
R E S E A R CH A R T I C L E

Preclinical study of peripheral nerve regeneration using nerve
guidance conduits based on polyhydroxyalkanaotes

Lorena R. Lizarraga-Valderrama1,2 | Giulia Ronchi3,4 | Rinat Nigmatullin1,5 |

Federica Fregnan3,4 | Pooja Basnett1 | Alexandra Paxinou1 | Stefano Geuna3,4 |

Ipsita Roy6

1School of Life Sciences, College of Liberal

Arts and Sciences, University of Westminster,

London, UK

2School of Life Sciences, Queen's Medical

Centre, University of Nottingham,

Nottingham, UK

3Department of Clinical and Biological

Sciences, University of Turin, Turin, Italy

4Neuroscience Institute of the Cavalieri

Ottolenghi Foundation (NICO), University of

Turin, Turin, Italy

5Bristol Composites Institute (ACCIS),

University of Bristol, Bristol, UK

6Department of Materials Science and

Engineering, Faculty of Engineering, University

of Sheffield, Sheffield, UK

Correspondence

Stefano Geuna, Department of Clinical and

Biological Sciences, University of Turin, Turin,

Italy.

Email: stefano.geuna@unito.it

Ipsita Roy, Department of Materials Science

and Engineering, Faculty of Engineering,

University of Sheffield, Sheffield, UK.

Email: i.roy@sheffield.ac.uk

Funding information

FP7 Grant, NEURIMP, Grant/Award Number:

604450

Abstract

Nerve guidance conduits (NGCs) are used as an alternative to the “gold standard”
nerve autografting, preventing the need for surgical intervention required to harvest

autologous nerves. However, the regeneration outcomes achieved with the current

NGCs are only comparable with autografting when the gap is short (less than

10 mm). In the present study, we have developed NGCs made from a blend of poly-

hydroxyalkanoates, a family of natural resorbable polymers. Hollow NGCs made from

a 75:25 poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blend (PHA-NGCs) were

manufactured using dip-molding. These PHA-NGCs showed appropriate flexibility

for peripheral nerve regeneration. In vitro cell studies performed using RT4-D6P2T

rat Schwann cell line confirmed that the material is capable of sustaining cell prolifer-

ation and adhesion. PHA-NGCs were then implanted in vivo to repair 10 mm gaps of

the median nerve of female Wistar rats for 12 weeks. Functional evaluation of the

regenerated nerve using the grasping test showed that PHA-NGCs displayed similar

motor recovery as the autograft, starting from week 7. Additionally, nerve cross-

sectional area, density and number of myelinated cells, as well as axon diameter, fiber

diameter, myelin thickness and g-ratio obtained using the PHA-NGCs were found

comparable to an autograft. This preclinical data confirmed that the PHA-NGCs are

indeed highly promising candidates for peripheral nerve regeneration.
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1 | INTRODUCTION

Peripheral nerve injuries (PNI) may have a dramatic impact on the

patient's quality of life and can involve high health care expenses.

The annual incidence of PNIs in developed countries range from 13 to

23 out of 100,000 people.1 In Europe, a PNI incidence rate of 3.3%

and 1.8% has been reported in trauma patients, for upper and lower

extremity nerves, respectively. PNIs in the upper extremity are caused

by bone fractures located in the humerus (37.2%) or ulna (20.3%),

affecting most frequently the radial, median, ulnar and auxiliary

nerves.2 Peroneal (51%) and sciatic nerves (25%) are the most com-

monly affected nerves of lower extremity trauma.3 Despite theLorena R. Lizarraga-Valderrama and Giulia Ronchi contributed equally to this study.
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tremendous advances in surgical techniques and tissue engineering,

the prognosis of PNI is still poor.

PNIs may be caused by acute compression, laceration, or penetrat-

ing trauma resulting in the loss of sensory function, motor function or

both. Nerve regeneration and recovery of nerve function depend on

the type of nerve fiber injury, patient age, site of the lesion, length of

the defect, level of damage of the surrounding tissues, and availability

of neurotrophic factors.4 In the mildest kind of nerve injury,

neurapraxia, the continuity of endoneurial tubes is preserved, and

recovery occurs without Wallerian degeneration. However, neurotmesis

and axonotmesis involve the loss of axonal continuity and the distal

segment of injury undergoes Wallerian degeneration. Neurotmesis is

the most severe type of nerve fiber injury including stretch injuries and

laceration.4,5 When the nerve gap is less than 5 mm, peripheral nerves

can regenerate spontaneously with the support of Schwann cells (SCs),

that promote a beneficial environment for axonal growth. As a response

to denervation, SCs located in the distal axonal segment secrete a range

of growth factors to facilitate regenerating axons to reach their sensory

end organ or target muscle. In this case, end-to-end epineurial neu-

rorrhaphy is suitable if tension free coaptation can be achieved after

suturing the two stumps. For more severe injuries, implantation of an

autologous nerve graft (autograft) is the gold standard procedure. How-

ever, nerve autograft may potentially involve further complications

including scar tissue formation, donor site morbidity, lack of donor

nerves and aberrant regeneration.6,7 Therefore, new therapeutic strate-

gies for peripheral nerve repair have focused on the development of

nerve guidance conduits (NGCs) as alternatives to nerve autografts.

