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In brief

Wesolowska-Andersen et al. represent

the clinical heterogeneity of newly
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archetype profiles reflecting patterns of

dysfunction in disease etiological

processes, rather than clustering

individuals into categorical subgroups as

attempted by others. The archetype

profiles differ in genetic risk scores,

disease progression, and circulating

omics biomarkers.
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SUMMARY
The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous.
Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clin-
ical utility may be limited if categorical representations of complex phenotypes are suboptimal.
We apply a soft-clustering (archetype)method to characterize newly diagnosed T2D based on 32 clinical vari-
ables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic
deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months.
Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes
and correlate withmultiple circulating biomarkers. One archetype associatedwith obesity, insulin resistance,
dyslipidemia, and impaired b cell glucose sensitivity corresponds with the fastest disease progression and
highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be map-
ped to heterogeneity in individual etiological processes, providing a potential route to personalized treat-
ments.
INTRODUCTION

Type 2 diabetes (T2D) is a complex, multifactorial disease char-

acterized by hyperglycemia, which, at the level of the individual,

is the consequence of dysfunction in several contributory dis-

ease processes, including adiposity, insulin resistance, and rela-

tive b cell failure. The clinical presentation and prognosis of T2D

show considerable heterogeneity, and the same is true for rates

of disease progression and individual response to anti-diabetic

treatment. Stratification of disease based on patient characteris-
Cell Rep
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tics at disease onset could help us better understand the mech-

anisms driving this heterogeneity and have clinical value in

predicting the future course of disease and in guiding the devel-

opment of tailored treatment plans.

Despite increasing knowledge about the different pathophys-

iologies that contribute to T2D predisposition, there is limited un-

derstanding of how these processes are related and how they

drive differences in disease presentation and course. In the

last decade, genome-wide association studies (GWASs) have

characterized much of the genetic component of disease
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predisposition, with more than 400 genetic signals contributing

to T2D susceptibility discovered to date and measurable genetic

variation accounting for around 20% of overall variation in T2D

predisposition.1 The molecular and pathophysiological mecha-

nisms through which these variants act are beginning to emerge:

they point to diverse processes (involving fat, muscle, liver,

pancreatic islets, and brain) that contribute to an increased pre-

disposition to T2D.2–4

One recently proposed approach to T2D stratification used a

data-driven clustering method to subdivide patients with newly

diagnosed diabetes into five subgroups based on individual

measures of six clinical markers.5 The subgroups differed with

respect to disease progression, use of anti-diabetic treatments,

and risks of diabetes-related complications, as well as in the

observed frequencies of several genetic variants predisposing

individuals to T2D, indicating that the heterogeneity could be

partly driven by the individuals’ genetic background. The five

subgroups have been found to be reproducible in different co-

horts, including diverse ethnicities.6–8 However, there has been

considerable debate as to whether these subgroups represent

distinct subtypes of T2D,9 particularly given that the genetic ar-

chitecture of the disease (with most genetic risk attributable to
2 Cell Reports Medicine 3, 100477, January 18, 2022
common, widely shared genetic variants) and the impact of

pervasive environmental risk factors appear more consistent

with a model of continuous physiological dysfunction involving

multiple molecular and pathophysiological processes in parallel

(as in the proposed palette model).10 Indeed, one investigation

demonstrated that the use of simple clinical phenotypes as

continuous traits outperformed subgroup-based patient stratifi-

cation in predicting progression and treatment responses,6

raising the question of whether subdivision of continuous multi-

dimensional data into discrete clusters is clinically meaningful.

The aim of the present study was to characterize the complex

phenotypic heterogeneity of T2D and its molecular features us-

ing a method that better captures the architecture of diabetes

and aligns with the palette model. We investigated clinical,

biochemical, and anthropometric measurements in newly diag-

nosed individuals from the IMI (Innovative Medicines Initiative)

DIRECT (Diabetes Research on Patient Stratification) study.

Instead of hard clusters defined with k-means clustering (which

limit an individual to membership in a single cluster), we used a

soft-clustering approach for patient stratification, which allows

individuals to be members of more than one cluster. Soft clus-

tering can reflect one or more concurrent pathophysiological
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processes in play and therefore align better with the available ge-

netic and clinical data. This approach allowed us to measure the

contribution of the etiological processes to the T2D phenotype

using the quantitative clustering measures for individuals (we

call these archetype scores) and, from the patterns that result,

to identify subsets of individuals at the extreme end of these

scores who have dysfunction in an extreme combination of etio-

logical processes.

Access to rich phenotypic characterization and longitudinal

follow-up within the IMI DIRECT cohort allowed us to explore

the phenotypic determinants and clinical consequences of the

etiological heterogeneity associated with the archetype scores,

as well as to identify their contributing genetic factors and circu-

lating biomarkers.

RESULTS

Four archetypes of baseline T2D
We analyzed the baseline visit data from the newly diagnosed

T2D cohort of the IMI DIRECT study, comprising of 726 partici-

pants (41% female) with complete data for 32 anthropometric,

clinical, and biochemical phenotypes. All participants were diag-

nosed within two years before recruitment, were on lifestyle and/

or metformin treatment only, and had HbA1c < 60.0 mmol/mol

(<7.6%) within previous the three months. Mean age at baseline

visit was 62 years, mean BMI was 30.4 kg/m2, and mean HbA1c

was 46.4 mmol/mol (Table 1).

Instead of applying a hard-clustering approach to impose

discrete clusters, we used the soft-clustering method of arche-

types11,12 to uncover the baseline T2D etiological processes

that contribute to disease heterogeneity. The archetype analysis

identifies extreme observations within a multivariate dataset and

subsequently represents individuals in the phenotype spectrum

as convex combinations of these extreme observations. Our

analysis identified four stable baseline archetypes named A, B,

C, and D (Figure 1), which resulted in four quantitative archetype

scores defined for individuals, such that the four archetype

scores summed to 1 for an individual. Most individuals (n =

472) were located in the middle of the phenotype distribution

with moderate contributions from two or more archetypes, likely

representing dysfunction in multiple etiological processes

(mixed etiology group) (Figure 2A). To identify the phenotypes

characterizing the archetypes, we focused on the individuals at

the extremes of the distribution (defined by archetype member-

ship > 0.6, n = 254 [35%]) with higher degrees of dysfunction

across combinations of etiological processes captured by the

four archetype scores (Figures 2B–2D).

There were 103 individuals with extreme values for the arche-

type A score. They were characterized by low BMI, older age,

high insulin sensitivity, and high cholesterol. Individuals with

extreme values for archetype B, C, and D scores were obese

on average, but individuals with an extreme archetype B score

(n = 22) were insulin sensitive and associated with favorable lipid

profiles and low fasting creatinine levels. Extreme values for the

archetype C score (n = 84) were associated with insulin resis-

tance (low 2 h oral glucose insulin sensitivity [2hOGIS], Stumvoll,

and Matsuda indices, as well as high fasting and mixed-meal

tolerance test [MMTT] insulin levels). Individuals with extreme
values for the archetype D score (n = 45), in addition to obesity

and insulin resistance, had the worst glucose control and low

glucose sensitivity, indicating b cell dysfunction. In addition,

extreme values for both the archetype C and the archetype D

scores were associated with high levels of triglycerides (TGs)

and the liver enzymes ALT and AST, indicating dyslipidemia (Fig-

ure 2B; Table 1; Table S1A). Highly similar results were obtained

when we investigated associations with the quantitative arche-

type scores, with all individuals contributing to the analysis

(Figures S3A and S3B; Table S1B). Hence, we investigated the

associations with the quantitative archetype scores in all subse-

quent analyses to increase the statistical power for discovery.

Archetypes associated with differences in genetic risk
of T2D
To elucidate the primary factors driving the etiological processes

that contribute to the archetypes, we investigated their genetic

contribution. We calculated genetic risk scores (GRSs) for T2D,

as well as six partitioned genetic risk scores (pGRSs) for loci

classified as involved in reduced insulin secretion with high pro-

insulin (IS1) and low proinsulin (IS2), insulin action (IA), adiposity

(BMI), dyslipidemia (LIPID),13 andmixed features (MIX), and eval-

uated whether these pGRSs differed among archetypes (Fig-

ure 3A; Figure S4; Table S2). We observed a significant differ-

ence in the overall T2D-GRS for archetype A and C scores

(bA = 0.3, pA = 0.010; bC = �0.2, pC = 0.050), which implies

that a higher archetype A score was nominally associated with

greater overall genetic predisposition for T2D, whereas a higher

archetype C score was associated with lower overall risk. We

also found that the archetype A score was significantly associ-

ated with two previously reported insulin secretion pGRSs; i.e.,

those individuals with a high archetype A score were genetically

predisposed to lower b cell function (IS1: bA = 0.07, pA = 0.02;

IS2: bA = 0.1, pA = 4.9 3 10�5), whereas we observed the oppo-

site direction of associations for the archetype C score (IS1:

bC = �0.06, pC = 0.02; IS2: bC = �0.2, pC = 2.4 3 10�6). Finally,

we observed that the archetype B score was associated with

higher BMI-pGRS values, as opposed to the archetype A score,

which was associated with lower BMI-pGRS values (bA =�0.04,

pA = 2.4 3 10�3; bB = 0.04, pB = 0.05). Overall, this led us to

conclude that the likely primary processes driving the pheno-

typic differences among the archetypes was insulin deficiency

associated with a higher archetype A score, obesity associated

with a higher archetype B score, and insulin resistance associ-

ated with a higher archetype C score. The genetic evidence for

archetype D was inconclusive, but given the associations with

the severest phenotypes, i.e., younger age, obesity, and insulin

resistance, coupled with low glucose sensitivity, we described

this archetype as global severe. For the other archetypes, we

chose the descriptions lean and insulin deficient (archetype A),

obese and insulin sensitive (archetype B), and obese and insulin

resistant (archetype C).

