there is a strong correlation 

between family income and debt attitudes, this section accounts for that 

relationship explicitly and seeks to measure the impact on the university 

participation decision of family income working through debt aversion. 

Estimating this effect for different pairs of family income groups allows us to 

see if low family income influences participation through its effect on debt 

attitudes more strongly than high family income does. Using this framework 

makes it possible to incorporate the relationship between debt aversion and 

family income directly rather than modelling interaction effects between the 

two variables. 

Figure 3-9: Direct and Indirect Impact of Family Income of University 
Participation 

 

Source: own representation based on Preacher and Hayes (2008) 

This framework can be depicted as follows: The total effect of family 

income on university participation (c above) is assumed to consist of a 

direct effect (c’ in the diagram above) and an indirect effect working through 

debt aversion (ab above).  

In the initial stage, several logit models were estimated, all of which 

used “atuni” as the dependent variable, which is equal to 1 if the young 

person was at university when interviewed in wave 6 and zero otherwise.  

The first model was run with family income but without any debt aversion 

variable, as follows: 
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�����= � + ∑ ���������� + ∑ ��� + ��
���

�
���                              (3.15) 

The second included both family income and debt aversion as explanatory 

variables and has the following functional form:  

�����= � + ∑ ���������� + ∑ ��
�
��� ������������+ ∑ ��� + ��

���
�
���   (3.16) 

where the variables on family income groups and debt aversion are sets of 

dummy variables and the Xs are controls.  

In linear regression, it would be possible to break down the effect of 

family income into a direct component and the indirect component coming 

through debt aversion by simply examining the change in the family income 

coefficients between models such as the ones described above, where one 

model includes debt aversion as an explanatory variable and the other 

excludes it. However, this is not possible in a logit context, due to a 

structural bias which can be explained as follows. A logistic regression is a 

comparison of proportions that have first been transformed into log-odds 

ratios.  Probabilities at each possible value of the mediating variable (debt 

aversion in this case) are transformed into log-odds ratios. When this 

transformation is performed for probabilities close to 0 or 1, they become 

less tightly clustered together than they were as probabilities (i.e. values at 

the extremity are more extreme in the log odds metric than in the probability 

metric). When the mediating variable (debt aversion) is left out of the 

regression, the model in effect takes an average of the proportions before 

transforming this average into a log odds ratio. Computing the average 

proportion before transforming the proportions into log odds means that the 

extreme values are less influential than they would have been if the means 

were computed in the log odds metric, so the average is pulled towards the 

less extreme categories. The consequence of this is that the effect in terms 

of log odds will be less when the mediating variable is left out of the model, 

even if there is no indirect effect (Buis, 2008).  

Erikson et al (2005) develop a solution to this problem which uses 

counterfactuals. In their study of student choices to progress to A-levels 

based on performance at key stage 3, they assume that the choice 

characteristics of students of one class can be combined with the 
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performance distribution of students of another class to produce a 

counterfactual or potential outcome. They implement this using numerical 

integration to produce a hypothetical intervention in which the choice 

characteristics change but the performance distribution is unchanged (and 

vice versa). This makes it possible to investigate the relative contributions 

of choice and performance.  

Based on Erikson et al (2005), Buis (2008) presents a generalisation 

that allows the variable through which the indirect effect occurs to follow 

any distribution (not just a normal distribution as per Erikson et al). This is 

useful for this chapter as the debt aversion variable from the LSYPE is a 

categorical variable that only loosely follows a normal distribution. Buis 

(2008) also suggests bootstrapping as a method for obtaining standard 

errors and shows how to control for other variables. Using an explanatory 

variable producing a direct effect that is a categorical variable, it is possible 

to produce a decomposition for all pairwise combinations of categories.  

The explanatory variable is family income group – performing a 

decomposition using this variable makes it possible to see the relative 

contribution of debt aversion for different pairs of family income groups. 

Factors described above suggest the possibility that debt aversion is a 

greater hindrance for poorer families. This would be confirmed by a falling 

indirect effect for groups of progressively higher family income compared to 

a base group with the lowest income.  

For clarity, the following points describe the components required for the 

comparison of income groups 1 and 4:  

 The total effect is given by log odds of success for family income 

group 4 minus the log odds of success for family income group 1.  

 The indirect effect is given by the log odds of success of family 

income group 1 with the debt aversion profile of family income group 

4 minus the log odds of success of family income group 1 (using 

their own debt aversion profile) 

 The direct effect is given by the log odds of success for family 

income group 4 minus the log odds of success of family income 

group 1, given the debt aversion profile of family income group 4.  



102 
 

These calculations should also be carried out for the complimentary 

counterfactual (i.e. using family income groups 1 and 4 the other way 

around). As these two methods produce similar but not identical results, an 

average of the two can be taken as the final result.  

The equations below provide more detail:  

   (3.17) 

Using the rule that ln(a) – ln(b) = ln(a/b),  

                    (3.18) 

By exponentiating both sides of this equation, the decomposition can 

also be presented in terms of odds ratios. Since exp(a + b) = exp(a) x 

exp(b), the total effect is given by the product of the two effects: 

               (3.19) 

Using this technique will make it possible to examine and compare the 

direct effect of family income on university participation with the indirect 

effect working through debt aversion, whilst avoiding any bias arising from 

the functional form of the model.  

3.6 Results 

3.6.1 Results of Logistic Regressions 

3.6.1.1 Overall Results 

Initially, several regressions were run with the dependent variable being a 

binary variable indicating if the young person was at university in wave 6. 

Separate models were run for the two family background measures (gross 

family income and family social class), the two debt-aversion types (value-

based debt aversion: “Owing money is always wrong” and risk based debt 
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aversion: “Once you get into debt it is often very difficult to get out of it”, as 

well as a model without any measure of debt aversion) and for males and 

females: 12 models in total.  

In all models, controls were included for ability as measured by test 

scores at age 11, parental education, ethnicity, living in an urban area, 

having a long-term health problem or disability, region of residence, 

whether the family is a non-traditional family (for example, if the parents are 

divorced) and the number of siblings. The variables included as controls 

generally have expected signs and significance levels. The full results for 

the six models using family income can be found in appendix A. Ability is 

proxied by test scores at age 11 (key stage 2). These are divided into 

quintiles and there is a strongly significant relationship, with the parameter 

values rising for each category. Ability is, as expected, strongly positively 

correlated with university participation. Furthermore, ethnicity is also very 

important, with Indians and Bangladeshis respectively having odds of being 

at university more than 4 times and 3 times greater than the odds of the 

base group (whites). Having a health problem is statistically insignificant, 

possibly because the sample size of those with this problem is quite small 

(7.5%). The number of siblings has a negative and precisely measured 

effect, with the odds ratios falling further from unity as the number of 

siblings increases. If the home is a non-traditional family, the young person 

is also less likely to be at university in wave 6. Having a father or a mother 

with a degree has a precisely measured positive impact, and the effect of 

the father’s degree is stronger than that of the mother’s (for females as well 

as males, in fact, for females the effect of the mother’s degree is not 

statistically significant). Young people from rural areas are also more likely 

to attend university in wave 6 than those from urban areas.  

 

Table 3-4: Logistic Regression Results for Gross Family Income and Debt 
Attitudes – by Gender     
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atuni Males Females

(1) (2) (3) (4) (5) (6)

Family Income Groups

1: up to £10,399    #

2: £10,400 to £25,999 1.188 1.151 1.165 1.409** 1.372** 1.376**

(0.211) (0.202) (0.208) (0.223) (0.217) (0.217)

3: £26,000 to £41,599 1.591** 1.506** 1.540** 1.605*** 1.591*** 1.566***

(0.287) (0.268) (0.28) (0.275) (0.273) (0.267)

4: £41,600 and above 1.949*** 1.850*** 1.861*** 1.771*** 1.725*** 1.718***

(0.353) (0.33) (0.34) (0.303) (0.297) (0.293)

Owing Money Is Always 

Wrong

Strongly Agree 0.353*** 0.375***

(0.075) (0.079)

Agree 0.409*** 0.371***

(0.063) (0.055)

Disagree 0.857 0.764**

(0.115) (0.099)

Strongly Disagree    #

Once You Get Into Debt It Is 

Often Very Difficult To Get 

Out Of It

Strongly Agree 0.937 0.347***

(0.265) (0.113)

Agree 1.511 0.469**

(0.405) (0.149)

Disagree 1.969** 0.708

(0.538) (0.23)

Strongly Disagree    #

Controls YES YES YES YES YES YES

Observations 4920 4920 4920 4869 4869 4869

R-squared 0.234 0.249 0.242 0.201 0.215 0.209

* p<0.10, ** p<0.05, *** p<0.010, # base category  

Exponentiated coefficients; Standard errors in parentheses

(NB: Full results including the control variables can be found in appendix A)  

Table 3.4 above demonstrates the effects of family income and debt 

aversion on university participation for males and females. These results 

show a clear relationship between family income and participation with the 

odds ratio of young people from the richest family income group at 1.95 for 

males (1.77 for females) compared to the base of the poorest family income 
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group. This relationship is statistically significant at the 1% significance 

level. Introducing the first debt aversion variable (“owing money is always 

wrong”) reduces the odds ratios on the family income variables slightly, 

demonstrating a decreased effect of family income by bringing them closer 

to one. This is what was expected, as we understand debt aversion to be 

part of the effect of family income - when it is included explicitly, it captures 

some of the effect that had previously been included in the coefficients on 

the family income variables. 

The odds ratios for the debt aversion dummies themselves 

demonstrate a negative relationship between debt aversion and university 

participation. The highest degree of debt aversion (those who “strongly 

agree” that owing money is always wrong) has an odds ratio of 0.353 

(0.375 for females), indicating that the odds of participation of the most debt 

averse are 65% (62%) lower than those of the least debt averse (who 

“strongly disagree” that owing money is always wrong), holding all other 

variables constant.  

Looking at risk-based debt aversion– responses to the statement 

“once you get into debt it is often difficult to get out of it” –shows an almost 

identical effect on the family income dummies for males. Once again, the 

odds ratios move closer to one, indicating the family income variables may 

have been capturing some of the effect of risk-based debt aversion. In this 

regression, however, the debt aversion dummies themselves are not 

statistically significant (except that the difference between “strongly 

disagree” and “disagree” is precisely measured). Given that this variable 

represents risk-based debt aversion, it is as expected that its effect on 

university participation is less marked, given the current UK system of 

student loan repayment. However, for females, the variable still has a 

statistically significant effect. The dummy for the most debt averse people 

has an odds ratio of 0.347 which is statistically significant at the 1% level. 

This shows their odds of participation are 65% lower than the odds of the 

least debt averse females.  

The fact that the odds ratios on the “always wrong” variables are well 

below unity and statistically significant for both genders and the “hard out” 

variables are statistically significant for females indicates that debt attitudes 
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impact on university participation, even after other factors are controlled for. 

Given the literature on the relative unimportance of short-term credit 

constraints (Carneiro and Heckman, 2003; Dearden et al, 2004), this is an 

important result. It confirms the findings of Callender and Jackson (2005), 

that debt attitudes are an important factor affecting the university 

participation decision.  

The next set of regressions uses social class rather than family 

income. The social class variables are statistically significant for both males 

and females and show a positive relationship between belonging to one of 

the higher classes and university participation. Young males with fathers 

from the highest social class group (higher and lower managerial and 

professional occupations) have odds of participation 52% higher than males 

from the lowest classes, while the odds for females are 51% higher. The 

middle group has odds that are 30% higher for males and 32% higher for 

females.   

 On the whole, the results are very similar to the regressions using 

family income. Considering the regression results for males, the odds ratios 

on the family class dummies come slightly closer to one when either type of 

debt aversion is added to the model (although for females there is little 

change). The odds ratios on the value-based debt aversion variables are 

statistically significant at the 1% level, revealing the important impact of this 

kind of debt aversion. The most debt averse have odds of participating that 

are 65% lower for males (62% for females) than the odds for the least debt 

averse, while the second most debt averse group has 59% (63%) lower 

odds than the least debt averse group. Looking at risk-based debt aversion, 

females who strongly agree have an odds ratio of 0.335 which is 

statistically significant at the 1% level, while the odds ratio for those who 

agree is significant at the 5% level. Females seem to be more affected by 

risk-based debt aversion in this context than males.  
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Table 3-5: Logistic Regression Results for Family Social Class and Debt 
Attitudes – by Gender

atuni Males Females

(1) (2) (3) (4) (5) (6)

Family NS-SECs

Lowest SECs     #

Middle SECs 1.300** 1.258** 1.279** 1.318*** 1.315** 1.318***

(0.145) (0.141) (0.143) (0.139) (0.14) (0.14)

Highest SECs 1.522*** 1.495*** 1.489*** 1.506*** 1.487*** 1.477***

(0.166) (0.165) (0.164) (0.151) (0.15) (0.149)

Owing Money Is Always 

Wrong

Strongly Agree 0.346*** 0.378***

(0.073) (0.079)

Agree 0.407*** 0.369***

(0.062) (0.055)

Disagree 0.853 0.762**

(0.114) (0.098)

Strongly Disagree     #

Once You Get Into Debt It Is 

Often Very Difficult To Get 

Out Of It

Strongly Agree 0.911 0.335***

(0.259) (0.111)

Agree 1.473 0.453**

(0.397) (0.147)

Disagree 1.934** 0.679

(0.532) (0.225)

Strongly Disagree     #

Controls YES YES YES YES YES YES

Observations 4920 4920 4920 4869 4869 4869

R-squared 0.233 0.248 0.241 0.203 0.216 0.21
Exponentiated coefficients; Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.010, # base category  
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These results show that debt aversion has a negative effect on 

university participation for both males and females. Someone who believes 

that “owing money is always wrong” is less likely to be at university straight 

out of school, and this effect is statistically significant, even after controlling 

for a broad range of other determinants of participation. Furthermore, 

among females, the belief that “once you get into debt it is often difficult to 

get out of it” also has a negative effect on university participation straight 

out of school.  

3.6.1.2 Inclusion of School Performance 

As discussed above, school results are highly correlated with family 

income and of course are strong determinants of participation. Key Stage 2 

test scores were included in the earlier regressions as a proxy for ability, as 

they are the earliest test scores available in the data - the regressions 

below explore the effect on the debt aversion and family income variables 

when progressively more school results are included in the regressions, 

and when the sample is restricted to suitably qualified individuals (defined 

here as those undertaking two or more A-levels at wave 5).  

As expected, the family income variables lose their significance. 

When key stage 2 and GCSE scores and the number of A-levels taken are 

included or when the sample is restricted to males taking 2 or more A-levels 

in wave 5, the family income variables show no statistical significance. This 

is a similar result to what Chowdury et al (2010) saw using linked NPD, 

NISVQ and HESA data.  

On the other hand, debt aversion still shows a statistically significant 

effect. Even in the restricted sample, those that “agree” that owing money is 

always wrong are less likely to be at university than those who “strongly 

disagree”, with this effect being statistically significant at the 1% level when 

key stage 2 and GCSE results are included and at the 5% level when the 

number of A-levels taken is included as well. In terms of the size of the 

effect of debt aversion on participation, including school results past age 11 

brings the odds ratios closer to 1, reducing the size of the effect. This 

indicates there is a relationship between school results and debt aversion, 

which may have several sources -  firstly, both may well be correlated with 
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ability, school results for obvious reasons, and debt aversion because 

tolerance towards debt (and especially towards borrowing for investment) 

requires the ability to think ahead, apply discounting etc. Secondly, both 

may also be correlated with discount rates, as discussed above. 

Table 3-6: Logistic Regression Results with School Performance and Other 
Controls – Males 

Sample:

Included School Results: None
Key 

stage 2

plus 

GCSEs

plus A 

levels

key 

stage 2

plus 

GCSEs

Family Income Groups

1: up to £10,399     #

2: £10,400 to £25,999 1.428** 1.151 1.127 1.016 0.837 0.801

(0.232) (0.202) (0.233) (0.206) (0.202) (0.206)

3: £26,000 to £41,599 2.004*** 1.506** 1.395 1.281 1.051 1.009

(0.331) (0.268) (0.288) (0.259) (0.259) (0.263)

4: £41,600 and above 2.748*** 1.850*** 1.448* 1.241 1.041 0.898

(0.459) (0.332) (0.298) (0.252) (0.253) (0.23)

Owing Money Is Always 

Wrong

Strongly Disagree     #

Strongly Agree 0.246*** 0.353*** 0.607** 0.736 0.66 0.919

(0.05) (0.075) (0.14) (0.177) (0.197) (0.304)

Agree 0.296*** 0.409*** 0.581*** 0.640** 0.574*** 0.630**

(0.043) (0.063) (0.098) (0.112) (0.112) (0.127)

Disagree 0.812 0.857 1.056 1.096 1.021 1.105

(0.103) (0.115) (0.155) (0.167) (0.168) (0.188)

Controls YES YES YES YES YES YES

Observations 4920 4920 4920 4920 2040 2029

R-squared 0.157 0.249 0.367 0.404 0.089 0.14

Exponentiated coeff icients; Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.010, # base category  

All Males At least 2 A levels
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Table 3-7: Logistic Regression Results with School Performance and Other 
Controls – Females 

Sample: All Females At least 2 A levels

Included School Results: None
Key 

stage 2

plus 

GCSEs

plus A 

levels

key 

stage 2

plus 

GCSEs

Family Income Groups

1: up to £10,399     #

2: £10,400 to £25,999 1.528*** 1.372** 1.105 1.198 1.107 0.976

(0.231) (0.217) (0.194) (0.212) (0.258) (0.241)

3: £26,000 to £41,599 2.017*** 1.591*** 1.229 1.323 1.305 1.117

(0.327) (0.273) (0.23) (0.251) (0.322) (0.29)

4: £41,600 and above 2.484*** 1.725*** 1.208 1.226 1.263 1.045

(0.408) (0.297) (0.227) (0.232) (0.308) (0.269)

Owing Money Is Always 

Wrong

Strongly Agree 0.225*** 0.375*** 0.513*** 0.618** 0.559* 0.608

(0.045) (0.079) (0.121) (0.149) (0.17) (0.191)

Agree 0.261*** 0.371*** 0.527*** 0.600*** 0.557*** 0.639**

(0.038) (0.055) (0.084) (0.101) (0.111) (0.13)

Disagree 0.661*** 0.764** 0.905 0.955 0.833 0.904

(0.084) (0.099) (0.124) (0.139) (0.138) (0.151)

Strongly Disagree     #

Controls YES YES YES YES YES YES

Observations 4869 4869 4869 4869 2355 2351

R-squared 0.137 0.215 0.328 0.372 0.07 0.114

Exponentiated coefficients; Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.010

 

School results reflect a person’s ability, their level of motivation and 

determination (which is also linked to intentions for future study), their 

discount rate, the benefits derived from their family background, and many 

other factors. As we are not interested in the rather more obvious 

relationship between school results and participation per se, but rather in 

the relationship between family income and participation and debt aversion 

and participation (and later – debt aversion and participation by family 

income group), the preferred specification of this model includes school 

results only in as far as they are required to control for innate ability. This 
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allows for the effects of family income and debt aversion to be reflected 

more fully in the parameter estimates for those variables. All the same, it is 

important to note that the “agree” dummy on debt aversion is statistically 

significant in all relevant specifications (i.e. even when all available school 

results are included in the regression).  

3.6.1.3 Predicted Probabilities 

Using the preferred specification of the logistic regressions, which 

includes key stage 2 results and the other controls (but not GCSE or A level 

variables), to calculate the probability of being at university in wave six 

while holding the control variables constant13 gives us predicted 

probabilities by gender, family background group and debt attitude.  

Figure 3-10: Participation Probabilities by Value-Based Debt Attitude, 
Gender and Family Background 

 

                                                           
13

 I calculate probabilities for someone who is white, of median ability, where neither parent has a 
degree, they have no siblings and do not come from a broken home, who lives in an urban area (in 
fact, London) and has no long-standing health problem or disability. Calculating probabilities for 
the average individual – all variables at means – gives very similar results.  
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Predicted probabilities are summarized in the graphs above. I focus 

on value-based debt aversion as this had the clearest results from the 

logistic regressions. These graphs show that there is a large difference in 

participation probability across all income groups and socio-economic 

backgrounds for those who (strongly) agree and (strongly) disagree that 

“Owing money is always wrong”, even after controlling for a broad range of 

other factors. Both males and females who agree with this statement are 

less likely to be at university straight out of school. There is no large 

difference for those who agree / strongly agree or those who disagree / 

strongly disagree, but between those who agree and those who disagree, 

the difference in participation probability is very clear and economically 

significant. The next section will explore whether this effect is greater for 

young people from disadvantaged backgrounds.  

3.6.2 Family Income and Debt Aversion 

This section addresses the question of whether or not the impact of 

debt aversion on university participation is more severe for young people 

from poorer families. Since the last section showed the clearest results for 

value-based debt aversion and no great differences when using family 

income or family social class, this section will focus on value-based debt 

aversion and family income.  

3.6.2.1 Interactions 

To address the question of whether the effects of debt aversion are more 

severe for low-income families, I first used interaction effects between a 

single debt aversion dummy (agree/disagree that owing money is always 

wrong) and a single rich/poor dummy (family income groups 1 and 2 vs 

family income groups 3 and 4). Using two dummy variables in this way 

rather than the full set of replies to the debt aversion statement and all 

family income groups simplifies the analysis but does not introduce any 

major changes otherwise.   

Due to the functional form of the model (as it is a logit model rather 

than a linear probability model), it is important to calculate interaction 

effects by using the full cross-partial derivative rather than just the marginal  
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Figure 3-11: Interaction effects and statistical significance:  Males 

 

 

effect of the interaction term itself. Using this methodology, I did not find 

evidence of statistically significant interaction effects either in terms of the 

average interaction effect or for individual estimates across the range of 

predicted participation probabilities. For males, this held true in models of 

value-based and risk-based debt aversion, including varying measures of 

school performance, and when the full sample was used as well as 

samples restricted to qualified individuals (two A-levels or more or 

alternatively individuals pursuing a qualification at wave 5 in order to apply 

for university later). The graphs above report the interaction effects for each 

observation from a model run on the full sample and with only key stage 2 
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test scores included. Interaction effects are small in size for all four groups14 

and statistically insignificant at the 5% level, although this is the model that 

is most likely to see statistically significant interaction effects. The first 

graph shows point estimates which demonstrate the small size of the 

interaction effect (between -0.03 and 0.06 percentage points) while the 

second graph shows that all z-statistics fall within the insignificance range 

at the 5% significance level (-1.96 to 1.96). This indicates that the effects of 

debt aversion are not more or less severe for young males from poor 

families compared to richer families.  

 

Figure 3-12: Interaction effects and statistical significance:  Females 
 

 

 

                                                           
14

 Rich-debt averse, poor-debt averse, rich-not debt averse, and poor-not debt averse. Results for 
these groups can be seen in the four distinct lines on the various graphs.  
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For females, all point estimates are positive and slightly larger than 

for males, up to 0.1 percentage points, though this is still very small. In 

terms of statistical significance, some observations at the upper end are 

borderline significant, although the average interaction effect (0.04 

percentage points) is insignificant at the 5% level with a z statistic of 1.08. 

Changing the specification to include school results past age 11 or to 

restrict the sample as was done with males further decreases the statistical 

significance of the estimated interaction effects. This indicates that, as is 

the case with males, the university participation of females from poorer 

families is no more strongly affected by debt attitude than are their 

counterparts from richer families. Debt aversion affects young people to a 

similar degree across the board.  

3.6.2.2 Sub-samples  

To test further for differing effects of debt aversion across family income 

groups, I ran separate regressions for the rich /poor family income groups 

to see if they show different odds ratios and varying degrees of statistical 

significance on the debt aversion dummy. Table 3.8 below reports the odds 

ratios on the value-based debt aversion dummy variable for twenty 

separate regressions, split by gender and family income group and also by 

the school results included as controls. The first set of regressions, 

including all males (or females) and controlling only for key stage 2 test 

scores (and the other controls from above, but not GCSE scores or the 

number of A-levels taken), shows that debt aversion has a statistically 

significant negative effect for both family income groups and that the effect 

is slightly stronger for poor versus rich. For males, the poor group shows an 

odds ratio of 0.392 on this variable compared to 0.421 for the rich group, 

while for females, the odds ratios are 0.373 and 0.529 respectively. Figure 

3.13 graphs these estimates within their confidence intervals. For males, 

these graphs make it clear that there is no economically significant 

difference in the effect between the two groups. For females, the 

confidence interval for the rich group is entirely above that of the poor 

group, which gives a suggestion that may be a stronger effect of debt 
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aversion among females from low income groups compared to high income 

groups.  

 

Table 3-8: Odds Ratios on Value Based Debt Aversion Dummy 
(Agree/Disagree) for various sub-sample regressions 

SAMPLE Included school 

results

Rich 

Males

Poor 

Males

Rich 

Females

Poor 

Females

All Males / Females key stage 2 0.421*** 0.392*** 0.529*** 0.373***

(0.054) (0.071) (0.07) (0.062)

2180 1748 1989 1755

All Males / Females 0.519*** 0.446*** 0.639*** 0.437***

(0.072) (0.089) (0.092) (0.078)

2080 1748 1948 1755

All Males / Females 0.549*** 0.478*** 0.730** 0.457***

(0.079) (0.103) (0.108) (0.087)

2080 1748 1948 1754

0.625** 0.376*** 0.773 0.467***

(0.115) (0.107) (0.144) (0.134)

1115 546 1173 681

0.813 0.528*** 0.779 0.505***

(0.142) (0.124) (0.14) (0.119)

1232 802 1271 903

Exponentiated coefficients; Standard errors in parentheses; Sample size in italics

* p<0.10, ** p<0.05, *** p<0.010

key stage 2 and 

GCSE scores 

and number of A 

levels taken

All males  / females 

taking  2 or more A 

levels at wave 5

key stage 2 and 

GCSEs

key stage 2 and 

GCSEs

key stage 2 and 

GCSEs

All males / females 

taking qualifications 

at wave 5 with the 

intention of applying 

to university later
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Figure 3-13: Comparing point estimates and confidence intervals between 
rich / poor family income groups

 

 

When GCSEs and A-levels are included, the sizes off the effect are 

more similar across family income groups. This is most likely due to the fact 

that the included school results take account of the effect of family income. 

It is especially interesting to note how the sample sizes differ between 

groups when the sample is restricted to those taking 2 or more A-levels at 
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wave 5. The sample sizes are smaller for the poorer groups as only 31% of 

males and 40% of females in the poor category were undertaking at least 

two A-levels compared to 51% of males and 59% of females in the rich 

category. Among the sample of males taking two or more A-levels at wave 

5, the effect of debt aversion is statistically different from zero at a 

reasonable significance level for both family income groups, for the poorest 

group at 1% and for the richest group at 5%. In the last set of regressions, 

run on those taking a qualification at wave 5 with the intention of applying 

for university later, debt aversion only has a statistically significant effect 

among the poorest families.    

3.6.2.3 Results of Decomposition Analysis 

Having examined the effects of family income and debt aversion 

separately in the above regressions and explored possible interaction 

effects, debt aversion will now be treated as an indirect effect of family 

income and the total effect of family income on university participation will 

be decomposed into the indirect effect (through debt aversion) and the 

direct effect (the effect of family income through all other channels). Using 

the decomposition technique as described in the methodology section 

makes it possible to compare the direct and indirect effects between all 

possible pairs of family income (or social class) groups.  

These tables show the odds ratios for the effects (total, direct and 

indirect) of family income on university participation. They are calculated for 

each pairwise combination of family income groups. For males in the 

richest and poorest groups, the total effect of family income has an odds 

ratio of 2.05, which means the odds of the young people from the richest 

group participating in university are 2.05 times greater than the odds of the 

poorest group, holding everything else constant. Poorer young people 

would have 1.17 times greater odds of participating with the richest group’s  
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Table 3-9: Summary of Logistic Regression Decomposition Results: Odds 
Ratios and Percentage Share for the effect of family income on university 
participation, Value-based debt aversion 

MALES

1 2 3 4

1 total 1.23 1.69 *** 2.05 ***

indirect 1.05 *** 1.11 *** 1.17 ***

direct 1.17 1.53 ** 1.76 ***

% indirect 22% 19% 22% ***

2 total 1.38 *** 1.67 ***

indirect 1.06 *** 1.11 ***

direct 1.30 ** 1.50 ***

% indirect 18% 21% ***

3 total 1.21 *

indirect 1.05 ***

direct 1.15

% indirect 27%

* p < 0.10, ** p < 0.05, and *** p < 0.01

Family income groups: 1 - lowest, 4 - highest

FEMALES

1 2 3 4

1 total 1.43 *** 1.66 *** 1.86 ***

indirect 1.04 ** 1.06 *** 1.09 ***

direct 1.37 ** 1.58 *** 1.70 ***

% indirect 11% * 11% ** 14% **

2 total 1.16 1.30 **

indirect 1.01 1.05 ***

direct 1.15 1.24 **

% indirect 10% 18%

3 total 1.12

indirect 1.03 ***

direct 1.08

% indirect 30%

* p < 0.10, ** p < 0.05, and *** p < 0.01

Family income groups: 1 - lowest, 4 - highest
 

Pair-wise combinations of family income groups, odds ratios for the total effect (family income), the 

direct effect (family income) and the indirect effect (debt aversion), % indirect shows the contribution 

of the indirect effect to the total effect.  
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Table 3-10: Summary of Logistic Regression Decomposition Results: Odds 
Ratios and Percentage Share for the effect of family income on university 
participation, Risk-based debt aversion 

MALES

1 2 3 4

1 total 1.2 1.62 *** 1.87 ***

indirect 1.01 1.03 *** 1.05 ***

direct 1.17 1.57 *** 1.78 ***

% indirect 7% 7% 8% *

2 total 1.37 *** 1.57 ***

indirect 1.02 *** 1.04 ***

direct 1.34 *** 1.52 ***

% indirect 7% * 8% ***

3 total 1.15

indirect 1.02 *

direct 1.13

% indirect 11%

* p < 0.10, ** p < 0.05, and *** p < 0.01

Family income groups: 1 - lowest, 4 - highest

FEMALES

1 2 3 4

1 total 1.4 *** 1.58 *** 1.71 ***

indirect 1.04 *** 1.05 *** 1.08 ***

direct 1.32 ** 1.51 *** 1.59 ***

% indirect 12% 10% * 14% **

2 total 1.16 1.25 **

indirect 1.01 1.04 ***

direct 1.15 1.21 *

% indirect 7% 16%

3 total 1.08

indirect 1.03 ***

direct 1.06

% indirect 33%

* p < 0.10, ** p < 0.05, and *** p < 0.01

Family income groups: 1 - lowest, 4 - highest
 

Pair-wise combinations of family income groups, odds ratios for the total effect (family income), the 

direct effect (family income) and the indirect effect (debt aversion), % indirect shows the contribution 

of the indirect effect to the total effect.  
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debt aversion profile than with their own debt aversion profile (indirect 

effect), while the high family income group would have 1.76 times greater 

odds of attending than the poorer young people if the debt aversion profile 

is held constant (direct effect). The indirect effect measures the effect of 

changing the debt aversion profile (holding family income group constant), 

while the direct effect measures the effect of changing family income group 

(holding the debt aversion profile constant). For this pair, 22% of the effect 

of family income is due to debt aversion. The indirect effect (debt aversion 

working through family income) is statistically significant at the 1% level 

comparing any group with the richest group (standard errors are calculated 

by bootstrapping). The percentage contribution of debt aversion is 

statistically significant comparing the poorest and second poorest groups 

with the richest group, but not for the other pairs. Debt aversion makes up a 

relatively large proportion of the total effect, around one fifth of the total 

effect for most pairs. 

 However, there is no clear pattern of debt aversion having stronger 

effects for poorer families. The contribution of debt aversion to the total 

effect is 22% comparing the two poorest family income groups (although 

this is not statistically significant) and also 22% comparing the poorest and 

richest groups. For females, the contribution of debt aversion appears 

smaller than for males and is only significant (at the 5% level) comparing 

the poorest group with either of the two richest groups. Comparing the 

poorest and richest groups, the total effect has an odds ratio of 1.86 and 

14% of the effect is due to debt aversion. The percentage contribution of 

debt aversion is highest for both males and females when comparing the 

two richest groups, however, in both cases this is highly imprecisely 

measured, with very large standard errors.  

Looking at risk-based debt aversion, direct, indirect and total effects 

are highly statistically significant for both males and females when 

comparing the poorest group with either of the two richest groups. The 

percentage contribution of this kind of debt aversion is smaller than value-

based debt aversion for males (8% compared to 22% for the richest-and- 

poorest pair) but for females both kinds of debt aversion show the same 

contribution for this pair (14%). Once again, the greatest percentage 
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contribution of debt aversion is seen between the two richest income 

groups for both males and females, but this is not statistically significant.  

Table 3-11: Summary of Logistic Regression Decomposition Results: Odds 
Ratios and Percentage Share for the effect of family SES on university 
participation, Value-based Debt Aversion 

MALES

lowest middle highest

lowest total 1.31 *** 1.64 ***

indirect 1.06 *** 1.12 ***

direct 1.24 ** 1.47 ***

% indirect 22% * 23% ***

middle total 1.25 **

indirect 1.05 ***

direct 1.19 *

% indirect 23%

* p < 0.10, ** p < 0.05, and *** p < 0.01

FEMALES

lowest middle highest

lowest total 1.36 *** 1.51 ***

indirect 1.03 *** 1.07 ***

direct 1.32 *** 1.42 ***

% indirect 10% * 16% ***

middle total 1.11

indirect 1.04 ***

direct 1.07

% indirect 35%

* p < 0.10, ** p < 0.05, and *** p < 0.01
 

Pair-wise combinations of family NS-SEC groups, odds ratios for the total effect of family class 

group, the direct effect (family class group) and the indirect effect (debt aversion), % indirect shows 

the contribution of the indirect effect to the total effect.  

Next, the effect of social class group will be examined rather than 

family income. The results are very similar to the results for family income. 

For value-based debt aversion, the contribution to the total effect is greater 

among males than among females. The pair of the highest and lowest 

groups shows a precisely measured effect (at the 1% significance level) – 

23% for males and 16% for females. The greatest contribution occurs 
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between the highest and middle groups, but once again this is not precisely 

measured.  

Table 3-12: Summary of Logistic Regression Decomposition Results: Odds 
Ratios and Percentage Share for the effect of family SEC on university 
participation, Risk-based Debt Aversion 

MALES

lowest middle highest

lowest total 1.28 ** 1.55 ***

indirect 1.01 1.03 ***

direct 1.27 ** 1.50 ***

% indirect 4% 8% **

middle total 1.21 *

indirect 1.02 **

direct 1.18

% indirect 12%

* p < 0.10, ** p < 0.05, and *** p < 0.01

FEMALES

lowest middle highest

lowest total 1.33 *** 1.48 ***

indirect 1.02 *** 1.05 ***

direct 1.30 *** 1.41 ***

% indirect 7% ** 12% ***

middle total 1.12

indirect 1.03 ***

direct 1.09

% indirect 24%

* p < 0.10, ** p < 0.05, and *** p < 0.01
 

Pair-wise combinations of family NS-SEC groups, odds ratios for the total effect of family class 

group, the direct effect (family class group) and the indirect effect (debt aversion), % indirect shows 

the contribution of the indirect effect to the total effect.  

For risk based debt aversion (above), the contribution of debt 

aversion to the total effect is smaller for males than for females, e.g. 

between the lowest and highest class groups, it is 8% for males and 12% 

for females. For females, the odds ratio on the indirect effect is statistically 

significant for every pair, but quite small – between 1.02 and 1.05.  

In summary, debt aversion makes a significant contribution to the effects 

of family income and social class on university participation for both males 
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and females. Value based debt aversion seems to be more important for 

males, while for females, risk-based debt aversion is more important. There 

is no clear pattern of debt aversion being more of an issue for poorer 

families or families from lower socio-economic classes - it appears to effect 

young people similarly across the board.   

3.7 Conclusion 

In the current policy context of recent increases in undergraduate 

university fees up to £9,000 per year and the increased debt levels this 

means for new students (but using survey data from before the increase 

occurred), this chapter has explored the issue of debt aversion and 

university participation. In particular, it explored the question of whether the 

effect of debt aversion on university participation is greater for young 

people from poorer families or lower SECs.  

Firstly, a theoretical model was developed by extending the standard 

model of university participation in the human capital theory to include debt 

aversion. Debt aversion was defined as associating greater negative utility 

to holding negative assets than the positive utility associated with positive 

assets of the same absolute value. The model incorporates debt aversion 

based on the idea that people’s university participation decision will not be 

based on total expected lifetime earnings but rather their overall utility 

arising from these streams, only one of which (university participation) 

includes a period of negative earnings. Their evaluation of negative assets 

relative to positive assets (i.e. their degree of debt aversion) will therefore 

impact on the university participation decision. This model also 

demonstrated the importance of family income to the decision, as almost 

every parameter is related to family income on some level.  

Secondly, econometric analysis was carried out using the LSYPE. This 

data set has several advantages, in that it is based on a representative 

sample of young people (including weights that align it more fully with the 

total population), rather than a sample made up of students or young 

people pursuing HE entrance qualifications, and furthermore follows these 

young people over time allowing us to observe actual university 

participation (or not) as opposed to participation intention. The richness of 
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the data also makes it possible to control for a wide range of personal and 

family characteristics. In particular, the fact that the dataset is linked to the 

National Pupil Database proves test statistics that can be used as proxies 

for innate ability. Although both debt aversion and family income are 

potentially endogenous, the control variables capture a large amount of the 

unobserved heterogeneity. This remains a limitation of the analysis, 

however, the breadth of control variables available gives confidence in 

asserting that the effect of debt aversion captured here is close to the 

causal effect. The data used in this chapter comes from surveys that were 

carried out before the increase in undergraduate fees that occurred in 

October 2012. It could therefore be argued that the effects found here are 

likely to be even greater now that the debt levels of undergraduates have 

increased.  

One key aim of this chapter was to address the question of whether the 

effects of debt aversion are more severe for poorer families. This was firstly 

explored by using interaction effects; secondly, by running regressions of 

sub-samples of the data and comparing the size and significance of the 

effect of debt aversion across models. Finally, I treated debt aversion as an 

indirect effect of family income on university participation and looked at the 

contribution of the indirect effect relative to the total effect, for all pairwise 

combinations of family income groups. There was no clear evidence from 

these results that debt aversion is having a greater impact on the university 

participation decisions of young people from disadvantaged backgrounds.  

The regressions run and supplementary analysis carried out were able 

to demonstrate several key findings:  

 Debt aversion is negatively correlated with university participation 

and this relationship is statistically significant, even controlling for 

other factors.  

 The size of the effect is quite large, reducing the participation 

probability by as much as 20 percentage points in some cases.  

 Value based debt aversion seems to have more of an impact than 

risk-based debt aversion, although for females, risk-based debt 

aversion is also important. 
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 There is no clear pattern of debt aversion affecting poorer families 

more severely; although there is some indication the effects are 

greater for poor females.  

 

The impact of debt aversion on the participation decisions of young 

people from all family income / socio-economic class groups is an important 

societal and political issue. The recent increase in fees will see a large 

increase in indebtedness on graduation for undergraduates, which may well 

have implications for young people’s decisions regarding university 

participation. The findings of this chapter together with early estimates of 

the effect of the fee increase on participation will be explored further in the 

concluding chapter.  
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4 The Effect of Family Income, Schooling and Other Factors on 

Children’s Cognitive Development 

4.1 Introduction 

The previous chapter established that although there are differences in 

debt attitudes depending on family background, debt aversion has an effect 

on university participation for young people from all backgrounds. As such, 

it is apparent that debt attitudes are not a major driver of the gap in 

university participation rates between children from advantaged and 

disadvantaged family backgrounds. The data I have used indicates that 

these gaps appear well before age 17. For example, the proportion of 

students taking A-levels was very different comparing the highest and 

lowest family income groups. This chapter therefore looks to the early, 

formative years of a child’s life and seeks to identify the important 

influencing factors that determine the gaps at that stage of life. In particular, 

it examines gaps in cognitive development between ages 5 and 7. A clear 

understanding of the factors which benefit children’s cognitive development 

in the first few years of school is imperative as a foundation for the 

formation of clear and effective government policies to address educational 

inequality.  

In this chapter, I examine three key areas which are potentially 

important drivers of cognitive development: family background, especially 

focusing on family income; schooling, including school quality; and a third 

group which I call “other factors” including parental behaviours, 

neighbourhood factors and the like. Reducing inequalities in educational 

outcomes is a government objective in and of itself and is also of further 

importance due to the role of education in social mobility, either as a 

facilitator or a hindrance. Extending the work that has previously been done 

in this area, (e.g. Violato et al, 2011, Dearden et al, 2011b), this chapter 

uses new, nationally-representative data and innovative panel data 

techniques (described below) to identify the key factors behind children’s 

rates of cognitive development between ages 5 and 7.  

Looking firstly at family income, there is a large literature which 

examines the issue of whether it is the money itself which provides an 
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advantage, or if family income rather acts as a proxy for other important 

factors, such as the provision of a stimulating home environment (Mayer, 

1997; Gregg et al, 2007). Using the Millennium Cohort Study makes it 

possible to control for a broad array of factors, which helps in isolating an 

independent, direct effect of income. Nonetheless, the endogeneity of 

family income is a serious methodological issue in this context. Family 

income is strongly correlated with a range of other influences on the child 

and even with very rich datasets it is not possible to ‘mop up’ all individual 

heterogeneity. The use of panel data techniques can help in this regard, 

although a lack of variation in family income between waves presents a 

further difficulty. I develop a novel augmented random effects approach 

which helps address these two issues.  

 The second set of factors to be examined relates to schooling. I have 

already discussed at length the role of education in general as a possible 

facilitator or hindrance to social mobility. This chapter focuses more 

specifically on school-related factors expressing the quantity and quality of 

schooling each child experienced between age 5 and 7.  Through exploiting 

variation in months of school attendance, teacher tenure, class size and 

whether the school charges fees and is a coeducational school, it is 

possible to test the significance of these factors in promoting the child’s 

cognitive development over this period. Using the panel models mentioned 

above extends this analysis beyond descriptives. While it is not possible to 

claim the identification of truly causal effects, these models aim to estimate 

the direct effect of schooling in a more methodologically robust way. I focus 

on individual fixed effects as, unfortunately, teachers are only identified in 

one wave and there are too many missing values on the school identifiers 

in waves 3 and 4 to make school fixed effects feasible. This is the first study 

I am aware of which uses the latest two waves of MCS data to explore the 

effect of schooling. Since assessing the effectiveness of schooling in 

reducing inequalities in cognitive and later outcomes is of such significance, 

this chapter makes an important contribution in this regard.   