Current commercially available NGCs exhibit considerable draw-

backs. For example, synthetic bioresorbable NGCs may produce an

immune response, scar tissue, and release of by-products that are det-

rimental for the regeneration process. Nonbiodegradable NGCs

involve a second surgery for conduit removal, comprising an addi-

tional disadvantage.8 Hence, a diversity of materials, nanostructures

and biochemical factors have been investigated in attempts to

improve the performance of NGCs.9-11 Bioresorbable materials are

preferred over non-bioresorbable materials since they prevent both,

chronic nerve compression and fibrotic reactions; and have been

shown to produce a reduced risk of neuromas.8,12 Although NGCs

made from polymers of natural origin have shown a reduced immune

reaction, the regeneration outcomes are not as good as the autograft

when the gaps are longer than 10 mm.

Polyhydroxyalkanoates (PHAs), polymers of bacterial-origin, are

gaining increasing popularity, since they exhibit high biocompatibility,

and tuneable biodegradability and mechanical properties.13 Studies

have shown that D-3-hydroxybutyric acid (3HB), a natural constituent

of blood,14 is a degradation product of some PHAs, which contributes

to their high biocompatibility. Moreover, PHAs have shown superior

biocompatibility with neuronal cells compared to the widely used syn-

thetic polymers, polycaprolactone (PCL)6 and PLA.15,16 PHAs exhibit

properties that may overcome some of the limitations of the available

NGCs including controllable surface erosion, lower acidity of their

degradation products and longer-lasting stability compared to their

synthetic counterparts.

Although P(3HB) have previously displayed satisfactory nerve

regeneration, its mechanical properties are unsuitable for peripheral

nerve repair.17,18 To overcome this limitation, we have fabricated

NGCs by the dip molding technique using the biodegradable PHA-

blend 75:25 P(3HO)/P(3HB), which has been shown to possess the

required flexibility and biocompatibility for this application.16 In

the present study, we have carried out, for the first time, preclinical

assessment of novel PHA blend-based NGCs, PHA-NGCs, for regen-

eration of median nerve gaps and functional repair by using the

tubulation technique, with significantly promising results.

2 | MATERIALS AND METHODS

2.1 | Manufacturing of NGCs

PHA-NGCs were fabricated from P(3HO)/P(3HB) 75/25 blend whose

biocompatibility with neuronal cells was previously assessed by Lizarraga-

Valderrama et al.6 The NGCs were made by a multi-dip molding process

using a solution of P(3HO) and P(3HB) mixture (mass ratio 75 to 25) with

a total polymer concentration of 6 wt% in chloroform. PTL-MMB02 Pro-

grammable Dip Coater (MTI Corporation, Richmond, CA) was used for

mandrel dipping into the polymer solution with a speed of 200 mm/min.

NGCs were produced by using a six-mandrel tool with mandrels of

1.8 mm outer diameter, along with a matching vial holder. Dip molding

was conducted through five coating cycles consisting of five dips,

resulting in a total of 25 dips. The drying time between dips in a coating

cycle was 30 sec while the drying time between cycles was 4 min. After

completing the coating cycles, the tubes were kept at room temperature

for 3 days to complete solvent evaporation. Tubes were removed from

the mandrels and stored for 5 weeks at room temperature (aged NGCs)

before all the tests were carried out.

2.2 | Characterization of the NGCs

2.2.1 | Scanning electron microscopy of PHA
blend conduits

Surface topography of the PHA-NGCs was analyzed using a FEI XL30

Field Emission Gun Scanning Electron Microscope (FEI, Netherlands).

All the tubes were previously sputter-coated with a 20 nm film of palla-

dium using a Polaron E5000 sputter coater. The operating pressure of

the sputter coating was 5 � 10�5 bar with a deposition current of

20 mA for a duration of 90 s. The images were then recorded at 5 kV

using the FEI software.

2.2.2 | Mechanical analysis

Tensile testing was carried out using a 5942 Testing Systems (Instron,

High Wycombe, UK) equipped with a 500N load cell at room

temperature. NGCs of total length around 40 mm were fixed in
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rubber-coated grips with the separation distance between the grips of

23 mm. Metal mandrels were inserted into the NGCs from both sides

to the full gripping length (approximately 8 mm). Deformation rate

was set to 10 mm per min. The average values for four specimens

were calculated.

2.2.3 | Thermal analysis

Thermal transitions of NGC polymer blends were studied using DSC

214 Polyma (Netzsch, Germany), equipped with Intracooler IC70

cooling system. Scanning was conducted between �70 and 200�C at

a heating rate of 10�C/min under the flow of nitrogen at 60 mL/min.

Samples of known history (aged for 5 weeks at room temperature)

were used in the DSC studies. Therefore, all thermal transitions were

analyzed for the first heating which provided properties for the condi-

tioned material. Enthalpy of fusion for each component of the poly-

mer blend was normalized to a corresponding mass fraction.

