
TECHNICAL ADVANCE Open Access

Secure and scalable deduplication of
horizontally partitioned health data for
privacy-preserving distributed statistical
computation
Kassaye Yitbarek Yigzaw1,2* , Antonis Michalas3 and Johan Gustav Bellika2,4

Abstract

Background: Techniques have been developed to compute statistics on distributed datasets without revealing
private information except the statistical results. However, duplicate records in a distributed dataset may lead to
incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset,
secure deduplication is an important preprocessing step.

Methods: We designed a secure protocol for the deduplication of horizontally partitioned datasets with
deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of
semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories
located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory
varied. Experiments were also performed on simulated microbiology datasets and data custodians connected
through a local area network.

Results: The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians
under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N− 2
corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records.
One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental
results showed that the protocol is more efficient and scalable than previous protocols for the same problem.

Conclusions: The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy
of patients and data custodians.

Keywords: Bloom Filter, Data Reuse, Deduplication, Distributed Statistical Computation, Data Linkage, Duplicate Record,
Electronic Health Record, Privacy, Record Linkage, Set Intersection

Background
Electronic health record (EHR) systems have been in ex-
istence for many years. The increased adoption of EHR
systems has led, and continues to lead, to the collection
of large amounts of health data [1]. Large amounts of
administrative, survey, and registry data are also being
collected. These data could aid in the development of

scientific evidence that helps improve the effectiveness,
efficiency, and quality of care of healthcare systems [2–4].

Introduction
The focus of this paper is the reuse of health data horizon-
tally partitioned between data custodians, such that each
data custodian provides the same attributes for a set of
patients. Reusing data from multiple data custodians
provides a sufficient number of patients who satisfy the
inclusion criteria of a particular study. The number of
patients at a single data custodian may provide insuffi-
cient statistical power, especially for studies on rare

* Correspondence: kassaye.y.yigzaw@uit.no
1Department of Computer Science, UiT The Arctic University of Norway, 9037
Tromsø, Norway
2Norwegian Centre for E-health Research, University Hospital of North
Norway, 9019 Tromsø, Norway
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1
DOI 10.1186/s12911-016-0389-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-016-0389-x&domain=pdf
http://orcid.org/0000-0001-7068-117X
mailto:kassaye.y.yigzaw@uit.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

exposures or outcomes. When data are collected across
multiple data custodians, the data of a heterogeneous
mix of patients can be reused.
There has been substantial interest in the reuse of EHR

data for public health surveillance, which also requires
data from multiple data custodians covering the geo-
graphic area of interest [5–7]. One of the EHR meaningful
use criteria in the United States is the ability to release
health data for public health surveillance [8].
The horizontally partitioned datasets required for a

health study or disease surveillance are often queried by
distributing the query to data custodians, who execute the
query and store a copy of the data extracts locally [9]. We
refer to the data extracts distributed across data custodians
as a virtual dataset (VD). Consider the execution of the
query “select the records of patients tested for influenza
A viruses in January 2016” across three data custodians

D ¼ D1; ;D2; ;D3f g . Figure 1 illustrates a VD that con-
sists of the query results for the data custodians.
A VD may contain duplicate records from data custo-

dians that cover overlapping areas and areas in close prox-
imity [10–12]. The duplicate records can be exact or
approximate. A set of records are exact duplicates if the re-
cords are compared using exact comparison functions, and
the records have the same value for all attributes used for
comparison. In contrast, approximate duplicate records are
compared using comparison functions that allow approxi-
mate similarities, and the records have different values for
one or more attributes.

Privacy-preserving distributed statistical computation
Access to and the use of patient data for research raise
significant privacy concerns for the various stakeholders
(i.e., patients and data custodians) [7, 13, 14]. A recent

Fig. 1 A simplified virtual dataset of influenza A test results distributed across three data custodians

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 2 of 19

approach that addresses privacy concerns is secure multi-
party computation (SMC), which deals with the problem
of computing a function f on distributed data without
revealing any information except the results. SMC pro-
tocols have been developed for the statistical computa-
tion of distributed data that do not reveal anything
except the results [15–21].
Statistical analysis of a virtual dataset that contains

duplicate records may lead to incorrect results. Let us
consider a query of the number of patients in a VD that
satisfy a set of criteria. When there are duplicate records
in the VD, a simple summation of the data custodians’
local counts will not return the same result if the query is
run against the combined datasets of all data custodians
stored in a central database.
For example, the distributed statistical computation of

the number of women who tested positive for influenza
A against the VD shown in Fig. 1 would return an incor-
rect result. Patient P3 would be counted twice, as she has a
positive test result stored in D1 and D2. Therefore, to im-
prove the accuracy of the statistical results, deduplication
of the VD is a necessary preprocessing step before statis-
tical analysis is conducted.

Privacy-preserving deduplication
Deduplication (also known as record linkage) is the process
of linking records at the same or different data custodians
that refer to the same individual. In contrast to record link-
age, the final goal of deduplication is to remove duplicate
records while maintaining a single occurrence of each rec-
ord. Privacy-preserving record linkage (PPRL; also known
as private set intersection and private record linkage) pro-
tocols have been developed to link records across multiple
data custodians without revealing any information other
than the linkage result [22, 23]. The main challenges of
these protocols for practical use include the quality of the
linkage, privacy, efficiency, and scalability [22].
The objective of this paper is to develop an efficient

and scalable protocol for the deduplication of a VD while
protecting the privacy of the patients and the data custo-
dians. The proposed protocol supports various determin-
istic record linkage algorithms.
Our main contributions can be summarized as follows:

We propose a novel efficient and scalable protocol based
on Bloom filters for the privacy-preserving deduplication
of a horizontally partitioned dataset. We provide proof
of the security of the protocol against a semi-honest ad-
versarial model in which the participating entities are as-
sumed to follow the protocol steps, but the entities may
try to learn private information from the messages ex-
changed during the protocol execution. We conducted a
theoretical analysis of the protocol’s efficiency and scal-
ability. We implemented a prototype of the protocol and
ran experiments among three microbiology laboratories

located in Norway. We also ran experiments using simu-
lated microbiology laboratory datasets with up to 20 data
custodians and one million records.
The remainder of this section presents a review of re-

lated work and provides a use case for the deduplication
problem and formally presents it. The Methods section
outlines the requirements of the proposed protocol, as
well as the threat model and assumptions, Bloom filter,
notations, basic set operations, and secure sum protocol
used in the protocol. Then, the proposed protocol is de-
scribed. The Results section presents the security analysis,
implementation, and evaluations of the protocol. Finally,
the Discussion and Conclusions are presented.

Related work
Several PPRL protocols have been developed based on
either deterministic or probabilistic matching of a set of
identifiers. Interested readers are referred to [22, 23] for
an extensive review of the PPRL protocols. The protocols
can be broadly classified as protocols with or without a
third party. In this section, we review privacy-preserving
protocols for deterministic record linkage. These proto-
cols are secure against the semi-honest adversarial model,
which is the adversarial model considered in this paper.
A record contains a set of identifiers that consists of

direct and indirect (quasi-identifier) identifiers and other
health information. Direct identifiers are attributes that
can uniquely identify an individual across data custodians,
such as a national identification number (ID). In contrast,
quasi-identifiers are attributes that in combination with
other attributes can identify an individual, such as name,
sex, date of birth, and address. In this paper, the terms
identifier and quasi-identifier are used interchangeably.
Weber [12] and Quantin et al. [24] proposed protocols

that use keyed hash functions. These protocols require
data custodians send a hash of their records’ identifiers
to a third party that performs exact matching and
returns the results. The data custodians use a keyed hash
function with a common secret key to prevent dictionary
attacks by the third party. These protocols are secure as
long as the third party does not collude with a data cus-
todian. Quantin et al.’s protocol [24] performs phonetic
encoding of the identifiers (i.e., last name, first name,
date of birth, and sex) before hashing, in order to reduce
the impact of typing errors in the identifiers on the qual-
ity of the linkage.
Several protocols were proposed based on commutative

encryption schemes1 [25–27]. In these protocols, each
data custodian, in turn, encrypts the unique identifiers for
all records across the data custodians using its private key,
and consequently, each unique identifier is encrypted
with the private keys of all the data custodians. Then, the
encrypted unique identifiers are compared with each other,
as the encrypted values of two unique identifiers match if

