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Abstract 
 
Obesity in children is one of the most serious, global, public health challenges 

of the 21st century. The accumulation of adipose tissue is associated with a 

range of metabolic complications including diabetes, cardiovascular disease 

and dyslipidaemia. Epidemiological evidence links obesity in childhood with 

developing certain types of cancer later in life. It is postulated that excess 

adipose tissue and consequent inflammation derived oxidative stress may inflict 

an accumulation of deleterious DNA mutations and promote genome instability 

and drive carcinogenesis. Furthermore, a deficiency in micronutrients that are 

essential for DNA repair may exacerbate this pathological state.  

 
This research combined the assessment of anthropometric, inflammatory, 

micro-nutritional and DNA damage biomarkers via non-invasive techniques. In 

total, 112 children were recruited from schools and NHS obesity clinics. 

Anthropometric markers assessed were waist to hip ratio, body fat percentage 

via bioelectrical impedance, and body mass index standard deviation scores 

(BMI-SDS). These markers were used to classify participants as obese or non-

obese and used for correlational analysis. Inflammation and micronutrient status 

were determined via C-reactive protein and vitamin D Enzyme Immune Assay 

(EIA) in saliva. DNA damage assessments include a microscopic assessment of 

nuclear anomalies via the buccal cytome assay, salivary telomere length via 

quantitative Polymerase Chain Reaction (qPCR) and urinary 8-

hydroxyguanosine (8-OHdG) via EIA.  

 
The results from this study indicate obesity to be concurrent with increased 

inflammation and vitamin D deficiency in this cohort of participants. In addition, 

obesity was associated with increased oxidative DNA damage (8-OHdG) in 
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urine and DNA damage events in the buccal mucosa. Salivary telomere length 

was positively correlated with obesity and the total frequency of nuclear 

anomalies found in buccal epithelial cells. Furthermore, there was a negative 

correlation between vitamin D and the frequency of nuclear anomalies in the 

oral cavity. Importantly, odds ratio analysis indicates a high BMI Z-score, waist 

circumference, body fat percentage, salivary CRP and low salivary vitamin D to 

be independent risk factors for increased nuclear anomalies in the buccal 

mucosa.  

 

This research is the first to accrue evidence for acquired DNA damage in 

multiple tissues obtained non-invasively from children with obesity. Our findings 

instigate that biomonitoring of ‘genome health’ for pre-cancerous molecular and 

morphological markers in obese patients may inform prioritization and severity 

of clinical intervention measures to prevent malignancy.  
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1. Introduction 
 
1.1 Obesity in childhood and adolescence  
 
1.1.1 Measurements and estimates for defining paediatric 
obesity 
 
Obesity is defined as a state of abnormal or excess adipose tissue that presents 

a risk to health (WHO, 2018). Adipose tissue can be divided into two subtypes - 

brown adipose tissue (BAT), which dissipates energy for thermogenesis, and 

white adipose tissue (WAT), which is the storage site for triglycerides. The latter 

is more prevalent in a state of obesity and can be situated in subcutaneous or 

visceral fat depots. There are many different techniques for the direct 

assessment or estimation of adipose tissue in children (Table 1.1).  

 
The gold standard technique for assessing adiposity is Magnetic Resonance 

Imaging (MRI). MRI generates a magnetic field that forces protons in the body 

to align with that field. With the use of a radiofrequency current, the alignment 

can be shifted to produce detailed anatomical images (Berger, 2002). MRI is 

useful for examining the distribution of body fat and can differentiate between 

body fat depots. The interpretation of body fat as subcutaneous or visceral may 

be an essential phenomenon in understanding long-term disease risk. Excess 

visceral adiposity is associated with the metabolic syndrome and plays a role in 

the pathophysiology of non-alcoholic fatty liver disease in children with obesity 

(Mager, et al., 2013). However, as a clinical tool, MRI is expensive and requires 

participants to be stationary for long periods of time (Shen, et al., 2012). This 

can be an added challenge when trying to accurately assess adiposity in 

younger populations. 

 



 2 
 

Computerised tomography (CT) scanning is another technique which can be 

used to assess body fat distribution. However, this technique depends on the 

variable resistance of different body parts to X-ray radiation. This makes CT 

scanning clinically impractical, particularly for long-term monitoring (Mook-

Kanamori, et al., 2009). Nonetheless, CT scanning is used in research to 

compare different techniques for measuring body fat distribution (Samara, et al., 

2012).  

 
Similarly to CT scanning, Dual energy X-ray absorptiometry (DEXA, DXA) 

scanning incorporates the use of X-ray beams to differentiate between lean and 

fat mass but with a lower dose of radiation. A recent study by Dias and 

colleagues (2019) explored the potential of DXA scanning to monitor adiposity 

in 62 children with and without obesity, by comparing levels of visceral adipose 

tissue assessed by DXA, with results from MRI scanning. Whilst levels of total 

visceral fat were significantly correlated between MRI and DXA for all 

participants combined (R=0.9, p<0.001). Correlations between DXA and MRI 

were poorer for participants within the lowest and highest tertile (R=0.38-0.51) 

for visceral body fat percentage compared with those in the middle tertile 

(R=0.94). Further analysis reveals that DXA scanning overestimated visceral fat 

mass levels compared to MRI scanning by 163.6 grams. Furthermore, DXA is 

impractical for long-term monitoring due to cumulative radiation exposure. The 

size limit of machines can also present complications for assessing children 

with obesity (Horan, et al., 2015). 

 
Other techniques for measuring body composition include air displacement 

plethysmography (ADP) via the BOD POD. ADP depends on the principle that 

the volume of an object can be indirectly measured based on the volume of air it 
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displaces in a closed chamber. Fields and colleagues (2002) have reviewed the 

accuracy of the BOD POD for predicting body fat percentage in children. Their 

review indicates that BOP POD assessment of body fat percentage can 

overpredict levels of adipose tissue in children by 0.6-1.2%. Whilst this was not 

statistically significant, it could create a difference when categorising a child as 

healthy-weight or overweight based on their body fat levels.  

 
Furthermore, bioelectrical impedance (BI) can be employed to provide an 

estimation of total fat-mass. BI is a measure of the resistance to an alternating 

electrical current that is sent through the body. Fat and bone mass increase the 

resistance to this current whilst body fluids and lean tissue conduct the current. 

Therefore, BI is a more accurate predictor of total body water than fat-mass 

(Lukaski, et al., 1985). Based on this principle, hydration status may affect the 

reliability of the fat-mass prediction. Furthermore, a review of the literature 

suggested that although BI is a safe, cost-effective and time-efficient technique 

for predicting the percentage of body fat, measurement errors are possible 

(Talma, et al., 2013). Nonetheless, Meredith-Jones and colleagues (2015) 

compared fat mass values from BI and DXA in 187 normal weight and obese 

children at baseline and after 12-months. Overall, the difference of 0.04kg in fat 

mass between the two techniques was not statistically significant, indicating that 

BI may be useful to assess changes in body composition on an individual basis 

in normal weight and obese children.  

 
Total body fat percentage can also be predicted by measuring skinfold 

thickness with callipers. This is a straight-forward, time-efficient and cost-

effective method which estimates levels of subcutaneous fat. Measurements of 

bicipital, tricipital, subscapular and suprailiacal skinfold thickness can be 
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combined and related to total body density to generate body fat percentage in 

sex and age specific cohorts (Weststrate, & Deurenberg, 1989). The 

assessment of a single skinfold may also be combined with BMI to estimate fat-

mass (Pecoraro et al., 2003). However, intra-subject variability, accuracy and 

precision are challenges particularly when assessing skinfold thickness in 

children with obesity (Wells, & Fewtrell, 2006). An accurate assessment may 

also require the removal of clothing, making this technique partly invasive. 

These methodological challenges are also present in the prediction of fat-mass 

via circumferential analysis of body parts. 

 
The assessment of mid-upper arm (MUAC), mid-thigh, neck, wrist, waist, and 

hip circumference have all been proposed for evaluating the distribution of 

adipose tissue (Hatipoglu, et al., 2010; Mazıcıoğlu, et al., 2010; Chaput, et al., 

2017).  Neck circumference is convenient to assess, however, it is less 

predictive of overweightness when compared to the measurement of waist 

circumference (Hatipoglu, et al., 2010). A large number of studies support the 

use of waist circumference to predict obesity status and body fat distribution in 

children (Glasser, et al., 2011; Patnaik, et al., 2017; Mukherjee, et al., 2016; 

Goulding, et al., 2000). Goulding and colleagues (2000) compared the 

sensitivity and specificity of waist circumference with DXA for the prediction of 

trunk fat mass across 580 children. They found that the 80th percentile for waist 

circumference correctly identified at least 87% of children with a high fat mass 

and 92% with a low trunk fat mass, indicating good sensitivity and specificity 

respectively. Overall, there was a strong correlation between waist 

circumference and trunk fat mass as determined by DXA (R=0.92, p=<0.0001). 

Based on these results, waist circumference is a reliable predictor of high trunk 

fat mass in children with and without obesity.  
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In addition, fat distribution is relevant to consider because circumferential 

analyses have been linked with long-term disease risk. Figure 1.1 depicts the 

sites of body fat distribution that are commonly assessed via circumferential 

analysis and DXA. In (1956) Vague and colleagues first described the 

distribution of adipose tissue as being ‘android’ or ‘gynoid’, and linked these 

with circumferential analyses. An android distribution is described as the 

predominance of body fat within the upper body (abdomen, chest and neck). 

Whereas a gynoid distribution of body fact refers to the predominance of body 

fat around the lower body (hips, thighs and buttocks).  

 

 

Figure 1.1 The distribution of body fat across multiple sites –
showing A) circumferential assessment points for waist, hip and 

thigh B) body fat assessment as indicated by DXA (T indicates 

trunk fat (android distribution) and L indicates leg fat (gynoid 

distribution) (Zillikens, et al., 2010). 

 
A larger waist circumference (>85th centile) has been associated with an 

increased risk of insulin resistance compared to a gynoid distribution in 

adolescents with obesity (R=0.35, p<0.01) (Aucouturier, et al., 2009). 

Furthermore, Kelishadi and colleagues (2017) report moderate correlations 

between neck and wrist circumference and high systolic blood pressure (R=0.36 

and 0.37 respectively) across a cohort of 4200 7-18 year olds. Finally, there are 

reports that waist circumference, waist-height ratio and waist-hip ratio may also 
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have predictive value in the risk of metabolic disease when combined with other 

tools such as body mass index (BMI) (Savva, et al., 2000; McCarthy, 2006; 

Moore, et al., 2015). 

 
At present, BMI is the most widely used surrogate measure of adiposity. It is a 

proportional measure of height and weight, expressed as kg/m2. Due to the 

natural fluctuations in adipose tissue through childhood, BMI is not considered 

in isolation, but is specific for age and sex. Childhood BMI status is expressed 

with a standard deviation score (SDS or Z-score) for comparison with a 

population reference (Wright, et al., 2002). In the UK, the UK90 growth charts 

are validated for a clinical diagnosis of overweightness or obesity, based on 

different cut-off points for BMI Z-scores (Table 1.2) (Cole, et al., 2000). 

However, ethnic differences in body fat distribution may undermine the current 

BMI Z-score classification method of body fatness (Hudda, et al., 2018). There 

can also be children who are beneath cut-offs but may be at risk of co-

morbidities (Tyson, & Frank, 2018). In such cases, combing waist 

circumference assessments with BMI may be useful. Savva and colleagues 

(2000) reported that waist circumference is a better predictor than BMI for 

elevated blood pressure. This result was based on findings from a multiple 

regression analysis where waist circumference explained 12.4% more variance 

in blood pressure than BMI. Similarly, de Koning and colleagues (2015), found 

that waist circumference explained more of the variance in blood lipid patterns 

compared to BMI, although this association is less striking (only 2% more). 

However, when waist circumference and BMI were combined, the researchers 

were able to explain 12% of the variance in the pro-inflammatory pattern 

associated with BMI above the 95th percentile and a waist circumference above 

the 90th centile, for age and sex. 
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Table 1.2 RCPCH (2013) classifications of BMI for males and females aged 2-20 
years. 
 
BMI centile/Standard Deviations (SDs) Interpretation 
<0.4th  Underweight 

³0.4th BMI <91st  Healthy weight 

³91st BMI <98th Overweight 

³98th BMI <99.6th Obese (severely overweight) 

³99.6 BMI <3.33 SDs Severely Obese 

³3.33 SDs Morbidly Obese 

 
Furthermore, even though BMI status does not differentiate between fat-mass 

or fat-free mass, it still remains to be the most clinically useful tool in the 

diagnosis of childhood obesity (Tyson, & Frank, 2018). Pietrobelli and 

colleagues (1998) demonstrated that BMI can reliably assess total body fat in 

kilograms (average R2=0.87) and body fat percentage (average R2=0.66). Later 

studies have also confirmed these findings. Steinberger and colleagues (2005) 

compared BMI in 130 adolescents (11-17 years old) with body fat results from 

DXA and reported a strong correlation (R=0.95). Vanderwall and colleagues 

(2017) compared BMI Z-scores with DXA in 663 children and found that in 

children above the age of 9 years, BMI-Z scores may also strongly predict total 

fat mass (average R2=0.65). However, in the same study, this conclusion could 

not be applied for children under the age of 9 years (average R2=0.15). There is 

also evidence which suggests that the combined assessment of BMI-SDS with 

body fat percentage via bioelectrical impedance can reliably predict total body 

fat as measured by MRI in 8-12 year olds (R2=0.89) (Chan, et al., 1998).  

Therefore, in addition to a clinical assessment of BMI Z-score, it would be useful 

to determine whether the percentage of body fat and body fat distribution via 

secondary methods can contribute to defining a threshold that more reliably 

identifies children at risk of obesity associated co-morbidities.  
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Table 1.1 Summary of techniques for assessing paediatric adiposity (adapted from Horan, et al., 2015).   

 
Method Estimates Advantages Disadvantages  

MRI and CT Fat mass and 
distribution as visceral 
or subcutaneous  
 

•Gold standard for accuracy 
and precision 
•Valuable for research 
 

•Radiation exposure via CT  
•Expensive equipment  
•Operators require training  
•Children need to remain still for long periods of time  
•Impractical for clinical settings and monitoring on an individual 
basis 
 

DEXA Measures bone 
mineral density to 
estimate soft tissue  

•Precise (R=0.9) when 
compared to gold standard 
techniques 
•Valuable for Research  
•DEXA scanner may be used 
in clinical setting 

•Expensive equipment  
•Operators require training 
•Body fat overestimation in heavier and underestimation in 
lighter individuals 
•Scanner size may be limited for child body size 
•Impractical for monitoring on an individual basis due to 
cumulative radiation exposure 
 

Air displacement 
plethysmography 

(ADP) / 
Hydrostatic 
under-water 

weighing (HW) 

Total body density  •HW considered as gold 
standard for accuracy and 
precision 
•Valuable for research  

•Expensive equipment •Operators require training 
•Hydration status can affect ADP 
•Body fat overestimation in heavier and underestimation in 
lighter individuals in ADP 
•Equipment not available in clinical setting 
•HW is Impractical for monitoring on an individual basis 
 

Bioelectrical 
impedance 

Fat mass •Can be cost effective 
•Time efficient 
•Uncomplicated  

•Hydration status may affect accuracy of measurement  
•Underestimation of total body fat in leaner children and 
overestimation in obese children by 0.6-1.2%.  
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•Suitable for individual clinical 
assessments and research 

•Accuracy decreases with increasing adiposity  

Skinfold 
thickness 

 

Subcutaneous fat 
distribution 

•Inexpensive 
•Time efficient 
•Uncomplicated  
 

•Not useful for individual measurements 
•Less useful for ranking in less extreme body fatness or lean 
body mass 
•Contention over which side of the body to take measurements 
from 
•Considerable expertise and training necessary 
•Requires callipers which are not generally available in clinical 
setting 
 

Circumference of 
various body 

parts   

Subcutaneous fat 
distribution 

•Inexpensive 
•Time efficient 
•Uncomplicated  
•Reference ranges established 
for waist circumference 
centiles  
•Suitable for individual clinical 
assessments 
 
 

•Lack of standardisation in measurement produces high intra-
variability and inter-variability 
•Lack of reference ranges for other circumferential assessments 
•Head circumference only useful until age five 
•May be inaccurate during illness – eg. Waist circumference 
during constipation or abdominal swelling  

BMI Z-Score Body mass (weight) 
relative to age, height 
and sex.  

•Inexpensive 
•Time efficient 
•Uncomplicated  
•Established reference from 
WHO for comparisons 
•Sensitivity increases with 
increasing adiposity 
•Suitable for individual clinical 
assessment and population 
based research studies  
 

•Lack of consideration for lean body mass (bone, muscle and 
water weight) 
•Lack of consideration for ethnic differences 
•Recommended to be used in combination with other 
assessments of body fatness  
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1.1.2 Epidemiology of paediatric obesity  
 

Obesity is one of the greatest, global public health challenges of the 21st 

century. Since 1975, the global rate of obesity has nearly tripled as there were 

650 million adults (>18 years of age) with obesity and 340 million adolescents 

(10-18 years of age) with overweightness or obesity recorded in 2016 (WHO, 

2018). Latest statistics compiled by the World Obesity Federation report that the 

United States has the highest prevalence of childhood overweightness and 

obesity, as over 40% of children (aged 5-18 years) constituted this category. 

Secondly, nearly 30% of boys and 25% of girls in Canada are diagnosed as 

overweight or obese. Libya, Saudi Arabia, Iran, Australia, Brazil, Mexico, New 

Zealand, Southern Europe and the UK all have rates of childhood 

overweightness above 20%.  

 
In the UK, the National Child Measurement Programme (NCMP) is overseen by 

Public Health England and is dedicated to recording height and weight of 

children in Reception and again in Year 6 (aged 4-5 years) of primary school. 

The latest report from the NCMP indicates that one in five children in reception 

possess a BMI >85th centile - classed as overweight, whereas one in ten 

children in this age group possesses a BMI >95th centile - classed as obese. In 

year 6 (10-11 years of age), the prevalence of obesity and overweightness is 

higher. One in three children in year 6 is overweight, whereas one in five is 

considered obese (NCMP, 2018).  

 
Figure 1.2 illustrates the prevalence of overweightness since 1995 for ages 2-

10 and 11-15 years. Firstly, It demonstrates that excess weight is more 

prevalent in the 11-15 year old group compared to the younger, 2-10 year old 

group by about 9%. Secondly, the graph suggests a steady increase in 
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overweightness across the UK, with the peak of overweightness in 2004 

reaching over 40% in 11-15 year olds. Since then, overweightness appears to 

be gradually levelling out for both age groups but there is no significant decline 

in 2018 compared to 2006. Furthermore, the State of Child Health report 

(RCPCH, 2019) also presents concerning evidence that childhood obesity is 

positively correlated with deprivation status of the local authority in England 

(R=0.66). According to figures from the NCMP, obesity was almost four times 

as high in the most deprived areas (3.8%) than the least deprived areas (1.0%) 

in 2017/18 amongst 4-5 year olds. Overall, the Royal College of Paediatrics and 

Child Health (RCPCH) have predicted that the 2020 figures for overweightness 

amongst all children in the UK may reach 50% (RCPCH, 2020).  



 12 

 
 
 

 

Figure 1.2 The annual frequency of childhood overweightness in the UK since 1995; presenting no significant 

decline in the prevalence of children within and above the 85th centile for Body Mass Index (BMI) (National Child 

Measurement Programme, 2019). 

Trend in the prevalence of excess weight
Children aged 2-10 and 11-15 years; Health Survey for England 
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1.1.3 Causes of paediatric obesity  
 
The expansion of adipose tissue is marked by an increased deposition of 

triglycerides as long-term stores of energy. Triglycerides are deposited under a 

state of excess caloric intake and reduced energy expenditure (Scientific 

Advisory Committee on Nutrition, 2011). The mechanisms of adipose tissue 

regulation are complex and influenced by a variety of exogenous factors 

including diet and behaviour, as well as endogenous factors such as biology 

and genetics.  

 
Diet plays a critical role in the pathogenesis of childhood obesity. A report from 

the British Medical Association describes poor dietary patterns amongst 

children in the UK (Roycroft, 2015). Only 10% of children consume the 

recommended intake of five portions of fruit and vegetables a day. Furthermore, 

the report outlined an excess intake of saturated fats (>10% of total dietary 

energy/day), salt (>6g/day) and non-milk extrinsic sugars (>10% of total dietary 

energy/day). These sugars come mainly from soft drinks, fruit juice, breakfast 

cereals, cakes and biscuits. Research has connected the consumption of drinks 

with a high sugar content with the epidemiological rise in childhood obesity 

(Monasta, et al., 2010; Fisher, & Kral, 2008). Specifically, over a 3 year follow-

up of 11654 children, the consumption of one additional serving of sugar based 

fizzy drinks was associated with a 0.04 increase in BMI (Berkey, et al., 2004). 

Another study conducted across 548 children, found that the odds ratio of 

obesity increased by 60%, for each additional serving of sugar-sweetened 

beverage consumed per day (Ludwig, et al., 2001). Moreover, the consumption 

of fast food is also linked with increased adiposity as it has poor nutritional value 

and instead proves to be more caloric, and higher in fats and sodium (Ozuysal, 
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& Baccus, 2012). It is likely that these eating behaviours can be influenced by 

family and society.  

 
Family culture may impact feeding-practices in multiple ways including the 

perception of which foods are considered healthy or unhealthy, or associating 

food with reward (Bruss, et al., 2005). The use of food as reward is not just 

persuasive at home but also in classrooms and may encourage unhealthy 

behaviour such as the consumption of food irrespective of metabolic demands 

(Fedewa, & Davis, 2015). Secondly, an extensive review by Kral and Faith 

(2008), suggested a familial association between parental eating behaviours 

and child eating behaviours. They also noted that altering the types of foods 

available and accessible to children can have a long-term impact on food 

choices.  

 
Physical activity can modulate the association between dietary intake and 

weight gain. Reduced physical activity has been related to increased dietary 

consumption and fat accumulation (Shook, et al., 2015). The NHS guidelines 

recommend that children undertake at least 60 minutes of moderate physical 

activity every day, and vigorous activity at least 3 times a week (NHS, 2011). 

Findings from a recent longitudinal assessment of physical activity through 

childhood suggest that the levels of physical activity begin to decline from age 7 

and continue declining through adolescence (Farooq, et al., 2018). The causes 

for physical inactivity in children have been studied widely. Low socioeconomic 

conditions have been linked to increased screen-viewing and sedentary 

behaviour (Coombs, et al., 2013). Furthermore, urbanisation may contribute to 

the creation of an obesogenic environment via a loss of space for physical 

activity (Pirgon, & Aslan, 2015).  
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In addition, there are a number of medical disorders that can disrupt the 

mechanisms of energy balance and give rise to obesity in children. Challis and 

colleagues (2003) have reviewed sixteen genetic, pleiotropic syndromes where 

obesity is one clinical feature, such as Prader-Willi and Bardet-Biedl syndromes. 

There are also a number of rare endocrine disorders that exhibit childhood 

obesity. Cushing’s syndrome is marked by elevated cortisol in the bloodstream 

and manifests with truncal obesity (Lodish, et al., 2018). Other endocrine 

pathologies include hypothyroidism, growth hormone deficiency and 

hypothalamic disorders (Aggarwal, & Jain, 2018). Thyroid hormone and growth 

hormone both contribute to the regulation of metabolism and food consumption 

(Rosenbaum, et al., 2000; Vijayakumar, et al., 2011). The hypothalamus plays a 

major role in satiety and food intake by responding to signals from the 

gastrointestinal tract and fat stores (Ahima, & Antwi, 2008). Tumour associated 

hypothalamic-pituitary lesions may disrupt these mechanisms and lead to 

obesity (Taylor, et al., 2012). Leptin hormone is secreted from adipose tissue in 

proportion to stores of triglycerides and triggers the hypothalamic satiety centre 

to reduce food intake and increase energy expenditure (Ahima, et al., 2000).  

 
A number of genetic defects have been identified that may disrupt the signalling 

mechanisms between gut hormones, leptin from fat stores and the 

hypothalamus to cause early-onset obesity (Table 1.3). Genome wide 

association studies (GWAS) have linked nearly 25,000 nucleotide 

polymorphisms (SNPs) with obesity (Dong, et al., 2018). Whilst the biological 

significance of most SNPs is unknown, genetic variants in the FTO gene coding 

for the fat-mass and obesity associated protein on chromosome 16, have been 

associated with regulating food choice and intake, indicating possible gene-
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environment interactions (Cecil, et al., 2008). Nonetheless, it has been 

suggested that these genetic variants explain just 2-5% of variation in BMI 

(Locke, et al., 2015). This means that the focus of obesity interventions remains 

largely on dietary and lifestyle factors.  
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Table 1.3. Genetic defects associated with early-onset obesity.  

 
Type of Genetic defect  Obesity causing mechanism Reference 

Leptin (LEP/Ob) gene mutation Reduced stimulation of POMC neurons in 

hypothalamus results in hyperphagia   

(Farooqi, et al., 2002) 

Leptin receptor (LEPR) gene mutation Truncated leptin receptor leads to similar effects as 

seen in leptin gene mutations 

(Vaisse, et al., 1998)  

POMC gene mutations Disrupted melanocortin signaling results in 

hyperphagia  

(Krude, et al., 2003) 

Melanocortin-4 receptor (MC4-R) gene mutation Mutation results in MC4-R deficiency and hyperphagia 

due to reduced binding with α melanocyte-stimulating 

hormone.     

(Farooqi, et al., 2003) 

Prohormone convertase-1 (PCSK-1) gene 

mutation 

Prohormone convertase-1 deficiency results in failed 

conversion of gut hormones. Patients present with 

hyperphagia. 