2.3 | In vitro proliferation and cell morphology
analysis

RT4-D6P2T cells were seeded at a density of 15,000 cells/cm2 on

PHA NGCs and on glass cover slips used as controls and cultivated in

Dulbecco's Modified Eagle Medium (DMEM, Sigma Aldrich) sup-

plemented with 100 U/mL penicillin (Sigma), 0.1 mg/mL streptomycin

(Sigma), 1 mM sodium pyruvate (Sigma), 4 mM L-glutamine (Sigma)

and 10% heat-inactivated fetal bovine serum (FBS; all from Invi-

trogen). After 2 and 4 days in vitro (DIV), cells were fixed in 4% para-

formaldehyde solution (PFA; Sigma-Aldrich). Fixed cells were

permeabilized with 0.1% Triton X-100 for 1 h at room temperature. F-

actin was detected using TRITC-conjugated phalloidin diluted 1:1000

in blocking solution (Chemicon-Millipore) by 1 h incubation at room

temperature followed by three wash steps of 5 min each and mounted

with a Dako fluorescent mounting medium. Images were acquired

using a Zeiss LSM800 confocal laser microscopy system (Zeiss, Jena,

Germany). For each sample 30 images were taken, and the number of

cells estimated using ImageJ software. For each acquired image, man-

ual quantification was performed. The sections of the image where

cells were not perfectly distinguishable from each other were

excluded from quantification. As regards the analysis of cell morphol-

ogy, 2 DIV-time point was evaluated, for each image the area occu-

pied by all the cells that were in focus was evaluated. To avoid

contamination by the background, the area was manually traced using

the appropriate plugin of the ImageJ software.

2.4 | Surgery

For in vivo regeneration study, a total of 15 female adult Wistar rats

were used (Harlan, weight: 200–250 g). Animals were housed in a

room with controlled temperature and humidity, with 12 h of light

and 12 h of dark, free access to food and water. Every attempt was

made to reduce animal suffering. A preliminary pilot study was carried

out on three female adult Wistar rats for qualitative analysis of nerve

regeneration using PHA NGCs at 6 weeks from the injury. The other

12 animals were divided in two experimental groups (n = 6 PHA NGC

group and n = 6 Autograft group as positive control) and sacrificed

after 12 weeks. All procedures were approved by the Bioethical Com-

mittee of the University of Torino and by the Italian Ministry of

Health. Moreover, these procedures agree with the National Institute

of Health guidelines, the Italian Law for Care and Use of Experimental

Animals (DL26/14), and the European Communities Council Directive

(2010/63/EU).

During surgical procedures, animals were placed under general

anesthesia induced by i.m. injection of Tiletamine + Zolazepam

(Zoletil, 3 mg/kg) and were positioned in the supine position. Using an

incision from the nipple to the elbow, the median nerve was isolated

to establish a defect in the middle of the exposed part, immediately

followed by nerve repair according to the experimental groups. In the

experimental group PHA blend NGC, a median nerve segment was

removed and 10 mm-long conduits were inserted and sutured to the

nerve stumps with one 9/0 epineural stitch to each nerve ends. In

the Autograft group, the median nerve segments were removed,

reversed (distal-proximal) and sutured with three 9/0 epineural stitch

to the nerve stumps of the same nerve (Figure 1).

PHA NGCs were immersed in sterile saline for at least 5 min

before implantation. Animals were sacrificed by anesthetic overdose

after 6 weeks for a qualitative observation of the ongoing regenera-

tion (n = 3 PHA-NGC) or after 12 weeks for quantitative analysis of

nerve regeneration (n = 6 PHA-NGC and n = 6 Autograft).

2.5 | Functional evaluation of the regenerated
nerve: The grasping test

The grasping test was performed to estimate the functional recovery

after nerve reconstruction. The analysis was carried out every 2–

3 weeks until the animal was sacrificed (12 weeks after surgery) fol-

lowing the same procedure previously described by Papalia et al.19

and Ronchi et al.20

2.6 | Immunohistochemistry

The regenerated nerve inside the conduit (for the sample withdrawn

after 6 weeks) was fixed in 4% paraformaldehyde for 2 h, washed in a

solution of 0.01 M PBS (pH 7.2) for 30 min, dehydrated, and embed-

ded in paraffin. Sections were cut 10 μm thick, permeabilized, blocked

(0.1% Triton X-100, 10% normal goat serum for 1 h) and incubated

overnight with anti-NF 200 kDa (monoclonal, mouse, Sigma Aldrich,

dilution 1:200) and anti-S100 (polyclonal, rabbit, Sigma Aldrich, dilu-

tion 1:300), at room temperature. Subsequently, sections were

washed three times in PBS and incubated for 1 h at room temperature

in a solution containing secondary antibodies: Alexa 488 anti-Mouse
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(Molecular Probes, dilution 1:200), Cy3 anti-Rabbit (Life Technologies,

dilution 1:300). After three washes in PBS, sections were mounted

with a Dako fluorescent mounting and analyzed using a Zeiss LSM800

confocal laser microscopy system (Zeiss, Jena, Germany).

2.7 | Resin embedding, high resolution light
microscopy and electron microscopy analysis

Regenerated nerve inside the conduit (withdrawn after 6 weeks) and

regenerated nerves distal to the conduit/autograft (withdrawn after

12 weeks) were fixed by immediate immersion in 2.5% glutaraldehyde

in 0.1 M phosphate buffer (pH 7.4) for 5–6 h at 4� C. Samples were

then post-fixed in 2% osmium tetroxide for 2 h and dehydrated in

passages in ethanol from 30% to 100% (5 min each passage). After

two passages of 7 min in propylene oxide and overnight in a 1:1 mix-

ture of propylene oxide and Glauerts' mixture of resins, samples were

embedded in Glauerts' mixture of resins (made of equal parts of Ara-

ldite M and the Araldite Harter, HY 964). 0.5% of dibutylphthalate

was added to the resin mixture as a plasticizer. Finally, 2% of accelera-

tor 964 (brand) was added to the resin in order to promote the poly-

merization of the embedding mixture, at 60�C.