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 3 of 19

the two unique identifiers match. The protocols proposed
in [25, 26] are two-party computation protocols, whereas
Adam et al.’s [27] protocol is a multi-party computation
protocol.
The protocols reviewed thus far require the exchange of

a long list of hash or encrypted identifiers, which can limit
the scalability of the protocols as the number of data custo-
dians and records increases. In addition, protocols based on
commutative encryption require communication rounds
quadratic with the number of data custodians.
Multi-party private set intersection protocols were de-

signed based on Bloom filters2 [28, 29]. In general, each
data custodian encodes the unique identifier values of its
records as a Bloom filter (see the description of a Bloom
filter in the Methods section). The protocols use differ-
ent privacy-preserving techniques, as discussed below, to
intersect the Bloom filters and then create a Bloom filter
that encodes the unique identifiers of the records that
have exact matches at all data custodians. Then, the data
custodian queries the unique identifiers of its records in
the intersection Bloom filter to identify the records that
match.
In Lai et al.’s [28] protocol, each data custodian splits

its Bloom filter into multiple segments and distributes
them to the other participating data custodians while
keeping one segment for itself. Then, each data custodian
locally intersects its share of the Bloom filter segments
and distributes it to the other data custodians. Finally, the
data custodians combine the results of the intersection of
the Bloom filter segments to create a Bloom filter that is
an intersection between all the data custodians’ Bloom fil-
ters. The protocol requires communication rounds quad-
ratic with the number of data custodians, and the protocol
is susceptible to a dictionary attack of the unique identi-
fiers that have all the array positions in the same segment
of the Bloom filter.
In Many et al.’s [29] protocol, each data custodian uses

secret sharing schemes3 [30] to split each counter position
of the data custodian’s Bloom filter and then distributes
them to three semi-trusted third parties. The third parties
use secure multiplication and comparison protocols to
intersect the data custodians’ Bloom filters, which adds
overhead to the protocol.
Dong et al. [31] proposed a two-party protocol for pri-

vate set intersection. The protocol introduced a new vari-
ant of a Bloom filter, called a garbled Bloom filter, using a
secret sharing scheme. The first data custodian encodes
the unique identifiers of the data custodian’s records as a
Bloom filter, whereas the second data custodian encodes
the unique identifiers of its records as a garbled Bloom fil-
ter. Then, the data custodians intersect their Bloom filters
using an oblivious transfer technique (OT)4 [32], which
adds significant overhead to the overall performance of
the protocol.

Karapiperis et al. [33] proposed multi-party protocols
for a secure intersection based on the Count-Min sketch.5

Each data custodian locally encodes the unique identifiers
of its records based on the Count-Min sketch, denoted as
the local synopsis, and then, the data custodians jointly
compute the intersections of the local synopses using a se-
cure sum protocol. The authors proposed two protocols
that use secure sum protocols based on additive homo-
morphic encryption [34] and obscure the secret value with
a random number [19, 35]. The protocols protect only the
data custodians’ privacy, whereas our protocol protects
individuals’ and data custodians’ privacy. The additive
homomorphic encryption adds computation and commu-
nication overhead as the number of records and data cus-
todians increases.
The results of the protocols in [28, 29, 31, 33] contain the

probability of a false positive. Although the protocols can
choose a small false positive probability, for some applica-
tions, a false positive probability may not be acceptable.

Use case
The need for comprehensive and timely infectious disease
surveillance is fundamental for public health monitoring
that makes early prevention and control of disease out-
breaks possible. EHRs have been used as a data source for
routine syndromic and laboratory-based public health sur-
veillance [5–7].
The use case considered in this paper is distributed dis-

ease surveillance [6]. In particular, we consider the Snow
system that is used for experimental evaluations of the
protocol proposed in this paper [36]. The Snow system uses
microbiology laboratory test results from multiple micro-
biology laboratories in Norway. The laboratories collect
and analyze samples from patients in primary care settings,
such as general practitioner offices and nursing homes.
Every day, the Snow system extracts anonymized test

results and maintains the datasets within local databases
at each laboratory according to a predefined data model.
The data extracts contain attributes, such as infectious
agent, age, sex, geographic area, and time. The Snow sys-
tem broadcasts a query across the laboratories and reveals
only the number of matching patients at each laboratory.
We extend the Snow system with a secure sum protocol
to hide the local count of a single laboratory [20].
Consider the statistical query of the count of positive

or negative test results for a disease in a particular
stratum of individuals (e.g., male or female) within a VD.
A simple summation of the laboratories’ local counts
gives an overestimated count when the test results are
duplicated across the laboratories. A laboratory may trans-
fer test samples to another laboratory when the first labora-
tory does not have the appropriate laboratory equipment.
Then, when the test results are sent to the first laboratory,
the same test result appears in both laboratories’ datasets.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 4 of 19

In the context of infectious disease surveillance, two
or more separate tests for an individual that have a posi-
tive result can also be considered duplicates depending
on the required aggregate query for the dataset, such as
the number of patients who have had a particular dis-
ease and the number of disease episodes.
Individuals may be infected with the same disease multiple

times within a given time period, which may lead to being
tested for the same disease at multiple laboratories. Individ-
uals can also be tested at multiple laboratories for the same
infection; this practice is more common in chronic infec-
tions. Testing at multiple laboratories may occur when pa-
tients switch healthcare providers, receive emergency care,
or visit different providers during an episode of infection
[37]. In Norway, primary care institutions may send samples
collected from a patient to different laboratories, and pa-
tients can change general practitioners up to twice a year.
Consider a statistical query of the number of individuals

infected with influenza A viruses within the VD shown in
Fig. 1. The query requires that patient P1 is counted once,
even if the patient has two positive test results at data cus-
todians D1 and D3. For this query, the objective of the
deduplication is to link the positive test results for each in-
dividual in the VD and to maintain the test result at only
one of the laboratories.
When the number of disease episodes is counted, the

number of positive test results for different disease epi-
sodes for an individual across the laboratories is counted
separately. However, the positive test results for an indi-
vidual in the same disease episode should be counted
once. For example, Lazarus et al. [38] grouped two
healthcare service encounters for a patient for a lower
respiratory infection into one episode if the subsequent
visit occurred within six weeks of the preceding visit.
The researchers assumed that the second visit likely rep-
resented a follow-up visit for the same infection. In this
context, the objective of deduplication is to link an indi-
vidual’s positive test results for the same disease episode
and keep the test result at only one of the laboratories.
We describe the protocol proposed in this paper in

the context of deduplicating a VD to be able to accur-
ately compute the statistical count of the number of in-
dividuals infected with the disease in question. However,
the protocol can be easily extended to other types of
statistical count queries.

Problem statement and definitions
In this section, we define the context for the deduplica-
tion problem and the problem statement.

Data custodian (Di)
We assume three or more data custodians (e.g., hospitals,
general practitioner offices, or medical laboratories) are
willing to share their data for a secondary use in a health

study but are concerned about privacy risks. The data cus-
todians form a distributed health research network denoted
by D ¼ D1; ;D2;…; ;DNf g, where Di is a data custodian.

Data schema
The heterogeneity of data models is a challenge in reusing
data from multiple data custodians [39]. Therefore, the dis-
tributed data must be harmonized through standardization.
For example, several distributed health research networks,
such as Mini-Sentinel [40] and the Shared Health Research
Information Network (SHRINE) [41], create a common
data model by transforming the data at each data custodian
into a predefined common data model and data represen-
tations [9].
In this paper, for simplicity, we assume a common data

model exists across the data custodians that enforces uni-
form attribute naming conventions, definitions, and data
storage formats. We also assume the data distributed
across the data custodians are horizontally partitioned in
that each data custodian Di collects the same attributes
for a set of patients.

Virtual dataset (VD)
We assume the data query for a particular study can be
broadcast to all data custodians D. Then, each data custo-
dian executes the query and stores a copy of the query re-
sult locally. The data extracts across the data custodians
form a virtual dataset. We make the same assumption as
above that the VD adheres to a common data model.

Record linkage
We consider deterministic record linkage algorithms in
which a set of records belongs to the same person if they
exactly or partially match on a predefined combination
of identifiers. First, we describe the protocol proposed in
this paper by assuming the existence of a common
unique identifier j for a patient denoted by pj. Second,
we extend the protocol for deterministic record linkage
using quasi-identifiers, when the available unique identi-
fier is low quality or does not exist.

Problem statement
Assume a subset of data custodians Ds⊆D . Each data
custodian Di∈Ds has a record rj of patient pj in a virtual
dataset. The problem addressed in this paper is to find a
privacy-preserving protocol through which the patient’s
duplicate records are identified and removed from the
virtual dataset while one occurrence of the record is
maintained at one of the data custodians.

Methods
Overview
Figure 2 shows an overview of the methods we used to de-
velop and evaluate the secure deduplication protocol

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 5 of 19

proposed in this paper. First, we defined the requirements
for the protocol and the threat model and assumptions with
which the protocol would be secure. We presented the
building blocks used in the protocol, such as a Bloom filter,
functions for the basic operations of Bloom filters, and se-
cure sum protocol, and described the proposed protocol.
We then performed a security analysis of the proposed

protocol. We also conducted theoretical and experimental
evaluations of the protocol’s efficiency and scalability. We
implemented a prototype of the protocol and ran the ex-
periments on the virtual datasets distributed across three
Norwegian microbiology laboratories. We also ran experi-
ments on simulated datasets with up to 20 data custodians
and one million records.