(Creemers, et al., 2012) 
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1.1.4 Comorbidities in paediatric obesity  
 
Obesity in children can manifest with a number of short-term health 

complications across multiple-organ systems. Studies in table 1.4 indicate that 

around 30% of children with obesity suffer from disorders of the endocrine, 

cardiovascular or pulmonary system. 

 
A third of children and adolescents with obesity can present with insulin 

resistance in the UK (Viner, et al., 2005; Romualdo, et al., 2014). Insulin 

resistance in obesity is caused by excess glucose intake and chronic 

inflammation (Dandona, et al., 2004). The progression from insulin resistance to 

type 2 diabetes in children for long has been considered rare (Viner, et al., 

2005). However, type 2 diabetes in obese adolescents is an emerging problem 

in the UK, particularly for high-risk ethnic groups including South Asians and 

Arabs (Ehtisham, et al., 2008). There are currently 715 children and young 

adults living with type 2 diabetes in the UK (RCPCH, 2016). Type 2 diabetes is 

a serious health complication in children because it can lead to microvascular 

complications, renal disease, vision abnormalities and psychological stress 

(RCPCH, 2016).  

 
In addition to insulin resistance, obese children may present with increased risk 

factors for cardiovascular disease. Emmerik and colleagues (2012) studied 307 

twelve-year olds with severe obesity and assessed blood pressure, glucose, 

and cholesterol. They identified that 67% of the cohort already had at least one 

risk factor for cardiovascular disease. Moreover, another study conducted in 

274 obese children identified that over 30% presented with dyslipidaemia 

(Pastucha, & Horak, 2014). Dyslipidaemia in childhood obesity may coincide 

with fatty liver disease (Deeb, et al., 2018). A meta-analysis of 76 independent 
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study populations found a 30% prevalence of non-alcoholic fatty liver disease 

(NAFLD) in children recruited from obesity clinics (Anderson, et al., 2015). They 

also estimated a global prevalence of nearly 8% in children that were obese but 

not under the care of clinicians. Although children with dyslipidaemia and fatty 

liver disease are usually asymptomatic to begin with, the condition may 

progress to cirrhosis and increase the risk of liver cancer (Marion, et al., 2004).  

 
Furthermore, obesity in children can be complicated by obstructive sleep 

apnoea (OSA). OSA is marked by a limitation in air flow due to a reduction in 

the tone of the airway musculature. In obesity, this may be caused by excess 

adipose tissue depressing the upper airway or enlarged adenoids and tonsils 

(Narang, & Mathew, 2012). A retrospective study in 190 Caucasian children 

suggested that BMI was a significant predictor of OSA although it only 

explained 4.5% of the variance, indicating that other measurements of adiposity 

may be significant (Kohler, & van den Heuvel, 2008). Nonetheless, OSA in 

obese children is concerning because it may drive hypoxia, inflammation, 

oxidative stress and increase the risk of metabolic syndrome (Arens, & 

Muzumdar, 2010). 

 
Excess adipose tissue in children may give rise to musculoskeletal 

complications. According to a study across 2459 participants, overweight and 

obese children self-reported greater musculoskeletal complications in their daily 

life compared to normal weight children (OR=1.86) (Krul, et al., 2009). Slipped 

Capital Femoral Epiphysis (SCFE) is the most common cause of hip 

replacement surgery in young adults, caused by alterations in the shape of the 

hips (Chairman, et al., 2012). Recently, Perry and colleagues (2018) conducted 

an in-depth analysis of the association between BMI and SCFE across nearly 
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600,000 children. They identified that severe obesity (BMI >99th percentile) was 

associated with a 17x higher risk of SCFE. Musculoskeletal disorders 

associated with obesity may complicate physical activity and quality of life.  

 
The emotional wellbeing of children with obesity is also at risk, as they are more 

likely to be bullied in school and have less friendships (Eisenberg, et al., 2003). 

This may lead to a low self-esteem and behavioural problems (Strauss, 2000). 

A systematic analysis representing over 143,000 children found the odds of 

depression to be x1.32 greater in children with obesity compared to healthy 

weight controls (Sutaria, et al., 2019). This is concerning because depression 

can prevent weight-loss and cause obesity to persist in adolescence (Goodman, 

& Whitaker, 2002).   

 
The treatment of obesity in children is crucial for reducing the discussed 

complications but also for preventing obesity in adulthood. A recent report 

highlighted that over 300 000 13-18 year olds are eligible for anti-obesity drugs 

whilst 90,000 may also be eligible for bariatric surgery in the UK (Viner, et al., 

2018). A systematic review of studies that followed up a total of 200,777 

participants concluded that despite interventions, 70% of children with obesity 

may take their weight into adulthood (Simmonds, et al., 2016). The researchers 

also identified that early interventions (prior to adolescence) are more likely to 

reduce the persistence of obesity.   
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Table 1.4. Prevalence of health complications across multiple organ systems in children with obesity.  

 
System Disorders Study population Prevalence of co-

morbidity (%) 
Reference 

Endocrine Insulin Resistance 103, 2-18 years,  
BMI>95th centile 

30% (Viner, et al., 2005) 

Cardiovascular Hypertension 
 
 
Dyslipidaemia 

103, 2-18 years,  
BMI>95th centile 
 
274. 10-18 year olds, 
BMI>97th centile  

32% 
 
 
30% 
 
 

(Viner, et al., 2005) 

 

(Pastucha, & Horak, 2014) 

 

Gastrointestinal Non-alcoholic fatty liver disease 
(NAFLD) 

Meta-analysis with 74 
studies of participants aged 
1-19 years, BMI>95th 
centile 
 

7.6% (Anderson, et al., 2015) 

Pulmonary Obstructive sleep apnoea (OSA) 190 4-12 year olds, 
BMI>95th centile 

33%  (Kohler, & van den 
Heuvel, 2008) 
 

Musculoskeletal  Structural defects in upper and 
lower extremities, knee, back and 
neck.  

2459, 2-17 year olds,  
BMI>85th centile 

21.9%  (Krul, et al., 2009) 

Psychosocial  Depression  

 

Meta-analysis of 22 studies 
of participants aged <18 
years, BMI>95th centile. 

10.4% (Sutaria, et al., 2019) 
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1.1.5 Cancer and later life health implications of paediatric 
obesity  
 
 
Cancer is a notorious disorder characterised by abnormal cell growth and 

metastasis that occurs in a complex, multi-step process. In the UK, there are 

360,000 new cases of cancer each year, and over a quarter of deaths are a 

result of cancer (CRUK, 2015). Up until 2018, obesity was described as the 

second largest preventable cause of cancer in adults (following smoking), as 

6.3% of all cases were linked to being over-weight or obese (Brown, et al., 

2018). However, more recent data analysis from Cancer Research UK (CRUK) 

has described obesity to be the leading cause of four types of cancers; kidney, 

breast, ovarian and liver (CRUK, 2019). CRUK estimated that in total, obesity 

causes 3940 more cases of these types of cancers combined than smoking.  

 
The epidemiological correlation between obesity and cancer has been 

substantiated in an extensive review by Renehan and colleagues (2008). They 

analysed 282,137 cases of cancer and concluded sex and site-specific 

differences in the association between obesity and cancer. Specifically, a 

5kg/m2 increase in BMI in men was associated with an increased risk of 

oesophageal, thyroid, colon and renal cancer (relative risk ratios (RR) between 

1.24-1.52). Whereas a 5kg/m2 increase in BMI in women was also associated 

with an increased risk of oesophageal and renal cancer but endometrial and 

gallbladder cancer as well (RR between 1.34-1.59). Furthermore, a large 

population based study of 5.24 million individuals identified that increased body 

mass index (BMI) heightened the risk of acquiring post-menopausal breast, 

endometrial, liver, ovarian, colon, gall bladder and kidney cancer (Bhaskaran et 

al., 2014). So far, these epidemiological links have been described in adults. 
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However, it is likely that the pathological implications from excess adiposity and 

the multi-step process of tumorigenesis may begin as early as childhood.  

 
There is growing epidemiological evidence that indicates obesity in childhood to 

be an independent risk factor for acquiring cancer and other non-communicable 

diseases in adulthood, including diabetes, cardiovascular disease, kidney 

disease and pulmonary disease (Table 1.5). In 2006, van Damand and 

colleagues published results from a cohort study which followed up 102,400 

cancer-free Hispanic women in the US, aged between 24 and 44 years with 

their BMI status compared to that at age 18. Over a follow-up period of 12 

years, 710 participants had died and the researchers identified a positive 

correlation between BMI status and the risk of premature death. Obesity (BMI> 

30 kg/m2) was associated with a hazard ratio (HR) of 2.79 for premature death 

and cancer had caused more of the deaths (36%) compared to any other 

disease. More specifically, the HR for death by cancer in participants classified 

as overweight (BMI> 25 kg/m2) was 1.4. Similarly, a later longitudinal study 

followed up 226,678 14-19 year olds for up to 41.5 years and also found an 

association between BMI status in adolescents and mortality (Bjørge, et al., 

2008). A BMI above the 85th percentile in adolescence was associated with an 

increased relative risk (RR) of death from colon cancer (RR=2.0) but also from 

disorders of the cardiovascular (RR=2.3) and respiratory system (RR=2.5). 

However, this study presented with some potentially important limitations such 

as the lack of data for confounding variables including smoking status and 

dietary intake in adulthood. In 2012, Park and colleagues conducted a 

systematic review of 39 studies with over 1 million participants in total, to 

investigate the relationship between BMI status in childhood and risk of  

morbidity and mortality in adulthood. They identified a consistency in the 
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literature relating childhood overweightness with up to 40% increased risk of 

colorectal, kidney, cervical, and ovarian cancer. However, only a limited number 

of studies adjusted for BMI status in adulthood and when this was applied, the 

associations were not statistically significant. These findings indicate a need for 

more investigations about the potential effects of overweightness in childhood 

independently to weight status in adulthood, in light of confounding lifestyle 

variables.  

 
In 2016, Llewellyn and colleagues systematically reviewed 37 studies and 

concluded that 20% of cases of adulthood cancer can be attributed to being 

overweight in childhood. In children aged 12 or over, a one-point increase in SD 

score of BMI was associated with an odds ratio (OR) of 1.2 for all cancers 

combined, including those of the GI tract, lungs, ovaries and kidneys. 

Furthermore, another literature review recently emphasised the growing 

epidemiological link between obesity in childhood and cancer later in life 

(Weihrauch-Blüher, et al., 2019). This review analysed the results from 6 

separate studies conducted on data from 2.3 million 16-19 year olds that were 

followed up for 45 years in Israel. Overweightness in adolescence was 

associated with a significantly increased risk (HR >1) of non-Hodgkin 

lymphoma, acute myeloid leukaemia, pancreatic cancer, gastroesophageal 

adenocarcinoma, colorectal cancer and renal cell carcinoma in adulthood. 

Overall, these findings imply that prevention of obesity in childhood could 

possibly reduce the rates of cancer in adults. 
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Table 1.5 Health complications in adulthood as a result of obesity earlier in life (OR = odds ratio, HR = hazard ratio, RR = risk ratio)  

Study type  Study population and design 
 

Key Findings Reference 

Literature Review 6 longitudinal studies conducted in 
2.3 million 16-19 year olds that 
were followed up for 45 years in 
Israel.  
 

• An increased BMI in adolescence was 
independently associated with increased HR 
(>1) for cancers of the blood, pancreas, GI 
tract and kidneys in adulthood.  
 

(Weihrauch-Blüher, et al., 2019) 

Meta-analysis 18 longitudinal studies with a total 
of 317,133 2-18 year olds followed 
up for an average of 25 years 
across multiple countries.  
 

• A one unit increase in childhood BMI was  
independently associated with OR of 1.17 for 
hypertension, 2.02 for impaired glucose 
tolerance and 3.39 for increased carotid intima 
media thickness in adulthood. 
 

(Ajala, et al., 2017) 

Longitudinal 159 7-15 year olds followed for up 
to 30 years.  
 

• A one unit increase in childhood BMI SDS 
was independently associated with RR of 2.04 
for left ventricular hypertrophy and 1.81 for left 
atrial enlargement in adulthood.  
 

(Yang, et al., 2017) 

Meta-analysis 26 longitudinal studies with a 
minimum of 1000 children in each 
study up to age 17.   

• A one unit increase in BMI SDS score in 
childhood was independently associated with 
OR of 1.2 for coronary heart disease, 1.7 for 
diabetes and 1.2 for cancer in adulthood. 
 

(Llewellyn, et al., 2016) 

Retrospective Weight status at age 18 compared 
with comorbidities in 1502 obese 
adults.  

• Severe obesity (BMI> class II) at age 18 
independently increased the risk of lower-
extremity venous oedema with skin 
manifestations by 435%, severe walking 
limitation by 321%, abnormal kidney function 
by 302%, polycystic ovary syndrome by 74%, 

(Inge, et al., 2013) 
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asthma by 48%, diabetes by 42%, OSA by 
25%.  
 

Longitudinal  Follow up of at least 8 years for 
1877 adolescents aged between 6 
and 18 years. 

• All-cause and breast cancer death in females 
was up to 2.6x greater for those with an 
overweight BMI at age 18, independent of adult 
BMI status.  
• No significant relationship between being 
ever overweight and all-cause mortality in men.  
 

(Must, et al., 2012) 

Retrospective 1.2M adolescents aged 17 years • BMI ≥ 95th centile at age 17 years was 
associated with HR of 6.89 for end stage renal 
disease.  
 

(Vivante, et al., 2012) 

Meta-analysis 2 case control studies and 37 
cohort studies (n= 1.1 million aged 
0-19 years) 
 

• Unadjusted results for adult BMI indicate a 
high childhood BMI to increase the risk of 
cancer by 40%. 
• Increased childhood BMI was independently 
associated with an increased risk of type 2 
diabetes (OR = 1.22-2.04) and hypertension 
(OR=5.1). 

 

(Park, et al., 2012) 

Longitudinal Up to 41.5 year follow up of 
227,000 male and female 
adolescents aged 14-19 years.  

• BMI >85th percentile was independently 
associated with RR of 2.0 for colon cancer, 2.3 
for cardiovascular diseases and 2.5 for 
respiratory diseases and 2.2 for sudden death. 
  

(Bjørge, et al., 2008) 

Longitudinal  12 year follow up of 102,400 
females aged 24-44 years, for a 
comparison with weight status 
assessed at age 18.  

• BMI> 30 kg/m2) was independently 
associated with a HR of 2.79 for premature 
death.  
• BMI> 25 kg/m2 was independently 
associated with a HR of 1.4. for death by 
cancer.  

(van Dam, et al., 2006) 
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In addition, there are concerns that childhood obesity may increase the risk of 

cancer even earlier than anticipated in adulthood. A meta-analysis compared 

the age groups and rates of cancers that have been epidemiologically linked to 

obesity in adults (Berger, 2018). They found that 9 out of 13 obesity associated 

malignancies which were more commonly reported in the over 50 age group are 

being increasingly reported within the 20-44 age group in the United States. For 

example, an epidemiological association has been suggested between thyroid 

cancer and obesity, and 24% of new cases of thyroid cancer were reportedly 

within the 20-44 age group in 2017. In the UK, the incidence of cancer in young 

people aged 20-24 years has risen by 28% since the 1990s (PHE, 2019). It is 

likely that the growing incidence of cancer in young adults could be partly 

explained by the persistence of childhood obesity, making it more urgent to 

explore potential causative mechanisms for cancer in obesity.  

 
To understand the obesity-cancer paradigm, it is important to first consider the 

molecular mechanisms that underpin tumorigenesis. The process of 

tumorigenesis is complex with multiple steps whereby cells acquire pathological 

capabilities to evade cell death and sustain proliferation. These capabilities are 

described as the ‘Hallmarks of Cancer’ (Figure 1.3), and were first introduced by 

Hanahan and Weinberg in 2000. There are now eight distinct hallmarks that 

explain the diverse and dynamic nature of cancer cells (Hanahan, & Weinberg, 

2017). Firstly, cancer cells are able to sustain cell division by effectively 

releasing and responding to polypeptide growth factors such as platelet derived 

growth factor (PDGF) and insulin-like growth factor 1(IGF-1) in the micro-

environment. Angiogenesis can be induced to maintain a supply of nutrients 

and growth factors for proliferation, and the deregulation of cellular energetics 

and metabolic pathways means that cancer cells are able to alter their 
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nutritional demands and thrive even in nutrient-poor environments. Secondly, 

cancer cells can evade anti-proliferative factors such as retinoblastoma protein 

(pRb) and tumour protein (p53) that would normally prevent progression in the 

cell cycle. In order to resist cell death, cancer cells must block the most 

prominent form of programmed cell death – apoptosis. Furthermore, cancer 

cells can perform re-modelling of the extracellular matrix to metastasise into 

other tissues and may become immortal by activating the telomerase enzyme. 

Finally, another hallmark of cancer is the ability to avoid destruction by the 

immune system by generating an immunosuppressive environment or reducing 

recognition by innate and adaptive defence mechanisms. It is likely that the 

coming years will see this blueprint of core-traits evolve, making it necessary to 

also develop the understanding of enabling characteristics and mechanisms 

that underpin these hallmarks, particularly in individuals with obesity.  

 

Figure 1.3 The eight hallmarks of cancer described by Hanahan and Weinberg (2017). 
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Several of the hallmarks of cancer have been associated with the 

characteristics of obesity and related co-morbidities in adults. Firstly, excess 

adipose tissue can coincide with excess leptin – a hormone which was 

described to have proliferative effects in a human epithelial colon cancer cell 

line (Hardwick, et al., 2001). Hyperleptinaemia in obesity has been associated 

with a variety of malignancies including those of the breast, thyroid and liver 

(Dutta, et al., 2012). Secondly, obesity can be marked with excess oestrogen, 

and sustained exposure to oestrogen has been associated with upregulation of 

genes that control cell proliferation and cell cycle progression, thereby 

increasing the risk of breast cancer (Calle, & Kaaks, 2004). Furthermore, 

hyperinsulinemia in obesity may promote an increased uptake of glucose by 

tumour cells, and consequently support the cells to meet their energy demands 

for proliferation (Giovannucci, 2007; Vander Heiden, et al., 2009). Excess 

insulin may drive insulin resistance and contribute to hyperglycaemia in obesity 

(Friedman, et al., 1992). In the context of tumorigenesis, this can be problematic 

because hyperglycaemia may drive metastasis by upregulating the expression 

of STAT3/MMP-2 to breakdown the extra-cellular matrix (Li, et al., 2019). 

Moreover, a decline in adiponectin levels in obesity may be associated with a 

loss of anti-cancer effects including inhibiting inflammation (Dalamaga, et al., 

2012). Several studies implicate inflammation to promote cancer in obesity, 

suggesting that it may complicate metabolic syndrome, and drive adipose-

derived stem cells and growth factors into the tumour microenvironment 

(Ramos-Nino, 2013; Kolb, et al., 2016; Deng, et al., 2016). Overall, the 

dysregulation of various hormones, glucose as well as inflammation may 

endorse the biological mechanisms associated with tumour development, 

sustainability and metastasis in adults with obesity.  
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It is also important to identify early, pre-pathological changes in childhood 

obesity that may enable the hallmarks of cancer to develop over time, thereby 

explaining the independent associations between weight status in childhood 

and later life risk of cancer. In 1960, Brookes and Crawley presented the first 

conclusive evidence which implied DNA damage to be a root cause of cancer.  

DNA damage may lead to faulty DNA replication and gene mutations that give 

rise to altered proteins. If unrepaired, such genomic alterations and the 

consequences may initiate the functional characteristics of cancer over time 

(Hanahan, & Weinberg, 2017). Thus, risk of cancer may depend on the health 

of the entire genome.  
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1.2 Genome Health  
 
1.2.1 Defining genome health and types of DNA damage 
 
In (2003), Fenech introduced the novel term ‘Genome Health’, referring to the 

structural integrity and stability of the entire genome. This term was derived 

from evidence that the genetic code plays a fundamental role in determining 

cellular function and health outcomes, and that there is a direct link between the 

absence of optimal genomic integrity and stability, and the onset of disease. 

 
There are a number of commonly described paradigms which reflect the link 

between inherited or acquired genetic changes with human health and long-

term wellbeing. Point mutations are associated with many inherited genetic 

disorders such as sickle cell anaemia and haemophilia. Other inherited genetic 

alterations include aneuploidies which can lead to chromosomal disorders such 

as trisomy 21 or chromosomal anomalies associated with infertility. Acquired 

genetic alterations include chromosomal rearrangements and genomic 

instability associated with tumorigenesis. Shortening of telomeres and 

accumulation of acquired DNA damage have been found in cellular ageing and 

may also have negative implications for ‘genome health’. 

 
Living healthily depends on our capacity to make new and accurate copies of 

DNA and to repair DNA correctly when it is damaged. DNA damage is defined 

as an alteration in DNA structure that is capable of causing cellular injury and 

reduces viability or reproductive fitness of the organism (Kaufmann, & Paules, 

1996). There are several types of DNA damage including point mutations, base 

modifications, chromosomal rearrangements and breakages, loss or gain of 

chromosomes and modified methylation patterns. Cellular DNA repair 
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mechanics are fundamental for overcoming acquired DNA damage and 

maintaining optimal genomic integrity and stability. 

 
There are direct and indirect DNA repair mechanisms. Direct DNA repair 

mechanisms actively repair DNA during replication whilst indirect repair 

mechanisms work post DNA replication. Five indirect DNA repair pathways that 

deal with various types of DNA lesions have been described (Table 1.6). 

Mismatch Repair (MMR) acts on small insertions and deletions as well as base 

mismatches. Defective MMR due to mutations in MMR genes have been linked 

with acquiring hereditary non-polyposis colorectal cancer (Eshleman, & 

Markowitz, 1996; Wheeler, et al., 2000). Furthermore, Nucleotide Excision 

Repair (NER) is the primary pathway for removing bulky DNA adducts such as 

the 6-4 photoproduct induced by UV radiation. Mutations in certain NER genes 

have been linked with Xeroderma Pigmentosum and an increased tendency to 

acquire UV-light induced skin cancer (Lehmann, 2003). Base Excision Repair 

(BER) removes DNA lesions caused by oxidation, deamination and alkylation. 

Defects in certain BER pathway genes such as MUTYH is associated with 

MUTYH-associated polyposis (MAP) which is characterised by multiple benign 

and cancerous colorectal tumours (Cheadle, & Sampson, 2007). Both Non-

homologous End Joining (NHEJ) and Homologous Recombination (HR) can 

remove Double Strand Breaks (DSBs). However, NHEJ is the predominate 

pathway in mammalian cells and can repairs DSBs that occur during any phase 

of the cell cycle whereas HR predominantly repairs DSBs that occur during the 

S and G2 phase (Kanaar, et al., 2008). Although HR is traditionally described as 

being less error-prone than NHEJ, defects in HR and NHEJ have both been 

associated with a number of pathologies including telomere defects, 

chromosomal aberrations and cancer (Sung, & Klein, 2006). Overall, DNA 
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damage repair pathways are of central importance in preventing adverse health 

outcomes caused by DNA damage. However, if DNA damage persists, then 

surveillance systems that monitor genomic integrity can play a fundamental role 

in controlling the fate of the cell through the cell cycle. 

 
In 1989, Hartwell and Weinert introduced the concept of checkpoints in the cell 

cycle. Their work demonstrated that radiation induced DNA damage will stop 

wild-type yeast cells from dividing until the damage can be repaired. However, 

mutations in RAD9 allows irradiated cells to divide, leading to cell death. 

Progression through the cell cycle is governed by three checkpoints. Firstly, G1 

cyclin-Cdk complexes are responsible for progression from the G1 to S phase. 

Secondly, S cyclin-Cdk complexes are responsible for initiating and completing 

DNA replication. And finally, M cyclin-Cdk complexes drive cells into mitosis, 

preventing re-entry into the G1 phase. Progression can be inhibited by 

modulating the activity of these cyclin-Cdk complexes. For example, levels of 

cyclin can be altered by transcriptional regulation, phosphorylation of tyrosine 

and threonine residues close to the active site of the Cdk subunit to inactivate 

cyclin-Cdk complexes, and stoichiometric inhibitors (cyclin kinase inhibitors) can 

create inactive trimers with cyclin-Cdk complexes. DNA damage inactivates Cdk 

to trigger a cascade of events that will arrest the cell cycle. For example, DNA 

double strand breaks (DSBs) trigger phosphorylation and consequent activation 

of ATM and ATR that will lead to the phosphorylation of substrates that regulate 

DNA repair, cell cycle arrest and apoptosis. In the G1/S checkpoint, ATM and 

ATR phosphorylate Cdc25A, which leads to its degradation and inactivation of 

Cdk2 to mediate cell cycle arrest (Falck, et al., 2002). A key player in these 

processes is p53, as it functions to maintains this arrest, activate DNA repair 

mechanisms or trigger apoptosis if the damage is too substantial to be repaired. 
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A number of pathways have been described that lead to the accumulation of 

p53 in the nucleus, of which one example is the inactivation of MDM2 by ATM 

to prevent the degradation of p53 (Shimada, & Nakanishi, 2006). Furthermore, 

at the intra-S checkpoint, DNA damage will inhibit replicative DNA synthesis. 

The progression from the S to G2 phase is dependent on the availability of 

licencing factors, which ensures that each chromosome replicates only once 

during the S phase. The intra-S checkpoint deals with stalled replication forks 

and prevents the transmission of un-replicated DNA. Finally, the G2/M 

checkpoint stops the cell entering mitosis if DNA damage is present. A key role 

of the mitotic checkpoint is to assess the status of kinetochore–microtubule 

attachment and inhibit anaphase in the presence of unattached kinetochores. 