Finally, the richness of the dataset provides a good opportunity to ask 

which other factors may be important promoters of children’s cognitive 

development in the first few years of school. I include a broad range of 
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variables in the OLS and panel data models such as variables relating to 

family structure, parental labour force engagement, health, various parental 

behaviours, neighbourhood factors and early influences such as birthweight 

and breastfeeding. As such, I am able to examine an extensive collection of 

factors that could be influential for children’s cognitive development. Most 

importantly, I aim to identify factors which can be targeted as policy 

vehicles to impact positively on children’s cognitive development.  

A major contribution of this chapter is to present a methodological 

approach to these questions which deals, on the one hand, with the likely 

endogeneity of the key variables and on the other hand with the limited 

amount of variation within individuals. Although the MCS (and other similar 

longitudinal datasets) provides an excellent data source with multiple 

waves, a large sample size and a very broad array of variables, these two 

key data issues do still remain.  

On the one hand, some individual heterogeneity that is correlated with 

the variable of interest will always remain unobserved and unaccounted for 

by the other covariates. This applies primarily to family income, making it 

difficult to identify a direct causal effect of this variable, but also applies to 

the other covariates since the included variables are all strongly correlated 

amongst themselves. At the same time, there is a lack of within-variation in 

key variables, especially since just two time-points are being considered 

and many of the explanatory variables are binary. These two issues make it 

very difficult to achieve robust results. While fixed effects models present a 

possible means of eliminating unobserved individual heterogeneity, they 

require more variation than is contained in the data. And while random 

effects models make use of between subject variation, they are subject to 

much stricter exogeneity assumptions which are very unlikely to hold in this 

case.  

In this chapter, I present a possible solution to these problems via an 

augmented random effects model which can be tested for consistency 

against a fixed effects model via the Hausman test. The random effects 

model is brought closer to the fixed effects model by allowing the between 

and within effects of certain variables to be estimated separately where 

appropriate. Augmenting the standard random effects model in this way 
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makes it possible to combine the between and within variation in the data to 

help generate more precise estimates, whilst maintaining confidence in the 

consistency of the results.  

The next section reviews the relevant literature, covering papers which 

consider the influence on children’s development of family income, 

schooling and other factors. I then describe the data used in the analysis in 

section 3. The same dataset is used as in the following chapter, however, in 

this section I introduce data issues that are relevant to this chapter and 

provide descriptive statistics overall and by family income quartile for all 

variables used in the analysis. Section 4 provides a more detailed 

description of my methodology, followed by the results obtained in section 

5, together with a discussion of these results. Section 6 draws the various 

strands together and concludes. 

4.2 Literature Review 

Since this chapter examines three groups of variables, this literature 

review will have three sections. The first key influence to be examined is 

family income. A comprehensive review of different approaches to 

determining the direct, causal effect of income was included in the literature 

review in chapter 2, as such, in this section, I focus on four major papers 

concerning the effect of family income on children’s early years cognitive 

development and the way this effect changes as an increasing number of 

mediating factors are added to the model. Secondly, the literature on 

schooling will be introduced, especially in relation to school resources and 

quality and their impact on cognitive development. Finally, I review papers 

which focus on the impact of other specific factors, such as family size or 

neighbourhood effects. This will help to put the findings from this chapter 

into the context of current research.  

4.2.1 The Impact of Family Income on Children’s Early Years Cognitive 

Development 

Violato et al (2011) uses data from the first three waves of the MCS 

and reports the significance of a family income variable regressed on 

various child cognitive and behavioural outcomes and the way this impact 
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decreases in size and statistical significance as various mediating factors 

are included in the model. They combine the approaches of economics and 

developmental psychology in breaking up the mediating pathways into 

groups called “parental stress”, “parental investment”, and “other family 

related pathways”.  

Overall, they find that the direct effect of family income over and 

above the other factors is absent or at most weak. Their results vary for 

different cognitive assessments when adding the additional factors one 

group at a time and contemporaneously. For BAS (British Ability Scales) 

naming vocabulary at 3 years, the income variable becomes very small and 

statistically insignificant when additional factors are added to the original 

specification containing only income and the dependent variable. For BAS 

naming vocabulary at 5 years, the income variable retains its significance 

when some factors are added but becomes insignificant when all 

explanatory variables are included. For Bracken School Readiness at age 3 

and BAS Picture Similarity at age 5, the income variable is still positive and 

statistically significant (at 1% and 5% levels respectively) even when all 

other mediating factors have been included, however, it is much smaller in 

magnitude than in the most parsimonious model15.  

Furthermore, the authors also report the results for each individual 

explanatory variable. This indicates which factors are more or less 

important to the child’s outcomes at each age. In particular, they find that 

breastfeeding, mother’s mental health, parenting practices and the home 

environment have important implications for the child’s cognitive and 

behavioural development. The final section of their article includes a fixed 

effects model, although the authors present this model with an important 

caveat, namely the fact that children develop differentially over time which 

makes this kind of model less robust than it would be for adults (this idea is 

discussed further in the methodology section below).  

                                                           
15

 These are the results for two parent families and permanent income. Results for lagged income 
show smaller magnitudes but are similar in terms of statistical significance. For lone mother 
families, the income variable is statistically significant for BAS naming vocabulary at 5 years but 
insignificant for BAS Picture Similarity at 5 years when other factors are included in the 
specification beyond the raw correlation between family income and these outcomes.  
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Since the data used in this chapter includes an extra wave, I have 

been able to extend their findings by including additional explanatory 

variables, especially in relation to schooling. A further difference is that the 

baseline test scores are not included in any of their models. This means 

that they can only be interpreted as static models, whereas my models 

include a baseline score and therefore give an indication of the effects of 

the covariates on the children’s cognitive development over time. 

Furthermore, the inclusion of a baseline ability measure helps to control for 

unobserved individual heterogeneity contained in the test scores in an 

earlier period.   

Gregg et al (2007) uses data from the ALSPAC cohort, another UK 

longitudinal dataset, to explore the relationships between a range of child 

outcomes (including cognitive ability, behaviour and fat mass) and income; 

family characteristics such as household composition and parental 

occupation; and proximal factors directly affecting child outcomes such as 

the home learning environment. They first show that children from 

disadvantaged households perform more poorly on every outcome 

measure at ages 7 to 9 than children from well-off families. In order to 

examine why low-income children are behind their peers, they examine 

which aspects of low-income children’s environments account for their 

developmental deficits and focus on the processes that mediate the 

relationship between family income and child outcomes.  

They employ a decomposition approach to examine on the one 

hand, the impact of income in comparison to other aspects of family 

disadvantage, and on the other hand, how the various measures of 

disadvantage, including income, are associated with the behaviours of 

parents and the immediate environment in which children live. They find 

that the most important proximal factors influencing children’s cognitive 

outcomes are their parents’ psychological functioning and the home 

learning environment, as well as health related factors including 

breastfeeding. One key finding is that different outcomes (cognitive, socio-

emotional and health related) appear to be driven by quite different aspects 

of the socio-economic disadvantage that underlie parental poverty. 

Furthermore, proximal factors explain only around a third of the relationship 
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between family income and cognitive outcomes, whereas they explain 

almost all of the income gradients in socio-emotional outcomes and health 

outcomes. They also find that parental education has a large and significant 

role, but that it is not transmitted by the proximal factors included in the 

model. Interestingly, single parenthood in itself does not seem to be a 

source of the income gradient or to directly influence the child’s cognitive 

outcomes.  

Whilst it is not their aim to establish a causal effect of income in 

itself, they nonetheless build a case for a distinct causal impact of income 

per se on cognitive outcomes by controlling for quite a vast array of family 

background characteristics, parental behaviours and other possible 

mediating factors.  They show that a lack of income is one of a host of 

disadvantages faced by poorer children and that it has an economically 

significant effect on outcomes, independent of other factors.  

Dearden et al (2011b) adopts the same theoretical framework as 

Gregg et al (2007). They use the first three waves of the MCS to examine 

the factors that influence the cognitive development gap at ages three and 

five, as well as the widening of this gap over time. They identify an 

important role for the early childhood caring environment, including such 

aspects of the home learning environment as the frequency of reading to 

the children. However, they also show that other aspects not related to this 

play a key role (e.g. mothers age), and that a large amount of the variation 

remains unobserved. In this chapter, I build on their findings by including 

data from an additional wave of the survey when the children are aged 7. 

Furthermore, I use panel data methods to try to address the issue of 

unobserved individual heterogeneity. 

McCulloch and Joshi (2002) explore the effect of deprivation on 

children’s cognitive functioning. They approach this question by running a 

regression on a measure of cognitive functioning (the Peabody Picture 

Vocabulary Test, PPVT) with family income as the only regressor and then 

adding progressively more explanatory variables to identify the direct effect 

of income and to discover which other factors are driving the relationship. In 

terms of the theoretical understanding of possible channels through which 

family income could exert an influence, they describe first of all a direct 
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effect (e.g. through a lack of stimulating resources), secondly, that there 

could be mechanisms working through the locality and the services 

available there, thirdly, that behavioural factors such as the effect of poverty 

on the parents mental state and therefore parenting practices may play a 

role, and fourthly, that family income and child outcomes could both be the 

joint outcomes of other factors such as parental human capital.  

Using data from the NCDS, they estimate variance components 

models with different combinations of explanatory variables. There is strong 

evidence of a raw gap in the cognitive outcome by family income group. 

Adding the family structure variables in the second specification slightly 

reduces the effects of income. There is a negative effect of family size and 

young motherhood, but in general the family structure and parental labour 

force engagement variables do not add a great amount of explanatory 

power. Introducing information on the mother’s qualifications renders the 

income coefficients insignificant and appears to act as an alternative signal 

of the resources available to the child.  

Adding indicators of material deprivation instead of the maternal 

qualifications variables also removes the statistical significance from the 

family income group dummies. In particular, living in social housing and the 

family not owning a car have the largest negative impacts. Including 

parental behaviour instead of the material deprivation variables also 

restricts the significance of the family income variables and shows 

interesting results in its own right, with a stimulating home environment and 

the level of maternal emotional support both showing important effects. In a 

model where all of these variables are included, all the income terms are 

insignificant. This shows that the large raw impact of family income on the 

cognitive outcome in question apparently reflects other mediating 

influences. In particular, long-term measures of deprivation (expressed in 

car usage and housing tenure) seem to be more important than current 

income, the mothers’ education is a key influence and a stimulating home 

environment and parental ‘competence’ are both important contributors to 

higher test scores among lower family income children.  
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In summary, these four papers all start by establishing the large raw 

correlation between a child’s family income and their cognitive ability 

outcomes. As further explanatory variables are added to the model, the size 

and statistical significance of the income coefficients fall. While McCulloch 

and Joshi (2003) observe that adding the additional factors completely 

removes the independent impact of family income, Gregg et al (2007) 

observe a remaining, direct impact of family income. Violato et al (2011) 

observe that the family income coefficient remains statistically significant for 

certain tests and certain family types, though overall, the direct effect of 

income is either absent or quite weak. Dearden et al (2011) focuses on 

socio-economic position and uses family income as one element of this, 

hence they do not discuss the direct role of income per se.  

Aside from a child’s family, further influences on their academic 

achievement can derive from their school and the neighbourhood they grow 

up in. The next section will focus on schooling and school quality, whilst 

neighbourhood factors will be considered together with a broad range of 

other possible influences in the third section. 

4.2.2 School Resources, Quality and Quantity of Schooling and Cognitive 

Development 

There is a longstanding debate regarding the importance of school 

factors on children’s educational outcomes. Whilst early work (for example 

“Equality of Educational Opportunity”, more commonly known as the 

Coleman Report, 1966) indicated that the influence of family background 

and cohort factors far outweighed the effect of schools, later papers have 

found that schools are in fact extremely important (Hanushek, 1986, 2003, 

2005).  

Apart from the issue of self-selection into schools, or moreover, 

parental selection of schools, which conflates family and school effects, 

another issue is the difficulty in measuring school and teacher quality. In 

terms of teaching quality, studies which have focused on measures such as 

years of experience and qualifications have found that these effects are in 

general insignificant (e.g. Todd and Wolpin, 2007). However, empirical work 

that examines teacher characteristics more broadly, using teacher fixed 
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effects for example, finds that differences between teachers have an 

important effect on pupil’s outcomes (e.g. Rivkin et al, 2005). Card and 

Krueger (1998), reviewing literature on the effect of schooling on earnings 

later in life and educational attainment, concluded that it was “unfortunate 

and frustrating” that not more was known about the outcomes of schooling, 

even 30 years after the Coleman report was produced. There still remains a 

great deal of ambiguity as to the strength and mechanisms of the effect of 

schools and teachers on pupils’ outcomes.  

A recent study (Holmlund et al, 2010) makes use of excellent UK 

data to control for school fixed effects as well as detailed individual 

characteristics. They examine the effect of rising school expenditure on 

children’s test scores at age 11 and find that school expenditure has a 

consistently positive and significant effect and that this effect is higher for 

students who are economically disadvantaged. On the other hand, Todd 

and Wolpin (2007), which examines a broad range of specifications and 

employs various controls, does not find any significant relationship between 

the schooling input measures and test scores, but rather finds that the key 

contributors to ethnic test score gaps are mother’s “ability” (as measured by 

AFQT scores16) and home inputs. The evidence on this issue certainly 

remains mixed.  

Baird (2012) introduces a further element by investigating 

achievement gaps (between high and low SES background pupils) for 19 

high-income countries and finds that in some countries achievement gaps 

can be largely explained by differences in the characteristics of schools 

attended, whilst in many other countries, the gap appears more closely 

related to differences in the characteristics of the students. This finding 

seems to indicate that broader institutional factors also have an important 

role to play. 

 Hanushek (1986) discusses the distinction between the overall 

influence of a child’s school and teachers and the influence of specific 

components of this such as average school expenditure and years of 

teacher experience. Using teacher fixed effects, he finds that teachers and 

                                                           
16

 Armed Forces Qualification Test scores – often used as an indication of cognitive ability 
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schools differ dramatically in their effectiveness; however, this is not well 

reflected in traditionally measured components. He argues that existing 

measures, including school expenditure, class size, salary levels, teacher 

experience and whether the teacher has a master’s degree, are flawed 

measures of true school quality.  

This is an argument he has developed further over a long time 

period, for example in Rivkin, Hanushek and Kain (2005) where the authors 

use a large and detailed Texan dataset to identify the effect of teacher 

quality explicitly. Their estimator is based on patterns of within-school 

variation in achievement gains and ignores differences in teacher quality 

between schools, which cannot easily be disentangled from student 

differences and the influence of other school factors. Rich data with 

repeated performance observations for individual students and multiple 

cohorts makes it possible to use fixed effects models, thereby providing a 

means of controlling explicitly for student heterogeneity and the non-

random matching of students, teachers, and schools. Their paper uses 

excellent data to provide robust evidence for the abovementioned finding, 

namely that schools and teachers do matter for students’ achievement, but 

that their effectiveness is not well measured through standard variables 

such as school expenditure and teacher experience. One outcome of this 

research is that it has led to calls for different incentive structures within 

schools which will be more effective at identifying and rewarding effective 

teachers, such as rewards based on head teacher reports, which would 

provide a more comprehensive perspective (Hanushek, 2003).  

 A further approach taken in the recent literature is to employ 

instrumental variables to identify causal impacts of certain school 

characteristics. Papers using this approach aim to overcome endogeneity 

problems by isolating a credible source of exogenous variation in school 

inputs, and are often quite innovative in their reasoning. For example, 

Haegeland et al (2012) examines the influence of school resources in 

Norway using variation that is induced by proximity to waterfalls. The 

waterfalls lead to higher local tax revenues from hydropower plants and this 

leads to higher school expenditures in those areas. Simple OLS 

regressions show insignificant effects of school expenditure on outcomes at 
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age 16. This may be due to compensation of disadvantaged schools by 

local authorities, which is likely to bias the effect of school resources 

downwards. Using an IV approach helps to overcome this issue. The 

authors run two-stage IV regressions on the whole sample and also on a 

restricted sample of “comparable” municipalities and furthermore perform 

several robustness checks to explore possible biases arising from selective 

mobility into these areas or the influence of other local amenities. They find 

an economically and statistically significant positive effect of school 

expenditures using the IV approach. 

 Possibly the best known paper using this approach is Angrist and 

Lavy (1999) examining class size effects. Class size is one element of 

school quality for which it is particularly difficult to determine a causal effect, 

given that children with particular needs may often be placed in smaller 

classes, and on the other hand that there is a strong association class size 

and the pupils’ family background. In this paper, the authors use data from 

Israeli schools where the application of a particular rule (Maimonides rule, 

which states that 40 is the maximum possible number of students in a 

class) prompts a discontinuity in school class sizes. They note a clear 

pattern of up-and-down test scores that correlates strongly with the class 

size pattern induced by the application of this rule. Their research indicates 

clear, positive effects of smaller class sizes, though in comparison to work 

on the Tennessee STAR experiment (a randomised trial designed explicitly 

to measure class size effects), the effects were somewhat smaller. Other 

papers (e.g. Rivkin et al, 2005) have argued that reducing class sizes is a 

particularly expensive way of improving children’s educational experience 

and that the effects are small relative to other possible measures such as 

improving teacher quality. 

 Another element of school quality is whether the school is 

coeducational or single-sex. Whilst research has shown that pupils (both 

girls and boys) in single-sex schools perform better (e.g. Lee and Bryk, 

1986), this could merely reflect student selection into school types 
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(Jackson, 2012)17. Park et al (2013) try to identify a causal effect of school 

type using data on schools in Seoul, South Korea, where a compulsory 

random allocation into schools ensures that attendance of a coeducational 

or single-sex school is unrelated to a pupil’s family background and other 

characteristics. This research admittedly focuses on secondary school, with 

the two main outcome measures being the nationally standardised college 

entrance examination and attendance of four-year rather than two-year 

colleges; however, it is still informative regarding the effect of coeducational 

and single-sex schools more generally. The authors find a significant 

positive effect of single-school attendance on college entrance scores and 

college attendance for both boys and girls.  

 Finally, it is also possible to use natural experiment techniques to 

explore the effect of the quantity of schooling on children’s outcomes. 

Marcotte (2007) uses snowfall in Maryland in the US as an instrument for 

days of school attended in a school year. The Maryland School 

Performance Assessment Program tests are held in the same week each 

year, but days lost to increment weather vary substantially by school district 

and by year. This provides a source of ransom and non-trivial variation in 

instructional time which can be exploited to determine a causal relationship 

between schooling and achievement. Marcotte’s finding was that there was 

a substantial effect of instructional days on test scores, and that this was 

stronger for mathematics compared to other subjects and for lower grades 

compared to higher grades.  Secondly, Carlsson et al (2012) uses random 

variation in test dates for a Swedish military preparation exam. They find 

that school days have a positive effect on crystallized intelligence tests 

(synonym and technical comprehension tests) while non-school days have 

no effect, but that school days have no effect on fluid intelligence tests 

(spatial and logic tests). These two papers provide evidence on the 

importance of instruction days as an input into the educational production 

process.  

                                                           
17

 Jackson (2012) also uses rule-based assignment to schools to identify a causal effect of single-sex 
schools, but the identification is less strong than in Park et al (2013), hence my focus on the second 
paper.  
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The key issue of the endogeneity of school inputs has continued to 

prove very difficult to resolve. The fact that families have so much influence 

on school choice and also exert a strong influence on children’s academic 

outcomes means separating out the direct effect of schools has continued 

to prove difficult since the original Coleman report was produced in 1966. 

The review above briefly introduced two approaches that have been used 

to deal with this, namely fixed effects models and natural experiment 

(instrumental variable) techniques. My own results in this chapter are 

strengthened by the use of individual panel data models, although data 

limitations restrict what is possible in terms of teacher and school fixed 

effects. This will be discussed further in the data and methodology sections. 

My research contributes to this large body of literature by using a rich, 

current dataset to explore the effect of school and teacher characteristics in 

the UK alongside a vast array of other factors including family income, 

neighbourhood characteristics, parental education, labour force 

engagement and behaviours, family structure, the child’s own 

characteristics and birth-related factors.  

4.2.3 Papers Measuring the Impact of Specific Child, Family and 

Neighbourhood Related Factors 

Although many papers have shown family socio-economic status to 

have a large effect on children’s early years cognitive outcomes, SES in 

total is still limited in explanatory power. Melhuish (2008) quotes a meta-

analysis of studies by White (1982) which estimated that SES can explain 

about 5% of the difference in academic achievement, and explains that the 

limited explanatory power of family income provides their motivation for 

looking further abroad for other important factors. Their paper focuses on 

parenting behaviours and the home environment, as well as pre-school, as 

factors which may be able to help explain the achievement gap. I now 

proceed to introduce a range of papers which have looked specifically at 

the possible contributing factors to the gap in children’s early years test 

scores. Due to the vast literature on children’s development, this section 

necessarily discusses various papers more or less briefly, and is unable to 

provide a comprehensive compilation. My aim is to provide an indication of 
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the findings in the current literature as to the impact of each factor on 

children’s cognitive development. This not only helps identify relevant 

variables but also shapes a priori expectations as to their signs and 

significance levels.  

Looking firstly at the effects of maternal labour force engagement, 

the results in the literature are very mixed, as some papers show negative 

effects, some show insignificant effects, and some show positive effects. 

For example, Baum (2003) finds negative effects of maternal employment, 

especially early maternal employment i.e. in the first year of the child’s life. 

However, he also finds that the negative effect is offset to some extent by 

the increase in family income. James-Burdumy (2005) uses blended 

child/family fixed effects and instrumental variable fixed effects methods 

and finds that there is some evidence of a negative effect of the mother 

working in the child’s first year of life, no effect in the second year, and a 

positive effect in the third year. Ruhm (2008) looks at how the effect of 

mother’s employment affects outcomes at ages 10 and 11 for different 

subgroups of the population, and finds substantial negative effects for 

youths from advantaged households compared to neutral or positive effects 

for disadvantaged youths. Furthermore, Waldfodel et al (2002), using data 

from the National Longitudinal Survey of Youth, finds some persistent 

adverse effects (lasting to age 8) of maternal employment in the first year of 

the child’s life and some positive effects of second- and third-year maternal 

employment on cognitive outcomes for non-Hispanic white children, but not 

for African American or Hispanic children. In summary, it appears there 

could be a negative effect early on which is less notable in the later years 

as the child grows up, and furthermore that children from well-off families 

where the mother possibly has high ability and more social capital suffer 

more from her absence, whereas children from less well-off families 

actually benefit more from the extra income her employment brings in. 

While most studies focus on maternal labour market engagement, some 

also consider the role of the father, e.g. Brown et al (2007) who find the 

father working long hours has a negative impact on the child’s time spent in 

language learning activities, especially in poor families. Gregg and 

Washbrook (2003) find that fathers are more involved in childrearing in 
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households where mothers return to work early and that this involvement of 

the father has a positive impact on the child’s later outcomes.  

Turning to family structure, it is clear that in the US, the UK and other 

developed countries, ever fewer children are growing up in households with 

two married, biological parents. The effects of changing family structure 

have been documented in various papers, for example, Gennetian (2005) 

uses US data and methodology that allows her to control for individual 

specific unobserved heterogeneity and finds that the role of family structure 

is modest compared to the well-documented influence of family income. In 

general, there is a strong relationship between family income and family 

structure and this affects the estimates of the impact of family structure 

related variables on child’s outcomes. Aughinbaugh et al (2005) for 

example, found that children from families with both biological parents 

scored significantly better on the BPI and the PIAT-math and PIAT-reading 

assessments than did children from non-intact families but that much of the 

difference disappeared when they controlled for background variables. In 

the same vein, Joshi et al (1999) found income to be among the factors 

which reduced the size and significance of family structure as a predictor of 

behavioural and cognitive outcomes. 

  One aspect of family structure that does appear to have a clear 

impact is the number of siblings. Hanushek (1992) examines the trade-off 

between child quantity and child quality, where child quality is defined in 

regards to cognitive achievement. Families are seen as making fertility 

related decisions to maximise their utility subject to the production function 

for child quality, a budget constraint and a time constraint. The empirical 

results show a systematic negative effect on achievement of increasing 

family size. This is due to the fact that the parents’ finite time allocation 

must be spread more thinly where there is a greater number of children. 

More recent studies of factors effecting children’s cognitive development 

also frequently show a negative impact of increased family size.  

In terms of the characteristics of the child themselves, studies on 

gender are more profuse in relation to later achievement, at secondary 

school and following. The child’s month of birth does appear to have a 

significant impact, as for example in Melhuish et al (2008) who found that 
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‘summer born’ tended to perform more poorly on National assessments at 

age 11, when compared to older, autumn born, children and were more 

likely to be identified as having a special educational need (SEN).  This 

phenomenon is also known as the “August birth penalty” (Crawford et al, 

2007) and occurs because the September cut-off for starting school in a 

given year makes August born children the youngest in their cohort. 

September born children must wait an extra year before they start and will 

be the oldest in their year.  

Ethnicity is a strong predictor of children’s outcomes.  There is an 

extensive literature on the black-white test score gap, especially from the 

US, for example, Fryer and Levitt (2005) uses a recent US longitudinal 

database, the Early Childhood Longitudinal Study, and reconfirms previous 

findings about the growth of the test score gap during the school years. 

They explore several hypotheses as to the cause of the gap but find that 

none are supported by the empirical evidence. Hanushek and Rivkin (2005) 

however, demonstrate some strong links to school quality. The different 

ethnic mix in the US and the UK makes comparison of the performance of 

other ethnic groups more difficult, for example, “Asian” in the US generally 

means Chinese, who tend to outperform Whites in educational attainment, 

whereas in the UK, “Asian” refers more often to people of Bangladeshi, 

Indian and Pakistani origin.  

Another important group of factors relate to the parents investment in 

physical goods or particular activities which are beneficial for their child’s 

development. This could include books and toys in the home, and better 

quality pre-school or tutoring. It is also related to what parents are able to 

buy more generally, for example, if the family owns a car or a home 

computer, since this can also impact on the child’s development. A possible 

theoretical framework for parents investing in their child is based on the 

Becker-Tomes model where parents invest in their children’s education 

because they care about their children’s future well-being, investing up until 

the point that marginal benefit equals marginal cost (Becker and Tomes, 

1986). If there were no credit constraints, parental income should not 

influence child outcomes, however, as this seems unlikely, (since not all 

families will be able to self-finance the investment or borrow against future 
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earnings), poorer families may well not be able to invest optimal amounts. 

Datcher-Loury (1989) included measures of the child’s ownership of books 

and toys and also considered paints, records, musical instruments, a 

children's dictionary or encyclopaedia, and puzzles and found some 

evidence of a positive impact (although parental behaviours appear to be 

more important).  

Several factors surrounding the birth of the child have been found to 

have a persistent impact, which is precisely measurable several years later. 

Breastfeeding, for example, is a current topic and several papers have even 

employed an instrumental variables technique to try to identify the causal 

impact of this factor. These include Doyle and Denny (2010) who use 

emergency caesarean section as their instrument and test the impact of 

breastfeeding on cognitive skills at young ages; and Fitzsimons and Vera-

Hernández (2012) who use being born on the weekend as their instrument 

(arguing that hospitals cut-down on non-essential services such as 

breastfeeding support on weekends and this significantly reduces the 

likelihood that a mother will start to breastfeed), and find that breastfeeding 

has large positive effects on cognitive development, especially for children 

of less educated mothers. There is also a growing literature on the long run 

impacts of higher birthweight, for example, Behrman and Rosenzweig 

(2004) use data on monozygotic twins to demonstrate the impact on 

schooling level (and adult height). 

Another important area of research is the effect of parenting 

behaviours. Melhuish et al (2008) explores this in some detail. Their 

decision to focus on parenting practices (as well as the influence of pre-

school) is based on research that shows that parenting practices such as 

reading to children, using complex language, responsiveness, and warmth 

in interactions are all associated with better developmental outcomes 

(Bradley, 2002), are more frequently practiced by higher SES parents 

(Hess et al, 1982), and that between 20–50% of the variance in child 

outcomes can be accounted for by differences in parenting (Conger et al, 

1992). In their own work, they use parents’ responses on the survey 

questions relating to the frequency of performing certain activities with the 

child to construct a Home Learning Environment (HLE) index. They find that 
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the HLE coefficient is statistically significant for both numeracy and literacy 

achievement at age 5 and there is some evidence of the effects persisting 

until age 7. The results clearly support the importance of the HLE, as the 

influence of the HLE was over and above that of standard proxy measures 

of parental education and SES. Sylva et al (2008) also find a positive effect 

of the home learning environment and write “what is surprising is the 

continuing strong influence of the early years HLE” and “What parents do is 

therefore vitally important and can counteract other disadvantaging 

influences”. Several studies have found that differences in the home 

environment, as measured by the HOME scale (which includes items on 

household resources, such as reading materials and toys, and 4 parental 

practices, such as discipline methods), account for a substantial portion of 

the effect of income on the cognitive development of preschool children and 

on the achievement scores of elementary school children (e.g. Duncan, et 

al, 1994).  

The influences on a child’s development can be seen as starting with 

the child’s own characteristics, their family and home environment, as well 

as influences from a broader sphere such as their neighbourhood and the 

society as a whole. Studies which have examined the influence of the 

neighbourhood include Sonbonmatsu et al (2006), on the effects of the US 

“moving to opportunity” lottery, who found the change of neighbourhood did 

not produce any significant effects on the reading or maths test scores of 

the children of families assigned housing vouchers by the lottery; Ginther et 

al (2000), who find that the effects of neighbourhood on children’s cognitive 

test scores are heavily dependent  on how well unobservables are 

controlled for; Gagne and Ferrer (2006), using data for Canada, who find 

that poor neighbourhood quality has negative effects especially for girls 

(and that home ownership has a positive effect); and Mohanty and Raut 

(2009), using the PSID Child Development Supplement and the 

corresponding PSID main data sets, who find positive significant effects of 

home environment, neighbourhood quality, and residential stability on the 

reading and math performance of children between the ages of three and 

twelve (but no significant effect of home ownership). 
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These are just a few of the many papers that have been written on 

each of these topics, and there are also many other possible influences to 

be explored. The aim here has been to give an indication of the key factors 

identified in the literature and if current work on these tends to show a 

consensus on whether there is a positive effect, a negative effect, or no 

effect. Some papers on the same issues differ in their findings, this could be 

due to the fact that they explore data from a different context, use different 

methodology and control for a different array of covariates. Nonetheless, 

there is a relatively clear consensus on many of the factors discussed 

above. My own results in the results section will be discussed in the light of 

these findings and build on them further to contribute the understanding of 

the factors that have an important influence on children’s early years 

cognitive development. The next section describes the data set used to 

explore the effects of these various factors.  

4.3 Data 

4.3.1 The Millennium Cohort Study (MCS) 

This chapter uses the first four waves of the Millennium Cohort Study, 

a recent large-scale longitudinal dataset. The first wave was run between 

June 2001 and September 2002 in England and Wales and between 

September 2001 and January 2003 in Scotland and Northern Ireland, 

interviewing families of nearly 19,000 children aged around 9 months. 

Fieldwork for the fourth wave of the study was concluded in December 

2008, with over 13,800 families with over 14,000 cohort children taking part. 

Children were selected using Child Benefit records and were born in all 

months of the year and across the UK. The sample was designed to reflect 

the total population, although certain sub-samples, such as children from 

disadvantaged backgrounds or ethnic minorities, were intentionally over-

sampled. Weights are included for each wave and country to align the 

sample with the overall population and to deal with attrition. I make use of 

these weights wherever possible, namely for the OLS regressions and in all 

descriptive statistics in this chapter. The sampling method and other 

aspects of this data set are described in more detail in chapter 5.  
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The survey covers a huge range of factors, having been designed 

through consultation with specialists from a large number of fields, including 

psychology, sociology, economics, and epidemiology. Data on the 

children’s siblings and parents is also collected, and the survey covers such 

wide ranging topics as parents’ employment and education; income and 

poverty; parenting; child behaviour and cognitive development; child and 

parental health; childcare; schooling; housing, residential mobility and 

neighbourhood; and ethnicity. The inclusion of cognitive ability tests in the 

most recent three waves makes it possible to study children’s cognitive 

development and the various factors which influence this.  

Although the dataset contains multiple tests of cognitive ability, I 

focus on the children’s pattern construction test scores, as this test was 

carried out at ages 5 and 7 and thus provides an opportunity to examine the 

influence of early schooling on cognitive development. The pattern 

construction assessment is taken from the British Ability Scales and 

assesses children’s non-verbal reasoning and spatial visualisation (Chaplin 

Gray et al, 2010). It is designed to be used with children from age 3 years 

until 17 years 11 months with the number of items administered varying 

depending on the age of the child and their performance during the 

assessment. Importantly, the pattern construction test provides the 

opportunity to examine the children’s development in a consistent manner 

as the same skill was tested at each age. Other papers (e.g. Feinstein, 

2003, Sullivan et al, 2013) have used an ability index created using 

principle component analysis to combine the results of a wider range of 

assessments, however, I have chosen rather to take advantage of the 

opportunity to focus on the outcome of a single test, as this removes a 

possible source of bias which can arise when the results measure 

children’s ability in different skills over time.  

Furthermore, some papers make use of the vocabulary-related tests 

that are available at waves two, three and four, namely naming vocabulary 

at waves two and three and word reading at wave 4 (see Jerrim and 

Vignoles, 2011). Although I initially viewed this as a chance to estimate 

panel data models more robustly using three waves of data on a similar 

skill, my final analysis does not include these results as the word reading 
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scores in fact follow quite a different distribution. For example, the raw 

scores fall between 55 and 145 compared to the range of 20 to 80 on the 

naming vocabulary scores, and the variance is also larger. 

A further question is whether to use the raw scores or a standardised 

version of these. Magunsin et al (2012) discuss the limitations of either 

approach, describing how on the one hand, using standardised scores can 

remove the variation we are interested in explaining, since absolute 

differences tend to increase over time but standardisation removes this by 

equating standard deviations across time points, whilst raw scores are 

determined by the specificity of test construction and can thus be difficult to 

interpret. The raw pattern construction scores are scaled between 20 and 

80 and show an increasing mean and variance between the two waves, 

thus the issues they discuss are relevant for the data used in this research 

as well. I therefore take the same approach they do and report results for 

both measures.  

 Family income is based on OECD equivalised income, which means 

that the family size is taken into account. I use the logarithm of this figure. A 

large majority of families in the lowest income quartile consist of single-

mother households where the mother is not working. This has some 

relevance for the interpretation of the income variable as a measure of 

family background. On the one hand, the practical difficulties involved in 

bringing in an income alone with a small child are no doubt a large part of 

the explanation for the income levels of these families. On the other hand, 

the fact that the mother is a lone-mother and has not self-selected into the 

labour market may reflect her own personal characteristics. The 

demographics of this sub-sample are especially relevant for the variables 

on the behaviours of the father (or mother’s partner). The absence of the 

father plays a large role in terms of them not spending time with the child, 

not reading to them and so forth, as well as automatically implying the 

absence of one income stream. Thus whilst family income is a reflection of 

the material resources available to the family, on the one hand, it is also an 

indication of a far broader set of family characteristics.  
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4.3.2 Descriptive Statistics  

Table 4.1 shows descriptive statistics for the variables included in 

this analysis. The mean and standard deviation are shown for the whole 

sample and for the lowest and highest income quartiles. The income groups 

are based on the family income when the child is aged 5 and test scores 

are reported at ages 5 and 7. The other covariates are drawn from the first 

survey (when the child is aged 9 months) for the birth related factors and 

from the third survey (when the child is aged 5) for all other variables18. 

While this table provides a summary of the key data, it also shows that 

children from high income families have higher means for every variable 

that represents a positive influence. These children have better educated 

parents who are more likely to be married and in employment; the natural 

father is much more likely to be present in the household; they are less 

likely to move home and almost certainly live in a home that is owned or 

mortgaged; they watch less TV, have more regular bedtimes, are read to 

and taken to the library more frequently; they are heavier when they are 

born, have longer gestation periods and are less likely to have a health 

condition at age 5; their mother is much more likely to breastfeed and to 

attend antenatal classes; and their family is much more likely to own a car, 

take holidays abroad and live in a good neighbourhood. The analysis in the 

subsequent section will seek to ascertain which of these positive influences 

are most important for the children’s cognitive development, and if there are 

negative influences on the children who perform more poorly which could 

potentially by addressed by government policy.  

Whilst most of the data was gathered through interviews with the cohort 

family, there were also teacher questionnaires which were carried out at 

waves 3 and 4. At wave three, the teacher survey was administered in 

Northern Ireland, Scotland and Wales while in England data on children’s 

foundation Stage Profiles was used instead. There are no questions about 

the teacher (e.g. their experience or qualifications) and no teacher identifier. 

This precludes the use of teacher fixed effects as the teacher identifier is  

                                                           
18

 Except car ownership which is not available in the age 5 survey and is reported for when the 
child is aged 7.  
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Table 4-1: Descriptive Statistics by Family Income Group

Mean SD Mean SD Mean SD

COGNITIVE ABILITY TESTS

pattern construction age 5 50.81 0.17 48.02 0.25 52.95 0.25

pattern construction age 7 53.81 0.18 50.12 0.28 56.48 0.24

standardised pattern construction age 5 0.03 0.02 -0.25 0.03 0.24 0.03

standardised pattern construction age 7 0.05 0.02 -0.29 0.03 0.29 0.02

FAMILY INCOME

Log (family income) age 5 5.70 0.01 4.79 0.01 6.45 0.01

SCHOOL RELATED FACTORS

Months of school 31.23 0.03 31.43 0.06 31.07 0.06

School fees 0.03 0.00 0.01 0.00 0.09 0.01

Coeducational school 0.97 0.00 0.98 0.00 0.97 0.00

Teacher tenure 14.18 0.06 14.07 0.09 14.31 0.11

Class size 24.94 0.04 24.95 0.06 24.87 0.09

CHILD CHARACTERISTICS

Male 0.51 0.00 0.50 0.01 0.51 0.01

White 0.90 0.01 0.82 0.02 0.94 0.01

Black 0.02 0.00 0.04 0.01 0.01 0.00

Asian 0.05 0.01 0.09 0.02 0.02 0.00

Other Ethnicity 0.03 0.00 0.05 0.01 0.03 0.00

HEALTH

Child has a longstanding illness 0.20 0.00 0.22 0.01 0.17 0.01

Mother's gnereal health

Excellent 0.21 0.00 0.14 0.01 0.30 0.01

Good / very good   0.65 0.00 0.62 0.01 0.64 0.01

Poor 0.13 0.00 0.24 0.01 0.07 0.00

Mother has a longstanding illness 0.24 0.00 0.28 0.01 0.20 0.01

Mother has depression 0.32 0.01 0.41 0.01 0.22 0.01

Partner's gnereal health

Excellent 0.17 0.00 0.06 0.00 0.26 0.01

Good / very good   0.46 0.01 0.23 0.01 0.58 0.01

Poor 0.07 0.09 0.09 0.01 0.05 0.00

Missing 0.30 0.01 0.63 0.01 0.11 0.01

Partner has a longstanding illness 0.16 0.00 0.13 0.01 0.18 0.01

Partner longstanding illness missing 0.30 0.01 0.63 0.01 0.11 0.01

FAMILY STRUCTURE

Mother's age at birth of child 28.63 0.11 25.60 0.13 31.55 0.12

Mother is Married 0.61 0.01 0.27 0.01 0.85 0.01

Mother has a resident partner 0.19 0.00 0.20 0.01 0.13 0.01

Mother is a Lone Parent 0.20 0.01 0.53 0.01 0.03 0.01

Number of siblings 1.37 0.01 1.66 0.03 1.12 0.02

Partner is child's natural father 0.76 0.01 0.41 0.01 0.95 0.00

MATERNAL EMPLOYMENT

Working full time 0.20 0.00 0.04 0.00 0.33 0.01

Working part-time 0.39 0.01 0.17 0.01 0.47 0.01

Not working 0.41 0.00 0.79 0.01 0.21 0.01

HOME ATMOSPHERE

0 - 12 Scale; 12 = calm and organised 7.67 0.03 7.08 0.05 8.32 0.04

Whole Sample Low Income Families
High Income 

Families
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Mean SD Mean SD Mean SD

PARENTS EDUCATION

Mothers Education

No qualifications 0.11 0.00 0.27 0.01 0.01 0.00

NVQ level 1 0.07 0.00 0.13 0.01 0.02 0.00

NVQ level 2 0.28 0.01 0.32 0.01 0.16 0.01

NVQ level 3    0.15 0.00 0.12 0.01 0.12 0.01

NVQ level 4 0.28 0.01 0.09 0.01 0.51 0.01

NVQ level 5 0.07 0.00 0.02 0.00 0.16 0.01

Overseas Qualifications 0.02 0.00 0.05 0.00 0.01 0.00

Partner's education

No qualifications 0.08 0.00 0.13 0.01 0.02 0.02

NVQ level 1 0.04 0.00 0.04 0.04 0.02 0.00

NVQ level 2 0.20 0.00 0.11 0.01 0.15 0.01

NVQ level 3    0.11 0.00 0.05 0.00 0.12 0.01

NVQ level 4 0.21 0.01 0.04 0.00 0.41 0.01

NVQ level 5 0.08 0.00 0.02 0.00 0.20 0.01

Overseas Qualifications 0.03 0.00 0.03 0.03 0.01 0.00

Missing 0.25 0.01 0.59 0.01 0.06 0.00

PARENTAL BEHAVIOURS

Hours of TV child watches per day, age 5

No TV 0.02 0.00 0.02 0.00 0.03 0.00

Less than 1 hour of TV per day  0.19 0.01 0.15 0.01 0.26 0.01

1 to 3hrs of TV per day 0.64 0.01 0.61 0.01 0.62 0.01

More than 3 hrs of TV per day 0.14 0.00 0.22 0.01 0.09 0.01

Child has Regular Bedtimes

Never   0.05 0.00 0.08 0.01 0.02 0.00

Sometimes 0.05 0.00 0.09 0.01 0.03 0.00

Usually 0.27 0.01 0.24 0.01 0.30 0.01

Always 0.62 0.01 0.59 0.01 0.65 0.01

Mother reads to child

Never   0.01 0.00 0.03 0.00 0.00 0.00

Occasionally 0.19 0.00 0.24 0.01 0.12 0.01

Weekly  0.28 0.00 0.27 0.01 0.28 0.01

Daily 0.52 0.01 0.46 0.01 0.60 0.01

Partner reads to child

Never   0.03 0.00 0.04 0.00 0.01 0.00

Occasionally 0.33 0.01 0.20 0.01 0.35 0.01

Weekly 0.23 0.01 0.09 0.01 0.36 0.01

Daily 0.11 0.00 0.05 0.00 0.17 0.01

Missing 0.30 0.01 0.63 0.01 0.11 0.01

Frequency of library visits

Never   0.37 0.01 0.48 0.01 0.27 0.01

Once a month to once a year 0.54 0.01 0.42 0.01 0.65 0.01

Daily to at least once a week 0.09 0.00 0.10 0.01 0.09 0.01

Partner's time spent with child

Not enough 0.63 0.01 0.29 0.01 0.84 0.01

Just enough 0.06 0.00 0.08 0.00 0.05 0.00

Plenty 0.00 0.00 0.01 0.00 0.00 0.00

Missing 0.30 0.01 0.63 0.01 0.11 0.01

High Income 

Families
Whole Sample Low Income Families
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Mean SD Mean SD Mean SD

Partner plays with child

Less than several times a week 0.35 0.01 0.20 0.01 0.44 0.01

Several times a week 0.23 0.00 0.11 0.01 0.32 0.01

Daily 0.12 0.00 0.07 0.00 0.13 0.01

Missing 0.30 0.01 0.63 0.01 0.11 0.01

How parent disciplines when naughty

Smack 0.54 0.01 0.51 0.01 0.51 0.01

Tell off 0.11 0.00 0.15 0.01 0.07 0.00

MONEY RELATED FACTORS

Car ownership (age 7) 0.88 0.00 0.62 0.01 0.99 0.00

Holidays Abroad 0.65 0.01 0.32 0.01 0.90 0.01

Type of housing tenure

Own / mortage 0.66 0.01 0.21 0.01 0.95 0.00

Council rented 0.14 0.01 0.37 0.01 0.01 0.00

Rent / other 0.19 0.01 0.42 0.01 0.04 0.00

NEIGHBOURHOOD FACTORS

Urban 0.58 0.02 0.64 0.02 0.54 0.03

IMD Score Groups

Low 0.18 0.01 0.35 0.02 0.06 0.01

Middle 0.22 0.01 0.17 0.01 0.22 0.01

High 0.18 0.01 0.05 0.01 0.34 0.02

Missing 0.42 0.01 0.43 0.02 0.38 0.02

EARLY FACTORS

Child's Birthweight (kgs) 3.39 0.01 3.29 0.01 3.45 0.01

Days of gestation 277.45 0.13 276.84 0.28 277.82 0.26

Mother breastfed 0.67 0.01 0.51 0.01 0.84 0.01

Child was in a special care unit 0.09 0.00 0.08 0.01 0.09 0.01

Parents took antenatal classes 0.36 0.01 0.21 0.01 0.49 0.01

SHOCKS

Family moved home 0.16 0.00 0.20 0.01 0.13 0.01

Whole Sample Low Income Families
High Income 

Families

 only observed at wave 4. At wave four a teacher survey was administered 

in all four countries of the UK and had an overall response rate of 70% 

compared to 82% for the family surveys. This survey included questions on 

teacher tenure and class size, which I include in the regressions. Although 

school ID is included at both wave 3 and wave 4, it was only available for 

2,035 pupils and was only the same in both waves for 1,699 pupils, 

compared to around 12,000 observations on the pattern construction test 

scores. This amount of missing data means it is not possible to test the 

significance of overall school effects in a robust way. This is unfortunate, 

given the issues raised in the literature review regarding the limited 

explanatory power of school quality proxies such as teacher tenure and 

class size. It can only be hoped that future longitudinal surveys will continue 
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to integrate data from teacher surveys and will be able to generate a higher 

response rate. Another approach would be to use administrative data, such 

as the National Pupil Database in England which contains pupil level data 

on test scores and some personal characteristics such as free school meal 

status, as well as school identifiers. Holmlund et al (2010) use this data to 

test the effect of school-level expenditure. They include school-level fixed 

effects in their preferred specification but do not report on these at all, 

focusing on the positive effect of expenditure on student outcomes. 