Archetypes associated with differences in baseline
adiposity, physical activity, and hormone levels
We further explored associations between archetypes and

additional clinical variables (Figure 3B; Table S3). Among the

most notable differences, we observed that higher scores for
Cell Reports Medicine 3, 100477, January 18, 2022 3



Table 1. Descriptive characteristics of the full cohort and differences among the groups with extreme archetype scores at baseline

Phenotype Full cohort A B C D MIX p value

Number of individuals 726 103 22 84 45 472 NA

XX/XY genotype (%) 298/428 (41%) 46/57 (45%) 8/14 (36%) 30/54 (36%) 21/24 (47%) 193/279 (41%) 0.9

Age (years) 61.97 (8.03) 64.78 (6.08) 62.68 (8.52) 60.88 (7.43) 59.16 (8.07) 61.79 (8.34) 0.00016

BMI (kg/m2) 30.44 (4.97) 25.42 (2.55) 30.99 (4.85) 33.47 (4.59) 32.91 (4.61) 30.74 (4.69) 2.2E�35

WHR (m/m) 0.96 (0.08) 0.91 (0.07) 0.97 (0.07) 1.00 (0.07) 0.99 (0.08) 0.97 (0.08) 3.6E�11

BSA (m2) 2.07 (0.23) 1.87 (0.19) 2.15 (0.18) 2.17 (0.21) 2.12 (0.21) 2.09 (0.22) 1.2E�19

Fasting C-peptide (pmol/L) 1,074.99

(392.22)

706.27

(184.29)

683.27

(223.54)

1,627.56

(417.47)

1,318.58

(315.72)

1,052.15

(295.45)

3.3E�60

Fasting HbA1c (mmol/mol Hb) 46.41 (5.71) 44.48 (4.19) 45.64 (5.70) 44.88 (4.73) 56.04 (5.75) 46.22 (5.27) 3.8E�20

Fasting glucose (mmol/L) 7.1 (1.39) 6.83 (0.88) 4.15 (1.30) 6.91 (0.85) 9.47 (1.45) 7.10 (1.14) 6.02E�30

Fasting insulin (nmol/L) 104.64 (67.23) 44.17 (17.90) 54.49 (27.58) 209.32 (86.40) 143.51 (64.08) 97.84 (45.75) 2.1E�67

Fasting HDL-C (mmol/L) 1.19 (0.38) 1.52 (0.42) 0.66 (0.29) 1.09 (0.32) 1.04 (0.27) 1.17 (0.34) 8.1E�25

Fasting LDL-C (mmol/L) 2.34 (0.96) 2.86 (1.04) 1.19 (0.61) 2.27 (0.87) 2.53 (0.81) 2.28 (0.92) 1.7E�13

Fasting TG (mmol/L) 1.51 (0.8) 1.24 (0.48) 0.71 (0.41) 1.79 (1.24) 2.13 (0.86) 1.50 (0.70) 2.8E�16

Fasting ALT (U/L) 26.43 (14.03) 21.30 (8.07) 15.95 (9.88) 32.73 (18.50) 36.38 (17.34) 25.96 (12.98) 2.4E�16

Fasting AST (U/L) 25.61 (10.87) 26.04 (8.82) 15.95 (5.61) 27.93 (12.55) 33.44 (17.00) 24.81 (9.85) 1.1E�11

Fasting cholesterol (mmol/L) 4.23 (1.13) 4.95 (1.10) 2.19 (10.90) 4.17 (0.93) 4.54 (0.94) 4.15 (1.06) 6.7E�19

Fasting creatinine (umol/L) 75.19 (17.38) 79.45 (13.62) 42.00 (19.10) 77.92 (17.57) 78.44 (17.84) 75.01 (16.32) 1.5E�9

Fasting UCPCR (nmol/mmol) 3.38 (2.16) 2.70 (1.63) 2.61 (1.05) 5.00 (3.44) 3.11 (1.56) 3.31 (1.92) 3.1E�10

Fasting UCpep (nmol/L) 29.95 (22.94) 19.96 (18.63) 28.19 (19.78) 49.30 (31.16) 28.70 (19.84) 28.90 (20.49) 3.6E�15

Fasting UCreatinine

(mmol/L)

9.72 (5.87) 8.00 (5.55) 11.29 (7.08) 11.56 (6.31) 10.31 (5.99) 9.64 (5.69) 4.6E�4

MMTT 120 min glucose

(mmol/L)

8.72 (2.78) 7.52 (2.12) 5.11 (2.12) 8.32 (1.93) 13.88 (2.18) 8.73 (2.47) 3.4E�32

MMTT 120 min insulin

(nmol/L)

451.03

(350.52)

222.18

(127.36)

195.48

(135.96)

947.31

(598.67)

474.30

(203.36)

422.34

(241.77)

1.7E�44

Mean glucose (nmol/L) 9.34 (2.01) 8.53 (1.46) 6.15 (1.42) 9.03 (1.25) 12.87 (1.84) 9.37 (1.80) 6.8E�32

Mean insulin (pmol/L) 458.01

(276.45)

250.89

(104.02)

270.44

(128.76)

936.62

(386.54)

424.44

(158.74)

429.97

(181.93)

1.8E�57

Basal insulin secretion rate

(pmol min�1 m�2)

135.87

(47.45)

93.43

(23.39)

87.24

(24.45)

202.81

(51.81)

165.59

(42.28)

132.65

(35.82)

4.5E�58

Total insulin secretion

(nmol m�2)

44.14

(14.37)

35.98

(9.86)

28.68

(8.77)

64.86

(13.84)

41.33

(14.76)

43.23

(1.64)

2.3E�43

Glucose sensitivity

(pmol min�1 m�2 L mmol�1)

83.67

(55.01)

79.80

(50.91)

70.86

(46.90)

135.46

(69.91)

34.50

(17.20)

80.58

(48.79)

6.7E�29

Rate sensitivity

(pmol m�2 L mmol�1)

1,115.08

(1,044.94)

950.03

(925.31)

773.00

(696.38)

1,715.03

(1,511.39)

852.24

(576.16)

1,085.32

(978.29)

1.0E�45

Potentiation fraction

ratio (no unit)

1.41 (0.57) 1.76 (0.72) 1.15 (0.40) 1.29 (0.45) 1.13 (0.20) 1.39 (0.55) 1.5E�9

Stumvoll 5.51 (2.71) 8.33 (1.22) 7.61 (1.44) 2.27 (3.35) 3.52 (1.63) 5.56 (2.11) 2.7E�59

Matsuda 2.94 (2.21) 5.32 (2.59) 7.23 (4.12) 1.15 (0.38) 1.51 (0.61) 2.67 (1.52) 5.0E�71

2hOGIS (mL min�1 m�2) 297.17

(69.03)

334.83

(52.17)

495.05

(127.13)

246.21

(42.96)

231.64

(27.28)

295.05

(51.11)

6.4E�49

Basal insulin clearance

(L min�1 m�2)

1.61 (1.02) 2.45 (2.02) 1.65 (0.35) 1.05 (0.28) 1.28 (0.39) 1.55 (0.69) 2.6E�47

Insulin clearance

(L min�1 m�2)

0.93 (0.3) 1.29 (0.33) 0.96 (0.26) 0.62 (0.15) 0.86 (0.20) 0.92 (0.25) 1.2E�49

All phenotypes are summarized as mean and SD in parentheses. Differences among the groups were tested with the Kruskal-Wallis test and adjusted

for multiple testing with the Benjamini-Hochberg procedure to reduce the false discovery rate (FDR). UCPCR, urine C-peptide/creatinine ratio; UCpep,

urine C-peptide; UCreatinine, urine creatinine.
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Figure 1. Archetype stability as evaluated using the following approaches

(A) Minimized residual sum of squares (RSS) for k number of archetypes ranging from 1 to 10 in a scree plot was assessed first. The screen plot was based on RSS

from the best model out of 100 restarts of the archetype algorithm for each k and showed a plateau in the drop in intra-cluster variance at k4 or k5.

(B) Stability of the k archetypes was then assessed by a randomized subsampling of 90% of the original dataset repeated 100 times and compared to the original

subgroups using the adjusted Rand index. Simultaneously, we evaluated the stability of the archetypes at archetype membership cutoffs ranging from 0 to 1 in

intervals of 0.05. The most stable solution was k2, irrespective of membership threshold, followed by k4, which reached a median adjusted Rand index > 0.75 at

threshold 0.

(C) Stability of the solution with two and four archetypes across the full range of tested archetypemembership thresholds. Altogether, these analyses showed that

four archetypes had the lowest RSS while showing high stability after randomization. The subgroup stability increased with an increasing membership threshold

and plateaued at 0.6, wherefore this threshold was used as the cutoff for the extreme archetype inclusion.

Whiskers in (B) and (C) correspond to the largest and smallest value no further than 1.5 IQR (inter quartile range) from the hinge.
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archetype A (lean and insulin deficient) were linked to higher

physical activity (pA = 3.6 3 10�7), lower subcutaneous and

visceral adiposity (pA < 5.53 10�21), and lower stimulated proin-

sulin, glucagon, and total GLP-1 levels (pA < 4.0 3 10�8). In

contrast, higher scores for archetype C (obese and insulin resis-

tant) were associated with higher levels of these hormones (pC <

0.007), as well as higher MRI-measured fat levels (pC < 7.9 3

10�9). High scores for both archetype C (obese and insulin resis-

tant) and archetype D (global severe) were characterized by

higher liver fat (pC = 5.6 3 10�16 and pD = 4.5 3 10�10), and a

high archetype D score was associated with higher diastolic

blood pressure (pD = 8.22 3 10�5). A high score for archetype

B (obese and insulin sensitive) was associated with lower liver

fat (pB = 8.13 10�5), stimulated proinsulin, and fasting and stim-

ulated GLP-1 levels (pB < 1.7 3 10�4).
Archetypes associated with differences in disease
progression rates
To assess the clinical relevance of the archetypes, we evalu-

ated whether the four archetypes reflect differences in disease

progression by analyzing their association with slopes of

HbA1c change over time for 696 individuals with at least two

HbA1c measurements. We observed that a high score for

archetype A (lean and insulin deficient) was associated with

the slowest progression (bA = �0.03, pA = 7.8 3 10�6) and a

high score for archetype D (global severe) was associated

with the fastest progression (bD = 0.02, pD = 2.8 3 10�3).

Because the HbA1c values are affected by any administered

glucose-lowering medication, we also performed this analysis

stratified by medication use: 346 participants on lifestyle treat-

ment only and 350 participants receiving T2D medication at
Cell Reports Medicine 3, 100477, January 18, 2022 5
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Figure 2. Clinical characteristics of the four archetypes, and groups with archetype scores identified at the extremes of the baseline

phenotype spectrum

(A) Representation of the baseline phenotype spectrum of newly diagnosed T2D projected in 2 dimensions following principal-component analysis. Each point

represents an individual, and the four archetypes are colored and marked as subgroups A–D. The strength of the colors represents the level of archetype

membership, with individuals shown in a lighter color representing a mixed phenotype with no clearly dominating archetype.

(B) Summary of the 32 clinical variables used for the characterization of the baseline T2D phenotypic space. All variables were rank-normally transformed, and for

each group with extreme archetype scores and each variable, the heatmap shows the significance level of the difference between the group and the remaining

individuals from the study, as from a Mann-Whitney U test. The color of the heatmap reflects the directionality and magnitude of the test estimate, with red

indicating higher values and blue indicating lower values characteristic of the given group.