 
Defective cell-cycle checkpoints are associated with increased genomic 

instability identified in cancer cells, and are targets for anti-cancer therapies 

(Hartwell, 1992; Tamura, 2015). Misregulation of Cdks, particularly of Cdk1 is 

associated with increased chromosomal instability in cancer cells (Malumbres, 

& Barbacid, 2009). Mutations in the p53 gene is an extremely common 

occurrence in cancer (Joerger, & Fersht, 2016). Defects in the M-checkpoint are 

associated with aneuploidy, thereby favouring genome and chromosomal 

instability in cancer (Simonetti, et al., 2019). Overall, the three surveillance 

systems are of central importance in triggering death of cells with DNA damage, 

and thereby preventing genomic instability.  
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Table 1.6 Overview of the five DNA repair pathways in humans 

 
Repair pathway DNA lesions  

repaired 
Cell cycle stage when repair 
system is most active 

Repair initiating enzymes 
 

Reference 

Mismatch repair 
(MMR) 

• Insertion (I) 
• Deletion (D) 
• Base mismatch 

 

S  hMutSα recognises base-base 
mismatches and ID mispairs of 1-2 
nucleotides. hMutSβ recognizes larger 
ID mispairs 
 

(Li, 2008) 

Nucleotide Excision 
Repair (NER) 

• Bulky adduct  
• Intrastrand crosslink 
• 6-4 photoproduct 
• Cyclobutane 
• Pyrimidine dimer 
 

Predominantly G1 but can 
occur throughout the cell cycle.  

Replication protein A (RPA) and the 
xeroderma pigmentosum group A 
(XPA) recognise damage. 

(Reardon, & 
Sancar, 
2001) 

Base Excision Repair 
(BER) 

• Uracil 
• Abasic site 
• 8-oxoguanine 
• Single strand break 
• Altered base 
 

G1 and S DNA glycosylase such as OGG1 
recognises damage.  

(Krokan, & 
Bjørås, 
2013) 

Homologous 
Recombination (HR) 

• Intrastrand crosslinks 
• Interstrand crosslinks 
• Single strand breaks (SSB) 
• Double strand breaks (DSB) 

 

S and G2 DNA damage sensor complexes such 
as Mre11/Rad50/Nbs1 (MRN) detects 
DSBs.  

(Krajewska, 
et al., 2015)j 

Non-homologous End 
Joining (NHEJ) 

• Intrastrand crosslinks 
• Interstrand crosslinks 
• Single strand break 
• Double strand breaks 

Throughout the cell cycle. Ku detects DNA DSB and forms a 
complex with other enzymes such as 
DNA-PKcs. 

(Yano, et al., 
2009) 
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1.2.2  Threats to genome health  
 

There are a number of factors that may affect ‘genome health’ and drive 

genome damage over time, leading to cellular changes that are associated with 

frailty and disease (Figure 1.4). 

 

Figure 1.4 The Genome Health Pendulum (adapted from Langie, et al., 2012) 

 

Firstly, DNA can become compromised in response to environmental insults in 

utero. Perera and colleagues (2002) identified that transplacental exposure to 

carcinogenic air pollutants is associated with DNA damage and somatic 

mutations in new-borns. Similarly, in utero exposure to arsenic has been linked 

with increased DNA damage in new-borns, as well as being associated with a 
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higher risk of acquiring cardiovascular disease, respiratory disease and cancer 

later in life (Navasumrit, et al., 2019; Farzan, et al., 2013). Furthermore, there is 

evidence that somatic mutations can be generated over time, and increase with 

age (Yizhak, et al., 2019). There are multiple normal tissues whereby a large 

number of somatic mutations and microscopic mutational clones have been 

identified in cancer associated genes (Tomasetti, 2019). It is important to 

understand the dynamics of mutational mosaicism in normal tissues and their 

relevance in generating a pre-cancerous genome. This is because they could 

provide useful information for the prediction of age-dependent cancer risk on an 

individual basis.  

 
Finally, the lifestyle of an individual may also play a causative role in acquiring 

somatic mutations and DNA damage. A recent review has highlighted the 

relevance of multiple physical, chemical and biological factors that are 

associated with acquired genomic instability and increased risk of cancer 

(Lewandowska, et al., 2019). These include exposure to electromagnetic fields, 

ultraviolet radiation, ionizing radiation, alcohol consumption, a poorly balanced 

diet, lack of physical activity and smoking. It is undisputed that smoking tobacco 

is associated with increased chromosomal instability and plays a role in the 

initiation and progression of lung cancer (Sanchez-Cespedes, et al., 2001). 

Overall, a priority for optimal ‘genome health’ and prevention of disease 

requires identification of all the exogenous and endogenous threats that may 

exacerbate DNA damage on an individual level, including the levels of oxidative 

stress and micronutrients.  
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Oxidative stress  
 
Over the course of life, DNA can be exposed to exogenous mutagens such as 

ionizing radiation, UV light and certain chemicals. However, there is also a 

constant endogenous threat from mutagens such as reactive oxygen species 

(ROS), a product of cellular metabolism. Although cells are equipped with 

complicated anti-oxidant defence mechanisms to scavenge ROS, certain 

pathological states such as chronic inflammation can ultimately lead to an 

overdrive of ROS production, thereby increasing the risk of DNA damage.  

 
Inflammation is the classic response to tissue injury which also underlies 

multiple cellular pathologies, including cancer. Inflammatory pathways can be 

activated by endogenous factors released directly from tissues (Medzhitov, 

2008). Macrophages can release inflammatory cytokines including TNF-alpha, 

interleukin-1 and interleukin-6 which activate the recruitment of leukocytes and 

release of acute-phase proteins such as C-reactive protein (CRP) from the liver. 

With a half-life of about 19 hours, plasma CRP levels greatly represent the rate 

of synthesis by hepatocytes in response to inflammatory cytokines (Pepys, & 

Hirschfield, 2003). CRP promotes inflammation by activating the classical 

pathway of complement to generate anaphylatoxins (Gruys, et al., 2005). As a 

result, mast cells and other leukocytes are recruited and may undergo a 

‘respiratory burst’, releasing ROS into the environment (Reuter, et al., 2010).  

 
Early studies pointed out some of the most potent ROS to include •OH, O2-, 

and H2O2 as they can cause base modifications, react with the deoxyribose 

sugar, cause DNA single and double strand breakages (SSB, DSBs) and create 

DNA-protein cross links (Bandyopadhyay, et al., 1999; Vilenchik, & Knudson, 

2003). ROS can induce oxidation of purine and pyrimidine bases resulting in 
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DNA abasic sites (Takeshita, & Eisenberg, 1994). Although this transformation 

is not always lethal, it can be very mutagenic and halt DNA polymerase activity. 

Furthermore, Cadet and Wagner (2013) have extensively reviewed a plethora of 

single and tandem based lesions in DNA, formed via oxidation. The oxidation of 

guanine is one of the most commonly described mutagenic lesions (Korkmaz, et 

al., 2018).  

 
Nitric oxide (NO) is another genotoxic agent that is released during 

inflammation by activated macrophages (Fang, & Vazquez-Torres, 2002). NO 

can cause deamination, oxidation and strand breakages in DNA and has been 

linked with causing the G-T transversion mutation commonly identified in the 

p53 gene of human cancers (Tamir, et al., 1996; Ambs, et al., 1999). In 

addition, there is evidence that NO can reduce the efficacy of DNA repair by 

inhibiting the FAPY glycosylase DNA repair enzyme (Jaiswal, et al., 2001).  

On the other hand, there have been reports that indicate ROS might play a 

tumour suppressive role. In human fibroblasts and cancer cells, elevated ROS 

was shown to activate cell cycle arrest and apoptotic pathways via ASK1/JNK 

and ASK1/p38 (Ichijo, et al., 1997; Moon, et al., 2010). However, more recent 

studies conducted in human liver cancer cells show that hydrogen peroxide can 

downregulate many tumour suppressor genes such as USP28, DRAM, TIGAR, 

and CYLD (Kim, et al., 2013). Overall, whilst there are some discrepancies, 

there is more evidence that chronic inflammation and consequent 

overproduction of ROS and RNS can be a causative factor for DNA damage 

and may contribute to carcinogenesis.  

 

 



 40 

Micronutrient deficiencies  
 
Micronutrients are essential dietary components that also play a role in the 

maintenance of genomic integrity during DNA replication. A comprehensive 

review by Fenech (2010) has highlighted the significance of dietary nutrients for 

genome health. They can function as part of anti-oxidant defence mechanisms 

or act as co-factors for DNA repair enzymes. Therefore, a deficiency in the 

intake of a number of micronutrients has been linked with DNA damage in 

animal and human models (Table 1.7). 

 
A deficiency of co-factors for DNA repair enzymes including magnesium, zinc 

and iron are associated with increased oxidative lesions in DNA and can also 

cause chromosome malsegregation errors. Secondly, vitamin C, E, selenium 

and manganese are important components of anti-oxidant defence mechanisms 

and a deficiency of these is also linked with oxidative DNA damage but also 

chromosomal aberrations.  

 
Micronutrients can also play a key role in the regulation of mitosis. An 

interesting review by Shalliker and colleagues (2012), has brought to light the 

various roles vitamin D plays in regulating DNA replication and cell division. 

There are two main forms of vitamin D: cholecalciferol (vitamin D3) and 

ergocalciferol (vitamin D2). The biologically active hormone is called calcitriol (1-

25OHD), and is produced after vitamin D3 and D2 first undergo hydroxylation in 

the liver and then in the kidneys. Vitamin D2 is cleared much faster from the 

circulation as it has a lower affinity than vitamin D3 for vitamin D binding protein 

(Lips, 2006). Clinically, vitamin D status is determined by assessing 25OHD 

levels in serum rather than the biologically active vitamin D, because 1-25OHD 

has a shorter half-life (Holick, 2007). 1-25OHD acts on the vitamin D receptor 
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(VDR) to regulate gene expression and calcium homeostasis. The VDR is 

widely expressed and not just limited to the bone, gut and kidneys (Bikle, 2014). 

This presence of the VDR may be explained by the role of vitamin D in 

protecting cells from DNA damage, inducing cell-cycle arrest and promoting 

apoptosis (Krishnan, et al., 2012). There is evidence that Vitamin D treatment 

can reduce oxidative DNA damage as well as the formation of cyclobutane 

pyrimidine dimers – a DNA damage signature following UV-light exposure 

(Wong, et al., 2004; Fedirko, et al., 2010). Therefore, there is a potential role for 

vitamin D in the maintenance of genomic stability and integrity. 

 
Furthermore, specific micronutrient deficiencies have also been connected with 

DNA damage and disease. Folate deficiency is associated with increased 

genome damage and neural tube defects in the developing foetus (Fenech, 

2001; Green, 2002). Choline deficiency has been related to increased DNA 

damage and epidemiological evidence has linked an increased consumption of 

choline with a lowered risk of cancer (da Costa, et al., 2006; Sun, et al., 2016). 

Other micronutrients have also been suggested to play a role in the risk of 

acquiring cancer. A recent review has concluded that vitamin D deficiency may 

be associated with an increased risk of cancer (Grant, 2018). Omega-3 fatty 

acid deficiency has been associated with metastatic melanoma (Denkins, et al., 

2005). Finally, there is also epidemiological evidence linking magnesium 

deficiency with colorectal cancer (Trapani, et al., 2015).  In conclusion, certain 

micronutrients play a significant role in genome maintenance and may also be 

of importance in cancer risk and prevention.  
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Table 1.7 Micronutrients for genome health maintenance (adapted from Fenech, 2010).  

Micronutrients Role in Genome stability Possible Consequence of Deficiency Model Systems Reference 

Vitamin D Regulates telomerase activity 
Component of anti-oxidant 
defence 
 

Increased Oxidative DNA Lesions including 8-OHdG 
Chromosomal aberrations 

Mice, rats and 
humans 

(Nair-Shalliker, et 
al., 2012) 

Vitamin C and E Component of anti-oxidant 
defence 

Increased oxidative DNA lesions and chromosomal 
aberrations 

Adult humans (Fenech, et al., 
2005) 
 

Niacin Telomere length 
maintenance  

Chromosomal aberrations and increased sensitivity to 
mutagens 

Mice, rats and 
humans 

(Hageman, & 
Stierum, 2001) 
 

Zinc Co-factor for DNA repair 
enzymes 

Increased oxidative DNA lesions and chromosomal 
aberrations 
 

Rats (Ho, & Ames, 2002) 

Iron Co-factor for mitochondrial 
enzymes 

Increased oxidative DNA lesions in mitochondrial 
DNA 
 

Rats (Walter, et al., 2002) 

Magnesium Co-factor for DNA repair 
enzymes 

Reduced DNA repair 
Chromosomal segregation errors 
 

Human 
fibroblasts 

(Hartwig, 2001) 

Manganese Component of anti-oxidant 
defence 

Increased oxidative damage to mitochondrial DNA 
and reduced resistance to radiation-induced damage 
to nuclear DNA 
 

Mice (Bakthavatchalu, et 
al., 2012) 

Calcium Co-factor for regulating 
mitosis 

Chromosomal aberrations Human cervical 
cancer cells 

(Phengchat, et al., 
2016) 
 

Selenium  Component of anti-oxidant 
defence 

Increased oxidative DNA lesions and chromosomal 
aberrations 

Chickens (Zoidis, et al., 2018) 
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1.2.3 Genome instability and cancer 
 
 
Genomic instability is marked by an increased propensity of the genome to 

undergo alterations during the cell cycle (Shen, 2011), and has been described 

as an enabling characteristic for the complex, multi-step process of 

tumorigenesis (Hanahan, & Weinberg, 2016). The accumulation of DNA 

damage may lead to modifications in gene expression that transform a healthy 

progenitor cell into becoming pre-cancerous. Through a series of subsequent 

cell cycle divisions, the acquisition of multiple genomic alterations advances the 

cells into being clinically classified as invasive cancer (Figure 1.5). The 

identification and mapping of genomic instability to the stages of tumorigenesis 

may inform the optimal windows for prevention, diagnosis and therapy of 

cancer.  

 

 
Figure 1.5 Accumulation of DNA damage over several cell cycles may drive progenitor 
cells into becoming cancerous (smaller block arrows represent events of DNA damage 

and genomic alterations), mapping the genomic alterations may inform the optimal 
windows for prevention, diagnosis and treatment (adapted from Shen, 2011). 
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Genomic instability can be divided into three forms; nucleotide instability (NIN), 

microsatellite instability (MIN) and chromosomal instability (CIN). NIN is 

associated with early stages of cancer and is where one or a few nucleotide 

bases are changed due to errors in replication or DNA repair genes such as 

MYH and XPC (Bester, et al., 2011). NIN is less common compared to the other 

forms of genomic instability in sporadic cancers (Negrini, et al., 2010).  

 
MIN is caused by defective Mismatch Repair (MMR) within microsatellite 

regions which are long repetitive sequences of DNA (10 to 60 base pairs) (Liu, 

et al., 1995). In 1993, MIN was first identified to be a phenomenon in both 

sporadic and hereditary forms of colorectal cancer (Aaltonen, et al., 1993). MIN 

has now also been associated with at least 15 different types of sporadic 

cancers (Lawes, et al., 2003). Most MIN occurs in non-coding regions, but when 

mutations occur in short coding microsatellite sequences, then it may lead to 

frameshift mutations and increased cancer risk. For example, 90% of cases of 

colorectal cancer that are positive for MIN in TGFβ-R2, result in the inactivation 

of the TGFβ-R2 protein and a consequent loss of inhibition of proliferation 

(Bacher, et al., 2016). Furthermore, MIN may provide important prognostic 

information. Interestingly, high microsatellite instability (where at least 2 out of 5 

microsatellite markers are positive) is associated with a better prognosis when 

identified during stage II of colorectal cancer (Kawakami, et al., 2015). However, 

in advanced stages this trend is controversial and may not be applicable for all 

types of cancers, including those of the endometrium (Wang, et al., 2019; An, et 

al., 2007). 

 
Chromosomal instability (CIN) is an increased loss or gain of one or more whole 

chromosomes or chromosomal fragments during cell division. It is the most 
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predominant type of genomic instability and can be marked by several 

karyotypic abnormalities including aneuploidy, deletions, translocations, 

inversions and amplification (Gagos, & Irminger-Finger, 2005). The early 

detection of CIN may also play an important role in cancer prevention as it can 

be identified in pre-malignant cells of the GI tract (Garnis, et al., 2009; Yang, et 

al., 2006). Furthermore, complex CIN such as aneuploidies have been 

associated with a poorer prognosis in several different types of cancer including 

lymphomas, breast cancer, pancreatic cancer, lung cancer, thyroid cancer and 

glioblastomas  (Bakhoum, et al., 2011; Bakhoum, & Cantley, 2018). CIN may 

support cancer cells with evading recognition from the immune system and 

promote the survival of cancer cells under stressful conditions (Bakhoum, & 

Cantley, 2018). Thereby, causing resistance to cytotoxic treatment and 

increasing their capability for metastasis (Tanaka, & Hirota, 2016).  

 
One of the most important indications of genomic instability, is the heterogeneity 

of the genome across cell sub-populations. For example, non-recurrent 

abnormalities (NCCAs) are aberrations which are detected at a frequency of 

less than 4% among 50–100 mitotic figures and therefore characterise an 

unstable or ‘chaotic genome’ (Heng, et al., 2016). It has been suggested that 

this type of karyotype heterogeneity is vital for the evolution of cancer cells 

(Heng, et al., 2013). Research conducted in patients with chronic myeloid 

leukaemia found that centrosome aberrations may contribute to the gain of 

karyotype heterogeneity and correlate positively with aggressiveness of the 

disease (Giehl, et al., 2005). Similarly, the most lethal form of epithelial ovarian 

cancer is marked by chromosomal aberrations and DNA repair defects that give 

rise to genetic diversity and clonal evolution (Salomon-Perzyński, et al., 2017). 
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Overall, genome instability enables cancer cells to acquire the hallmark 

capabilities that are required to sustain proliferation. Several forms of genomic 

alterations can be identified across the multiple step process of tumorigenesis. 

Therefore, the assessment of early, pre-pathological genomic alterations may 

play a key role in the prevention of cancer.
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1.2.6 Markers of DNA damage and assessment techniques 
 
Genotoxicity assessments depend on the identification of DNA damage 

biomarkers. Such biomarkers can include DNA damage lesions such as 8-oxo-

deoxy-guanosine (8-OHdG), nuclear anomalies, telomere length as well 

markers of chromosomal aberration including comet tail frequency and 

induction of gamma foci.  

 
 1.2.6.1 8-OH-2-deoxy Guanosine  
 
8-OH-2-deoxy Guanosine (8-OHdG) or 8-oxodG is one the most commonly 

described lesions of oxidative DNA damage. It can be derived due to an excess 

endogenous build-up of reactive oxygen species (ROS) coupled with a reduced 

efficiency of anti-oxidant enzymes. Generation of the hydroxyl radical (HO•) can 

cause a reaction with guanine in DNA to produce deoxyguanosine and radical 

adducts (Valavanidis, et al., 2009). The removal of an electron from the C8-OH 

adduct then produces 8-OHdG or its tautomer 8-oxodG (Figure 1.6).   

 
8-OHdG was first described as a mutagen in 1984 by Kasai and Nishimura 

using HPLC. Today, 8-OHdG can be detected in serum, saliva and urine, 

making it an ideal DNA damage biomarker for large population based studies. 

The quantification of 8-OHdG is particularly useful in urine because it is the 

primary route of excretion (Wu, et al., 2004).  However, multiple studies have 

suggested the measurement of 8-OHdG in plasma to be more sensitive than in 

urine to risk factors such as BMI and smoking status, and interventions 

including exercise (Wang, et al., 2016; Karpouzi, et al., 2016). Nonetheless, 

Wang and colleagues (2016) researchers also identified a moderate, significant 

correlation between plasma and urinary 8-OHdG levels (R =0.31, p<0.01), 



 48 

which means the measurement of 8-OHdG in urine could be a reliable 

alternative when plasma is inaccessible.   

 
The absolute quantification of 8-OHdG can be achieved via HPLC and LC-MS 

with high sensitivity, but these techniques first require the isolation of genomic 

DNA (Korkmaz, et al., 2018). Furthermore, immunohistocytochemistry and 

immunocytochemistry can also be employed to semi-quantify 8-OHdG. One of 

the major issues with this technique is the interference from cytoplasmic 

staining of RNA (Korkmaz, et al., 2018). There are a number of commercially 

available ELISA assays that although have lower sensitivity and specificity 

when compared to LC-MS and HPLC, are more time efficient and cost-effective 

(Korkmaz, et al., 2018). Besides the assessment of 8OHdG, toxicology and 

genotoxicity assays can also assess the oxidised form of the nucleoside 

guanine (8-OHG) when it is attached to a ribose sugar and when it is oxidised 

on its own (8-OHGua).  
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Figure 1.6 Reduction and oxidation of 2-deoxyguanosine to 

produce 8OHdG and 8oxodG (Valavanidis, et al., 2009) 
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1.2.6.2 Morphological nuclear anomalies  
 
Nuclear anomalies can be biomarkers of genotoxic events related to 

chromosomal aberrations or defective nuclear architecture. A number of 

morphological nuclear anomalies can be quantified in cells to assess genomic 

instability. These include micronuclei, nuclear buds and bridges, as well as the 

retention of multiple nuclei in cells that would normally have a single nucleus.  

 
Micronuclei  

Micronuclei are well-recognised markers of genotoxic stress and genomic 

instability. By definition, a micronucleus is an extra-nuclear body within the cell 

cytoplasm containing acentric chromosomal or chromatid fragments, or whole 

chromosomes (Thomas, et al., 2011). Micronucleus formation is caused by 

clastogenic or aneugenic events that lead to a failure of the damaged genetic 

material attaching appropriately to spindle fibres during anaphase of mitosis 

and therefore not being incorporated in the main nucleus (Figure 1.7). 

Clastogenic events result in chromosomal breakages and may lead to the 

deletion, addition or rearrangement of genetic material (Beedanagari, et al., 

2014). Whereas aneugenic events disrupt spindle fibre mechanisms, affecting 

chromosomal segregation and causing aneuploidy (Parry, et al., 1996).  

When DNA damage repair capacity is exceeded by DNA damage, double 

strand breaks (DSBs), a clastogenic event, may be unrepaired or mis-repaired 

(Thomas, et al., 2011). Acentric chromosomal fragments lack a centrosome and 

can be a consequence of unrepaired DSBs where there are errors in the non-

homologous end joining (NHEJ) repair mechanism (Hartlerode, & Scully, 2009). 

DSB formation can also occur as a result of inappropriate bases or damaged 

lesions such as 8-hydroxyguanosine being incorporated in DNA (Thomas, et al., 
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2011). Aneugenic events and malsegregation of chromosomes may be a 

consequence of hypomethylation of centromeric repeat sequences (Schueler, & 

Sullivan, 2006). It has been demonstrated that hypomethylation of cytosines in 

centromeric DNA of chromosomes 1, 9 and 16 can lead to elongation and 

possible kinetochore defects resulting in chromosomal malsegregation and 

increased micronuclei formation (Suzuki, et al., 2002). Furthermore, 

micronucleus formation due to chromosomal malsegregation may also be 

caused by defects in proteins that regulate the dynamics of kinetochore 

assembly and microtubule interaction (Bakhoum, et al., 2009). Other 

mechanisms for micronucleus formation as a result of malsegregation include 

abnormal DNA amplification in centrosomes, defective mitotic check points and 

telomere-end fusions that can result in detachment from mitotic spindle 

(Thomas, et al., 2011). Ultimately, a micronucleated cell can undergo apoptosis, 

have the DNA repaired and reincorporated into the main nucleus, have the 

micronucleus ejected from the cell or retain the micronucleus and persist in the 

tissue (Kirsch-Volders, et al., 2011).  

Overall, it is clear that micronucleus formation is a consequence of genotoxic 

events. Therefore, the quantification of micronuclei has been described as the 

most widely used in vivo tool to assess mutagenicity for hazard identification 

and risk assessment (Hayashi, 2016). However, the significance of micronuclei 

goes beyond being a marker of chromosomal instability, as new insights 

indicate micronuclei to have a pathological role in cancer progression as they 

could complicate chromosomal instability and trigger inflammation (Guo, et al., 

2019).  



 52 

 

Figure 1.7 Micronucleus formation that would be observed in a cell undergoing 

nuclear division and blocked prior to cytokinesis with cytochalasin-B. Micronuclei can 

contain (a) whole chromosomes or (b) acentric fragments  

(adapted from Thomas, et al., 2011). 

 

Nuclear Buds and Bridges  
 
One other morphological marker of genomic instability is the identification of 

nuclear bud and nucleoplasmic bridge formation in cells. A nucleoplasmic 

bridge is characterised as a fine thread-like structure that connects two nuclei 

(Figure 1.8). It has been established that this structure may be an anaphase 

bridge, resulting from the pulling of dicentric chromosomes to opposite poles of 

the cell during mitosis via their centrosomes (Thomas, et al., 2011). There are 

two main genome damage events that can lead to the formation of dicentric 

chromosomes and nuclear bridges (NBridges). Firstly, as with micronuclei 

formation, the occurrence of dicentric chromosomes can be a consequence of 

mis-repaired chromosomal breaks (Thomas, et al., 2011). Secondly, dicentric 

chromosomes can form due to dysfunctional telomeres and consequent 

Breakage-Fusion-Bridge (BFB) cycles (Murnane, 2006). First explained by 

McClintock in the 1930s, a BFB cycle begins with breakage of telomeric 

regions, exposing chromosomal ends (Kass, & Chomet, 2009; Zakov, et al., 

2013). Next, the telomere-free ends of sister chromatids undergo fusion and as 

they are pulled apart to opposite ends of the cell during anaphase, a 

chromosomal bridge is formed. However, further cycles lead to a breakage of 
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the chromosomal bridge, leading to daughter chromatids deficient in telomeric 

regions and a continuum in the BFB cycle. 