Table 4.2 gives a summary of the cognitive outcome measures and 

family income as regards the variability of these factors over the different 

surveys. Since the methodology to be used here involves panel data, it 

important to know how these variables vary within individuals and across 

the different cohort members in the sample. For all of these measures, it 

can be seen from the table that the variation between cohort members is 

much greater than the variation over time for any individual. I will return to 

this point later in regards to the choice between fixed effects and random 

effects models.  

Table 4-2: Family Income and Test Scores, Descriptive Statistics 

Mean Min Max
Sample 

Size

Observations 

per Child

Overall Between Within

Log  of Equivalised Family 

Income (Ages 5 and 7)
5.71 2.46 7.16 0.65 0.62 0.24 14,985   1.82

Pattern Construction Scores 

(Ages 5 and 7)
51.83 20 80 10.59 9.62 4.88 13,362   1.84

Standardised Pattern 

Construction (Ages 5 and 7)
0.00 -3.04 2.94 1.00 0.92 0.45 13,362   1.84

Standard Deviation

  

In summary, the MCS provides an excellent opportunity to explore the 

effects of family income, schooling and a broad range of other factors on 

children’s cognitive development between ages 5 and 7. I focus on the 

children’s pattern construction scores between these two ages as this gives 

a good indication of their development over the first few years of school. A 

broad range of explanatory variables is considered. The data is very 
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current, with the field work for the fourth wave being carried out in 2008. As 

far as I am aware, this is the first study to provide estimates of the effects of 

schooling variables on cognitive development using such current UK data. 

The sample size is also very good, with over 13,000 observations at wave 

four. Furthermore, this study can provide insight into the UK population as a 

whole, thanks to sophisticated sampling techniques and the provision of 

weights which align the sample to the population as a whole. 

4.4 Methodology 

The approach I take in this chapter involves the estimation of three 

types of models. In each of these, I focus on the results concerning family 

income, schooling and other factors. I firstly estimate simple OLS models 

with various combinations of these factors. I then use the longitudinal 

structure of the data to estimate fixed-effects models. This focuses on 

individual rather than school fixed effects due to the vast amounts of 

missing data on school and teacher identifiers. Finally, given the issues that 

arise with the fixed effects models, for example a lack of within variation in 

some key variables, I explore an augmented random effects framework and 

test the validity of this using the Hausman test. The next three sections will 

discuss each of these three steps in turn.  

4.4.1 Single-period models 

I firstly estimate OLS models using a broad array of covariates to 

explore the importance of family income, schooling and other factors for 

children’s development. OLS is the most common form of regression 

analysis and is widely used, partly because it requires very few 

assumptions to be derived. The assumptions underlying the efficient and 

unbiased estimation using OLS are as follows: the equation to be estimated 

is linear in parameters, estimation is based on a random sample on n 

observations (where the number of observations is greater than the number 

of parameters to be estimated, n>k), there is no reverse causality from the 

dependent variable to the independent variables, the error term has a mean 

of zero conditional on the independent variables, there is no perfect 
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collinearity, and error terms are iid (homoscedasticity). These assumptions 

are relatively unrestrictive and intuitive.  

I start with parsimonious specifications including only a baseline 

score and the variables of interest, i.e. family income or the schooling 

variables, in turn. I then estimate fuller models including both of these sets 

of variables and finally a model where all the other factors are added. 

These function as control variables on the one hand, but are also of interest 

in their own right. Whilst the focus is on family income and school related 

factors, other variables considered include variables that are related to child 

characteristics (such as ethnicity), early factors (such as birth-weight and if 

the parents attended antenatal classes), health (e.g. the child themselves 

or either parent having a long term health condition), parental 

characteristics (such as labour force engagement, education, age and 

marital status), parental behaviours (such as frequency of reading to the 

children and taking them to the library), neighbourhood factors (i.e. urban / 

rural location and Indices of Multiple Deprivation (IMD) scores), money per 

se (such as car use and type of housing tenure) and shocks (such as 

moving home). Each variable can be seen as representing an imperfect 

measure of some underlying characteristic. While some factors are more 

concrete (e.g. birthweight), others are less tangible. For example, the 

frequency of the parents’ reading to the child is a direct measure of a 

specific activity that may be beneficial for children’s cognition, on the one 

hand, and also an indicator of a much broader set of factors relating to the 

parent’s characteristics, behaviours and attitudes, on the other hand. Even 

birthweight, although it is more easily quantified, is still open to various 

hypotheses as to the reason why it may have a sustained influence on 

children’s development and the other factors it may be proxying. It is 

therefore important to interpret the effects of these factors carefully.  

One potential issue with these results is the bias caused by omitted 

variables. Although the MCS contains information on a great variety of 

factors that are thought to effect children’s cognitive development, it is 

nonetheless unavoidable that certain factors and influences are not 

accounted for. One function of the baseline ability score is to act as a proxy 

for individual heterogeneity that cannot be measured by the factors covered 
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in the survey. The availability of comparable test scores over two periods is 

an important reason to use this data as it facilitates a “value-added” 

approach where the covariates explain the change over two periods.  

Another approach to dealing with endogeneity and unobserved 

individual heterogeneity is to use instrumental variables to isolate a causal 

effect of the factors of interest. Although there are papers which use 

instrumental variables to try to uncover the causal effect of the factors 

considered here, I do not take this approach in this paper, as I do not 

consider that the MCS contains a suitable and convincing instrument for the 

variables of interest here. In terms of income, for example, I am not aware 

of exogenous, policy related changes in income which may have affected 

some families in the sample and not others over this period. Instruments 

used in the United States, such as differing benefit policies between states 

(Dahl and Lochner, 2012), are not relevant in this context. In regards to 

schooling, the institutional context (as per Park et al, 2013) and the 

environmental context (as per Marcotte, 2007) do not seem to provide 

suitable instruments in the UK, therefore precluding this approach. Although 

the work that has been done on breastfeeding using the MCS with 

caesarean sections and weekend-births as instruments (Doyle and Denny, 

2010, and Fitzsimons and Vera-Hernández, 2012) is interesting, that is not 

the focus of this study. I therefore concentrate on a third possible approach 

to dealing with unobserved individual heterogeneity, namely the use of 

panel data models, where the children act as their own control. This 

approach is described in the following section.  

4.4.2 Panel Data Methods 

The next stage of this analysis is to exploit the panel nature of the 

data in order to address the issue of unobserved individual heterogeneity. 

In this section, I will describe the models used, namely fixed and random 

effects models, together with relevant specification tests, and also introduce 

a variant of the random effects model.  

The basic unobserved effects model can be written as  

��� = �� + ����� + �� + ���       (4.1) 
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where the � variables can vary over both individual and occasion, individual 

only or occasion only and where �� is an unobserved, time constant effect, 

also known as an individual effect or individual heterogeneity, which only 

varies across individual, but not across occasion, and ��� are the 

idiosyncratic errors which change across individuals and observations. The 

error terms are split into two parts because it is expected that individuals 

will be more similar to themselves over time than to other individuals in the 

sample. Separating out �� (the individual effect) from ��� (the residual 

disturbance) allows us to make more efficient use of our knowledge of the 

structure of the data than if all unobservables were included together in a 

single error term (Cameron and Trivedi, 2009).  

The two major models used in linear panel data analysis are fixed 

effects and random effects models. The key distinction relates to the 

correlation of the individual effect to the covariates included in the model. In 

random effects models, the individual effect is assumed to be uncorrelated 

with the explanatory variables, such that  

Cov(���,��)= 0,							� = 1,2….�      (4.2) 

If this assumption is violated, the estimated parameters will be biased by 

the omitted unobserved individual heterogeneity, just as in cross-section 

models.  

However, in a fixed effects framework, the individual effects are 

allowed to be correlated with the explanatory variables, i.e.  

Cov(���,��)	≠ 0,							� = 1,2….�     (4.3) 

However, both of these models still require that the random 

disturbance term  ��� is uncorrelated with the covariates from any period, 

i.e. ���. Fixed effects models only deal with the time constant individual 

heterogeneity19.  

                                                           
19 It has been suggested for this reason that they may be less appropriate for data on 

children (Violato et al, 2011). Given the prevalence of the issues relating to endogeneity in studies on 

the effect of family income, I consider it is worthwhile to employ fixed effects models despite this 

difficulty. Although there may be concerns about the ability of such models to fully overcome these 

issues, this should be seen as a qualification on the results, rather than a reason for avoiding the use 



159 
 

We will now discuss each of these models in more detail.  

4.4.2.1 Fixed effects 

In (4.1) above, the error term is split into an idiosyncratic disturbance 

term and an individual effect which is constant over time. These individual 

effects (the ��) can be estimated, for example in a least squares dummy 

variable model (LSDV). In this case, a dummy variable is created for each 

individual in the sample and the coefficient on this dummy provides the 

estimated individual effect, also known as the fixed effect. However, if there 

are many individuals, the loss of degrees of freedom associated with this 

procedure is large, and the estimated individual effects will become 

inconsistent as the sample size grows (although they will still be unbiased). 

Furthermore, capturing these effects explicitly may not even be of interest. 

A more efficient approach is to use a within transformation to estimate the 

fixed effects model. This provides a way of removing the individual effects. 

When there are only two time periods, time differencing is equivalent to the 

within transformation. The within transformation works as follows:  

First, equation (4.1) should be averaged over j = 1, 2, …. J to get the 

cross section equation 

��� = ���� + 	�� + ��̅          (4.4) 

where  ��� = ��� ∑ ���
�
���  ,    ��� = ��� ∑ ���

�
��� ,      ��̅ = ��� ∑ ���

�
��� .  

If this is subtracted from (1) for each j, we obtain the fixed effects 

transformed equation which equals 

��� − ��� = (� − ���)� + 	��� + ��̅      (4.5) 

The most important thing to note here is that the time constant 

individual effect  ��  has been eliminated as it does not vary over occasions. 

                                                                                                                                                                 
of these models. Violato et al (2011) include such qualifications in the discussion of their results and 

they also apply to the analysis in this chapter. Nonetheless, as children are no doubt more similar to 

themselves (though they are still developing) than to other individuals, the framework is still useful in 

dealing with unobserved heterogeneity.   
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Any time-invariant explanatory variables will also be eliminated by this 

transformation. A key assumption for fixed-effects models is thus that 

unobserved factors which may be correlated with explanatory variables and 

the dependent variable must be time-constant. The fixed effects estimator 

is also known as the within-estimator, since it only uses variation within 

each subject, rather than across individuals. Fixed effects models are 

generally estimated using feasible generalised least squares (FGLS). Since 

fixed effects models can be used to eliminate time-constant individual 

heterogeneity, the results can be interpreted as providing a causal effect of 

the factors included. It is important to note, however, that only individual 

heterogeneity that is constant over time is eliminated using the within 

transformation.  

4.4.2.2 Random Effects 

In random effects models, the error terms �� and ��� are expressed 

as a composite error term ��� in the regression equation 

��� = �� + ����� + ���       (4.6) 

and the estimation of the model involves exploiting the serial correlation in 

the composite error term ��� = �� + ��� in an FGLS framework. Strict 

exogeneity between the explanatory variables and the composite error is 

required to ensure that the estimates are consistent. This can be expressed 

as follows:  

��������� = 	0	        (4.7) 

The error components are distributed as follows:  

�� ∽ �(0,�)   

��� ∽ �(0,�) 

where � can be interpreted as the between-subject variance and θ as the 

within-subject variance. Within variation was described above for the fixed 

effects model. Between variation can be attained by averaging the 

response and explanatory variables for each individual. It is also possible to 
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estimate a between effects regression, however, this will always be less 

efficient than a random effects model as it ignores the within variation. The 

random effects model can be expressed as a weighted average of the 

within estimator and the between estimator, as is expressed below in terms 

of a single parameter to be estimated:  

��
�� = (1 − ��)��

�� + ����
��        (4.8) 

where �� determines the weights given to the between and within variation 

respectively and is given by 

�� =
���(��

�)� �

���(��
�)� �����(��

�)��
       (4.9) 

The estimator ��
��  for the random-effects model approaches the 

within-estimator ��
��  when ��	approaches 1 (i.e. when the within standard 

error is much smaller than the between standard error), and the between 

estimator  ��
��  when ��	 approaches 0. Although  ��

�� ,  ��
��   and  ��

��   are all 

estimators of the same parameter ��, the random effects estimator ��
��  is 

more efficient (meaning it varies less in repeated samples) than the other 

estimators if the model is true because it exploits both within and between 

subject variation. Random effects is usually estimated by feasible 

generalised least squares (FGLS), but can also be estimated via maximum 

likelihood (MLE). 

4.4.2.3 The Hausman Test 

 The Hausman test can be used to compare two tests where one is 

known to be consistent and the other is known to be more efficient if it is 

true. It is very useful for testing the consistency of random effects models. 

The test works by comparing the coefficients of a fixed effects and a 

random effects model. A statistically significant difference between the 

coefficients of the two models is taken as evidence against the assumption 

that the individual effects are uncorrelated to the error terms, in which case 

the random effects model is inconsistent. Not all parameters can be 
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included in the test; in particular, time-invariant parameters and time 

dummies cannot be tested. This can be expressed as follows: 

��� = ���� + 	�� + ��� = 	��� + ���� + 	�� + ���              (4.10) 

Where �� includes the intercept and any other time-invariant variables. The 

Hausman test tests the parameters �. Since the inclusion of time-invariant 

variables in the random effects model can influence the other parameters, it 

is still important to carefully consider the controls to be included, as a 

random effects analysis with rich controls in �� can yield very different 

estimates of � than if these are not included, which may bring the model 

much closer to the fixed effects estimate. This will be important later when 

different variants of the random effects models are tested.  

The Hausman test statistic is given by:  

� = ����� − ���� �
�
[������ � − ������ �]������� − ���� �   (4.11) 

and has a �� distribution under the null hypothesis.  

For the Hausman test results to hold, the strict exogeneity 

assumption made for both the fixed effects and random effects models 

must hold, since correlation between ��� and ��� for any periods k and j will 

cause both models to be inconsistent.  A variant of the Hausman test for 

use in samples with limited within-variation has been suggested (Hahn, 

Ham and Moon, 2010), although an application of this (seemingly untested) 

methodology is beyond the scope of this investigation. I will use the 

standard Hausman test to test the consistency of the random effects 

models in these models. Rejection of the random effects model implies 

there is a problem of endogeneity. Below follows a description of various 

options that can be taken to try to deal with this problem.  

4.4.2.4 Further Extensions: Augmented Random Effects Model 

How can one proceed if the random effects models are rejected as 

inconsistent? If the Hausman test rejects the consistency of the random 

effects model, this implies there is a problem of endogeneity, i.e. that the 
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individual effects are correlated with the covariates included in the model. 

One option is simply to abide with the results of the fixed effects model. 

However, if the data covers only a few occasions and there is a lack of 

within-variation, being able to use a random effects model would help solve 

this problem and improve efficiency by making use of the between variation 

as well as the within variation. It is therefore beneficial to consider what 

options there are for improving the performance of the random effects 

estimator.  

One well-known method is to use the Hausman –Taylor estimator to 

find consistent results of the time-invariant variables. To do this, one must 

partition covariates into exogenous variables and endogenous variables. 

The exogenous time varying factors are used as instruments for the 

endogenous time invariant factors. However, for identification, the number 

of exogenous time varying factors must be greater than the number of 

endogenous time invariant factors. That means that this approach is not 

feasible in this context as I do not have a large number of exogenous time-

varying covariates. As discussed above in the context of single period 

models, I neither have any suitable external instruments; which precludes 

the use of that approach as well.  

Another approach, often referred to as the Mundlak technique (e.g. 

see Proenca et al (2012), Hanchane and Mostafa (2012); based on 

Mundlak (1978)) is to include the group means of the explanatory variables. 

In this study, for each explanatory variable, this would be the mean for each 

child, averaged over the survey waves available. This approach ensures 

consistent estimation of all within effects because the deviations from the 

cluster means are uncorrelated with the cluster means themselves, with 

any time varying covariates and with the individual effects ��. However, the 

means themselves may still be correlated with ��, producing inconsistent 

estimates of the between effects and the random intercept variance ψ  

(Cameron and Trivedi, 2009). Proenca et al (2012) writes that although this 

proposal can often be found in the literature, it has several disadvantages 

such as making the overall effect of a factor more difficult to compute and 

making the estimation numerically less stable for short panels.  
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Including the group means can also simply be away of relaxing the 

assumption that between and within effects are the same for a particular 

explanatory variable. A correlation between the explanatory variables and 

the individual effect (i.e. the problem of endogeneity) can lead to an 

‘ecological fallacy’, where between-cluster relationships (ecological 

relationships) can differ substantially from within-cluster relationships. 

Including the group means makes it possible to separate out the within 

effect from the between effect. The within effect is consistent by definition, 

while the presence of the between effect can improve the consistency of 

the whole model.  

As such, the following model can be defined:  

��� = �� + ��
������ − �̅�∙�� + ��

��̅�∙� + ⋯ + ������ + �� + ���  (4.12) 

which collapses to the original random-effects model in (4.6) if ��
� = ��

� =

	��.  

An advantage of setting the within and between effects of a covariate 

equal is that the common effect may be more precisely estimated than 

separate effects because it pools the within and between information. I will 

set the within and between effects equal where this appears to be 

appropriate but allow different within and between effects when such 

equality restrictions are inappropriate. This can be done by comparing fixed 

effects and random effects models without any group means originally, and 

introducing group means for the variables which have significantly different 

results. In terms of the functional form of the model including means, it is 

possible either to include the variables for which the mean value is included 

as they are, or as the deviation from the mean. The only difference is in the 

interpretation of the coefficients, as the within variation and the between 

variation for the latter, or as the within variation and as the difference in 

within and between variation in the former case.  

This is a useful approach as it makes it possible to employ a random 

effects model (i.e. to make use of between subject variation as well as 

within subject variation) where we can obtain either the overall effect of a 

variable or its between and within effect separately, and test it against a 
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fixed effects model to ensure consistency of the results. In this way, it is 

also possible to include time-invariant factors, since the framework of the 

random effects model makes this possible. Including a richer set of controls 

also improves the estimates of the coefficients on the other factors. It is 

important to note that using the Hausman test to test this model does not 

ensure the consistency of the coefficients on the time invariant factors or 

the group means, but only the factors which are also included in the fixed 

effects models, including the coefficients which represent a combination of 

between and within effects, and the coefficients on the deviations from the 

group means. This novel approach deals with the two major issues 

presented by the data, namely endogeneity of key variables and a lack of 

within-variation. Applying this approach generates some interesting 

findings, which are discussed below.  

4.5 Results 

4.5.1 Results from Simple Regression Models 

The results of the OLS models are reported in Table 4.3 below. 

Looking firstly at the effect of family income, it is clear that it has a positive 

and statistically significant effect in all six specifications where it is included. 

For both the raw scores and the standardised scores, the magnitude of the 

coefficient halves when the extended list of covariates is included, but it is 

still statistically significant and positive. Given that such a large range of 

other covariates was considered, including the IMD score of the 

neighbourhood and money related factors such as type of housing tenure, 

this is not a trivial finding. It confirms the finding of Gregg et al (2007) who 

found a significant direct effect of family income on children’s development 

using the ALSPAC dataset despite controlling for a large range of additional 

control variables. All the same, as mentioned above, it is important not to 

lay too much weight on the results of simple OLS models in this context due 

to the endogeneity of family income. I will therefore come back to this when 

discussing the results of the panel data models.  
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Table 4-3: The effect of family income and school-related variables on test scores at age 7, various specifications

(1) (2) (3) (4) (5) (6) (7) (8)

Pattern 

construction 

age 7

Pattern 

construction 

age 7

Pattern 

construction 

age 7

Pattern 

construction 

age 7

Std. Pattern 

construction 

age 7

Std. Pattern 

construction 

age 7

Std. Pattern 

construction 

age 7

Std. Pattern 

construction 

age 7

Baseline Test Score age 5 0.607*** 0.583*** 0.582*** 0.563***

(0.013) (0.013) (0.013) (0.013)

Standardised Baseline age 5 0.554*** 0.532*** 0.531*** 0.514***

(0.012) (0.012) (0.012) (0.012)

Log(family income) age 5 2.226*** 2.154*** 0.934*** 0.203*** 0.196*** 0.085***

(0.166) (0.168) (0.230) (0.015) (0.015) (0.021)

Months of school by age 7 -0.092** -0.078** 0.002 -0.008** -0.007** 0.000

(0.038) (0.037) (0.037) (0.003) (0.003) (0.003)

School fees age 5 2.340*** 0.889* 0.944* 0.213*** 0.081* 0.086*

(0.533) (0.536) (0.551) (0.049) (0.049) (0.050)

Coeducational school age 5 0.925 0.893 0.786 0.084 0.081 0.072

(0.771) (0.736) (0.760) (0.070) (0.067) (0.069)

Teacher tenure age 7 0.034** 0.030** 0.019 0.003** 0.003** 0.002

(0.015) (0.015) (0.015) (0.001) (0.001) (0.001)

Class size age 7 -0.019 -0.033 -0.021 -0.002 -0.003 -0.002

(0.033) (0.032) (0.032) (0.003) (0.003) (0.003)

OTHER COVARIATES YES YES

N 11,222 11,138 11,138 11,138 11,222 11,138 11,138 11,138

r2 0.302 0.316 0.318 0.346 0.302 0.316 0.318 0.346

Standard errors in parentheses

* p<0.100,  ** p<0.050,  *** p<0.010
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Table 4-4: Results of other covariates, specifications (4) and (8) of Table 5.3  

Positive Significant Negative Significant Insignificant 

Month of birth: 

September; Child 

watches at least one but 

less than three hours of 

TV per day; Birthweight; 

Mother breastfeed; 

Parents attended 

antenatal classes 

Months of birth: May, July, 

August; Ethnicity: Black, 

Asian; Mother has no 

educational qualifications; 

Father has no or low 

educational qualifications; 

Mother reads daily / never 

to the child; Mother 

smacks child when 

naughty; Child has a 

longstanding illness; 

Family moved house 

since last wave 

Child’s gender; Mothers 

age at birth of child; 

mother’s marital status; 

Number of siblings; 

Presence of the natural 

father; Mother working 

part-time or full-time; 

Regular bedtimes; Partner 

reads to the child; 

Frequency of library visits; 

Partner has plenty of time 

with the child; Frequency 

of partner playing with the 

child; Mother tells off child 

when naughty; Home 

atmosphere; Mother’s 

general health; Mother has 

a longstanding illness; 

Mother has depression; 

Partner’s general health; 

Partner has a 

longstanding illness; Car 

usage; Type of housing 

tenure; Holidays abroad; 

Family lives in an urban 

area; IMD decile of 

neighbourhood;  Length of 

gestation; Child was in a 

special care unit after birth  

 

Secondly, in regards to the schooling variables, we can see that the 

months of school variable has a significant negative effect in the more  
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parsimonious specifications, which becomes insignificant when further 

variables are included in the model. The coefficient is very small, with one 

extra month of schooling leading to a reduction of less than 0.1 test score 

points or less than 0.1% of a standard deviation. Although the coefficient is 

statistically significant, it is so small as to preclude any real interpretation. 

Furthermore, once more extensive control variables are added to the model, 

it becomes insignificant. Thus the quantity of schooling the children had 

received up to this point appears to have no real influence on their test score. 

Testing this with interactions terms with family income did not add any further 

nuance to this finding. It may be that this measure of the quantity of 

schooling is too rough (especially as it is not possible to control fully for 

school holidays and other days missed). Alternatively, since this test 

examines the children’s non-verbal reasoning and spatial visualisation, it 

may support the finding of Carlsson et al (2012) who found that days of 

schooling had no effect on fluid intelligence tests (specifically spatial and 

logic tests). 

The second schooling variable is school fees, which shows a positive 

coefficient. Less than four percent of children surveyed were at a school 

which charged fees at age 5 and over 80% of these where still at fee paying 

schools at age 7. Children at fee paying schools had a mean score over 3.5 

points higher than children at non-fee paying schools. Attendance at fee 

paying schools is strongly correlated with family income, as less than ten 

percent of the children at these schools came from the lowest family income 

quartile, while over 60% came from the highest family income quartile. By 

age 7, less than five percent of children at a fee paying school came from the 

lowest family income quartile. Furthermore, the size of the coefficient is much 

smaller in specification (3) than in (1) due to the correlation of family income 

with attendance at a fee paying school. In regards to the issue of the role of 

education in social mobility, either as a facilitator or a hindrance, this finding 

points to the perpetuation of advantage through education via access to 

better quality schooling.  

 The third coefficient is whether or not the school is coeducational, 

which in all specifications is statistically insignificant. Only a very small 

number of children (less than 3%) were at single-sex schools at age 5, with 
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slightly more children from the highest income quartile attending such 

schools. The major study in the literature to have identified a causal 

beneficial effect of single-sex schooling (Park et al, 2010, using compulsory 

random allocation to schools in Seoul, South Korea) measured the effect of 

outcome variables at the end of secondary school. It is quite likely that any 

benefits of single-sex schooling would emerge later than the ages 

considered here, when the children are still very young.  

Finally, two traditional school quality proxies are considered – namely 

teacher tenure and class size. Teacher tenure shows a positive but small 

effect and is insignificant in the full model, while class size has the expected 

negative sign but is insignificant in all specifications. There is a great deal of 

literature (e.g. see Hanushek, 1986) that argues that the insignificance of 

these types of variables does not indicate that school quality is unimportant 

in children’s development, but rather than these variables do not provide a 

good indication of true school quality. He argues that teaching ability, for 

example, is not well reflected by years of teaching experience, as some great 

teachers have relatively little experience, while others may have taught for a 

long time but may still be ineffective in assisting the progress of their 

students.  

A further point is that these two variables were only available at wave 

4, which means they are contemporaneous with the outcome measure. 

There is some danger of reverse causality in that students who have 

performed poorly in the past may be allocated to smaller classes or classes 

with more experienced teachers. In fact, the data displays no correlation 

between past performance and teacher tenure but there is some correlation 

between the age 5 pattern construction score and class size at age 7. In a 

model that contains only past performance and class size, the coefficient on 

class size is negative and statistically significant. This gives credence to the 

result as being a genuine finding and not just the product of reverse 

causality. All the same, the size of the coefficient remains extremely small. 

Unfortunately, it was not possible to explore teacher or school quality more 

broadly using teacher or fixed effects due to the fact that teachers were only 

identified in one wave and schools had a great deal of missing data such that 
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less than two thousand children could be identified as having attended the 

same school at two waves. 

 In general, none of the schooling variables demonstrate a sizable and 

significant effect except school fees. Assuming that schools which charge 

fees are of a higher quality, this shows how education can start to perpetuate 

social advantage and possibly limit social mobility even from the first few 

years of school.  

Moving on now to the other variables included in specifications (4) and 

(8), table 4.4 above shows that many of these are statistically insignificant. 

The variables that do have a positive effect include month of birth, TV and 

early factors. The month of birth variables demonstrate the well-known 

“August birth penalty” (Crawford et al, 2007), with a significant negative sign 

on the May, July and August dummies and a significant positive coefficient 

on September. The TV variables give the same result as in Violato et al 

(2011) in regards to age 3 naming vocabulary scores, namely, that a small 

amount has a positive impact. Violato et al (2011) interpret levels of daily TV 

watching as potentially reflecting either parental engagement with their 

children or alternatively a more limited physical environment or a result of 

unsafe neighbourhoods, which would restrict children’s outdoors activity. 

Following either of these interpretations, it is unclear why there would be a 

positive effect on naming vocabulary scores. The same applies to the effect 

on pattern construction at age 7. This issue requires further research. 

There is also a positive effect of birthweight, breastfeeding and 

parental attendance of antenatal classes. The positive correlation between 

both birthweight and breastfeeding and later outcomes has already been 

documented. However, it is interesting to see here that they both have a 

significant effect on outcomes as late as age 7 and in a model that controls 

for such a broad range of other factors. In terms of attendance at antenatal 

classes, Dearden et al (2006) find it is positively correlated with birthweight 

and breastfeeding and also depends heavily on ethnicity; however, this is the 

first piece of research to my knowledge which finds a significant effect on 

cognitive development as the child grows up. If there is a direct effect of 

antenatal classes so many years later, promoting the attendance of such 

classes among groups that are less likely to attend them (e.g. among blacks) 
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could be an effective and cost-efficient strategy. Unfortunately, however, this 

variable is likely to be very strongly correlated with other unobservable 

characteristics of the families who attend such classes (such as their attitude 

towards parenting more generally), which means that the positive coefficient 

may in fact reflect no more than selection into this activity.  

The ethnicity and education variables display the expected signs, with 

low or no education negative and significant for both the mother and the 

father, and black and Asian ethnicity also negative compared to the base 

category of white. There is also a negative sign on the frequency the mother 

reads to the child - somewhat counter-intuitively for both daily and monthly 

reading (with weekly as the base category), although these are both very 

small in size20. The mother smacking the child when they are naughty also 

has a negative sign, as does the child having a longstanding illness (as 

would be expected) and the family moving home since the last wave. All 

three of these variables are also correlated with family income with more 

children from the lowest family income quartile experiencing smacking, 

having long-standing illnesses and moving home more frequently.  

For the OLS results in general, although there are some interesting 

results, it cannot be argued that they represent causal effects since it is not 

possible to control fully for the unobserved individual heterogeneity. 

However, the models do control for a very extensive list of factors and this 

gives confidence in placing some weight on these findings. The results of the 

panel data models which make use of the longitudinal structure of the data to 

generate more robust estimates will now be examined.  

4.5.2 Panel Data Methods 

This section looks more closely at the various factors that are 

important for children’s cognitive development and exploit the panel data 

structure of the data to deal with the problem of endogeneity which is so 

prevalent in studies of this kind. Although the OLS models included a wide 

array of covariates, it is still possible that unobserved individual 

                                                           
20

This may simply be a consequence of the fact that more families read to their children daily at age 
5 rather than age 7, but the overall performance in the pattern construction test was higher at age 
7. 
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heterogeneity still remains in the error term. If the covariates are correlated 

with this, there is reason to be cautious about giving too much weight to 

those findings. Panel data methods make it possible to address this issue, as 

discussed more fully in the methodology section above.  

This section will proceed as follows –firstly, the results of a fixed 

effects model using two waves of raw and standardised pattern construction 

test scores (at ages 5 and 7) as the outcome measures will be considered. I 

then proceed to discuss the results of a test of the assumptions required for 

the random effects models to be consistent, the well-known Hausman test. 

The results of this test lead to the inclusion of cluster means in the random-

intercept model and I proceed to discuss the findings this gives us. This 

leads to a Hausman test which accepts the augmented model as consistent. 

Through this, it is possible to discuss a broader range of variables in a panel 

framework that is nonetheless consistent, given the necessary exogeneity 

assumptions.  

4.5.2.1 Fixed Effects Models 

Table 4.5 reports results from the fixed effects models with the raw 

scores and the standardised scores as the outcome measures in the two 

specifications. Family income is not significant. This is most likely due to the 

lack of within-subject variation in family incomes between ages 5 and 7. Of 

the school variables, none are significant except months of school in the raw 

scores. The second test has a higher mean score and since months of 

school increases by construction over time, this result is most likely an 

artefact and not a real indication of the importance of the quantity of 

schooling at these early ages. Of the other variables, most are insignificant, 

and of the variables that do show statistical significance, some are counter 

intuitive. The main problem appears to be a lack of within-variation. This is 

partly due to the fact that it is a very short panel, including only two waves of 

data, and also to the fact that there are very few continuous variables 

included – most are binary variables.  

The variety of cognitive tests available in the MCS data does appear 

to present an opportunity to run fixed effects models over three waves of 

data, especially as there are vocabulary related tests available at waves 2, 3 
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and 4. However, on closer inspection, the word reading test at wave 4 is in 

fact quite different from the naming vocabulary tests at waves 2 and 3. Apart 

 

Table 4-5 Results of Fixed Effects Models - Income and Schooling Variables 

(1) (2)

Raw PC 

Scores

Std. PC 

Scores

Logged Family Income -0.225 -0.017

(0.237) (0.022)

Months of School 0.110*** -0.001

(0.006) (0.001)

School charges fees 0.671 0.037

(1.011) (0.096)

Coeducational school -0.109 0.021

(2.295) (0.217)

Other variables YES YES

Constant 49.353*** -0.065

(3.187) (0.302)

N 21,490 21,490

r2 0.080 0.011

Standard errors in parentheses

* p<0.100,  ** p<0.050,  *** p<0.010

Fixed effects

 

from testing receptive rather than expressive vocabulary, it is also quite 

differently distributed with raw scores between 55 and 145 compared to the 

range of 20 to 80 in the naming vocabulary tests. The correlation coefficient 

between the standardised naming vocabulary scores is 0.56, while the 

correlation coefficient between the standardised naming vocabulary score at 

wave 3 and the standardised word reading score at wave 4 is just 0.35. As 

such, I decided not to run panel data models over three waves, but rather to 

focus on the pattern construction scores from waves 3 and 4 which measure 

exactly the same skill in both waves. This demonstrates the need for 

consistent measures of children’s cognitive ability longer periods over time. 

Although this is not easy to achieve because of the way children develop, it 

should nonetheless be a priority in the design of future surveys.  

 The other reason there is a lack of within-variation is that most 

variables are binary. In order to create more continuous variables I tried 

creating variables which report on the frequency with which parents 

undertake certain activities per month. For example, converting categorical 
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variables with six categories for how often the parents read to the children to 

a continuous variable on how many times per month this occurs. However, 

this requires assumptions that are not reliable given the level of detail that is 

actually available in the data and furthermore didn’t significantly alter the 

results, so I did not use these variables in the final specification. IMD decile 

could also have entered as a continuous variable except that there were a 

great deal of missing observations it would have been difficult to incorporate, 

especially given the complex survey design.   

 Since it was not possible to increase the amount of variation through 

increasing the number of waves or using more continuous variables, I 

explored possibilities of exploiting the between-subject variation in the data 

whilst maintaining the consistency of the results. Almost all variables 

displayed substantially more between-subject variation than within-subject 

variation. My approach to incorporating this is discussed in more detail in the 

methodology section with the results discussed below.   

4.5.2.2 Using the Hausman Test to Compare FE and RE Models  

As discussed in the methodology section, fixed effects models only 

use within subject variation while random effects models use a weighted 

combination of between and within-subject variation. One of the major issues 

with the results of the fixed effects models above is a lack of within-variation. 

For this reason, it would be beneficial to be able to make use of the between-

subject variation in the data by using a random effects model. However, as 

described above, the random effects framework relies on the exogeneity of 

the covariates which for this data is an assumption which is unlikely to hold. 

The Hausman test provides a good way to test the consistency of the 

random effects model. If the chi-squared value from a Hausman test 

comparing a fixed effects model to a random effects model is too high, we 

reject the consistency of the random effects model. The p-value is generally 

easier to interpret than the chi-squared statistic, with the general rule being 

that a p-value greater than 0.05 means that the model should be accepted.  

 Table 6.6 below reports the chi-squared statistics and p-values for 

three Hausman tests. Model A refers to fixed effects and random effects 

models which contain only time invariant variables. The random effects 
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model is strongly rejected as inconsistent in this case. Model B uses the 

same covariates but also adds time varying variables. These are 

automatically dropped from the fixed effects model and as such are not 

considered explicitly by the Hausman test (which can only test the 

comparability of variables that appear in both models), however, the 

presence of these variables in the random effects model controls for some of 

the individual heterogeneity and leads to more precise estimates of the other 

coefficients. Although the second random effects model is also rejected as 

being inconsistent, the chi-squared value has fallen somewhat from 233.65 

to 197.13 for the models which use raw pattern construction scores and from 

220.10 to 184.74 for the models using standardised pattern construction 

scores. 

 

 Table 4-6: Hausman Test statistics, fixed effects and random effects models 

Model Variables included Chi2 Value P statistic Chi2 Value P statistic

A Time-varying variables only 233.65 0.0000 220.10 0.0000

B A  +  time invariant variables 197.13 0.0000 184.74 0.0000

C B  +  means of relevant variables 99.36 0.0518 97.03 0.0712

Raw PC Scores Standardised PC Scores

 

Model C represents the augmented models described in the 

methodology section, where some variables enter as means and deviations 

from means in order to allow the between and within effects to differ. The 

variables that entered in this way were family income, school fees, 

coeducational schooling, parents’ education, child has a longstanding illness, 

regular bedtimes, urban dwelling and neighbourhood IMD score group. Once 

these variables were allowed to show different coefficients for between-

cluster and within-cluster effects, the model came much closer to the fixed 

effects model and could be accepted as consistent, with a chi-squared value 

of 99.36 (p-value 0.0518) for the raw pattern construction scores models and 

97.03 (p-value 0.0712) for the standardised pattern construction scores 

models. Given that the augmented random effects model can be accepted as 

being consistent, the results of this model will be discussed in detail below.  
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4.5.2.3 Augmented Random Effects Specification - Results 

We now explore the results of the random effects model including 

group means (which I am called the “augmented random effects” model, or 

ARE). This model was accepted as consistent by the Hausman test 

described above and the results are reported in full in Table 4.7. The first and 

third columns report the results of the ARE models, while the fixed effects 

results are provided in columns 2 and 4 for comparison. 
 

Table 4-7 Augmented Random Effects and Fixed Effects Results  

ARE FE ARE FE

(1) (2) (3) (4)
Raw PC 

Scores

Raw PC 

Scores

Std. PC 

Scores

Std. PC 

Scores

FAMILY INCOME

Log (family income)                              Mean: 0.597*** . 0.054** .

(0.228) . (0.022) .

Deviation from Mean: -0.254 -0.225 -0.023 -0.017

(0.200) (0.237) (0.019) (0.022)

SCHOOLING:

Months of school 0.105*** 0.110*** -0.001** -0.001

(0.005) (0.006) (0.001) (0.001)

School fees                                             Mean: 0.576 . 0.060 .

(0.507) . (0.049) .

Deviation from Mean: 0.504 0.671 0.023 0.037

(0.962) (1.011) (0.091) (0.096)

Coeducational school                           Mean: 0.015 . -0.015 .

(0.788) . (0.076) .

Deviation from Mean: 0.169 -0.110 0.051 0.021

(2.170) (2.295) (0.206) (0.217)

PARENTAL EDUCATION

Mother's education

No Qualifications                                Mean: -1.165*** . -0.110*** .

(0.378) . (0.036) .