Requirements for secure deduplication protocol
Data custodians’ privacy concerns about disclosing pa-
tient data continue, even in the context of a pandemic
[42]. Therefore, a deduplication protocol should protect
the privacy of patients who have records in a VD.
However, even when patients’ privacy is protected, data

custodians (e.g., clinicians and health institutions) have
expressed concerns about their own privacy risks [7]. For ex-
ample, deduplication may reveal the total number of patients
in a data custodian who satisfy certain criteria. Although this
information does not directly reveal any information about
the patients, data custodians might consider this information
sensitive, and in many scenarios, it needs to be hidden.
For example, a general practitioner may fear that the

number of laboratory test requests and results she sent

to laboratories could be used to evaluate her testing be-
havior. A microbiology laboratory may fear that other
laboratories and investors may use the number of tests
the laboratory performs during a time period to gain
competitive advantage. Therefore, the protocol should
be designed in such a way that the total number of pa-
tients remains private.
The protocol should allow only a data custodian to learn

which of its records have duplicates in the VD, which does
not reveal any new sensitive information to the data custo-
dian. However, the identity of the data custodians that con-
tributed the duplicate records should remain unknown.
For example, in Fig. 1, the influenza A–positive test

results for patient P1 are stored at D1 and D3. Data cus-
todian D2 cannot learn any information about P1. D1

and D3 learn only that P1 tested positive for influenza
A at another anonymous laboratory, which is not sensi-
tive information.
Often, public health studies require a large number of

patients’ data from several data custodians. Therefore,
the deduplication protocol should be computationally ef-
ficient and scale with the number of records and partici-
pating data custodians.

Threat model and assumptions
We considered a semi-honest (honest-but-curious) adver-
sarial model in which the data custodians correctly follow
the protocol specifications using the data custodians’ cor-
rect data. However, the data custodians might use the
messages exchanged during the protocol execution to

Fig. 2 An overview of the methods for developing and evaluating the proposed protocol

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 6 of 19

learn information that otherwise should remain private.
The adversarial model allows efficient and scalable proto-
cols, whereas the malicious adversarial model provides
stronger security at the expense of significant computation
and communication costs [43–46].
We also assumed that a semi-trusted third party (STTP),

denoted as the coordinator, who participates in the proto-
col without any input. In addition, we assumed that the co-
ordinator follows the protocol specification and does not
collude with a data custodian. An efficient and scalable
protocol can be constructed using an STTP [7, 47].
We assumed that the communications between two en-

tities that participate in the protocol are secure. Therefore,
an adversary cannot read the messages sent between
two honest entities, and the integrity of the messages is
verified.

Bloom filter
A Bloom filter (BF) is a space-efficient probabilistic data
structure that encodes a set X of n elements [48]. A BF
is an array of size m, and each array position has one bit
initially set to 0. The Bloom filter allows insertion and
membership queries of an element x∈X .
Bloom filter operations are performed using k inde-

pendent hash functions Hh(.), where 1 ≤ h ≤ k. First, the

hash of an element x is computed using each hash func-
tion Hh(x). Second, the modulo m of each hash value is
computed to get k array positions of BF, bh(x) =Hh(x)
mod m, where bh(x) ∈ [0,m − 1]. Then, x is inserted into
the BF by setting all the positions bh(x) of BF to 1. The
element x is concluded to be a non-member of the BF if
at least one of the positions bh(x) of the BF is 0.
A membership query result can be a false positive due

to the hash collisions that occur when all the positions
bh(x) of the BF have been set to 1 as a result of the inser-
tion of other elements. After elements equal to the ex-
pected number of elements n are inserted into the BF
the false positive probability of a membership query is
equal to P(false positve) ≈ (1 − e− kn/m)k [49]. Figure 3 pre-
sents an example of a Bloom filter through inserting and
querying elements.
A counting Bloom filter (CBF) is an extension of a

Bloom filter [49, 50] that supports the deletion of ele-
ments, as well as insertion and membership queries. Each
array position of a CBF has a counter size c greater than
one bit that is large enough to avoid counter overflow.
An element x is inserted into the CBF by incrementing

all the counters at the array positions bh(x) of the CBF
by 1. Similarly, an element x is deleted from the CBF by
decrementing all the counters at positions bh(x) by 1.

Fig. 3 Insertion and membership query for a Bloom filter (BF) (m = 16, k = 3). bi(xj) denotes an array position for xj with a hash function denoted as Hi(.)

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 7 of 19

The element x is concluded to be a non-member of the
CBF if at least one of the positions bh(x) is 0. A member-
ship query has the same false positive probability as a
Bloom filter.

Notations
In this section, we describe the notations that are used
in the remainder of the paper. Ii denotes a set of the
unique identifiers (IDs) of the records of a data custodian
Di∈D in a particular deduplication query. The union of all
the IDs of the records across all data custodians is denoted
as S = I1 ∪ I2 ∪… ∪ IN. We write S ∩ Ii and S ∪ Ii to denote
the intersection and the union between sets S and Ii,
respectively.
We use CBFs to denote a counting Bloom filter that en-

codes set S and use CBFI
i and BFI

i to denote a counting
Bloom filter and a Bloom filter that encode set Ii, respect-
ively. CBFS ∩ I

i and CBFS ∪ I
i encode sets S ∩ Ii and S ∪ Ii,

respectively.
We use CBFr

i to denote the random counting Bloom fil-
ter of data custodian Di and use CBFR to denote the sum

of all the random counting Bloom filters,
XN

i¼1
CBFi

r .

However, CBFR
i denotes the partial sum of the random

counting Bloom filters,
Xi

j¼1
CBFj

r þ CBF 0
r , where CBFr

0

denotes the initial random counting Bloom filter of the
leader data custodian DL.
The union of CBFI

i and CBFr
i is denoted as CBFr ∪ I

i ,
and the Bloom filter representation of CBFr ∪ I

i is denoted
as BFr ∪ I

i . CBFR ∪ S denotes the union of CBFR and CBFS.

Set operations on Bloom filters
Table 1 describes the main functions for the set operations
on Bloom filters that are required for the construction of
our protocol. Interested readers are referred to Additional
file 1 for detailed descriptions and the algorithms of the
functions.

Secure sum protocol
Several secure sum protocols are constructed using dif-
ferent building blocks [7, 17, 51, 52]. Secure sum proto-

cols compute s ¼
XN

i¼1
vi , where vi ∈ [0,m) is the secret

value of data custodian Di. The protocols compute with-
out disclosing vi to any entity that participates in the

protocol. We extend the secure sum protocol proposed
in [19, 35] to compute the union of random counting

Bloom filters, CBFR ¼
XN

i¼1
CBFi

r , where CBFr
i is the

random counting Bloom filter of Di. Assume that D1 is
selected as the leader data custodian, denoted as DL.
The protocol steps are shown in Algorithm 1.
In steps 1–3, the leader data custodian DL computes

CBFR
1 = add(CBFr

1,CBFr
0) and sends the result CBFR

1 to
data custodian D2. In steps 4–11, each data custodian
Di, in turn, computes CBFR

i = add(CBFr
i,CBFR

i − 1) where
2 ≤ i ≤N and CBFR

i − 1 is the value received from the pre-
vious data custodian Di − 1. Then, DN sends its result
CBFR

N to DL. In step 12, DL computes CBFR = sub(CBFr
N,

CBFr
0) and gets the actual sum CBFR ¼

XN

i¼1
CBFi

r . In

steps 13–15, DL broadcasts CBFR to all data custodians.
In this protocol, collusion between data custodians Di − 1

and Di + 1 reveals the secret value of Di. Extensions to the
protocol are proposed in [21, 53] to make collusion be-
tween data custodians difficult.

A secure deduplication protocol
In this section, we describe the secure deduplication
protocol proposed in this paper. The protocol includes
the setup and computation phases.

Setup phase
In this phase, the coordinator broadcasts a start message
that contains the user query criteria and the P(false positive)
value to each Di in D. Then, the data custodians jointly se-
lect the leader data custodian, denoted as DL. For simpli-
city, let us assume that D1 is selected as the leader. Then,
they form a ring topology, DL→D2→D3→…→Di→
Di + 1→…→DN, as shown in Fig. 4.
The data custodians jointly select the required param-

eters, such as the expected number of records n, Bloom
filter size m, number of hash functions k, counter size c,
and P(false positive). The data custodians also agree on a
cryptographic hash function H0(.) and the k hash func-
tions Hk with two secret keys k0 and k1.