 
In some instances, a nucleoplasmic bridge can be attached to a smaller 

structure with the same morphology as a micronucleus – termed a nuclear bud 

(NBUD). If a nuclear bridge breaks, it can also shrink and migrate towards the 

nucleus which is where it will be detected as a nuclear bud (Thomas, et al., 

2011). In vitro experiments in human and mouse cells have demonstrated that 

NBUD formation is a mechanism to expel extrachromosomal material from the 

main nucleus (Shimizu, et al., 2005). Although NBUDs are morphologically 

similar to micronuclei, it has been demonstrated in cultured human lymphocytes 

that NBUDs more frequently contain amplified DNA without centromeric or 

telomeric regions (Lindberg, et al., 2007).  

 
Overall, NBUDs and NBridges are well recognised markers of genotoxicity as 

exposure to undisputed mutagenic agents have all been associated with their 

increased prevalence. The frequency of NBridges was x50 higher in response 

to hydrogen peroxide treatment in cultured human neutrophils (Umegaki, & 

Fenech, 2000). Cheong and colleagues (2013) identified a significant dose-

dependent increase in micronuclei and NBUDs/Bridges in human 

lymphoblastoid cell lines in response to treatment with neutron and g-radiation. 

A study conducted in 83 adult males, demonstrated that smoking non-filtered 

cigarettes was associated with an increase in NBUDs and micronuclei within the 

oral mucosa (Nersesyan, et al., 2010). Interestingly, this study indicated that 

NBUDs may be a more sensitive marker for genotoxicity than micronuclei, as 

smoking moderately filtered cigarettes significantly increased the levels of 

NBUDs but not micronuclei.  
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Figure 1.8 Nucleoplasmic Bridge formation as a result of dicentric chromosomes, 

that would be observed in a cell undergoing nuclear division and blocked prior to 

cytokinesis with cytochalasin-B (adapted from Thomas, et al., 2011). 

 
Multinucleated cells  
 
There are some human cells whereby multiple nuclei play an important 

physiological role for organ functioning. These include osteoclasts, hepatocytes 

and cardiomyocytes (Bar-Shavit, 2007; Kreutz, et al., 2017; Paradis, et al., 

2014). However, multinuclear or polynuclear cells in some cell types may be an 

indicator of cytokinesis failure (Bolognesi, et al., 2013). Cytokinesis is the final 

step in the cell division process which begins during chromosomal segregation 

and ends in abscission – complete separation of cytoplasmic contents. It has 

been demonstrated that malsegregation of damaged chromosomes (non-

disjunction) may trigger cytokinesis failure (Shi, & King, 2005). Furthermore, 

DNA damage response proteins such as BRCA2 and BCCIP, DNA damage 

checkpoint kinase Rad53 and Ku70, a DNA-binding protein required for DNA 

damage repair have all been suggested to interfere with the cytokinesis process 

(Normand, & King, 2010). More recently, telomere dysfunction in human 

epithelial cells was also associated with increased failure of cytokinesis 

(Pampalona, et al., 2012). Finally, patients with Down’s syndrome, a disorder 

marked by aneuploidy, presented with a two-fold increase in binucleated buccal 

epithelial cell frequency compared to matched healthy controls (Thomas, et al., 

2008). Overall, it can be viewed that the persistence of more than one nuclei in 
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a cell may be a marker of cytokinesis failure and possibly chromosomal 

aberrations as well.   

 
Assessment of nuclear anomalies  
 
The assessment of nuclear anomalies can be conducted in multiple cell types. 

First pioneered by Michael Fenech in the early 1980s, the cytokinesis-block 

micronucleus cytome assay can be employed in peripheral blood lymphocytes 

to assess micronuclei and NBUD/Bridge status whilst cells are arrested in the 

cell cycle (Thomas, & Fenech, 2011). This assay has been extensively 

employed to establish the index of nuclear anomalies observed in lymphocytes 

upon exposure to in-vitro and in-vivo radiation, nutritional deficiency and various 

other genotoxic agents (Jacociunas, et al., 2013; Bull, et al., 2012; Vral, et al., 

2011). The advantages of the lymphocyte CBMN assay include the 

incorporation of probes to detect centromeric and telomeric DNA (Thomas, & 

Fenech, 2011). Most importantly, a prospective study revealed that this assay 

can be employed to predict the risk of cancer in humans (Bonassi, et al., 2007). 

However, the need for blood sampling complicates the implementation of this 

tool for biomonitoring. Instead, a minimally invasive assessment of nuclear 

anomalies can be conducted in exfoliated cells. The buccal cytome assay has 

also been in use since the 1980s to evaluate genotoxic effects of environmental 

and lifestyle factors as well as dietary deficiencies and different diseases 

(Holland, et al., 2008).  

 
The structural organisation of the buccal epithelium is such that it takes 7-21 

days for basal cells to mature and migrate from the stratum germinativum (basal 

cell layer to the stratum corneum (dying cell layer). Differentiated cells can be 

exfoliated from the oral cavity and scored for a number of different cytogenetic 
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events in addition to micronuclei, multiple nuclei and nuclear buds or bridges 

(Figure 1.9). Karyorrhectic, pyknotic and condensed chromatin cells can 

indicate stages of apoptotic cell death whilst karyolitic cells may indicate 

necrotic cell death. In order to avoid false positive identification of genetic 

material in the cytoplasm, the buccal epithelial cells must be stained with DNA-

specific staining agents. For this reason, Feulgen and Fast Green stains are 

used more frequently (Bolognesi, et al., 2013). A further advantage of this 

staining technique is that an adequate microscopic analysis can be performed 

via bright-field but also fluorescence. Moreover, comparisons can be drawn 

from the typical cell frequencies that have been detailed for healthy young and 

old populations (Thomas, et al., 2009). Overall, the buccal cytome assay is a 

relatively simple tool that can be employed in vulnerable populations to assess 

the efficacy of cell regeneration and genome damage events in epithelial tissue.  

 
 

Figure 1.9 Sequential origins of the various cell types in the buccal 

epithelium (Thomas and Fenech, 2009).   
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1.2.6.3 Telomere Length  
 
Telomeres are vital segments of non-coding DNA repeat sequences (TTAGGG) 

that are located at the ends of linear chromosomes and play a fundamental role 

in maintaining chromosomal integrity. They were first identified by Elizabeth 

Blackburn and Joseph Gall (1978) in Tetrahymena thermophila. Telomeres 

have a 3’ overhang and T loop structure which is bound by proteins of the 

shelterin complex and protects telomeric repeats from being detected as DSBs 

(Verdun, & Karlseder, 2007). With each mitotic division, telomeres shorten in 

length and upon reaching a critical length, telomeres activate p53 to initiate 

cellular senescence or apoptosis (Deng, & Chang, 2007).  

 
Optimal telomere functioning is crucial for preventing chromosomal DNA from 

degradation and depends on two factors; adequate telomere length and the 

ability of telomeric DNA to attract proteins of the sheltering complex (O’sullivan, 

& Karlseder, 2010). Therefore, the protective function of telomeres can be lost 

once they reach a critically short length and are no longer protected from DNA 

damage machinery. On the other hand, even in the presence of long telomeric 

DNA repeats, uncapped telomeres can be detected as DNA breaks which may 

result in BFB cycles and genome instability. Therefore, dysfunctional telomeres 

can be critically short or long.   

 
In germ line cells, expression of the enzyme telomerase can elongate telomeres 

to maintain cell proliferation and lineage. There is also evidence for activity of 

the telomerase enzyme in human epithelial tissue, albeit the activity of the 

enzyme is weaker in these cells (Yasumoto, et al., 1996). Nonetheless, 

telomere length can be modulated by expression of the telomerase enzyme – a 
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phenomenon also associated with increased telomere length in some types of 

cancer.  

 
Telomere length can be assessed in multiple tissue types via a variety of 

techniques that include quantitative Polymerase Chain Reaction (qPCR), the 

use of fluorescence probes and the gold standard - Terminal Restriction 

Fragmentation (TRF) (Montpetit, et al., 2014). TRF provides an average 

quantification of telomere length via digestion of chromosomes and removal of 

non-telomeric DNA from the sample. The remaining sample can be visualised 

via gel electrophoresis to determine the size of the telomeric DNA. However, 

this technique requires large amounts of DNA and is rather labour intensive – 

decreasing its application in large scale studies. Secondly, non-invasively 

obtained tissues such as saliva do not contain sufficient DNA to withstand this 

process. Similarly, other techniques such as Quantitative fluorescence in situ 

hybridization (Q-FISH), Primed in situ subtype of Q-FISH (PRINS), Flow-FISH, 

and HT-Q-FISH require mitotically active cells for analysis, another challenge 

when sampling exfoliated, largely non-viable cells.  

 
The most suitable technique for assessing telomere length in large scale 

population studies is qPCR. qPCR provides an average length of telomeres in a 

DNA sample by normalising values against a single copy gene. qPCR is less 

labour intensive and can be conducted on small (ng) amounts of DNA. DNA can 

be extracted from any tissue sample to perform qPCR. However, accurate 

results depend also on the quality of DNA. Therefore, adequate purification 

steps and caution must be taken during DNA extraction and storage.   
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1.2.6.4 g-H2AX foci 
 
Induction of nuclear g-H2AX foci or gamma foci signal the start of a crucial 

repair process that follows a DSBs. Phosphorylation of the H2AX histone by the 

ATM protein on serine residues is the first step before further DNA repair 

proteins such as NBS1 and BRCA1 are recruited to the site as part of the DNA 

damage response (DDR) pathway (Kobayashi, 2004). Each single gamma foci 

is indicative of one DSB repair, thereby it is a highly sensitive indicator of an 

earlier DNA damage event (Rothkamm, & Löbrich, 2003).  However, the 

suitability of g-H2AX foci as a DNA damage marker has been questioned as its 

presence has been observed in the absence of recognisable DNA damage (Tu, 

et al., 2013).  

 
Typically, the assessment of gamma foci is conducted by employing 

immunostaining or immunoblotting techniques followed by microscopy or flow 

cytometry. This process can be eased by the use of commercially available 

antibodies. Gamma foci have been assessed via these techniques in multiple 

cell types including PBLs, splenocytes, bone marrow cells, and keratinocytes. 

(Redon, et al., 2011). However, an analysis of gamma foci via fluorescence 

microscopy is not recommended for when higher levels of foci are expected 

(Reddig, et al., 2018). Furthermore, the assessment of gamma foci in buccal 

epithelial cells can be complicated by high levels of background signals (Palla, 

et al., 2017). It has also been suggested that current ELISA based methods are 

less sensitive and can be affected by total cell concentration (Reddig, et al., 

2018). More research is required to confirm the suitability of this assay for 

monitoring DNA damage via non-invasive techniques for vulnerable 

populations. 
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1.2.6.5 Comet tails   
 
Comet tails are sensitive biomarkers of deteriorating chromosomal integrity as 

they enable inference of chromosomal breakages. The comet assay, used to 

detect these tails is a well-established laboratory assay that was first pioneered 

by Ostling & Johanson in 1984. After treating cells to remove nuclear 

membranes and histone material, single cells are embedded in agarose for gel 

electrophoresis. The application of a current allows broken, uncoiled DNA loops 

to migrate faster towards the anode, creating the shape of a comet, with intact 

DNA remaining in the comet head whilst damaged, ‘broken’ DNA migrates in 

the comet tail. Subsequently, the DNA is treated with an intercalating dye and 

visualised with fluorescence microscopy. The length of the tail and percentage 

of DNA inside the tail is a taken as a directly proportional measure of DNA 

damage (Olive, & Banath, 2006). The comet assay has been extensively 

applied to measure genotoxicity, responsiveness to chemotherapy, and is now 

evolving into a diagnostic marker of cancer (Apostolou, et al., 2014).  

The comet assay can be employed even with a small number of cells per 

individual, and enables a robust statistical analysis based on the level of DNA 

damage in each cell (Collins, et al., 2008). Whilst the comet assay is relatively 

cheap and fast to perform, there are some technical problems associated with 

conducting the assay in buccal epithelial cells (Sanchez-Alarcon, et al., 2016). 

Due to possessing specialised cell membranes, the lysis process required for 

the comet assay can be complicated. High pH treatment can disintegrate cells 

whereas a low pH may not adequately lyse the cells. Secondly, a lack of 

viability of exfoliated buccal cells and increased atypical comet formation can 

also complicate their analysis (Pinhal, et al., 2006). Therefore, non-invasive 

sampling to perform the comet assay remains a challenge. 
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1.3 Aims of the project 
 
The increasing evidence that childhood obesity is a risk factor for cancer and 

other morbidities in adulthood, calls for an investigation of the mechanisms that 

may underpin this association.  

 
The aim of this research is to explore the potential role of DNA damage as a link 

between obesity in childhood and increased risk of cancer later in life. This 

research will evaluate genomic integrity and stability in relation to inflammation 

and vitamin D status in children with obesity. Secondly, this research will 

establish the applicability of a non-invasive tool-kit for the assessment of 

adiposity, inflammation, micro-nutritional deficiency and ‘genome health’, for 

long-term monitoring of pre-cancerous pathological states in children with 

obesity.   

 
Hypothesis:  

Excess inflammation and low vitamin D are associated with elevated DNA 

damage in children with obesity.  

 
Research objectives: 

1. To develop a non-invasive laboratory 'tool-kit' for a personalised and 

combined assessment of adiposity, inflammation, micro-nutritional 

deficiencies and ‘genome health’ in obese and non-obese individuals. 

2. To conduct a correlational analysis of adiposity, inflammation, micronutrient 

status and DNA damage in children.  
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2. Materials and Methods 
 
2.1 Overview of Study Design  
 
A cross-sectional study was designed to compare markers of adiposity, 

inflammation, vitamin D and DNA damage in children aged 10-18 years (Figure 

2.1). Firstly, laboratory protocols and sample collection techniques were 

optimised in a cohort of adults recruited from the University of Westminster. The 

study documentation and sample collection and testing protocols were then 

adapted for use in children. Participant recruitment, data collection and analysis 

were led by the author of the thesis. Overall, medical history, anthropometric 

data, and four biological samples; urine, unstimulated saliva, stimulated saliva 

and a cheek swab were obtained from each study participant. 

 

2.2 Ethical Considerations and Approval 
 
A research ethics application was prepared and approved by the Human 

Research Authority and NHS Research Ethics committee (Integrated Research 

Application System ID: 212869). A subsequent application was submitted to 

and approved by the University of Westminster (ETH1617-1943).   

Data and samples were treated with great care when being transported to the 

university and stored securely in a laboratory with restricted access. Data was 

protected in accordance with the Data Protection Act 1998, and later updated 

according to the General Data Protection Regulation and Data Protection Act 

2018. Written consent was obtained from the parents of all participants that 

were screened and included in the study. The data and tissue samples were 

only used for the purposes consented for and outlined in the methodology of the 

study. Biological samples were stored in line with the Human Tissue Act 2004. 
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Figure 2.1 Overview of cross-sectional study design: from planning to sample collection and testing 
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2.3 Participant Sample Size Calculation  

 
Firstly, the endpoints for this study were evaluated to assign a single primary 

endpoint for sample size calculation. The factors taken into consideration were; 

the extent to which the endpoint addresses the main research question, the 

accuracy at which it represents the outcome of interest (DNA damage) and the 

precision of the test. Out of the three DNA damage biomarkers that were 

intended to be measured (urinary 8-OHdG, salivary telomere length and buccal 

micronuclei frequency), associations for buccal micronuclei frequency were 

most consistent between obese and non-obese participants to date (Usman, & 

Volpi, 2018). For these reasons, buccal micronuclei frequency was selected as 

the primary endpoint for this study.  

 
To calculate the sample size, buccal micronuclei data was extracted on mean 

values and variance in adults with a healthy weight (n=21) and adults with 

obesity (n=84) (Donmez-Altuntas, et al., 2014) (Table 2.1). This data was 

entered into G*Power (v3.1) software for A priori calculation of sample size 

based on a two-tailed, independent means test at an error rate of 1%. The total 

sample size was calculated to be 80, with 40 participants as controls and 40 

participants with obesity. Whilst it would have been most appropriate to source 

data from a study conducted in children, there was a lack of literature reporting 

mean and variance values for buccal micronuclei in a cohort of children with 

and without obesity; also highlighting the novelty of the research approach of 

this thesis. In order to account for this potential source of bias, and in 

consideration of feasibility regarding laboratory costs, time frame for work 

completion, and to cover issues such as missing data, this sample size was 
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increased by 20% with an aim to include a minimum of 48 healthy weight 

children (5th-85th BMI percentile) and 48 obese children (>98th BMI percentile).  

Table 2.1 Data for sample size calculation (sourced from Donmez-Altuntas, et 

al., 2014).  

 
 Control cohort Obese cohort 

Age (years) 34.81 ± 11.56 37.95 ± 10.52 

BMI (kg/m2) 22.38 ± 1.72 37.98 ± 7.46 

Mean (%) +/- S.D 0.71 ± 0.51 1.24 ± 0.45 

Sample size in study 21 83 

Calculated sample size  40 40 
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2.2 Participant Screening and Recruitment 
 

Over 200 research packs were distributed across secondary schools in London 

to pursue non-selective recruitment of children aged 10-18 years. Table 2.2 

outlines the components of the research packs sent to schools. St George’s 

London NHS trust and King’s College Hospital London supported the 

recruitment of obese patients by distributing information sheets to parents 

(Appendix I) and patients (Appendix II) prior to their clinic appointment. Written 

parental consent (Appendix III) was obtained from all parents and participants 

gave written assent (Appendix IV) prior to data or sample collection.   

Table 2.2 School Research Pack Components 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In total, four schools and two NHS obesity clinics agreed to collaborate for 

participant recruitment and 171 participants were screened for inclusion (Figure 

2.2). The screening process required all participants to complete a medical 

questionnaire (Appendix VIII). After applying the exclusion criteria (Table 2.3), 

132 participants were included in the study. 

Document Appendix 

Participant Information Booklet for 

Parents  

V 

Participant Information Booklet for 10-18 

year olds 

VI 

Parental Consent Form VII 

Assent Form VIII 

Medical Questionnaire  IX 

Invitation Letter  X 
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Table 2.3 Exclusions Criteria for Participant Recruitment 

Exclusions Criteria Purpose 

Dental treatment within last six 

weeks or local inflammation 

including pain, swelling and other 

evidence of tooth decay.  

Local inflammation and increase in 

inflammatory cytokines (CRP) is 

possible. 

General illness (flu, cold, fever) on 

the day of sample collection. 

As CRP is one of the first inflammatory 

cytokines to be released during infection, 

there is some evidence that CRP levels 

may be raised during the first (2-3) days 

of illness (Melbye, et al., 2004).  

Intense physical activity one hour 

prior to sample collection. 

Increase in inflammatory cytokines (CRP) 

is possible. 

Consumption of food and drink thirty 

minutes prior to sample collection.  

To avoid contamination of saliva samples 

with food and drink. 

Medical history of inflammatory 

conditions (asthma, eczema etc) and 

cancer. 

May cause elevation in biomarkers of 

inflammation and DNA damage.  

Consumption of medications 

including multivitamins. 

May cause elevation or suppression of all 

biomarkers.  

X-rays of the head and neck within 

last six months.  

X-rays can induce micronuclei formation. 

Smoking  Smoking can induce micronuclei 

formation.  
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Figure 2.2. Flow diagram of participant recruitment from 4 schools (blue) and two NHS clinics in London (orange), and allocation into 

‘control’ and ‘obese’ groups following screening against exclusion criteria and analysis of BMI Z-score. 
 

200+ Research packs 
distributed

Petchey 
Academy (East 

London)

65 screened

42 
recruited 
to control 

group

11 
recruited
to obese 

group

Harris Academy 
(Battersea)

13 screened

5 recruited 
to control

group

3  
recruited 
to obese 

group

Haydon School 
(Hillingdon)

18 screened

14 
recruited 
to control 

group

Greenshaw 
Academy 
(Sutton)

11 screened

4 recruited 
to  control

group

2 recruited 
to obese 

group

St George's 
Hospital 
(Tooting)

26 screened

20 recruited to 
obese group

King's College 
Hospital 

(Southwark)

38 screened

31 recruited to 
obese group
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2.4 Collection of biological samples and 
anthropometric data 
 
A workflow was implemented with each participant to enable the collection of 

anthropometric data and biological samples (Figure 2.3). Following consent, 

participants were assigned a unique participation code to pseudo-anonymise 

the data. For participants recruited through schools, the code began with a 

letter F (females) or M (males) and was followed by the number in sequence of 

their enrolment to the study. For participants recruited through NHS hospitals, 

the code began with the letters KCH (King’s College Hospital) or SGH (St 

George’s Hospital) and also followed the same numbering system.  

 
Sample and anthropometric data collection was conducted by a group of 

students and staff at the University of Westminster. In order to standardise the 

techniques for collecting anthropometric measures and biological samples, the 

author of the thesis provided a briefing sheet that described the reference 

points for anthropometric measures and also provided training to the data 

collection team. Participant’s height was recorded using a standard, portable 

stadiometer (Marsden Weighing Machine Group) to the nearest mm. Height, 

age (years) and sex was entered into the TANITA BC54N body composition 

scales to determine weight and body fat percentage via bioelectrical 

impedance. Waist and hip measurements were recorded to the nearest mm 

using a standard measuring tape. Waist was measured at the level midway 

between the lower rib margin and iliac crest, with the tape placed horizontally 

and firmly all the way around. The hip measurement was determined as the 

maximal circumference of the buttocks.  
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Figure 2.3 Participant Work-flow diagram 
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2.6 Salivary C - reactive protein ELISA  
 
2.6.1 Saliva sample collection 
 
Saliva was collected from participants using the Salimetrics Oral Swab (SOS) 

(Stratech, 5001.02-SAL-50) which was placed on the floor of the oral cavity for 

one minute before being transferred into a Swab Storage Tube (Stratech, 

5001.05-SAL-50). Saliva samples were transported on ice to the laboratory and 

immediately centrifuged at x1500g before the swab was discarded. Saliva was 

stored at -20 °C until analysis.  

 

2.6.2 CRP ELISA sensitivity and test principle 
 
C-Reactive Protein was quantified in saliva samples using the Salimetrics CRP 

ELISA kit (Stratech, 1-3302). The analytical sensitivity of the kit, or lower limit of 

detection was 0.042pg/ml. The manufacturers report no cross-reactivity 

between the antibody used in the kit and known protein markers found in saliva.  

The test is based upon the principles of an indirect sandwhich ELISA. Anti-CRP 

antibodies are immobilised on a 96-well plate and bind CRP from saliva or 

standard samples. A ‘sandwhich’ is formed when CRP bound to anti-CRP is 

detected and bound by anti-CRP detection antibody labelled with horseradish 

peroxidase (HRP) enzyme conjugate. TMB substrate is added which reacts with 

the enzyme to produce a blue colour. The reaction is stopped with 0.16M 

sulphuric acid and the final colour of the wells turns to yellow. The colour 

intensity of the wells is directly proportional to the concentration of CRP in the 

sample.  

 

 



 72 

2.6.3 Saliva sample preparation 
 
Saliva samples were allowed to thaw at room temperature before they were 

vortexed and centrifuged at x1500g for fifteen minutes, in order to remove 

mucins and particulate matter that can interfere with the assay. 15µL of saliva 

was diluted in 135µL of CRP sample diluent to perform a ten-fold dilution and 

allow for assessment in duplicates.  

 

2.6.4 Assay preparation 
 
All reagents and the microtitre plate were brought to room temperate for a 

minimum of 1.5hours. A 1X wash buffer was prepared using 100mL of Wash 

Buffer Concentrate (10X) and 900mL of deionized water. High and low CRP 

control vials were reconstituted with 500µL of deionized water and mixed 

thoroughly by inversion then left to sit for 20 minutes at room temperature. A 

two-fold serial dilution of the CRP standard was performed with CRP sample 

diluent to produce six concentrations from 3000pg/mL to 93.75pg/mL. CRP 

diluent was used alone as a ‘zero’ standard. 36 samples were run in each 

microtitre plate, and a plate plan was prepared to determine the layout of 

standards and unknown samples (Figure 2.4) 

 
Figure 2.4 Typical plate layout for CRP ELISA. 
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2.6.5 Assay procedure 
 
50µL of standards, controls and saliva samples were loaded into the 

appropriate wells. A multi-channel pipette was used to transfer the CRP 

antibody enzyme conjugate into all wells. Next, the plate was covered with 

adhesive and placed on a plate rotator for 2 hours at 500RPM and room 

temperature. After incubation, a squirt bottle was used to load each well with 

wash buffer before discarding the solution. This wash stage was repeated four 

times before a clean paper towels were used to pat the plate dry. Then, a multi-

channel pipette was used to add 200µL of TMB substrate solution to each well 

and the plate was incubated in the dark (covered with foil) at room temperature 

for 30 minutes mixing constantly on a plate rotator at 500 rpm. Finally, 50µL of 

stop solution was added to each well and the plate rotated again until the colour 

of the well changed from green to yellow (after approximately three minutes). 

The bottom of the plate was wiped with a water-moistened, lint-free towel and 

the plate was read immediately with the SPECTROstarNano plate reader at 450 

nm.  
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2.6.7 Salivary CRP calculations  
 
An average of the optical density (OD) of each standard and sample was 

calculated and the average OD of the zero wells subtracted from each average 

OD to calculate the net OD. The net OD of the standards were imported into 

GraphPad Prism (v7.0) to generate a linear curve (Figure 2.5). The same 

software was used to interpolate the standard curve and retrieve the 

concentration of CRP in participant’s samples. The concentration of CRP was 

corrected for the dilution by multiplying by ten. Participant’s samples that were 

outside the linear range of the curve were further diluted and re-assayed. In 

total, four assays were run to analyse 132 saliva samples. The average r-

squared value of standard curves was 0.99. The inter-assay coefficient of 

variation was 14%. 