(C) Pie chart showing the percentage of individuals belonging to each of the four groups with extreme archetype scores and in the mixed etiology group.

(D) Table of the number of individuals represented in each of the four groups with extreme archetype scores and in the mixed etiology group.

Values statistically different from zero are marked as *p < 0.05, **p < 0.01, and ***p < 0.001.
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baseline (Figure 4A; Table S4). The fastest progression was

observed for a high archetype D score among participants

on lifestyle treatment (bD_lifestyle = 0.04, pD_lifestyle = 3.4 3

10�7) (Table S4), but it was not associated with progression

among the individuals treated with metformin (bD_T2Dtreatment =

�0.003, pD_T2Dtreatment = 0.8). We compared the archetype

score associations with disease progression to the corre-

sponding performance of the single phenotypes and discov-

ered that the combinations of etiological processes defining

archetypes A and D had the highest power to predict disease

progression (Figure 4B).
6 Cell Reports Medicine 3, 100477, January 18, 2022
As an alternative measure of disease progression, we inves-

tigated whether the archetypes were associated with differ-

ences in likelihood of receiving glucose-lowering medication

during the study period (Figures 4C and 4D; Table S5). A higher

score for archetype D (global severe) was associated with the

highest risk of being on glucose-lowering medication at all time

points. At baseline, there was already a significant association

(odds ratio [OR] at month 0: ORM0 = 7.1, pM0 = 5.4 3 10�8), but

this was more pronounced at the follow-up visits (ORM18 =

30.0, pM18 = 2.4 3 10�16; ORM36 = 48.8, pM36 = 31.7 3

10�16). In contrast, a higher score for archetype A (lean and
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Figure 3. Archetype associations with genetic risk scores and additional clinical variables
(A) Associations of partitioned genetic risk scores or T2D genetic risk scores with archetype scores. Statistically significant results (p < 0.05) from linear regression

are shown in red.

(B) Associations of clinical variables available for a subset of the cohort or only collected at the baseline visit. These are not used in the clustering of the baseline

T2D phenotypic space. All variables were rank-normally transformed, and for each archetype score and each variable, the heatmap shows the significance level

of the association test using linear regression. The color of the heatmap reflects the directionality and magnitude of the test estimate, with red indicating positive

and blue indicating negative associations. Values statistically different from zero are marked as *p < 0.05, **p < 0.01, and ***p < 0.001.
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insulin deficient) was associated with the lowest likelihood of

receiving glucose-lowering medication at all time points

(ORM0 = 0.3, pM0 = 9.4 3 10�4; ORM18 = 0.1, pM18 = 4.5 3

10�8; ORM36 = 0.1, pM36 = 6.9 3 10�8). In addition, we exam-

ined whether the archetypes were associated with participants

requiring an increase in dosage or starting a new anti-diabetic

treatment, indicating that their blood glucose control worsened

(Figure 4D). Again, we observed that a higher archetype D

score was associated with the highest risk (ORchangeM18 =

69.4, pchangeM18 = 3.73 10�18; ORchangeM36 = 62.8, pchangeM36 =

5.2 3 10�21) and a higher archetype A score was associated

with the lowest risk (ORchangeM18 = 0.03, pchangeM18 = 9.2 3

10�10; ORchangeM36 = 0.06, pchangeM36 = 2.2 3 10�11).

This was true for individual groups of anti-diabetic medication

administered (Table S5). Altogether, a higher score for
archetype D (global severe) was associated with the fastest

disease progression, in particular within the lifestyle-treated

subset, suggesting that early identification of individuals with

dysfunction in the associated etiological processes would be

beneficial.

Archetypes were defined by distinct circulating omics
signatures
Wethen investigatedwhether theobserveddysfunction in theetio-

logical processes can be inferred from circulating molecular pro-

files. We looked for proteins, metabolites, or genes significantly

(<5%falsediscovery rate [FDR]) associatedwitheachof thequan-

titative archetype scores (Table S5A–S5F), and we then investi-

gated the associations of the most discriminative omics variables

with the clinical phenotypes. We also investigated the top omics
Cell Reports Medicine 3, 100477, January 18, 2022 7
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Figure 4. Association between archetypes and disease progression as defined by the slope of the HbA1c increase and by glucose-lowering

medication during the 36-month study period

(A) T2D disease progression assessed as HbA1c slopes as dependent variables and archetype scores as independent variables. The analysis was divided into all

individuals, untreated individuals, and individuals treated with glucose-lowering medication at baseline for each archetype.

(B) Ability of individual phenotypes to predict T2D disease progression. Combinations of phenotypes constituting archetypes A and D had the highest power to

predict disease progression.

(legend continued on next page)
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variables for associations with the pGRSs to elucidate whether

these could have a causal role or they were secondary to the

phenotypic features that characterized the archetypes (Figure 5).

We found the highest number of discriminative omics features

for archetype A (lean and insulin deficient), containing 348 pro-

teins, 177 metabolites, and 3,356 genes. This included proteins

also associated with increased insulin sensitivity, such as insulin-

like growth factor binding protein (IGFBP) 1 and IGFBP2

(q < 3.2 3 10�25)14,15 and paraoxonase 3 (PON3, q = 1.4 3

10�30) (Figure 5A). PON3waspositively associatedwith high-den-

sity lipoprotein cholesterol (HDL-C). Higher levels of IGFBP2 and

IGFBP3 were nominally associated with increased T2D-GRS and

IS2-pGRS, respectively, suggesting that these proteins were

genetically linked to defective b cell function. We found several

acyl-alkyl-phosphatidylcholines (PC.ae, q < 9.7 3 10�16), lyso-

phosphatidylcholines (lysoPCs, q < 7.83 10�14), and adiponectin

(q = 3.6 3 10�15)16 positively associated with the archetype A

score and associated with high HDL-C, low-density lipoprotein

cholesterol (LDL-C), and total cholesterol (Figure 5B). The lysoPCs

were nominally associated with T2D-GRS. We also found several

blood transcripts associatedwith both archetypeA and archetype

D, but with opposite directions, and not specifically associated

with clinical phenotypes.Manyof these transcriptswere nominally

associated with a low T2D-GRS and/or a high BMI-pGRS (Fig-

ure 5C). Through enrichment of immune cell signatures, we found

that these represented B and T cell transcripts associated with

archetype A and neutrophil transcripts associated with archetype

D (Figure S3C). This finding likely represents the differences in

the neutrophil-to-lymphocyte ratio, used as an inflammatory

biomarker with prognostic value in several disease areas,

including cardiovascular diseases and cancers.17 The strongest

omics signatures for the score for archetype B (obese and insulin

sensitive) were lowermonosaccharides (H1, q = 4.33 10�16) (Fig-

ure 4D), in line with the best glucose control for this archetype, as

well as lower shorter-chaineddiacyl-phosphatidylcholines (PC.aa,

q < 7.73 10�11), lower protein levels ofNOTCH2 (q= 3.13 10�13),

and a lower LDL-C receptor (q = 1.1 3 10�8) linked to lower lipid

levels (Figure 5E). There was no pGRS association for the mono-

saccharides, indicating that this signature was reactive to the

glucose control. Four proteins linked to lipid levels, including

NOTCH2, were inversely associated with the LIPID-pGRS, which

suggests that low levels of these proteins were associated with

high LIPID-pGRS and a higher risk of dyslipidemia. We found a

group of b cell-linked proteins associated with a high archetype

B score, including HNF1A and HHEX (q = 0.001) (Figure 5F),

through an exploratory proteomics analysis. HNF1A protein levels

were nominally associated with higher IS2-pGRS and T2D-GRS.

Omics signatures of archetype C (obese and insulin resistant)

were largely thoseseen for archetypeA (leanand insulindeficient),

with the opposite direction of effect. They recapitulated the insu-

lin-resistant phenotype of this archetype and included previously

reported markers of this phenotype: tyrosine (Tyr, q = 1.1 3
(C) Forest plot showing the odds ratios between archetype scores and individuals

during the study period.

(D) Forest plot showing the odds ratios between archetype scores and individua

during the study period.

Error bars represent 95% confidence intervals. Statistically significant results (p
10�10)18 and a group of proteins associated with TG levels,

including CXCL1 (q = 7.5 3 10�6), PAI-1 (4.3 3 10�8), and

MYO3A (q = 3.0 3 10�14) (Figure 5G). Many biomarkers of this

group were nominally associated with lower IS2-pGRS, in line

with the negative association observed between archetype C

and IS2-pGRS.We also observed an association with higher pro-

tein levels of the adipose-tissue-derived hormone leptin (q = 2.93

10�41) (Figure 5H), in linewith the obesity association in this arche-

type.19 Leptin levels were nominally associated with lower

IS2-pGRSand lowerT2D-GRS,again in linewith thegeneticasso-

ciation for archetype C. Leptin was also associated to archetype

D, although to a lesser extent compared with archetype C.

Finally, omics signaturesof archetypeD (global severe) included

inflammatory markers, such as interleukin (IL)-8, IL-18, TIMP-1,

and MCP-1 (q < 1.1 3 10�3), as well as ferritin (q < 3.7 3 10�3),

associated here with the liver enzymes ALT and AST (Figure 5I).

We also noted markers of higher T2D risk,20 i.e., the branched-

chain amino acids (BCAAs) valine (Val) and isoleucine (xLeu,

q < 3.83 10�3), among the markers of this archetype (Figure 5J);

however, none of them had strong associations with the pGRSs.

Mixed etiology of archetypes shows precedence over
clinical phenotypes
Although the clinical presentation of individuals at the extremes of

the phenotype distribution is captured by the characteristics of

their high-scoring archetype, for most individuals represented

collectively as the large mixed etiology group, we observe contri-

butions of secondary (and tertiary) archetypes. To illustrate this,

we examined how the combination of primary and secondary ar-

chetypes for individuals affected their clinical presentation. The

heatmap in Figure 6A shows that there was agreement with the

phenotype characteristics of the primary archetype within each

of 12 mixed archetype groups: AB, AC, AD, BA, BC, BD, CA,

CB,CD,DA,DB, andDC.However, it alsoshows that somearche-

types had precedence over others in specific combinations.