Computation phase
The computation phase contains two subprotocols, such
as the secure duplicate identifier and the distributed

Table 1 Functions for basic operations of Bloom filters

Functions Description

add(CBFr
i, CBFI

i) Returns counting Bloom filter CBFr ∪ I
i that represents the summation of CBFr

i and CBFI
i

sub(CBFR ∪ S, CBFR) Returns counting Bloom filter CBFS that represents the subtraction of CBFR from CBFR ∪ S

intersect(CBFS, BFI
i) Returns counting Bloom filter CBFS ∩ I

i that represents the intersection between CBFS and BFI
i

count(CBFS ∩ I
i , {b1(x), b2(x),…, bk(x)}) Returns f that is equal to the number of occurrences of x in CBFS ∩ I

i

toBloomFilter(CBFI
i) Returns Bloom filter BFI

i that represents CBFI
i

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 8 of 19

sorted neighborhood. The secure duplicate identifier
subprotocol allows each data custodian to learn which of
its records have duplicate records in the VD with false
positive probability P(false positive). Then, the distrib-
uted sorted neighborhood subprotocol is executed on
the results of the secure duplicate identifier subprotocol
to identify the real duplicate records and remove the du-
plicate records while maintaining a single occurrence of
the records.

A secure duplicate identifier subprotocol
The objective of this subprotocol is to allow each data cus-
todian Di to identify which of its records has a duplicate in
the VD with a small false positive probability P(false posi-
tive). The protocol consists of the following steps:

1. Each Di in D performs the following steps:
a. Extract from its local dataset a set of unique IDs,

denoted as Ii, of the patients who satisfy the user
query criteria.

b. Encode Ii as the counting Bloom filter CBFr
i using

the keyed hash functions Hk with the secret key k1.
c. Create the random counting Bloom filter CBFr

i

(the algorithm used to create the random counting
Bloom filter is described in Additional file 1).

2. DL creates the initial random counting Bloom filter
CBFr

0.
3. The data custodians D jointly run Algorithm 1 to

compute the sum CBFR ¼
XN

i¼1
CBFi

r .

4. Each Di sums CBFr
i and CBFI

i and sends the result
CBFr∪ I

i to the coordinator.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 9 of 19

5. The coordinator computes the sum
CBFR∪S ¼

XN

i¼1
CBFr∪ I

i .
6. For each Di in D, the coordinator performs the

following steps:
a. Convert CBFr∪ I

i into the Bloom filter BFr∪ I
i .

b. Intersect CBFR∪ S and BFr∪ I
i and send the result

CBFR∪ S∩ BFr∪ I
i to Di.

7. Each Di in D performs the following steps:
a. Create the Bloom filters BFI

i and BFr∪ I
i from the

counting Bloom filters CBFI
i and CBFr∪ I

i ,
respectively.

b. Intersect CBFR and BFr∪ I
i and create the

counting Bloom filter CBFR∩ BFr∪ I
i .

c. Subtract CBFR∩ BFr∪ I
i from CBFR∪ S∩ BFr∪ I

i .
The result is denoted by (CBFR∪ S∩ BFr∪ I

i) −
(CBFR∩ BFr∪ I

i) = (CBFR∪ S −CBFR)∩ BFr∪ I
i .

However, we know that CBFR∪ S −CBFR =CBFS.
Therefore, the result can be expressed by CBFS∩
BFr∪ I

i .
d. Intersect CBFS∩ BFr∪ I

i and BFI
i and create the

counting Bloom filter denoted as CBFS∩ BFr∪ I
i ∩

BFI
i. The expression can be reduced to CBFS∩ I

i =
CBFS∩ BFI

i, as BFr∪ I
i ∩ BFI

i is equal to BFI
i.

e. Query the number of occurrences of the IDs Ii in
CBFS∩ I

i using the count() function, and create

the list Li that contains the IDs that have more
than one occurrence.

In steps 1–2, each data custodian Di (where 1 ≤ i ≤N)
encodes the unique IDs of its records as the counting
Bloom filter CBFI

i and creates the random counting
Bloom filter CBFr

i. The leader data custodian DL creates
the additional random counting Bloom filter CBFr

0. In
step 3, the data custodians jointly compute the sum of

their random counting Bloom filters, CBFR ¼XN

i¼1
CBFi

r , using Algorithm 1. In step 4, Di computes

CBFr ∪ I
i = add(CBFr

i,CBFI
i) and sends the result CBFr ∪ I

i

to the coordinator. In step 5, the coordinator sums all

data custodians’ CBFr ∪ I
i , CBFR∪S ¼

XN

i¼1
CBFr ∪ I

i .

In step 6, the coordinator computes BFr ∪ I
i = toBloomFil-

ter(CBFr ∪ I
i) and CBFR ∪ S ∩ BFr ∪ I

i . The coordinator sends
CBFR ∪ S ∩ BFr ∪ I

i to Di. In step 7, each data custodian Di

creates the counting Bloom filter CBFS ∩ I
i =CBFS ∩ BFI

i that
encodes the intersection between the IDs of Di and all data
custodians. Finally, Di queries its IDs in CBFS ∩ I

i to create
the list Li that contains the IDs for the records that are
likely to be duplicates with the false positive probability
P(false positive). Although the P(false positive) is very
small, for some applications it may not be acceptable,
and the true duplicate records should be identified.

Fig. 4 Ring topology of the data custodians

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 10 of 19

The total number of likely duplicate records across the

data custodians,
XN

i¼1
Lij j is very small compared to the

total number of records, as the number of records that
have duplicate records is often a small proportion of the
total number of records. Therefore, we can run existing
deterministic PPRL protocols [12, 22, 24, 27] on the re-
sults of the secure duplicate identifier subprotocol with
minimal computation and communication complexity.
In the next section, we present an improved protocol
based on the keyed hash function that reduces the re-
quired number of comparisons.

Secure distributed sorted neighborhood subprotocol
In the conventional sorted neighborhood (SN) technique
[54, 55], sorting keys are generated for each record using a
single attribute or a concatenation of the attributes of the re-
cords, and the keys are sorted lexicographically. Then, a slid-
ing window of fixed size w is moved over the sorted records,
and only the records in the same window are compared.
After the secure duplicate identifier subprotocol is

run, each data custodian Di has the list Li that contains
the IDs of the likely duplicate records. Note that the size
of Li is much smaller than the total number of records
of Di. In a simple approach for finding the actual dupli-
cate records, Di hashes each ID in Li using a keyed hash
function and sends the result HLi to the coordinator,
who computes the union of the hash lists from all data
custodians, HL = ⊎i HLi. Then, the coordinator performs
exact matching between every ID with every ID in HL.
However, in practice, we know that most of the compar-
isons are unlikely to match.
Let us assume that a set of data custodians Ds⊆D and

each data custodian Di∈Ds has the record rj with the ID
j. As rj is a duplicate record, value j appears in the list of
IDs of the likely duplicate records, Li, of each Di∈Ds .
H0(j) denotes the hash of j with hash function H0(.). As
the hash of j with the same hash function multiple times
gives the same hash values, each Di∈Ds sends to the co-
ordinator the list HLi that contains H0(j) . Therefore, HL
contains multiple occurrences of H0(j), and sorting HL
brings hash values for the same ID next to each other.
Based on these observations, we present a distributed

sorted neighborhood (DSN) subprotocol that extends
the SN technique. The protocol parallelizes the sorting
by making each data custodian Di locally sort HLi, and
the coordinator merges only the sorted lists. The DSN
protocol has the following steps:

1. Each Di in D performs the following steps:
a. For every ID j in Li, Di performs the following

steps:
1. Hash j using the keyed hash function H0(.)

with the secret key k0.

2. Store the hash of j in the list SLi.
b. Lexicographically sort SLi.
c. Send SLi to the coordinator.

2. The coordinator performs the following steps:
a. Merge the SLi of each Di in D and create the list SL.
b. Slide a window of size w over the list SL and

compare each pair of hash IDs within the
window. If at least two hash IDs match, then the
records associated with the IDs are duplicates.

c. Send to Di the list DLi of the hash IDs of the
records that Di needs to remove from its local
dataset.