Semi-thin sections (2.5 μm thick) were cut using an Ultracut UCT

ultramicrotome (Leica Microsystems, Wetzlar, Germany) and stained

with 1.0% toluidine blue for high resolution light microscopy examina-

tion and design-based stereology. A DM4000B microscope equipped

F IGURE 1 (a–c) Pictures and micrographs of the PHA-NGC. (a) Photograph of the PHA-NGC; (b) SEM micrographs of the cross section of the
PHA-NGC; (c) SEM micrographs of longitudinal section of the PHA-NGC showing porous inner walls. D-I: Results of in vitro analysis; (d-g)
Representative images depicting RT4-D6P2T cells cultivated on the control substrate (d, f) and on the PHA-NGC (e, g), stained with phalloidin.
Scale bar: 20 μm; (h) Proliferation curve experiment. RT4-D6P2T cell line were cultivated on the control substrate and on the luminal surface of
the PHA-NGC; (i) Cell morphology experiment: RT4-D6P2T cell line were evaluated using the area covered after 2 days of culture *p < 0.05,
***p ≤ 0.001
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with a DFC320 digital camera and an IM50 image manager system

(Leica Microsystems, Wetzlar, Germany) was used for section analysis.

With the same ultramicrotome, ultra-thin sections (70 nm thick) were

cut and stained with saturated aqueous solution of uranyl acetate and

lead citrate. Sections were analyzed using a JEM-1010 transmission

electron microscope (JEOL, Tokyo, Japan) equipped with a Mega-

View-III digital camera and a Soft-Imaging-System (SIS, Münster, Ger-

many) for the computerized acquisition of the images.

2.8 | Quantitative analysis of nerve regeneration:
Stereological and morphometrical analysis

In order to quantify myelinated nerve fibers with high resolution light

microscopy, one toluidine blue stained semi-thin section was selected

and the total cross-sectional area of the whole nerve was measured.

Thirteen to fifteen sampling fields were selected using a systematic

random sampling protocol, as previously described by Geuna21 and

Geuna et al.22 In each sampling field, a two-dimensional dissector pro-

cedure was adopted to cope with the edge effect.22 Mean fiber den-

sity, total fiber number, fiber and axon diameter, myelin thickness and

g-ratio were then estimated.

2.9 | Statistical methods

For statistical analysis IBM SPSS Statistics 22.0 software was used.

Data were expressed as mean ± SD. Data were analyzed through the

two-tailed Student's t-test. The level of significance was set at

p ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***).

3 | RESULTS

3.1 | Characterization of PHA-NGCs

In this work, a dip-coating technique was utilized for the fabrication of

tubular NGCs. Dip molding is a highly flexible process which allows

formation of polymer coatings from polymer solutions of a wide range

of concentrations. Thickness of the coating depends on polymer con-

centration and viscosity of the polymer solution. Viscosity also is a sig-

nificant parameter which influences the quality of the coating; the

polymer solution must be fluid enough to allow leveling of imperfec-

tions before the transition of the coating into a non-flowing semisolid

layer. In a previous study,6 the 75:25 P(3HO)/P(3HB) blend showed

appropriate mechanical properties for peripheral nerve regeneration

and provided good support for neuronal cell attachment and growth.

Hence, this polymer blend was chosen for the fabrication of NGCs

presented in this study. The inner diameter, 1.8 mm, was close to that

required for in vivo studies in rats (1.1–1.3 mm).

Our preliminary experiments demonstrated that due to the high

molecular weight of the natural PHAs it was not possible to prepare

processable solutions with the concentrations which would allow

fabrication of tubes with sufficient wall thickness after a single dip-

ping. Therefore, we adopted a multi-dip molding process using a solu-

tion of 75:25 P(3HO)/P(3HB) mixture at a total polymer

concentration of 6 wt%. Polymer solution of this concentration

prevented an excessive downward flow (sagging effect) along a verti-

cally fixed mandrel. A single dip into the polymer solution of this com-

position resulted in a 10 μm thick dry coating, whereas multiple

dipping resulted in tubes with wall thickness of 200 μm. Chloroform, a

highly volatile solvent used for polymer dissolution, was allowed to

evaporate for a relatively short period of time, 30 seconds, before

performing the next dipping. This short evaporation period led to a

swollen, thick polymer layer on the mandrel and progressive growth

of the thickness of the polymer coating. After every fifth coating, sol-

vent evaporation was conducted for 4 min, before the start of the

next five-dip cycle. This prolonged evaporation period was required to

induce further solvent losses by the gelled polymer material and stabi-

lization of its thickness.

As can be seen from Figure 1, semitransparent tubes (a) were pro-

duced using this optimized procedure. A slightly irregular wall thick-

ness was observed by SEM imaging of sectioned samples (b, c). Both

longitudinal and transverse cross-sections confirmed the structural

integrity of the PHA blend without the signs of layered structure for-

mation or inter layer delamination. These observations demonstrated

the robustness of the optimized multi-dip molding process in the fab-

rication of PHA-based tubes. It must be noted that a dispersed phase

is discernible in the morphological structure exposed in the cross-

sections. This suggests the formation of an immiscible PHA blend

(SI, Figure S1). However, the gaps between the inclusions of the

dispersed phase and continuous phase are not evident which implies

good adhesion between the phases.