Archetype A as a primary or secondary archetype was associated

with low BMI and waist-to-hip ratio (WHR), whereas archetype B

as a primary or secondary archetype was associated with low

lipids. Archetype C was associated with hyperinsulinemia and in-

sulin resistance, but only when it was the primary archetype or

combined with archetype D. Individuals with archetype D as the

primary and secondary archetypes had high glucose and HbA1c

levels and low glucose sensitivity. ArchetypesC andDwere asso-

ciated with high versus low glucose sensitivity, but archetype D

appeared to be driving this, because the DC archetype group

was associated with low glucose sensitivity. Figure 6B shows

how themixedarchetypescombined toassociatewithHbA1cpro-

gression. The results aligned well with the quantitative archetype

analysis and show that groups with archetype A as the primary

or secondary archetype trend toward a slower progression rate,

except when archetype A was combined with archetype D as a

secondary archetype. Groups with archetype D as the primary
receivingmetformin treatment or increasing their metformin treatment (change)

ls receiving glucose-lowering treatment or increasing their treatment (change)

< 0.05) from linear or logistic regression are shown in opaque colors.
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orsecondaryarchetypeshowed trends toward fasterprogression,

exceptwhencombinedwitharchetypeA.Thehighest progression

rates were seen for groups DB, BD, and CB. If we distinguished

between treated and untreated individuals within each group,

we saw that two groups stood out as having higher progression

when on glucose-lowering treatment: BD and CB, which for BD

most likely was explained by 80% of individuals being on treat-

ment. CB was associated with faster progression despite having

low HbA1c and glucose levels and high glucose sensitivity, and

48% of were being on glucose-lowering treatment, which indi-

cates that the treatment might not be effective for this group. In

addition, any group containing archetype D as the primary or sec-

ondary archetype also had the highest rates of glucose-lowering

medications, in line with the main results.

Archetype stability at follow-up
Stability over time was investigated for the 12 mixed etiology ar-

chetypes using the archetype group assignments at 0, 18, and

36 months. For this purpose, we analyzed 1,740 individual visits

comprising 726, 591, and 423 individuals at the three visits,

respectively, and divided the participants into mixed archetype

groups at each visit, as described earlier. The Sankey chart in Fig-

ure6Cshows theflowamonggroupsover time.We includedflows

withR5 individuals in the plot to ease the readability. This analysis

shows that the mixed etiology archetypes consisting of arche-

types A, C, and D were stable over time, with most individuals

moving within the groups composed of the same primary arche-

type. Archetype groups composed of archetype B were the least

stable; however, most individuals in an archetype-B-dominating

groupmoveeither to thesamegroupor toagroupwith theprimary

archetype inverted (BA/AB,BC/CB, etc.). TheDAgroup also

showed this tendency between month 18 and month 36.

DISCUSSION

The phenotypic landscape of individuals newly diagnosed with

T2D forms a continuum of degrees of dysfunction within bio-

logical processes contributing to the complex etiology.
Figure 5. Summary of differences in multiomics profiles among the ar

(A) Omics signatures discriminating archetype A (lean and insulin deficient) and ar

levels of insulin-like growth factor bindingproteins 1 and2 (IGFBP1 and IGFBP2). Th

(B) Archetype A was further associated with increased metabolite levels of acyl-alkyl

associated with total cholesterol, HDL-C, and LDL-C levels; lyso-phosphatidylcholin

(C) Omics signatures discriminating between archetype A (lean and insulin deficie

associated with insulin resistance and glycemic control.

(D) Metabolite hexose (H1) was strongly negatively associated with archetype B (

were associated with the best and worst glucose control, respectively.

(E) Biomarker levels negatively associated with archetype B were strongly posit

proteins NOTCH2 and the LDL-C receptor, as well as metabolites and short-cha

(F) Protein levels positively associated with archetype B included biomarkers w

HNF1A, which was negatively associated with TG levels.

(G) Protein levels positively associated with archetype C included tyrosine and w

associated with HDL-C.

(H) Adipose tissue-derived hormone leptin (LEP) was strongly associated with th

(I) Levels of inflammatory proteins discriminated between archetype D and arche

(J) Branched-chain amino acids (BCAAs) valine and leucine/isoleucine discrimin

resistance-related variables.

We tested the association between the quantitative archetype scores and each om

were then investigated for associations with the clinical phenotypes. Statistically
Despite the common notion that the disease presentation at

diagnosis is highly heterogeneous, it has been challenging to

identify specific T2D endotypes with clearly defined bound-

aries. Therefore, instead of partitioning the dataset into

discrete hard clusters as attempted before by others,5,7,21

we applied a soft-clustering method to detect the archetypes

that capture the continuous combinations of dysfunction in

the underlying etiological processes for individuals. This

approach identified the combinatorial effect of five etiological

processes: insulin secretion (archetype A), obesity (archetypes

B, C, and D), insulin resistance (archetypes C and D), dyslipi-

demia (archetypes C and D), and reduced b cell glucose sensi-

tivity (archetype D).

As already indicated by others,5 the differences in genetic pro-

files among archetypes provide evidence that the disease pre-

sentation is driven partly by differences in genetics. In our study,

the pGRS analysis helped disentangle some primary defects

associated with each archetype score. Functional studies of

loci associated with T2D risk have revealed that a large portion

of the loci exert their function through b cell dysfunction, which

might bias our pGRS analysis toward this signature.22,23,24

Archetype A, which was associated with insulin-sensitivity-

related traits, was positively associated with the two reduced in-

sulin secretion (IS) pGRSs. It seems likely that the relatively high

insulin sensitivity that is seen in individuals from this group rep-

resents an artifact arising from the ascertainment of those with

newly diagnosed, relatively well-controlled diabetes. One conse-

quence of this may have been that the individuals with the most

marked insulin deficiency were, as a group, characterized by

relatively well-preserved insulin action (reflected in better-than-

average insulin sensitivity). Thus, individuals with a high score

for archetype A appear more insulin sensitive and less obese

compared with others. The composite phenotypes captured by

archetype A are mediated by a different genetic risk, such as

lower BMI-pGRS, or environmental factors, including increased

exercise and lower calorie intake. Circulating omics signatures

for archetype A recapitulated the insulin-sensitive phenotype,

such as the IGFBP proteins.
chetypes

chetype C (obese and insulin resistant) were associated with increased protein

ese proteinswere positively associatedwith insulin-sensitivity-related variables.

-phosphatidylcholines (PC.ae) that, in addition to insulin sensitivity, were positively

es (lysoPCs); and adiponectin (positively associated with HDL-C levels).

nt) and archetype D (global severe) included transcript levels of several genes

obese and insulin sensitive) and positively associated with archetype D, which

ively associated with TG, total cholesterol, and LDL-C levels and include the

ined diacyl-phosphatidylcholines.

ith weaker associations to the clinical phenotypes, such as the b cell marker

ere positively associated with insulin resistance and TG levels and negatively

e insulin-resistant obese phenotype represented by archetypes C and D.

type A/B and were positively associated with ALT and AST.

ated between archetype D and archetype A and were associated with insulin-

ics variable in linear regressionmodels. Themost discriminative omics variables

significant differences are marked as *q < 0.05, **q < 0.01, and ***q < 0.001.
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Figure 6. Characterization of the 12 mixed etiology archetypes

(A) Heatmap of clinical associations across the 12mixed etiology groups defined by their primary and secondary archetypes. The color of the heatmap reflects the

directionality and magnitude of the test estimate, with red indicating higher and blue indicating lower values characteristic of the given group. Statistical sig-

nificance ismarked as *p < 0.05, **p < 0.01, and ***p < 0.001. Gray stippled horizontal boxes highlight processes in which an archetype has precedence over other

archetypes. Red vertical stippled boxes highlight mixed etiology archetypes associated with higher progression rates (see B).

(B) Association between mixed etiology archetypes and disease progression as defined by the slope of HbA1c over 36 months. The analysis was divided into all

individuals, untreated individuals, and individuals treated with glucose-lowering medication at baseline for each group. Error bars represent 95% confidence

intervals.

(C) Sankey chart of movements among mixed etiology archetypes from baseline visit (M0), 18 months (M18), and 36 months (M36). Only trajectories followed by

R5 participants are displayed for readability.

(D) Table showing the number of individuals in the mixed etiology archetype groups and their frequency of glucose-lowering treatment at baseline.
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On the other end of the spectrum are individuals with a high

score for archetype C (obese and insulin resistant) who have

developed diabetes despite lower overall genetic risk, largely re-

flecting lower genetic load for b cell dysfunction (low IS-pGRSs).

We speculate that their T2D must be primarily driven by insulin

resistance. The insulin resistance in this case was not captured

by genetic risk for obesity or insulin resistance; therefore, it

was likely largely driven by environmental exposures. The top

circulating biomarkers for archetype C were leptin and tyrosine,

both associated with obesity and insulin resistance.

Archetype D (global severe) was not associated with any

distinct underlying genetic mechanism. Nevertheless, individ-

uals with a high score for archetype D had the worst metabolic

dysfunction, manifested by high liver fat, dyslipidemia, and

high diastolic blood pressure.We further found that a high arche-

type D score was associated with the fastest disease progres-

sion. This was most significant among the participants not

receiving glucose-lowering medication, suggesting that early

identification of individuals characterized by archetype D and

adjusting their medication regime could be beneficial. Indeed,
12 Cell Reports Medicine 3, 100477, January 18, 2022
we observed the highest likelihood of participants on T2D medi-

cation for this archetype; hence, evaluating additional molecular

biomarkers of this archetype may be valuable to facilitate early

detection. Our study suggests that this archetype had particu-

larly high levels of inflammatory markers, triglycerides, and

branched-chain amino acids.

Archetype B (obese and insulin sensitive) was associated with

higher T2D risk because of greater obesity, corroborated by high

BMI-pGRS. The obese, insulin-sensitive phenotype was associ-

ated with a favorable lipid profile, indicating a more metabolically

healthy obesity profile. Intriguingly, we found b cell function

markers in circulation (HNF1A and HHEX proteins) to be associ-

ated with this archetype and, in this case, associated with lower

blood lipid levels, prompting the need for validation. In support

of the favorable lipid profiles, we found archetype B to be nega-

tively associated with markers linked to TG, total cholesterol,

and LDL-C (such as shorter-chainedPC.aa and the LDL receptor).

We performed a detailed characterization of the groups dis-

playing mixed etiology by varying degrees of contributions

from primary and secondary archetypes and provided examples
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of how defining softer cut points allowed us to explore the mixed

category but also highlighted the challenge of choosingmore cut

points to dissect out this group that was truly of mixed etiology.

The clinical associations for the mixed archetype groups helped

us dissect out phenotypes for which some archetypes have pre-

cedence over others in specific combinations. We saw that

archetype A controlled lower BMI and WHR over archetype C,

which in turn controlled high insulin levels and high glucose

sensitivity. Archetype D dominated high glucose and HbA1c

levels and low glucose sensitivity, whereas archetype B

controlled low lipid and creatinine levels. Translating the pheno-

typic patterns directly to effects on disease progression proved

to be challenging. There does not seem to be a single pattern of

phenotypes that control the progression rate; rather, there was

complex interplay between the mixed etiology archetypes and

the level of treatment within each group.