3. Each Di in D, for every ID j in DLi, removes its
record associated with j.

Extension of the secure deduplication protocol for
deterministic algorithms
Thus far, the proposed protocol has been described for
situations in which a common unique identifier exists,
which enables efficient and high-quality linkage. This
assumption is realistic in countries, such as Norway,
Sweden, and Denmark, where a high-quality unique
personal identifier is available [56, 57].
However, in many situations, the available unique

identifier is low quality or does not exist. We describe
how our protocol can be extended to support determin-
istic record linkage algorithms that define the criteria
about which identifiers need to match in order to accept
the linkage of a pair of records.
To increase the quality of the linkage, data cleaning

often precedes record linkage. We also assume appropri-
ate data cleaning occurs before the protocol is run. Vari-
ous data-cleaning techniques, such phonetic encoding
algorithms, have been proposed in the literature [58].
It has been shown that a linkage key can be created

based on a concatenation of quasi-identifiers, such as
name, sex, date of birth, and address. Studies have esti-
mated that up to 87% of the U.S. population [59], 98% of
the Canadian population [60], and 99% of the Dutch
population [61] are unique, with a combination of quasi-
identifiers, such as postal code, sex, and date of birth.
The National Cancer Institute in the United States

uses a deterministic record linkage algorithm to link
Surveillance, Epidemiology and End Results (SEER) data
collected from cancer registries and Medicare claims data.
The algorithm creates linkage keys using a set of criteria
based on a Social Security number (SSN), first name, last
name, date of birth, and sex [62, 63].
Let us consider a deterministic record linkage algorithm

that has p linkage keys where each linkage is generated
using a distinct match criterion defined by combinations
of quasi-identifiers. For each match criterion, each data
custodian creates a linkage key, and the deduplication
protocol is run with the linkage key the same way the

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 11 of 19

protocol is run with a unique identifier. However, in the
distributed sorted neighborhood subprotocol, each data
custodian sends the hash of the local identifiers of the
likely duplicate records with the hash of the linkage keys
to the coordinator. Finally, the coordinator identifies the
actual duplicate records from the results of the protocol
with all the linkage keys.
Let us consider, for simplicity of description, that each

data custodian has an equal number of records. The
computation time for a data custodian to create linkage
keys for its records based on a combination of quasi-
identifiers is denoted as tl. The runtime for the protocol
using a unique identifier is denoted as tu. Assuming that
the data custodians generate linkage keys for their re-
cords in parallel, deduplication using a linkage key has a
total runtime of tu + td.
For a deterministic record linkage algorithm that has p

linkage keys, the total runtime is p × (tu + td) + ta, where
ta is the sum of the additional time required to send
local unique identifiers to the coordinator and the com-
putation time for the coordinator to find the actual du-
plicate by combining the results of the protocol with
each linkage key. However, as a separate instance of the
protocol can run with each linkage key in parallel, the
runtime reduces to (tu + td) + ta.

Results
In this section, we describe the security analysis and the
implementation of the proposed deduplication protocol.
We also describe the theoretical and experimental evalu-
ations of the protocol’s efficiency and scalability.

Security analysis
We prove the security of the proposed protocol in the
presence of corrupt data custodians or a corrupt coord-
inator who tries to learn information as a result of the
protocol execution. We assume that a corrupt coordin-
ator does not collude with a corrupt data custodian.
For the security proof of the protocol, we follow the

standard security definition that is called privacy by
simulation. For an adversary that controls a set of data
custodians (or the coordinator), the adversary’s view (the
information learned during the protocol execution) is a
combination of the corrupt data custodians’ views. The
adversary also accesses the corrupt data custodians’ in-
puts and outputs. Thus, in the simulation paradigm, we
require to show the existence of an efficient simulator
that can generate the adversary’s view in the protocol
execution given only the corrupt data custodians’ inputs
and outputs.

Theorem 1 (compromised Di) The protocol is secure
against an honest-but-curious adversary ADV that cor-
rupts (or controls) at most N − 2 data custodians.

Proof We prove the robustness of the protocol by look-
ing at the exchanged messages and reducing the security
to the properties of the Bloom filter.
We denote the corrupt data custodians as DA⊂D ,

where DAj j≤N−2. The inputs to a simulator are the in-
puts and outputs of the corrupt data custodians DA. The
inputs and outputs of each corrupt data custodian Da∈
DA are the list of the IDs of its records Ia and the list of
the IDs for likely duplicate records La, respectively.
The view of each corrupt data custodian Da∈DA are

the counting Bloom filters, such as CBFI
a,CBFS ∩ I

a ,CBFr
a

and CBFR. CBFI
a and CBFS ∩ I

a can be generated from lists
Ia and La, respectively. CBFr

a and CBFR are randomly
generated. In general, the simulator can generate the
adversary’s view in the protocol execution from the cor-
rupt data custodians’ inputs and outputs. Thus, the proto-
col is secure against an honest-but-curious adversary so
that the protocol computes without revealing anything
except the outputs. Therefore, the adversary cannot ex-
tract any private information about patients who have
records at honest data custodians. In addition, the ad-
versary cannot learn the number of records at honest
data custodians.
Let us assume that the ID j for a duplicate record rj

is in the list La of corrupt data custodian Da∈DA . The
adversary learns the number of duplicates for rj from
CBFS ∩ I

a with a false-positive probability equal to
P(false positive), denoted as d. The adversary can look
into its inputs to learn the actual number of duplicates
of rj at DA , denoted as dA. Therefore, an adversary may
infer whether duplicate records for rj exist at honest
data custodians with the following probability:

p ¼ d−dAð Þ 1−P false positiveð Þð Þ
�

N− DAj jð Þ:

Theorem 2 (compromised coordinator) An honest-
but-curious adversary ADV that corrupts the coordinator
cannot infer any information about the presence or ab-
sence of patients at data custodians and the number of
records contributed by a data custodian.

Proof We prove the security of the protocol by analyz-
ing the messages received by the coordinator during the
execution of the protocol and reduce its security to the
properties of the hash functions Hk and H0(.) used in the
protocol.
The coordinator’s view is the counting Bloom filter

CBFr ∪ I
i and the list of the hash IDs of the likely duplicate

records SLi of each data custodian Di. The coordinator
does not have inputs and outputs. The objective of the
security proof is to show that private information about

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 12 of 19

patients and data custodians cannot be learned based on
the coordinator’s view during the protocol execution.
The secret keys (k0, k1) used by the data custodians

are not available to the simulator. Therefore, the simu-
lator cannot learn the IDs of the records inserted in
CBFr ∪ I

i . In addition, as the hash function H0(.) is
cryptographically secure, the simulator cannot learn the
IDs based on SLi.
Each array position of CBFr ∪ I

i has a counter value
equal to the sum of the corresponding counter values of
CBFI

i and CBFr
i. Thus, the counter values of CBFr ∪ I

i are
random, as every counter position of CBFr

i has a random
value. The random noise CBFr

i inserted in CBFr ∪ I
i pre-

vents the simulator from learning the approximate total
number of records of Di encoded by CBFI

i.
Therefore, ADV cannot learn the IDs and the number of

records held at a data custodian, and consequently, the
protocol is secure in the face of a corrupt coordinator.

Implementation
A prototype of the proposed deduplication protocol is
implemented in Java. The prototype contains the local
and coordinator software components. The local soft-
ware component is deployed at each data custodian,
while the coordinator software component is deployed
at the coordinator. The parameters required for an in-
stance of the protocol are configured through the
configuration files.
The dataset at each data custodian was stored in a

MySQL relational database. We used the JavaScript Ob-
ject Notation (JSON) format for message communica-
tion. Each component used an Extensible Messaging and
Presence Protocol (XMPP) [64] client to connect to an
XMPP server. Then, a JSON message was sent through
the XMPP server between two entities that participate in
the protocol. All messages were compressed using the
Lz4 [65] lossless compression algorithm to reduce the
overall size. After transmission, each message was de-
compressed before actual use.

Analytical evaluation
The main concerns for the practical use of SMC proto-
cols are efficiency and scalability. Efficiency is the ability
to compute with a good performance, which is often
expressed by the communication and computation com-
plexity. Communication complexity is analyzed in terms
of the communication rounds and the size of the messages
exchanged between the parties involved in the protocol.
For N data custodians, each data custodian sends three
messages and receives three messages, except the leader
data custodian that sends N + 2 messages. The coordinator
sends 2N messages and receives 2N messages. The overall
communications of the protocol is 6N − 1, which is linear
with the number of data custodians O(N).

The size of a message that contains a counting Bloom
filter depends on the Bloom filter size m and counter
size c. The size of the message that contains the list of
likely duplicate hash IDs SLi is small compared to the
size of the message that contains the IDs Ii of all records,
but it depends on the false positive probability and the
proportion of the records of Di that have duplicates in
the virtual dataset.
Computation complexity is measured in terms of the

time it takes for each entity to complete local computa-
tions and the protocol runtime. Scalability is measured
in terms of the change in efficiency as the number of re-
cords and data custodians increases.
In general, the local computations of the protocol are

computationally very efficient, as it does not use a building
block that adds overhead to the performance. Bloom filter
operations require only O(1) time. The other computa-
tions are performed only on the list of the hash IDs of the
likely duplicate records, which are a small proportion of
the IDs of all the records. In addition, the data custodians
often compute in parallel. Detailed analysis of the total
computation time is provided in Additional file 1.

Experimental evaluation
We ran the experiments using actual and simulated
datasets to evaluate the efficiency and scalability of the
protocol. The experiments were run 100 times, and the
average total runtime for the protocol and the local
computation time for each entity were recorded. In this
section, we report only the total runtimes. Details re-
garding the parameters used for the experiments are
given in Additional file 1.