 

 

 
Figure 2.5 Typical standard curve for CRP ELISA. 

 

 

 
 
 
 

R2=0.9987 
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2.7 Salivary Vitamin D ELISA  
 
2.7.1 Saliva sample collection 
 
Surplus saliva collected via the Salimetrics Oral Swab method was used for the 

vitamin D ELISA assay.  

 

2.7.2 Vitamin D ELISA sensitivity and test principle  
 
Vitamin D was quantified in saliva samples using the 25-OH Vitamin D (total) 

ELISA kit (DX-EIA- 5396, Oxford Biosystems). The analytical sensitivity of the 

kit, or lower limit of detection was 2.89ng/ml. The test was based upon the 

principle of competitive binding (Figure 2.6). Vitamin D binding globulin (VDBG) 

is immobilised to the 96-well plate. Endogenous 25-OH Vitamin D from the 

participant’s sample competes with a 25-OH Vitamin-D3-biotin conjugate for 

binding to the VDBG. 25-OH Vitamin D-biotin that binds to VDBG is detected by 

peroxidase-labelled streptavidin after a washing stage is performed to remove 

unbound components. A colour reaction is started by addition of TMB enzyme 

substrate and stopped with a solution of 0.5M sulphuric acid. The colour 

intensity is inversely proportional to the concentration of 25-OH Vitamin D in the 

sample. 

 

 

Figure 2.6. Competitive ELISA Test Principle: (1) addition of saliva 

samples or standards, (2) add Vitamin-D3-biotin conjugate to compete 

with salivary and standard vitamin D for VDBG (3) wash away unbound 

proteins (4) addition of substrate for colour reaction.  



 76 

 

2.7.3 Saliva sample preparation 
 
Saliva samples were allowed to thaw at room temperature before they were 

vortexed and centrifuged at x1500g for fifteen minutes, in order to remove 

mucins and particulate matter that can interfere with the assay. Saliva was not 

diluted for this assay.  

 

2.7.4 Assay preparation 
 
All reagents and the microtitre plate were brought to room temperature for a 

minimum of 30 minutes before use. Reagents were mixed thoroughly by 

inversion to avoid foaming, prior to use. 10mL of Working Conjugate Solution 

was prepared by mixing Enzyme Conjugate with Enzyme Complex in a 1:1 

ratio. Next, a 1X wash buffer was prepared using 30mL of Wash Buffer 

Concentrate (40X) and 1170mL of deionized water. Six standard samples 

ranging from 0ng/mL to 130ng/mL were provided with the kit. 39 samples were 

run in each microtitre plate, with all samples run in duplicates.  

 
2.7.5 Assay procedure 
 
Firstly, total 25-OH Vitamin D had to be extracted from VDBP in saliva, standard 

and control samples. This step involved the incubation 25µL of these samples 

with 50µL of denaturation buffer into separate 1.5mL Eppendorf tubes. These 

tubes were incubated at 37°C for 30 minutes. Next, 200 µL of Neutralization 

Buffer and 100µL of Working Conjugate Solution was added to each vial and 

the tubes were mixed thoroughly by inversion for 10 seconds. 150 µL of this 

mixed solution of each mixed solution was transfer to the appropriate wells in 

the microtitre plate using new disposable tips. The plate was sealed using an 
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adhesive and incubated at 37°C for 60 minutes. After incubation, a squirt bottle 

was used to load each well with wash buffer before discarding the solution. This 

wash stage was repeated four times before a clean paper towels were used to 

pat the plate dry. Using a multi-channel pipette, 150µL of TMB substrate 

solution was added to each well and the plate incubated at room temperature. 

After 15 minutes, 100µL of sulphuric acid stop solution was added to the wells 

and the turned into a yellow colour. The plate was read within 10 minutes using 

the SPECTROstarNano plate reader at 450 nm. 

 

2.7.7 Salivary vitamin D calculations  
 
An average of the OD of each standard and sample was calculated. The 

average OD of the standards were imported into GraphPad Prism (v7.0) to 

generate a 4-parameter logistic curve (Figure 2.7). The same software was 

used to interpolate the standard curve and retrieve the concentration of vitamin 

D in participant’s samples. In total, four assays were run to analyse 132 saliva 

samples. The average r-squared value of standard curves was 0.99. The inter-

assay coefficient of variation was 3.6%. 

 

 
Figure 2.7 Typical standard curve for vitamin D ELISA 
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2.8 Urinary 8-OHdG ELISA 
 

2.8.1 Urine sample collection 
 
Participants collected one mid-stream urine sample into a polypropylene 

universal container. Between 10-30mls of sample was obtained per participant 

and transported to the laboratory on ice, where it was aliquoted into three 1ml 

solutions in separate Eppendorf tubes. 3µL of Gentamycin (Sigma) was added 

to each tube to prevent microbial growth and stored at -80ºC. Surplus urine was 

stored at -20ºC. A 24-hour collection of urine for 8-OHdG analysis could have 

provided a more precise result, as 8-OHdG levels can vary between different 

spot samples collected in one day (Barregard, et al., 2013). However, this would 

have been impractical for this investigation and could possibly have affected our 

participation rates. To control for intra-individual variation in urinary 8-OHdG 

levels, a creatinine correction was applied. Barregard and colleagues (2013) 

report that in creatinine-adjusted levels, the variation is low (CV of 12%).  

 
2.8.2 8-OHdG ELISA sensitivity and test principle 
 
The DNA Damage EIA Kit (AD-EKS-350, Enzo Life Sciences) was used to 

perform the quantification of 8-OHdG in urine samples via a competitive ELISA 

reaction. The analytical sensitivity of the kit, or lower limit of detection was 0.59 

ng/ml. The assay incorporates the use of a 96-well plate with pre-bound 8-

OHdG. 8-OHdG in urine samples, or known concentration standards, competes 

with 8-OHdG monoclonal antibodies to bind to 8-OHdG coating the wells. Anti-

8-OHdG that successfully bind become immobilized in the wells whilst unbound 

8-OHdG and antibodies are washed away. HRP conjugate is the secondary 

antibody which binds to the immobile anti-8OHdG antibody. The substrate: 

tetramethylbenzidine is added to develop the assay and produce a yellow 
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colour. The intensity of the yellow colour is inversely proportional to the 

concentration of 8-OHdG. The absorbance of the known concentrations of 8-

OHdG are used to generate a 4-parameter logistic curve and calculate the 

unknown concentrations of 8-OHdG in samples.  

 

2.8.3 Urine sample preparation 
 
Prior to each assay run, 39 urine samples were allowed to thaw and centrifuged 

at x2,000g for ten minutes at room temperature. 150uL of urine was prepared in 

a 1:20 dilution with sample diluent (Part#: 80-150 of ADI-EKS-350 Kit). Samples 

were vortexed for ten seconds before being loaded into the assay plate. 

 
2.8.4 Reagent and assay preparation 
 
All reagents were brought to room temperature and mixed gently prior to the 

assay procedure. A 2-fold serial dilution of the 8-OHdG standard (Part#: 80-

1513 of ADI-EKS-350 Kit) was undertaken to produce seven concentrations 

ranging from 60ng/ml to 0.94ng/ml using sample diluent (part 80-150). A 2X 

wash buffer (Part#: 80-1287) was diluted to a 1x concentration with distilled 

water.  Anti-8-OHdG (Part#: 80-1514) and Anti-Mouse IgG: HRP Conjugate 

(Part#: 80-1515) were also diluted as per the manufacturer’s guidelines. A plate 

plan was produced (Figure 2.8) to determine the number of wells required and 

appropriate locations for loading samples and standards in duplicate.  
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Figure 2.8 Typical plate plan for 8-OHdG assay, C3àH12 are loaded with 

unknown samples (US) in duplicates and labelled with participant code. 

 

2.8.5 Assay procedure 
 
50µL of sample diluent was loaded into the ‘zero’ wells to serve as a blank. 

50µL of prepared standards and unknown samples were loaded into 

appropriate wells followed by the Anti-8-OHdG antibody, excluding the ‘zero’ 

wells. The plate was covered and incubated at room temperature (RT) for one 

hour. The contents of the plate were then emptied and the plate was loaded 

with wash buffer to thoroughly remove 8-OHdG and unbound antibodies. A 

squirt bottle was used to load the plate with wash buffer and rinse off five times. 

On the sixth occasion, the plate was patted dry on clean paper towels. 100µL of 

Anti-Mouse IgG: HRP Conjugate was loaded into all wells except the blank and 

the plate incubated for one hour at RT. The washing stage was repeated again, 

followed by addition of 100µL of TMB Substrate into all wells and incubation for 

fifteen minutes in the dark at RT. Immediately after, 100µL of stop solution was 

added to all wells to stop further colour development. The absorbance of all 

wells was measured at 450nm in the SPECTROstarNano plate reader.  
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2.8.7 Urinary 8-OHdG calculations 
 
An average of the optical density (OD) of each standard and sample was 

calculated and the average OD of the blank wells subtracted from each average 

OD to calculate the net OD. The net OD of the standards were imported into 

GraphPad Prism (v7.0) to generate a 4-parameter logistic curve (Figure 2.9). 

The same software was used to interpolate the standard curve and retrieve the 

concentration of 8-OHdG in participant’s samples. The concentration of 8-

OHdG was corrected for the dilution by multiplying by twenty. In total, four 

assays were run to analyse 132 urine samples. The average r-squared value of 

standard curves was 0.99. The inter-assay coefficient of variation was 12.7%.  

 

 
 

Figure 2.9 Typical standard curve for 8-OHdG ELISA. 

 
 
 
 
 

R2=0.9912 
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2.8.8 Creatinine quantification and correction  
 
Creatinine was assessed in a fresh aliquot of urine by the University of 

Westminster Blood Testing Service - a UKAS accredited service. Samples were 

analysed in the ILab Aries based on the colorimetric methodology between the 

reaction of creatinine with picric acid under alkaline conditions. Urinary 

creatinine (mg/ml) was calculated by multiplying the concentration of creatine 

(mmol/L) in urine samples by the molecular weight of creatine (113.12g/mol) 

then divided by one hundred to correct for units. Final 8-OHdG (ng/ml 

creatinine) was calculated by dividing urinary 8-OHdG (ng/ml) by urinary 

creatinine (mg/ml).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83 

2.9 Buccal Cytome Assay  
 
The buccal cytome assay (BCA) was performed within one week of buccal cell 

sample collection according to the protocol published by Thomas and 

colleagues (2009), with modifications detailed below.  

 
2.9.1 Buccal cell sample collection 
 
Participants rinsed their mouth with one cup of water immediately before 

sample collection. A soft, small-headed brush was rotated ten times in a spiral-

outward motion to collect a sufficient number of cells from the right cheek. The 

tip of the brush was broken off and placed inside a container with 

Saccomanno’s fixative. This process was then repeated for the left cheek. 

Samples were immediately placed on ice and transported to the laboratory 

where they were stored at 4ºC in Saccomanno’s fixative until processing and 

fixation onto a microscopic slide. Sample processing was carried out within 

seven days of sample collection. The product numbers and suppliers for buccal 

cell sample collection equipment are listed in Table 2.4. 

Table 2.4 Materials for Buccal Cell Sample Collection  

Product  Purpose Source Catalogue/reference 

Number 

Cervibrush LBC 

Sampler 

Buccal cell collection CellPath 

Ltd.  

NCA-0780-02A  

 

Saccomanno’s Fixative 

(0.2% Carbowax in 

50% Alcohol)  

Cell preservative 

during sample storage 

and transfer  

Clin-

Tech 

641999 

25ml Flat Base Tubes, 

54x27mm 25ml 

Polystyrene Screw Cap 

Sterile  

Storage of cell sample 

until processing stage 

Sarstedt  60.9922.115  
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2.9.2 Sample wash and preparation for fixation  
 
The tip of the brush was removed from the Saccomanno’s fixative and scraped 

against the edge of the container to dislodge any attached cells. The cell 

sample solution from the left and right cheeks was then poured into separate 

10mL tubes to proceed with the washing stage. The washing stage consisted of 

centrifugation at 581g for ten minutes at room temperature followed by 

aspiration of the supernatant to leave behind a pellet of cells in 1mL of fixative. 

5mL of buccal cell buffer was added prior to vortexing of the sample for 10 

seconds. The wash stage was repeated four times per tube of sample.  

 
At the end of the fourth wash, 4ml of buccal cell buffer was added and both left 

cheek and right cheek samples were pooled into one 30mL container. A 25G 

needle and syringe were used to draw up the sample and flush it back into the 

container for homogenization. The sample was drawn into the syringe again 

and filtered through a nylon membrane into a new 10mL tube to further remove 

debris and break up large aggregates of cells. Next, the tube was centrifuged at 

581g and all the supernatant was removed to leave behind a pellet of cells. 

Cells were then resuspended in 1mL of fresh buccal cell buffer. 50µL of DMSO 

was added to promote cell separation, prior to a ten second vortex of the 

sample. The product numbers and suppliers for buccal cell sample washing 

equipment are listed in Table 2.5. 
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Table 2.5 Materials for washing and preparation of cell samples  

 
Product  Purpose Source Catalogue/reference 

Number 

10ml Polystyrene 

screw cap sterile 

tubes 

Storage of cells 

during processing 

Sarstedt 60.9921.829 

Trizma 

Hydrochloride 

Component of 

Buccal Cell Buffer 

for sample 

washing  

Sigma T3253-250G 

Ethylenediaminetet

raacetic acid 

powder 

Component of 

Buccal Cell Buffer 

for sample 

washing  

Sigma ED-500G 

Sodium Chloride Component of 

Buccal Cell Buffer 

for sample 

washing  

Sigma S5886-500G 

12ml NORM-JECT 

Syringe 

Homogenizing 

and filtration 

Henke 

Sass 

Wolf 

4100-000V0 

Sterican 0,50 x 

16mm, 25G sterile 

needles 

Homogenizing 

and filtration 

Fisher 465-7853 

Swinnex Filter 

Holders 

Filtration of cell 

sample 

Merck 

Millipore 

SX0002500  

Nylon Net Filters 

100um 

Filtration of cell 

sample 

Merck 

Millipore 

NY1H02500 

Dimethyl sulfoxide 

(DMSO) 
Cell separation Sigma D2650-6X5ML 
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2.9.3 Cell fixation and staining  
 
Glass microscope slides were cleaned with 70% ethanol and left to air dry 

before being labelled with the date and participant code. Slides were assembled 

into apparatus for cytocentrifugation – a filter card and cytocentrifuge cup held 

within a meal clip. 150µL of cell sample was added to each cytocentrifuge cup. 

Slides were then centrifuged at 600RPM for five minutes at room temperature, 

and allowed to air dry for ten minutes.  

 
Slides were fixed for ten minutes in a 3:1 ethanol/acetic acid solution, and left to 

air dry vertically in a rack for a further ten minutes. Subsequent steps were 

taken to dehydrate the sample in two concentrations of ethanol (50% and 20%) 

for one minute each and re-hydrated for two minutes in distilled water. Slides  

were immediately transferred into a coplin jar containing a 5M solution of HCL 

for thirty minutes, and next placed under a running tap for three minutes. Slides 

were then placed inside a coplin jar of Schiff’s reagent for one hour in the dark. 

Next, slides were placed under a running tap for six minutes and then rinsed 

with distilled water before and after being taken to stain with light green for thirty 

seconds. Slides were assessed under a light microscope to assess cell 

concentration and staining efficacy. Unsatisfactory slides (low cell counts, 

debris obscuring cells or poor staining) were repeated and two slides were 

produced per participant. Each slide was placed in a rack, covered with foil and 

left to dry overnight at room temperature. Ultimately, DPX was used to apply a 

cover glass and slides were stored in a box at room temperature.  The product 

numbers and suppliers for buccal cell sample fixation and staining equipment 

are listed in Table 2.6. 
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Table 2.6 Materials for cell fixation and staining   

 
Product  Purpose Source Catalogue/referen

ce Number 

Single Cytofunnel 

Disposable Sample 

Chambers with 

White Filter Cards 

Cell transfer onto 

microscope slide 

Thermo 

Scientific 

5991040 

Superfrost 

Microscope slides 

76x26mm 

Microscopy Thermo 

Scientific 

SFG90 Blue 

Ethanol absolute Fixation VWR 20821.330 

Acetic Acid Fixation Sigma 45726-1L-F 

Hydrochloric Acid Fixation Amresco E484-500ML 

Feulgen Stain 

(Schiff’s Reagent)  

Staining Nuclei Cell Path HS265-500 

Light Green 

(Masson) Stain 

Staining Cytoplasm Cell Path HS405-500 

DPX  Mounting Medium Cell Path SEA-1300-00A 

Cover glasses 

22x22mm 

Mounted to 

microscope slide 

Thermo 

Scientific 

12372108 

 

2.9.4 Microscopy and Scoring  
 
A Carl Zeiss Primo Star Light Microscope (37081) was used for analysis. The 

microscope was connected to a JENOPTIK ProgRes CT5 USB C Camera (D-

07739 Jena) and images were captured using ProgRes Software. One 

thousand cells per participant were imaged from the top right edge of the slide 

to the bottom left, at a magnification of x1000 with immersion oil. Slides were 

scored for their frequency of normal differentiated cells (NDCs), cells with 

micronuclei (MNi), multi-nucleated cells (MNCs) and cells with nuclear 

buds/nucleoplasmic bridges (NBUDs/NBridges). The criteria for each cell type 

are described in Table 2.7. The frequency of each cell type was reported as per 

1000 cells. In an attempt to increase the accuracy of the scoring, the author of 
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thesis attended the ‘Human Micronucleus Network Workshop’ held in London 

for training, led by Professor Michael Fenech in 2018.  

Table 2.7 Scoring criteria for BMA (images captured by the author of the thesis). 

 
 

Normal 

Differentiated 

cell (NDCs) 

 

 
 

 

NDCs have a uniformly stained 

nucleus, which is oval or round in shape. 

These cells are larger in size than basal 

cells and have a smaller nuclear: 

cytoplasmic ratio.  

 

 

Multi-

nucleated 

Cells (MNCs) 
 

MN cells contain two or more main nuclei. 

The nuclei can be in very close proximity 

and may also touch each other. The 

morphology of the nuclei is that observed in 

NDCs. 

 

Nuclear 

buds/nucleop

lasmic 

bridges 

(NBUDs/NBri

dges)  

Nuclei appear to have a fine ‘thread’ like 

structure connecting a constriction of the 

main nucleus with a smaller segment of 

itself: suggestive of elimination of nuclear 

material by a budding process. 

 

 

Micronuclei 

(MNi)  

 
 

Cells with MNi are marked by the presence 

of a main nucleus and one or more smaller 

nuclear structures. MNi are round or oval in 

shape and their diameter range between 

1/3 and 1/16 of the main nucleus, have the 

same staining intensity and texture as the 

main nucleus and are located within the 

cytoplasm. Only cells with a ‘normal’ main 

nucleus are scored for MNi. Multiple MNi 

can be identified in once cell. 
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2.10 Salivary Telomere Length (STL) Quantification by 
Quantitative Polymerase Chain Reaction (qPCR)  
 

2.10.1 Saliva sample collection 
 
2mLs of saliva was collected from each participant via an un-stimulated passive 

drool method, whereby the participant tilted their head forward and drooled into 

the Saliva DNA Collection and Preservation Device (RU35710, Norgen Biotek 

Corp) through a collection funnel. This device incorporated a ‘preservation’ 

ampoule which is emptied into the saliva sample after discarding the funnel, 

and mixed by inversion ten times. A 4mL mixed saliva sample was suitably 

stored at room temperate as per the manufacture’s guidance.  

 

2.10.2 DNA Extraction  
 
DNA was extracted from saliva using the DNA isolation kit (RU35700, Norgen 

Biotek Corp). Firstly, saliva samples were gently mixed by inversion before 

500µL of saliva was transferred to a 2mL micro-centrifuge tube. Next 

Proteinase K was thoroughly mixed and 20µL was added to the tube. The 

sample was vortexed for ten seconds and incubated at 55°C for 15 minutes. 

200µL of Binding Buffer B was added to the sample prior to another round of 

vortex for ten seconds and incubation at 55°C for 5 minutes. An equal volume 

(720µL) of isopropanol was added and the sample was gently inverted ten 

times before centrifugation for 3 minutes at x20,000g. The supernatant was 

carefully discarded and the micro-centrifuge tube was inverted on a paper towel 

to remove residual isopropanol. 500µL of a 70% ethanol solution was added 

and the tube was left to stand at room temperature. After one minute, the 

sample was centrifuged again at x20,000g for one minute and the supernatant 

was discarded. The tube was inverted on paper towels for 5 minutes to remove 
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excess ethanol and to air dry the DNA pellet. Next, the DNA pellet was 

resuspended in 50µL of TE buffer, vortexed for thirty seconds and incubated at 

55°C for 5 minutes to ensure complete rehydration. A final centrifugation stage 

followed at x20,000g for 1 minute to pellet any insoluble material. The clear 

liquid was then carefully transferred to a 1.5mL sterile micro-centrifuge tube and 

labelled with the participant code and date. Following assessment of DNA for 

purity and yield, the sample was stored at -20°C until qPCR analysis. The 

product numbers and suppliers for DNA extraction equipment are listed in Table 

2.8. 

Table 2.8 Materials for DNA extraction from saliva 

Product  Purpose Source Catalogue/reference 
Number 

1.5ml BRAND Sterile 

microcentrifuge tubes  

DNA Extraction and 

qPCR Reaction 
Preparation  

Fisher 780400 

DNA Extraction Kit with 
Proteinase K and Binding 

Buffer B 

DNA Extraction Norgen 
Biotek 

Corp 

RU35700 

Ethanol absolute Fixation VWR 20821.330 

TE Buffer DNA storage and 
Gel Electrophoresis 

Sigma  93283 

 

2.10.3 DNA Assessments  
 
The purity and concentration of all DNA samples was assessed using a 

NanoDrop 1000 Spectrophotometer. 1µL of purified DNA was analysed using 

the default setting for DNA. The 260/280 ratio and concentration per microliter 

were recorded. During the optimisation stage, DNA was visualised on a 1% 

agarose gel. The gel was prepared by heating 0.5g of agarose (Appleton 

Woods, Birmingham, UK) in 50mL of 1X Tris/Borate/EDTA (TBE) (Thermo 

Fisher Scientific) buffer using a microwave to dissolve all solid particles. The 
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heated solution was allowed to cool for 10 minutes and 2μl of SYBR Gold DNA 

staining dye (Thermo Fisher Scientific) was added to the gel. The agarose 

solution was then poured into a gel tank and allowed to solidify. DNA was 

concentrated to 20ng/μl using nuclease free water (Invitrogen) and loading 

buffer (1.6μl per 5μl of DNA) and between 8-10μl was loaded per well. 1μl of 

pre-dyed, 1kb DNA ladder (Thermo Fisher Scientific) was loaded and the gels 

were run at 100 volts for 30 minutes prior to UV analysis. 

 
2.10.4 qPCR Principle  
 
A qPCR protocol established by O’Callaghan and Fenech (2011), was adapted 

to assess telomere length in DNA extracted and purified from saliva. Two qPCR 

reactions were carried out on each participant’s DNA sample. The first reaction 

was performed to quantify copies of a single copy gene (36B4) and the second 

was performed to quantify the number of telomere repeats (TTAGGG). Salivary 

telomere length (sTL) was calculated by dividing the number of telomere 

repeats by the number of copies of the 36B4 gene. 

 

2.10.5 qPCR Constituents 
 
10μL of qPCR reaction mixture was prepared and composed of 1X PowerUp 

SYBR Green Master Mix (Life Technologies), RT-PCR grade water (Life 

Technologies), 10ng of purified DNA extracted from participants and varied 

concentrations of primers (Integrated DNA Technologies) (Table 2.9) to 

compliment the telomere sequence or 36B4 sequence. A 96-well plate was 

used to run qPCR reactions in the ABI 7500 Fast RT-PCR System (Life 

Technologies). Each plate was run with a 7-point standard curve with 

concentrations ranging from 5ng to 5x10-5 of standard DNA (Integrated DNA 

Technologies) (Table 2.10). Plasmid DNA (Pbr322 Vector, New England 
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Biolabs) was added to wells with standard DNA to ensure the total 

concentration of DNA was 10ng per well. Participant samples were loaded into 

the plate in triplicates. The wells were loaded as ‘No template controls’ (NTC) 

these negative controls contained all qPCR constituents except DNA.  

Table 2.9 Primer sequences and concentrations in qPCR reactions 

Primer Sequence Final Concentration  
Forward Telomere (Tel-1) CGGTTTGTTTGGGTTTG

GGTTTGGGTTTGGG 

TTTGGGTT 

0.3μM 

Reverse Telomere (Tel-2) GGCTTGCCTTACCCTTA

CCCTTACCC 

TTACCCTTACCCT 

0.3μM 

Forward 36B4 (36B4F) CAGCAAGTGGGAAGGT

GTAATCC 

0.3μM 

Reverse 36B4 (36B4R) CCCATTCTATCATCAAC

GGGTACAA 

0.5μM 

Table 2.10. Standard DNA sequences  

DNA Sequence 

36B4 CAGCAAGTGGGAAGGTGTAATCCGTCTCCACAGACAAGGCC

AGGACTCGTTTGTACCCGTTGATGATAGAATGGG 

Telomere (TTAGGG)14 

 

 
2.10.6 qPCR Run Method  
 
All qPCR run cycles were started at 95°C for 10 minutes for the initial 

denaturing stage, and then proceeded into 40 cycles of 95°C for 15 seconds, 

60°C for 30 seconds (annealing stage), and 72°C for 30 seconds (extending 

stage). Each reaction was followed with the default setting for melt curve 

analysis on the ABI 7500 RT-PCR machine.  