Limitations of study
Limitations of our study include the difficulty of disentangling

which of the phenotypes were the main drivers of the archetypes

and which were secondary due to ascertainment effects. We

used genetics to try to assign the causality. Likewise, we re-

ported numerous omics signatures associated with the arche-

types and again used genetics to tease out whether these could

be causal. However, these associations depended on the phe-

notypes linked to the archetypes and should be confirmed in

independent cohorts before their usefulness as prognostic

markers can be fully evaluated. External validation in an indepen-

dent cohort of the findings reported here has not been possible,

because no similar studies have this detailed level of phenotyp-

ing available. In addition, it would be valuable to have a longer

follow-up period to assess the effect of the archetypes on the

development of diabetes-related complications. We acknowl-

edge that the size of the group with mixed etiology was large

compared with the individuals at the extreme. The soft-clus-

tering approach showed that there is phenotypic variation

among individuals, which has some structure, but that it is best

resolved in the archetype extremes. We explore the molecular,

physiological, and phenotypic variation to provide insight into

the heterogeneity of type 2 diabetes, but we do not think one

should try to over-interpret the data to infer clinical utility.

Nevertheless, the detailed and harmonized longitudinal phe-

notyping of the IMI DIRECT cohort, in combination with amethod

that capture the continuous combination of etiological pro-

cesses, helps redefine the disease mechanisms for which the

identified omics signatures serve as proxies. Better understand-

ing of these signatures’ contribution to the T2D phenotypes will

be imperative to apply them to stratify patients and guide future

treatment decisions.
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Critical commercial assays

Myriad proteomics panel Myriad https://rbm.q2labsolutions.com/

OLINK proteomics panel OLINK https://www.olink.com/

Biocrates targeted metabolomics panel Biocrates https://biocrates.com/

Metabolon untargeted metabolomics panel Metabolon https://www.metabolon.com/

Deposited data

Antibody bead array proteomics This study DIRECTdataaccess@Dundee.ac.uk

Myriad proteomics panel This study DIRECTdataaccess@Dundee.ac.uk

OLINK proteomics panel This study DIRECTdataaccess@Dundee.ac.uk

Biocrates targeted metabolomics panel This study DIRECTdataaccess@Dundee.ac.uk

Metabolon untargeted metabolomics panel This study DIRECTdataaccess@Dundee.ac.uk

Whole blood RNAseq transcriptomics This study DIRECTdataaccess@Dundee.ac.uk

Clinical and anthropometry This study DIRECTdataaccess@Dundee.ac.uk

Biochemical This study DIRECTdataaccess@Dundee.ac.uk

MRI This study DIRECTdataaccess@Dundee.ac.uk

Glycemic modeling This study DIRECTdataaccess@Dundee.ac.uk

Accelerometry This study DIRECTdataaccess@Dundee.ac.uk

Diet questionnaire This study DIRECTdataaccess@Dundee.ac.uk

Software and algorithms

R version 3.4.0 https://cran.r-project.org/ N/A

Archetype R package Eugster and Leisch, 2009. DOI:10.18637/

jss.v030.i08.;Eugster and Leisch, 2011

N/A
RESOURCE AVAILABILITY

Lead contact
Further information should be directed to the Lead Contact, Søren Brunak (soren.brunak@cpr.ku.dk).

Materials availability
This study did not generate any new reagents.

Data and code availability

d Data: Requests for access to IMI DIRECT data, including data presented here, can be made to the Lead Contact. All data are

available without restriction in a secure environment.

d Code: Our manuscript does not report any novel custom code. The software for the main clustering method is available as an R

package and was published in reference 10 and 11.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

We focus exclusively on the newly-diagnosed sub-cohort of the IMI-DIRECT study, consisting of 789 participants identified through

general practice and other registers, as described previously.25 Themean age at inclusion was 62 years with the youngest 35 years at

baseline, which should exclude any individuals with MODY. Participants were diagnosed within two years before recruitment, were

on lifestyle and/or metformin treatment only, and had glycated haemoglobin (HbA1c) < 60.0 mmol/mol (< 7.6%) within previous three

months. A total of 726 participants with complete baseline data were retained. Complete follow-up data was available for 591
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participants at 18 months, and 423 at 36 months of the study. Detailed descriptions of the IMI-DIRECT study cohorts have been re-

ported previously.25,26 Approval for the study protocol was obtained from each of the regional research ethics review boards sepa-

rately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands:

NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132) and all participants provided written informed consent at enrol-

ment. The research conformed to the ethical principles for medical research involving human participants outlined in the declaration

of Helsinki.

METHOD DETAILS

Baseline phenotypes
Thirty-two clinical phenotypes were selected for inclusion in the clustering analysis, all of which were measured at baseline,

18 months and 36 months follow-up (Table 1). The properties of measurements and assays for these variables have been described

previously.25,26 Age, gender, height, weight, body-mass-index (BMI) andwaist-hip-ratio (WHR) were collected at each visit. Variables

measured in fasting plasma included glucose, insulin, C-peptide, total cholesterol, HDL-C and LDL-C cholesterol, triglycerides (TG),

creatinine, ALT and AST. A frequently-sampled mixed-meal tolerance test (MMTT) following a 250 mL liquid drink (Fortisip: 18.4 g

carbohydrate per 100 ml) was performed at each visit from which measures of glucose and insulin dynamics were calculated for

2h oral glucose insulin sensitivity (2h OGIS), Stumvoll and Matsuda sensitivity indices, mean glucose and insulin, basal and total in-

sulin secretion, b-cell glucose sensitivity, potentiation factor ratio, rate sensitivity, and insulin clearance (described in next section).

Measurements in urine included urine C-peptide/creatinine ratio (UCPCR), C-peptide and creatinine. HbA1c was measured at base-

line and at 9, 18, 27, and 36 months.

Glycaemic modeling
Beta-cell function was assessed from theMMTT using amodel that describes the relationship between insulin secretion and glucose

concentration, which has been illustrated in detail previously.27,28 The model expresses insulin secretion rate (in pmol$min-1.m-2) as

the sum of two components. The first component represents the dependence of insulin secretion on absolute glucose concentration

at any time point during the MMTT through a dose-response function relating the two variables. Characteristic parameters of the

dose-response are the mean slope over the observed glucose range, denoted as b-cell glucose sensitivity, and insulin secretion

at a fixed glucose concentration of 8 mmol/L (approximately average fasting glucose at baseline). The dose-response is modulated

by a potentiation factor, which accounts for the fact that during an acute stimulation insulin secretion may be higher on the descend-

ing phase of hyperglycaemia than on the ascending phase at the same glucose concentration. As such, the potentiation factor en-

compasses several potentiating mechanisms (prolonged exposure to hyperglycaemia, non-glucose substrates, gastro-intestinal

hormones, neural modulation, drug effects). It is set to be a positive function of time, and is constrained to average unity during

the experiment. In normal subjects, the potentiation factor typically increases from baseline to the end of a 2-hour MMTT.29 To quan-

tify this excursion, the ratio between the 2-hour and the baseline value was calculated. This ratio is denoted as potentiation factor

ratio. The second insulin secretion component represents the dependence of insulin secretion on the rate of change of glucose con-

centration. This component is related to the glucose derivative component (for derivative component > 0), and is determined by a

single parameter, denoted as rate sensitivity. Rate sensitivity is related to early insulin release.29

The model parameters were estimated from glucose and C-peptide concentrations by regularized least-squares, as previously

described.27 Regularization involves the choice of smoothing factors, which were selected to obtain glucose and C-peptide model

residuals with standard deviations close to the expected measurement error (�1% for glucose and �4% for C-peptide). Insulin

secretion rates were calculated from the model every 5 min. The integral of insulin secretion during the 2-hour MMTT represents

the total insulin secretion.

Additional phenotypes used to characterize archetypes
The following variables were not complete for all 726 subjects, or were only measured at baseline, and were therefore not included in

the clustering analysis but only used to characterize the archetypes (see Table S3 for number of observations). Plasma concentra-

tions of total and active GLP-1 were measured at 0 and 60 min during the MMTT, glucagon was measured at 0, 60 and 120 min, and

stimulated pro-insulin at 60 min. The volume of abdominal adipose tissue was measured in liters using magnetic resonance imaging

(MRI), reported as trunk fat, visceral fat and subcutaneous abdominal fat. Liver and pancreas fat and iron were derived simulta-

neously.30,31 Quantitative measures of physical activity were derived from triaxial accelerometers.25 Glutamic acid decarboxylase

antibody (GADA) measurements were available for all participants at baseline. GADA positive subjects comprised only �1.5%

(n = 11) of the individuals included, and was in line with the use of the 97.5th centile laboratory threshold for GADA positivity. These

11 patients did not stand out in terms of other measured phenotypes, therefore we decided to include them in the analysis with the

remaining participants.

Disease progression
Diabetes progression was assessed by change in HbA1c over time using individual HbA1c slopes. HbA1c concentrations were

measured at baseline and 9, 18, 27 and 36months after start of the study. HbA1c trajectories were described with a conditional linear
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mixed-effect model.32 The conditional approach employs a linear transformation of the data and produces a longitudinal and a cross-

sectional component, which are orthogonal. The transformation makes modeling of the longitudinal component, which is relevant for

HbA1c trajectories, independent of the cross-sectional effects, which are potential confounders and were not considered. In partic-

ular, the approach eliminates possible spurious correlations between the longitudinal parameters and baseline HbA1c, which may

arise if baseline HbA1c is not accurately modeled. Transformed HbA1c was modeled according to a mixed-effect approach as the

sum of the following terms:

d a proportional effect of time, estimated via the parameter slopei, where i represents a specific individual, represented as a

random variable with a normal distribution;

d a proportional effect of BMI;

d a linear effect of the metformin dose, expressed as percentage of a maximal dose of 3 g;

d a linear effect of the cumulative dose for the other anti-diabetic drugs (insulin excluded), expressed as sum of the percentages

of the maximum dose of each drug;

d a constant effect of insulin treatment;

d a proportional effect of delay in HbA1c assay, i.e., of the difference between the assay and the sampling times;

d a residual error εik, where k refers to the time point, represented as a random variable from a normal distribution with zero mean.

The insulin and BMI effects were constrained to be negative and positive, respectively. The linear effects of the treatment dose

were 0 for dose = 0 and a+b∙dose for dose > 0, where a and bwere different for metformin and the other drugs and were constrained

to be negative. A medication was considered effective at a given time if it was taken at least 30 days before. The slopei parameter

represents the HbA1c underlying progression, adjusted for changes in BMI and antidiabetic treatments. Subjects were included in the

analysis if at least two HbA1c values were available (n = 696). The model was estimated using Monolix 2016 R1 (Lixoft. MONOLIX,

https://lixoft.com/products/monolix/).