In situ experiments
We deployed the prototype at three microbiology la-
boratories located in Norway on top of the Snow disease
surveillance system [36]. Two laboratories are depart-
ments at the University Hospital of North Norway (UNN)
and Nordland Hospital (NLSH). The third laboratory is
Fürst Medical Laboratory, a private laboratory. UNN and
NLSH together cover a total population of more than 475
000 inhabitants. Based on the number of laboratory tests
conducted within a specific time period, we estimated that
the Fürst population coverage is approximately twice the
total population covered by UNN and NLSH.
At Fürst, the local software component was deployed

on an Intel i5-4590 3.3GHz quad core with 8GB RAM
and Ubuntu 14.04. At UNN and NLSH, the local software
component was deployed on an Intel Xeon E5-2698 v3
2.3GHz dual core with 4GB RAM and Red Hat Enter-
prise Linux 7. The coordinator software component
was deployed on an Intel Xeon X3220 2.4GHz quad
core with 8GB RAM and Ubuntu 14.04. The laborator-
ies and the coordinator were connected through the

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 13 of 19

Norwegian Health Network, a wide area network of
healthcare service providers. Details about the network
connections and the communication patterns are de-
scribed in Additional file 1.
We ran two experiments on the data distributed across

the three laboratories. The first experiment involved
answering a query about the number of individuals in-
fected with influenza A between January 2015 and April
2016. Each laboratory locally queried the IDs of the indi-
viduals who were tested positive for influenza A during
this time period, and a virtual dataset that contained
5329 records was created.
The second experiment involved answering a query

about the number of patients who were tested at mul-
tiple laboratories between January 2015 and April 2016.
Each laboratory locally queried the unique IDs of the pa-
tients who had been tested for any of the diseases included
in the Snow system during the time period, and a virtual
dataset that contained 85 353 unique IDs was created.
We divided each virtual dataset into segments by vary-

ing the time period in which the analyses were performed.
Then, we ran the protocol on each segment of the virtual
datasets.
Figures 5 and 6 show the runtimes for the protocol on

the two virtual datasets as the total number of records
increased. The deduplication of 5329 and 85 353 records
took around 0.8 and 7.5 s, respectively. The local com-
putation time for the laboratories and the coordinator is
presented in Additional file 1. For the deduplication of
85 353 records, the local computation time for the co-
ordinator and the data custodians did not exceed 0.6 s.
The experiment on the VD of the positive test results

for influenza A found one patient who was tested at

multiple laboratories between January 2015 and April
2016. The experiment on the VD that contained the test
results for various diseases found 449 patients who had
been tested at multiple laboratories for different in-
fectious diseases. The results showed that the samples
collected from each patient were tested at multiple la-
boratories at different times.

In vitro experiments
We deployed the prototype of the protocol on a cluster
computer. Each node had two Intel E8500 dual-core
1.17GHz CPUs, 4GB RAM, and CentOS 6.7. The nodes
were connected through fast Ethernet.
We ran experiments on simulated virtual datasets that

consisted of a large number of data custodians and re-
cords. The VDs consisted of a varying number of data
custodians (i.e., 5, 10, 15, and 20) and total number of
records (i.e., 200 000, 400 000, 600 000, 800 000, and 1
000 000). The total number of records of each VD was
distributed equally among all the data custodians, and
each data custodian contained around 5% duplicate
records. Details about the datasets are provided in
Additional files 1 and 2.
Figures 7 and 8 show the total runtime for the protocol

as the total number of records in the virtual dataset and
the number of participating data custodians increased,
respectively. The deduplication of one million records
distributed across five and 20 data custodians took
around 34 and 45 s, respectively. The local computa-
tion time for the laboratories and the coordinator is
presented in Additional file 1. In general, the local
computation time for the coordinator and the data
custodians did not exceed 34 and 7 s, respectively.

Fig. 5 The total runtime for the protocol on the influenza A datasets

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 14 of 19

Discussion
We proposed a privacy-preserving protocol for the dedu-
plication of data horizontally partitioned across multiple
data custodians. The protocol protects the privacy of pa-
tients and data custodians under the semi-honest adver-
sarial model. The protocol remains secure even when up
to N − 2 data custodians collude.
The protocol satisfies the security requirements that

were formulated in [26] for a secure record linkage
protocol. However, we assumed that the coordinator
has no means of getting the secret keys used in the
protocol, which improves the efficiency and scalability
of the protocol. The assumption can be ensured
through a data use agreement among the data

custodians that prohibits them from sharing the se-
cret keys with the coordinator.
The protocol was deployed and evaluated in situ for the

deduplication of test results distributed across three micro-
biology laboratories. The protocol was also evaluated in
vitro on simulated microbiology datasets of up to one
million records and 20 data custodians. The deduplica-
tion of the one million simulated records distributed
across 20 data custodians was completed within 45 s.
The experimental results showed that the proposed proto-
col is more efficient and scalable than previous protocols
[29, 31].
The local computation time for the entities and the

total runtime for the protocol scale linearly as the number

Fig. 6 The total runtime for the protocol on the datasets that contain the test results for various diseases

Fig. 7 The total runtime for the protocol on the simulated datasets as the total number of records increases

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 15 of 19

of participating data custodians and the total number of
records increase. The protocol scales because Bloom filter
operations are not expensive, and the coordinator and data
custodians perform most of the computations in parallel.
In addition, the number of communication rounds of a
data custodian is constant and does not increase with the
addition of new data custodians.
The protocol was not experimentally evaluated for sit-

uations in which there is no unique identifier. However,
we theoretically showed that the protocol remains scal-
able. The computation complexity of each party linearly
increases with the number of steps of the deterministic
record linkage algorithm.
There is a need for reuse health data at the regional,

national, and global levels to increase the number of re-
cords and participating data custodians for a given study
[66, 67]. The blocking technique [68] can be applied to
increase the scalability of the proposed deduplication
protocol to such a large scale. The intuition for the use
of the blocking technique is that running a separate in-
stance of the protocol on a subset of records that are likely
to match enables parallel computations. A very simple ex-
ample is running different instances of the protocol on the
records of female and male patients.
In practice, data custodians create blocking keys for

their records based on one or more attributes, and records
that have the same blocking key values are grouped into
the same block, which consequently divides the virtual
dataset into segments. Then, the data custodians jointly
execute a separate instance of the protocol for each seg-
ment of the virtual dataset in parallel. The data custodians
can execute the protocol instances on different CPU cores
or servers to increase the scalability of the protocol.

Conclusions
Deduplication is a necessary preprocessing step for
privacy-preserving distributed statistical computation of
horizontally partitioned data. However, deduplication
should not reveal any private information about individ-
uals and data custodians. We proposed a privacy-
preserving protocol for the deduplication of a horizontally
partitioned dataset.
Efficiency and scalability are the main challenges for

practical uses of SMC protocols. The experimental evalua-
tions of the proposed protocol demonstrated its feasibility
for a wide range of practical uses.
As discussed in the Discussion section, we plan to

parallelize the execution of the protocol using the block-
ing technique. Furthermore, we also plan to integrate the
protocol with the privacy-preserving distributed statistical
computation framework we developed [20].

Endnotes
1Commutative encryption is a form of encryption in

which the order of the consecutive encryption and decryp-
tion of a value with different cryptographic keys does not
affect the final result and no two values have the same
encrypted value [69].

2The protocols are different from the protocol proposed in
[70, 71] for probabilistic record linkage. In Schnell et al.’s
protocol [70], for each record, each identifier is encoded as a
separate Bloom filter, whereas in Durham et al.’s protocol
[71], to avoid frequency-based cryptanalysis, the set of identi-
fiers of each record is encoded as a Bloom filter.

3Secret sharing is a method by which a secret value is
split into shares and a predefined number of shares are
required to reconstruct the secret value [30].

Fig. 8 The total runtime for the protocol on the simulated datasets as the number of participating data custodians increases

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 16 of 19

4OT is a method for two parties to exchange one of
several values in which the sender is oblivious to which
value is selected, while the receiver learns only the selected
value [32].

5The Count-Min sketch [72] is, similar to the counting
Bloom filter (see the description of the counting Bloom
filter in the Methods section), a space-efficient probabil-
istic data structure for encoding a set of elements that
allows querying the frequencies of the occurrence of the
inserted elements with some error.

Additional files

Additional file 1: It contains a description of the Bloom filter set operations,
the computation complexity analysis of the protocol, the algorithm for
generating random Bloom filters, the parameters used in the experiments,
the datasets used in the experiments, the network connection for the in situ
experiments, and additional experiment results. (DOCX 6563 kb)

Additional file 2: It is a Bash script that implements the algorithm we
used to generate the simulated microbiology datasets. The script is discussed
in Additional file 1. (SH 9 kb)

Abbreviations
EHR: Electronic Health Record; JSON: JavaScript Object Notation;
PPRL: Privacy-Preserving Record Linkage; SMC: Secure Multi-Party Computation;
VD: Virtual Dataset; XMPP: Extensible Messaging and Presence Protocol

Acknowledgments
We would like to thank Gro Berntsen for discussions about the use case
section. We also would like to thank Gunnar Hartvigsen and Andrius
Budrionis for invaluable discussions. We must thank the system developers
of the Snow system, in particular Torje Henriksen, for their invaluable support
in the integration of the protocol into the Snow system and the execution
of the experiments across the microbiology laboratories.
We would like to thank the microbiology laboratories of University Hospital
of North Norway, Nordland Hospital, and Fürst Medical Laboratory for
permitting the in situ experiments to be performed on their datasets. We are
also indebted to Eyvind W. Axelsen and Haagen Berg at the microbiology
laboratories for their support in the preparation of the microbiology datasets
used for the in situ experiments.