 93 

2.10.7 Quality control and salivary telomere length 
calculations  
 
The concentration of the telomere standards were converted to their 

corresponding Log10 Telomere length in kbp using Avagadro’s constant by 

following the method of O’Callaghan and Fenech (2011). Table 2.11 shows the 

calculation of the telomere standard across it’s serial dilution. This calculation 

was based on the principle that the oligomer standard is 84 bp in length with a 

molecular weight of 26667.2, and the weight of one molecule is equal to the 

molecular weight/Avogadro's number. Similarly, this process was repeated for 

the single copy gene standard (Table 2.12), based on the principle that the 

synthesised 36B4 oligomer standard is 75 bp in length with a MW of 23268.1. 

Next, the average cycle threshold (Ct) values of each standard and sample was 

calculated in MS Excel. The average Ct of the standards were imported into MS 

Excel to generate two linear curves (Figure 2.10). Standard curves were 

checked for qPCR efficiency using the Thermofisher qPCR efficiency calculator 

to ensure an efficiency between 90-110% was achieved. Reactions with an 

efficiency outside this range were repeated. Reactions with positive 

amplification signals in the NTC were also repeated. In total, qPCR analysis 

was adequately conducted over 18 runs. The average r-squared value for linear 

standard curves was 0.99 and the average qPCR efficiency was 98.88%. The 

equations of linear standard curves were used to calculate Log10 Telomere 

length and the number of 36B4 amplicons in a haploid genome. Absolute 

telomere length was calculated by dividing Log10 Telomere length by the 

respective value of Log10 36B4 amplicons for each participant.  
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Table 2.11 Conversion of telomere standard concentrations into kbp (Courtesy of Dr Shahid Chaudhary, University Hospital Zurich).  

 
Concentration concentration 

in ng 

molecules 

in gm 

Mol 

weight/Avogadros 

number 

Molecules 

of oligomer 

in gm std 

Amount of 

telomere*84 

Amount of 

telomere 

(Kbp) 

log10 (TL/Kb) 

50 1.00E-09 5.00E-08 4.40E-20 1.14E+12 9.55E+13 9.55E+10 10.97979661 

5 1.00E-09 5.00E-09 4.40E-20 1.14E+11 9.55E+12 9.55E+09 9.979796614 

0.5 1.00E-09 5.00E-10 4.40E-20 1.14E+10 9.55E+11 9.55E+08 8.979796614 

0.05 1.00E-09 5.00E-11 4.40E-20 1.14E+09 9.55E+10 9.55E+07 7.979796614 

0.005 1.00E-09 5.00E-12 4.40E-20 1.14E+08 9.55E+09 9.55E+06 6.979796614 

0.0005 1.00E-09 5.00E-13 4.40E-20 1.14E+07 9.55E+08 9.55E+05 5.979796614 

0.00005 1.00E-09 5.00E-14 4.40E-20 1.14E+06 9.55E+07 9.55E+04 4.979796614 

0.000005 1.00E-09 5.00E-15 4.40E-20 1.14E+05 9.55E+06 9.55E+03 3.979796614 

0.0000005 1.00E-09 5.00E-16 4.40E-20 1.14E+04 9.55E+05 9.55E+02 2.979796614 
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Table 2.12 Conversion of 36B4 standard concentrations into kbp (Courtesy of Dr Shahid Chaudhary, University Hospital Zurich). 

 
Concentration concentration in 

ng 

molecules in 

gm 

Mol weight/Avogadros 

number 

Molecules of 

oligomer in 

gm std 

Amount of 36B4 

amplicons in 

diploid genome 

Log10 36B4 

amplicons  

50 1.00E-09 5.00E-08 3.80E-20 1.32E+12 6.58E+11 10.81815641 
 

5 1.00E-09 5.00E-09 3.80E-20 1.32E+11 6.58E+10 9.818156412 
 

0.5 1.00E-09 5.00E-10 3.80E-20 1.32E+10 6.58E+09 8.818156412 
 

0.05 1.00E-09 5.00E-11 3.80E-20 1.32E+09 6.58E+08 7.818156412 
 

0.005 1.00E-09 5.00E-12 3.80E-20 1.32E+08 6.58E+07 6.818156412 
 

0.0005 1.00E-09 5.00E-13 3.80E-20 1.32E+07 6.58E+06 5.818156412 
 

0.00005 1.00E-09 5.00E-14 3.80E-20 1.32E+06 6.58E+05 4.818156412 
 

0.000005 1.00E-09 5.00E-15 3.80E-20 1.32E+05 6.58E+04 3.818156412 
 

0.0000005 1.00E-09 5.00E-16 3.80E-20 1.32E+04 6.58E+03 2.818156412 
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Figure 2.10 Typical qPCR standard curves 
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2.11 Statistical analysis 
 

A total of 132 participants were recruited for statistical analysis. Participants 

were excluded due to specific exclusions criteria (Table 2.3) and due to missing 

data. Secondly, the ROUT test was applied to remove outliers from the dataset. 

The Q (false discovery rate) value was set at 0.2% in order to exclude data with 

most confidence and reduce false positive associations (Motulsky, & Brown, 

2006). The test was applied to all dependent variables (CRP, vitamin D, 8-

OHdG, DNA damage in the buccal mucosa and telomere length) leading to a 

further exclusion of 20 participants. The final sample size for statistical analysis 

was 112.  

 
As part of the primary analysis, participants were arranged into two groups 

based on the RCPCH classification of BMI percentiles as non-obese (>0.4th BMI 

percentile <91st) or obese (3.33 >BMI Z-score). As this investigation compared 

two extreme groups (omitting underweight and overweight participants), a 

normal gaussian distribution was not expected (Appendix XI) and the two-

sample t-test with Welch’s correction was considered for the analysis of means 

at a confidence level of 95%.  

 
Furthermore, participants were classified as obese and non-obese via body fat 

centiles (Table 2.13) and waist circumference centiles (Table 2.14) and the 

same statistical analysis of means was repeated. In order to assess correlations 

between biomarkers and anthropometric ranks, the Spearman rank correlation 

test was selected and applied also at 95% confidence. 

 
Next, based upon the results from the Spearman rank analysis, the most 

significant data was assessed for multiple linear regression to formulate a 
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prediction model. Due to co-linearity between anthropometric markers, only one 

anthropometric was selected to create this model (body fat %).  

 
Finally, participants with a total DNA damage in the buccal mucosa above the 

average frequency identified in healthy children (Thomas, et al., 2009) were 

separated from those with a frequency of DNA damage below the average 

frequency for a retrospective analysis of odds ratio. Five risk factors were 

established based on recommended cut-offs or the upper 95%CI of the average 

value for each biomarker assessed (Table 2.15). Odds ratio was calculated 

using the Baptisa-Pike method and the Fisher’s exact test was used to assess 

significance at a confidence level of 95%.  

 
All statistical analysis described above were completed in GraphPad Prism 

v7.0. 

Table 2.13 Child Growth Foundation classifications of body fat % for males and 

females aged 5-18 years (McCarthy, et al., 2006). 

 
Body Fat % centile Interpretation 

<2nd  Under Fat 

2nd >BF% <85th   Healthy Fat 

> 85th BF% <95th  Over Fat 

>95th Obese  

Table 2.14 Child Growth Foundation classifications of waist circumference centiles for 

males and females aged 5-20 years (McCarthy, et al., 2001). 

 
Waist circumference centile Interpretation 

<0.4th Underweight 

³0.4th WC <91st Healthy weight 

³91st WC <98th Overweight 

³98th Obese  



 99 

Table 2.15 Risk factors and criteria for odds ratio analysis 

 
Risk Factor Cut-off Classified by 

Obesity BMI >98th centile RCPCH 

Obesity Body fat % >95th centile Child Growth 

Foundation 

Obesity Waist circumference 

>95th centile 

Child Growth 

Foundation 

Inflammation CRP >2248 pg/mL Upper 95% CI 

Vitamin D deficiency  Vitamin D <6.229 ng/mL Upper 95% CI 
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3. Results  
 

3.1 Participant Demographics  
 

Data analysis was conducted on a total of 112 participants aged 10-18 years. 

Primarily, participants were classified into control (healthy weight) and case 

(obese) via the RCPCH classification system. Under this classification system, 

the total number of control participants was 58 and the total number of obesity 

cases was 54 (Table 3.1.1).  

 
In order to detect a possible sex bias, the Mann-Whitney test was applied at a 

significance level of 95%. The test confirmed that there were no significant 

differences in the number of male and female participants across and within 

both cohorts (p>0.99) (Figure 3.1.1).  

Table 3.1.1 Contingency analysis of sex across cohorts arranged by RCPCH 

classification of obesity status (Chi-squared test, n=112). 

 
 Controls 

(Non-Ob) 
Cases 
(Ob) 

Difference 
between Means 

p-value 

Sex (n) 
Males 
Females  
Total n 
 

 
27 
31 
58 

 
23 
31 
54 

 
 

NS 

 
 

>0.9999 
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Figure 3.1.1 There is no significant difference between sex across and 

within cohorts via the Mann-Whitney test, p>0.999, n=112.. 
 

 

Furthermore, the demographic means of control and case participants were 

also analysed to deduce differences in age and anthropometric indices. The 

average age of the participants in the healthy weight cohort was 13.6 years and 

the average age of the obese group was 14.7 years. Analysis of this data via 

the t-test with Welch’s correction reveals that participants in the obese cohort 

were on average 1.15 years older than the healthy weight group (p<0.01) 

(Table 3.1.2). In addition, all anthropometric indices of adiposity were 

significantly greater in the obese group when compared to the non-obese 

cohort (p<0.0001). 
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Table 3.1.2 Participant age and anthropometric assessments by RCPCH classification of obesity status, (t-test with Welch’s correction, n=112). 

  
Range 

 
Mean ± SD 

 
 

Difference 
between Means 

 
 
p-value 

 Controls 
(Non-Ob) 

Cases 
(Ob) 

Controls 
(Non-Ob) 

Cases 
(Ob) 

 

 
Age (years) 

 
10-18 

 
10-18 

 
13.55 ± 2.32 

 
14.71 ± 2.16 

 
**1.154 

 
0.0075 

BMI 
 

15.1 – 25.0 25.2 - 63.6 19.72 ± 2.677 
 

40.49 ± 10.08 ****20.78 <0.0001 
 

BMI (z-score) -2.3 – 1.53 1.99 - 4.86 
 

0.29 ± 0.93 3.48 ± 0.81 ****3.189 <0.0001 
 

BF (%) 5 – 34.8 25.3 - 58.9 22.87 ± 6.74 43.18 ± 7.58 ****20.31 <0.0001 
 

WC (mm) 
 

520 – 870 430 - 1590 697.1 ± 68.25 1090 ± 313.9 ****392.6 <0.0001 
 

WHR 0.68 – 0.97 0.57 - 1.38 0.812 ± 0.066 0.907 ± 0.106 ****0.0955 <0.0001 
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In this research, participants were recruited from multiple ethnic groups. These 

groups have been reported as African, Arab, Caucasian, South Asian and 

mixed ethnicity. To deduce differences in the frequency of ethnicities within the 

case and control cohorts, the Chi-squared test was employed at a significance 

level of 95%. As per Figure 3.1.2, there were no significant differences in the 

number of participants from each ethnic group between the obese and control 

cohort. Overall, the total number of Caucasian participants was significantly 

greater than the number of participants from the Arab and Mixed ethnic groups 

(p<0.05).  

 

 

 
 

 

Figure 3.1.2 Ethnic distribution across obese and non-
obese cohorts classified by BMI Z-score. Chi-square test 

analysis reveals no significant difference in ethnicities 
between case and control groups (p=0.4185). There is a 

higher frequency of total Caucasian participants 
compared to Arab (*p=0.03) and Mixed-ethnicity 

(*p=0.0162), n=112. 
 

 

 

 

 

 

African Arab Caucasian Mixed South Asian
0

10

20

30

Fr
eq

ue
nc

y

HW

OB
*

*
Non-Ob 
 

Ob  



 104 

To assess agreement between the different methods of measuring obesity,   

each anthropometric parameter was divided into quartiles and compared 

against the primary parameter of BMI Z-score. Participants that were within the 

same or adjacent quartile were considered to be appropriately classified. 

Participants that were more than one quartile away from their classification 

based on their BMI Z-score, were considered to be ‘grossly misclassified’. The 

assessment of body fat percentage showed most agreement with BMI Z-score 

as all participants were within the same or adjacent quartile (Table 3.1.3).  

Waist circumference was also an appropriate measure of adiposity as it 

classified 97.3% of participants in agreement with BMI Z-score and only 2.7% 

were ‘grossly misclassified’. The greatest ‘gross misclassification’ occurred 

when participants were defined via waist to hip ratio (WHR, 13.4%).  

Table 3.1.3 Percentage of agreement between anthropometric markers and BMI Z-

score across participants.  

 
 Same quartile 

classification 
Adjacent quartile 

classification 
Gross 

misclassification 
 
Body fat (%) 
 

 
61 

 

 
39 

 
0 

 
WC (mm) 
 

 
65 

 
32.3 

 
2.7 

 
WHR  
 

 
36.6 

 
50 

 
13.4 
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To further assess agreement between anthropometric indices, the Spearman 

rank correlation test was applied (Figure 3.1.3). As per Table 3.1.4, the analysis 

indicated a significant correlation between all anthropometric measures 

(p<0.001). However, the strongest correlation existed between BMI Z-score and 

BF%, and the weakest correlations were between WHR and all other 

anthropometric assessments.  

Table 3.1.4 R-squared values as per Spearman rank correlation analysis between 

anthropometric markers, p<0.0001, n=12.   

 
 BMI Z 

vs 
BF %  

BMI Z  
vs  
WC 

 

BMI Z 
vs 

WHR 
 

BF% 
vs 
WC 

BF% 
vs 

WHR 

WC 
vs 

WHR 

R squared  
0.8900 

 
0.8668 

 
0.5245 

 
0.7955 

 

 
0.4367 

 
0.5830 

 

 

Finally, in order to assess the clinical applicability of different obesity 

classification systems, participants were also classified as obese or non-obese 

via the Child Growth Foundation (CGF) cut-offs for bioelectrical impedance and 

waist circumference (Table 2.11.2 and 2.11.3). The obese cohort defined by 

body fat percentage consisted of 49 participants whereas the obese cohort 

defined by CGF criteria for waist circumference consisted of 55 participants 

(Table 3.1.5).  

Table 3.1.5 Participant numbers in obese and non-obese cohorts when defined by 

three different classifications systems.  

 Non-Obese (n) Obese (n) 
BMI (Z-score) 58 54 
BF (%) 63 49 
WC (mm) 57 55 
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Figure 3.1.3 Correlation matrix of all anthropometric indices. Spearman correlation analysis indicates a strong correlation between 
all indices (****p<0.0001, n=112). 
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3.2 Analysis of inflammation status - salivary C-reactive 
protein  
 
For the purpose of assessing inflammation, C-reactive protein (CRP) level was 

measured in saliva. Across all 112 participants, salivary CRP was detected in 

the range of 341.79pg/ml to 7789.2 pg/ml.  

 
Spearman rank correlation analysis was applied to detect associations between 

multiple anthropometric indices and inflammation status (Figure 3.2.1). The 

analysis indicated that levels of CRP in saliva were positively and significantly 

correlated with BMI Z-score and body fat percentage (p<0.01) but had no 

significant correlation with waist circumference and waist to hip ratio. Salivary 

CRP levels were more strongly correlated with BMI-Z score than body fat 

percentage, indicated by a greater R value (Table 3.2.1).  

Table 3.2.1. Spearman rank correlation analysis between salivary CRP and 

anthropometric assessments (n=112).  
 

 
CRP (pg/ml) 

 

 
BMI Z score 

 
Body fat (%) 

 
WC (mm) 

 
WHR 

     
R value 0.2920 

 
0.2619 

 
0.1780 0.1089 

 
95% CI 

 

0.107 – 0.458 0.075 - 0.431 
 

-0.015- 0.357 
 

-0.085 - 0.292 
 

p value  0.0018 0.0053 0.0624 0.2601 

Significance  ** ** ns ns 
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a) 

 

 
b) 
 

 
 
c) 

 
 

 
d) 
 

 

Figure 3.2.1 Spearman rank correlation analysis between anthropometric indices 
and salivary CRP (pg/ml) across all 112 participants coded as obese or non-obese 
via BMI percentile. a) there is a significant positive correlation between BMI Z-score 

and CRP (R=0.292, p<0.01), b) there is a significant positive correlation between 
body fat (%) and CRP (R=0.262, p<0.01), c) there is no significant correlation 

between WC (mm) and CRP (p>0.05), d) there is no significant correlation between 
WHR and CRP (p>0.05). 

 

 
 

 

 

 

 

-4 -2 0 2 4 6

2000

4000

6000

8000

10000

BMI Z Score

C
R

P 
(p

g/
m

l)
HW

Ob

0 20 40 60 80
0

2000

4000

6000

8000

10000

Body Fat %

C
R

P 
(p

g/
m

l)

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

WC (mm)

C
R

P 
(p

g/
m

l)

0.5 1.0 1.5
0

2000

4000

6000

8000

10000

WHR

C
R

P 
(p

g/
m

l)

-4 -2 0 2 4 6

2000

4000

6000

8000

10000

BMI Z Score
C

R
P 

(p
g/

m
l)

HW

Ob
Non-Ob 



 109 

Furthermore, the Welch’s t-test was applied to the average value of salivary 

CRP when participants were divided based on their BMI, BF and WC percentile 

(Figure 3.2.2). The Welch’s t-test analysis indicated that average salivary CRP 

were significantly higher in the cohort of children with obesity when classified by 

BMI (p<0.05) and body fat percentage (p<0.01), whereas the difference in 

salivary CRP when participants are classified via waist circumference was not 

significant. The most significant difference in salivary CRP was seen in children 

with a body fat percentage above 95th centile, who had a 1.4x greater 

concentration than children with a body fat percentage below the 95th centile 

(p<0.01) (Table 3.2.2).  

 

Table 3.2.2. Welch’s t-test analysis of average salivary CRP between Non-obese and 

Obese cohorts classified by BMI, BF % and WC percentile. 

 
 

CRP  
 

Non-
Obese 

BMI<91st 

Obese 
BMI>98th 

Non-
Obese  

BF%<95th  

Obese 
BF%>95th 

Non-
Obese 

WC<98th 

Obese 
WC>98th 

 

n 

 

 
58 

 
54 

 
63 

 
49 

 
57 

 
55 

Average 

(pg/ml) ± SD 

1724 ±  
972.5 

 

2300 ± 
1556 

 

1650 ±  
972.0 

 

2276 ± 
1477 

 

1778 ±  
1232 

2211 ± 
1373 

Difference in 

means 

(pg/ml) 

 

576.3 626 411.2 
 

p value 

 

0.0222 0.0082 0.0985 

Significance  

 

* ** ns 
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a)  

 
b) 

 
c) 

 
 

Figure 3.2.2 Welch’s t-test of average CRP levels. a) average 
CRP is higher in the obese (n=54) cohort when compared to the 
non-obese cohort (n=58) when participants are classified by BMI 

percentiles (*p<0.05), b) average CRP is higher in the obese 
cohort (n=49) when compared to the non-obese cohort (n=63) 
classified by body fat percentiles (**p<0.01), c) no significant 
difference in average CRP in the obese cohort (n=55) when 

compared to the non-obese cohort (n=57) classified by waist 
circumference percentiles (p>0.05). 
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3.3 Analysis of micronutrient status - salivary vitamin D 
 

To determine micronutrient status in obesity, Vitamin D levels were detected in 

saliva. There were six participants that had salivary vitamin D levels that could 

not be interpolated from the standard curve. Five of these participants were 

classified as obese via BMI Z-score. All six participants were removed from the 

data set for statistical analysis in this section. Across the 106 participants, the 

range of Salivary vitamin D was 0.07ng/ml to 17.44ng/ml. 

 

Firstly, spearman rank correlation analysis was applied to detect correlations 

between multiple anthropometric indices and salivary vitamin D status (Figure 

3.3.1). The analysis indicates all anthropometric markers were significantly and 

negatively correlated with salivary vitamin D (p<0.01). Based on an analysis of 

R-values, body fat percentage had the most significant inverse correlation with 

salivary vitamin D (R=-0.32, p<0.001), followed by WHR (R=-0.262, p<0.01) 

(Table 3.3.1). 

Table 3.3.1. Spearman rank correlation analysis between salivary vitamin D 

and anthropometric assessments (n=106).  
 
Vitamin D 
(ng/mL) 

 

BMI Z score Body fat (%) WC (mm) WHR 

     
R value -0.2512 

 
-0.3206 

 
-0.2523 -0.2618 

 
95% CI 

 

-0.426 - -0.058 
 

-0.486 - -0.133 
 

-0.427 - -0.059 
 

-0.436 - -0.071 
 

p value  0.0094 0.0008 0.0091 0.005 

Significance  ** *** ** ** 
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a) 

 

 
b) 

 
 

 
c) 

 

 
d) 

 
 

Figure 3.3.1 Spearman rank correlation analysis between salivary vitamin D and 
anthropometric indices across all 112 participants coded as obese or non-obese via 
BMI percentile. a) there is a significant inverse correlation between BMI Z-score and 

vitamin D (R=-0.25, p<0.01), b) there is a significant inverse correlation between 
body fat (%) and vitamin D (R=-0.32, p<0.001), c) there is a significant inverse 
correlation between WC (mm) and vitamin D (R=-0.25, p<0.01), d) there is a 

significant inverse correlation between WHR and vitamin D (R= -0.26, p<0.01). 
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Furthermore, the Welch’s t-test was applied to the average value of salivary 

vitamin D when participants were divided based on their BMI, BF and WC 

percentile (Figure 3.3.2). Average salivary vitamin D levels were significantly 

lower in obese cohorts classified by body fat percentage (p<0.05). Participants 

with a body fat percentage above the 95th centile had a -1.94ng/ml average 

decrease in salivary vitamin D compared to participants with a body fat 

percentage below the 95th centile (Table 3.3.2). Although salivary vitamin D 

levels were lower in participants with obesity as classified by BMI or waist 

circumference, these results were not statistically significant.  

Table 3.3.2. Welch’s t-test analysis of average salivary vitamin D between Non-obese 

and Obese cohorts classified by BMI, BF % and WC percentile. 

 
 

Vitamin D 
(ng/mL) 

 

Non-Obese 
BMI<91st 

Obese 
BMI>98th 

Non-
Obese  

BF%<95th  

Obese 
BF%>95th 

Non-
Obese 

WC<98th 

Obese 
WC>98th 

n 

 
57 49 62 48 55 51 

Average  

± SD 

8.056 ± 3.54 
 

6.79 ± 
4.96 

 

8.214 ± 
3.522 

 

6.276 ± 
4.952 

 

8.256 ± 
3.969 

6.624 ± 
4.477 

Difference 

in means 

 

-1.266 -1.938 -1.632 
 

  
411.2 

 

 

p value 

 

0.1397 0.024 0.0505  0.0985  

Significance  

 

ns * ns 
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a) 

 
 

b) 

 
 

c) 

 
 

Figure 3.3.2 Welch’s t-test of average vitamin D (VD) levels. a) 
average VD is not significantly lower in the obese (n=49) cohort 

when compared to the non-obese cohort (n=57) when participants 
are classified by BMI percentiles (p>0.05), b) average VD is 

significantly lower in the obese cohort (n=48) when compared to 
the non-obese cohort (n=62) classified by body fat percentiles 
(*p<0.05), c) average VD is not significantly lower in the obese 
cohort (n=51) when compared to the non-obese cohort (n=55) 

classified by waist circumference percentiles (p>0.05). 
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3.4 Urinary 8-OHdG Analysis   
 

For the purpose of assessing levels of oxidative DNA damage in obesity,  

8-OHdG was measured in urine samples. Across all 112 participants, urinary 8-

OHdG was detected in a range of 18.8ng/ml – 545.99ng/ml.  

 
Spearman rank correlation analysis was applied between multiple 

anthropometric indices and urinary 8-OHdG (Figure 3.4.1). The analysis 

revealed that urinary 8-OHdG was significantly and positively correlated with 

waist circumference (p<0.05) and waist to hip ratio (p<0.01), but not with BMI or 

body fat percentage. Based on an analysis of R-values, urinary 8-OHdG levels 

were most strongly correlated with WHR (Table 3.4.1).  

Table 3.4.1. Spearman rank correlation analysis between urinary 8-OHdG and 

anthropometric assessments (n=112).  
 
8-OHdG (ng/mL 

Creatinine) 
 

BMI Z score Body fat (%) WC (mm) WHR 

     
R value 0.1633 

 
0.1459 

 
0.3100 0.2720 

 
95% CI 

 

-0.029 - 0.344 
 

-0.046 - 0.328 
 

0.473 - 0.127 
 

0.0856 - 0.44 
 

p value  0.0854 0.1248 0.0287 0.0037 

Significance  ns ns * ** 
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a) 

 

 
b) 

 
 
c) 

 

 
d) 

 
 

Figure 3.4.1 Spearman rank correlation analysis between urinary 8-OHdG and 
anthropometric indices across all 112 participants coded as obese or non-obese via 

BMI percentile. a) there is no significant correlation between BMI Z-score and 8-
OHdG (R=0.163, p>0.05), b) there is no significant between body fat (%) and 8-

OHdG (R=0.146, p>0.05), c) there is a significant inverse correlation between WC 
(mm) and 8-OHdG (R=0.31, p<0.05), d) there is a significant inverse correlation 

between WHR and 8-OHdG (R=0.27, p<0.01). 
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Furthermore, the Welch’s t-test was applied to the average value of urinary 8-

OHdG when participants were divided based on their BMI, BF and WC 

percentile (Figure 3.4.2). Obesity, when classified by BMI and waist 

circumference was associated with increased urinary 8-OHdG (p<0.05). No 

significant difference was identified in average 8-OHdG levels when participants 

were classified by their body fat percentage. An analysis of the difference in 

means indicates that classification by BMI gave the largest and most significant 

difference in mean 8-OHdG levels. The obese participants had on average a 

x1.28 greater level of urinary 8-OHdG compared to non-obese participants.   