The NGCs were characterized by a high flexibility inherited

from the elastomeric P(3HO) (SI, Figure S1). These NGCs could

withstand deformations up to 150% which was larger than rat sci-

atic nerves can resist. Ultimate tensile strength and Young's modu-

lus of the aged NGCs were found to be 6 and 35 MPa, respectively

(Table 1). The Young's modulus of the NGC is 60 times higher than

rat sciatic nerve (Table 1). Although the stiffness of NGCs is signifi-

cantly higher compared to that of the rat sciatic nerves, it should

be taken into consideration that the NGCs were tested in a dry

state and the stiffness is expected to decrease for the wet NGCs

after implantation. However, these changes cannot be significant

since PHAs, particularly P(3HO), are hydrophobic polymers and

their swelling in aqueous media is limited. Also, higher stiffness of

NGCs can be beneficial to prevent the collapse of the hollow

structure after implantation.

3.2 | In vitro proliferation and cell
morphology assay

In vitro proliferation and cell morphology assays, using the

RT4-D6P2T cell line, were performed to evaluate the ability of

the glial cells tested to make direct contact with the substrate
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represented by PHA-NGC and consequently to determine the bio-

compatibility and the biomimetic properties. RT4-D6P2T proliferation

was significantly higher on the control compared to PHA-NGCs

(Figure 1h). However, RT4-D6P2T morphology at 2 DIV was very well

organized and cell dimensions significantly higher on the PHA-NGCs

compared to the control (Figure 1i).

3.3 | Surgical procedure

The rat median nerve repair model was used as a preclinical test

model to evaluate the performance of the PHA-NGCs in promoting

peripheral nerve regeneration in vivo (Figure 2a). The PHA-NGCs

were implanted in injured median nerves to repair 10 mm long defects

(Figure 2b) and compared to the “gold standard” technique, nerve

autograft (Figure 2c). During the surgical procedures the handling and

suturability of PHA-NGCs were evaluated qualitatively; they proved

to be flexible, easily implantable and easy to suture, demonstrating an

adequate tear-resistance feature. Due to the mechanical properties of

the material, the stiches did not negatively affect the structural integ-

rity of PHA-NGCs. Although PHA-NGCs were semi-transparent, the

nerve stumps were readily located under a light microscope allowing a

TABLE 1 Mechanical properties of NGCs

Ultimate tensile

strength, MPa

Elongation

at break, %

Young's

modulus, MPa

PHA NGC 6.0 ± 1.0 130.0 ± 20.0 35.0 ± 3.0

Rat sciatic nervesa 2 0.7 ± 0.9 NA 0.58 ± 0.2

aBorschel et al.23

F IGURE 2 (a-c) Experimental design and photographs of the surgery. (a) Experimental design of transection and repair of rat median nerve.
The median nerves were transected and immediately repaired with PHA-NGCs (b) or nerve autograft (c). MNPS: Median nerve proximal stump;
MNDS: Median nerve distal stump; PS: Proximal suture; DS: Distal suture. (d–g) Photographs of PHA-NGC removal. Regenerated nerves were
obtained from rats sacrificed at 6 weeks (d, e) and from rats sacrificed at week 12 (f, g) post-surgery. A magnification showing the new
vascularization is also shown (f0 , g0). After withdrawal, conduits were removed, and the regenerated nerves were processed for analysis
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verification that the nerve transection was precise. All rats were in

good health condition throughout the experiment. No sign of inflam-

mation, pain, discomfort or apathy were reported. Moreover, no sign

of auto-mutilation, ulcers or joint contractures were observed.

3.4 | Gross examination of PHA-NGCs after 6 and
12 weeks

During explantation, macroscopic analysis of the PHA-NGCs was

qualitatively conducted at 6 and 12 weeks after implantation

(Figure 2d–g). Following animal sacrifice, gross inspection of the surgi-

cal sites revealed that all the devices were still clearly recognizable

and were found on site with both nerve ends still connected. The

external structure of the PHA-NGCs remained stable and was covered

with a thin layer of connective tissue, demonstrating remarkable toler-

ation by the host tissues without causing a detectable immune

response (Figure 2d,f). No signs of inflammation or scar tissue forma-

tion around the PHA-NGC was observed, showing optimal

biocompatibility with the peripheral nerve tissues. Moreover, a large

number of blood vessels were newly formed around the PHA-NGC

(Figure 2f,f0), and inside the regenerated nerve (Figure 2g), as shown

at higher magnification in Figure 2f0 ,g0. Finally, at each time point the

PHA-NGC were not degraded, neither were they embrittled, had a

semi-transparent appearance and proved to be soft and flexible.

3.5 | Results of the pilot in vivo study: qualitative
analysis of nerve regeneration inside PHA NGC after
6 weeks

After removal of the PHA-NGCs, axonal regeneration was assessed in

the central portion of the regenerated nerves by toluidine-blue

staining and immunohistochemistry. Toluidine blue-stained semi-thin

cross section of the regenerated nerve in the central portion showed

several regrowing fibers surrounded by connective tissue (Figure 3a).