Funding
This work was supported by the Center for Research-based Innovation,
Tromsø Telemedicine Laboratory (TTL), through The Research Council of
Norway, grant number 174934. The study was also partially supported by the
Research Council of Norway, grant number 248150/O70. The funding bodies
did not have any role in the design and evaluation of the protocol and in
writing the manuscript.

Availability of data and material
The laboratory datasets used for the in situ experiments of this study are
available from University Hospital of North Norway, Nordland Hospital, and
Fürst Medical Laboratory, but restrictions apply to make these data publicly
available. However, the algorithm that generated the datasets used for the in
vitro experiments is included in the supplementary files of this article. The
prototype software of the protocol is available from the corresponding author
upon request.

Authors’ contributions
KYY contributed to the conception and design of the manuscript, and was
the major contributor to the writing of the manuscript. KYY also
implemented the protocol, contributed to the design of the experiments, and
executed the experiments. AM contributed to the design of the manuscript
and participated in drafting the manuscript. JGB contributed to the conception
of the manuscript and the design of the experiments. JGB also extensively

reviewed the manuscript for important scientific content. All authors read and
approved the submission of the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The privacy ombudsman of the University Hospital of North Norway approved
the in situ experiments, and all participating laboratories also agreed to the
experiments. Individuals’ consent was not required.

Author details
1Department of Computer Science, UiT The Arctic University of Norway, 9037
Tromsø, Norway. 2Norwegian Centre for E-health Research, University
Hospital of North Norway, 9019 Tromsø, Norway. 3Department of Computer
Science, University of Westminster, 115 New Cavendish Street, London W1W
6UW, UK. 4Department of Clinical Medicine, UiT The Arctic University of
Norway, 9037 Tromsø, Norway.

Received: 27 July 2016 Accepted: 10 November 2016

References
1. Ross MK, Wei W, Ohno-Machado L. “Big data” and the electronic health

record. IMIA Yearb. 2014;9:97–104.
2. Kohane IS, Drazen JM, Campion EW. A glimpse of the next 100 years in

medicine. N Engl J Med. 2012;367:2538–9.
3. Geissbuhler A, Safran C, Buchan I, Bellazzi R, Labkoff S, Eilenberg K, et al.

Trustworthy reuse of health data: a transnational perspective. Int J Med Inf.
2013;82:1–9.

4. Hripcsak G, Bloomrosen M, FlatelyBrennan P, Chute CG, Cimino J, Detmer
DE, et al. Health data use, stewardship, and governance: ongoing gaps and
challenges: a report from AMIA’s 2012 Health Policy Meeting. J Am Med
Inform Assoc. 2013;21:204–11.

5. Lober WB, Thomas Karras B, Wagner MM, Marc Overhage J, Davidson AJ,
Fraser H, et al. Roundtable on bioterrorism detection: information system–based
surveillance. J Am Med Inform Assoc. 2002;9:105–15.

6. Lazarus R, Yih K, Platt R. Distributed data processing for public health
surveillance. BMC Public Health. 2006;6:235.

7. El Emam K, Hu J, Mercer J, Peyton L, Kantarcioglu M, Malin B, et al. A secure
protocol for protecting the identity of providers when disclosing data for
disease surveillance. J Am Med Inform Assoc. 2011;18:212–7.

8. Lenert L, Sundwall DN. Public health surveillance and meaningful use
regulations: a crisis of opportunity. Am J Public Health. 2012;102:e1–7.

9. Holmes JH, Elliott TE, Brown JS, Raebel MA, Davidson A, Nelson AF, et al.
Clinical research data warehouse governance for distributed research
networks in the USA: a systematic review of the literature. J Am Med Inform
Assoc. 2014;21:730–6.

10. Finnell JT, Overhage JM, Grannis S. All health care is not local: an evaluation
of the distribution of emergency department care delivered in Indiana.
AMIA Annu Symp Proc. 2011;2011:409–16.

11. Gichoya J, Gamache RE, Vreeman DJ, Dixon BE, Finnell JT, Grannis S. An
evaluation of the rates of repeat notifiable disease reporting and patient
crossover using a health information exchange-based automated electronic
laboratory reporting system. AMIA Annu Symp Proc. 2012;2012:1229–36.

12. Weber GM. Federated queries of clinical data repositories: the sum of the
parts does not equal the whole. J Am Med Inform Assoc. 2013;20:e155–61.

13. Malin BA, El Emam K, O’Keefe CM. Biomedical data privacy: problems,
perspectives, and recent advances. J Am Med Inform Assoc. 2013;20:2–6.

14. Laurie G, Jones KH, Stevens L, Dobbs C. A review of evidence relating to
harm resulting from uses of health and biomedical data [Internet]. The
Nuffield Council on Bioethics (NCOB); 2014 Jun p. 210. Available from:
http://nuffieldbioethics.org/wp-content/uploads/FINAL-Report-on-Harms-
Arising-from-Use-of-Health-and-Biomedical-Data-30-JUNE-2014.pdf

15. Du W, Atallah MJ. Privacy-preserving cooperative statistical analysis. In:
Williams AD, editor. Comput. Secur. Appl. Conf. 2001 ACSAC 2001 Proc.
17th Annu. IEEE. 2001. p. 102–10.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 17 of 19

dx.doi.org/10.1186/s12911-016-0389-x
dx.doi.org/10.1186/s12911-016-0389-x

16. Du W, Han YS, Chen S. Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: Berry MW, editor. Proc. Fourth SIAM
Int. Conf. Data Min. SIAM. 2004. p. 222–33.

17. Kantarcioglu M. A survey of privacy-preserving methods across horizontally
partitioned data. In: Aggarwal CC, Yu PS, editors. Priv.-Preserv. Data Min.
New York: Springer; 2008. p. 313–35.

18. Vaidya J. A survey of privacy-preserving methods across vertically partitioned
data. In: Aggarwal CC, Yu PS, editors. Priv.-Preserv. Data Min. New York:
Springer; 2008. p. 337–58.

19. Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY. Tools for privacy preserving
distributed data mining. ACM SIGKDD Explor Newsl. 2002;4:28–34.

20. Hailemichael MA, Yigzaw KY, Bellika JG. Emnet: a tool for privacy-preserving
statistical computing on distributed health data. In: Granja C, Budrionis A,
editors. Proc. 13th Scand. Conf. Health Inform. Linköping: Linköping
University Electronic Press; 2015. p. 33–40.

21. Andersen A, Yigzaw KY, Karlsen R. Privacy preserving health data processing.
IEEE 16th Int. Conf. E-Health Netw. Appl. Serv. Heal. IEEE; 2014. p. 225–30

22. Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving record
linkage techniques. Inf Syst. 2013;38:946–69.

23. Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT
extension. In: Fu K, Jung J, editors. Proc. 23rd USENIX Secur. Symp. San
Diego: USENIX Association; 2014. p. 797–812.

24. Quantin C, Bouzelat H, Allaert FAA, Benhamiche AM, Faivre J, Dusserre L.
How to ensure data security of an epidemiological follow-up:quality assessment
of an anonymous record linkage procedure. Int J Med Inf. 1998;49:117–22.

25. Agrawal R, Evfimievski A, Srikant R. Information sharing across private
databases. Proc. 2003 ACM SIGMOD Int. Conf. Manag. Data. New York, NY,
USA: ACM; 2003. p. 86–97

26. El Emam K, Samet S, Hu J, Peyton L, Earle C, Jayaraman GC, et al. A protocol
for the secure linking of registries for HPV surveillance. PLoS One. 2012;7:
e39915.

27. Adam N, White T, Shafiq B, Vaidya J, He X. Privacy preserving integration of
health care data. AMIA Annu. Symp. Proc. 2007. 2007. p. 1–5.

28. Lai PK, Yiu S-M, Chow KP, Chong CF, Hui LCK. An efficient bloom filter based
solution for multiparty private matching. Secur. Manag. 2006. p. 286–292

29. Many D, Burkhart M, Dimitropoulos X. Fast private set operations with
SEPIA. Technical report, ETH Zurich; 2012

30. Beimel A. Secret-sharing schemes: a survey. In: Chee YM, Guo Z, Shao F,
Tang Y, Wang H, Xing C, editors. Coding Cryptol. Berlin: Springer; 2011. p. 11–46.