Deviation from Mean: -1.176 0.128 -0.125 -0.001

(0.885) (1.173) (0.084) (0.111)

NVQ Level 1                                            Mean: -1.212*** . -0.117*** .

(0.396) . (0.038) .

Deviation from Mean: 0.894 3.406** 0.081 0.319**

(1.015) (1.337) (0.097) (0.126)

NVQ Level 2                                            Mean: 0.109 . 0.011 .

(0.275) . (0.026) .

Deviation from Mean: -0.490 0.258 -0.044 0.025

(0.633) (0.809) (0.060) (0.077)

NVQ Level 3     # … … … …

NVQ Level 4                                            Mean: 0.937*** . 0.090*** .

(0.276) . (0.027) .

Deviation from Mean: -0.731 -0.150 -0.072 -0.018

(0.645) (0.824) (0.062) (0.078)

NVQ Level 5                                            Mean: 1.388*** . 0.132*** .

(0.456) . (0.044) .

Deviation from Mean: -0.987 -0.736 -0.086 -0.065

(0.759) (0.948) (0.072) (0.090)

Overseas Qualification                       Mean: -1.580*** . -0.152*** .

(0.607) . (0.058) .

Deviation from Mean: 0.475 1.317 0.064 0.160

(1.186) (1.487) (0.113) (0.141)
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ARE FE ARE FE

(1) (2) (3) (4)
Raw PC 

Scores

Raw PC 

Scores

Std. PC 

Scores

Std. PC 

Scores

Partner's education

No Qualifications                                Mean: -1.575*** . -0.147*** .

(0.415) . (0.040) .

Deviation from Mean: 0.822 1.486 0.079 0.146*

(0.718) (0.933) (0.068) (0.088)

NVQ Level 1                                            Mean: -1.094** . -0.102** .

(0.481) . (0.046) .

Deviation from Mean: 0.975 2.201* 0.085 0.204*

(0.893) (1.133) (0.085) (0.107)

NVQ Level 2                                            Mean: -0.448 . -0.040 .

(0.313) . (0.030) .

Deviation from Mean: 0.401 1.042 0.035 0.097

(0.591) (0.739) (0.056) (0.070)

NVQ Level 3    # … … … …

NVQ Level 4                                            Mean: 1.118*** . 0.107*** .

(0.311) . (0.030) .

Deviation from Mean: -0.384 0.185 -0.043 0.014

(0.620) (0.774) (0.059) (0.073)

NVQ Level 5                                            Mean: 0.726 . 0.070 .

(0.446) . (0.043) .

Deviation from Mean: -0.529 0.096 -0.058 0.002

(0.697) (0.854) (0.066) (0.081)

Overseas Qualification                       Mean: 1.186* . 0.115** .

(0.609) . (0.059) .

Deviation from Mean: -1.454 -1.695 -0.141 -0.158

(0.992) (1.251) (0.095) (0.118)

FAMILY STRUCTURE

Married -0.053 -0.657 -0.001 -0.084

(0.489) (1.597) (0.047) (0.151)

Mother has a resident partner 0.081 2.137 0.014 0.219

(0.454) (1.571) (0.044) (0.149)

Partner is the  natural father 0.943** 0.973 0.089** 0.092

(0.385) (1.255) (0.037) (0.119)

Number of siblings -0.190** -0.185 -0.019** -0.017

(0.083) (0.248) (0.008) (0.023)

HEALTH

Child has a longstanding illness         Mean: -2.069*** . -0.200*** .

(0.280) . (0.027) .

Deviation from Mean: -0.085 0.008 -0.008 0.001

(0.237) (0.273) (0.023) (0.026)

Mother's general health

Excellent -0.011 0.165 -0.001 0.017

(0.165) (0.236) (0.016) (0.022)

Very good / Good     # … … … …

Fair / Poor 0.053 0.329 0.003 0.027

(0.214) (0.313) (0.020) (0.030)

Mother has a longstanding illness -0.086 -0.143 -0.006 -0.013

(0.198) (0.297) (0.019) (0.028)

Mother has depression -0.046 -0.389 -0.005 -0.035

(0.172) (0.552) (0.017) (0.052)

Partner's general health

Excellent 0.089 0.122 0.008 0.011

(0.178) (0.246) (0.017) (0.023)

Very good / Good     # … … … …

Fair / Poor -0.370 -0.082 -0.035 -0.009

(0.246) (0.328) (0.024) (0.031)

Partner has a longstanding illness 0.066 -0.117 0.006 -0.011

(0.187) (0.271) (0.018) (0.026)



178 
 

ARE FE ARE FE

(1) (2) (3) (4)

Raw PC 

Scores

Raw PC 

Scores

Std. PC 

Scores

Std. PC 

Scores

MATERNAL EMPLOYMENT

Full  time -0.085 0.066 -0.008 -0.000

(0.212) (0.357) (0.020) (0.034)

Part time -0.140 -0.268 -0.014 -0.028

(0.172) (0.275) (0.016) (0.026)

Not working     # … … … …

MONEY RELATED FACTORS

Type of Housing tenure

Own / Mortgage 0.575** 0.646 0.054** 0.060

(0.244) (0.565) (0.023) (0.053)

Rent / Other     # … … … …

Council  rented -0.148 -0.492 -0.020 -0.071

(0.288) (0.834) (0.028) (0.079)

Car Usage 0.750*** 0.404 0.078*** 0.047

(0.255) (0.452) (0.024) (0.043)

Holidays abroad 0.289* 0.208 0.029* 0.023

(0.164) (0.240) (0.016) (0.023)

HOME ATMOSPHERE

0 - 12 Scale, 12 = calm and organised 0.076*** 0.013 0.007*** 0.001

(0.027) (0.039) (0.003) (0.004)

PARENTAL BEHAVIOURS

Mother reads to child

Daily -0.296* -0.182 -0.024 -0.011

(0.171) (0.235) (0.016) (0.022)

Weekly -0.464*** -0.601*** -0.041** -0.053**

(0.176) (0.229) (0.017) (0.022)

Occasionally     # … … … …

Never -1.041** -0.782 -0.096** -0.073

(0.467) (0.616) (0.045) (0.058)

Partner reads to child

Daily -0.164 -0.222 -0.013 -0.015

(0.218) (0.295) (0.021) (0.028)

Weekly -0.137 -0.136 -0.010 -0.007

(0.170) (0.222) (0.016) (0.021)

Occasionally     # … … … …

Never -0.398 -0.092 -0.037 -0.012

(0.345) (0.447) (0.033) (0.042)

Frequency of library visits

Never -0.423*** -0.034 -0.041*** -0.006

(0.147) (0.215) (0.014) (0.020)

Once a month to once a year -0.178 -0.373 -0.017 -0.034

(0.229) (0.312) (0.022) (0.030)

Daily to at least once a week     # … … … …

Parter's time spent with child

Plenty -0.851 0.236 -0.090 0.017

(0.883) (1.140) (0.084) (0.108)

Just enough     # … … … …

Not enough 0.531** 0.356 0.048** 0.030

(0.241) (0.311) (0.023) (0.029)

Father plays games with child

Daily -0.165 0.275 -0.014 0.029

(0.225) (0.285) (0.021) (0.027)

Several times a week     # … … … …

Less than several times a week 0.178 0.369* 0.015 0.033*

(0.163) (0.207) (0.016) (0.020)

Mother smacks child when naughty -0.030 0.132 -0.002 0.012

(0.142) (0.223) (0.014) (0.021)

Mother tells child off when naughty -0.322 -0.084 -0.032 -0.010

(0.207) (0.290) (0.020) (0.027)
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ARE FE ARE FE

(1) (2) (3) (4)

Raw PC 

Scores

Raw PC 

Scores

Std. PC 

Scores

Std. PC 

Scores

Regular Bedtimes

Never                                                       Mean: -2.246*** . -0.215*** .

(0.546) . (0.053) .

Deviation from Mean: 0.477 0.567 0.040 0.047

(0.412) (0.496) (0.039) (0.047)

Sometimes                                              Mean: -0.944* . -0.088* .

(0.514) . (0.049) .

Deviation from Mean: 0.433 0.314 0.041 0.029

(0.320) (0.380) (0.031) (0.036)

Always                                                     Mean: 0.043 . 0.004 .

(0.263) . (0.025) .

Deviation from Mean: 0.029 0.067 0.005 0.010

(0.172) (0.194) (0.016) (0.018)

Hours of TV child watches per day

None -0.482 0.140 -0.051 0.007

(0.470) (0.624) (0.045) (0.059)

Less than one hour -0.002 0.168 0.001 0.017

(0.166) (0.224) (0.016) (0.021)

One to three hours     #

More than three hours -0.191 0.041 -0.021 -0.001

(0.181) (0.243) (0.017) (0.023)

SHOCKS

Family moved home since last wave -0.484** -0.163 -0.045** -0.017

(0.200) (0.264) (0.019) (0.025)

NEIGHBOURHOOD FACTORS

Urban                                                       Mean: 0.213 . 0.019 .

(0.261) . (0.025) .

Deviation from Mean: -0.541 -0.856 -0.047 -0.075

(0.695) (0.824) (0.066) (0.078)

IMD Score Group

Low                                                           Mean: -0.381 . -0.047* .

(0.249) . (0.024) .

Deviation from Mean: 0.341 0.499 0.019 0.034

(0.615) (0.759) (0.059) (0.072)

Middle     #

High                                                         Mean: 0.379 . 0.031 .

(0.259) . (0.025) .

Deviation from Mean: 0.397 0.160 0.033 0.010

(0.608) (0.711) (0.058) (0.067)

TIME INVARIANT FACTORS
SCHOOLING

Teacher tenure 0.025* . 0.002* .

(0.013) . (0.001) .

Class size 0.048* . 0.005* .

(0.026) . (0.002) .

EARLY FACTORS

Birthweight 1.072*** . 0.102*** .

(0.174) . (0.017) .

Days of gestation 0.020*** . 0.002*** .

(0.008) . (0.001) .

Child was in a special care unit at birth -0.106 . -0.011 .

(0.309) . (0.030) .

Parents attended antenatal classes 0.150 . 0.012 .

(0.181) . (0.017) .

Mother breastfed 0.894*** . 0.084*** .

(0.193) . (0.019) .
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ARE FE ARE FE

(1) (2) (3) (4)

Raw PC 

Scores

Raw PC 

Scores

Std. PC 

Scores

Std. PC 

Scores

GENDER

Male -1.359*** . -0.133*** .

(0.161) . (0.016) .

MONTH OF BIRTH

Jan 0.245 . 0.026 .

(0.361) . (0.035) .

February 0.500 . 0.051 .

(0.383) . (0.037) .

March 0.322 . 0.042 .

(0.371) . (0.036) .

April 1.238*** . 0.131*** .

(0.380) . (0.037) .

May 1.535*** . 0.160*** .

(0.371) . (0.036) .

June 0.971*** . 0.107*** .

(0.373) . (0.036) .

July 0.937** . 0.097*** .

(0.378) . (0.036) .

August 1.076*** . 0.110*** .

(0.377) . (0.036) .

September 0.187 . 0.006 .

(0.365) . (0.035) .

October 0.049 . -0.005 .

(0.368) . (0.035) .

November 0.731** . 0.064* .

(0.364) . (0.035) .

December     # … … … …

ETHNICITY

White     # … … … …

Black -3.083*** . -0.298*** .

(0.539) . (0.052) .

Asian -1.910*** . -0.180*** .

(0.357) . (0.034) .

Other 0.254 . 0.029 .

(0.458) . (0.044) .

CONSTANT 33.557*** 48.347*** -1.518*** -0.116

(2.564) (1.345) (0.247) (0.127)

sigma_u

_cons 7.021*** 0.681***

(0.078) (0.007)

sigma_e

_cons 6.916*** 0.657***

(0.052) (0.005)

N 21,490 21,490 21,490 21,490

r2 0.080 0.011

Standard errors in parentheses

* p<0.100, ** p<0.050, *** p<0.010

 

The first variable of interest is family income and the results indicate a 

significant positive between-effect but no within-effect. The insignificance of 

the within-effect is likely to be a result of the lack of within-variation for this 
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variable. Family income was relatively stable for most families between the 

two waves, with a correlation coefficient of 0.7 between the logged family 

income measures at ages 5 and 7. There is, however, substantial variation 

between the incomes of different families. The result on the mean family 

income carries the same weight as the OLS result above – it indicates that 

there is an independent effect even when a broad range of other factors are 

controlled for, but it cannot be interpreted causally. The splitting out of family 

income into between and within effects was unfortunately necessary, as a 

Hausman test comparing fixed and random effects models with a single 

family income variable returned a chi-squared statistic of 104.22 and a p-

value of 0.02 – below the required level for the ARE model to be accepted. In 

these specifications, family income showed a small, negative but insignificant 

effect in the fixed effects model and a small, positive, insignificant effect in 

the ARE model. However, these results should not be given too much weight 

as the models did not pass the relevant specification tests.  

Secondly, months of school shows a positive, statistically significant 

effect when using the raw scores and a zero effect using the standardised 

scores. The positive effect using the raw scores is due to the fact that the 

mean of the second test was higher than the first (53.4 compared to 50.9) 

and months of school increases automatically over time by construction. For 

this reason, I consider the result using the standardised scores to be more 

convincing, and this indicates no important effect of quantity of schooling at 

these early stages of the child’s education.   

Thirdly, taking a look at the school and teacher quality variables, 

school fees and attending a coeducational school are both statistically 

insignificant. Looking at the bottom of the table where the time-invariant 

factors are reported, teacher tenure has a positive and statistically significant 

effect, but so does class size, and in both cases, these effects are extremely 

small. The overall impression in regards to the effect of school quality from 

this data is that the measured proxies are unimportant. This is in line with 

other studies that have used a similar approach (e.g. see Todd and Wolpin, 

2007 who use child and sibling fixed effects). Rather than indicating that 

school quality is unimportant for children’s cognitive development, it may be 
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that these measures are simply poor proxies for the true effectiveness of the 

schools and teachers (Hanushek, 1986). 

Regarding the other factors included as controls, making use of the 

between variation in the data as has been done here leads to much more 

interesting results than the results of the fixed effects models alone. Firstly, 

there is a positive and significant effect of the mother’s partner being the 

child’s natural father. Whilst the coefficient in the fixed effects model is 0.973 

for the raw scores and is statistically insignificant, the coefficient in the 

augmented random effects model is similar at 0.943, but is statistically 

significant at the 1% level. This result could reflect various influences; one 

aspect could be the stability the family has enjoyed since it means there has 

been no change in the child’s two parental figures since birth and 

furthermore, it is likely the natural father is more concerned for the child’s 

development than another party, and this would find expression in various 

behaviours and decisions. Secondly, the number of siblings is negative and 

insignificant in the fixed effects models, but statistically significant (and of a 

similar magnitude) in the ARE specifications. This may reflect parental 

resource allocation, as parents with more children have less time to spend 

on each individually.  Home atmosphere is also positive and statistically 

significant in the ARE specifications (whilst in the fixed effects specifications 

it is positive but insignificant). Although the coefficient is quite small, this is 

an important finding which backs up the results found in Dearden et al 

(2011b) and other papers on the importance of the home learning 

environment.  

Furthermore, money related factors can also be seen to have a 

significant effect on children’s development, with owning or mortgaging a 

house, being able to use a car and going on holidays abroad all returning 

statistically significant coefficients once the between-variation in the data is 

taken into account. This may indicate that the importance of family 

background is in fact related to money per se, a question which has been 

debated in many studies. Living in an owned/mortgaged home may provide 

stability to the family, which is further supported by the fact that the 

coefficient on having moved since the last wave has a negative and 

statistically significant coefficient.  
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The role of the parents’ behaviours and attitudes is also important. 

Never taking the child to the library has a negative and statistically significant 

effect.  This negative impact can be seen in the fixed effects models, but only 

becomes statistically significant once the between variation is taken into 

account in the augmented random effects models. The frequency of the 

mother reading to the child is somewhat less intuitive, as there are negative 

signs on “daily” and “weekly” as well as on never (with “occasionally” being 

the base category). This may simply be due to the fact that more families 

read to their child daily at age 5 than at age 7, while on the whole the test 

scores were higher at age 7. The father’s attitude to how much time they 

spend with the child also returns an interesting result, with a positive 

coefficient on “not enough”. Although a lack of quality father-child time would 

be expected to have a negative result, the positive result in this case could 

arise because it reveals the father’s attitude to the importance of spending 

time with their child. Having a father who considers this important would have 

various other positive effects on the child’s development, which may explain 

this positive coefficient. Regular bedtimes show a large between effect but 

an insignificant within effect. The consistency of the between effect is not 

explicitly checked in the Hausman tests but it indicates that regular bedtimes 

do have a role to play, since the coefficient on “never” is large and negative 

and the coefficient on “sometimes” is also negative and statistically 

significant.  

The results of these models also confirm the importance of the early 

factors which were observed in the OLS models above. The impact of these 

factors is clear, with positive and statistically significant coefficients on 

birthweight, days of gestation and breastfeeding. However, since they can 

only be observed at one time (around the child’s birth), they can only be 

included as controls in the random effects framework and the effects cannot 

be given a causal interpretation. 

Finally, it is also interesting that some variables for which we might 

have expected there to be a significant result actually do not turn out this 

way. For example, the mother’s labour force engagement is insignificant, as 

is the IMD score group of the child’s neighbourhood. On the other hand, 

traditionally important factors such as parent’s education and the child’s 
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ethnicity and health return the expected results here and the coefficients are 

generally large in magnitude.  

4.5.2.4 Summary of Results from Panel Models  

Throughout this section, we have seen that there are various data 

issues which make it difficult to get a clear set of robust results. The 

inconsistency of the random effects models (arising from endogeneity) and 

the lack of within-variation which affects the fixed effects models (especially 

when only two periods of data are used for the pattern construction scores) 

are the primary issues. However, using an augmented random effects 

approach has proven effective in combatting these issues. Such an approach 

makes it possible to take into account the highly informative between-subject 

variation in the data, whilst still insuring consistency by testing the results 

against coefficients from a fixed-effects model using the Hausman test. 

Using this approach has shown which factors have a key impact on 

children’s cognitive development in the early years of school.  

Family income has a positive effect, and whilst this could only be 

observed in the between-effect, not the within-effect, (such that is was not 

tested in the Hausman test), the finding that money in itself is important was 

further substantiated by the statistical significance on the variables for 

owning or mortgaging the family home, car usage and taking holidays 

abroad. These variables relate to that family’s ability to invest in goods and 

activities which may be beneficial for the child’s development or which 

indicate a lack of financial hardship. The school variables, relating to quantity 

and quality of schooling, on the whole did not show substantial results. This 

may be because the proxies used were not powerful enough. It would be 

good to follow this up using data which contains school and teacher 

identifiers for a larger sample (and over a longer period) to explore the effect 

of school quality defined more broadly. Some of the time-invariant factors 

also showed significant effects. Although these functioned as controls and 

were not explicitly included in the Hausman test, it is nonetheless interesting 

to note that birthweight, breastfeeding, and days of gestation all had positive 

and statistically significant coefficients. Despite the broad range of factors 

that are included as controls, these birth-related factors could nonetheless 
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still reflect other family characteristics rather than having a direct impact in 

their own right. For this reason, I would place more weight on the factors that 

could specifically be tested using the Hausman test and which demonstrated 

significant results. These include the partner being the child’s natural father 

and parental behaviours such as taking the child to the library, as well as 

home atmosphere and continuing to live in the same residence over time. 

The implications of these findings will be discussed further in the following 

section.   

4.6 Conclusion 

This chapter has explored the impact of various factors on children’s 

cognitive development in the first two years of school, using very recent data 

on children born in the new millennium and innovative panel data techniques.  

Using the Millennium Cohort Study not only provides up-to-date findings for a 

current policy environment, it also boasts a large sample size and a 

longitudinal structure which make it possible to use baseline ability measures 

from a comparable test and more robust estimation techniques than can be 

obtained from simple OLS regressions. Nonetheless, several data issues 

remain: notably, endogeneity (or the inability to ‘mop-up’ all individual 

heterogeneity that is correlated with the variables of interest) and the lack of 

within-variation in key variables. I addressed this second problem by 

introducing an augmented random effects model which makes use of both 

within and between-subject variation and where variables which appear to 

have different between and within effects enter as means and deviations 

from means separately. The consistency of results from this model is tested 

by comparing it to a fixed effects model using the well-known Hausman test.  

The first question of interest was the direct effect of income. The strong 

correlation between family income and children’s test scores is well 

documented in the literature, but a question still remains as to whether the 

money itself is important or whether family income rather proxies other 

characteristics which are beneficial for the children’s development. Whilst I 

acknowledge the difficulties in overcoming the endogeneity of family income 

and do not claim to establish a causal effect, this research nevertheless adds 

to current findings in this literature. I found that family income had a positive, 
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statistically significant effect in the simple OLS regressions which controlled 

for a broad array of other factors. When using the raw pattern construction 

scores at age 7 as the dependent variable, logged, equivalised family income 

had a coefficient of 2.23 in a model where the baseline test score (at age 5) 

was the only other covariate. Once all the other covariates were included, the 

coefficient dropped to 0.93 but was still statistically significant. Given the 

breadth of other covariates included, this is an interesting finding, and aligns 

with the results found in Gregg et al (2007) and Dooley and Stewart (2004). 

The other money related variables (i.e. car usage, holidays abroad and type 

of housing tenure) were all positive but statistically insignificant in these 

specifications. Turning to the panel data results, the fixed effects models 

have insignificant coefficients on family income, most likely due to a lack of 

within-variation in family incomes over the two waves. In the augmented 

random effects model, the between-effect is split out from the within-effect 

and we can see that although the within-effect remains insignificant, the 

between-effect is positive and statistically significant. This mirrors the finding 

from the OLS results. Although the approach taken does not give an 

estimate of the causal impact of money per se, it does reinforce the direct 

importance of family income, on the one hand, whilst also demonstrating the 

interconnections between family income and a broad range of other family 

characteristics. The statistical significance of the other money-related factors 

(type of housing tenure, car usage and holidays abroad) in the augmented 

random effects models further consolidates this finding.  

In terms of schooling, I examined variables on quantity of schooling 

(months of school attended), school quality (fee-paying and single-sex 

schools and class size) and teacher quality (years of experience). The school 

quantity variable (months of school) showed very mixed results, with 

negative effects in the OLS models, a positive effect using raw scores and an 

insignificant effect using standardised scores in the fixed effects models, and 

a positive effect using raw scores and a negative but extremely small effect 

using standardised scores in the augmented random effects models. This 

variable was difficult to construct with precision due to a lack of information 

on holidays and time off school and had the characteristic that it increased 

for every child by construction. Since the mean of the second pattern 
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construction test was higher than on the first test, this explains the positive 

effect  of this variable in specifications which used the raw pattern 

construction scores as a dependent variable in contrast to negative or very 

small coefficients on models using the standardised scores. In terms of 

economic significance, the results using the standardised scores appear to 

be more meaningful. As such, the overall finding is that quantity of schooling 

did not contribute significantly to the children’s relative cognitive development 

between these ages.  

Regarding school quality, the OLS results showed a positive effect of 

attending a school that charges fees, a positive but very small effect of 

teacher experience and insignificant results for attending a coeducational 

school and for class size. Since the only schooling variable with a strong 

positive effect was money-related (school fees), this would seem to paint 

education as a hindrance to rather than a facilitator of social mobility. This 

result did not appear in the fixed effects models (possibly also because very 

few children changed between fee paying and non-fee paying schools in this 

period), and neither did it appear in the augmented random effects model. In 

both cases, the coefficients were still positive but they were insignificant. 

Teacher tenure and class size both had very small positive effects in the 

augmented random effects models. Since these were only recorded at one 

wave, it was not possible to include them in the fixed effects framework but 

only as controls in the augmented random effects model. The fact that these 

indicators of school quality did not have substantial results does not 

necessarily indicate that school quality is unimportant. It has been argued 

that measures such as class size are poor reflections of true quality and that 

school and teacher fixed effects provide a better indication of the overall 

quality and impact of a child’s school and teachers (Hanushek, 1986, 2005). 

Unfortunately, there were too many missing observations from the teacher 

surveys to facilitate such analyses using the MCS.  

Finally, several other factors can be seen to be important contributors to 

children’s development at these young ages. The results from the OLS 

models may be due to selection, however, the augmented random effects 

model provides results which are comparable to the results of a fixed effects 

model where the children are used as their own control to deal with individual 
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heterogeneity that is correlated with the other covariates. The factors that 

have a significant effect in this model were the mother’s partner being the 

child’s natural father (positive effect), the number of siblings (negative effect), 

money related factors (owning/mortgaging the family home, car usage and 

holidays abroad – all positive), a calm and organised home atmosphere 

(positive effect), the mother reading to the child never or daily21 (negative 

effect), never visiting the library (negative effect), the partner not having 

enough time with the child (which may reflect their attitude towards parenting 

rather than the actual amount of time spent with the child) (positive effect), 

and the family having moved home since the last wave (negative effect). To 

bring these together, stability seems to be a very important factor for the 

child and the parent’s inputs in terms of investments and behaviours are also 

very important. Furthermore, the time-invariant factors included in the ARE 

model supported the results from the OLS models and indicated that 

birthweight, days of gestation and breastfeeding all have an important effect 

on the children’s test scores at age seven. It would be useful to do further 

research into these factors to determine if they simply reflect parental and 

environmental influences or rather impact directly on later outcomes. 

Breastfeeding could be promoted more actively among groups where this is 

practiced less and the possibilities to impact on birthweight and gestation so 

as to contribute to later outcomes should be further explored.  

This chapter has made a contribution to the existing literature in this area 

in several ways. Firstly, it is the first study I am aware of to use the fourth 

wave of the MCS to explore school-related factors. Since the survey for the 

fourth wave was carried out in 2008, the findings above relate to a very 

current school environment for UK children. Secondly, it presents an 

innovative approach to dealing with a highly prevalent empirical problem, 

addressing endogeneity and a lack of within-variation in key variables by 

means of an augmented random effects models where the between and 

within effects of certain variables are allowed to differ where appropriate. 

Thirdly, the implementation of this approach has generated insights into 

                                                           
21

 As discussed above, this counter intuitive result may arise because more families read to their 
children daily at age 5 rather than age 7, but the overall performance in the pattern construction 
test was higher at age 7. 
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which factors are most important for children’s development in the first few 

years of school. The development of children in their early years has been of 

increasing importance as a policy focus. The policy implications of these 

findings will be explored in the final chapter of the thesis. 
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5 Trajectories of Development and Regression to the Mean 

5.1 Introduction 

Chapter 3 examined the gap in university participation rates between 

children from more and less advantaged families and established that this is 

not driven by differences in their degree of debt aversion. In fact, there is a 

body of evidence which points to the gap in educational outcomes starting 

much earlier in life. Tests from very early ages already show a substantial 

gap in the test scores of children from well-off and from disadvantaged 

families (for example age 3 in Dearden et al, 2011). The previous chapter 

examined possible factors driving early years achievement, focusing on 

family income, schooling and other factors. A further important question is 

the rate of children’s development at these young ages, and specifically, 

whether children’s cognitive development trajectories are dependent on their 

families’ socioeconomic position. In this chapter, I examine whether the rate 

of cognitive development up to age 7 differs for children from more or less 

advantaged families.  

Whilst it has been established that there is a gap in the early cognitive 

test scores of children from different family backgrounds, the question is 

whether this gap widens as they get older. One highly influential paper to 

address this question is Feinstein (2003), who found that by the age of 10, 

children from low-income families who had initially been classified as high 

ability had actually been overtaken by children from high-income families 

who had initially been classified as low ability. Naturally, there is great 

interest in the relative progress of bright children from poorer families, and 

this finding has become extremely well-known among academics and policy 

makers alike. In fact, the central diagram from the paper was included in the 

government’s first Child Poverty strategy document (Department for 

Education, 2011) and can often be seen in other presentations and policy 

documents. However, recent work (especially a paper by Jerrim and 

Vignoles, 201122) has raised the question of whether this finding is merely an 

expression of a well-known statistical artefact called regression to the mean 

                                                           
22

 I reference the working paper of 2011 through this chapter since it is longer and more detailed. 
The published paper came out in 2013 and is also included in the bibliography. 
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(RTM).  Blanden, Katz and Redmond (2012) have called for more work to be 

done in this area, building on the work of Jerrim and Vignoles, “to distinguish 

children’s true developmental trajectories from RTM effects” (p159).   

RTM can be expressed simply as the fact that an extreme event is likely 

to be followed by a less extreme event and causes issues with interpretation 

of change by making natural variation in repeated data look like real change 

(Barnett et al, 2005). Regarding test scores, it means that individuals who 

score particularly well (or badly) on an initial examination will most likely see 

their score in a follow up test falling closer to the mean score than their 

original result, since test scores express a combination of ability (which is 

permanent) and luck (which is transitory). The phenomenon is likely to affect 

children’s test scores more than it would adult’s scores because the 

stochastic component in their scores is very significant. Young children are 

strongly influenced by external factors and their own mood and health such 

that their test scores will consist of a true measure of their ability plus a 

significant error component. Since children from richer families have been 

shown to have a higher mean score than children from poorer families on 

cognitive ability tests at early ages, a high score is more likely to be an outlier 

for a poor child while a low score is more likely to be an outlier for a child 

from a rich family. If children are divided into ability groups based on their 

initial scores and their family income, regression to the mean predicts that 

rich children who initially perform less well will score closer to the mean (i.e. 

higher) on a subsequent test, while children initially classed as high ability 

from a poor background will most likely score closer to their mean (i.e. lower) 

on a subsequent test. If we observe this pattern in the data, we therefore 

need to be very careful before we give it a substantive interpretation, as we 

may in fact be falling into the ‘regression trap’ and simply misinterpreting 

RTM as a real difference in the rates of development.  

This chapter uses various methods to account for RTM in order to 

discover whether there is truly a substantive difference in the rates of 

cognitive development of young children, using data from the Millennium 

Cohort Study, a recent longitudinal dataset with information on nearly 19,000 

children born in the UK in the new millennium and their families. The main 

methods I use in this chapter are the use of an auxiliary test to divide the 
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children into ability groups rather than the baseline score; and including the 

baseline as a covariate in a value-added style model to account for RTM 

explicitly. I find that children’s test scores measured at multiple points of time 

are indeed strongly affected by RTM, but that family income nonetheless has 

a large role to play in their cognitive development. There is clear evidence 

that children from poor families who are initially classed as high ability do 

drop behind their peers from advantaged homes, even once the RTM effect 

has been accounted for.   

This chapter makes certain important contributions to the existing 

literature. Firstly, it provides a statistical breakdown of the RTM patterns in 

the MCS data, highlighting differences in how this effect operates for 

subgroups within the cohort. Secondly, it provides a robust estimation of 

children’s true developmental trajectories at these ages by using regression 

analysis as well as graphical analysis, which clarifies whether or not the 

development gradients of various groups are statistically different from zero, 

after RTM has been accounted for. And thirdly, it provides a demonstration of 

how using a value-added functional form (conditional model) addresses RTM 

and gives an estimate of the impact of family income on children’s cognitive 

development in a way that is robust to this phenomenon. The findings 

provide further support for a policy focus on bright children from 

disadvantaged backgrounds.  

The next section reviews the current literature, examining RTM and rates 

of cognitive development. Sections three and four describe the data and 

methodology, section five presents the key findings and section six 

concludes.  

5.2 Literature Review 

5.2.1 Regression to the Mean 

The concept of regression towards the mean was first developed in 

the late 19th century by the biologist Francis Galton and presented in his 

1886 paper “Regression towards Mediocrity in Hereditary Stature”. He 

observed that the heights of children tend to fall closer to the mean than their 

parent’s heights, for example, that children of particularly tall parents tend to 
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be shorter than them by a certain fraction of the difference between their 

parents’ height and the mean height, and vice versa for children of short 

parents. Galton developed this idea over several years using experiments 

and gathering data on various phenomena. Although his suggestion of what 

lies behind regression to the mean has since been shown to be incorrect (he 

thought that it had to do with inheritance of characteristics from the 

grandparents’ generation and further back), the discovery of this idea was a 

major contribution to statistics and has been useful in many fields. The 

development of regression analysis as we know it today also has its roots in 

this work.  

Regarding another important historical contribution of this concept, 

Friedman (1992) writes that ‘the regression fallacy was the seed out of which 

[his] permanent income hypothesis grew’ (p2130).  There appeared to be a 

paradoxical conflict between the results of budget studies and data on the 

incomes of individuals over time in that people’s marginal propensity to 

consume appeared from the budget studies to lie above the average 

propensity, while this was not apparent in the time series data.  The solution 

to this conundrum came through realising that individuals were usually 

grouped according to income in one period while consumption was averaged 

over time. Those classified with a low income appeared to have higher 

marginal rates of consumption; however, the permanent income of these 

individuals was often higher than the observed low measure, which was why 

their propensity to consume appeared high. On the other hand, those with 

high measured income had lower marginal rates of consumption because 

they were often classed as such due to an unusually high reported income 

whereas their permanent income was actually lower. Friedman’s separation 

of income into permanent and transitory components thus arose out of this 

paradox (Friedman, 1992).  

An understanding of the tendency of outliers to regress towards the 

mean is very helpful in avoiding the trap of giving a substantive interpretation 

to trends that are actually just statistical artefacts. The economic literature 

(and indeed studies from many fields) contains numerous examples of this 

mistake. Perhaps the best known example is a book written by Horace 

Secrist in 1933 and entitled “The triumph of mediocrity in business”. Secrist 
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argued that the profits of businesses tend towards the average over time, 

and ‘demonstrated’ this extensively through many tables and charts. He 

viewed this as an important economic phenomenon and a possible cause of 

the Great Depression, however, his book was sharply criticised by Harold 

Hotelling who wrote that `the seeming convergence is a statistical fallacy, 

resulting from the method of grouping. These diagrams really prove nothing 

more than that the ratios in question have a tendency to wander about’ 

(Hotelling, 1933, quoted in Stigler (1997)). Secrist’s book had been proofed 

by numerous well-known statisticians before publication and even after 

Hotelling’s review, was referred to in other studies, which shows how easy it 

is even for well versed statisticians to fall into what has become known as 

the ‘regression trap’. A more recent example of this is Camacho-Cuena et al 

(2004), who explored subjects’ willingness to pay (WTP) for improved 

recyclability of a certain good. They write that “At the population level, we 

find that median contributions in the experiment and stated hypothetical 

values do not significantly differ from each other. However, for subjects with 

high and low declarations, some systematic deviations from declared values 

are obtained (downwards for the former and upwards for the latter).” (p315). 

By grouping the respondents according to their initial response and 

measuring the change from this point, the authors are inadvertently falling 

into the regression trap but interpret their findings substantively. In the case 

of overdeclaration, they interpret this as “misjudgement by a subject of the 

proportion of homo economicus in his own utility function and behaviour” (p. 

327), while underdeclaration is explained through an additional assumption 

that “subjects are averse to the possibility of deceiving themselves in a 

direction which is usually associated with opportunistic behaviour” (p.327). A 

much simpler (and more accurate) explanation is that the variation within the 

individuals’ responses is giving rise to regression to the mean.  

At least one of the authors subsequently noticed his mistake, going on 

to write a further paper (Garcia-Gallego et al (2011)), which clearly 

demonstrates the potential for RTM effects to mistakenly be given a 

substantive interpretation and refers to the paper described above as an 

example of this. The authors start by providing several other examples of 

papers where this has happened, and then describe their own experimental 
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set-up and data generating process. Their focus is on the stochastic 

component of choice. Having made the point that RTM can be observed in 

situations where there is within subject variation, their experiment involves 

participants making several choices between multiple lotteries (at least one 

of their choices is randomly selected and paid out). There are seven 

variations of the basic idea, divided into two main groups. In one group, each 

person is independent and has no information about the choices of other 

participants; while in the other group, the participants are informed about the 

choices other participants made before them. In particular, they are informed 

what the mode choice of the other participants was for the previous part of 

the session, before they moved on to making further decisions. In analysing 

the choices that were made, the authors show that if the participants with 

information about the mode choice are divided into three groups – those who 

were below the mode in the previous part, those who were at the mode and 

those who were above it – there is a very clear pattern of movement towards 

the mode, with those who were below it moving upwards, those who were 

above it moving downwards and those who were around it not showing a 

clear pattern of change. This can be interpreted as the participants 

responding to the information they were given about the choices other 

people had made, i.e. that participants tend to move towards the choices 

others make, when they are informed about this. However, if the same 

analysis is performed on the group which didn’t have any information about 

other participants choices, the same pattern can be observed: those who 

were grouped as being below the mode moved upwards, those above it 

moved downwards and those at it stayed around the same level – even 

though they didn’t have any information about what the mode choice had 

been. This basically nullifies the initial finding about the effect of social 

information on choice behaviour, and demonstrates once again that it is 

possible to give a substantive interpretation to something that is in fact an 

expression of stochastic variation within subjects’ choices.  

Authors who have recognised the implications of this phenomenon for 

their own work have used a variety of methods for dealing with it. For 

example, Friedman and Schwarz (1982; quoted in Friedman, 1992) allowed 

for the regression effect by reversing independent and dependent variables 
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and systematically reporting the results from regressions run in both 

directions as upper and lower limits of the computed parameters. Becker and 

Meyer (2012), in their paper on football team’s strategies, rather than 

including current rank as an indicator of overall performance, include fixed 

effects for each team and season to capture a team’s average performance, 

and include current rank as what they describe as ‘an elegant and 

unequivocal way’ to control for RTM effects. They find evidence of significant 

regression-to-the-mean effects. Dixon and Rollin (2012) focus on the 

dynamics of firm size and use the average size over the period rather than 

the initial or final value to avoid the regression trap which is very common in 

literature in this area of research. In the epidemiological field, Twisk and 

Proper (2004) show that the effect of a counselling intervention on health 

outcomes appears very differently when the baseline measurement is only 

included in so far as the dependent variable is the absolute change over 

time, and that due to RTM, change should rather be measured using the 

baseline as a covariate. Ederer (1972) suggests using one baseline 

measurement to divide subjects into groups and then calculating change 

from a different baseline measurement. Furthermore, Barnett et al (2005) 

emphasise planning the study carefully from the outset in order to avoid RTM 

(e.g. including an appropriate control group), and also suggest several 

methods of adjusting for it once the data has been collected, such as 

classifying participants into groups on the basis of numerous measures, 

explicitly calculating RTM and adjusting for it statistically, and including the 

baseline as a covariate in an ANCOVA setup. Similarly, including the 

baseline measure as a covariate in a regression framework is a common 

suggestion for dealing with this problem within the epidemiological literature. 

Jerrim and Vignoles (2011) pick up on the suggestion made by Ederer 

(1972) and also discuss the importance of focusing on a single skill over time 

since combining several tests can artificially decrease the correlation 

between the ability measures over time and increase the RTM effect. Some 

of these approaches will be further expanded upon in regards to the 

empirical question in the methodology section below.  

Finally, it is also possible that the trends do have a substantive 

reason, which remains even after RTM effects have been accounted for. For 
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example, Denke and Frantz (1993) describe this possibility in regards to the 

measurement of the effectiveness of a cholesterol-lowering diet on 

hypercholesterolemia. They have two measures of pre-treatment cholesterol 

levels and one post treatment measure, which they name P1, P2 and T1 

respectively. They define two measures of change, the first (T1 – P1) based 

on the initial baseline measurement and the second (T1 – P2) based on the 

second baseline measurement. They show that if the population is divided 

into quintiles using P1, the first measure of change (T1 – P1) displays a clear 

pattern of RTM in addition to the effect of diet. However, the second measure 

of change, i.e. (T1 – P2), makes it possible to isolate the true effect of the 

diet, having removed the RTM effect. Using the second measure of change 

to eliminate the RTM effect, they find that there is a significant substantive 

effect of diet on cholesterol levels and even that the strength of this effect 

depends on the initial level, in that subjects with high cholesterol levels were 

more responsive to diet.  

5.2.2 RTM and Children’s Cognitive Development  

One highly influential paper to compare the rates of development of 

young children from various socio-economic groups is Feinstein (2003), 

using data from the BCS. This question is addressed by firstly using principal 

component analysis to develop an ability index at each age where test 

scores are available (22 months, 42 months, 5 years and 10 years). Test 

scores from the various cognitive ability assessments undertaken at each 

age were combined into a single index for each age using this methodology. 

The children were then broken up into groups according to their ability index 

at age 22 months and their family background. Tracking the development of 

these groups over time shows that children from a high SES family who 

initially did poorly had a tendency to improve rapidly, while children from a 

low SES background who initially did very well had a tendency to drop back. 

In fact, high-ability children from disadvantaged backgrounds were overtaken 

by low-ability children from high SES families by age 10. This finding in 

particular has become well known among academics and policy makers and 

has been highly influential in terms of encouraging a focus on bright young 

children from poor families before and in the first few years of school.   
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One methodological issue not raised specifically in his paper (but 

raised more recently in a paper by Jerrim and Vignoles, 2011) is the 

possibility that the trends described are simply RTM effects, rather than 

indications of true differences in the rate of development of children from 

different family backgrounds. Looking at one excerpt from the paper, 

Feinstein writes that “The children of educated or wealthy parents who 

scored poorly in the early tests had a tendency to catch up, whereas children 

of worse-off parents who scored poorly were extremely unlikely to catch-up 

and are shown to be an at-risk group”. He thus gives the trends a substantive 

interpretation; however, there is a danger that the improvement of children 

from high SES families who initially scored poorly is merely an expression of 

regression to the mean, and the same for the dramatic drop in the scores of 

children from low SES families who initially did very well. For this to be the 

case there would have to be a significant difference in their initial group 

means, which can in fact be observed (e.g. see Figure 1 of Feinstein, 2003).  

Jerrim and Vignoles (2011) provide a thorough explanation of how 

RTM effects could be the real reason behind this finding. They provide a 

detailed mathematical model and demonstrate their arguments using 

simulated data. The final sections of their paper use data from the ALSPAC 

and MCS datasets to demonstrate the effects they had described with “real 

world” data. They show that using various methods to deal with RTM leads to 

very different patterns in the trajectories of children’s cognitive development 

over these ages. Although the early parts of the paper are very detailed and 

thorough, their analysis of the MCS data is restricted to graphical analysis. In 

this chapter, I delve more deeply into the RTM effect in the MCS dataset 

using regression analysis and other techniques to estimate the true 

developmental trajectories more robustly.  