The electron micrographs presented in Figure 3 showed both, myelin-

ated (Figure 3b,c) and unmyelinated regrowing fibers (Figure 3d,e) in

F IGURE 3 (a-h) Qualitative morphological examination of regenerated median nerve after 6 weeks. (a) Toluidine blue–stained semi-thin cross
section of the regenerated nerve in the central portion of the PHA-NGC showed several regrowing fibers surrounded by a layer of connective

tissue. (b–e) Electron microscopy micrographs showing both, myelinated (easily visible due to a thick myelin sheath) and unmyelinated (shown
with black asterisks) fibers. Axons surrounded by a thin layer of myelin are shown with a red asterisk. (f) Connective tissue surrounding the
regenerated nerve. (g) Detailed view of newly formed blood vessels. (h) Immunohistochemical staining of neurofilament (green) and S100 protein
(red) revealed the association between axons and Schwann cells. Scale bars: a, h: 20 μm; b, c, g: 2 μm; d: 1 μm; e: 0.5 μm; f: 5 μm
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association with Schwann cells. Several regrowing fibers with thin

myelin sheath were observed (Figure 3d,e), demonstrating that the

myelination and maturation processes were in place at week 6. The

epineurium was clearly observable and well-formed, characterized by

rich axonal growth (Figure 3a). Schwann cells surrounding axons with

sheaths of myelin were clearly observed. Axons and Schwann cells

were also immunolabeled for neurofilament and S100 protein, respec-

tively. Figure 3h shows the distribution of nerve fibers (green) and

Schwann cells (red) within the nerve cross-section.

3.6 | Functional recovery

To assess the functional recovery of the median nerve, the grasping

test was performed in all operated animals at week 2, 4, 5, 7, 9, and

12 post-surgery (Figure 4). At week 2 and 4, the function of finger

flexor muscles innervated by the median nerve was 0 g in both, auto-

graft and PHA-NGC groups, confirming a complete nerve fiber tran-

section. The function of the muscles started to recover faster in the

autograft group, reaching a performance statistically different com-

pared with the PHA-NGC group at week 5. The two groups reached

comparable values at week 7, showing no statistical differences until

week 12 post-surgery (Figure 5e).

3.7 | Morphological, morpho-quantitative, and
stereological analysis of regenerated median nerve
after 12 weeks

Morphological evaluation at higher magnification revealed that both

PHA-NCG and nerve autograft (Figure 5a,b) exhibited several regrowing

myelinated fibers with a well-defined axoplasm and well-organized myelin

sheath. Design-based stereological analysis and morpho-quantitative

analysis were performed using one randomly selected toluidine blue sta-

ined semi-thin section cut distally to the PHA-NGC (Figure 5). Semi-thin

cross sections of the distal stump of the regenerated nerves from both

groups, autograft (Figure 5a) and PHA-NGC (Figure 5b) after 12 weeks

repair were examined. The nerve cross sectional area for both groups

was found to be similar after 12 week's repair (Figure 5c).

The density of the myelinated fibers resulted in similar outcomes

for both groups, autograft and PHA-NGCs, without showing any sig-

nificant difference (Figure 5d). Similarly, the difference between the

total number of myelinated fibers for the two groups was not signifi-

cant (Figure 5e).

Morpho-quantitative measurement of size parameters was also

found similar for both groups (Figure 6a). No significant differences

were found between axon diameter, fiber diameter and myelin thick-

ness displayed for the autograft and the PHA-NGC groups (Figure 6a).

However, the frequency distributions of nerve fiber diameters showed

a higher percentage of fibers with a smaller diameter in the PHA-NGC

group compared to the autograft group (Figure 6c). In the PHA-NGC

group 81.4% of myelinated fibers showed a diameter smaller than 4 μm,

whereas in the autograft group the percentage was 74.2%. The parame-

ter g-ratio, calculated as axonal diameter to the total outer diameter is

one of the more reliable morphological predictors of nerve recovery

(Figure 6b,d). As shown in Figure 6b, the g-ratio was also found to be

remarkably similar for both groups. Moreover, the g-ratio/axon diame-

ter correlation of individual fibers confirmed similar regeneration out-

comes (Figure 6d). Finally, the linear regression lines of autograft and

PHA-NGC group overlapped as shown in Figure 6d.

4 | DISCUSSION

Peripheral nerves are characterized by a remarkable ability to regener-

ate following a transection injury, consisting of a complex and poorly

F IGURE 4 (a) Results of the functional recovery of the median nerve. Posttraumatic time course of the grasping test revealed an increased
performance of functional recovery in the autograft group compared with the PHA-NGC group at week 5 post-surgery. At week 7, the two
experimental groups showed similar functional recovery values until week 12. Values are presented as mean ± SD, *p ≤ 0.05. (b) Photograph
showing a rat grasping the bar of the device with the operated paw (left limb)
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understood multicellular response. However, this process might be

considerably hindered when injury gaps are longer than 5 mm.8 The

natural regenerative process in peripheral nerves involve distinct

stages lead by various cells including neurons, SCs, macrophages,

fibroblasts, endothelial cells, and neutrophils.24,25 Following the sever-

ing of the nerve, the stumps retract and secrete plasma exudate rich

in neurotrophic factors and ECM precursor molecules including fibrin-

ogen and factor XIII.25,26 A “bridge” composed of perineurial cells,

inflammatory cells, fibroblasts and matrix is formed to reconnect the

two nerve stumps.25 When regeneration occurs within a hollow tube,

initially an acellular fibrin cable forms between the two stumps,

followed by migration of SCs, endothelial cells and fibroblasts along

the cable.26 This fibrin cable normally forms within 1 week across a

noncritical 10 mm gap in rat models.26,27 After cellular migration, deg-

radation and removal of the fibrin cable lead to the onset of

remyelination by switching from progenitor-like phenotype SCs to a

more mature “myelinating” phenotype. As a result, these mature SCs

wrap around the regenerated axons to form the myelin sheath.26 The

regenerative process inside the PHA-NGCs followed the same phases,

with the formation of a thin regenerated nerve inside the PHA-NGCs

after 6 weeks and still a thin (but bigger as compared to 6 weeks)

regenerated nerve after 12 weeks. In both time points the cross

section of the regenerated nerve appeared to be thinner as compared

to both the diameter of the conduit and the diameter of the nerve

stumps, but increased over time. Also, in both time points the

regenerated nerve grew in the middle of the conduit. In our experi-

ence, this is a normal process in nerve regeneration: regenerated

nerve fibers start to grow where the fibrin cable was located and

appear to have a thin cross-section, at least for the first weeks/

months. We cannot exclude the fact that the space between the reg-

enerating fibers and the inner wall of the PHA-NGCs was colonized

by some material (in particular ECM), but unfortunately, after the

removal of the conduit for subsequent analysis, this material was lost.