31. Dong C, Chen L, Wen Z. When private set intersection meets big data: an
efficient and scalable protocol. Proc. 2013 ACM SIGSAC Conf. Comput.
Commun. Secur. New York, NY, USA: ACM; 2013. p. 789–800

32. Kilian J. Founding crytpography on oblivious transfer. Proc. Twent. Annu.
ACM Symp. Theory Comput. New York, NY, USA: ACM; 1988. p. 20–31.

33. Karapiperis D, Vatsalan D, Verykios VS, Christen P. Large-scale multi-party
counting set intersection using a space efficient global synopsis. In: Renz M,
Shahabi C, Zhou X, Cheema MA, editors. Database Syst. Adv. Appl. Springer
International Publishing; 2015. p. 329–45.

34. Paillier P. Public-key cryptosystems based on composite degree residuosity
classes. In: Stern J, editor. Adv. Cryptol. — EUROCRYPT’99. Berlin: Springer;
1999. p. 223–38.

35. Karr AF, Lin X, Sanil AP, Reiter JP. Secure regression on distributed
databases. J Comput Graph Stat. 2005;14:263–79.

36. Bellika JG, Henriksen TS, Yigzaw KY. The Snow system - a decentralized
medical data processing system. In: Llatas CF, García-Gómez JM, editors.
Data Min. Clin. Med. Springer; 2014

37. Stewart BA, Fernandes S, Rodriguez-Huertas E, Landzberg M. A preliminary
look at duplicate testing associated with lack of electronic health record
interoperability for transferred patients. J Am Med Inform Assoc JAMIA.
2010;17:341–4.

38. Lazarus R, Kleinman KP, Dashevsky I, DeMaria A, Platt R. Using automated
medical records for rapid identification of illness syndromes (syndromic
surveillance): the example of lower respiratory infection. BMC Public Health.
2001;1:1.

39. Richesson RL, Horvath MM, Rusincovitch SA. Clinical research informatics
and electronic health record data. Yearb Med Inform. 2014;9:215–23.

40. Curtis LH, Weiner MG, Boudreau DM, Cooper WO, Daniel GW, Nair VP, et al.
Design considerations, architecture, and use of the Mini-Sentinel distributed
data system. Pharmacoepidemiol Drug Saf. 2012;21:23–31.

41. Weber GM, Murphy SN, McMurry AJ, MacFadden D, Nigrin DJ, Churchill S,
et al. The Shared Health Research Information Network (SHRINE): a prototype

federated query tool for clinical data repositories. J Am Med Inform Assoc.
2009;16:624–30.

42. El Emam K, Mercer J, Moreau K, Grava-Gubins I, Buckeridge D, Jonker E. Physician
privacy concerns when disclosing patient data for public health purposes during a
pandemic influenza outbreak. BMC Public Health. 2011;11:454.

43. Lindell Y, Pinkas B. Secure multiparty computation for privacy-preserving
data mining. J Priv Confidentiality. 2009;1:5.

44. Goldreich O. Secure multi-party computation (working draft). 2002.
Available from http://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf.
Accessed 18 Oct 2016.

45. Cramer R, Damgård I. Multiparty computation, an introduction. In: Castellet
M, editor. Contemp. Cryptol. Basel: Birkhäuser Basel; 2005. p. 41–87.

46. Goldreich O. Foundations of cryptography: basic applications. 1st ed. New
York: Cambridge University Press; 2004.

47. Vaidya J, Clifton C. Leveraging the “Multi” in secure multi-party computation.
Proc. 2003 ACM Workshop Priv. Electron. Soc. New York, NY, USA: ACM;
2003. p. 53–9

48. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13:422–6.

49. Tarkoma S, Rothenberg CE, Lagerspetz E. Theory and practice of bloom
filters for distributed systems. Commun Surv Tutor IEEE. 2012;14:131–55.

50. Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a scalable wide-area
Web cache sharing protocol. IEEE ACM Trans Netw. 2000;8:281–93.

51. Dimitriou T, Michalas A. Multi-party trust computation in decentralized
environments. 2012 5th Int. Conf. New Technol. Mobil. Secur. NTMS. 2012.
p. 1–5

52. Dimitriou T, Michalas A. Multi-party trust computation in decentralized
environments in the presence of malicious adversaries. Ad Hoc Netw.
2014;15:53–66.

53. Karr AF, Fulp WJ, Vera F, Young SS, Lin X, Reiter JP. Secure, privacy-preserving
analysis of distributed databases. Technometrics. 2007;49:335–45.

54. Hernández MA, Stolfo SJ. Real-world data is dirty: data cleansing and the
merge/purge problem. Data Min Knowl Discov. 1998;2:9–37.

55. Hernández MA, Stolfo SJ. The merge/purge problem for large databases.
Proc. 1995 ACM SIGMOD Int. Conf. Manag. Data. New York, NY, USA: ACM;
1995. p. 127–38

56. Lunde AS, Lundeborg S, Lettenstrom GS, Thygesen L, Huebner J. The
person-number systems of Sweden, Norway, Denmark, and Israel. Vital
Health Stat 2. 1980;84:1–59.

57. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish
personal identity number: possibilities and pitfalls in healthcare and medical
research. Eur J Epidemiol. 2009;24:659–67.

58. Randall SM, Ferrante AM, Boyd JH, Semmens JB. The effect of data cleaning
on record linkage quality. BMC Med Inform Decis Mak. 2013;13:64.

59. Sweeney L. Simple demographics often identify people uniquely [Internet].
Pittsburgh: Carnegie Mellon University; 2000 p. 1–34. Report No.: 3. Available
from: http://dataprivacylab.org/projects/identifiability/paper1.pdf

60. El Emam K, Buckeridge D, Tamblyn R, Neisa A, Jonker E, Verma A. The
re-identification risk of Canadians from longitudinal demographics. BMC
Med Inform Decis Mak. 2011;11:46.

61. Koot M, Noordende G, Laat C. A study on the re-identifiability of Dutch
citizens. Workshop Priv. Enhancing Technol. PET. 2010

62. Potosky AL, Riley GF, Lubitz JD, Mentnech RM, Kessler LG. Potential for
cancer related health services research using a linked Medicare-tumor
registry database. Med Care. 1993;31:732–48.

63. Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF. Overview of the
SEER-Medicare data: content, research applications, and
generalizability to the United States elderly population. Med Care.
2002;40:IV3–IV18.

64. Saint-Andre P, Smith K, Tronçon R. XMPP: the definitive guide: building
real-time applications with jabber technologies. 1st ed. Sebastopol: O’Reilly
Media, Inc.; 2009.

65. Collet Y. RealTime data compression: LZ4 explained [Internet]. 2011 [cited
2016 Apr 7]. Available from: http://fastcompression.blogspot.com/2011/05/
lz4-explained.html

66. Friedman C, Rigby M. Conceptualising and creating a global learning health
system. Int J Med Inf. 2013;82:e63–71.

67. Weber GM. Federated queries of clinical data repositories: scaling to a
national network. J Biomed Inform. 2015;55:231–6.

68. Christen P. A survey of indexing techniques for scalable record linkage and
deduplication. IEEE Trans Knowl Data Eng. 2012;24:1537–55.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 18 of 19

http://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf
http://dataprivacylab.org/projects/identifiability/paper1.pdf
http://fastcompression.blogspot.com/2011/05/lz4-explained.html
http://fastcompression.blogspot.com/2011/05/lz4-explained.html

69. Pohlig SC, Hellman ME. An improved algorithm for computing logarithms
over and its cryptographic significance (Corresp.). IEEE Trans Inf Theory.
1978;24:106–10.

70. Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using
Bloom filters. BMC Med Inform Decis Mak. 2009;9:41.

71. Durham EA, Kantarcioglu M, Xue Y, Toth C, Kuzu M, Malin B. Composite bloom
filters for secure record linkage. IEEE Trans Knowl Data Eng. 2014;26:2956–68.

72. Cormode G, Muthukrishnan S. An improved data stream summary: the
count-min sketch and its applications. J Algorithms. 2005;55:58–75.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 19 of 19

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Privacy-preserving distributed statistical computation
	Privacy-preserving deduplication

	Related work
	Use case
	Problem statement and definitions
	Data custodian (Di)
	Data schema
	Virtual dataset (VD)
	Record linkage
	Problem statement

	Methods
	Overview
	Requirements for secure deduplication protocol
	Threat model and assumptions
	Bloom filter
	Notations
	Set operations on Bloom filters
	Secure sum protocol

	A secure deduplication protocol
	Setup phase
	Computation phase
	A secure duplicate identifier subprotocol
	Secure distributed sorted neighborhood subprotocol

	Extension of the secure deduplication protocol for deterministic algorithms

	Results
	Security analysis
	Implementation
	Analytical evaluation
	Experimental evaluation
	In situ experiments
	In vitro experiments

	Discussion
	Conclusions
	Commutative encryption is a form of encryption in which the order of the consecutive encryption and decryption of a value with different cryptographic keys does not affect the final result and no two values have the same encrypted value [69].
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