Archetype soft-clustering
All variables were rank-normally transformed and residualized for XX/XY genotype and recruitment center at each time-point

using linear regression analysis. We performed soft-clustering using the R package ‘archetypes’,11,12 with ‘robustArchetypes’

function, and selected the combination of baseline archetypes which best minimized the residual sum of squares over 100 it-

erations of the algorithm. We evaluated the number of archetypes that best fitted this dataset by multiple approaches. First, we

assessed the minimized residual sum of squares (RSS) for k number of archetypes ranging from 1 to 10 in a scree plot (Fig-

ure 1A). Then, we assessed the stability of the k archetypes by a randomized subsampling of 90% of the original dataset

repeated 100 times (Figure 1B) using the adjusted Rand index. Simultaneously, we evaluated the stability of the archetypes

at archetype membership thresholds from 0.0 to 1.0 in intervals of 0.05 (Figures 1B and 1C). Together these analyses showed

that four archetypes had the lowest RSS while showing high stability after randomization. The subgroup stability increased with

increasing membership threshold and plateaued at 0.6: we therefore used this threshold to define extreme archetype-scores. All

individuals with memberships < 0.6 for all of the archetypes were assigned to the ‘mixed etiology’ group (i.e., no membership to

any extreme archetype, n = 472). . We performed a post hoc Silhouette analysis with a standard distance matrix for the four

extreme achetype groups and the mixed etiology group using the factoextra package in R. This analysis showed that the

four extreme archetype groups look well clustered, and that the individuals in the mixed etiology group do not form a homoge-

neous cluster (Figure S1) .

Mixed etiology groupings
To explore further the group with mixed etiology we divided the participants based on the highest and second highest scoring arche-

type. Out of the 472 participants in the mixed etiology group 306 had a single dominating archetype (score > = 0.4). Two dominating

archetypes (score > = 0.4) were found in 68 individuals and 98 did not have any dominating archetype (all archetype scores < 0.4). The

mixed etiology archetypes were divided into 12 groups based on their primary and secondary archetypes, and were analyzed for

association with the clinical phenotypes, HbA1c progression and stability at follow-up time points.

Parameter pruning
To see if there was a smalled set of clustering parameters that could recover most of the information in the full set of phenotypes we

pruned the clustering input phenotypes by pairwise Pearson correlation. We constructed pruned datasets by removing parameters

correlated at a progressively lower correlation coefficient, starting at 0.8 and ending at 0.2. This removed 10 to 28 of the original 32

parameters. We then ran archetype clustering for each pruned dataset and evaluated the cosine similarity between the original ar-

chetypes and the archetypes at each pruning. We next identified archetype similarity > 0.8 at each pruning and searched for a subset

where this cut-off was fulfilled for all four original archetypes. This resulted in a dataset that was pruned at a correlation coefficient

cut-off at 0.6 and that retained 15 of the original parameters (Figure S2A). A heatmap of the resulting associations between the 32

input parameters and the pruned archetypes at correlation 0.6 is shown in Figure S2B and compared to the original heatmap in

Figure S2C.
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DNA extraction, genotyping, and quality control
DNA extraction of participants at high risk of diabetes and new onset of diabetes was carried out using Maxwell 16 Blood DNA pu-

rification kits and a Maxwell 16 semi-automated nucleic acid purification system (Promega). Genotyping was conducted in two

tranches using the Illumina HumanCore array (HCE24 v1.0) and genotypes were called using Illumina’s GenCall algorithm.

Samples were excluded for any of the following reasons: call rate < 97%; low or excessmean heterozygosity; gender discordance;

duplicates; andmonozygosity. Genotyping quality control was then performed to provide high-quality genotype data for downstream

analyses using the following criteria: call rate < 99%; deviation from Hardy-Weinberg equilibrium (exact p < 0.001); variants not map-

ped to human genome build GRCh37; and variants with duplicate chromosome positions.

We performed an additional quality control step to identify plausible sample swaps and/or sample labeling errors utilizing available

RNaseq data on genotyped samples. For each sample with both genotype and RNaseq data availables, we identified the bestmatch-

ing expression-genotype pair using expression profile and genotypes (see transcriptomics section below). When mismatches be-

tween genotype and expression samples were identified, we examined the reported and (genotype) derived gender and traced

back the samples through each step involved in their acquisition, extraction, and genotyping and re-mapped the samples to correct

identifiers.

We carried out a second round of genotyping of 96 samples to: (i) confirm the correct assignment of the matched DNA/RNA sam-

ples; and (ii) recover genotyped samples that failed quality control due to low genotype rate.We repeated quality assessment of these

samples as described above and then combined samples from both genotype tranches and conducted another round of sample and

variant quality control using the same criteria as above. We also confirmed the correct alignment for all DNA/RNA samples fixed

above. We used autosomal variants with MAF > 1% that passed quality control to construct axes of genetic variation using principal

components analysis implemented in PLINK software to identify ethnic outliers defined as non-European ancestry using the 1000

Genomes Project samples as reference.33 A total of 795 European samples with genotype-RNaseq pairing passed the final quality

control.

Pre-phasing and imputation
All samples passing quality control were taken forward for pre-phasing and imputation. Before pre-phasing variants were removed if:

(i) allele frequencies differed from those for European ancestry haplotypes from the 1000 Genomes reference panel by more than

20%; (ii) AT/GC variants had MAF > 40% because of potential undetected errors in strand alignment; or (iii) MAF < 1% because

of difficulties in calling rare variants. After these exclusions, a total of 273,568 variants remained. Sampleswere first pre-phased using

SHAPEIT1 (version v2.r790) and then imputed up to the 1000 Genomes Project reference panel (phase 3, October 2014 release; X

chromosome, phase 3, August 2015 release) using IMPUTEv2.3.34,35

Construction of genetic risk scores
Genetic risk scores (GRS) were constructed as the weighted sum of the risk alleles over all leading variants at 403 independent sig-

nals associated with risk of T2D1 in the European population for the overall T2D GRS. Partitioned GRSs associated with reduced in-

sulin secretion coupled with high proinsulin (IS1) and low proinsulin (IS2), insulin action (IA), adiposity (BMI), dyslipidemia (LIPID), and

mixed features (MIX) were constructed in a similar manner using leading variants at loci associated with the T2D-related quantitative

traits in other GWAS cohorts, as described previously.1,9,13 A table describing the pGRSs and which loci they were constructed from

is available in Figure S4.

Sequences generation
For the study of transcriptomic profiles samples of mRNA fromwhole blood samples were processed for RNA-sequencing. Concen-

tration of mRNA per samples was assessed using the Qubit2.0 from Invitrogen. The quality of the samples was then assessed using

the TapeStation Software (A.01.04) with an RNA Screen Tape from Agilent to check the mRNA quality on gel and samples were dis-

carded due to low mRNA quality. The remaining samples were processed and sequencing libraries were prepared. Quality of the

libraries was evaluated using Qubit and TapeStation using DNA1000 Screen Tape. One sample was discarded after library prepa-

ration due to low quality. The remaining samples were placed in Flow cell PE using the cBOT system from Illumina. The samples

were then sequenced on the Illumina HiSec2000 platform using 49 bp paired-end reads.

Read mapping and exon quantifications
The 49-bp sequenced paired-end reads were mapped to the GRCh37 reference genome36 with GEMTools 1.7.1.37 Exon quanti-

fications were calculated for all elements annotated on GENCODE v19.38 All overlapping exons of a gene were merged into meta-

exons with identifier of type ENSG000001.1_exon.start.pos_exon.end.pos. Read counts over these elements used paired-end

reads if their both ends have a quality score > = 150, a total mismatch % 5 (5 mismatches max in 2x49pb) and if they are in proper

orientation. We filtered transcripts from genes that were not protein coding, lincRNA or processed transcripts if they overlap in the

opposite strand with protein coding genes and lincRNA genes. For split reads, we counted the exon overlap of each split frag-

ment, and added counts per read as 1/(number of overlapping bases per exon). For genes quantification, FPKM values were

calculated.
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Samples quality assessment and filtering
Samples with a total number of exonic reads lower than 5e+06 reads or with a proportion of exonic reads over the total number of

reads lower than 20% were considered of low quality excluded.

Identification of samples mix-ups and labeling errors is possible when genotypes are available.39 For each sample with genotyping

data available, we tested the heterozygous sites in DNA genotypes for expression of both alleles in the RNaseq data. Samples mix-

ups ormislabeled show lower levels of expression of both alleles. Using the functionmatch from the suite QTLtools,40 we tested each

expression profile (BAM files) against all imputed genotypes from DIRECT to identify the best matching expression-genotype pair (as

described above for genotyping data).

Samples were removed for low quality or being mixes of RNaseq samples that could not be identified with confidence and if no

suitable match between expression and the available genotypes were found. After correcting samples swaps, 3 individuals were

found to have duplicated RNaseq data. To confirm the correct assignment of the matched DNA/RNA samples and recovered failed

genotypes during QC we re-genotyped samples from 96 individuals. After repeating the genotypes calling and quality assessment,

we confirmed the correct alignment for those samples.We also recovered samples for which genotypes were not available in the first

round.

Gender identification in RNaseq compare expression levels of genes in the autosomal region for the chromosome Y and the

expression of the XIST gene in the chromosome X. To confirm gender information and validate the identity of the sequence data,

we compare the gender provided by clinical reports and the gender identified by genotype data with the gender identified from RNa-

seq data and samples with inconclusive gender analysis in expression were due to small mixes of RNaseq samples, low RNaseq

quality or un-reported biological factors.

Filtering
Genes and exons withmore than 50%of zero reads were removed from the study. To ensure enough individuals with no zero reads in

the study we filter those exons and genes with zero reads in more than 50% individuals as defined by the cohort at screening. Finally,

exons and genes from chromosome Y, mitochondria, and level 3 annotation, as encoded by Gencode v19, were removed from

further analysis.

Software
At the time of the study, custom scripts were used for any intermediate step and quantification of exon and genes, as well as quality

assessment of the samples. The same pipeline can now be found in Delaneau et al.41 as part of QTLtools.