More recently still, Blanden et al (2012) have also examined children’s 

cognitive development trajectories using data from the MCS. They created 

an ability index for the latest three waves in a similar way to Feinstein (2003). 

Using the same groups as he did, they trace out the relative change in the 

scores of children from different ability groups and family backgrounds (using 

parental education). Although they comment briefly on the RTM effects 

visible in the graphs they produce, they do not attempt to deal with RTM, but 
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simply identify it as a component of the trends they observe and recommend 

that further work be carried out in this area, building on the work of Jerrim 

and Vignoles. This chapter provides more detailed analysis in this area and 

seeks to identify whether bright children from disadvantaged homes do in 

fact drop behind their peers from more advantaged homes, once the RTM 

effect has been taken out of the picture.     

5.3 Theoretical Framework: Defining Regression to the Mean 

Regression to the mean is a statistical phenomenon that occurs 

whenever data is measured with some natural variation, i.e. when the 

correlation between two variables or between multiple measurements of a 

single variable is less than perfect (Campbell and Kenny, 1999). It occurs 

because values are observed with random error. RTM states that when 

observing repeated measurements in the same subject, extreme 

observations are likely to fall closer to the subject’s true mean when they are 

measured again (Barnett et al, 2005).  

The RTM effect for a sub-sample depends on the strength of correlation 

between the two measurements (i.e. the ratio of between-subject variation to 

the total variation in the sub-sample) and the distance between the 

population mean and the cut-off point used to define the sub-sample. It can 

be estimated using the following formula (Barnett et al, 2005; Garcia-

Gallego, 2011): 
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respectively, within-subject and between-subject variance and � is the 

correlation between the two measurements. �(�)= �(�)/�(�), with � = (� −

�)/�� if the subsample is selected using � as a lower bound and � = (� −

�)/�� if the subsample is selected using � as an upper bound. �(�) and �(�) 

are, respectively, the probability density function and the cumulative 

distribution function of the standard normal distribution and � is the mean of 

the sample. This formula will be used later to estimate the RTM effect for 
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various subgroups within the dataset used in this chapter, which is 

introduced in the following section.  

5.4 Data 

5.4.1 The Millennium Cohort Study 

This chapter uses the Millennium Cohort Study, a recent large-scale 

longitudinal dataset, and includes data from the first four waves. The first 

wave was run between June 2001 and September 2002 in England and 

Wales and between September 2001 and January 2003 in Scotland and 

Northern Ireland, interviewing families of nearly 19,000 children aged around 

9 months. Children were selected using Child Benefit records and were born 

in all months of the year and across the UK. The sample was designed to 

reflect the total population, although certain sub-samples, such as children 

from disadvantaged backgrounds or ethnic minorities, were intentionally 

over-sampled. This makes it possible to examine issues related to these 

groups more robustly. However, weights are also provided which align the 

sample to the whole population. Fieldwork for the fourth wave of the study 

was concluded in December 2008, with over 13,800 families with over 

14,000 cohort children taking part. There was very little attrition between 

waves 3 and 4, as ninety per cent of families who had taken part in all of the 

previous MCS surveys (ages 9 months and 3 and 5 years) also participated 

at age 7. 

In terms of its suitability for dealing with the issue of RTM, the MCS 

has three key advantages. Firstly, the MCS includes several assessments 

that were carried out at more than one wave. Pattern construction 

assessments were carried out at age 5 and age 7, and the naming 

vocabulary subset of the British Ability Scales was carried out at age 3 and 5. 

This is an advantage compared to the data from the earlier longitudinal 

survey, the British Cohort Study (BCS), used in Feinstein (2003). In that 

paper, he constructed an ability index for each age because the cognitive 

assessment variables at each age were substantively distinct from the 

measures at the other ages. However, the MCS makes it possible to 

examine at the development of a single skill over time. Secondly, the children 



201 
 

underwent multiple assessments at age 3 (namely the Bracken School 

Readiness Test and the Naming Vocabulary component of the British Ability 

Scales) and at age 5 (namely Pattern Construction and Picture Similarity 

tests). Jerrim and Vignoles (2011) discuss how one way of dealing with RTM 

caused by selection is to divide up the sample using a certain assessment 

and measure progress from a different assessment. The presence of two 

different assessments at ages 3 and 5 in the MCS makes this possible. 

Finally, the MCS also contains family income measures and a rich array of 

variables on parental behaviours, child characteristics and other possible 

mediating factors to cognitive development, making it possible to control for 

these factors in a regression framework.  

5.4.2 Sample Selection 

The MCS employs a sophisticated stratified cluster sampling strategy 

with finite population sampling and varying probabilities of selection. The 

population was stratified to over-represent residents of areas with high 

proportions of ethnic minorities (in England), areas of high child poverty, and 

the three smaller countries of the UK. The datasets provide weights that align 

the sample to the population of the whole UK or the relevant country within it, 

and furthermore also account for any attrition that occurred at each wave. All 

regression based analysis in this chapter uses these weights.  

My sample is restricted further as I drop twins and triplets so that any 

within-family correlation does not affect the final outcomes. To deal with 

issues of missing data, I include missing dummies for most variables. Thus in 

the regressions including various controls, no observations are lost due to 

missing data. There is one key exception to this however, as I remove from 

the data all the children who do not have a test score recorded for all 

relevant tests (i.e. both pattern construction tests and picture similarity). 

Fortunately, this only affects 3.34% of the sample. The cognitive 

assessments had a very high participation rate, with the vast majority of 

cohort children taking part (Chaplin Gray et al, 2010).  
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5.4.3 Key variables 

5.4.3.1 Test scores 

The following table provides a summary of the cognitive assessments 

that were carried out at each wave (no cognitive assessments were included 

in the wave 1 survey as the children were still too young).  

 

Table 5-1: MCS Cognitive Assessments, waves 2 to 4 

Sub-Test  MCS2 MCS3 MCS4 Task  Ability/Process

(Age 3) (Age 5) (Age 7)

School Readiness

Bracken School √ Tests knowledge and 6 sub-tests including

Readiness understanding of colours, letters

basic concepts numbers/counting, sizes, 

Ability Scales         comparisons and shapes

Naming √ √ The chi ld is shown a Expressive 

Vocabulary series of pictures of Verbal Abi lity

objects and is asked to 

name them.

Pattern √ √ The chi ld is asked to Spatial Problem 

Construction repl icate a design using Solving

patterned squares.

Picture √ The chi ld is shown a Non-Verbal 

Similarities row of four pictures and Reasoning

is asked to identify a

further congruent 

picture.

Achievement Scales

Word √ The chi ld is asked to Educational 

Reading read a series of words Knowledge of 

presented on a card. Reading

Source: Adapted from Connelly (2013), Tables 1 and 3

 

In this chapter, I focus on Pattern Construction and Picture Similarity 

(the reasons for this are described in the methodology section). The Pattern 

Construction assessment, taken from the British Ability Scales, assesses 

children’s non-verbal reasoning and spatial visualisation, and can also be 

used to observe dexterity and coordination, as well as traits like 

perseverance and determination. It was carried out at waves 3 and 4 and as 
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such, provides a consistent picture of the children’s development in these 

skills between ages 5 and 7.  Picture similarity is a test of children’s problem 

solving abilities. Children are shown a row of 4 pictures on a page and asked 

to place a card with a fifth picture under the picture most similar to it (Hansen 

et al, 2012). Results are also checked using the Naming Vocabulary tests 

from waves 2 and 3 and Bracken School Readiness at wave 2. For all of 

these assessments, the MCS includes a variety of scores, including raw 

scores, percentage scores, age standardised scores and normative scores. I 

use standardised t-scores for all tests.  

5.4.3.2 Family Income 

In this chapter I use OECD equivalised family income, which is 

available as a derived variable for each of the four waves. While Violato et al 

(2011) used imputation techniques to derive a continuous income variable 

from the data that was available in bands, these derived variables have now 

been made available as part of the MCS dataset. The OECD equivalence 

scale provides a method of accounting for the size of the family. A value of 

one is assigned to the first household member while each additional adult is 

assigned a value of 0.7 and children a value of 0.5. This also removes the 

need carry out separate analyses for lone-parent households and two-parent 

households, as per Violato et al (2011).  

Table 5-2: Descriptive statistics 

Mean Std. Dev. Min Max Obs

Log of equiva l i sed family 

income, 9 months 5.57 0.68 2.67 7.16 7002

Standardised pattern 

cons truction,    age 5 0 1 -3.17 2.99 7087
Standardised pattern 

cons truction,    age 7 0 1 -3.03 2.49 7087
Standardis ed picture 

s imi lari ty,     age 5 0 1 -3.60 2.44 7087
Standardised naming 

vocabulary,     age 3 0 1 -2.51 2.64 6686
Standardised naming 

vocabulary,     age 5 0 1 -3.00 2.28 7086
Standardised bracken school  

readiness ,    age 3 0 1 -2.80 2.65 6335
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 Table 5.2 (above) provides standard descriptive statistics for the 

logged income variable (from wave 1) and the key test scores, all 

standardised to a mean of zero and a standard deviation of 1. Descriptive 

statistics split by high and low family income groups are included in the data 

section of the previous chapter.  

The following table (5.3, below) shows the raw numbers in each family 

income group and each ability group. The full sample is divided into quartiles 

according to OECD equivalised family income at wave 1 (9 months of age). 

Almost all analysis in the subsequent chapters focuses on high and low 

income children. For this reason, the sample was divided into quartiles rather 

than thirds, with the middle two income quartiles being combined to create 

the middle income group. The ability groups are defined by splitting the full 

sample into three equal groups, firstly according to the baseline pattern 

construction test score, and secondly according to the auxiliary test – picture 

similarity, both of which were carried out at age 5.  

Table 5-3: Raw Numbers and Row Percentages of Children by Family 
Income Group and Ability Group 

Low Medium High Total

Low 939 846 549 2,334

(40.23) (36.25) (23.52) (100)

Middle 622 897 815 2,334

(26.65) (38.43) (34.92) (100)

High 463 866 1,005 2,334

(19.84) (37.1) (43.06) (100)

Total 2,024 2,609 2,369 7,002

(28.91) (37.26) (33.83) (100)

* Row percentages in brackets

Low Medium High Total

Low 945 721 668 2,334

(40.49) (30.89) (28.62) (100)

Middle 721 796 817 2,334

(30.89) (34.10) (35.00) (100)

High 527 841 966 2,334

(22.58) (36.03) (41.39) (100)

Total 2,193 2,358 2,451 7,002

(31.32) (33.68) (35.00) (100)

* Row percentages in brackets

Ability (defined by Pattern Construction, age 5)

Equivalised 

Family 

Income

Equivalised 

Family 

Income

Ability (defined by Picture Similarity, age 5)
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 This table shows that children from low income families are more 

likely to be defined as low ability according to either test, and vice versa for 

children from high income families. The top section shows that when children 

are divided into ability groups by their baseline pattern construction score, 

40% of low income children fall into the low ability group, compared to 20% 

of high family income children, while 24% of low income children fall into the 

high ability group compared to 43% of high family income children. A very 

similar pattern is observed when the picture similarity test is used to divide 

children into ability groups.  

5.4.4 Family Income and RTM 

Now looking graphically at the contrast in scores between the higher 

and lower family income groups, especially in terms of their movement over 

time and the patterns of RTM in the data, figure 5.1 below shows scatter 

plots of standardised pattern construction scores at ages 5 and 7 by family 

income group, where the income groups are quartiles, determined using 

OECD equivalised family income. The graphs on the left and right show the 

top and bottom income quartiles, while the centre graph contains data on the 

two middle quartiles. The x and y axis are shown in red to help identify 

children who scored above or below average on each test. The 45 degree 

line is also drawn in red to show children who improved or fell back from one 

test to the next. Anyone scoring above and to the left of this line did better in 

the second test. If all the dots fell on the 45 degree line, there would be 

perfect correlation between the initial score and the follow up. Deviation from 

this indicates RTM. Therefore, the gradient of the line of best fit indicates the 

extent of RTM, which is greater the flatter the line is. In the graphs below, the 

line of best fit is less steep than the 45 degree line in each case. The two 

most interesting aspects of this set of graphs are the dramatic contrast 

between the high and low income groups in terms of the proportion of 

children scoring above or below average and the evidence of RTM.  
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Figure 5-1: Scatter Plots of Baseline and Follow-up Pattern Construction 
Scores 

 

The leftmost graph, for the low income group, shows that most 

children scored below average on the first test but of these, most did better in 

the second test; a few scored above average on the first test and most of 

these scored worse on the second test. The middle graph, for the mid 

income group, also shows that those who scored above average on the first 

test were more likely to do less well on the second test and vice versa. For 

the high income group (right hand side graph), most children scored above 

average on the first test and almost all of these also scored above average 

on the second test, though some less well than the first time; some scored 

slightly below average on the first test (though not as low as the low income 

group) and most of these did better on the second test. Thus the graphs 

show clear differences between income groups in the baseline scores and 

tendency to change, as well as evidence of RTM for all groups. It is 

particularly interesting to look at the two coloured triangles, as this shows the 

children from each income group who scored above average on the first test 

and maintained this or improved further on the second test. For the low 

income group, only 7% fall within this triangle, while for the high income 

group, 23% of the sample can be seen there. 

I now use the formula for RTM effects presented in section 5.1.3. This is 

reproduced below for the reader’s convenience 

���	������ = 	
��
�

���
����

�
�(�)= ��(1 − �)�(�)                     (5.1) 
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Where ��
� = ��

� + ��
� is the total variance, ��

� = (1 − �)��
� and ��

� = ���
� 

are, respectively, within-subject and between-subject variance and � is the 

correlation between the two measurements. �(�)= �(�)/�(�), with � = (� −

�)/�� if the subsample is selected using � as a lower bound and � = (� −

�)/�� if the subsample is selected using � as an upper bound. �(�) and �(�) 

are, respectively, the probability density function and the cumulative 

distribution function of the standard normal distribution and � is the mean of 

the sample. 

I firstly define two high ability groups; the first consists of those scoring 

above 54 in the first test – this is the “high ability” group used in the rest of 

the chapter and is approximately the top tercile. The second consists of 

those scoring above 60 in the first test, which is the mean score plus one 

standard deviation. I then further divide these groups into high, middle and 

low family income groups, and report results for the high and low income 

families.  

Results are summarised in table 5.4 below. These results confirm the 

prior expectation that high achievers from poor families display a larger RTM 

effect than children from richer families; and secondly that the RTM effect is 

greater for both groups when the cut-off score is more extreme, i.e. further 

from the mean. In this dataset, the fact that the children from poorer families 

display a larger RTM effect does not only have to do with the fact that their 

mean score is further from the cut-off than is the mean score of the children 

from more advantaged families, but is also because of the variation in the 

respective sub-samples, with high ability children from poor families showing 

greater within and between variation. The RTM effect I have calculated here 

is the expected change in the subsample’s mean for purely statistical 

reasons (Garcia-Gallego et al, 2011). In the following sections, I will present 

various methods to account for this effect so the “real” trajectories of the 

various subgroups can be compared more accurately.  
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Table 5-4: Estimated RTM effects: High Achievers from High and Low 
Income Families 

Total Observations: 11,222

High Ability Sample: Scored above 54 on the first test Scored above 60 on the first test

Family Income group: High Low High Low

Observations 1,865             1,241             798                625                

Population mean 54.4 49.5 54.4 49.5

Cut-off point 55 55 61 61

Within-variation among high achievers 3.93 4.18 3.90 4.59

Between-variation among high achievers 6.62 6.86 6.16 6.67

Total variation in sub-sample 7.53 7.81 7.10 7.79

Correlation between tests 0.77 0.77 0.75 0.73

z = (c-u)/ot 0.08 0.70 0.93 1.47

f(z) 0.40 0.31 0.26 0.14

F(z) 0.47 0.24 0.18 0.07

G(z) 0.85 1.29 1.46 1.91

RTM effect 1.70 2.81 3.05 4.98

  This section has introduced the data set I use and the key variables 

of the analysis, as well as some of the key trends in the data. There is clearly 

a difference in the mean scores of children from well-off families compared to 

those from less advantaged backgrounds as measured by family income. 

Furthermore, the data displays clear patterns of regression to the mean 

caused by variation within individual’s scores between survey waves. 

Furthermore, it also indicates that children from poor families are more likely 

to regress downward towards the mean if they start with a high score than 

children from rich families, and vice-versa. The next section will discuss my 

methodology, in particular different ways of accounting for this phenomenon.  

5.5 Methodology: Dealing with RTM 

This chapter has the aim of determining if the influence of income 

outweighs ability (i.e. whether low-ability, high family-income children 

overtake high-ability, low family-income children) in a way that is robust to 

the presence of RTM.  Several strategies for dealing with the issue of RTM 

are employed: focusing on comparable tests of the same skill over time; 

dividing the children into ability groups based on an auxiliary test; and 
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including the baseline measure as a covariate in OLS models. These three 

methods are described in detail below.  

5.5.1 Method 1: Comparable Assessments across Periods 

RTM can occur due to non-comparability of assessments since if tests 

are used that differ in scale or content, this will artificially reduce the 

correlation between an individual’s test scores over time. For example, if 

children were classified into a high ability group based on a maths test given 

in the first period, but the test in the second period focused more on 

language, some of the children who were classified as high ability initially 

would have much more average scores on the second test, simply because 

the ability measure is no longer focusing on their strongest skill (Ladd and 

Lauen, 2010). It is therefore important to use tests that measure the same 

skill in consecutive periods. 

With this in mind, there are several options using the MCS data, 

namely  

1) Create an ability index by combining various tests using principle 

component analysis 

2) Use vocabulary related tests across three periods – naming 

vocabulary in waves 2 and 3 and word reading in wave 4 

3) Restrict the analysis to two waves using naming vocabulary in 

waves 2 and 3 or pattern construction in waves 3 and 4 

Although option (1) was employed by Feinstein (2003) and Blanden, Katz 

and Redmond (2012), this approach may in fact have compounded the 

effects of RTM because the correlation between waves is artificially reduced 

by combining different tests in each period, as argued by Jerrim and 

Vignoles (2011). These authors therefore employed option (2), arguing that 

the naming vocabulary and word reading tests provide a comparable 

measure of language skills at the three ages. However, (as they also 

mention), these two tests are somewhat different in that naming vocabulary 

tests expressive language skills whilst word reading tests receptive language 

skills. Their scale is also different as naming vocabulary is scored between 

20 and 80 whilst word reading is scored between 55 and 145 and word 

reading also has a greater variance than the naming vocabulary tests. I have 
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therefore decided to restrict the analysis to two waves in this chapter. I have 

chosen to focus on pattern construction, using picture similarity at wave three 

as the auxiliary test (discussed further below), since these are the most 

recent measures. However, I also validate the analysis by using naming 

vocabulary at waves 2 and 3 with the bracken school readiness score as the 

auxiliary ability measure at wave 2. Using comparable tests for each wave of 

data eliminates RTM caused by non-comparability of assessments, which 

can be a key source of RTM as greater variation within individuals leads to a 

lower overall correlation in test scores across the relevant waves.  

5.5.2 Method 2: Ability Groups based on an Auxiliary Test 

Using an auxiliary test helps deal with a second source of RTM, 

namely selection, which arises if a test is used to classify children into low or 

high ability groups, but this score is not a perfect measure of their true ability. 

There is a random element in all the children’s scores and their result on a 

particular day will reflect their true ability as well as this random component. 

Children may therefore be classified as high ability partly due to good 

fortune, but would then be unlikely to experience this in the same measure 

when reassessed, leading to a regression towards the mean in their test 

scores. Furthermore, if there are two groups being compared that have 

different means but a single-cut off point is used to classify high achievers, 

the development of the two groups’ scores may differ because the cut-off 

point lies further from the mean of one group than the other and its members 

are less likely to meet it (and be classified as high ability) on two consecutive 

assessments. Particularly in the group with the lower true mean, people will 

have been classified as high-ability incorrectly in the sense that their true 

ability is not actually that high and they only achieved a high score due to 

random variation. The further the cut-off point from the group mean, the 

greater the RTM effect, which helps explain why the low SES group seems 

to be falling behind (Jerrim and Vignoles, 2011). The most well-known way of 

dealing with this type of RTM is to use the average of a series of tests carried 

out over a period of time (e.g. see Davis, 1976) to determine the 

classification into groups. However, as this is not possible in this case due to 

data limitations, I rely on an alternative option, namely dividing the children 
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into ability groups using one test, and measuring their development from a 

different test. 

This method was first suggested in an epidemiological context, as it is 

quite common within epidemiology for groups to be divided according to a 

baseline measure and for change to be calculated from this same measure. 

This can often give the impression that an extreme group has experienced 

significant improvement, while in fact it is just an expression of RTM. The 

reasoning behind this method is provided in Ederer (1972), who shows that 

classifying groups according to one measurement and measuring change 

from another can reduce or even eliminate the RTM effect. I present his 

approach below, and then apply it to the MCS data.  

Firstly, if we consider paired measurements �� and ��, the regression 

coefficient for �� on �� is given by ��� = ���
��

��
  where ���is the coefficient of 

correlation between �� and �� and �� and �� are the standard deviations. The 

slope (���) of the regression line will be less than one in the presence of 

regression to the mean.  

It is possible to deal with RTM by classifying on an auxiliary test 

because RTM takes places between the first and second measurements 

(Jerrim and Vignoles, 2011). In order to explore the continued divergence in 

scores beyond the second time period, we can explore the trivariate 

distribution of ��, �� and �� – test scores captured at time periods ��, �� and 

��. Of interest are the changes from �� to �� after classifying on ��. The 

following values for �� and �� are obtained if we classify on ��	(assuming 

bivariate normality between ��and �� and between �� and  ��): 

�� = �� + �����                 (5.2) 

�� = �� + �����                 (5.3) 

Measuring the change from �� obtained after having classified on �� is 

equivalent to solving the first equation for �� and substituting the solution into 

the second equation, which gives: 

�� = �� +
���

���
(�� − ��)                (5.4) 
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This makes the regression coefficient for �� on ��, having classified on ��, 

���(�) =
���

���
=

�����/��

�����/��
=

�����

�����
		             (5.5) 

We thus have ��� = 	���
��

��
  and ���(�) =

�����

�����
 . A reduction in the regression 

effect in the change from �� to ��  obtained by changing the classification 

point from �� to �� implies that ��� < 	���(�) making ��� < 	���/��� a necessary 

condition for the reduction of the regression effect; whilst the elimination of 

the effect implies that ��� < 	���(�) = 1, for which ����� = ����� is a necessary 

condition. 

Applying this to the MCS data, Table 5.5 below presents correlation 

coefficients and standard errors for the three tests, and calculates the 

relevant regression coefficients. It is important to mention that rather than 

there being several measurements of the same variable on different 

occasions, there is a baseline and a follow-up measure of the same variable 

(pattern construction scores at age 5 and 7) and another test score at age 5, 

namely the children’s scores on the picture similarity test taken on the same 

day as the first pattern construction test. Most studies that divide the groups 

according to one test and measure change from another use tests which are 

all measuring the same thing, whereas that is not an option in this case. 

Fortunately however, this doesn’t seem to be a problem, as the table below 

indicates that this method is able to remove the regression effect entirely in 

this case. This is shown by the fact that b��(�) = 1, which, as described 

above, is the necessary condition for the elimination of the regression effect. 

 The discussion above demonstrated that ��� < 	���/���is a necessary 

condition for the RTM effect to be reduced – that condition is fulfilled with this 

data since ��� = 0.54 <
���

���
= 0.90. Furthermore, the necessary condition for 

the RTM effect to be eliminated is ����� = ����� , which is fulfilled here almost 

exactly since �����	= 3.06 and ����� = 3.04. This leads to a coefficient of 

exactly one for the change between �� and �� after classifying on �� . This 

shows that dividing the groups using the picture similarity test score and 

measuring the change between the two pattern construction tests makes it 

possible to completely eliminate the RTM effect from the measure of change 
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in this case. This is especially encouraging as one concern is that since the 

two tests at age 5 were carried out on the same day, factors unrelated to the 

child’s true underlying ability (such as their health on that particular day) may 

have influenced both tests making the random component correlated across 

waves and leading to residual RTM effects remaining even when the 

auxiliary test is used. It is encouraging that this does not seem to be an issue 

in this case, judging by the fact that the figures above, calculated from the 

MCS data, fulfil the theoretical condition stipulated in Ederer’s analysis.  

Table 5-5: Using an auxiliary test to reduce or eliminate RTM effects – 
Picture Similarity and Pattern Construction figures 

Standard Errors Correlations

s1= 10.04 r21= 0.32

s2= 9.58 r31= 0.29

s3= 10.72 r32= 0.54

Results

r32= 0.54 s3r31= 3.06 b32= 0.60

r31/r21= 0.90 s2r21= 3.04 b32(1)= 1.00

(1 = picture similarity at age 5; 2 = pattern construction at age 5; 3 = pattern 

construction at age 7)

   

The effectiveness of this procedure is further demonstrated by the 

graphs below which demonstrate the extent of RTM in the MCS data and 

also the effect of using a different test as a baseline measure to classify 

children into groups initially. The graph on top shows the change in test 

score against the baseline. There is a strong indication of RTM as the graph 

shows that the higher a person’s score was at wave 2, the more likely it was 

for them to perform less well at age 5, while almost all those that scored 

poorly on the first test did better the second time. Campbell and Kenny 

(1999) note that a negative correlation between change and baseline such 

as this is an inevitable consequence of RTM. 
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Figure 5-2: Change in Pattern Construction Test Scores against Different 
Baseline Tests 

 

The lower graph shows how this can be dealt with using a different test as 

the baseline. Graphing the change in the pattern construction scores against 

the age 5 scores of the picture similarity test shows a very different pattern, 

where it seems that the link has been broken between the initial test score 

and the change in the two waves. This further confirms the effectiveness in 

dealing with RTM of using picture similarity test scores to divide the children 

into ability groups whilst measuring their development using the change in 

pattern construction scores between ages 5 and 7.  
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5.5.3 Method 3: Including the Baseline Measure as Covariate 

Numerous papers explore the factors which affect children’s cognitive 

outcomes at a particular point in time, (e.g. see Gregg et al, 2007; Blau, 

1999; McCulloch and Joshi, 2002, Violato et al, 2011). In these papers, 

various cognitive outcome measures (often from different periods) are 

examined in separate regressions but there is no lagged score included as a 

covariate. By focusing on children’s outcomes at a single point in time, these 

papers abstract from issues relating to the change in children’s test scores 

(i.e. the rate of their cognitive development), such as the issue of RTM. 

However, the question of children’s relative rates of cognitive development is 

extremely important. Furthermore, most policy debates revolve around the 

impact of certain factors (especially family income) on development. For this 

reason, it is imperative to have a robust framework where the impact of these 

factors on the rate of development can be examined. This section provides 

an alternative approach where rather than the children being divided into 

groups depending on their family income and early ability, family income is 

included as a covariate alongside other factors, allowing us to judge its 

impact conditional on other factors such as ethnicity and parental education.  

In econometrics, a commonly used specification is the value-added 

functional form. In this specification, the dependent variable is the follow-up 

measure or the gain score (i.e. the absolute change) and the baseline 

measure is included as a covariate, along with other covariates. To my 

knowledge, this functional form has not been discussed in the economics 

literature in relation to RTM. It is used more frequently in this way within 

epidemiology, where several papers recommend ANOVA as a possible 

means for compensating for RTM effects (e.g. Barnett et al, 2005)23. This 

section presents this functional form as a way of dealing with RTM, making it 

a simple but useful approach in econometric analysis. It starts with a criticism 

of using the change score as the dependent variable with no control for the 

baseline when RTM is present and shows how this can lead to biased 

estimates of other covariates. It then presents an argument for dealing with 

                                                           
23

 ANOVA and regression are very similar mathematically and operate according to a similar 
principle, both belonging to the general linear model.  
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RTM by including the baseline score as a covariate and discusses other 

relevant aspects of this approach.  

Where a baseline score is available and we are interested in 

examining the change in children’s scores over time, the most obvious 

dependent variable would simply be the absolute change between two 

periods, i.e.  

∆� = ��� − ���                        (5.6) 

where �� is the variable measured at time period 2, and �� is the measure at 

time period 1.  

We would thus estimate:  ��� − ��� = � + ��� + ��          (5.7) 

In fact, using this measure of change as the dependent variable places a 

very restrictive assumption on the functional form, as it is the same as 

estimating 

��� = � + ����� + ���� + ��                (5.8) 

under the assumption that �� = 1.  

Since  �� = ���
��

��
 

where ��� is the correlation between �� and ��, and �� and �� are the 

standard deviations, �� will only equal 1 if there is perfect correlation 

between �� and �� or in the rare cases where the greater variation in the 

baseline measurement exactly offsets the imperfect correlation. RTM can be 

expressed as imperfect correlation between the two measures, therefore 

whenever RTM is present it is highly unlikely that �� will equal 1. This means 

that using a change score as the dependent variable without including the 

baseline measure as a covariate will generally lead to incorrect estimates 

when the data displays RTM. 

Furthermore, if �� is not estimated but rather fixed at 1 in that �� is 

included on the left-hand side of the equation as part of the absolute change, 

�� can be seen as an omitted variable. If �� is correlated with any of the 

variables in �, omitting it will cause the parameter estimates on those 
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variables to be biased. For example, if there is a correlation between family 

income and baseline scores, the parameter estimates on family income will 

be biased by the omission of the baseline measure as a covariate. The 

strong correlation between family income and baseline ability in the MCS 

data make this an important issue in estimating the effect of family income on 

children’s development over time.  

Using the value-added functional form (also known as the conditional 

model), equation 5.8, can deal with RTM by explicitly modelling the 

correlation between the baseline measure and the measure of change. It is 

therefore recommended by Plewis (1985) and Twisk (2002). The relationship 

between the change score and the baseline is captured by the coefficient ��, 

thereby removing this as a source of bias from the other coefficients in the 

model, contained in the vector ��. Twisk (2002) writes that in this model, 

change is defined relative to the baseline score and that this relativity is 

expressed by the regression coefficient, such that “this model ‘corrects’ for 

RTM” (p186).  

The value-added functional form, including a lagged outcome as a 

covariate, has been much discussed in the econometric literature (e.g. see 

Hanushek, 1986, for a discussion of the advantages of this specification). 

Todd and Wolpin (2007) show that ‘strict value-added models that include 

lagged test scores and current inputs impose strong assumptions on the 

pattern of the coefficients associated with the inputs’ (p99), especially in 

regards to the fact that the impact of (observed and unobserved) inputs must 

decay geometrically over time. However, they also find that these 

assumptions are less strict if historical information on inputs is also included, 

as per Cunha and Heckman (2003) and the specification adopted below, 

which also uses historical inputs. 

In the econometric literature, the lagged test score is generally 

interpreted as a proxy for all unobserved individual heterogeneity, whereas in 

the value-added type model in this chapter, the lagged dependent variable 

has a different function, i.e. to provide a measure of change (development) 

that is robust to RTM. This aspect is emphasised within the epidemiological 

literature but as far as I am aware has not been widely discussed in an 

econometric context. 
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As Plewis (1985) and Twisk (2002) both show, if the baseline is 

included as a covariate, it is possible to use either the follow-up measure or 

the absolute change as the dependent variable, as the model above 

(equation 5.8) is mathematically equivalent to  
 

��� − ��� = �∗ + ��
∗�� + ��

∗� + �∗             (5.9) 

where a* = a, b1 * = (b1 -1) and b2* = b2 

Importantly, since ��
∗ = ��, the parameter values on covariates in a 

value-added type model can be interpreted as measuring the impact of that 

factor on the change in test scores over time. This means that when the 

baseline measure is included as a covariate, the other covariates indicate the 

effect of each factor on the child’s cognitive development, measured as 

change in standardised test scores over time.  

Finally, another model that deals similarly with the issue of RTM uses 

as its dependent variable the residuals from a regression of �� on ��. This 

works the same way as the conditional model to purge the correlation 

between the change in test scores and the baseline measure from the 

model. Results from this model will generally be very similar to results from 

the conditional model. I present results for both variants of this approach in 

the results section below. 

5.6 Results 

The results section is divided into two parts, the first part introduces the 

element of family income by analysing the progression of groups divided 

according to this factor (and baseline ability) and examines whether or not 

these groups show different rates of development over time, while the 

second section includes family income as an explanatory variable in 

regression based models, allowing us to measure the effect of family income 

conditional on further explanatory variables. 

5.6.1 Development Gradients of Children from Different Income and Ability 

Groups 

My first approach to examining the question of the role of family 

income is to examine the rates of change in cognitive outcomes between 
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children from various family income and ability groups. Similar to the 

approach adopted by Feinstein (2003), children are divided into groups 

based on their family background (in this case measured by equivalised 

family income at age 9 months) and their performance in a cognitive test. 

Rather than constructing an ability index using principle component analysis 

as Feinstein did, I focus on a single test – primarily, pattern construction. As 

discussed above, this test assesses children’s non-verbal reasoning and 

spatial visualisation, and can also be used to observe dexterity and 

coordination, as well as traits like perseverance and determination. It was 

undertaken by the cohort children at ages 5 and 7. Children are thus firstly 

divided into ability groups according to their family income and their 

standardised pattern construction score at age 5 (their baseline score). At 

the same time, an alternative grouping is constructed which uses an auxiliary 

test to account for the issue of RTM, namely the picture similarity test score. 

In this case, children are divided into ability groups according to their family 

income and their standardised picture similarity score at age 5.  

 

Figure 5-3: Developmental Gradients of Family Income - Ability Groups 

 

I firstly present a graphical comparison of the trajectories of the 

various family income and ability groups using both methodologies (figure 

5.3). This is analogous to the graph contained in Jerrim and Vignoles (2011) 

using naming vocabulary test scores from ages 3 and 5. The graphs below 
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present the standardised pattern construction scores at ages 5 and 7, with 

ability groups defined using the baseline score for the graph on the left and 

an auxiliary test (picture similarity) for the graph on the right.   

The graph on the left shows a clear pattern of RTM, with the high 

ability groups displaying negative gradients and the low ability groups rising 

upwards towards the mean. If we look at the graph on the right, however, the 

lines are much flatter, since the RTM effect has been removed. The high 

income, high ability group’s line now even slopes slightly upwards, whilst the 

high ability, low income group’s line still slopes downwards, though much 

less steeply than before. The lines of the low ability groups both appear to be 

essentially flat.  

These graphs show that the pattern seen in Feinstein (2003) and 

other analyses such as Blanden and Machin (2007), is largely the result of 

strong RTM patterns in the data. Once this is accounted for, the results look 

very different, which is also the conclusion reached by Jerrim and Vignoles 

(2011). However, although accounting for RTM has reduced the gradient of 

the high ability, low income group, it is still negative in the graph on the right. 

This indicates that a more robust analysis should be undertaken to determine 

whether or not bright children from disadvantaged families are indeed 

dropping behind. Whilst the analysis of the MCS data in Jerrim and Vignoles 

(2011) stops at the presentation of a graph similar to the above, in this 

chapter, I take this one step further and estimate the slope of the gradients to 

determine if they are in fact flat, or if any slopes are statistically significantly 

different from zero once the RTM effect has been removed.  

My next step is therefore to estimate these gradients using a 

regression-based approach. I run two separate regressions using these 

alternative groupings. Both regressions use pooled cross section data for 

each cohort member over the two waves and clustered standard errors. The 

dependent variable is the standardised pattern construction scores from 

ages 5 and 7, and the explanatory variables include a time dummy to 

indicate the survey wave, group dummies for the nine family income – ability 

groups, and interaction terms between the time dummy and the group 

dummies. The group dummies themselves indicate where each group starts 

relative to the others (e.g. the low income-low ability group has a low initial 
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starting point), while the interaction terms indicate the rate of development 

between the two waves. This allows us to check if different income-ability 

groups have different rates of development over this timespan. Most 

importantly, the second regression uses groups that were divided according 

to the auxiliary test, rather than the baseline score. Having accounted for 

RTM effects in this way, it thus allows us to examine whether there is still a 

difference in the rates of development. This would then justify greater 

confidence in giving this a substantive interpretation. These results are 

reported in Table 5.6 below.  

 
Table 5-6: Rates of Development for the Income-Ability Groups 

(1) (2)

Dependent Variable: Std. Pattern Construction Std. Pattern Construction

Ability groups divided by: Pattern Construction (age 5)Picture Similarity (age 5)

time 0.056* (0.026) 0.041 (0.032)

Low Ability, Low Income (LALY) -1.424*** (0.057) -0.627*** (0.079)

Low Ability Average Income (LAAY) -1.488*** (0.066) -0.307*** (0.083)

Low Ability, High Income (LAHY) -1.496*** (0.075) -0.176 (0.090)

Average Ability, Low Income (AALY) 0.098* (0.042) -0.108 (0.079)

Average Ability, Average Income (AAAY)# … …

Average Ability, High Income (AAHY) -0.087* (0.041) 0.171* (0.078)

High Ability, Low Income (HALY) 1.681*** (0.059) 0.266** (0.088)

High Ability, Average Income (HAAY) 1.491*** (0.049) 0.421*** (0.076)

High Ability, High Income (HAHY) 1.441*** (0.046) 0.484*** (0.074)

LALY*time 0.255*** (0.041) -0.051 (0.045)

LAAY*time 0.432*** (0.047) 0.005 (0.048)

LAHY*time 0.515*** (0.053) -0.036 (0.053)

AALY*time -0.135*** (0.038) -0.081 (0.048)

AAAY*time# … …

AAHY*time 0.086* (0.037) 0.038 (0.045)

HALY*time -0.675*** (0.045) -0.157** (0.050)

HAAY*time -0.472*** (0.039) -0.104* (0.045)

HAHY*time -0.345*** (0.036) -0.014 (0.043)

constant -0.090** (0.029) -0.021 (0.055)

N 14,174 14,174

r2 0.497 0.127

Standard errors in parentheses

# Reference case

* p<0.10, ** p<0.05, *** p<0.010

 

As can be seen in the table above, in both regressions, the low ability groups 
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start with a below average score and the high ability groups with an above 

average score. Especially in column two, it is apparent that that low ability - 

low income children started off lower than their low ability –high income 

counterparts, while high ability - high income children started even higher 

than their high ability – low income counterparts. 

Focusing on the interaction terms, in column one, there is strong 

evidence of RTM. The low ability groups all improve rapidly. Of these, the 

high income – low ability group improves fastest, with a coefficient of 0.515, 

while the low ability – low income group also improves, but somewhat 

slower, with a coefficient of 0.255. The high ability groups confirm the pattern 

of RTM, as they all drop downwards towards the mean. The high ability – low 

income group drops fastest, with a coefficient of -0.675, while the high ability 

– high income group has a coefficient of -0.345. This lends support to the 

argument that more of the low income children who were classified as high 

ability achieved this due to the random element in their scores rather than 

true ability, compared to the high income, high ability children.  

Turning now to the second model where the groups have been 

divided in such a way as to account for the issue of RTM (i.e. based on the 

auxiliary test), the low ability groups all have interaction terms which are not 

statistically significantly different from zero. Their relative rate of development 

is essentially flat over this period, which indicates that the negative gradient 

we can see in column 1 is entirely due to RTM effects. On the other hand, 

the high ability groups display an interesting pattern: we can see that the 

high ability – high income group’s coefficient is also insignificant at any usual 

significance level, but that the high ability low income group has a statistically 

significant negative coefficient of -0.157.  

That is the key finding of this section, i.e. that while the high ability, 

high income group’s line is flat once RTM is controlled for, the high ability - 

low income group still has a downward sloping gradient. This gives 

confidence in asserting that bright children from disadvantaged families do 

indeed display a slower rate of development and that this finding is not 

merely a statistical artefact. Comparing the coefficients for this group from 

the two specifications, without controlling for RTM, the coefficient is -0.675, 

while once this has been controlled for, it falls to -0.157 in the second 
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specification. RTM is clearly a very large part of the story and is operating for 

all income-ability groups. However, the strong significance of this coefficient 

in the second specification indicates that family income also has a 

substantive impact on the rate of development as measured at these ages.  

The second model has a lower R-squared than the first model. In this 

context, where the model only includes dummies for the various income-

ability groups and the interactions of these dummy variables with the time 

variable, the lower R-squared has the same meaning as the smaller 

parameter values, namely that income has less of an impact than is 

otherwise thought from models that use traditional methodology. However, 

more than 12% of variation is explained in this model, which shows there is 

still an important role for family income. It is also important to note that this 

approach rests on the assumption that the variance remains constant 

between the two tests. For this reason, the standardised test scores were 

used (i.e. where the standard deviation of the scores for each test had been 

standardised to 1).     

The number of cognitive assessments carried out as part of the MCS 

survey makes it possible to test the robustness of this finding. In particular, I 

have explored various combinations of the possible auxiliary tests, outcome 

tests and ages and found that while this result is not universal, it appears to 

be robust, as it holds true in the majority of specifications. The results for the 

standardised naming vocabulary tests divided by the baseline and the 

bracken school readiness test (as per Jerrim and Vignoles, 2011) also follow 

the above pattern (see appendix B). This is important as it allows us to 

generalise this result, rather than it being confined to a single measure of 

cognitive ability at ages 5 and 7. 

 In order to look in a more detailed manner at what is driving the result 

for the pattern construction test above, Figure 5.4 below provides scatter 

plots for the high and low income groups, divided into ability groups defined 

by the baseline score (left hand graph) and the auxiliary score (right hand 

graph).  Firstly, these graphs demonstrate substantive differences in the 

distribution of test scores between the high and low family income groups. 

For example, 40% of low income children are classified as low ability using 

pattern construction scores, compared to just 20% of the high income 
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Figure 5-4, Panels A and B: Breakdown of Pattern Construction Scores by Income and Ability Groups 

Panel A:         Panel B:       
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children. This leads to a concentration of low income children in the top left-

hand graph of Panel A, with an even greater concentration of these children 

(83%) sitting in the bottom left-hand quadrant (i.e. scoring below average on 

both tests). In the same vein, 43% of high income children were classified as 

high ability using the baseline measure, compared to only 24% of low income 

children, and 84% of these high ability - high income children scored above 

average on both tests, compared to 72% of the high ability - low income 

children. Furthermore, the straight lines on the edges of the distributions 

show the cohort members who scored the highest and lowest possible 

scores on each test. Low income children were much more likely to have the 

lowest possible scores, while more high income children achieved the 

maximum possible score on either test. Only eight low income children 

achieved the maximum possible score on the second test, compared to 35 

high income children. 