Indeed, to perform quantitative stereological and morphometrical

analyses on resin-embedded nerves, we removed the PHA-NGCs

before the fixation with glutaraldehyde. Resin embedding and tolui-

dine blue staining of nerve cross section allowed to perform a repro-

ducible and standardized assessment of the degree of nerve

regeneration, by preserving the fine structure of the nerve tissue and

by providing high quality and clear detailed images of nerve fibers

(and in particular of the myelin sheath).28 On the other hand, by

removing the PHA-NGCs, we were not able to investigate the direct

interaction between the regenerated nerve and the wall of the con-

duit. We will endeavor to carry this out in future studies.

In vitro tests performed on the PHA-NGCs depicted that the glial

RT4-D6P2T cells showed a very well-organized morphology and pro-

liferated efficiently on this regenerative substrate. In particular, the

phalloidin staining allowed to highlight a marked organization of

the actin filaments and an increase in the area occupied by the cells.

These data are in good agreement with previous studies, where the

in vitro biocompatibility in terms of adhesion, proliferation and differ-

entiation on electrospun P(3HB)/P(3HB-co-3HV) nanofibers was

tested with SCs.29

High-resolution light microscopy allowed the visualization of

myelinated fibers surrounded by connective tissue. A rich bunch

of small myelinated nerve fibers was detected after 6 weeks of repair,

indicating that robust axonal regeneration occurred inside the PHA-

NGCs. Moreover, axons and Schwann cells were clearly visualized by

immunolabeling of neurofilament and S100, respectively. This analysis

showed the association of nerve fibers with Schwann cells, confirming

that nerve repair occurred normally. Also, blood vessels and connec-

tive tissue formation were observed during nerve repair using the

PHA-NGCs without showing formation of scar tissue. Hence,

the absence of scar tissue and the presence of newly formed blood

vessels have clearly shown that the PHA-NGCs not only have the abil-

ity to support the intrinsic regenerative process of peripheral nerves

F IGURE 5 (a and b) Representative high
and low magnification light photomicrographs
of toluidine blue–stained semi-thin cross
sections of the distal stump of the regenerated
nerve repaired with autograft (a and a0) or PHA
NGC (b and b0) after 12 weeks. Scale bars: a, b:
20 μm; a0 , b0: 100 μm. c, e: Results of the
stereological analysis; (c) cross sectional area of
the regenerated nerves; (d) density of

regenerated myelinated fibers; (e) total number
of regenerated myelinated fibers. No significant
differences between the two groups were
found. Values are presented as mean
± SD, *p ≤ 0.05

LIZARRAGA-VALDERRAMA ET AL. 9 of 13



but also exhibit high level of biocompatibility. Hence, in summary, the

results of the pilot study carried out after 6 weeks confirmed the abil-

ity of PHA-NGCs to support peripheral nerve repair.

For longer time points (12 weeks post-surgery), morphometric

analysis was performed to assess parameters of the nerve fiber popu-

lation including axon diameter, fiber diameter, myelin thickness, and

g-ratio. Nerve morphology provides essential information related to

functional recovery. As stated previously, axon and fiber diameter and

myelin thickness were similar in both groups after 12 weeks post-

surgery. These parameters are vital for the study of the regeneration

outcome since they affect the conduction velocity of the nerve

impulse.30 During axonal maturation, an increase in axon and fiber

diameters and internodal distance results in an increase in motor

nerve conduction velocity (mNCV).31 Therefore, similar values

presented in axon and fiber diameter and in myelin thickness in both

groups could explain the similar level of functional recovery found in

the grasping test results for both groups. On the other hand, the fiber

diameter distribution was found to be different between the groups.

Regenerated nerves from the PHA-NGC group showed a higher per-

centage of fibers with smaller diameters as opposed to the autograft

group. Nevertheless, this difference did not seem to have any impact

in the functional recovery. g-ratio, a parameter widely used as a func-

tional and structural index to evaluate axonal myelination,32 was

found to be similar in both groups. Hence, the myelination levels pres-

ented by both experimental groups were similar at week 12 of nerve

repair.