 
 

Table 3.4.2. Welch’s t-test analysis of average urinary 8-OHdG between Non-obese 

and Obese cohorts classified by BMI, BF % and WC percentiles. 
 

 

8-OHdG 
(ng/mL 

Creatinine) 

Non-
Obese 

BMI<91st 

Obese 
BMI>98th 

Non-Obese  
BF%<95th  

Obese 
BF%>95th 

Non-Obese 
WC<98th 

Obese 
WC>98th 

n 

 
58 54 49 63 57 55 

Average  

± SD 

150.9 ± 
85.58 

 

193.2 ± 
114.0 

 

171.3 ± 
102.0 

 

191.8 ± 
116.1 

 

151.5 ± 
82.62 

191.8 ± 
116.1 

Difference in 

means 

 

42.27 20.48 40.25 
 

  
411.2 

 

 

p value 

 

0.0296 0.2681 0.0377  0.0985  

Significance  

 

* ns * 
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a) 

 
 

b) 

 
 

c) 

 
 

Figure 3.4.2 Welch’s t-test of average 8-OHdG levels. a) average 
8-OHdG is higher in the obese (n=54) cohort when compared to 
the non-obese cohort (n=58) when participants are classified by 

BMI percentiles (*p<0.05), b) average 8-OHdG is not significantly 
higher in the obese cohort (n=49) when compared to the non-

obese cohort (n=63) classified by body fat percentiles (p>0.05), 
c) average 8-OHdG is higher in the obese cohort (n=55) when 
compared to the non-obese cohort (n=57) classified by waist 

circumference percentiles (*p<0.05). 
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Finally,  
Finally, to assess whether urinary 8-OHdG levels of each participant may be 

linked with their status of inflammation or salivary vitamin D, the Spearman rank 

correlation test was applied (Figure 3.4.3). The analysis revealed no correlation 

between salivary CRP and urinary 8-OHdG (p=0.85). There was a weak inverse 

correlation between urinary 8-OHdG and salivary vitamin D levels, but this was 

not statistically significant (p=0.07).  

 

a) 

 
 

b) 

 
 

Figure 3.4.3 Spearman rank analysis indicates a) urinary 8-

OHdG is not correlated with salivary CRP levels (R=0.02, 

p>0.05, n=112), b) urinary 8-OHdG is inversely but not 

significantly correlated with salivary vitamin D (R= -0.17, p>0.05, 

n=106). 
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3.5 Analysis of DNA damage in the buccal mucosa 
 

In order to assess chromosomal instability and cytokinesis defects, 1000 

differentiated cells from the buccal mucosa of each participant were scored for 

the frequency of cells with micronuclei (MNi), multiple nuclei (MNCs) and 

nuclear buds or bridges (NBuds/Bridges) (Figure 3.5.1). Overall, micronuclei 

frequency was in the range of 0-7 cells per 1000 buccal epithelial cells, multi-

nucleated cell frequency was 2-24 cells per 1000 buccal epithelial cells and the 

frequency of nuclear buds/bridges was 0-10 cells per 1000 buccal epithelial 

cells. Overall, the most frequently noted abnormal cell morphology in the buccal 

mucosa was the retention of multiple nuclei.  

 
Cells with 

micronuclei 
(MNi) 

   
 

Cells with 
multiple nuclei 

(MNCs) 

 

 

 

 

 

 
 

Cells with 
nuclear buds or 

bridges 
(NBuds/Bridges) 

 

 

 

 

 

  

 
Figure 3.5.1 Abnormal nuclear morphologies (DNA damage markers) scored in 

buccal epithelial cells. 
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The frequency of each cell type was used to calculate a total DNA damage 

frequency for each participant. Spearman rank correlation analysis was applied 

between multiple anthropometric indices and the total DNA damage frequency 

in the buccal mucosa (Figure 3.5.2). The analysis indicated the total frequency 

of DNA damage markers in the buccal mucosa to be strongly and positively 

correlated with all markers of adiposity (p<0.001). An analysis of the R-values 

revealed that the strongest correlation was between body fat percentage and 

total DNA damage (Table 3.5.1).  

Table 3.5.1. Spearman rank correlation analysis between total DNA damage (%) 

in the buccal mucosa (BM) and anthropometric assessments (n=112).  
 

Total DNA 
damage (%) in 
buccal mucosa 

BMI Z score Body fat (%) WC (mm) WHR 

     
R value 0.4550 

 
0.4940 

 
0.4185 0.4085 

 
95% CI 

 

0.289 - 0.594 
 

0.335 – 0.626 
 

0.247 – 0.564 
 

0.2359 - 0.556 
 

p value  <0.0001 <0.0001 <0.0001 <0.0001 

Significance  **** **** **** **** 
     

 

 

 

 

 

 

 

 

 



 122 

 

 

 

 
 

a) 

 

b) 

 
 
c) 

 

 
d) 

 
 

Figure 3.5.2 Spearman rank correlation analysis between anthropometric indices 

and total frequency of DNA damage in the buccal mucosa (%) across all 112 

participants coded as obese or non-obese via BMI percentile. a) there is a significant 

and strong positive correlation between BMI Z-score and total DNA damage 

(R=0.46, p<0.0001), b) there is a significant and strong positive correlation between 

body fat (%) and total DNA damage (R=0.49, p<0.0001), c) there is a significant and 

strong correlation between WC (mm) and total DNA damage (R=0.42, p<0.0001),   

d) there is a significant and strong correlation between WHR and total DNA damage 

(R=0.41, p<0.0001). 
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Furthermore, the Welch’s t-test was applied to the average total frequency of 

DNA damage in the buccal mucosa, when participants were divided based on 

their BMI, BF and WC percentile (Figure 3.5.3). Total DNA damage in the 

buccal mucosa was significantly higher in obesity categorised by BMI, body fat 

percentage and waist circumference percentiles. However, the largest 

difference was seen amongst the group classified by BMI percentiles (Table 

3.5.2). Further analysis of this cohort revealed that the individual frequency of 

cells with micronuclei, multiple-nuclei, buds/bridges were all significantly higher 

in the obese cohort (Figure 3.5.4), with the largest difference being in the 

number of multi-nucleated cells (Table 3.5.3). 

Table 3.5.2. Welch’s t-test analysis of average total DNA damage (%) in the buccal 

mucosa between Non-obese and Obese cohorts classified by BMI Z score, BF % and 

WC. 
 

Total DNA 
damage (%) 

in buccal 
mucosa 

Non-
Obese 

BMI<91st 

Obese 
BMI>98th 

Non-Obese  
BF%<95th  

Obese 
BF%>95th 

Non-Obese 
WC<98th 

Obese 
WC>98th 

n 

 
58 54 49 63 57 55 

Average  

± SD 

0.9414 ± 
0.442 

 

1.608 ± 
0.594 

 

0.9163 ± 
0.445 

 

1.526 ± 
0.586 

 

0.9982 ± 
0.507 

 

1.53 ± 
0.588 

 
Difference in 

means 

 

0.667 0.6099 0.532    
411.2 

 

 

p value 

 

<0.0001 <0.0001 <0.0001  0.0985  

Significance  **** **** **** 
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a) 

 
 
b) 

 
c) 

 
 
 

Figure 3.5.3 Welch’s t-test of average total frequency of DNA damage 

in the buccal mucosa. a) the average frequency is higher in the obese 

(n=54) cohort when compared to the non-obese cohort (n=58) when 

participants are classified by BMI percentiles (****p<0.0001), b) 

average frequency is significantly higher in the obese cohort (n=49) 

when compared to the non-obese cohort (n=63) classified by body fat 
percentiles (****p<0.0001), c) average frequency is higher in the obese 

cohort (n=55) when compared to the non-obese cohort (n=57) 

classified by waist circumference percentiles (****p<0.0001). 
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Table 3.5.3. Welch’s t-test analysis between frequency of individual DNA 

damage markers in the buccal mucosa (BM) per 1000 cells, across non-obese 

and obese cohorts, classified by BMI Z-Score 
 
DNA Damage 
marker in BM 

Non-obese 
(BMI <91st) 

Obese  

(BMI >98th) 

Difference in 
means 

p-value 

     
MNi 

 

1.092 ± 1.042 2.030 ± 1.614 0.8778 ***0.0003 

MNCs 

 

7.185 ± 3.477 10.23 ± 4.295 3.047 ****<0.0001 

NBuds/Bridges 1.077 ± 1.384 2.948 ± 2.691 1.871 ****<0.0001 

     
 
 

 

 
 

Figure 3.5.4. The average frequency of cells with micronuclei (MNi), 

multiple-nuclei (MNCs) and nuclear buds and bridges (NBuds/Bridges) is 

significantly greater in the buccal mucosa of the obese cohort when 

compared to non-obese (classified by BMI percentiles). Analysis using t-test 

with Welch’s correction ***p=0.0003, ****p<0.0001, n=112, error bars are 

standard deviation. 
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To assess whether the total frequency of DNA damage in the buccal mucosa of 

each participant may be linked with their status of inflammation or salivary 

vitamin D, the Spearman rank correlation test was applied (Figure 3.5.5). The 

analysis indicated that the total frequency of DNA damage in the buccal 

mucosa was not associated with levels of salivary CRP (p=0.45). However, the 

total frequency of DNA damage in the buccal mucosa was strongly and 

inversely correlated with levels of salivary vitamin D (p<0.0001).  

a) 

 
b) 

 
 

Figure 3.5.5 Spearman rank analysis indicates a) total DNA 
damage frequency in the buccal mucosa is not correlated with 

salivary CRP levels (R=0.07, p>0.05, n=112), b) total DNA 
damage frequency in the buccal mucosa is inversely and 

strongly correlated with salivary vitamin D (R= -0.49, p<0.0001, 
n=106). 
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In addition, multiple regression analysis was employed to create a prediction 

model for total DNA damage in the mucosa, based on the variables that were 

significantly correlated with this criterion. A significant model emerged: F(3,108) 

= 17.38, p<0.001. The model explains 31% of the variance in the frequency of 

total DNA damage in the buccal mucosa. Table 3.5.4 gives information about 

regression coefficients for the predictor variables entered into the model. Body 

fat percentage is a significant predictor with a positive relationship to total DNA 

damage. Salivary vitamin D is also a significant predictor but has a negative 

relationship to total DNA damage. Based on this model, a one unit increase in 

body fat % would predict a 0.02 increase total nuclear anomalies, per 1000 cells 

in the buccal mucosa.. A one unit increase in vitamin D would predict a 0.04 

decrease in total nuclear anomalies, per 1000 cells in the buccal mucosa. 

Table 3.5.4 Multiple Regression Analysis best-fit model (adjusted R2=0.31) for 

predicting total DNA damage in the buccal mucosa (%), n=106.  

 
 

 

Model 

Unstandardized 

Coefficients 

 

t 

 

Sig. 

B Std. Error 

constant 1.19 0.3344 3.581 0.0005 

Body Fat (%) 0.02 0.004235 4.866 <0.0001 

Vitamin D (ng/mL) -0.04 0.01152 3.425 0.0009 

 

 

 

 



 128 

Finally, in order to predict the odds ratio of acquiring DNA damage in the buccal 

mucosa, each risk factor was analysed independently using the Fisher’s exact 

test (Table 3.5.5). Five risk factors were established based on recommended 

cut-offs or the upper 95%CI of the average value for each biomarker assessed 

(Table 2.15). Odds ratio was calculated using the Baptisa-Pike method and the 

Fisher’s exact test was used to assess significance at a confidence level of 

95%. The results indicate that obesity, whether classified by BMI, body fat or 

waist circumference percentile, may increase the risk of total DNA damage in 

the buccal mucosa. Most significantly, a BMI above the 98th centile presented 

the largest odds ratio (OR=8.89, p<0.0001). Furthermore, a level of CRP in 

saliva above 2248pg/mL may independently increase the odds of DNA damage 

in the buccal mucosa by almost x9 fold, whereas vitamin D deficiency (<6.229 

ng/mL) may increase the odds x7.5 fold (p<0.0001). 

Table 3.5.5 Retrospective analysis of Odds Ratio using the Fisher’s exact test, n=112. 

 
Risk Factor % children with 

elevated DNA 
damage in BM 
and risk factor 

present  
 

% children with 
elevated DNA 
damage and 
risk factor 

absent 

Odds 
ratio  

95% CI p-value 

 

BMI >98
th
 

centile 

 

 
74.07 

 

 
24.14 

 

 
8.980 

 

 
3.75 – 
20.52 

 
<0.0001 

Body Fat 

>95
th
 centile 

 

Waist 

circumferenc

e >95
th
 

centile 

 

71.43 
 
 
 

67.27 

19 
 
 
 

28.07 

5.789 
 
 
 

5.267 

2.55 – 
12.82 

 
 
 

2.37 – 
11.95 

 

<0.0001 
 
 
 

<0.0001 

CRP >2248 

pg/mL 

 

71.19 
 

 

22.64 8.441 3.53 – 
19.41 

<0.0001 

Vitamin D 

<6.229 

ng/mL  

74.00 27.42 7.534 3.21 – 
16.72 

<0.0001 
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3.6 Analysis of salivary telomere length  
 
Telomere length in saliva was assessed via qPCR as a marker of genome 

instability. Salivary telomere length across all 112 participants was in the range 

of 24.26 to 482.119 kb/diploid genome.  

 

Spearman rank correlation analysis was applied between multiple 

anthropometric indices and salivary telomere length (Figure 3.6.1). The analysis 

indicated that telomere length in saliva was positively correlated with all 

anthropometric markers except WHR (p<0.01). The most significant correlation 

existed between waist circumference and telomere length (p<0.0001) (Table 

3.6.1). 

Table 3.6.1. Spearman rank correlation analysis between salivary telomere 

length (sTL) and anthropometric assessments (n=112).  
 

sTL 
(kb/diploid 
genome) 

BMI Z score Body fat (%) WC (mm) WHR 

     
R value 

 

0.3695 0.3331 0.3932 0.1803 

95% CI 0.192 - 0.5234 
 
 

0.152 - 0.493 
 

0.219 - 0.543 
 

-0.014 - 0.356 
 

p value  <0.0001 0.0003 <0.0001 0.0571 

Significance  **** *** **** ns 
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a) 

 

b) 

 
 
c) 

 

 
d) 

 
 

Figure 3.6.1 Spearman rank correlation analysis between anthropometric indices 

and salivary telomere length (sTL kb/diploid genome) across all 112 participants 

coded as obese or non-obese via BMI percentile indicates a) there is a significant, 

moderate positive correlation between BMI Z-score sTL (R=0.37, p<0.0001), b) there 

is a significant, moderate positive correlation between body fat (%) and sTL (R=0.33, 

p<0.001), c) there is a significant, moderate positive correlation between WC (mm) 

and sTL (R=0.39, p<0.0001) and d) there is no significant correlation between WHR 

and total DNA damage (R=0.18, p>0.05). 
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Furthermore, the Welch’s t-test was applied to the average salivary telomere 

length when participants were divided based on their BMI, BF and WC 

percentile (Figure 3.6.2). The analysis indicated that salivary telomere length 

was significantly greater in childhood obesity when classified by all 

anthropometric markers (p<0.001). The largest and most significant difference 

in means between non-obese and obese participants was seen when 

participants were classified by body fat percentage (Table 3.6.2).   

Table 3.6.2. Welch’s t-test analysis of average salivary telomere length (sTL) between 

Non-obese and Obese cohorts classified by BMI Z score, BF % and WC. 
 

Total DNA 
damage (%) 

in buccal 
mucosa 

Non-
Obese 

BMI<91st 

Obese 
BMI>98th 

Non-Obese  
BF%<95th  

Obese 
BF%>95th 

Non-Obese 
WC<98th 

Obese 
WC>98th 

n 

 
58 54 49 63 57 55 

Average  

± SD 

133.2 ± 
78.03 

 

199.0 ± 
99.26 

 

125.6 ± 
80.4 

 

195.6 ± 
93.77 

 

134.8 ± 
80.43 

 

196.2 ± 
98.38 

 
Difference in 

means 

 

65.80 69.93 61.38   
411.2 

 

 

p value 

 

0.0002 <0.0001 0.0005  0.0985  

Significance  *** **** *** 
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a) 

 
 
b) 

 
c) 

 

 
 

Figure 3.6.2 Welch’s t-test of average salivary telomere length 
indicates a) the average frequency is higher in the obese (n=54) 

cohort when compared to the non-obese cohort (n=58) when 
participants are classified by BMI percentiles (***p<0.001), b) 

average frequency is significantly higher in the obese cohort (n=49) 
when compared to the non-obese cohort (n=63) classified by body 
fat percentiles (***p<0.001) and c) average frequency is higher in 
the obese cohort (n=55) when compared to the non-obese cohort 

(n=57) classified by waist circumference percentiles 
(***p<0.001). 
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In addition, the Spearman rank correlation test was applied to assess whether 

excess telomere length was possibly linked with salivary inflammation or vitamin 

D status (Figure 3.6.3). The analysis indicated that salivary telomere length was 

not associated with inflammation or vitamin D levels in the oral cavity.  

 
 

a) 

 
 

b) 

 
 

 
Figure 3.6.3 Spearman rank analysis indicates a) salivary 

telomere length is not significantly correlated with salivary CRP 

levels (R=0.16, p>0.05, n=112), b) salivary telomere length is 

not correlated with salivary vitamin D (R=0.023, p>0.05, n=106). 
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Finally, the Spearman rank correlation test was applied between salivary 

telomere length and the other DNA damage markers studied in this thesis 

(Figure 3.6.4). There was no correlation between salivary telomere length and 

urinary 8-OHdG. However, there was a weak, positive correlation between 

salivary telomere length and the total frequency of nuclear anomalies in the 

buccal mucosa (R=0.21, p=0.03). 

 
a) 

 
 

b) 

 
 

 
Figure 3.6.4 Spearman rank analysis across 112 participants 

indicates a) salivary telomere length is not significantly 

correlated with urinary 8-OHdG (R=0.16, p>0.05), b) salivary 

telomere length is positively correlated with the total frequency 

of DNA damage in the buccal mucosa (R=0.21, p<0.05). 
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3.7 Combined analysis of inflammation, micro-
nutritional deficiency and DNA damage markers 
 
One of the aims of this research was to establish which anthropometric markers 

may have potential clinical use in the assessment and monitoring of 

inflammation, vitamin D status and DNA damage. Table 3.7.1 presents a 

summary of the correlations between anthropometric markers and the 

biomarkers assessed in saliva and urine samples. BMI Z-score and body fat 

percentage were both significantly correlated with inflammation, vitamin D, DNA 

damage in the buccal mucosa, and telomere length. However, these two 

anthropometric markers were not correlated with levels of oxidative DNA 

damage in urine samples. Instead, central adiposity, assessed via waist 

circumference and waist to hip ratio was significantly correlated with urinary 8-

OHdG.   

Table 3.7.1. Summary of Spearman rank correlation coefficients of all anthropometric 

biomarkers with inflammation, vitamin D, DNA damage and telomere length markers 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

 

Biomarker BMI (Z-score) Body fat (%) WC (mm) WHR 
     
CRP (pg/ml) **0.292 

 
**0.262 

 
0.178 

 
0.108 

 
Vitamin D 

(ng/mL) 

 

**-0.251 
 

**-0.321 
 

**-0.252 
 

**-0.262 
 

8OHdG (ng/ml 

creatinine)  

 

0.1633 
 

0.1459 *0.3100 **0.2720 

Total DNA 

Damage in BM 

(%) 

 

****0.4550 ****0.4940 ****0.4185 ****0.4085 

sTL (Kb/diploid 

genome) 

****0.3695 ***0.331 ****0.3932 0.1773 
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Furthermore, there were differences in the average values of biological markers 

when childhood obesity was classed via multiple classification systems. Table 

3.7.2 presents a summary of the average percentage increase or decrease in 

inflammation, vitamin D and genome instability parameters when childhood 

obesity was classed in three different ways. Classification of childhood obesity 

via BMI percentiles was associated with increased inflammation, lower vitamin 

D and elevation of all genome instability markers. Classification via body fat 

percentiles presented with a greater difference and statistical significance in 

vitamin D status and DNA damage in the buccal mucosa, but this was not 

applicable for urinary 8-OHdG levels. Instead, classification by waist 

circumference percentiles presented a statistically significant difference in 8-

OHdG levels between obese and non-obese participants. The greatest 

difference between obese and non-obese participants was the level of total 

DNA damage in the oral mucosa. Participants with obesity had on average a 

70% increase in DNA damage events compared to non-obese participants, 

when classified by BMI Z-score. Interestingly, when participants are classified 

by BMI Z-score, around a 30% increase in CRP can be seen in participants with 

obesity which is coupled with almost a 30% increase in oxidative DNA damage. 

Overall, salivary telomere length was up to 55.7% greater in participants 

classified as obese and vitamin D levels were up to 23.6% lower.   
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Table 3.7.2. Summary of Welch’s t-test analysis, reported as percentage difference in 

means between non-obese and obese participants classified by different 

anthropometric markers (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

 
 

Biomarker BMI  Body fat WC 
    
CRP (pg/ml) *33.4% higher in 

obesity  
 

**37.9% higher in 
obesity 

 

24.4% higher in 
obesity 

 
Vitamin D (ng/mL) 

 

15.7% lower in 
obesity  

 

*23.6% lower in 
obesity  

19.8% lower in 
obesity  

8OHdG (ng/ml 

creatinine)  

*28% greater in 
obesity 

 

12% greater in 
obesity  

 

*26.6% greater in 
obesity 

Total DNA Damage 

in BM (%) 

 

****70% greater 
in obesity 

****65% greater 
in obesity 

**** 53.3% 
greater in obesity 

sTL 

 

***49.4% greater 
in obesity 

****55.7% 
greater in obesity 

 

***45.5% greater 
in obesity 

 

 

In order to assess whether DNA damage was correlated with inflammation and 

vitamin D status, and whether there was agreement between markers of DNA 

damage, Spearman rank correlation analysis was applied. A summary of the 

results in Table 3.7.3 indicates that only the frequency of nuclear anomalies in 

the oral cavity was inversely correlated with levels of vitamin D. Furthermore, 

there was a significant positive correlation between DNA damage markers 

assessed in the oral cavity – salivary telomere length and nuclear anomalies in 

the buccal mucosa.  
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Table 3.7.3. Summary of Spearman rank correlation coefficients of inflammation, 

vitamin D, DNA damage and telomere length biomarkers (*p<0.05, ****p<0.0001). 

 
Biomarker CRP 

(pg/ml) 
Vitamin D 

(ng/mL) 

 

8OHdG 

(ng/ml 

creatinine)  

 

Total DNA 

Damage in 

BM (%) 

 

sTL 

(Kb/diploid 

genome) 

CRP (pg/mL)  ns  
-(0.035) 

 

ns  
(0.018) 

ns  
(0.072) 

ns 
(0.1635) 

Vitamin D 

(ng/mL) 

 

 
ns  

-(0.035) 
 

  
ns  

(-0.174) 

 
**** 

(-0.49) 

 
ns  

(0.023) 

8OHdG 

(ng/ml 

creatinine)  

 

 
ns  

(0.018) 

 
ns  

(-0.174) 

  
ns  

(0.027) 

 
ns 

(0.0934) 

Total DNA 

Damage in 

BM (%) 

 

 
ns  

(0.072) 
 

 
****  

(-0.49) 

 
ns  

(0.027) 

  
* 

(0.2053) 

sTL 

(Kb/diploid 

genome) 

 
ns  

(0.1635) 

 
ns  

(0.23) 

 
ns  

(0.0934) 

 
* 

(0.2053) 
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4. Discussion 
 
4.1 Excess CRP and chronic inflammation in childhood 
obesity  
 
The finding of this research are that salivary CRP is elevated in children with 

obesity when compared to healthy weight controls, and that CRP in saliva is 

positively correlated with BMI Z-score and body fat percentage. Two 

classification systems of obesity may differentiate between the status of 

inflammation in children – the RCPCH classification of obesity via BMI 

percentiles, and the Child Growth Foundation classification via bioelectrical 

impedance. Furthermore, this study identified no significant correlation between 

waist circumference or waist to hip ratio and salivary C-reactive protein in the 

cohort of children.  