Secondly, the results from the analysis above in Table 5.5 can be 

further explained using these figures. In Panel A, we can see that in the 

bottom left graph (the HALY group), the great majority of the dots (78%) fall 

below the 45 degree line (almost none of the poor children initially classified 

as bright is able to maintain or improve upon their score in the second test); 

while in the top right graph (the LAHY group), the great majority of the dots 

(71%) fall above the 45 degree line (almost none of the children from well-off 

families initially classed as low ability fails to improve their score on the 

second test). When the alternative method is used in Panel B, the dots fall 

much more evenly on either side of the line, which shows that the alternative 

criterion for dividing the children into ability groups effectively combats this 

RTM effect. For the LAHY group, only 48% of dots sit above the 45 degree 

line once the groups are defined according to the alternative test.  As we saw 

above, the coefficient on the interaction term for this group became 

insignificant once the alternative grouping method was applied.  

The only group to retain a statistically significant coefficient was the 

high ability low income group, which showed a significant decline, even after 

the alternative classification method was employed. Looking at the panels 

above again, we can see that the dots in the bottom left graph of Panel B fall 

much more evenly around the 45 degree line than they do in the bottom left 
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graph of panel A. In fact, the proportion of dots falling below the line has 

decreased from 78% to 55%. Nonetheless, the line of best fit in the graph for 

this group is still flatter than any other in Panel B. The contrast to the 

gradient of the line of best fit for the high ability – high income group is 

particularly marked. This demonstrates that the standardised test scores of 

the HALY group were less strongly correlated between occasions than those 

of any other group, i.e. that although the children from well-off families 

maintained their good position over time, the children from less advantaged 

families failed to do the same.  

These findings indicate that high income children not only start at a 

higher baseline score, but are also improving relative to their peers from 

disadvantaged households, whilst low income children who are genuinely 

high ability (and not misclassified due to random error) score well initially but 

struggle to maintain this standard, relative to their high income peers. Given 

that the two tests (pattern construction and picture similarity) were taken on 

the same day, there may be reasons for RTM not being fully accounted for 

by this method. However, Table 5.5 above addresses this question using the 

formulas provided by Ederer (1972) and finds that the relevant coefficient is 

equal to unity, meaning that RTM is fully accounted for by using the picture 

similarity test as the auxiliary test. Furthermore, the method used seems to 

have totally removed the RTM effects among low ability children. These two 

points give confidence in asserting that a substantive interpretation of this 

finding is indeed appropriate.  

In summary, this section has demonstrated that RTM is a key factor 

behind the changes in scores between baseline and follow-up, that its effect 

differs in strength at either end of the ability spectrum depending on family 

income, and that it can be dealt with effectively by splitting the children into 

ability groups according to an auxiliary test rather than the baseline test.  

Using this methodology indicates that there are substantive 

differences between high and low income groups for both high and low ability 

levels, not only in terms of the baseline score, but also in terms of their rate 

of development over time. On average, high ability children from advantaged 

homes develop faster than high ability children from disadvantages homes. 

Examining similar results for naming vocabulary between ages 3 and 5 
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confirms this overall picture – that although RTM is highly prevalent in the 

change in the children’s test scores between waves, a child’s family income 

group has a genuine effect both on their baseline score and their 

development over time. 

5.6.2 The Effect of Family Income on Children’s Rates of Cognitive 

Development 

Another way of dealing with RTM, as discussed in the methodology 

section above, is by using conditional models where the test score in the 

second period (or, equivalently, the change in test scores) is conditional on 

the test score from the first period. This method ‘corrects’ for RTM because 

RTM is the tendency for there to be a less than perfect correlation between 

the second measure and the baseline. Including the baseline measure 

explicitly in the model removes this source of bias. The functional form of 

these models is the same as in “value-added” models where the baseline 

score is included as a proxy for individual heterogeneity  

The table below (Table 5.7) shows the effect of income on test scores 

under four different specifications, one using the absolute change as the 

dependent variable and not including the baseline measure as a covariate, 

as well as three conditional models. The first two conditional models have as 

the dependent variables the follow-up measure and the absolute change and 

account for RTM by including the baseline score as a covariate (these two 

are mathematically equivalent). The final model accounts for RTM by using 

as the dependent variable the residuals from a regression of the baseline 

measure on the follow-up measure.  

. The first model, where the dependent variable is the absolute 

change in scores, shows a statistically insignificant and very small effect of 

family income. In the methodology section, I argued that this model is 

misspecified. The effect of income is not apparent because the model does 

not account for RTM. This will be explained more fully below. Models (2) to 

(4) all show a statistically significant effect for income, as the coefficients on 

the low family income dummies are all significant. It can be seen that models 

(2) and (3) are mathematically equivalent as all the coefficients are exactly  
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the same, except for the coefficients on the baseline test score variable 

which differ by exactly one. The fourth model uses the residuals from a 

regression of the baseline measure on the follow-up measure as the 

dependent variable and has very similar coefficients on the family income 

dummies to models (2) and (3). The R-squared value is significantly lower 

because the baseline score is accounted for in a different way, rather than 

being included in the model as a covariate. In a set of parallel specifications 

where no control variables were included beyond the income groups and the 

baseline measure, models (2) to (4) showed strongly significant results for 

both the low family income and high family income dummies. However, the 

coefficients on these variables were not significant at any reasonable 

significance level in model (1).  

 

Table 5-7: Effect of Income under Different Specifications (Pattern 
Construction, age 5 and 7) 

(1) (2) (3) (4)

y2-y1 y2 y2-y1

Low Family Income Group -0.043 -0.096** -0.096** -0.091**

(0.036) (0.030) (0.030) (0.030)

Mid Family Income group # - - - -

High Family Income Group 0.014 0.047 0.047 0.045

(0.030) (0.029) (0.029) (0.028)

Baseline Pattern Construction 0.524*** -0.476***

(0.013) (0.013)

Controls YES YES YES YES

Constant -0.006 -0.186 -0.186 -0.180

(0.139) (0.113) (0.113) (0.113)

N 7,002 7,002 7,002 7,002

R2 0.04 0.36 0.27 0.06

Standard errors in parentheses;    # - Reference Category

* p<0.05,  ** p<0.01,  *** p<0.001

Dependent variables: standardised pattern construction scores

Income groups: Top and bottom tertiles of OECD equivalised income

Controls: family structure, parents labour market engagement and 

education, child gender, ethnicity, month of birth, birthweight, 

health, pre-school, family moved house

��
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The reason for the insignificance of the income variables in the first 

specification can be seen from the graphs below in Figure 5.5, which are 

scatter plots of change in pattern construction test scores against logged 

family income, firstly for the whole sample and then for three groups divided 

according to baseline pattern construction score.  

Figure 5-5: Change in Pattern Construction Score against Logged Family 
Income, Whole Sample and Ability Groups 

 

Although fitting a line of best fit to each of the three sub-groups shows 

a positive relationship between family income and change in test scores in 

each group, the line of best fit for the whole sample (which is equivalent to 

the slope estimate from the first model in the table above) is approximately 

flat. What these graphs demonstrate is the extent of RTM in the data and the 

strong relationship between family income and baseline score. The 

combination of these two factors results in the apparent independence of 

family income and change in test scores in the full sample.  

To be more specific, in the graph of low initial ability children, we see 

that most data points show a positive change in test scores (they lie above 

the x axis due to RTM) and also that the points are concentrated around a 

mean log income of 5.3; in the mid initial ability group, the scores fall slightly 

further right, with a mean logged income of 5.6, and that in terms of absolute 

change in scores they fall fairly evenly around zero, as those close to the 

mean of the distribution had no strong tendency to increase or decrease their 

scores; the third group, those with a high baseline score, have a mean log 

income of 5.8 and have most data points below the x axis, also due to RTM. 
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Breaking the sample into even smaller groups confirms this pattern, as the 

main body of scatter points in each graph moves further and further 

rightward and downward as the baseline ability group increases, while each 

graph shows a positive relationship between family income and change in 

test scores. These two effects just about cancel each other out in the full 

sample, such that the line of best fit between log income and change in test 

scores is essentially flat and the point estimate on logged income in a 

regression is very close to zero (0.06). This demonstrates how important it is 

to take account of each child’s baseline ability score when estimating the 

effect of family income on the change in their scores over time.  

Models (2) to (4) in Table 5.6 all try to do this, taking account of RTM 

by including the baseline measure as a covariate or by using a residual as 

the dependent variable. Residual change is graphed against logged family 

income in Figure 5.6 below to provide a comparison with the first model. We 

can see a dramatic change in the income gradient. This confirms the 

importance of family income as a factor influencing the rate of children’s 

cognitive development, even once RTM has been accounted for by using a 

conditional model where the relationship between baseline and follow-up 

scores is modelled explicitly.  

Figure 5-6: Absolute and Residual Change in Pattern Construction Scores 
against Logged Family Income 

 



231 
 

5.7 Conclusion 

This chapter has explored the impact of family income on the trajectories 

of cognitive development of children from different family backgrounds. While 

various studies have identified substantial gaps in achievement at particular 

ages, the question of development in terms of the rate of change in cognitive 

achievement over time is still an open question. Examining change in 

individuals’ scores over time introduces various methodological issues, and 

in this chapter I have focused on one of these, namely the issue of 

regression to the mean. Jerrim and Vignoles (2011) raises the question of 

whether the different rates of development between children from different 

family background and ability groups, as first identified in Feinstein (2003), 

may merely be the product of RTM, rather than evidence of substantive 

differences in the true development of these groups. Blanden et al (2012) 

calls for further work to be done in this area to distinguish true differences in 

children’s developmental trajectories from RTM effects. This chapter 

provides more detail on the RTM patterns in the MCS data, uses various 

methods to account for this and seeks to provide a more robust view of 

children’s true developmental trajectories up to age 7.         

My approach was firstly to focus on the development of a single skill over 

time to eliminate regression effects due to non-comparability, and secondly 

to use an auxiliary test to separate the children into their respective ability 

groups and measure change from a separate test (as per Ederer, 1972, and 

Jerrim and Vignoles, 2011). We saw that while this is effective in dealing with 

the issue of RTM, there is still evidence of a decrease over time for the high 

ability - low income group, while the other groups are steady once this 

method has been applied. I argue that rather than this decline being residual 

RTM, a substantive interpretation is appropriate, namely that the benefits 

accruing to young children in higher family income households not only help 

them to score better originally, but also help them to maintain this position, 

while the fact that children from low incomes drop back is also a product of 

their low family income, possibly due to a lack of environmental factors which 

are necessary to encourage children’s further development and help them 

keep up with their peers from well-off families.  
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My second method for dealing with the issue of RTM introduced another, 

quite simple, approach which is often used in epidemiology but has not been 

discussed in the econometrics literature in this context. This is namely to use 

a conditional model (or value-added functional form) where the baseline 

score is included as a covariate. It is necessary to use this functional form 

when examining the effects of family income on the change in children’s test 

scores over time, as my results show that the negative correlation between 

baseline score and the follow up score (i.e. RTM) is balanced out by the 

positive correlation between family income and baseline score, such that 

family income appears unimportant when a gain score is used as the 

dependent variable in a regression and the baseline is not included as a 

covariate. Once the baseline score is included as a covariate however, the 

effect of family income can be seen to be substantial and statistically 

significant.  

My results using these various methods all point in the same direction, 

demonstrating that although the test scores of children do include a large 

random component such that RTM is a key element of the change in these 

scores over time, family income nonetheless has an important role to play. 

The group of high achieving children from poor families was the only group to 

show a decline in performance after RTM had been controlled for in the way 

the ability groups were divided. Furthermore, the dummy variables for low 

family income were statistically significant in regressions showing the rate of 

development over time. Whilst the importance of dealing with RTM in order 

to reach a reliable conclusion has been demonstrated in this chapter, it is 

clear that family income does in fact dominate the ability effect in terms of 

rates of development, and that this is not just a statistical artefact. These 

results highlight the importance of a continued government policy focus on 

bright young children from poor families. 

James Heckman, a well-known US economist and Nobel Prize laureate, 

has argued that governments should invest heavily in disadvantaged young 

children, as this is one of the rare public policy initiatives ‘that promotes 

fairness and social justice and at the same time promotes productivity in the 

economy and in society at large’ (Heckman, 2006: p. 2). Policies which 

support and encourage bright children from poor backgrounds are thus 
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important not only from a social justice perspective, but also from the point of 

view of efficiency in the use of limited government resources. Policies which 

have been implemented in the UK which focus specifically on this group, 

such as the Young Gifted and Talented programme, will be discussed in the 

conclusion together with recommendations for how these can be developed 

further.  
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6 Conclusion 

6.1 Overview 

In the UK, a strong link between parental income and children’s 

educational and cognitive outcomes has long been established (Blanden and 

Gregg, 2004). Various aspects of this relationship have been examined in 

this thesis. The high degree of intergenerational transfer of advantage has 

implications for social mobility. Whilst the issue of social mobility has been 

increasingly prominent in the political arena, the role of education in social 

mobility remains ambiguous – does it function as “the great social leveller” or 

rather enable the privileged “to consolidate their position in society” (Major, 

2012, p155)? Whilst this question has not been explored extensively in the 

literature, there is some indication that education has been working as a 

force for maintaining the status quo. Blanden and Machin (2004) show that 

the relationship between family income and both participation in full time 

education at age 19 and degree attainment at age 23, actually strengthened 

as university participation expanded in the 1980s and 1990s. Galindo-Rueda 

and Vignoles (2005) also found that the influence of family background on 

university participation is growing and show that the decline in the 

importance of ability relative to the influence of family background is partly 

due to the fact that low ability children with high economic status experienced 

the largest increases in educational attainment in recent years. Whilst 

education has the potential to play an important role in facilitating social 

mobility, it can also serve to strengthen existing inequalities and even hinder 

mobility if it becomes a way of securing success for those who are rich but 

not especially able, and excluding the clever poor.  

The aim of the thesis has been to explore some the avenues through 

which income/social background influences educational outcomes, as this 

can provide insight into the barriers that those from poorer families face 

when accessing education. This thesis has focused on family income as a 

measure of social background, although socio-economic class was also used 

as a measure of family background in chapter three. Blanden and Gregg 

(2013) explores possible reasons why social mobility in terms of income 

seems to have fallen between 1958 and 1970, while social mobility in terms 
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of class remained constant. They find evidence that this has to do with 

changes in the permanent component of income that is unrelated to social 

class. In my own results in chapter three, I find very similar results for the 

effect of debt aversion on university participation, whether the sample is 

broken down by family income or by father’s socio-economic class. I 

therefore refer to “family background” in general, without differentiating 

explicitly between family income and family socio-economic class. Three 

specific aspects of the relationship between family background and children’s 

educational outcomes were explored in detail in the previous chapters. The 

implications of these findings will now be unpacked further, especially in 

relation to the issue of securing access to higher education for those from 

disadvantaged family backgrounds.  

6.2 Debt Aversion and University Participation 

In Chapter 3, I undertook an analysis of what determines the university 

participation decision, with a particular focus on the effect of debt aversion on 

this decision. Participation in higher education is an important avenue for 

progression for those from poorer families, however, it is possible that 

greater concerns about indebtedness act as a barrier to participation for this 

group. Although the student financial support system includes measures to 

support students from low-income backgrounds, debt aversion may act as a 

greater barrier for this group because a poor student taking on debt that 

equates to two or more years of family income may be put off compared to 

somebody for whom the fees are relatively much lower; and more directly, 

because we can expect richer students to end studies with less debt. 

The results suggest firstly that debt aversion acts as a barrier to 

university participation for all social groups. In logistic regressions with 

university participation as the dependent variable, the odds ratios on the debt 

aversion variables were well below unity and statistically significant. I ran 

separate regressions for each gender and also for different measures of debt 

aversion (a value-based measure using the statement “owing money is 

always wrong” and a risk-based measure using the statement “once you get 

into debt it is often very difficult to get out of it”), and found a clear, consistent 

pattern that debt aversion has a negative impact on university participation, 
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controlling for a wide range of other factors. The value-based debt aversion 

measure was statistically significant for both genders and the risk-based 

measure was significant for females. The size of the effect is also quite large, 

reducing the participation probability by as much as 20 percentage points in 

some cases. Given the literature on the relative unimportance of short-term 

credit constraints (Carneiro and Heckman, 2003; Dearden et al, 2004), this is 

an important result, and confirms the findings of Callender and Jackson 

(2005), that debt attitudes are an important factor affecting the university 

participation decision.   

One possible policy approach to addressing this issue relates to the 

information that is available to potential students. Barr (2010) discusses how 

information on student finance could be used more effectively to counteract 

low participation due to concerns about debt. Discussing the changes that 

were implemented in 2006, he highlights the need to educate people, firstly 

that studying is free to students (since it is graduates who pay); secondly that 

repayment operates as a payroll tax, meaning that student debt is very 

different from credit card debt, and thirdly that the total amount concerned is 

small when compared to the income tax payments and national insurance 

contributions graduates will make over their working lives. Information of this 

kind may help students overcome their concerns about debt, especially if a 

clear distinction is made between student loans and other financial 

responsibilities such as credit card debt. A recent National Union of Students 

report on student financial support in further and higher education (Heynat 

and Davies, 2012) highlights the complexity of the financial support system 

and the barriers this can create. Quoting Mangan et al (2010) they discuss 

the fact that a large proportion of potential students who would likely qualify 

for a bursary or grant (based on their household income) did not think in fact 

that they would, and that there was a reluctance to actively search for 

information regarding finances. For the bursary system in particular, criteria 

are often complex and vary greatly between institutions. For this reason, a 

case has been made for a national bursary system, as this would be much 

simpler and more transparent for students (Chester and Bekhradnia, 2008). 

Adnett (2006) and Adnett and Tlupova (2008) also highlight how the 

complexity of the system can act as a barrier to participation, noting that “this 
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decentralised approach to providing targeted support to students from low-

income families places a complex decision-making burden on those who 

typically are the least-informed and the least likely to possess the necessary 

skills” (2006, p307). These papers highlight how information can be used as 

a tool to overcome the barriers posed by debt aversion.  

Programs such as AimHigher appear to have had an important role to 

play in this regard. For example, a majority of students surveyed for one 

evaluative report (Passy and Morris, 2010) reported that “they learned 

through Aimhigher that the level of potential debt was manageable” (p32). 

AimHigher was closed in 2011, partly due to the general cuts in government 

funding arising from the need for austerity after the global financial crisis, and 

possibly partly in response to reports of the limited effectiveness of the 

program (Emmerson et al, 2006). However, the AimHigher program was very 

diverse and evaluation was not effectively built in to the program design from 

the outset (Wylie, date unknown). It seems that findings relating to its 

ineffectiveness have more to do with the difficulty of identifying (in an 

econometric sense) a significant, positive effect; while substantial qualitative 

evidence for its effectiveness in a more personal and individual way seems 

to have been given little weight. Despite questions as to its cost-

effectiveness, the program seems to have had an important role to play and I 

would recommend that it be re-established in the future, especially now that 

the increase in undergraduate fees means understanding the funding system 

is even more important for young people weighing up their options in regards 

to higher education.  

The second major finding of chapter 3 was that the effect of debt 

aversion did not differ by family background. Although the initial descriptive 

statistics showed that young people from lower family income groups (and 

lower social classes) were more likely to be debt averse, analysis of the 

effect of debt aversion on university participation showed quite consistent 

effects for all family income groups (and socio-economic class groups). This 

was analysed using various methodologies, including interaction effects, sub-

samples and a decomposition analysis. The only possible caveat to this was 

a slight suggestion that among females, the effect may be somewhat 

stronger for girls from low income families. Nonetheless, the overall picture 
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was clear – debt aversion has an effect on university participation across the 

board, not more or less so for young people from disadvantaged 

backgrounds.  

This stands in contrast to the findings of Callender and Jackson (2005), 

who found a clearer effect of debt aversion among young people from 

disadvantaged families. They found that debt aversion had a negative effect 

on university participation intention for their whole sample and for young 

people from the lowest social class group in particular, but found 

inconclusive evidence of this among young people from the middle and 

upper classes specifically. That is the major difference to my findings as I 

find a significant effect across the board. I would argue that this difference is 

due to the fact that two quite different systems of student finance were in 

operation when the surveys for each respective investigation were carried 

out. For the Callender and Jackson (2005) paper, young people were 

interviewed in 2002, when the system involved upfront fees and a different 

approach to student financial support. Although students from poor families 

would have received an exemption for fees, they would still have 

accumulated debt during their degrees as there were no maintenance grants 

available, but rather subsidised loans for living costs. On the other hand, it is 

understandable that debt was not a major issue for students from higher 

income families as their fees were paid up front and they were not eligible for 

the maximum amount of maintenance loans (Callender and Kemp, 2000), 

meaning their level of indebtedness at the end of their studies would have 

been lower than that of students from the lowest family income groups. By 

contrast, under the system that was in place when the LSYPE pupils were 

surveyed (the data used in my analysis), fees were higher (set at a maximum 

of £3,000 per annum rather than £1,000 per annum) and were to be repaid 

after graduation. Furthermore, whilst maintenance loans were available for 

all students, these were supplemented with maintenance grants for students 

from disadvantaged backgrounds. This means that debt had become a factor 

for students of all family backgrounds and helps explain why I found the debt 

aversion variables to be statistically significant for all family income groups in 

my analysis.  
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The student finance system has now changed again with fees having 

been increased to a maximum of £9000 per year and further changes to 

maintenance loans and grants as of the academic year 2012/13. These 

changes will lead to a substantial increase in the level of indebtedness of 

students on graduation. The results of my research indicate that this may 

have an impact on participation rates. Initial figures from a report from the 

Higher Education Funding Council for England (HEFCE, 2013) on the impact 

of the 2012 reforms indicate that fewer students than usual deferred their 

studies in 2011/12 (presumably to avoid the fee increase), which lead to an 

increase in applications in that year and a decrease in 2012/13 when the 

higher fee regime was implemented. It will not be possible to gauge the 

effect on the long-term trend of participation rates until more time has 

passed.  

Apart from deciding not to participate in university at all, other possible 

reactions to the increase in fees include delaying participation or choosing a 

university which makes it possible to live at home or where there are good 

opportunities for part-time work, though this may lead to compromises on the 

choice of course (Heynat and Davies, 2012). Another effect may be that 

more students start studying abroad, for example in continental Europe 

where fees are generally much lower and more courses are starting to be 

taught in English (Wilkins et al, 2013). Another important element of the 

current situation facing young people as they make decisions regarding 

higher education is that the increase in fees has come at a time when youth 

unemployment rates are very high. Although this may also increase the 

demand for education, on the other hand, the difficulties in securing graduate 

employment at the end of one’s studies, coupled with the prospect of high 

student debts, brings the overall return to investing in a degree into question. 

Estimates of the returns to a degree (e.g. Chevalier and Walker, 2001; 

Conlon and Patrignani, 2011; Walker and Zhu, 2011) indicate that 

historically, there have been substantial returns. However, this differs 

significantly by degree subject, with medicine and dentistry (Chevalier and 

Walker, 2001) as well as law, economics and management (Walker and Zhu, 

2011) offering the highest returns, whilst subjects such as modern foreign 

languages offer much lower private returns. This may mean that students’ 
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choices concerning their degree subject may also be affected by the 

increase in fee levels as financial considerations become more important. 

Both Callender and Jackson (2005) and my own research have 

demonstrated that debt aversion acts as a barrier to university participation, 

with my research showing that debt aversion affects actual participation 

(rather than just participation intention) and the fact that the effect now 

applies to young people across the board. However, it is nonetheless clear 

that the role of prior attainment is even more significant. Although debt 

aversion impacts on students with the necessary qualifications to participate 

in higher education, the achievement of these qualifications seems to be the 

major factor determining differential university participation rates between 

family income groups. Barr (2010) makes this point very strongly, 

demonstrating that entry into higher education depends on A-level points, 

which depend on GCSE results, which in turn depend heavily on family 

background. For this reason, the second and third empirical chapters of this 

thesis took a step back from the university participation decision at age 18 to 

explore factors affecting early educational attainment. These will now be 

discussed in more detail.  

6.3 Factors Affecting Children’s Cognitive Development  

Chapter four focuses on the factors which affect children’s cognitive 

development between ages 5 and 7 – the first few years of school. The 

analysis was carried out using data from the Millennium Cohort Study, and 

thus provides a very rich and up-to-date view of the factors affecting 

children’s cognitive development in the UK in recent years. The measure of 

cognitive development I focused on was pattern construction, which tests 

children’s non-verbal reasoning and spatial visualisation. This was chosen as 

measures were available for the same test at age 5 and age 7, and 

furthermore since it was considered to be a more pure reflection of 

‘intelligence’ whereas language based tests (such as the naming vocabulary 

tests available at ages 3 and 5) make it more difficult to distinguish ability 

and the influence of family background. Three sets of explanatory variables 

were considered, namely family income, school-related factors and a third, 

more general, group of ‘other factors’. Methodologically, the approach taken 



241 
 

was to use an augmented random effects (ARE) model so that both within-

subject and between-subject variation could be exploited, whilst assessing 

the consistency of these results by comparison to a fixed effects model using 

the Hausman test. This approach showed some interesting results, giving 

confidence in asserting that certain variables have a direct, independent 

effect on children’s cognitive development at this stage of their lives.  

The influence of family income has been a major topic in the relevant 

literature to date (e.g. see Mayer, 1997; Shea, 2000; Violato et al, 2011), 

much of which has been concerned with dealing with the problem of the 

endogeneity of family income. This arises as income is correlated with 

almost every other conceivable influencing factor. Existing papers have 

taken various approaches to dealing with this issue, and there is no clear 

consensus as to whether family income per se causally affects children’s 

development, although I would argue that the weight of evidence lies on the 

side of a positive response to this question. My own approach in this chapter 

has been heavily influenced by the lack of within-variation in families’ 

incomes over the waves examined. This lack of within-variation led to 

insignificant coefficients in the fixed effects models and meant that income 

had to enter separately as means and deviations from means in the ARE 

model. It is difficult to argue that the results provide evidence of a direct, 

causal effect of family income, however, the positive and significant 

coefficients in the OLS models and the ARE models do lend support to the 

findings of other papers which have demonstrated a direct effect of family 

income on children’s cognitive outcomes (Mayer, 1997; Dooley and Stewart, 

2004).  

The models estimated in chapter four control for a wide array of other 

factors and as such, give confidence in asserting that family income is in 

itself an important influencing factor contributing to children’s cognitive 

development in the first few years of school. Furthermore, the ARE model 

showed positive and statistically significant coefficients on the other money 

related factors, namely car usage, type of housing tenure (owning or 

mortgaging a house) and taking holidays abroad. In addition, there was also 

a positive and statistically significant coefficient on the school fees variable, 

although this measure was only available at one time point. All of this serves 
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to confirm further that family income does in fact have an important, 

independent role to play. This lends support for policies such as Child 

Benefit, which is currently available to everyone who is responsible for a 

child and is normally resident in the UK, and which consists of a weekly 

payment of £20.30 a week for the eldest child and £13.40 a week each for 

any other children. Cash benefits such as this can support a family’s income 

allowing them to invest in items that are useful for their child, according to the 

guardian’s own discretion. A ‘High Income Child Benefit Charge’ exists for 

parents earning over £50,000, and cancels out the amount of Child Benefit 

received. This helps to ensure that the Child Benefit is targeted at families 

who need it most.  

Regarding the impact of schooling and school quality, the results were 

much more ambiguous, which may in part be due to data deficiencies. 

Although the MCS included an important innovation in terms of linking school 

and teacher surveys into the individual household surveys, unfortunately the 

response rates on these were not high enough to facilitate the inclusion of 

school or teacher fixed effects. Hanushek (1986, 2005) has argued strongly 

that school quality is difficult to capture in proxy variables such as class size, 

expenditure or the qualification level of the teachers and recommends the 

use of school fixed effects instead. Since this was not possible with the MCS 

data, the inconclusive results achieved on the variables included may serve 

to further strengthen Hanushek’s argument, rather than indicating that school 

quality or quantity of schooling are truly unimportant.  

A key contribution of the analysis in chapter three is to identify specific 

factors which are important for children’s early development. In particular, 

certain factors had a positive but statistically insignificant coefficient in the 

fixed effects model, but when the between-subject variation in these factors 

was considered using the ARE approach, they became statistically 

significant and maintained their sign and approximate size. Specifically, 

these variables included the partner being the child’s natural father, the 

home learning environment and the money related factors mentioned above. 

In the same way, the negative coefficients on the number of siblings and on 

never taking one’s child to the library which were observed in the fixed 



243 
 

effects model also became statistically significant once the between-variation 

in these variables was included in the ARE framework.  

The importance of these variables is reflected in some current 

government policies such as the UK Government Child Poverty Strategy 

(Department for Education, 2010). One of the three major areas of this 

Strategy is a focus on family life (e.g. support for relationships). The results 

above suggest that the presence of the natural father and the atmosphere of 

the home were both important contributors to a child’s development, which 

lends support to this approach. Furthermore, women without a partner were 

significantly more likely to be in a lower family income group (more than 60% 

of women without a husband or resident partner are in the lowest income 

quartile). This lends further support to a focus on healthy families, especially 

as a second aim of the Strategy is financial independence rather than 

reliance on government benefits. The analysis also demonstrated the 

importance of the stability of the child’s environment, for example through the 

negative effect of having moved home since the last wave and in the positive 

effect of the parents owning or mortgaging the home. This could provide 

justification for increased government support for young families trying to buy 

a home. The importance of the library variable reflects parenting behaviours, 

on the one hand, but may also be taken as support for continued funding for 

local libraries themselves.   

It could be argued that family relationships and a stable home 

environment are not really the government’s responsibility. Indeed, the UK 

Government Child Poverty Strategy states that “Promoting good parenting is 

not primarily a job for the Government” (p38). Instead, it argues that what is 

required is “a much wider culture change towards recognising the importance 

of parenting, and how society can support mothers and fathers to give their 

children the best start in life” (ibid). Although that seems somewhat vague, it 

is made more concrete by support for family counselling services and the 

development of the Sure Start program which integrates professional, 

neighbourhood and family support systems. Although an initial evaluation of 

the program (Belsky et al, 2006) demonstrated less positive effects than had 

been hoped, a second evaluation (Melhuish et al, 2008) showed 

improvements, demonstrating that parents in Sure Start Local Program areas 
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used more services, engaged in more supportive parenting, and had more 

socially competent children. In particular, having studied 14 outcomes, 

researchers found beneficial effects associated with the programmes for five 

of these: children showed better social development, more positive social 

behaviour, greater independence; and families showed less negative 

parenting and provided a better home-learning environment24 (Melhuish et al, 

2008).  

Another variable that showed a significant, positive result in the ARE 

models was breastfeeding, along with days of gestation and birthweight. 

Although these variables couldn’t be checked against a fixed effects model 

for consistency since they can only be measured at one wave, this finding 

nonetheless lends support to papers such as Doyle and Denny (2010) and 

Fitzsimons and Vera-Hernández (2012) which use instrumental variable 

techniques to establish a significant positive effect of breastfeeding on 

cognitive development. Sure Start Centres now have a stronger health focus 

than in the past, and also play an active role in encouraging breastfeeding, 

for example through peer support programs. The centres appear to be an 

important support for families and children. There are currently 3,055 main 

Sure Start Children’s Centres and a further 501 additional support sites in 

England. Although an Early Intervention Grant was created as part of the 

2010 Spending Review to ensure that sufficient funds were available to 

support the continued provision of these services, in conjunction with Local 

Authorities, there have nonetheless been reports of the closure of an 

estimated 400 centres, due to funding cuts since the current government 

came to power (Butler, 2013). Continued political support and funding for 

these centres is important, and should be strengthened by the growing 

evidence base for the importance of the early years in setting children up for 

success in life. My own findings in chapter four lend further support to this 

and to the importance of integrating professional health and educational 

support with strong family structures.  

                                                           
24

 The full list of outcomes examined included children’s immunisations, accidents, language 
development, positive and negative social behaviours, and independence; parenting risk; home-
learning environment; father’s involvement; maternal smoking, body-mass index, and life 
satisfaction; family’s service use; and mother’s rating of area 
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6.4 Socio-Economic Differences in the Trajectories of Children’s 

Cognitive Development 

In chapter five, I examined whether the rate of cognitive development 

up to age 7 differs for children from more or less advantaged families. 

Although it has been established that gaps emerge early in the cognitive test 

scores of children from different socio-economic backgrounds, it is important 

to examine whether these increase, remain stable, or even fall when the 

children start school.  

The claim that bright children from poor families are overtaken by their 

peers from well-off families who initially scored below average (e.g. see 

Feinstein, 2003) has recently been disputed as being merely a product of 

regression to the mean (Jerrim and Vignoles, 2011). This issue was 

examined in detail in chapter five using various methodologies. By estimating 

the variation in scores due to RTM, I show that the RTM effect is greater for 

children from poorer families, whose mean score was further from the cut-off 

point used to divide children into ability groups. I also demonstrated how 

using an alternative test to determine these ability groups can help solve the 

problem of RTM and lead to accurate estimates of true change over time 

(based on Ederer, 1972 and Jerrim and Vignoles, 2011).  

Estimating change over time for various family income and ability 

groups using this methodology, I found that the high-ability, high-income 

group’s coefficient was insignificant at any usual significance level, but that 

the high-ability, low-income group had a statistically significant negative 

coefficient of  -0.157. This meant that while the high-ability, high-income 

group’s trajectory was flat once RTM was controlled for, the high-ability, low-

income group had a downward sloping gradient. Estimating the terms in this 

way alongside a graphical analysis gives confidence in asserting that bright 

children from disadvantaged families do indeed drop back behind their peers 

and that this finding is not merely a statistical artefact.  

I also showed that using a value-added functional form is imperative 

when RTM is present and found that the coefficient on the low family income 

group dummy variable was statistically significant in regressions where the 

rate of development over time was modelled in this way. Overall, the results 

of this chapter showed that while RTM is indeed a significant element of the 
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variation in children’s test scores, there is nonetheless a clear indication that 

children from poor families who score well initially, do drop behind their peers 

from more advantaged families. This provides further justification for a policy 

focus on bright children from poor families.  

The US economist and Nobel prize winner James Heckman has written 

extensively on the benefits of investing in early childhood education 

(Heckman et al, 2013; Heckman et al 2010; Cunha et al 2010; Doyle et al, 

2009) and has summarised his message in what he calls the Heckman 

Equation: Invest + Develop + Sustain = Gain. The message is that 

governments need to invest in educational and development resources for 

disadvantaged families, to nurture the early development of cognitive and 

social skills in children from birth to age five, and to sustain early 

development with effective education through to adulthood. The aim of all 

this is not only the direct benefit of the children concerned, but for the society 

as a whole to ‘gain a more capable, productive and valuable workforce that 

pays dividends for generations to come’ (Heckman, 2013).  In this vein, a 

new federal act has recently been introduced in the United States entitled “A 

Strong Start for America’s Children” (H.R. 3461), which is a major policy 

initiative providing for quality pre-school and other services for young 

children from disadvantaged families. Such policy initiatives are justified not 

only from a social justice perspective, but in terms of the benefits that accrue 

to society though having a healthier, better skilled workforce and the costs 

that are avoided, for example through reduced crime.  

The findings of chapter five confirm how important it is to support 

children from an early age so they do not drop behind their peers. It has 

recently been recommended by Graham Allen and Frank Field that the pre-

school years be referred to as “foundation years” to highlight their importance 

in laying a firm foundation for the child’s schooling and future life, and this 

has now been adopted in government documents (Department for 

Education, 2012). Although more efforts have been directed to the early 

years of a child’s life in recent years, there is still scope for vast 

improvements in this area and the government is currently developing a new 

‘vision’ for the foundation years. It is important to foster bright children from 

disadvantaged backgrounds from a young age to compensate as far as 



247 
 

possible for the comparatively smaller amount of inputs they receive at 

home.  

One more specific policy issue relevant for the UK is the effectiveness 

of the Young, Gifted and Talented program, which aims to identify high 

achievers and provide them with additional challenges to extend them both 

inside and outside the classroom. Although it was more developed in the 

past, the program is now very dependent on the individual school and not 

well supported by centralised government resources. The Gifted and 

Talented scheme of individual schools is assessed by Ofsted (the Office for 

Standards in Education, Children’s Services and Skills), but improvements 

are still dependent on the internal resources and priorities of the school. This 

is an area where government could increase the support it provides so that 

schools can identify and challenge their brightest pupils more effectively.  

6.5 Limitations of the Analysis 

One limitation of the analysis in this thesis relates to the identification of 

causal effects. Family background has been the dimension along which 

inequality has been measured in all three empirical chapters. As such, 

endogeneity is naturally a significant issue in this study, since family income 

is correlated with many unobservables which impact on educational 

outcomes. Furthermore, other factors of interest included in the models, 

notably debt aversion, may also be endogenous. Various approaches have 

been adopted in the thesis to address this issue, including the use of panel 

data models where the time-invariant component of unobserved individual 

heterogeneity can be cancelled out, as well as the use of control variables to 

‘mop up’ as much of the unobserved individual heterogeneity as possible. 

Nonetheless, there still remains some question as to how close the results 

achieved come to the true causal results of the factors examined. For 

example, in the ARE model in chapter 4, the family income variable 

unfortunately had to be split into the mean and the deviation from the mean 

for the Hausman test to accept the consistency of the model. Had it not been 

necessary to do this, it would have been much clearer that a statistically 

significant result on the family income variable would have been evidence of 
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a direct, causal impact of family income on children’s cognitive development 

in the first few years of school.   

A more robust approach would have been to use instrumental variables 

or a differences-in-differences approach. For future work, the identification of 

a suitable instrument for family income for use with this data would be a 

substantial development. One possibility for applying a differences-in- 

differences approach to examine the effect of family and other income on 

participation in post-compulsory education could be to use the natural 

experiment arising from the removal of the EMA. Since this was removed in 

England in 2011 but not removed in Wales, it would be possible to find a city 

in England and a city in Wales with comparable characteristics and a 

comparable trajectory of participation rates for post-compulsory education 

before the removal of the EMA, and to apply a differences-in-differences 

approach to establish the causal impact of the change in income available to 

pupils on participation in post-compulsory education. This approach would 

require administrative data to be made available to the researcher as well as 

linkages between datasets, such as the Individual Learner Record and the 

National Pupil Database; however, the results would be very interesting and 

would be a more robust example of the estimation of causal effects.  

 A further limitation to the analysis in this thesis is the issue of missing 

data. Both data sets used, the LSYPE and the MCS, had significant amounts 

of missing data on key variables, notably family income in the LSYPE and 

teacher and school data in the MCS. This has implications for the results 

presented, since in the worst case, missing data can cause bias in the 

parameter estimates. In particular, the missing family income data in the 

LSYPE may be MNAR – which is a cause for concern. In the future, an 

important development of the analysis would be to use maximum likelihood 

or multiple imputation to find appropriate values for the missing observations 

where family income is missing in the LSYPE data. This would improve the 

reliability of the results attained. For the MCS data, it is unfortunate that so 

much school and teacher data is missing due to nonresponse on the teacher 

surveys, as this prevented the effective estimation of school fixed effects.  

One further issue related to missing data in this analysis is the impact of the 

large number of single parent households. For these households, data on the 
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education and other characteristics of the child’s other parent was 

necessarily missing. Although this kind of missingness is more benign in 

some sense, as it does not lead to biased parameter estimates, it 

nonetheless represents a loss of potential information.  

 Finally, as well as these two main issues that affect the thesis as a 

whole, there are also chapter specific limitations. The introductory chapter 

presented human capital theory as the framework for the analysis, however, 

the empirical chapters have included elements which indicate the limitations 

of this framework. Other theoretical perspectives, such as Bourdieu’s work 

on cultural capital, or perspectives such as household decision making 

analysis, would help to rationalise the breadth of factors which have been 

shown to impact on children’s educational outcomes.  

For the debt aversion and university participation chapter, it is important 

to note that the results relate to a period before the recent substantial policy 

change which saw undergraduate fees increase to up to £9000 per annum. 

Especially given the finding that Callender and Jackson’s (2003) results from 

a still earlier policy environment seem to be no longer valid for the higher 

income group, it would be important for future analysis to use data which 

relates to the current situation. Nonetheless, the implications of the findings 

in chapter four are still important, as the effects of debt aversion are likely to 

be only more severe in a policy environment with higher fees.  

Regarding the chapter on factors affecting cognitive development, a 

future development could be to apply principle component analysis to 

examine the linkages and possible underlying structure behind many of the 

factors examined. For the trajectories chapter, a limitation of the analysis is 

the fact that only two time periods could be used – if data were available 

measuring a single skill over a longer time period, this would facilitate a 

substantially more robust assessment of these trends. Unfortunately 

however, pattern construction and picture similarity assessments have not 

been included in the design of the fifth wave of the survey. This 

demonstrates the difficulties in measuring a single skill over time, since as 

children develop, the most relevant skills to be tested also change.  

Finally, two issues which are of key importance to the issue of 

inequalities in educational outcomes by family background, but which have 
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not been addressed in this these, relate to educational quality (such as 

participation not just in university in general but in high quality institutions) 

and peer effects, which have also been shown to have important implications 

for children’s cognitive development (Sacerdote, 2001). These two issues 

represent fruitful potential areas for future research.  

6.6 Family Income and Children’s Outcomes: Tying the Threads 

Together 

Through the various strands of this thesis, we have been able to 

consider the question of whether education acts as a facilitator or hindrance 

to social mobility. Although education can provide a way out for young 

people from disadvantaged backgrounds, it can also act as a hindrance to 

mobility if it strengthens existing inequalities. This means that one of the key 

issues is access to education. The first element of this which was examined 

in the thesis is access to higher education, where university participation 

rates by family background were examined. 

 Although the results of the analysis in chapter three demonstrated that 

debt aversion does act as a barrier to participation, it was clear that the 

different participation rates between family income groups are not driven by 

this factor. The major cause of the gap in participation rates seems rather to 

be the fact that young people from different family backgrounds differ greatly 

in their achievement at school. For example, in the LSYPE data used in 

chapter three, less than a third of the males from disadvantaged 

backgrounds were taking two or more A-levels, compared to more than half 

of the males from advantaged backgrounds. This finding has implications for 

the way higher education is funded. Since government funds are limited, 

there is potentially a trade-off between subsidising higher education and 

investing more heavily in education before and during the school years. 

Reducing the cost of higher education to the individual student may be of 

limited effectiveness in increasing participation if the reasons for non-

participation are, first and foremost, related to school attainment rather than 

the cost of studying.  