Enrichment of transcriptomics signatures in immune cells
Enrichment of nominally associated (p < 0.05) transcriptomics signatures of extreme archetype scores described in this study for

transcriptomic signatures of immune cell types was performed using the Human Immune Cell Transcriptome dataset (GSE3982) ob-

tained from the NCBI Gene Expression Omnibus (GEO). Using the online NCBI GEO2R tool, we performed differential expression

analysis comparing each cell type to all other immune cell typeswithin the dataset (Basophils, Mast Cells, Eosinophils, Dendritic cells,

Macrophages, Neutrophils, B cells, Effector memory T cells, NK cells, Central memory T cells, Th1 cells, Th2 cells). The log2-fold

change-ranked gene lists formed the comparative signatures of the immune cell types. We tested the enrichment of module genes

within these ranked gene lists using the ‘gage’ generally applicable gene-set enrichment Bioconductor package.42

Targeted metabolomics
Plasma concentrations of 163 metabolites were determined using a FIA-ESI-MS/MS-based targeted metabolomics approach with

the Absolute IDQTM p150 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The assay allows simultaneous quantification of 163

metabolites out of 10 mL plasma, and includes free carnitine, 40 acylcarnitines (Cx:y), 15 amino acids (Leu and Ile are measured

togetheras xLeu), hexoses (sum of hexoses – about 90%–95% glucose), 91 glycerophospholipids (15 lysophosphatidylcholines

(lysoPC.Cx:y) and 76 phosphatidylcholines (PC.Cx:y)), and 15 sphingolipids (SM.Cx:yc). The abbreviations Cx:y are used to describe

the total number of carbons and double bonds of all chains, respectively.

The LODs were set to three times the values of the zero samples (PBS). The LLOQ and ULOQ were determined experimentally by

Biocrates. The assay procedures of the AbsoluteIDQTM p150 kit as well as themetabolite nomenclature have been described in detail

previously.43,44 Analytical specifications for LOD and evaluated quantification ranges, further LOD for semiquantitative measure-

ments, identities of quantitative and semiquantitative metabolites, specificity, potential interferences, linearity, precision and accu-

racy, reproducibility, and stability were described in Biocrates manual AS-P150.

SamplehandlingwasperformedbyaHamiltonMicrolabSTARTM robot (HamiltonBonaduzAG,Bonaduz,Switzerland) andaUltravap

nitrogen evaporator (Porvair Sciences, Leatherhead, UK), beside standard laboratory equipment. Mass spectrometric analyses were

done on an API 4000 triple quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC

(Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland)

controlled by the software Analyst 1.6.2. Data evaluation for quantification of metabolite concentrations and quality assessment was

performed with the software MultiQuant 3.0.1 (Sciex) and the MetIDQ software package, which is an integral part of the AbsoluteIDQ

kit.Metabolite concentrationswere calculated using internal standards and reported in mM. In addition to the investigated samples, five
Cell Reports Medicine 3, 100477, January 18, 2022 e5



Please cite this article in press as: Wesolowska-Andersen et al., Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in
newly diagnosed individuals: An IMI DIRECT study, Cell Reports Medicine (2021), https://doi.org/10.1016/j.xcrm.2021.100477

Article
ll

OPEN ACCESS
aliquots of a pooled reference plasma (Ref_Plasma-Hum_PK3) were analyzed on each kit plate. These reference plasma sampleswere

used for normalization purposes and for calculation of coefficient of variance (CV) for each metabolite.

Quality control
After data export fromMetIDQTM, a first technical QCcomprising analysis of peak shapes, retention times, andcompound identitywas

performed. In a secondQC step, possible batch effects and effects of different phenotypes were investigated using principal compo-

nent analysis (PCA). Data were corrected for batches. Lower outliers were defined as samples with > 33% of metabolite concentra-

tions below 25% quantile – 1.5*IQR. Upper outliers were defined as samples with > 33% of metabolite concentrations above 25%

quantile +1.5*IQR.Metabolite traitswith toomanyzero concentration samples andNAs (>50%)wereexcluded (none). TheCoefficient

of Variation (CV) was calculated in reference samples for each metabolite over all plates. Metabolite traits with CV > 0.25 were

excluded. Metabolite traits with > 95% of samples below LOD were marked.

Untargeted Metabolomics
Plasma samples were stored at�80�C prior to analysis at Helmholtz ZentrumM€unchen, Germany. On the day of extraction, samples

were thawed on ice, were randomized, and were distributed into 25 batches for the T2D cohort. A hundred mL of the plasma were

pipetted into a 2 mL 96-well plate. In addition to samples from this study, a pooled human reference plasma sample (Seralab,

West Sussex, UK) was extracted in the sameway as samples of the study and placed on 7wells of each batch. These samples served

as technical replicates throughout the dataset to assess process variability. Besides those samples, 100 mL of water was extracted as

samples of the study and placed in 6 wells of each 96-well plate to serve as process blanks.

Protein was precipitated and themetabolites in the plasma samples were extractedwith 475 mLmethanol, containing four recovery

standard compounds tomonitor the extraction efficiency. After centrifugation, the supernatant was split into 4 aliquots of 100 mL each

onto two 96-well microplates. The first 2 aliquots were used for LC-MS/MS analysis in positive and negative electrospray ionization

mode. Two further aliquots on the second plate were kept as a reserve. The samples were dried on a TurboVap 96 (Zymark, Sotax,

Lörrach, Germany). Prior to LC-MS/MS in positive ion mode, the samples were reconstituted with 50 mL of 0.1% formic acid and

those analyzed in negative ionmodewith 50 mL of 6.5mMammonium bicarbonate, pH 8.0. Reconstitution solvents for both ionization

modes contained further internal standards that allowed monitoring of instrument performance and also served as retention refer-

ence markers. To minimize human error, liquid handling was performed on a Hamilton Microlab STAR robot (Hamilton Bonaduz

AG, Bonaduz, Switzerland).

LC-MS/MS analysis was performed on a linear ion trap LTQ XLmass spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Ger-

many) coupled with a Waters Acquity UPLC system (Waters GmbH, Eschborn, Germany). Two separate columns (2.1 3 100 mm

Waters BEH C18 1.7 mmparticle) were used for acidic (solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in methanol)

and for basic (A: 6.5 mM ammonium bicarbonate pH 8.0, B: 6.5 mM ammonium bicarbonate in 95% methanol) mobile phase con-

ditions, optimized for positive and negative electrospray ionization, respectively. After injection of the sample extracts, the columns

were developed in a gradient of 99.5% A to 98%B in 11min run time at 350 mL/min flow rate. The eluent flow was directly connected

to the ESI source of the LTQ XL mass spectrometer. Full scan mass spectra (80 – 1000 m/z) and data dependent MS/MS scans with

dynamic exclusion were recorded in turns. Metabolites were annotated by curation of the LC-MS/MS data against proprietary Me-

tabolon’s chemical database library (Metabolon, Inc., Durham, NC, USA) based on retention index, precursor mass and MS/MS

spectra. In this study, 544 metabolites, 341 compounds of known identity (named biochemical) and 203 compounds of unknown

structural identity (unnamed biochemical) were identified. The unknown chemicals are indicated by a letter X followed by a number

as the compound identifier.

Antibody and target selection
A Biomarker Task Force was formed with the DIRECT consortium to select proteins of interested for plasma analysis. This led to a list

of 442 protein candidates found with associations with diabetes found in previous studies using literature mining, protein and gene

expression in beta cells and islets, proteins of clinical relevance, GWAS and eQTL studies, previous use of antibodies in the applied

assay, as well as a concluding network analysis. Antibodies then chosen based on availability from the Human Protein Atlas

(HPA).45,46,47 We found 779 HPA antibodies for 385 out of 442 proteins. Prioritizing the proteins, for which more than one antibody

is accessible, 640 antibodies for 252 proteins were chosen for antibody performance tests. The antibodies were applied to assays

with a subset of 340 plasma samples using the assay procedure as described below to test the property of the antibodies in the con-

texts of these samples. Antibodies were excluded from further studies if 1) signal intensities were obtained lower than the internal

negative control (6 HPAs were excludes) and 2) the variance in signal intensities across samples were smaller than the control anti-

body (127 HPAs were excluded). A set of 380 antibodies were selected for subsequent analyses that target the 265 proteins.

Generation of antibody bead arrays
All selected HPA antibodies were coupled to beads to generate antibody bead arrays in suspension (as described below). As assay

controls, antibodies against albumin (DAKO) and anti-human IgG (Jackson ImmunoResearch) were included, as well as beads

coupled with normal rabbit IgG to resemble the scaffold of HPA antibodies. One bead identity did not include any protein during

the coupling procedure (denoted bare beads).
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Antibodies were coupled to carboxylated magnetic beads (MagPlex-C, Luminex Corp.) in accordance to previously developed

protocols.48,49,50 Briefly, 5 3 105 beads per bead identity were distributed in 96-well microtiter plates (Greiner BioOne). Beads

were initially washed and re-suspended in phosphate buffer (0.1 M NaH2PO4, pH 6.2) using a plate washer (EL406, Biotek). Bead

activation was performed by adding 0.5 mg 1-ethyl-3(3-dimethylamino-propyl) carbodiimide (Pierce) and 0.5 mg N-hydroxysuccini-

mide (Pierce) dissolved in 100 ml phosphate buffer. After 20 min incubation at 650 rpm on a plate shaker (Grant Bio), beads were

washed with 0.1 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 4.5) on a plate washer (EL406, Biotek). 1.6 mg of each anti-

body had been pre-diluted in 100 ml of MES buffer by a liquid handling system (EVO150, Tecan) and were subsequently added to the

activated beads. After 2 h incubation at RT, beads were washed 3 3 in PBS-T (1 3 PBS, 0.05% Tween20). Next, 50 ml of a protein

blocking buffer (Blocking Reagent for ELISA, Roche Applied Science) supplemented with 0.1% (v/v) ProClin (Sigma-Aldrich) was

added for an overnight incubation at 4�C. Finally, mixing the 384 different bead identities resulted in 384-plexed suspension bead

arrays that were stored at 4�C in the dark until further use. R-Phycoerythrin-conjugated donkey anti-rabbit IgG antibody (Jackson

ImmunoResearch) was utilized to confirm an efficient coupling of antibodies.

Experimental design
Samples from the four different centers were distributed acrossmicrotiter plates via a supervised randomization procedure. The plate

layouts were carefully designed tominimize and equalize the time that each sample was placed at room temperature during the trans-

ferring of samples into plates. To achieve this, plasma samples were in designated orders, thawed over night at 4�C, centrifuged for

10min at 3,0003 g, and distributed into the designed plate layout by the use of a liquid handling system (Freedom EVO150, TECAN).

After sample randomization, the randomized 96-well microtiter plates were stored at �80�C until further use.

Antibody beads array assays
Plasma samples in randomized plate layouts were thawed at 4�C and centrifuged for 10 min at 3,0003 g. Three microliters of each

sample were diluted in 22 ml of 1x PBS using a liquid handler (SELMA, CyBio). Biotinylation of diluted plasma was performed as pre-

viously described.49 Briefly, labeling was enabled by a 2 h incubation of samples with a 10-fold molar excess of NHS-PEG4-Biotin

(Pierce) at 4�C. The biotinylation reaction was quenched by the addition of 0.5 M Tris-HCl (pH 8.0) with a 250-fold molar excess over

biotin. After 20 min incubation with Tris-HCl at 4�C, samples were stored at �80�C until usage.