Functional recovery of regenerated nerve after surgery was

accessed by the grasping test during a period of 3 months. This

F IGURE 6 (a–d) Results of the morphometrical evaluation of regenerated nerve fibers. (a) Morphometrical evaluation of size parameters:
axon diameter, fiber diameter and myelin thickness showed no significant differences between the two groups. (b) The g-ratio was similar for
both groups. (c) The frequency distributions of fiber diameters showed a higher percentage of smaller fibers in the PHA-NGC group. (d) The g-
ratio/axon diameter correlation of individual fibers showed that the resulting linear regression lines of the autograft and the PHA-NGC group
were similar. PHA-NGC: 845 fibers analyzed; Autograft: 757 fibers analyzed. Values are presented as mean ± SD, *p ≤ 0.05
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behavioral method allowed the qualitative and quantitative evaluation

of the flexor function in rat median nerve. Grasping response is a

complex sensory-motor response integrating sensory afferents with

motor afferents through the cerebral cortex.33 Flexion of the fingers

depends on two nerves, the median and the tibial nerves located in

the forelimb and in the hindlimb, respectively.33 A common feature

between humans and rats is the possession of prehensile forelimbs,

forepaws and digits resulting in remarkable similarities between the

two species.34 These striking resemblances makes the grasping test a

powerful translational tool.35 However, the sciatic nerve injury model

is currently preferred over the median nerve injury model mainly

because of the large size of the sciatic nerve, which facilitates animal

surgery. Furthermore, majority of the published studies in peripheral

nerve regeneration use this model allowing comparative analysis. This

makes the median nerve model's results difficult to compare with the

current literature. Nevertheless, experimental results obtained using

the grasping test are more likely to be translated to clinical trials since

the PNI is higher in upper extremity nerves compared to nerves

located in the lower limb. Furthermore, the majority of the nerve

repairing surgical interventions involve radial, median, ulnar and auxil-

iary nerves. Moreover, the use of the median nerve model has demon-

strated an increased preserved animal welfare following nerve

transection compared to the sciatic injury model.19,36 In the present

study, the grasping test allowed the comparative evaluation of the

median nerve function post-surgery in the two groups under study.

Although the autograft group exhibited better performance at grasp-

ing, at week 5, compared with the PHA-NGC group, comparable per-

formance was observed in the two groups from week 7 until the end

of the experiment. The delay of functional recovery of the PHA-NGC

group compared to the autograft group is justified by the different

repair technique. Hence, PHA-NGCs have demonstrated optimal per-

formance in supporting not only nerve regeneration but also func-

tional recovery.

The only PHAs that have been used and reported as base material

for the manufacturing of NGCs are P(3HB),17,18 poly(3-hydro-

xybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV),37 and poly

(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)).38

Despite the fact that P(3HB) has displayed high biocompatibility

with neuronal cells in all these studies, this polymer lacks suitable

mechanical properties for peripheral nerve regeneration. In fact, P

(3HB) is a well-known brittle polymer widely used in bone tissue

engineering with a Young's modulus and a tensile strength of 1200

± 200 and 30 ± 2 MPa, respectively.

Mechanical compliance of neural implants and scaffolds with their

target tissues is fundamental not only for allowing a greater freedom

of movement in the affected area but also to produce a favorable

environment for optimal regeneration. Although the Young's modulus

and tensile strength of the PHA-NGCs (35 ± 3 and 6 ± 1 MPa)

(Table 1) were higher than the respective values of peripheral nerves

in rats (0.58 ± 0.16 MPa and 1.4 ± 0.29 MPa), the regeneration dis-

played was optimal and similar to an autograft. There is also substan-

tial evidence showing that the behavior of neuronal and glial cells are

affected by the surrounding mechanical environment.39 Balgude

et al.,40 subjected DRG neurons to a range of mechanical environ-

ments with agarose. The rate of the neurite extension was found

inversely correlated to the mechanical stiffness of agarose gels. More-

over, Willits and Skornia,41 studied the effects of varying mechanical

properties of collagen gels in neurite extension using chick DRG. They

found maximum neurite extension in lower concentration gels. Hence,

the mechanical properties of the manufactured PHA-NGCs seem to

have a favorable influence on neurite extension. Most of the commer-

cially available NGCs do not possess the flexibility required to match

the mechanical properties of neural tissue,42 which could hamper effi-

cient neurite extension leading to a poor recovery of the nerve func-

tion, while limiting movement of the affected area. For example, the

Young's modulus of Neurotube®, NeuraGen®, and Neurolac® are

4.00, 0.08, and 0.14 MPa, respectively,43,44 differing from 0.58 MPa23

presented in fresh rat sciatic nerves. Moreover, Neurotube®, with a

tensile strength of 13 ± 3 MPa, lacks the adequate strength to sup-

port peripheral nerve regeneration. Tensile strength of the median

nerve in humans has been reported between 35.01 and 53.25 MPa.45

Although dip-molding technique was effective for the

manufacturing of conduits to perform in vivo studies, other tech-

niques can be used in order to manufacture NGCs with more regular

diameters such as injection molding or melt extrusion.46,47 The latter

will perhaps be the most scalable manufacturing method to be used

for future commercialization of the device.

5 | CONCLUSIONS

The results of the present study demonstrate, for the first time, that

NGCs made using the bioresorbable PHA-blend 75:25 P(3HO)/

P(3HB) can successfully sustain cell proliferation and adhesion

in vitro and nerve regeneration across a 10 mm median nerve defect

in vivo. The conduit has proven to be biocompatible with the sur-

rounding tissue, since no signs of inflammation or scar tissue forma-

tion were found. Also, our PHA-NGCs, with a diameter of 1.8 mm is

suitable for human nerve size, especially for digital nerve repairs,

which are the most frequently severed peripheral nerves. Moreover,

this hollow NGC could provide an excellent scaffold to design and

develop engineered nerve grafts used to repair longer nerve gaps in

the future, together with gene/cell therapy approaches. Further

investigation of this NGC will focus on optimization of the conduit

structure and properties, including wall permeability and biodegra-

dation in vivo.
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