A more effective way of achieving increased participation rates among 

non-traditional student groups may be to focus on raising ambitions and 
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achievement during the school years. Naturally, this must be accompanied 

by mechanisms which maintain the accessibility of the system to qualified 

candidates, such as the current funding system where university participation 

is free at the point of entry and fees are repaid out of earnings after 

graduation, alongside increased information relating to grants and bursaries, 

the mechanisms of the funding system, and the expected returns to various 

degrees.  

Since the gap in educational outcomes opens up well before age 18, I 

decided to explore earlier influences. Chapters 4 and 5 thus focused on 

outcomes at ages 5 and 7, the first few years of formal schooling. I found that 

children from disadvantaged families who score well initially do drop behind 

their peers from well-off backgrounds, and that this is a substantive finding 

and not merely a reflection of regression to the mean. Furthermore, factors 

which were shown to be important for children’s cognitive development at 

these young ages included family income (and other money related factors 

such as car usage), family structure (such as the presence of the natural 

father and the number of siblings), the home learning environment, parental 

behaviours (such as taking the child to the library) and stability (such as not 

moving home and living in a home that was owned or mortgaged). It is thus 

clear that the environment young children grow up in has a strong influence 

on their educational outcomes.  

The analysis also included variables surrounding or even previous to 

the child’s birth, including breastfeeding, birthweight and days of gestation. 

These variables were statistically significant, despite the large range of other 

background characteristics controlled for, which means that having started to 

look at gaps in university participation at age 18, we have now come further 

and further back in time to factors surrounding the birth of the child. This 

finding supports other recent research, such as Carneiro and Heckman 

(2002) and Restuccia and Urrutia (2004). This second paper investigated the 

major sources of persistence and inequality in earnings across generations 

in order to identify effective mechanisms for increasing social mobility, and 

found that increasing public resources devoted to early education would 

have a greater impact than increasing resources devoted to college 

subsidies. Based on findings like this, governments in the UK, the US and 
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other countries are now starting to invest more in the early years, in 

particular in programs relating to health and education for the first few years 

of a child’s life. Some programs even start before birth, educating expectant 

mothers (and fathers) about early childhood health issues and good 

parenting practices.  

The best approach appears to be found in programs that start early and 

continue to support children as they progress through school. Barr (2010) 

identifies three key sets of policies for increasing university participation as 

being 1) fostering early child development (e.g. through Sure-Start) 2) action 

to improve primary and secondary education outcomes and 3) policies to 

encourage staying on at age 16. Although this is very general, it highlights 

the need to start early and continue with young people as they grow up. 

More specifically, in terms of its outreach agenda, HEFCE has reported that 

outreach is most effective when it is delivered as a progressive, sustained 

programme of activity and engagement over time, and that outreach 

programs need to begin at primary level and reach young people at different 

stages of their educational career (HEFCE, 2013).  

One very successful program in the Unites States is the Harlem 

Children’s Zone, which also follows this framework. Focusing on an area of 

100 of the most deprived blocks in Harlem, New York, the program starts 

with pre-birth classes for families, continues with high-quality pre-school, 

specially supported primary and secondary schools, a strong support system 

for college applications, and further support throughout the college years. All 

elements of the program are interconnected, so that young people do not fall 

through the net and early gains are further capitalised upon in later stages of 

the child’s education. Since it is a neighbourhood program, it emphasises the 

children’s whole environment, and integrates a wide range of services 

relating to health, education and social issues. The program boasts very 

positive results including improved school-readiness for four year olds, 100% 

of third graders being on grade level in maths (well above the New York 

State average), and 90% of their high school seniors being accepted into 

college (Fryer, 2011).  

Naturally, such programs require a substantial financial commitment 

from government, or private sources. However, the return on these 
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investments has been estimated as being very high. As mentioned briefly 

above, the economist James Heckman has strongly advocated investments 

in early education, and has estimated the return on such investments to be 

as high as 10%. Due to the high incarceration rates in the United States, 

programs which serve young children who would otherwise have had a high 

likelihood of future incarceration present large savings to government funds. 

Incarceration rates are much lower in the UK, but there is nonetheless a 

parallel argument to be made, as, in 2013, 47% of the UK prison population 

held no academic qualifications, compared to 15% for whole working age 

population (Berman and Dar, 2013). There are also sizeable exchequer 

benefits from the increased employment rates and higher wage levels of 

better qualified individuals. In terms of returns to higher education, the net 

exchequer benefit to a degree (compared to someone holding two A-levels), 

has been estimated at £102,000 for men and £59,000 for women, whilst the 

associated rate of return to the Exchequer from the funding of these 

qualifications stands at 11.4% for men and 9.6% for women (Conlon and 

Patrigiani, 2011). There are also other social benefits of a highly qualified 

and skilled workforce, including improved health outcomes, and education-

related spillovers, whereby the labour market outcomes of those with lower 

levels of qualification attainment are improved by there being a greater 

proportion of more highly qualified workers in the labour force (Conlon and 

Patrigiani, 2011). Finally, globalisation serves to further increase the need for 

a highly educated and skilled workforce due to pressures to maintain 

international competitiveness (Leitch, 2005). 

The UK still demonstrates large educational attainment gaps between 

young people from different family backgrounds, despite many years of 

policies designed to address this issue. Understanding the barriers facing 

children from disadvantaged backgrounds can help facilitate improved 

education attainment and lead to greater social mobility. This thesis has 

highlighted several key issues – firstly, the fact that debt aversion poses a 

barrier to university participation to young people from all social 

backgrounds. Improved information regarding higher education funding 

mechanisms was suggested as a possible approach to addressing this issue.  
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We also saw that gaps in educational attainment open up very early, 

and also that children from poor families who score well on early tests do 

have a tendency to drop behind their peers from higher income families. This 

means it is important to start to support such children early and in a 

sustained way, so that early gains can be made and further capitalised upon, 

not allowing such students to drop behind.  

Finally, analysing the specific factors that are important for children’s 

early development highlighted the importance of family and the home 

learning environment, as well as stability, and the role of money itself. 

Programs such as Sure Start which integrate family and professional 

services and try to encourage children’s development from the very early 

years should be further supported and even increased, as is currently 

happening in the US. It is also important that programs which start early 

continue to follow through. Several UK programs (such as HEFCE’s outreach 

activity) have highlighted the importance of sustained, long-term programs 

which continue with children throughout school. Continued support for non-

traditional students in terms of awareness of higher education, the 

application process and support throughout the university years would be an 

important mechanism for encouraging success in higher education.  

The success of these students in the labour market also depends on 

the opportunities that are opened up to them, although analysis of such 

issues lies beyond the scope of this research. Social mobility is a major aim 

of the current coalition government. There is potential for education to play 

an important, positive role in achieving these aims, however, if this is to be 

realised, it is important to ensure that children from disadvantaged 

backgrounds are given a strong start to their educational career, such that 

opportunities for higher education are not closed to them from the outset. If 

this remains the case, education will continue to act as a force for 

maintaining current inequalities and stifling social mobility in the future.  
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Appendix A:  

Effects of Debt Aversion on University Participation, Males (1-3) and 

Females (4-6)

(1) (2) (3) (4) (5) (6)

atuni atuni atuni atuni atuni atuni

alwayswrong

Strongly Agree 0.353*** 0.375***

(0.075) (0.079)

Agree 0.409*** 0.371***

(0.063) (0.055)

Disagree 0.857 0.764**

(0.115) (0.099)

Missing 0.566** 0.598**

(0.161) (0.130)

*base category Strongly Disagree

hardout

Strongly Agree 0.937 0.347***

(0.265) (0.113)

Agree 1.511 0.469**

(0.405) (0.149)

Disagree 1.969** 0.708

(0.538) (0.230)

Missing 2.463*** 0.605

(0.790) (0.227)

*base category Strongly Disagree

Family Income Groups

           2: £10,400 to £25,999 1.188 1.151 1.165 1.409** 1.372** 1.376**

(0.211) (0.202) (0.208) (0.223) (0.217) (0.217)

           3: £26,000 to £41,599 1.591** 1.506** 1.540** 1.605*** 1.591*** 1.566***

(0.287) (0.268) (0.280) (0.275) (0.273) (0.267)

           4: £41,600 and above 1.949*** 1.850*** 1.861*** 1.771*** 1.725*** 1.718***

(0.353) (0.330) (0.340) (0.303) (0.297) (0.293)

Missing 1.564** 1.505** 1.541** 1.305 1.300 1.306

(0.287) (0.274) (0.284) (0.224) (0.223) (0.224)

*base category, up to £10,399

Key Stage 2 Test Scores

2 2.216* 2.213* 2.186 1.253 1.197 1.252

(1.044) (1.051) (1.040) (0.433) (0.420) (0.435)

3 3.508*** 3.399*** 3.465*** 2.826*** 2.743*** 2.840***

(1.511) (1.474) (1.505) (0.922) (0.907) (0.934)

4 6.779*** 6.526*** 6.719*** 3.805*** 3.509*** 3.745***

(2.849) (2.758) (2.840) (1.222) (1.139) (1.217)

5 8.283*** 8.066*** 8.157*** 6.383*** 5.945*** 6.181***

(3.476) (3.402) (3.459) (2.004) (1.886) (1.963)

6 13.599*** 12.646*** 13.151*** 5.896*** 5.268*** 5.640***

(5.626) (5.270) (5.503) (1.839) (1.663) (1.776)

7 15.073*** 13.471*** 14.643*** 8.226*** 7.072*** 7.811***

(6.230) (5.610) (6.114) (2.545) (2.214) (2.441)

8 21.869*** 19.437*** 21.379*** 14.881*** 12.708*** 14.119***

(8.984) (8.037) (8.862) (4.600) (3.973) (4.410)

9 30.212*** 26.389*** 28.630*** 18.646*** 15.277*** 17.670***

(12.384) (10.891) (11.844) (5.792) (4.801) (5.536)

10 60.560*** 49.064*** 56.350*** 26.367*** 21.700*** 25.079***

(24.959) (20.312) (23.426) (8.227) (6.854) (7.919)

Missing 17.327*** 15.900*** 17.344*** 6.959*** 6.338*** 6.890***

(7.380) (6.817) (7.454) (2.402) (2.232) (2.394)

*quartiles, base category lowest scores
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Ethnicity

mixed 0.749 0.711 0.739 1.485* 1.483 1.486

(0.178) (0.177) (0.186) (0.351) (0.355) (0.358)

indian 4.394*** 4.399*** 4.152*** 5.867*** 5.894*** 5.789***

(0.869) (0.881) (0.842) (1.221) (1.254) (1.219)

pakistani 2.787*** 2.788*** 2.746*** 3.645*** 3.712*** 3.751***

(0.574) (0.569) (0.568) (0.677) (0.679) (0.707)

bangladeshi 3.432*** 3.664*** 3.608*** 4.792*** 4.977*** 4.860***

(0.857) (0.950) (0.902) (0.963) (0.990) (0.985)

black caribbean 1.276 1.250 1.284 2.209** 2.206** 2.155**

(0.323) (0.324) (0.325) (0.685) (0.684) (0.681)

black african 2.609*** 2.491*** 2.578*** 5.661*** 5.928*** 5.510***

(0.740) (0.741) (0.741) (1.740) (1.815) (1.754)

otheth 1.510 1.580 1.511 3.908*** 3.794*** 3.720***

(0.520) (0.555) (0.522) (1.043) (1.025) (0.987)

*base category white

Long-standing health problem 

or disability

Yes 0.887 0.888 0.904 0.816 0.826 0.837

(0.154) (0.159) (0.157) (0.129) (0.133) (0.133)

Missing 0.979 1.128 0.992 1.351 1.366 1.244

(0.419) (0.522) (0.444) (0.547) (0.557) (0.522)

Siblings

1 0.838 0.780 0.820 1.005 0.985 0.956

(0.132) (0.125) (0.131) (0.146) (0.143) (0.140)

2 0.680** 0.642*** 0.671** 0.778* 0.757* 0.742*

(0.112) (0.107) (0.112) (0.118) (0.116) (0.114)

3 0.616*** 0.596*** 0.602*** 0.758 0.725* 0.720*

(0.116) (0.113) (0.114) (0.128) (0.124) (0.123)

4 or more 0.557*** 0.553*** 0.551*** 0.420*** 0.408*** 0.405***

(0.117) (0.117) (0.118) (0.082) (0.079) (0.080)

Missing 0.589 0.555 0.615 1.232 1.377 1.190

(0.270) (0.269) (0.282) (0.523) (0.574) (0.489)

Non traditional family

Yes 0.650*** 0.649*** 0.647*** 0.675*** 0.682*** 0.692***

(0.086) (0.087) (0.087) (0.086) (0.088) (0.089)

Missing 0.543** 0.511** 0.520** 0.547** 0.556** 0.535**

(0.156) (0.151) (0.150) (0.143) (0.147) (0.146)

Father has a degree

Yes 1.996*** 1.903*** 1.963*** 1.562*** 1.549*** 1.548***

(0.257) (0.250) (0.255) (0.200) (0.202) (0.199)

Missing 0.961 0.993 0.978 0.891 0.880 0.873

(0.132) (0.138) (0.135) (0.119) (0.120) (0.119)

Mother has a degree

Yes 1.374** 1.329** 1.364** 1.248* 1.210 1.234*

(0.171) (0.169) (0.171) (0.159) (0.155) (0.158)

Missing 0.738 0.737 0.718 0.629** 0.628** 0.656**

(0.150) (0.152) (0.147) (0.122) (0.125) (0.128)

Urban indicator

Yes 0.792** 0.794** 0.783** 0.869 0.854 0.879

(0.084) (0.085) (0.084) (0.087) (0.087) (0.088)

Missing 1.417 1.480 1.396 0.000*** 0.000*** 0.000***

(0.566) (0.591) (0.561) (0.000) (0.000) (0.000)  
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Region

NorthEast 0.797 0.757 0.795 1.112 1.105 1.104

(0.185) (0.177) (0.188) (0.232) (0.233) (0.233)

NorthWest 0.742* 0.734* 0.736* 1.298 1.291 1.281

(0.119) (0.120) (0.119) (0.210) (0.212) (0.208)

YorkandH 0.660** 0.675** 0.657** 1.201 1.152 1.180

(0.121) (0.125) (0.121) (0.205) (0.197) (0.203)

EastMid 0.537*** 0.550*** 0.514*** 1.032 1.050 1.027

(0.101) (0.104) (0.098) (0.182) (0.187) (0.180)

WestMid 0.530*** 0.523*** 0.534*** 1.048 1.042 1.045

(0.093) (0.092) (0.094) (0.178) (0.178) (0.178)

EastofEng 0.589*** 0.571*** 0.568*** 0.796 0.769 0.783

(0.103) (0.100) (0.100) (0.135) (0.132) (0.134)

SthEast 0.501*** 0.494*** 0.495*** 0.898 0.888 0.873

(0.082) (0.081) (0.081) (0.145) (0.145) (0.141)

SthWest 0.398*** 0.387*** 0.404*** 0.856 0.792 0.813

(0.081) (0.079) (0.083) (0.161) (0.150) (0.152)

* base category, London

Oberservations 4920 4920 4920 4869 4869 4869

R-squared 0.234 0.249 0.242 0.201 0.215 0.209

Exponentiated coefficients; Standard errors in parentheses

* p<0.10,  ** p<0.05,  *** p<0.010
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Appendix B: 

Rates of Development for Income-Ability Groups (Validation using alternative 

tests) 

(1) (2)

Dependent Variable: Naming Vocabulary Naming Vocabulary

Ability groups divided by: Naming Vocabulary Bracken School

(age 3)  Readiness (age 3)

time 0.058** (0.024) -0.025 (0.026)

Low Ability, Low Income (LALY) -1.203*** (0.025) -1.045*** (0.038)

Low Ability Average Income (LAAY) -0.975*** (0.021) -0.709*** (0.035)

Low Ability, High Income (LAHY) -0.903*** (0.030) -0.566*** (0.067)

Average Ability, Low Income (AALY) -0.100*** (0.016) -0.283*** (0.046)

Average Ability, Average Income (AAAY)#

Average Ability, High Income (AAHY) -0.037** (0.016) 0.057 (0.040)

High Ability, Low Income (HALY) 1.061*** (0.033) 0.252*** (0.063)

High Ability, Average Income (HAAY) 1.086*** (0.019) 0.536*** (0.036)

High Ability, High Income (HAHY) 1.146*** (0.024) 0.562*** (0.039)

LALY*time 0.261*** (0.040) 0.071* (0.041)

LAAY*time 0.491*** (0.040) 0.122*** (0.041)

LAHY*time 0.761*** (0.065) 0.127 (0.077)

AALY*time -0.085* (0.044) 0.008 (0.052)

AAAY*time#

AAHY*time 0.272*** (0.047) 0.152*** (0.048)

HALY*time -0.796*** (0.057) -0.126* (0.068)

HAAY*time -0.538*** (0.034) -0.130*** (0.040)

HAHY*time -0.371*** (0.038) 0.052 (0.044)

constant -0.108*** (0.012) 0.105*** (0.023)

N 11,986 11,986

r2 0.528 0.284

Standard errors in parentheses

# Reference case

* p<0.10, ** p<0.05, *** p<0.010
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Appendix C: Examples of STATA Output 

 

Raw Output for Table 3.4 (Columns 1 to 6) 

 

 

 

 

 

                                                                              
     RegMiss    (omitted)
     SthWest     .3981678   .0810437    -4.52   0.000     .2671844    .5933638
     SthEast      .501046   .0818739    -4.23   0.000     .3637358    .6901906
   EastofEng     .5890632   .1032073    -3.02   0.003     .4178558    .8304191
     WestMid     .5302583   .0931589    -3.61   0.000     .3757884    .7482239
     EastMid     .5365069   .1005158    -3.32   0.001     .3716215    .7745506
    YorkandH     .6602177   .1212618    -2.26   0.024      .460625    .9462956
   NorthWest     .7420872   .1193727    -1.85   0.064     .5414146    1.017138
   NorthEast     .7974669   .1854115    -0.97   0.330     .5056009    1.257817
              
        999       .737726   .1495158    -1.50   0.133     .4958851    1.097512
          1      1.373908   .1713399     2.55   0.011     1.075981    1.754329
  mothdegree  
              
        999      .9614263   .1319543    -0.29   0.774     .7346659    1.258178
          1       1.99605   .2570592     5.37   0.000      1.55078    2.569168
  fathdegree  
              
         99       .543193   .1563945    -2.12   0.034     .3089432    .9550577
          1      .6501754   .0860709    -3.25   0.001     .5015885    .8427787
  brokenhome  
              
        999       .589458    .269562    -1.16   0.248     .2405438     1.44448
          4      .5571091   .1172069    -2.78   0.005     .3688595     .841433
          3      .6159177   .1155037    -2.58   0.010     .4264774     .889507
          2      .6802134   .1119939    -2.34   0.019     .4926051    .9392722
          1      .8379626   .1317975    -1.12   0.261     .6156656    1.140524
    siblings  
              
        999      1.417179    .565762     0.87   0.382     .6480532    3.099124
          1        .79243   .0842632    -2.19   0.029     .6433514    .9760533
       urban  
              
        999      .9794403   .4186264    -0.05   0.961     .4238016    2.263567
          1      .8866818   .1536849    -0.69   0.488     .6312953    1.245383
hlthprobdi~b  
              
      otheth     1.509672   .5202767     1.20   0.232     .7683053    2.966411
   blafrican     2.609015   .7400851     3.38   0.001     1.496308    4.549171
 blcaribbean     1.276237   .3233256     0.96   0.336     .7767571    2.096897
 bangladeshi     3.432458   .8572705     4.94   0.000     2.103847    5.600107
   pakistani     2.786632   .5736633     4.98   0.000      1.86144    4.171673
      indian     4.393731   .8694008     7.48   0.000     2.981286     6.47535
       mixed     .7489349   .1784887    -1.21   0.225     .4694431    1.194828
              
        999      17.32674   7.380312     6.70   0.000     7.518791    39.92873
          9      60.55969    24.9591     9.96   0.000     27.00033    135.8308
          8      30.21232   12.38393     8.31   0.000     13.52943    67.46658
          7       21.8686   8.984079     7.51   0.000      9.77529    48.92293
          6      15.07335   6.230488     6.56   0.000     6.704556    33.88826
          5       13.5991   5.625839     6.31   0.000     6.044706    30.59465
          4       8.28349   3.475697     5.04   0.000      3.63961    18.85262
          3      6.779403   2.849496     4.55   0.000     2.974522    15.45132
          2      3.508022   1.510561     2.91   0.004     1.508458    8.158141
          1      2.216411   1.044366     1.69   0.091     .8801704    5.581279
        key2  
              
        999      1.564113   .2866978     2.44   0.015     1.092056    2.240222
          4      1.949478   .3530222     3.69   0.000     1.367031    2.780089
          3      1.590686   .2869752     2.57   0.010     1.116913    2.265424
          2      1.187566   .2107541     0.97   0.333     .8386823    1.681583
  famincgrps  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2124.8556                 Pseudo R2       =     0.2342
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(44)   =     724.34
Logistic regression                               Number of obs   =       4920

Iteration 5:   log pseudolikelihood = -2124.8556  
Iteration 4:   log pseudolikelihood = -2124.8556  
Iteration 3:   log pseudolikelihood = -2124.8936  
Iteration 2:   log pseudolikelihood = -2128.3216  
Iteration 1:   log pseudolikelihood = -2190.5882  
Iteration 0:   log pseudolikelihood = -2774.7585  
note: RegMiss omitted because of collinearity

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==1, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
. logit atuni i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican ///
. **** Males
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     RegMiss    (omitted)
     SthWest      .386643   .0792343    -4.64   0.000     .2587464    .5777581
     SthEast     .4935024   .0810642    -4.30   0.000     .3576583    .6809421
   EastofEng     .5709236   .1002316    -3.19   0.001     .4047069     .805407
     WestMid      .523487   .0921576    -3.68   0.000     .3707282    .7391901
     EastMid     .5499938   .1038674    -3.17   0.002     .3798453    .7963589
    YorkandH      .674525   .1254752    -2.12   0.034     .4684438     .971267
   NorthWest     .7338815    .120304    -1.89   0.059     .5322184    1.011957
   NorthEast     .7571056   .1767641    -1.19   0.233      .479097    1.196436
              
        999      .7370075   .1520947    -1.48   0.139     .4918256    1.104416
          1      1.329151   .1685989     2.24   0.025     1.036578    1.704303
  mothdegree  
              
        999      .9927521   .1383546    -0.05   0.958     .7554633    1.304573
          1      1.903163   .2503345     4.89   0.000      1.47066     2.46286
  fathdegree  
              
         99      .5107787   .1506867    -2.28   0.023     .2864948    .9106447
          1      .6493416   .0871197    -3.22   0.001     .4991956     .844648
  brokenhome  
              
        999      .5552873   .2686767    -1.22   0.224     .2151109    1.433419
          4      .5529307   .1171998    -2.80   0.005     .3649633    .8377073
          3      .5962011   .1129944    -2.73   0.006     .4112157    .8644022
          2      .6416442   .1073251    -2.65   0.008     .4622932    .8905763
          1      .7798686   .1249173    -1.55   0.121     .5697419    1.067492
    siblings  
              
        999      1.479734   .5908475     0.98   0.326     .6765577    3.236403
          1      .7941845   .0852677    -2.15   0.032     .6434756     .980191
       urban  
              
        999      1.127761     .52161     0.26   0.795     .4555345    2.791986
          1      .8878565   .1591447    -0.66   0.507     .6248392    1.261587
hlthprobdi~b  
              
      otheth     1.579872   .5548868     1.30   0.193     .7937082    3.144729
   blafrican     2.491098    .740786     3.07   0.002     1.390805    4.461855
 blcaribbean     1.250183   .3237997     0.86   0.389     .7525071    2.076999
 bangladeshi     3.664262   .9495184     5.01   0.000     2.205033    6.089168
   pakistani      2.78776   .5685651     5.03   0.000     1.869186     4.15775
      indian     4.398962   .8805961     7.40   0.000     2.971353    6.512474
       mixed     .7114096   .1768591    -1.37   0.171     .4370265    1.158062
              
        999      15.90038   6.817399     6.45   0.000     6.861974    36.84394
          9      49.06431   20.31218     9.40   0.000     21.79596    110.4474
          8      26.38937   10.89051     7.93   0.000     11.75304    59.25264
          7      19.43657   8.036715     7.18   0.000     8.642937    43.70972
          6      13.47059   5.610345     6.24   0.000      5.95485    30.47209
          5      12.64634   5.269696     6.09   0.000      5.58819    28.61925
          4      8.066121   3.401856     4.95   0.000     3.529179    18.43554
          3      6.526239   2.757703     4.44   0.000     2.850903    14.93976
          2      3.399158   1.474415     2.82   0.005      1.45263    7.954036
          1      2.212658   1.050547     1.67   0.094      .872514    5.611205
        key2  
              
        999      1.504712   .2742397     2.24   0.025     1.052733    2.150741
          4      1.850214   .3302935     3.45   0.001     1.303972    2.625278
          3      1.506163   .2678657     2.30   0.021     1.062891    2.134298
          2      1.151036   .2018788     0.80   0.423     .8162021     1.62323
  famincgrps  
              
        999      .5662432   .1614091    -2.00   0.046     .3238663    .9900115
          3      .8566094   .1148257    -1.15   0.248     .6586916    1.113996
          2      .4085828   .0628377    -5.82   0.000     .3022527    .5523189
          1      .3532834   .0747927    -4.91   0.000     .2333016    .5349692
 alwayswrong  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2082.8384                 Pseudo R2       =     0.2494
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(48)   =     750.08
Logistic regression                               Number of obs   =       4920

Iteration 5:   log pseudolikelihood = -2082.8384  
Iteration 4:   log pseudolikelihood = -2082.8384  
Iteration 3:   log pseudolikelihood = -2082.8779  
Iteration 2:   log pseudolikelihood = -2086.3583  
Iteration 1:   log pseudolikelihood = -2156.3234  
Iteration 0:   log pseudolikelihood = -2774.7585  
note: RegMiss omitted because of collinearity

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==1, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
> ///
. logit atuni ib(4).alwayswrong i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican 
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     RegMiss    (omitted)
     SthWest      .403853   .0828336    -4.42   0.000     .2701685    .6036871
     SthEast     .4954457   .0811815    -4.29   0.000     .3593536    .6830777
   EastofEng      .567842   .0998303    -3.22   0.001     .4023285     .801446
     WestMid     .5336624   .0944837    -3.55   0.000     .3771927    .7550398
     EastMid     .5140024   .0976662    -3.50   0.000     .3541826    .7459385
    YorkandH     .6566932   .1209863    -2.28   0.022     .4576577    .9422892
   NorthWest     .7362317   .1189977    -1.89   0.058     .5363325    1.010636
   NorthEast     .7953109   .1875352    -0.97   0.331     .5009826    1.262558
              
        999      .7177233   .1473495    -1.62   0.106     .4799592    1.073272
          1      1.363605   .1708541     2.48   0.013     1.066686    1.743174
  mothdegree  
              
        999      .9779175   .1348664    -0.16   0.871     .7462966    1.281424
          1      1.963431   .2551518     5.19   0.000      1.52195    2.532975
  fathdegree  
              
         99       .520477   .1498648    -2.27   0.023     .2960116    .9151543
          1        .64728   .0865193    -3.25   0.001     .4980989    .8411412
  brokenhome  
              
        999      .6146697   .2820065    -1.06   0.289     .2501013    1.510663
          4      .5511705   .1176159    -2.79   0.005     .3627818    .8373874
          3      .6024992   .1140179    -2.68   0.007     .4157896    .8730502
          2      .6712014   .1119874    -2.39   0.017     .4839863    .9308347
          1      .8198033   .1306795    -1.25   0.213     .5998259    1.120454
    siblings  
              
        999      1.395547   .5614529     0.83   0.407     .6342951     3.07042
          1       .783428   .0836053    -2.29   0.022     .6355667    .9656884
       urban  
              
        999      .9917109   .4435749    -0.02   0.985     .4127219    2.382937
          1      .9038448   .1574549    -0.58   0.562     .6424062     1.27168
hlthprobdi~b  
              
      otheth     1.510609    .522071     1.19   0.233     .7673157    2.973924
   blafrican     2.578133   .7409463     3.30   0.001     1.467821    4.528326
 blcaribbean     1.283714   .3250482     0.99   0.324     .7815131     2.10863
 bangladeshi     3.607823   .9017296     5.13   0.000     2.210539    5.888332
   pakistani     2.745935   .5676594     4.89   0.000     1.831149    4.117719
      indian     4.151662   .8424742     7.01   0.000     2.789281    6.179476
       mixed     .7386006   .1855424    -1.21   0.228     .4514202    1.208477
              
        999      17.34389   7.453828     6.64   0.000     7.470135    40.26843
          9      56.34966    23.4258     9.70   0.000     24.94756    127.2784
          8      28.63042   11.84385     8.11   0.000      12.7263       64.41
          7      21.37924   8.862175     7.39   0.000      9.48746    48.17641
          6      14.64323   6.114057     6.43   0.000     6.459974    33.19274
          5       13.1509   5.502677     6.16   0.000     5.791491    29.86209
          4      8.157131   3.458993     4.95   0.000     3.552953    18.72774
          3      6.718651   2.839962     4.51   0.000     2.934139    15.38451
          2      3.465367   1.504546     2.86   0.004     1.479742    8.115446
          1      2.185552   1.039661     1.64   0.100     .8602939     5.55233
        key2  
              
        999      1.541358   .2836948     2.35   0.019     1.074572    2.210912
          4      1.860937    .339575     3.40   0.001     1.301393    2.661061
          3      1.539595   .2800569     2.37   0.018      1.07788    2.199088
          2      1.164866   .2080393     0.85   0.393     .8208349     1.65309
  famincgrps  
              
        999       2.46328    .790023     2.81   0.005     1.313762    4.618608
          3      1.969081   .5381578     2.48   0.013     1.152462    3.364344
          2      1.510669   .4049677     1.54   0.124     .8932768    2.554773
          1      .9366402   .2652046    -0.23   0.817     .5377244    1.631495
     hardout  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2102.0852                 Pseudo R2       =     0.2424
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(48)   =     749.64
Logistic regression                               Number of obs   =       4920

Iteration 5:   log pseudolikelihood = -2102.0852  
Iteration 4:   log pseudolikelihood = -2102.0853  
Iteration 3:   log pseudolikelihood = -2102.1236  
Iteration 2:   log pseudolikelihood = -2105.5404  
Iteration 1:   log pseudolikelihood = -2170.7707  
Iteration 0:   log pseudolikelihood = -2774.7585  
note: RegMiss omitted because of collinearity

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==1, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
. logit atuni ib(4).hardout i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican ///
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     RegMiss     35308.62   36883.23    10.02   0.000     4557.421    273553.5
     SthWest     .8562829   .1609919    -0.83   0.409     .5923531     1.23781
     SthEast     .8984453   .1446131    -0.67   0.506     .6553643    1.231687
   EastofEng     .7962687   .1352444    -1.34   0.180     .5708015    1.110796
     WestMid     1.047638   .1778578     0.27   0.784     .7511086    1.461235
     EastMid     1.031626   .1816754     0.18   0.860     .7305006     1.45688
    YorkandH     1.201302    .205167     1.07   0.283     .8595629    1.678906
   NorthWest     1.298159   .2099165     1.61   0.107     .9455527    1.782255
   NorthEast     1.111624   .2320708     0.51   0.612     .7383378    1.673636
              
        999      .6287815   .1221283    -2.39   0.017     .4297054    .9200865
          1      1.247851   .1585946     1.74   0.081     .9727019    1.600831
  mothdegree  
              
        999      .8910443   .1194291    -0.86   0.389     .6851891    1.158746
          1      1.562296   .1999016     3.49   0.000     1.215763    2.007602
  fathdegree  
              
         99      .5474797    .143291    -2.30   0.021     .3277815    .9144324
          1      .6754279   .0858809    -3.09   0.002     .5264395    .8665817
  brokenhome  
              
        999      1.232439   .5226018     0.49   0.622     .5368132    2.829488
          4      .4204465   .0821145    -4.44   0.000     .2867268    .6165284
          3      .7579232   .1284301    -1.64   0.102     .5437373     1.05648
          2       .778222   .1180534    -1.65   0.098     .5780686    1.047678
          1      1.004953   .1458397     0.03   0.973     .7561689    1.335589
    siblings  
              
        999      .0000777   .0000854    -8.61   0.000     9.02e-06    .0006698
          1      .8689389    .087306    -1.40   0.162     .7136174    1.058067
       urban  
              
        999      1.350851   .5472176     0.74   0.458     .6106516    2.988282
          1      .8160239   .1291493    -1.28   0.199     .5983924    1.112806
hlthprobdi~b  
              
      otheth       3.9081   1.043266     5.11   0.000     2.315995     6.59468
   blafrican       5.6609   1.739818     5.64   0.000       3.0994    10.33935
 blcaribbean     2.208733    .685187     2.55   0.011     1.202502    4.056958
 bangladeshi     4.791644   .9628769     7.80   0.000     3.231739    7.104488
   pakistani     3.645361   .6773047     6.96   0.000     2.532725    5.246782
      indian      5.86739    1.22089     8.50   0.000     3.902353    8.821926
       mixed     1.484768   .3510998     1.67   0.095     .9340647    2.360154
              
        999      6.959099   2.402013     5.62   0.000     3.537945    13.68847
          9      26.36734   8.226735    10.49   0.000     14.30499      48.601
          8      18.64614   5.791958     9.42   0.000     10.14342    34.27626
          7      14.88148    4.60022     8.73   0.000     8.119317    27.27551
          6      8.226109   2.545076     6.81   0.000     4.485814    15.08508
          5      5.895758   1.839311     5.69   0.000     3.198812    10.86652
          4      6.383172    2.00423     5.90   0.000     3.449616    11.81143
          3      3.804779   1.222147     4.16   0.000     2.027271    7.140802
          2      2.825691   .9220425     3.18   0.001     1.490636    5.356457
          1      1.253246   .4331474     0.65   0.514     .6365665     2.46734
        key2  
              
        999      1.304773   .2237667     1.55   0.121      .932299    1.826059
          4      1.770755   .3034683     3.33   0.001     1.265556    2.477625
          3      1.605268   .2753218     2.76   0.006     1.146982    2.246665
          2      1.408881   .2227919     2.17   0.030     1.033405    1.920783
  famincgrps  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2386.1031                 Pseudo R2       =     0.2014
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(45)   =     882.08
Logistic regression                               Number of obs   =       4869

Iteration 7:   log pseudolikelihood = -2386.1031  
Iteration 6:   log pseudolikelihood = -2386.1032  
Iteration 5:   log pseudolikelihood = -2386.1033  
Iteration 4:   log pseudolikelihood = -2386.1038  
Iteration 3:   log pseudolikelihood = -2386.1088  
Iteration 2:   log pseudolikelihood =  -2387.038  
Iteration 1:   log pseudolikelihood = -2422.6385  
Iteration 0:   log pseudolikelihood = -2987.9646  

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==0, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
. logit atuni i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican ///
. **** Females
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     RegMiss      4894861    7094664    10.63   0.000     285758.8    8.38e+07
     SthWest     .7922698   .1495972    -1.23   0.218     .5472028    1.147091
     SthEast     .8883766   .1445744    -0.73   0.467     .6457622    1.222142
   EastofEng     .7692858   .1322369    -1.53   0.127     .5492498    1.077471
     WestMid     1.042115   .1781007     0.24   0.809     .7454919    1.456763
     EastMid     1.050403   .1866907     0.28   0.782     .7414292    1.488134
    YorkandH     1.152307   .1970408     0.83   0.407     .8241675    1.611094
   NorthWest      1.29104   .2118968     1.56   0.120     .9359075    1.780928
   NorthEast     1.105085   .2326225     0.47   0.635     .7315033    1.669457
              
        999      .6280505   .1247967    -2.34   0.019      .425458    .9271127
          1      1.209905   .1550619     1.49   0.137     .9411548    1.555399
  mothdegree  
              
        999      .8804705   .1196391    -0.94   0.349       .67461     1.14915
          1      1.549137   .2019206     3.36   0.001     1.199888    2.000041
  fathdegree  
              
         99      .5555689   .1470947    -2.22   0.026     .3306514    .9334811
          1      .6821521   .0883817    -2.95   0.003     .5291721    .8793575
  brokenhome  
              
        999      1.376769   .5736443     0.77   0.443     .6084147    3.115462
          4      .4081816   .0794016    -4.61   0.000     .2787875    .5976317
          3       .725172   .1240646    -1.88   0.060     .5185789    1.014068
          2       .756734   .1155869    -1.82   0.068     .5609536    1.020844
          1      .9854958   .1433782    -0.10   0.920     .7409941    1.310674
    siblings  
              
        999      5.43e-07   8.10e-07    -9.68   0.000     2.93e-08    .0000101
          1        .85438   .0866715    -1.55   0.121     .7003289    1.042318
       urban  
              
        999      1.365889   .5574841     0.76   0.445     .6137618    3.039703
          1      .8262623   .1331441    -1.18   0.236     .6024973    1.133133
hlthprobdi~b  
              
      otheth     3.793791   1.024935     4.94   0.000     2.234148    6.442212
   blafrican     5.927616   1.815226     5.81   0.000     3.252482    10.80302
 blcaribbean     2.206344   .6835961     2.55   0.011     1.202109    4.049513
 bangladeshi     4.977111   .9898776     8.07   0.000      3.37043    7.349696
   pakistani     3.711945    .678873     7.17   0.000     2.593739    5.312228
      indian     5.893625   1.253981     8.34   0.000     3.883945    8.943178
       mixed      1.48262   .3549976     1.64   0.100     .9272969    2.370506
              
        999       6.33824   2.232419     5.24   0.000     3.178069    12.64079
          9      21.69999   6.854387     9.74   0.000     11.68396    40.30223
          8      15.27691   4.800923     8.68   0.000     8.251576    28.28357
          7      12.70818   3.972728     8.13   0.000     6.886328    23.45196
          6      7.071672   2.213517     6.25   0.000     3.829005    13.06046
          5      5.267588   1.662827     5.26   0.000     2.837343    9.779391
          4      5.945195   1.886372     5.62   0.000     3.192164    11.07253
          3      3.509042   1.138623     3.87   0.000     1.857755    6.628094
          2      2.743189   .9073016     3.05   0.002     1.434575    5.245514
          1      1.196948    .420489     0.51   0.609     .6012395    2.382886
        key2  
              
        999      1.300347    .222639     1.53   0.125     .9296531    1.818854
          4      1.724997   .2967944     3.17   0.002     1.231217    2.416806
          3      1.590693   .2731041     2.70   0.007     1.136174    2.227041
          2      1.372123   .2169829     2.00   0.045     1.006438    1.870679
  famincgrps  
              
        999      .5980475    .130166    -2.36   0.018     .3903645    .9162227
          3      .7644736   .0993353    -2.07   0.039     .5925947    .9862051
          2      .3711711   .0554349    -6.64   0.000     .2769784    .4973961
          1      .3754615   .0786304    -4.68   0.000       .24906    .5660136
 alwayswrong  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2344.7342                 Pseudo R2       =     0.2153
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(49)   =     901.56
Logistic regression                               Number of obs   =       4869

Iteration 6:   log pseudolikelihood = -2344.7342  
Iteration 5:   log pseudolikelihood = -2344.7342  
Iteration 4:   log pseudolikelihood = -2344.7348  
Iteration 3:   log pseudolikelihood = -2344.7406  
Iteration 2:   log pseudolikelihood = -2345.7939  
Iteration 1:   log pseudolikelihood = -2386.1056  
Iteration 0:   log pseudolikelihood = -2987.9646  

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==0, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
> ///
. logit atuni ib(4).alwayswrong i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican 
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     RegMiss     36870.99   38581.14    10.05   0.000     4742.452    286659.7
     SthWest     .8133615   .1524312    -1.10   0.270     .5633274    1.174374
     SthEast     .8731382   .1410403    -0.84   0.401     .6361891    1.198339
   EastofEng     .7830962    .133619    -1.43   0.152     .5604997    1.094094
     WestMid     1.045498   .1782905     0.26   0.794     .7484564    1.460428
     EastMid     1.026891   .1802216     0.15   0.880     .7280086    1.448478
    YorkandH     1.179986   .2033048     0.96   0.337     .8418207    1.653994
   NorthWest     1.280889   .2076377     1.53   0.127     .9322402    1.759928
   NorthEast     1.104278    .233263     0.47   0.639     .7299185    1.670639
              
        999      .6562826   .1278889    -2.16   0.031     .4479386    .9615312
          1      1.234226   .1577041     1.65   0.100     .9607978    1.585469
  mothdegree  
              
        999      .8732473   .1187847    -1.00   0.319     .6688849    1.140048
          1       1.54809   .1987594     3.40   0.001     1.203678     1.99105
  fathdegree  
              
         99      .5348487   .1458349    -2.30   0.022     .3134278    .9126923
          1      .6917342   .0888517    -2.87   0.004     .5377796    .8897628
  brokenhome  
              
        999      1.190172   .4892503     0.42   0.672     .5317429    2.663898
          4       .405495   .0798844    -4.58   0.000     .2756099    .5965903
          3      .7199986   .1231997    -1.92   0.055     .5148512    1.006889
          2      .7420522   .1135171    -1.95   0.051     .5498193    1.001495
          1      .9557591    .140176    -0.31   0.758     .7169805    1.274059
    siblings  
              
        999      .0000769   .0000848    -8.59   0.000     8.85e-06    .0006676
          1      .8787261    .088285    -1.29   0.198     .7216622    1.069974
       urban  
              
        999       1.24354   .5220673     0.52   0.604     .5461416    2.831484
          1      .8370657   .1331578    -1.12   0.264     .6128484    1.143315
hlthprobdi~b  
              
      otheth     3.720217   .9870064     4.95   0.000     2.211755    6.257481
   blafrican     5.510089   1.753832     5.36   0.000     2.952743    10.28233
 blcaribbean     2.154727   .6810068     2.43   0.015      1.15976    4.003286
 bangladeshi     4.860096   .9847816     7.80   0.000     3.267152    7.229702
   pakistani     3.751241   .7074903     7.01   0.000     2.592012    5.428915
      indian     5.789405   1.219259     8.34   0.000     3.831505    8.747793
       mixed     1.485967   .3578491     1.64   0.100     .9268803     2.38229
              