Biotinylated samples were diluted 1:50 using a liquid handler (SELMA, CyBio) in assay buffer.
The assay buffer was composed of 0.5% (w/v) polyvinylalcohol and 0.8% (w/v) polyvinylpyrrolidone (Sigma) in 0.1% (w/v) casein

(Sigma-Aldrich) in PBS (PVXC) supplemented with 0.5 mg/ml rabbit IgG (Bethyl). Prior incubation with beads, samples were heat-

treated at 56�C for 30 min in a water bath (TW8, Julabo) followed by 15 min cooling at RT. 5 ml of the antibody suspension bead array

(�200 beads per bead identity) was distributed into 384-well microtiter plates (Greiner BioOne). 45 ml of heat-treated samples were

then added to each bead plate by the use of a liquid handler (SELMA, CyBio). After an overnight incubation at RT on a shaking table

(Grant) beads were washed with 33 50 ml PBS-T on a plate washer (EL406, Biotek). Samples were cross-linked with 0.4% parafor-

maldehyde in PBS-T for 10 min, washed 3 3 50 ml PBS-T and 50 ml of 0.5 lg/ml R-phycoerythrin labeled streptavidin (Invitrogen) in

PBS-T was added. After 20 min incubation, beads were finally washed 3 3 50 ml PBS-T and resuspended in 50 ml PBS-T for mea-

surement in a FlexMap3D instrument (Luminex Corp.). At least 50 bead counts were counted per bead identity. The median fluores-

cence intensity (MFI) was used to represent the relative amount of target protein binding to each of the antibody-coupled bead

identity.

Data quality assessment
The obtained data was evaluated based on intensity levels and three antibodies were excluded from further analysis as the median

MFI were below negative control antibodies (bare and rabbit IgG beads). Because one stock solution of mixed beads was created

and aliquoted into each assay plate, other experimental errors were linked to the procedure for individual samples. Thus, eight sam-

ples were flagged that seemingly failed. Such samples were those 1) that had median values of MFIs ± 2 SD or below the median of

control measurement without any sample (buffer only), and 2) that were identified as outliers using Robust PCA using ‘rrcov’ R pack-

age (version 1.4-3).51 The cutoff probability values in an outlier diagnostic plot were set to 0.001 for both score and orthogonal

distances. The samples deviating beyond the cutoffs in both distance coordinates were classified as outliers, setting alpha, the pro-

portional tolerance, to 0.9. The remaining dataset was denoted as annotated.

Data pre-processing
The annotated data was processed as by PQN52 for sample-by-sample variation within the samples collected in same center and

assay plates analyzed on the same day. The variation introduced by multiple assay plates was minimized by Multi-MA normaliza-

tion.53 Inverse normal transformation was then applied to the normalized data to reduce the effects of outliers.

Plasma Proteomics – targeted assays
Samples from DIRECT study centers were manually randomization by a mix-shake-distribute procedure and placed into 96-well

plates. All samples were analyzed at SciLifeLab in Stockholm using several different immunoassay platforms.
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Proteins weremeasured in EDTA plasma using the Cardiometabolic, Cardiovascular II, Cardiovascular III, Development andMeta-

bolism panels fromOlink Proteomics AB (Uppsala, Sweden) according to the instructions for the Proximity Extension Assays (PEA).54

The obtained normalized expression values (NPX) values were obtained from Olink’s NPX manager software version 0.0.85.0. Mag-

netic bead-based assays were used for the analysis of FGF21 (SPRCUS627, MerckMillipore) and a panel consisting of For CXCL10,

ICAM-1, IL1R-alpha, and RETN (LXSAHM, R&D Systems). The assays were performed according to the instructions and the instru-

mentation for liquid handling as introduced above. The beads were analyzed using the FlexMap 3D instrument (Luminex Corp.) oper-

ated by the xPONENT software version 4.2. The obtained MFI values were converted into concentration values using 5-parametric

fitting. Plasma levels of IL1-beta and TNFR1-alpha were quantified in accordance with the instructions for the microfluidic ELISA as-

says55 from ProteinSimple. Additional proteins were analyzed in randomized samples using the services from Myriad RBM (Myriad

GmbH, Germany).

Archetype stability at follow-up
To assess how the participants’ phenotypic presentation differed at 18 and 36 months follow-up visits, we collected all phenotype

data from the baseline visit and the two follow-up visits. We rank-normally transformed the data together, and residualized for XX/XY

genotype and recruitment center as described previously. We performed the archetypes soft-clustering with four archetype-scores

as decribed above, and evaluated the stability by calculating the pairwise pearson correlation between all archetype-scores across

the three time-points. We hypothesized that the stability could depend on the location of an individual along the axis of the archetype-

scores at baseline, and therefore, also calculated and compared the mean archetype-scores across time-points in each group.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clinical variables
We tested the association of archetype scores evaluated at month 0 with all continuous phenotypes using linear regression. In addi-

tion, we also tested the differences between the groups with extreme archetype scores (membership threshold 0.6) using the

Kruskal-Wallis test, and compared each group individually to the remaining individuals using the Mann-Whitney U test.

Disease progression
Differences in glyceamic deterioration were evaluated by investigating the slope of change in HbA1c over time. This analysis was

stratified into participants who did and did not receive any glucose-lowering medication during the course of this study. We assessed

the associations of all individual phenotypes, as well as the collective archetype scores, with the disease progression using linear

regression. Additionally, we tested whether the individual likelihood of receiving glucose-lowering medication at each of the time

points differed between archetype scores using logistic regression. Similarly, we tested the likelihood of individuals either starting

a new treatment or increasing the current dosage of the glucose-lowering medication during the course of the study. Statistical sig-

nificance was set at p < 0.05.

Statistical analysis of circulating omics variables and genetic risk scores
All circulating omics variables were residualized for age, XX/XY genotype and recruitment center.

We tested each of the omics variables (16,209 transcripts, 732 proteins, 357 metabolites, and 7 GRSs) separately using linear

regression with each archetype score. The effect of metformin treatment at baseline on the omics results was investigated by two

sensitivity approaches 1) running the linear regression on the subset of individuals who did not receive metformin separately, and

2) correcting for the use of metformin in the regression model. We compared the results for the top associated features to the original

uncorrected results and saw that this did not alter the results for the omics associations significantly. The p values were adjusted for

multiple testing using the Benjamini-Hochberg procedure for decreasing the false discovery rate (FDR) for each omics dataset sepa-

rately. A q < 0.05 was considered statistically significant. Additionaly, the genetic association between the top omics biomarkers was

tested for each of the six partitioned GRSs and the T2D GRS separately using linear regression. All statistical analyses were per-

formed in R/3.4.0.
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Figure S1. Silhouette analysis of clustering for extreme archetype individuals 
and mixed aetiology group. The silhoutette analysis showed that individuals in with 
extreme archetype values (membership > 0.6) for each of the four archetypes are well 
clustered. The mixed aethiology group do not form a homogeneous cluster. Related 
to Figure 1 and Figure 6.  
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Figure S2. Pruning of clustering input data to find subset of variables which 
capture majority of the signal in the original archetype scores.  
A. The input data set var pruned by recursively removing variables that met a cut-off 
based on Pearson correlation coefficients between 0.8 – 0.2 in steps of 0.1. Archetype 
clustering analysis was then run on each of the data set cuts according to the protocol 
for the original archetypes. For each cut we evaluated the cosine similarity with the 
original archetype scores and searched for a cut-off where all four archetypes were 
reconstructed at a cosine similarity > 0.8. 
 
B. Heatmap showing the associations between all 32 clustering variables produced by 
the archetypes at correlation cut-off 0.6. This cut-off produced archetypes with high 
similarity to the original archetypes for all four archetype scores and resulted in a data 
set that retained 15 of the original 32 input variables for clustering (highlighted in 
red).  
 
C. Heatmap of the associations between the 32 clustering variables and the original 
archetype scores for comparison with the pruned data.  
* p<0.05, ** p<0.01, *** p<0.001 
 
Related to STAR Method section “Parameter pruning”. 
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Figure S3. Heatmaps showing the associations between archetypes and the 
clustering variables and additional variables at baseline.  
A. Heatmap of clustering variables shows highly similar results to the analysis using 
the extreme archetypes based on the 0.6 membership threshold. Associations were 
analysed by linear regression models for each of the archetype scores in the full 
cohort.  
 
 
B. Heatmap showing the associations between the individuals with extreme archetype 
scores and additional variables at baseline. These include clinical, biochemical, 
physical activity, and MRI-based variables. Differences between subgroups were 
assessed by Mann-Whitney U test for each extreme group against the individuals in 
the remaining groups.  
 
C. Enrichment of transcriptomics signatures in immune cells for groups of individuals 
with extreme archetype scores. Differences between groups were assessed by Mann-
Whitney U test for each group against the individuals in the remaining groups.  
* p<0.05, ** p<0.01, *** p<0.001 
Related to figure 2.  
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Figure S4.  Archetypes stability at follow-up. 
A. Correlation plot showing the Pearson correlation coefficient within and between 
archetype scores at baseline (M0), 18 months (M18) and 36 months (M36). 
 
B. Tables showing mean of all archetypes across time-points divided by belonging to 
the groups with extreme archetype scores or the mixed aetiology group at baseline. 
Related to figure 6C.  
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Figure S5. Table of loci included in the construction of the partitioned genetic 

risk scores.  Related to Figure S3A. 

 
  



SUPPLEMENTAL TABLES 

Table S1. Association between clustering phenotypes and archetype scores.  

A. Associations with groups of individuals with extreme archetype scores. B. 

Association with quantitative archetype scores. Related to Figure 2B  and Figure 

S3A. 

 

Table S2. Associations between partitioned T2D genetic risk scores and 

archetype scores. Related to Figure 3A.  

 

Table S3. Associations between additional phenotypes (not included in the 

archetypes clustering analysis) and archetype scores. Related to Figure 3B. 

 

Table S4. Association between disease progression and archetype scores.  

A. Assessed by the slope of HbA1C during 36 months of follow-up. Related to 

Figure 4A. B. Change in treatment indicates either start of new treatment or increase 

in dose of existing treatment. Related to Figure 4 C-D. 

 

Table S5. Associations between omics biomarkers and archetype scores. Related 

to Figure 5.  

A. antibody bead array proteomics. B. proteomics Myriad panel. C. proteomics 

OLINK panels. D. targeted metabolomics Biocrates panel. E. untargeted 

metabolomics Metabolon panel. F. whole blood RNA-seq trancriptomics. 

 

Table S6. Associations between top omics biomarkers and pGRS. Related to 

Figure 5. 
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