        999      6.889801   2.394416     5.55   0.000     3.486488    13.61524
          9      25.07894   7.919262    10.20   0.000     13.50586     46.5689
          8      17.67009   5.536084     9.17   0.000     9.562145    32.65295
          7      14.11947   4.409609     8.48   0.000      7.65565    26.04081
          6       7.81092   2.441017     6.58   0.000      4.23341    14.41166
          5        5.6404   1.776075     5.49   0.000     3.042843    10.45539
          4      6.181172    1.96263     5.74   0.000     3.317412    11.51708
          3      3.745157   1.217173     4.06   0.000     1.980752    7.081251
          2      2.840239    .934443     3.17   0.002     1.490419    5.412545
          1      1.251608   .4348403     0.65   0.518     .6334898    2.472848
        key2  
              
        999      1.305908   .2236091     1.56   0.119     .9336037    1.826682
          4      1.718307    .292785     3.18   0.001     1.230447    2.399597
          3      1.565594   .2672655     2.63   0.009     1.120389    2.187708
          2      1.375906   .2169072     2.02   0.043     1.010182    1.874037
  famincgrps  
              
        999      .6050514   .2268571    -1.34   0.180     .2901644    1.261655
          3      .7077914   .2302525    -1.06   0.288     .3741105    1.339093
          2      .4685893   .1489247    -2.39   0.017     .2513435    .8736088
          1      .3473002    .112649    -3.26   0.001      .183913    .6558395
     hardout  
                                                                              
       atuni   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                             Robust
                                                                              

Log pseudolikelihood = -2362.4887                 Pseudo R2       =     0.2093
                                                  Prob > chi2     =     0.0000
                                                  Wald chi2(49)   =     908.98
Logistic regression                               Number of obs   =       4869

Iteration 7:   log pseudolikelihood = -2362.4887  
Iteration 6:   log pseudolikelihood = -2362.4887  
Iteration 5:   log pseudolikelihood = -2362.4888  
Iteration 4:   log pseudolikelihood = -2362.4893  
Iteration 3:   log pseudolikelihood = -2362.4949  
Iteration 2:   log pseudolikelihood = -2363.4596  
Iteration 1:   log pseudolikelihood = -2400.5527  
Iteration 0:   log pseudolikelihood = -2987.9646  

> EastMid WestMid EastofEng SthEast SthWest RegMiss [pweight = w6finwt_cross] if male ==0, or
> H ///
> otheth i.hlthprobdisab i.urban i.siblings i.brokenhome i.fathdegree i.mothdegree NorthEast NorthWest Yorkand
. logit atuni ib(4).hardout i.famincgrps  i.key2 mixed indian pakistani bangladeshi blcaribbean blafrican ///
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Raw Output for Table 4.7, Columns 1 and 2 (Raw PC Scores – ARE and FE 

models) 

   tenuremiss     .8321778   4.617514     0.18   0.857    -8.217983    9.882339
    tenureCR    -.1482419     .28762    -0.52   0.606    -.7119668    .4154831
    tenureMO     .5753217   .2441927     2.36   0.018     .0967128    1.053931
    fulltime    -.0850345   .2119333    -0.40   0.688    -.5004162    .3303472
    parttime    -.1400845   .1717924    -0.82   0.415    -.4767914    .1966225
    plsillNA     5.136077   2.976418     1.73   0.084    -.6975942    10.96975
  plsillness     .0659589    .187371     0.35   0.725    -.3012815    .4331994
pgenhealthNA    -6.554555   4.857075    -1.35   0.177    -16.07425    2.965136
pgenhealthfp    -.3702503   .2463944    -1.50   0.133    -.8531744    .1126738
pgenhealthex     .0892645   .1784015     0.50   0.617    -.2603961     .438925
depression~s    -3.612489   4.925573    -0.73   0.463    -13.26644    6.041457
  depression    -.0455567   .1721297    -0.26   0.791    -.3829246    .2918113
mlsillness~s     .0449027   .2539845     0.18   0.860    -.4528978    .5427032
  mlsillness    -.0864981   .1984549    -0.44   0.663    -.4754626    .3024664
dev_chls~iss    -1.495432   4.030916    -0.37   0.711    -9.395881    6.405018
dev_chls~ess    -.0845313   .2371134    -0.36   0.721     -.549265    .3802024
mgenhealth~s    -2.019419    6.44452    -0.31   0.754    -14.65045    10.61161
mgenhealthfp     .0525285   .2139723     0.25   0.806    -.3668495    .4719065
mgenhealthex    -.0107836   .1653149    -0.07   0.948    -.3347949    .3132277
mn_chlsi~iss     -4.92359   7.484385    -0.66   0.511    -19.59271    9.745535
mn_chlsi~ess    -2.069233    .280341    -7.38   0.000    -2.618691   -1.519774
    siblings    -.1903241   .0829543    -2.29   0.022    -.3529114   -.0277367
    natfath1     .9425062   .3849145     2.45   0.014     .1880877    1.696925
 respartmiss     .5339711   4.514484     0.12   0.906    -8.314254    9.382196
    respart1      .081061   .4544381     0.18   0.858    -.8096213    .9717432
 marriedmiss    -.8243717   2.231685    -0.37   0.712    -5.198394     3.54965
    married1    -.0533007   .4888343    -0.11   0.913    -1.011398     .904797
  dev_nvqNAP     .3624693    .594851     0.61   0.542    -.8034172    1.528356
  dev_nvqosP    -1.454177   .9921622    -1.47   0.143    -3.398779    .4904252
   dev_nvq5P    -.5289761   .6968298    -0.76   0.448    -1.894737    .8367853
   dev_nvq4P    -.3844597     .62015    -0.62   0.535    -1.599931    .8310119
   dev_nvq2P     .4005873   .5913293     0.68   0.498    -.7583969    1.559571
   dev_nvq1P     .9754372   .8929486     1.09   0.275    -.7747099    2.725584
dev_nvqNoneP     .8219379   .7175746     1.15   0.252    -.5844825    2.228358
  dev_nvqosM     .4747141   1.185899     0.40   0.689    -1.849606    2.799034
   dev_nvq5M    -.9865692   .7591565    -1.30   0.194    -2.474489    .5013501
   dev_nvq4M     -.731477   .6450142    -1.13   0.257    -1.995681    .5327276
   dev_nvq2M    -.4903335   .6325277    -0.78   0.438    -1.730065    .7493979
   dev_nvq1M     .8939998   1.014611     0.88   0.378    -1.094601    2.882601
dev_nvqNoneM    -1.175742   .8845057    -1.33   0.184    -2.909341    .5578574
   mn_nvqNAP     .5047508   .4867091     1.04   0.300    -.4491816    1.458683
   mn_nvqosP     1.185825   .6094878     1.95   0.052    -.0087488      2.3804
    mn_nvq5P     .7257968   .4464203     1.63   0.104    -.1491709    1.600764
    mn_nvq4P      1.11767   .3111377     3.59   0.000     .5078515    1.727489
    mn_nvq2P    -.4484567   .3128073    -1.43   0.152    -1.061548    .1646344
    mn_nvq1P    -1.094012   .4808075    -2.28   0.023    -2.036377   -.1516464
 mn_nvqNoneP    -1.575288   .4149638    -3.80   0.000    -2.388602   -.7619743
   mn_nvqosM    -1.580095   .6073198    -2.60   0.009    -2.770419   -.3897697
    mn_nvq5M     1.387843   .4562014     3.04   0.002     .4937047    2.281981
    mn_nvq4M     .9366983   .2757408     3.40   0.001     .3962562     1.47714
    mn_nvq2M     .1085223   .2753532     0.39   0.693    -.4311601    .6482047
    mn_nvq1M    -1.211818   .3962585    -3.06   0.002    -1.988471    -.435166
 mn_nvqNoneM    -1.164902   .3776547    -3.08   0.002    -1.905092   -.4247129
dev_mixeds~s     .0406144   2.542286     0.02   0.987    -4.942174    5.023403
mn_mixedsc~s    -12.76321   3.480716    -3.67   0.000    -19.58529   -5.941136
dev_mixeds~l     .1687963   2.170221     0.08   0.938    -4.084759    4.422351
mn_mixedsc~l     .0145073   .7876781     0.02   0.985    -1.529313    1.558328
dev_schoo~ss    -2.679924    2.50401    -1.07   0.285    -7.587692    2.227844
dev_schoo~es     .5037572   .9621547     0.52   0.601    -1.382031    2.389546
mn_school~ss      3.88669   3.106134     1.25   0.211    -2.201222    9.974601
mn_school~es     .5758529   .5070711     1.14   0.256    -.4179881    1.569694
monthsofsc~s    (omitted)
monthsofsc~l     .1045961   .0053528    19.54   0.000     .0941048    .1150874
   dev_lninc    -.2544973   .1999154    -1.27   0.203    -.6463243    .1373296
    mn_lninc     .5966045   .2278381     2.62   0.009       .15005    1.043159
                                                                              
     pattcon        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  = -78374.812                    Prob > chi2        =    0.0000
                                                LR chi2(136)       =   2561.34

                                                               max =         2
                                                               avg =       1.7
Random effects u_i ~ Gaussian                   Obs per group: min =         1

Group variable: newid                           Number of groups   =     12845
Random-effects ML regression                    Number of obs      =     21490

Iteration 3:   log likelihood = -78374.812
Iteration 2:   log likelihood = -78374.812
Iteration 1:   log likelihood = -78374.835
Iteration 0:   log likelihood = -78388.776
Fitting full model:

Iteration 3:   log likelihood = -79655.482
Iteration 2:   log likelihood = -79655.483
Iteration 1:   log likelihood = -79656.828
Iteration 0:   log likelihood = -79735.667
Fitting constant-only model:

note: dev_regbedM omitted because of collinearity
note: telloffmiss omitted because of collinearity
note: monthsofschoolmiss omitted because of collinearity
. xtreg pattcon `panelcontrols3', mle



286 
 

 

 

 

 

 

Likelihood-ratio test of sigma_u=0: chibar2(01)= 2495.72 Prob>=chibar2 = 0.000
                                                                              
         rho     .5075469   .0078951                       .492071    .5230114
    /sigma_e     6.915974     .05241                      6.814012    7.019463
    /sigma_u     7.021163   .0776306                      6.870646    7.174976
                                                                              
       _cons     33.55727   2.563539    13.09   0.000     28.53283    38.58172
      otheth     .2539528   .4576674     0.55   0.579    -.6430587    1.150964
       asian    -1.909709   .3567897    -5.35   0.000    -2.609004   -1.210414
       black    -3.082562   .5389256    -5.72   0.000    -4.138837   -2.026288
         nov     .7311923   .3637719     2.01   0.044     .0182125    1.444172
         oct     .0491259   .3679908     0.13   0.894    -.6721229    .7703746
         sep     .1869253   .3649736     0.51   0.609    -.5284097    .9022603
         aug     1.076166   .3774338     2.85   0.004     .3364095    1.815923
         jul     .9373801   .3782173     2.48   0.013     .1960878    1.678672
         jun      .971129   .3727944     2.60   0.009     .2404655    1.701793
         may     1.534846    .371403     4.13   0.000     .8069095    2.262782
         apr     1.238469    .379715     3.26   0.001     .4942417    1.982697
         mar     .3215153   .3711064     0.87   0.386    -.4058399    1.048871
         feb      .499833   .3827817     1.31   0.192    -.2504054    1.250071
         jan     .2448424   .3607987     0.68   0.497      -.46231    .9519948
        male    -1.358525   .1613159    -8.42   0.000    -1.674698   -1.042352
breastfee~ss    -2.386486   3.708591    -0.64   0.520    -9.655191    4.882219
breastfee~es     .8935332   .1925385     4.64   0.000     .5161647    1.270902
 anclassMiss    -.2583923   .4703739    -0.55   0.583    -1.180308    .6635236
  anclassYes     .1500395   .1811464     0.83   0.408    -.2050009    .5050798
 specialcare    -.1059728   .3089957    -0.34   0.732    -.7115933    .4996477
gestationm~s     .1845863   .8914491     0.21   0.836    -1.562622    1.931795
   gestation     .0201821   .0075464     2.67   0.007     .0053915    .0349728
birthwgtmiss    -2.392604   2.904811    -0.82   0.410    -8.085928    3.300721
   birthwgtk     1.071554    .174454     6.14   0.000     .7296308    1.413478
classcount~s     .2135077   .4980307     0.43   0.668    -.7626144     1.18963
  classcount     .0480385    .025916     1.85   0.064    -.0027559    .0988328
teachtenur~s    -.2406938   .5022291    -0.48   0.632    -1.225045    .7436572
 teachtenure     .0250155   .0133614     1.87   0.061    -.0011723    .0512034
 dev_imdhigh     .3972879   .6083905     0.65   0.514    -.7951355    1.589711
  dev_imdlow     .3408477   .6151243     0.55   0.580    -.8647738    1.546469
dev_urbanm~s     2.924928   1.208651     2.42   0.016     .5560162     5.29384
   dev_urban    -.5409976   .6948621    -0.78   0.436    -1.902902     .820907
  mn_imdhigh     .3789167   .2592889     1.46   0.144    -.1292803    .8871137
   mn_imdlow    -.3806633   .2494992    -1.53   0.127    -.8696727    .1083462
mn_urbanmiss     .4130414   .3041638     1.36   0.174    -.1831087    1.009191
    mn_urban     .2133122   .2613805     0.82   0.414    -.2989842    .7256086
   movedmiss    -4.459541   9.873572    -0.45   0.652    -23.81139     14.8923
      moved1    -.4838216   .2004713    -2.41   0.016    -.8767382    -.090905
  tv3plushrs    -.1910136   .1814406    -1.05   0.292    -.5466306    .1646034
   tvless1hr    -.0021779   .1662051    -0.01   0.990    -.3279338    .3235781
      tvnone    -.4817971   .4698642    -1.03   0.305    -1.402714    .4391198
 dev_regbedM    (omitted)
 dev_regbedA     .0290175   .1722364     0.17   0.866    -.3085598    .3665947
 dev_regbedS     .4325827   .3204462     1.35   0.177    -.1954803    1.060646
 dev_regbedN     .4770847   .4124105     1.16   0.247    -.3312251    1.285395
  mn_regbedM    -6.555285   9.287733    -0.71   0.480    -24.75891    11.64834
  mn_regbedA     .0434117   .2626972     0.17   0.869    -.4714654    .5582888
  mn_regbedS    -.9436442   .5139018    -1.84   0.066    -1.950873    .0635848
  mn_regbedN    -2.246392    .545965    -4.11   0.000    -3.316464    -1.17632
 telloffmiss    (omitted)
     telloff    -.3218661   .2065814    -1.56   0.119    -.7267582     .083026
   smackmiss    -1.014645   .3924776    -2.59   0.010    -1.783887   -.2454033
       smack    -.0298893   .1417571    -0.21   0.833    -.3077281    .2479494
      playNA    -.4290128   5.396626    -0.08   0.937    -11.00621    10.14818
    playless     .1781467   .1625616     1.10   0.273    -.1404683    .4967616
     playday    -.1648493   .2249879    -0.73   0.464    -.6058175    .2761188
      timena    -3.416534   5.149023    -0.66   0.507    -13.50843    6.675365
    timenote     .5310761   .2413043     2.20   0.028     .0581284    1.004024
  timeplenty    -.8511311   .8828458    -0.96   0.335    -2.581477    .8792148
    libraryW    -.1784667   .2286813    -0.78   0.435    -.6266738    .2697405
    libraryN    -.4225543   .1473899    -2.87   0.004    -.7114331   -.1336755
     readnaP     5.845108   5.230727     1.12   0.264    -4.406927    16.09714
  readneverP    -.3978662    .345007    -1.15   0.249    -1.074068    .2783351
   readweekP    -.1374941   .1699507    -0.81   0.419    -.4705914    .1956032
    readdayP    -.1640512   .2180015    -0.75   0.452    -.5913262    .2632239
   readmissM     -.174662   6.022294    -0.03   0.977    -11.97814    11.62882
  readneverM    -1.040836   .4671774    -2.23   0.026    -1.956487   -.1251854
   readweekM    -.4643853   .1757279    -2.64   0.008    -.8088056   -.1199649
    readdayM    -.2963637    .171079    -1.73   0.083    -.6316722    .0389449
homeatmosp~e     .0755512   .0273924     2.76   0.006      .021863    .1292393
 holidaymiss     6.990298   6.798875     1.03   0.304    -6.335252    20.31585
    holiday1     .2885139   .1640452     1.76   0.079    -.0330087    .6100366
     carmiss     2.594231    1.26869     2.04   0.041     .1076438    5.080818
        car1     .7503573   .2551579     2.94   0.003      .250257    1.250458
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  mn_nvqNoneP    (omitted)
   mn_nvqosM    (omitted)
    mn_nvq5M    (omitted)
    mn_nvq4M    (omitted)
    mn_nvq2M    (omitted)
    mn_nvq1M    (omitted)
 mn_nvqNoneM    (omitted)
dev_mixeds~s     2.155871   2.674354     0.81   0.420    -3.086508    7.398251
mn_mixedsc~s    (omitted)
dev_mixeds~l    -.1096223   2.295487    -0.05   0.962     -4.60933    4.390085
mn_mixedsc~l    (omitted)
dev_schoo~ss    -5.116114   2.804408    -1.82   0.068    -10.61343    .3812021
dev_schoo~es     .6712596   1.010745     0.66   0.507    -1.310044    2.652564
mn_school~ss    (omitted)
mn_school~es    (omitted)
monthsofsc~s    (omitted)
monthsofsc~l     .1102202   .0061076    18.05   0.000     .0982479    .1221925
   dev_lninc    -.2251065   .2372642    -0.95   0.343    -.6902016    .2399886
    mn_lninc    (omitted)
                                                                              
     pattcon        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

corr(u_i, Xb)  = -0.0384                        Prob > F           =    0.0000
                                                F(79,8566)         =      9.37

       overall = 0.0222                                        max =         2
       between = 0.0137                                        avg =       1.7
R-sq:  within  = 0.0795                         Obs per group: min =         1

Group variable: newid                           Number of groups   =     12845
Fixed-effects (within) regression               Number of obs      =     21490

note: otheth omitted because of collinearity
note: asian omitted because of collinearity
note: black omitted because of collinearity
note: nov omitted because of collinearity
note: oct omitted because of collinearity
note: sep omitted because of collinearity
note: aug omitted because of collinearity
note: jul omitted because of collinearity
note: jun omitted because of collinearity
note: may omitted because of collinearity
note: apr omitted because of collinearity
note: mar omitted because of collinearity
note: feb omitted because of collinearity
note: jan omitted because of collinearity
note: male omitted because of collinearity
note: breastfeedMiss omitted because of collinearity
note: breastfeedYes omitted because of collinearity
note: anclassMiss omitted because of collinearity
note: anclassYes omitted because of collinearity
note: specialcare omitted because of collinearity
note: gestationmiss omitted because of collinearity
note: gestation omitted because of collinearity
note: birthwgtmiss omitted because of collinearity
note: birthwgtk omitted because of collinearity
note: classcountmiss omitted because of collinearity
note: classcount omitted because of collinearity
note: teachtenuremiss omitted because of collinearity
note: teachtenure omitted because of collinearity
note: mn_imdhigh omitted because of collinearity
note: mn_imdlow omitted because of collinearity
note: mn_urbanmiss omitted because of collinearity
note: mn_urban omitted because of collinearity
note: movedmiss omitted because of collinearity
note: dev_regbedM omitted because of collinearity
note: mn_regbedM omitted because of collinearity
note: mn_regbedA omitted because of collinearity
note: mn_regbedS omitted because of collinearity
note: mn_regbedN omitted because of collinearity
note: telloffmiss omitted because of collinearity
note: mn_chlsillnessmiss omitted because of collinearity
note: mn_chlsillness omitted because of collinearity
note: mn_nvqNAP omitted because of collinearity
note: mn_nvqosP omitted because of collinearity
note: mn_nvq5P omitted because of collinearity
note: mn_nvq4P omitted because of collinearity
note: mn_nvq2P omitted because of collinearity
note: mn_nvq1P omitted because of collinearity
note: mn_nvqNoneP omitted because of collinearity
note: mn_nvqosM omitted because of collinearity
note: mn_nvq5M omitted because of collinearity
note: mn_nvq4M omitted because of collinearity
note: mn_nvq2M omitted because of collinearity
note: mn_nvq1M omitted because of collinearity
note: mn_nvqNoneM omitted because of collinearity
note: mn_mixedschoolmiss omitted because of collinearity
note: mn_mixedschool omitted because of collinearity
note: mn_schoolfeesmiss omitted because of collinearity
note: mn_schoolfees omitted because of collinearity
note: monthsofschoolmiss omitted because of collinearity
note: mn_lninc omitted because of collinearity
. xtreg pattcon `panelcontrols3', fe
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  mn_imdhigh    (omitted)
   mn_imdlow    (omitted)
mn_urbanmiss    (omitted)
    mn_urban    (omitted)
   movedmiss    (omitted)
      moved1    -.1629745   .2643925    -0.62   0.538    -.6812474    .3552985
  tv3plushrs     .0414661   .2433957     0.17   0.865     -.435648    .5185803
   tvless1hr     .1684337   .2242015     0.75   0.453    -.2710552    .6079226
      tvnone     .1396188   .6244513     0.22   0.823    -1.084456    1.363694
 dev_regbedM    (omitted)
 dev_regbedA     .0672269   .1942221     0.35   0.729    -.3134952     .447949
 dev_regbedS     .3140418   .3804058     0.83   0.409    -.4316451    1.059729
 dev_regbedN       .56742   .4957298     1.14   0.252    -.4043298     1.53917
  mn_regbedM    (omitted)
  mn_regbedA    (omitted)
  mn_regbedS    (omitted)
  mn_regbedN    (omitted)
 telloffmiss    (omitted)
     telloff    -.0838148    .289617    -0.29   0.772    -.6515338    .4839043
   smackmiss     -.336538   .5825311    -0.58   0.563    -1.478439    .8053633
       smack     .1323056   .2232264     0.59   0.553    -.3052719    .5698831
      playNA     .4056521   6.247702     0.06   0.948    -11.84135    12.65265
    playless     .3691333   .2067318     1.79   0.074    -.0361108    .7743774
     playday     .2752775   .2848849     0.97   0.334    -.2831656    .8337205
      timena    -7.764274   5.968722    -1.30   0.193    -19.46441     3.93586
    timenote     .3560871   .3112557     1.14   0.253    -.2540491    .9662233
  timeplenty     .2357334   1.140257     0.21   0.836    -1.999446    2.470912
    libraryW    -.3726696   .3119123    -1.19   0.232    -.9840928    .2387537
    libraryN    -.0335173   .2151149    -0.16   0.876    -.4551943    .3881597
     readnaP     7.807895   7.349284     1.06   0.288    -6.598472    22.21426
  readneverP    -.0917209   .4468737    -0.21   0.837    -.9677011    .7842592
   readweekP    -.1364965   .2224105    -0.61   0.539    -.5724746    .2994816
    readdayP    -.2224335   .2945577    -0.76   0.450    -.7998375    .3549706
   readmissM    -2.104698   6.933043    -0.30   0.761    -15.69513    11.48574
  readneverM    -.7817703   .6159542    -1.27   0.204    -1.989189    .4256484
   readweekM     -.601405   .2285776    -2.63   0.009    -1.049472   -.1533379
    readdayM    -.1816985    .235327    -0.77   0.440    -.6429961    .2795992
homeatmosp~e     .0129946   .0390827     0.33   0.740    -.0636169    .0896061
 holidaymiss     25.24043   9.985549     2.53   0.011     5.666346    44.81451
    holiday1     .2076372   .2399853     0.87   0.387    -.2627918    .6780662
     carmiss     2.425423   1.454112     1.67   0.095    -.4249877    5.275833
        car1     .4038526   .4520853     0.89   0.372    -.4823436    1.290049
  tenuremiss     1.742263   5.695386     0.31   0.760    -9.422065    12.90659
    tenureCR    -.4916906   .8335043    -0.59   0.555     -2.12556    1.142179
    tenureMO     .6460028   .5646624     1.14   0.253    -.4608715    1.752877
    fulltime     .0663106   .3573612     0.19   0.853    -.6342035    .7668248
    parttime    -.2684873   .2748266    -0.98   0.329    -.8072136    .2702391
    plsillNA     7.508854   3.689755     2.04   0.042     .2760454    14.74166
  plsillness    -.1171467   .2705084    -0.43   0.665    -.6474083    .4131149
pgenhealthNA    -6.950148   7.356572    -0.94   0.345     -21.3708    7.470506
pgenhealthfp    -.0815212   .3277019    -0.25   0.804    -.7238958    .5608534
pgenhealthex     .1224413   .2461587     0.50   0.619     -.360089    .6049715
depression~s    -4.503005   6.938089    -0.65   0.516    -18.10333    9.097321
  depression    -.3887575   .5521818    -0.70   0.481    -1.471167     .693652
mlsillness~s     .0580112    .283974     0.20   0.838    -.4986464    .6146687
  mlsillness    -.1426682   .2966549    -0.48   0.631    -.7241833    .4388469
dev_chls~iss    -.9204799   4.899365    -0.19   0.851    -10.52442    8.683455
dev_chls~ess     .0083017   .2730309     0.03   0.976    -.5269047     .543508
mgenhealth~s    -3.826851   9.780838    -0.39   0.696    -22.99965    15.34595
mgenhealthfp     .3291828   .3130956     1.05   0.293    -.2845601    .9429257
mgenhealthex     .1649134   .2358245     0.70   0.484    -.2973595    .6271862
mn_chlsi~iss    (omitted)
mn_chlsi~ess    (omitted)
    siblings     -.184784   .2476928    -0.75   0.456    -.6703216    .3007535
    natfath1     .9731207   1.254577     0.78   0.438    -1.486152    3.432393
 respartmiss     -3.94264   5.638196    -0.70   0.484    -14.99486    7.109584
    respart1      2.13747   1.571336     1.36   0.174    -.9427284    5.217668
 marriedmiss     1.847201   2.616428     0.71   0.480    -3.281629    6.976031
    married1    -.6570213   1.597408    -0.41   0.681    -3.788327    2.474284
  dev_nvqNAP     .9549041   .7668938     1.25   0.213    -.5483926    2.458201
  dev_nvqosP    -1.695185    1.25053    -1.36   0.175    -4.146525    .7561544
   dev_nvq5P     .0963287   .8544468     0.11   0.910    -1.578593     1.77125
   dev_nvq4P     .1849578   .7741386     0.24   0.811    -1.332541    1.702456
   dev_nvq2P     1.041826   .7387116     1.41   0.158    -.4062272    2.489878
   dev_nvq1P     2.200552   1.132905     1.94   0.052    -.0202145    4.421319
dev_nvqNoneP     1.486175   .9325725     1.59   0.111    -.3418914    3.314242
  dev_nvqosM     1.317335   1.487398     0.89   0.376    -1.598323    4.232994
   dev_nvq5M    -.7356703   .9478136    -0.78   0.438    -2.593613    1.122273
   dev_nvq4M    -.1501306   .8242551    -0.18   0.855    -1.765869    1.465608
   dev_nvq2M      .258292    .809266     0.32   0.750    -1.328064    1.844648
   dev_nvq1M     3.406338   1.336662     2.55   0.011     .7861574    6.026518
dev_nvqNoneM     .1284479   1.173092     0.11   0.913    -2.171095    2.427991
   mn_nvqNAP    (omitted)
   mn_nvqosP    (omitted)
    mn_nvq5P    (omitted)
    mn_nvq4P    (omitted)
    mn_nvq2P    (omitted)
    mn_nvq1P    (omitted)
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F test that all u_i=0:     F(12844, 8566) =     2.73         Prob > F = 0.0000
                                                                              
         rho    .66238528   (fraction of variance due to u_i)
     sigma_e    6.9080457
     sigma_u    9.6760888
                                                                              
       _cons     48.34745   1.344863    35.95   0.000     45.71119     50.9837
      otheth    (omitted)
       asian    (omitted)
       black    (omitted)
         nov    (omitted)
         oct    (omitted)
         sep    (omitted)
         aug    (omitted)
         jul    (omitted)
         jun    (omitted)
         may    (omitted)
         apr    (omitted)
         mar    (omitted)
         feb    (omitted)
         jan    (omitted)
        male    (omitted)
breastfee~ss    (omitted)
breastfee~es    (omitted)
 anclassMiss    (omitted)
  anclassYes    (omitted)
 specialcare    (omitted)
gestationm~s    (omitted)
   gestation    (omitted)
birthwgtmiss    (omitted)
   birthwgtk    (omitted)
classcount~s    (omitted)
  classcount    (omitted)
teachtenur~s    (omitted)
 teachtenure    (omitted)
 dev_imdhigh     .1603273   .7111121     0.23   0.822    -1.233624    1.554278
  dev_imdlow     .4992956   .7594303     0.66   0.511    -.9893708    1.987962
dev_urbanm~s    -.7105835   2.457236    -0.29   0.772    -5.527359    4.106192
   dev_urban    -.8559975   .8236143    -1.04   0.299     -2.47048     .758485



290 
 

Raw Output for Table 4.6 – Hausman Test (Model C, Raw PC Scores) 

                 Prob>chi2 =      0.0518
                          =       99.36
                 chi2(78) = (b-B)'[(V_b-V_B)^(-1)](b-B)

    Test:  Ho:  difference in coefficients not systematic

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg
                           b = consistent under Ho and Ha; obtained from xtreg
                                                                              
 dev_imdhigh      .1603273     .3972879       -.2369606        .3697336
  dev_imdlow      .4992956     .3408477        .1584479         .446857
dev_urbanm~s     -.7105835     2.924928       -3.635512        2.142672
   dev_urban     -.8559975    -.5409976       -.3149999        .4439204
      moved1     -.1629745    -.4838216        .3208471        .1728444
  tv3plushrs      .0414661    -.1910136        .2324797        .1626556
   tvless1hr      .1684337    -.0021779        .1706116        .1508563
      tvnone      .1396188    -.4817971        .6214158        .4123865
 dev_regbedA      .0672269     .0290175        .0382094        .0902412
 dev_regbedS      .3140418     .4325827       -.1185409        .2058037
 dev_regbedN        .56742     .4770847        .0903353        .2760978
     telloff     -.0838148    -.3218661        .2380513         .203457
   smackmiss      -.336538    -1.014645        .6781073        .4313736
       smack      .1323056    -.0298893        .1621949        .1727698
      playNA      .4056521    -.4290128        .8346649        3.162255
    playless      .3691333     .1781467        .1909867        .1281012
     playday      .2752775    -.1648493        .4401268        .1752891
      timena     -7.764274    -3.416534        -4.34774        3.032332
    timenote      .3560871     .5310761        -.174989        .1971671
  timeplenty      .2357334    -.8511311        1.086865        .7237101
    libraryW     -.3726696    -.1784667       -.1942029        .2126443
    libraryN     -.0335173    -.4225543         .389037        .1570252
     readnaP      7.807895     5.845108        1.962787        5.174507
  readneverP     -.0917209    -.3978662        .3061453        .2848244
   readweekP     -.1364965    -.1374941        .0009976        .1438638
    readdayP     -.2224335    -.1640512       -.0583823        .1985922
   readmissM     -2.104698     -.174662       -1.930036         3.45101
  readneverM     -.7817703    -1.040836        .2590658        .4025125
   readweekM      -.601405    -.4643853       -.1370198        .1465859
    readdayM     -.1816985    -.2963637        .1146652        .1619814
homeatmosp~e      .0129946     .0755512       -.0625566        .0279395
 holidaymiss      25.24043     6.990298        18.25013        7.329086
    holiday1      .2076372     .2885139       -.0808768        .1755403
     carmiss      2.425423     2.594231       -.1688085        .7139494
        car1      .4038526     .7503573       -.3465046        .3738249
  tenuremiss      1.742263     .8321778        .9100854        3.345219
    tenureCR     -.4916906    -.1482419       -.3434487        .7833261
    tenureMO      .6460028     .5753217        .0706812        .5098488
    fulltime      .0663106    -.0850345        .1513451        .2882441
    parttime     -.2684873    -.1400845       -.1284028        .2149198
    plsillNA      7.508854     5.136077        2.372777        2.187807
  plsillness     -.1171467     .0659589       -.1831056        .1955376
pgenhealthNA     -6.950148    -6.554555       -.3955922         5.53645
pgenhealthfp     -.0815212    -.3702503        .2887291        .2166217
pgenhealthex      .1224413     .0892645        .0331768        .1700181
depression~s     -4.503005    -3.612489       -.8905154        4.897588
  depression     -.3887575    -.0455567       -.3432008        .5253346
mlsillness~s      .0580112     .0449027        .0131084        .1277433
  mlsillness     -.1426682    -.0864981       -.0561701        .2209568
dev_chls~iss     -.9204799    -1.495432        .5749518         2.79475
dev_chls~ess      .0083017    -.0845313         .092833        .1359938
mgenhealth~s     -3.826851    -2.019419       -1.807432        7.372427
mgenhealthfp      .3291828     .0525285        .2766543        .2290631
mgenhealthex      .1649134    -.0107836         .175697        .1685583
    siblings      -.184784    -.1903241          .00554        .2336904
    natfath1      .9731207     .9425062        .0306145        1.195583
 respartmiss      -3.94264     .5339711       -4.476611        3.388467
    respart1       2.13747      .081061        2.056409        1.506073
 marriedmiss      1.847201    -.8243717        2.671573        1.371497
    married1     -.6570213    -.0533007       -.6037207          1.5227
  dev_nvqNAP      .9549041     .3624693        .5924348        .4854166
  dev_nvqosP     -1.695185    -1.454177       -.2410082        .7635645
   dev_nvq5P      .0963287    -.5289761        .6253047        .4961697
   dev_nvq4P      .1849578    -.3844597        .5694175        .4648453
   dev_nvq2P      1.041826     .4005873        .6412382        .4441597
   dev_nvq1P      2.200552     .9754372        1.225115        .6993312
dev_nvqNoneP      1.486175     .8219379        .6642375         .597307
  dev_nvqosM      1.317335     .4747141        .8426214        .9005981
   dev_nvq5M     -.7356703    -.9865692         .250899        .5692939
   dev_nvq4M     -.1501306     -.731477        .5813463        .5146976
   dev_nvq2M       .258292    -.4903335        .7486255         .506285
   dev_nvq1M      3.406338     .8939998        2.512338        .8725449
dev_nvqNoneM      .1284479    -1.175742         1.30419        .7726287
dev_mixeds~s      2.155871     .0406144        2.115257        .8398706
dev_mixeds~l     -.1096223     .1687963       -.2784185        .7559788
dev_schoo~ss     -5.116114    -2.679924        -2.43619        1.269923
dev_schoo~es      .6712596     .5037572        .1675024        .3133854
monthsofsc~l      .1102202     .1045961        .0056241        .0029556
   dev_lninc     -.2251065    -.2544973        .0293908        .1282866
                                                                              
                     F5           R5         Difference          S.E.
                    (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                      Coefficients     

        the coefficients are on a similar scale.
        output of your estimators for anything unexpected and possibly consider scaling your variables so that
        (79); be sure this is what you expect, or there may be problems computing the test.  Examine the
Note: the rank of the differenced variance matrix (78) does not equal the number of coefficients being tested

. hausman F5 R5, equations(1:1) sigmamore  
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Raw Output for Table 5.6 

 
                                                                              
       _cons    -.0901893   .0294308    -3.06   0.002    -.1478825    -.032496
_IHAHXtime_1    -.3451631   .0357115    -9.67   0.000    -.4151683   -.2751579
  _IHAHYpc_1     1.440932     .04627    31.14   0.000     1.350229    1.531635
_IHAAXtime_1    -.4723836   .0387927   -12.18   0.000     -.548429   -.3963382
  _IHAAYpc_1     1.491468     .04906    30.40   0.000     1.395296    1.587641
_IHALXtime_1     -.675231   .0453859   -14.88   0.000    -.7642008   -.5862612
  _IHALYpc_1     1.681203   .0588035    28.59   0.000      1.56593    1.796475
_IAAHXtime_1     .0855129   .0372433     2.30   0.022      .012505    .1585208
  _IAAHYpc_1    -.0867218   .0411632    -2.11   0.035     -.167414   -.0060297
_IAALXtime_1    -.1346295   .0378497    -3.56   0.000    -.2088263   -.0604327
  _IAALYpc_1     .0978981    .042151     2.32   0.020     .0152696    .1805266
_ILAHXtime_1     .5149608   .0533661     9.65   0.000     .4103473    .6195743
  _ILAHYpc_1    -1.496155   .0752319   -19.89   0.000    -1.643632   -1.348678
_ILAAXtime_1      .432198   .0468794     9.22   0.000     .3403004    .5240957
  _ILAAYpc_1    -1.488067   .0661051   -22.51   0.000    -1.617653   -1.358481
_ILALXtime_1     .2547302   .0406686     6.26   0.000     .1750076    .3344527
        time     .0558742   .0255912     2.18   0.029     .0057078    .1060405
  _ILALYpc_1    -1.423765   .0567723   -25.08   0.000    -1.535056   -1.312475
                                                                              
    zpattcon        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              
                               (Std. Err. adjusted for 7087 clusters in mcsid)

                                                       Root MSE      =  .70935
                                                       R-squared     =  0.4974
                                                       Prob > F      =  0.0000
                                                       F( 17,  7086) =  774.15
Linear regression                                      Number of obs =   14174

i.HAHYpc*time     _IHAHXtime_#        (coded as above)
i.HAHYpc          _IHAHYpc_0-1        (naturally coded; _IHAHYpc_0 omitted)
i.HAAYpc*time     _IHAAXtime_#        (coded as above)
i.HAAYpc          _IHAAYpc_0-1        (naturally coded; _IHAAYpc_0 omitted)
i.HALYpc*time     _IHALXtime_#        (coded as above)
i.HALYpc          _IHALYpc_0-1        (naturally coded; _IHALYpc_0 omitted)
i.AAHYpc*time     _IAAHXtime_#        (coded as above)
i.AAHYpc          _IAAHYpc_0-1        (naturally coded; _IAAHYpc_0 omitted)
i.AALYpc*time     _IAALXtime_#        (coded as above)
i.AALYpc          _IAALYpc_0-1        (naturally coded; _IAALYpc_0 omitted)
i.LAHYpc*time     _ILAHXtime_#        (coded as above)
i.LAHYpc          _ILAHYpc_0-1        (naturally coded; _ILAHYpc_0 omitted)
i.LAAYpc*time     _ILAAXtime_#        (coded as above)
i.LAAYpc          _ILAAYpc_0-1        (naturally coded; _ILAAYpc_0 omitted)
i.LALYpc*time     _ILALXtime_#        (coded as above)
i.LALYpc          _ILALYpc_0-1        (naturally coded; _ILALYpc_0 omitted)
>         i.AAHYpc*time i.HALYpc*time i.HAAYpc*time i.HAHYpc*time, cluster(mcsid)
.         xi: regress zpattcon i.LALYpc*time i.LAAYpc*time i.LAHYpc*time i.AALYpc*time ///

. do "C:\Users\Olivia\AppData\Local\Temp\STD00000000.tmp"
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       _cons    -.0208811   .0553072    -0.38   0.706    -.1292998    .0875376
_IHAHXtime_1     -.013719   .0428486    -0.32   0.749    -.0977151    .0702771
  _IHAHYps_1     .4836509   .0735432     6.58   0.000     .3394842    .6278175
_IHAAXtime_1    -.1036341   .0447567    -2.32   0.021    -.1913706   -.0158976
  _IHAAYps_1     .4206826    .076291     5.51   0.000     .2711294    .5702358
_IHALXtime_1    -.1568629   .0504449    -3.11   0.002    -.2557499   -.0579758
  _IHALYps_1      .266035   .0877385     3.03   0.002     .0940414    .4380287
_IAAHXtime_1     .0376535   .0447399     0.84   0.400      -.05005     .125357
  _IAAHYps_1     .1712259   .0778019     2.20   0.028     .0187109    .3237408
_IAALXtime_1    -.0813067   .0478641    -1.70   0.089    -.1751347    .0125212
  _IAALYps_1    -.1084836   .0793311    -1.37   0.172    -.2639962    .0470291
_ILAHXtime_1    -.0363662    .053111    -0.68   0.494    -.1404797    .0677472
  _ILAHYps_1    -.1758197   .0901821    -1.95   0.051    -.3526035    .0009642
_ILAAXtime_1     .0046966   .0475567     0.10   0.921    -.0885288     .097922
  _ILAAYps_1    -.3070528   .0825213    -3.72   0.000    -.4688192   -.1452864
_ILALXtime_1    -.0511569    .044758    -1.14   0.253     -.138896    .0365823
        time     .0414539   .0324514     1.28   0.201    -.0221605    .1050682
  _ILALYps_1    -.6268503   .0791074    -7.92   0.000    -.7819244   -.4717762
                                                                              
    zpattcon        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              
                               (Std. Err. adjusted for 7087 clusters in mcsid)

                                                       Root MSE      =  .93477
                                                       R-squared     =  0.1272
                                                       Prob > F      =  0.0000
                                                       F( 17,  7086) =   78.04
Linear regression                                      Number of obs =   14174

i.HAHYps*time     _IHAHXtime_#        (coded as above)
i.HAHYps          _IHAHYps_0-1        (naturally coded; _IHAHYps_0 omitted)
i.HAAYps*time     _IHAAXtime_#        (coded as above)
i.HAAYps          _IHAAYps_0-1        (naturally coded; _IHAAYps_0 omitted)
i.HALYps*time     _IHALXtime_#        (coded as above)
i.HALYps          _IHALYps_0-1        (naturally coded; _IHALYps_0 omitted)
i.AAHYps*time     _IAAHXtime_#        (coded as above)
i.AAHYps          _IAAHYps_0-1        (naturally coded; _IAAHYps_0 omitted)
i.AALYps*time     _IAALXtime_#        (coded as above)
i.AALYps          _IAALYps_0-1        (naturally coded; _IAALYps_0 omitted)
i.LAHYps*time     _ILAHXtime_#        (coded as above)
i.LAHYps          _ILAHYps_0-1        (naturally coded; _ILAHYps_0 omitted)
i.LAAYps*time     _ILAAXtime_#        (coded as above)
i.LAAYps          _ILAAYps_0-1        (naturally coded; _ILAAYps_0 omitted)
i.LALYps*time     _ILALXtime_#        (coded as above)
i.LALYps          _ILALYps_0-1        (naturally coded; _ILALYps_0 omitted)
>         i.AAHYps*time i.HALYps*time i.HAAYps*time i.HAHYps*time, cluster(mcsid)
.         xi: regress zpattcon i.LALYps*time i.LAAYps*time i.LAHYps*time i.AALYps*time ///