 
To date, several studies have assessed CRP levels systemically and drawn a 

link between childhood obesity and inflammation. Cook and colleagues, (2000) 

first reported an association between adiposity and serum CRP across 699 

children aged between 10 and 11 years. Serum CRP was 250% higher in 

children from the top fifth Ponderal index (weight/height3) compared to children 

in the lower fifth of the index. These results were supported by Rönnemaa and 

colleagues (2006) who identified a positive correlation between BMI and serum 

CRP across 1617 participants aged 3-18 years. This group also identified 

obesity in childhood as an independent risk factor for increasing CRP in 

adulthood. A number of investigations that followed this research also 

confirmed that childhood obesity is associated with a systemic increase in CRP 

(Cohen, et al., 2012; Schipper, et al., 2012; Carmona-Montesinos, et al., 2015; 

Nishide, et al., 2015; Chang, et al., 2015; Kitsios, et al., 2013; Rowicka, et al., 

2017). The relationship between adiposity and serum CRP goes beyond that of 
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BMI and waist circumference as increased truncal-to-leg fat ratio assessed via 

DEXA, is also positively correlated with serum CRP (Cioffi, et al., 2019). It is 

also interesting that CRP in serum is consistently raised in childhood obesity, 

unlike other inflammatory cytokines such as TNF-alpha and IL-6 (Cohen, et al., 

2012). This suggests it could be the marker of choice for monitoring 

inflammation status in obese children. Monitoring inflammatory status might be 

useful because a systemic increase in CRP is associated with an increased risk 

for metabolic syndrome. Nishide and colleagues (2015) identified dyslipidaemia 

and raised high sensitivity CRP (hs-CRP) across 1072 Japanese children. 

Other researchers have also found that hs-CRP levels are higher in children 

with obesity and non-alcoholic fatty liver disease (Kitsios, et al., 2013). As 

discussed, there is strong evidence that childhood obesity is a state of chronic, 

low-grade inflammation.  

 
In order to monitor inflammation status in children with obesity, it would be 

useful to assess CRP levels via non-invasive techniques. Excess CRP in saliva 

may reliably reflect systemic, low-grade, chronic inflammation. CRP is produced 

in serum by the liver and cells of the immune system during the acute phase 

response (Medzhitov, 2008). It has been demonstrated that serum proteins can 

enter saliva via passive diffusion, or through ultrafiltration between cellular tight 

junctions (Desai, & Mathews, 2014). Salivary CRP levels correlate strongly with 

serum CRP levels in infants (R=0.62), adolescents (R=0.42) and adults 

(R=0.72) (Lyengar, et al., 2014; Ouellet-Morin, et al., 2011; Byrne, et al., 2013). 

Ouellet-Morin and colleagues (2011), conducted a study with 61 adults to 

validate the prediction of serum CRP from salivary CRP. They reported that the 

correlation between salivary CRP and serum CRP is not affected by sex, age or 

salivary flow rate. They also identified that the prediction of serum CRP levels is 
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more accurate at higher levels of salivary CRP. A later study, conducted in 259 

adults also found a strong correlation between CRP in saliva and serum 

(R=0.73) (Labat, et al., 2013). In addition, the researchers found that salivary 

CRP is also correlated with BMI, waist to hip ratio, as well as markers of 

metabolic syndrome and cardiovascular disease. A moderate correlation 

between salivary and serum CRP levels is also reported in adolescents with 

raised salivary CRP (R=0.42) (Byrne, et al., 2013). In essence, the evidence 

suggests that saliva may be a suitable alternative biological tool to detect or 

monitor systemic inflammation in vulnerable populations including children. It is 

likely that an excess production of serum protein may drive more proteins to 

become incorporated into saliva.  

 
The research findings in this thesis concur with other investigations that report 

higher salivary CRP in obese children, and support the potential use of salivary 

CRP to monitor inflammation in children with obesity. In 2012, Naidoo and 

colleagues first reported that salivary CRP is elevated in children with obesity. 

The researchers associated a BMI above 85th centile with increased 

inflammation across 170 South African children. Although children with obesity 

had increased body fat percentage, this study was unable to show an 

association between increased body fat percentage and salivary CRP. This may 

be because the researcher’s assessed body fat percentage via skinfold 

thickness, which can in some cases overpredict body fat (Freedman, et al., 

2013). In 2014, Goodson and colleagues identified that salivary CRP is six 

times higher in 11-year old children with a BMI above the 95th centile. Across 

744 saliva samples, the researchers also associated childhood obesity with 

reduced adiponectin – an anti-inflammatory cytokine secreted directly from 

adipose tissue. More recently, Janem and colleagues (2017) reported that there 
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is no significant difference in salivary CRP between children with and without 

obesity, as well as in children with type 2 diabetes and obesity. These 

discrepancies may owe to the limited size of the study population as only 19 

normal weight and 14 obese participants were analysed. Furthermore, the 

levels of CRP in saliva varied largely in the healthy cohort, which is a trend also 

observed in this investigation and suggests that a large sample size is required 

for a meaningful statistical analysis. Also, in this investigation and contrary to 

the literature, there is no significant association between waist circumference or 

waist to hip ratio and inflammation assessed by salivary CRP in children. This 

discrepancy may owe to differences in the technique of measurement amongst 

researchers. Importantly, the obese and healthy-weight study cohorts in our 

study and the studies above screened and excluded all participants with signs 

of oral infection or inflammation. Overall, the research so far indicates that 

average salivary CRP levels are higher in children with increased adiposity.  

The mechanisms that drive inflammation in obesity may also explain the link 

between obesity and co-morbidities in children, as well as potential later life 

consequences. 

 
There are multiple mechanisms that may contribute to increased systemic CRP 

and inflammation in childhood obesity. Firstly, obesity in children is associated 

with increased CD14++ monocytes (Schipper, et al., 2012). These cells can 

secrete cytokines which lead to the recruitment of inflammatory cells into 

adipose tissue or vascular lesions. The gut microbiome as well as dietary 

factors including hyperglycaemia and increased fish oils may also enhance 

myelopoiesis and thus increase the systemic release of leukocytes from the 

bone marrow (Singer, & Lumeng, 2017). Secondly, Landgraf and colleagues 

(2015) report that childhood obesity is associated with altered adipose tissue 
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biology - including hypertrophy and hyperplasia. They also describe a positive 

correlation between the size of adipocytes and the infiltration of inflammation 

promoting macrophages (CD68+). Furthermore, it is has been suggested that 

as adipose tissue expands to contain stores of fat, the microcirculation is 

disrupted, which leads to adipose tissue hypoxia (Barbarroja, et al., 2010).  

 
Increased adipocyte death has been associated with a release of cell-free DNA 

into the systemic circulation (Haghiac, et al., 2012). Nishimoto and collaborators 

(2016) have recently identified that the release of cell–free DNA caused by 

adipocytes’ degeneration promotes macrophages accumulation in adipose 

tissue via Toll-like Receptor 9 (TLR9), originally known as a sensor of 

exogenous DNA fragments. Adipose tissue necrosis further attracts 

inflammatory cells and leads to the secretion of pro-inflammatory cytokines 

such as TNF-a (Bhattacharya, et al., 2015). Moreover, adipocyte cell necrosis 

can also cause altered adipokine expression, including reduced levels of the 

anti-inflammatory hormone adiponectin (Kern, et al., 2003). Adiponectin is 

secreted by adipose tissue and may inhibit the actions of TNF-alpha and 

prevent recruitment of inflammatory cells (Ouchi, et al., 1999).  

 
A systemic increase of neutrophils, macrophages and dendritic cells 

encourages production of ROS/RNS via NADPH oxidases, particularly the 

NOX1, NOX2 and NOX4 isoforms (Mittal, et al., 2014). Ultimately, the disrupted 

ratio of pro-inflammatory and anti-inflammatory cytokines, as well as excess 

circulation of free fatty acids, triggers the production of CRP from the liver and 

further promotes inflammation as well as oxidative stress (Codoñer-Franch, et 

al., 2011). Overall, raised levels of CRP in childhood obesity can be explained 

by changes in adipose tissue biology and the increased production of 
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leukocytes. Inflammation may underlie the multiple co-morbidities that are 

associated with childhood obesity but also importantly, chronic inflammation 

may present consequences for later life health.   

 
Chronic inflammation is a well-known etiological factor for genetic instability and 

neoplastic transformations in cells (Colotta, et al., 2009). Chronic inflammation 

and its ability to inflict DNA damage has been demonstrated in models of 

H.pylori associated gastrointestinal cancer (Baik, et al., 1996) and ulcerative 

colitis associated colon cancer (Bernstein, et al., 2001) as well as HCV 

mediated liver cancer (Shawki, et al., 2014). 

 
Evidence is building which describes a causative role played by inflammation in 

malignancy. Firstly, chronic inflammation can drive the production of excess 

reactive oxygen and nitrogen species which may cause deamination, oxidation 

and strand breakages in DNA (Weisberg, et al., 2003; Tamir, et al., 1996). 

Secondly, the excess production of ROS/RNS can contribute to microsatellite 

instabilities and the formation of pre-malignant lesions (Hofseth, et al., 2003). In 

fact, a profile of circulating pro-inflammatory cytokines has been associated with 

pre-malignant lesions of the oral mucosa, gastric mucosa and prostate in the 

absence of tissue infection (Di Silverio, et al., 2003; van der Woude, et al., 

2004; Woodford, et al., 2014; Tezal, et al., 2005). Izano and colleagues (2016) 

investigated the risk of increased IL-6, CRP and TNF-alpha with colon cancer 

and other obesity related cancers in a follow-up study of 2490 participants. 

Their hazard ratio analysis, based on participants within the third tertile for CRP 

levels, indicated that a one-unit increase in CRP is associated with a 2.29 fold 

increase in the risk of colon cancer. Overall, these findings represent a possible 
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causative relationship between chronic inflammation and colon cancer in obese 

adults.  

 

Finally, chronic inflammation may inactivate p53, leading to a loss of mitotic 

arrest following DNA damage (Cobbs, et al., 2003). Thereby, enabling the 

accumulation of random mutations that may contribute to the genetic 

heterogeneity seen in cancer cells (Colotta, et al., 2009). Other transcription 

factors that may be activated include NF-kB, STAT-3, which can cause 

suppression of anti-tumour defence mechanisms (Grivennikov, & Karin, 2010). 

Overall, there is substantial evidence that chronic inflammation is a causative 

factor for DNA damage. Therefore, inflammation status should be an important 

consideration when assessing the risks of malignancy.  
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4.2 Hypovitaminosis D in childhood obesity 
 

This research study is the first to identify lower vitamin D levels in saliva from 

children with obesity when compared to saliva from normal-weight controls. This 

association is significant when obesity is defined by body fat percentage but not 

statistically significant when participants are defined by BMI or waist percentiles. 

However, all markers of adiposity correlate with the levels of vitamin D in an 

inverse proportion.  

 
Over the last five years a large proportion of studies have identified obesity in 

children as a state of hypovitaminosis D by assessing vitamin D levels in serum 

and plasma (Bellone, et al., 2014; Ekbom, & Marcus, 2016; Wakayo, et al., 

2016; Kumaratne, et al., 2017; Alyahya, 2017; Erol, et al., 2017; Plesner, et al., 

2018). In 2014, Bellone and colleagues, reported lower average levels of 

vitamin D in serum from obese children compared to healthy-weight controls 

across a total of 557 participants classified by BMI percentiles. They also found 

that puberty status did not affect vitamin D levels in children. A meta-analysis 

further indicated that there are seasonal and ethnic factors that can modulate 

the level of vitamin D deficiency in obesity (Williams, et al., 2014). Vitamin D 

deficiency is more prevalent during the winter season and in the African ethnic 

group. Therefore, study participants should be matched for ethnicity to reduce 

the possible effect of this confounding factor. Recently, Plesner and colleagues 

(2018) reported a greater prevalence of vitamin D deficiency in obese children 

and serum vitamin D status to be inversely correlated with BMI Z-score across a 

total of 3627 participants. In addition to the winter season being a risk factor for 

vitamin D deficiency, they also found screen-time over four hours to be another 

risk factor. Whilst our research project was able to achieve matching of ethnic 

groups, the timing of sampling was more difficult to control. Overall, the 
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identification of vitamin D in non-invasively obtained tissues such as saliva 

could enable the long-term monitoring of vitamin D status in vulnerable groups.  

 
No evidence has been identified so far for differences in salivary vitamin D 

levels in obese children. One reason for this could be that the measurement of 

vitamin D in saliva is a challenge. Saliva is a dilute biological fluid, with 

concentrations of proteins lower than detected in serum. Therefore, the 

detection of vitamin D in saliva, particularly in patients with deficient serum 

levels, requires an assay with high sensitivity. For utilisation in this study, the 

commercially available immunoassay kit with the highest analytical sensitivity 

was selected. Furthermore, saliva samples were obtained via the stimulated 

method of saliva collection as this has been demonstrated to increase levels of 

salivary vitamin D (Higashi, et al., 2013). However, there were six samples that 

were below the detection limit of the assay, and it is important to note that five 

samples were from participants with obesity (classified by BMI Z score). The 

removal of these data points reduced the sample size for statistical analysis, 

which could explain the lack of statistical significance associated with the lower 

vitamin D result when participants were classified by BMI and WC percentiles. It 

is likely that the use of a more sensitive tool would have enabled a more precise 

indication of hypovitaminosis D in obesity compared to healthy-weight controls.  

 
A more sensitive technique that can be utilised for future work is the sensitive 

liquid chromatography–electrospray ionization–tandem mass spectrometric 

(LC–ESI–MS/MS) method. This method was used to detect salivary vitamin D in 

adults with a sensitivity of 0.002ng/ml and was also used to demonstrate a 

strong correlation between salivary vitamin D and serum vitamin D (r=0.83) 

(Higashi, et al., 2008). There is a need for the development of high-sensitive 
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and high-throughput assays that can quantify vitamin D in saliva and provide a 

better understanding of the relationship between serum and salivary vitamin D 

levels in children. This is especially important since the diagnosis of 

hypovitaminosis D is enacted increasingly in children within the UK (Basatemur, 

et al., 2017).  Furthermore, the multiple studies that report serum vitamin D 

levels to be inadequate in children with obesity, reflect the coming together of 

two epidemics. Whether this hypovitaminosis is a cause or consequence of 

obesity is a question of interest. 

 
It has been debated whether the accumulation of excess fat lowers vitamin D 

levels or whether low vitamin D drives the accumulation of excess fat. In 2009, 

Foss hypothesised that obesity may be treated by restoring vitamin D status. 

This theory described the onset of obesity to be an adaptive response to being 

in a cold climate, triggered by the decline in vitamin D synthesis due to 

inadequate UV light. It was suggested that a drop in calcidiol concentration is 

detected by the hypothalamus which then alters appetite and the body-weight 

set-point. Interestingly, Daraki and colleagues also found an association 

between reduced in utero exposure to vitamin D and an increased risk of 

adiposity in early childhood (Daraki, et al., 2018). Children from mothers with 

vitamin D deficiency had a higher BMI Z-score and waist circumference at age 6 

compared to children from mothers with higher levels of vitamin D during 

pregnancy. It has also been suggested that vitamin D deficiency in children may 

exacerbate the risk of obesity in those who are also carriers of the FTO 

rs9939609 allele (Lourenco, et al., 2014). However, there is limited evidence 

that vitamin D supplementation can reverse adiposity.  
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Furthermore, Vimaleswaran and colleagues (2013) conducted a bi-directional 

Mendelian randomization analysis across 42024 participants and demonstrated 

that variations in vitamin D alleles have little effect on adiposity and instead 

obesity is a causative factor for vitamin D deficiency. They found that BMI 

related gene variants were significantly associated with vitamin D levels. More 

specifically, the researchers identified that a 10% increase in BMI may reduce 

levels of vitamin D by 4.2%. A number of mechanisms can be proposed for a 

causative association in obese children.  

 
Firstly, studies have demonstrated that children with obesity can have altered 

behaviour including a lack of physical activity and reduced exposure to sunlight 

(Al-Othman, et al., 2012). Reduced physical activity may be an important risk 

factor for hypovitaminosis D, as increased physical activity has been 

demonstrated to increase vitamin D levels without supplementation in obese 

children (Hossain, et al., 2018). Secondly, genetic mechanisms such as allelic 

variation in the vitamin D receptor (VDR) gene have also been associated with 

obesity in children (Ferrarezi, et al., 2012). Moreover, as adipose tissue is one 

of the storage sites for vitamin D (Rosenstreich, et al., 1971), it has been 

suggested that Vitamin D may be increasingly sequestered into adipose tissue 

and released more slowly into plasma in a state of obesity (Vanlint, 2013). 

Vanlint (2013) also suggests that reduced activation of vitamin D or increased 

catabolism may be a pathway to vitamin D deficiency in obesity. This is 

because a lack of the CYP2J2 enzyme, required for 25-hydroxylation of vitamin 

D, has been reported in subcutaneous adipose tissue obtained from 

participants with obesity. A more direct explanation for the differences in vitamin 

D levels between obese and non-obese participants could be the effect of 

increased volume and therefore greater dilution of circulating vitamin D (Drincic, 



 150 

et al., 2012). Ultimately, this presents considerations for the dosage of vitamin D 

during the monitoring and treatment of hypovitaminosis D which should be 

adjusted for obese patients. Previously, a large dose of vitamin D 

supplementation in obese adolescents failed to increase vitamin D levels or 

alter markers of cardiovascular risk  (Shah, et al., 2015). Therefore, defining 

adequate vitamin D supplementation for obese patients should be a priority, as 

it may prevent further adverse health outcomes.  

 
Vitamin D deficiency is a concern in paediatric obesity because it is a risk factor 

for multiple co-morbidities. A number of studies report increased features of the 

metabolic syndrome to be associated with vitamin D deficiency in obese 

children. These features include insulin resistance and pre-diabetes (Reyman, 

et al., 2014; Miraglia del Giudice, et al., 2015; Ekbom, & Marcus, 2016; Gul, et 

al., 2017), elevated blood pressure (Kao, et al., 2015), and dyslipidaemia 

(Kumaratne, et al., 2017; Erol, et al., 2017). It is of interest that vitamin D 

deficiency in childhood obesity also coincides with increased hs-CRP levels 

(Rodriguez-Rodriguez, et al., 2014). Vitamin D has been described as a 

hormone with anti-inflammatory properties by a number of studies (Abbas, 

2017; Ding, et al., 2013; Zhang, et al., 2012). Studies in rodents imply that 

vitamin D deficiency can escalate the infiltration of macrophages into adipose 

tissue and increase the secretion of inflammatory cytokines (Chang, & Kim, 

2017; Karkeni, et al., 2015). In human adipocytes, vitamin D has been 

demonstrated to suppress the expression of three microRNAs that are 

regulated by TNF-alpha (Karkeni, et al., 2018) and reduce the levels of 

inflammatory proteins including interleukin-6, monocyte chemoattractant 

protein-1 and interleukin-1β (Abbas, 2017). Furthermore, vitamin D deficiency is 

a co-feature in common childhood inflammatory disorders such as asthma as 
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well as inflammatory bowel syndrome (IBS) (Nwosu, et al., 2017; Vo, et al., 

2015). Therefore, there is a likely role for vitamin D deficiency in exacerbation of 

inflammation and increasing the risk of inflammation-associated disorders. 

 

Vitamin D deficiency may also have implications for tumorigenesis. An inverse 

association has been reported between levels of vitamin D and cancers of the 

lung, breast, GI tract and prostate (L. Zhang, et al., 2015; McNamara, & 

Rosenberger, 2019; Hossain, et al., 2019; Yuan, et al., 2019). Earlier studies 

report that vitamin D supplementation can reduce all-cancer risk in post-

menopausal women (Lappe, et al., 2007). Similarly, vitamin D supplementation 

was associated with a reduction in risk of post-menopausal breast cancer 

(O’Brien, et al., 2017). Furthermore, lower levels of Vitamin D in serum have 

been linked with a poorer response to treatment in haematological malignancies 

(X. Thomas, et al., 2011). A meta-analysis of 64 studies concluded that higher 

levels of vitamin D indicate a more positive prognosis in cancer patients 

(Vaughan-Shaw, et al., 2017).  

 
The possible anti-cancer effects of vitamin D can be explained by its role in the 

maintenance of genomic integrity and cell-cycle progression. It has been 

demonstrated that DNA damage can activate Vitamin D receptors (VDR) via 

p73 which is inhibited in cancer cells by mutant p53 (Kommagani, et al., 2007). 

VDR activation by 1-25OHD has anti-proliferative effects and may lead to cell-

cycle arrest in cancer cells. This process was first unveiled by Colston and 

colleagues in cultured melanoma cells (1981) and later described in cancerous 

cells of the breast, colon, prostate and liver (Lointier, et al., 1987; Gross, et al., 

1986; Skowronski, et al., 1993; Caputo, et al., 2003). There is also evidence to 

suggest that treatment of prostate cancer cells with biologically active vitamin D 
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can lead to a suppression of CDK1 mRNA, which encodes the protein that is 

crucial for cell cycle progression (Kovalenko, et al., 2010).  

 
Furthermore, it has been demonstrated in a breast cancer cell line that 

analogues of vitamin D (EB1089 and CB1093) may enhance apoptosis by 

inhibiting proliferative growth factors like IGF-1 (Colston, et al., 1998). Fleet and 

colleagues (2012), have reviewed the multiple instances whereby tumour cell 

line treatment with vitamin D analogues have promoted the expression of 

TGFβ, another anti-proliferative factor. They also review other anti-proliferative 

mechanisms induced by vitamin D to include disruption of Wnt signalling 

pathways and upregulation of PTEN (a tumour suppressor gene).  

 
Vitamin D also appears to play a role in the protection from oxidative DNA 

damage and initiation of DNA repair. It is interesting that vitamin D treatment 

has been demonstrated to reduce levels of oxidative DNA damage in human 

colon epithelial cells (Fedirko, et al., 2010). Furthermore, Vitamin D treatment of 

prostate cancer upregulate mRNA expression of anti-oxidant enzymes such as 

SOD1 and SOD2 (Peehl, et al., 2004). Treatment of human head and neck 

squamous carcinoma cells with a vitamin D analogue can also increase the 

expression of the DNA repair regulating protein GADD45a (Akutsu, et al., 

2001). This can be a crucial tumour protective role for vitamin D, as there is 

consistent evidence linking increased oxidative DNA damage with 

tumorigenesis (Usman and Volpi, 2018).  

 
However, the associations between vitamin D and cancer risk are not void of 

discrepancies. Jiang and colleagues (2018) conducted a Mendelian 

randomization study with data from a total of 275,824 genome-wide association 

studies. They assessed for a causal relation between vitamin D concentrations 
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and risk of breast and prostate cancer, but were unable to confirm this. Recent 

evidence that metastatic cancer cells can downregulate the vitamin D receptor 

may explain this discrepancy (Lopes, et al., 2010). It is likely that the protective 

effects of vitamin D are not exhibited during all stages of cancer. As cancer cells 

can become capable of evading cell cycle checkpoints, they may also develop a 

protective mechanism against the effects of vitamin D by downregulating the 

VDR.  

 
Polymorphisms in the VDR may alter the metabolism and cellular actions of 

vitamin D. A number of polymorphisms in the VDR have been identified which 

can alter the risk and prognosis of breast, colorectal and prostate cancer (Rai, 

et al., 2017). Whilst some VDR polymorphisms can enhance the actions of 

vitamin D and have anti-cancer effects, others can reduce the efficacy of 

vitamin D and promote or aggregate carcinogenesis. Wactawski-Wende and 

colleagues (2006) conducted a randomised control trial (RCT) in a total of 

36282 women and found that vitamin D supplementation with calcium did not 

reduce the risk of colorectal cancer. However, VDR polymorphisms such as 

CYP27B2 and CYP24A1 have been associated with the suppression of vitamin 

D and increased risk of colorectal cancer (Vidigal, et al., 2017). Therefore, 

RCTs of vitamin D supplementation for cancer prevention should consider VDR 

polymorphisms in participants. 

 
Furthermore, an analysis of 18 RCTs identified a lack of consistent evidence to 

support the supplementation of vitamin D for cancer prevention in adults 

(Bjelakovic, et al., 2014). Differences in the duration of supplementation and 

compliance with supplementation are other factors that could explain the 

discrepancies amongst studies. Nevertheless, a longitudinal investigation of 
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vitamin D supplementation in childhood and the incidence of morbidity and 

cancer in adulthood, may uncover potential long-term benefits of possessing 

adequate vitamin D levels, particularly in patients with elevated DNA damage.  
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4.3 Increased oxidative DNA damage in childhood 
obesity 

 
This thesis demonstrates that oxidative DNA damage assessed via urinary 8-

OHdG levels is greater in children with obesity compared to healthy weight 

controls, when obesity is classified by BMI and WC percentiles. Furthermore, 

urinary 8-OHdG levels in children correlate with BMI and waist circumference.  

 
To date, there are only three other investigations that have been conducted in 

children to assess the association between adiposity and levels of urinary 8-

OHdG. In 2008, a Šebeková and colleagues (2009) demonstrated that children 

with obesity have higher levels of 8-OHdG in urine. Later in 2014, Protano and 

collaborators conducted a study across 159 healthy Italian children aged 5-11 

years and assessed levels of 8-OHdG, 8-OHG and 8-OHGua in urine. They 

reported an inverse association between BMI and urinary 8-OHdG whilst no 

significant associations were reported for 8-OHG and 8-OHGua. On the other 

hand, Ramachandra and colleagues (2015) report higher levels of urinary 8-

OHdG in children with obesity, corroborating the findings of Šebeková and 

colleagues but this cohort of children also present with insulin resistance. 

Furthermore, the number of obese participants in all of these studies is 

relatively small. Therefore, the indications between urinary 8-OHdG and 

adiposity in children have so far been inconclusive. The findings of this 

investigation present no statistically significant correlation between urinary 8-

OHdG and BMI or body fat percentage, but a significant positive correlation with 

WC and WHR. This indicates that levels of oxidative DNA damage increases 

with central adiposity in children. These findings also match the observations 

recorded in children via serum concentration of 8-OHdG (El Wakkad, et al., 

2011). Across 103 adolescents (aged 13-18 years), a BMI greater than the 95th 
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percentile has been associated with an increased concentration of 8-OHdG. 

However, the researchers also demonstrated that body fat percentage 

assessed via bioelectrical impedance and BMI is positively correlated with 

serum 8-OHdG. 

 
Similarly discordant are the findings of 8-OHdG levels in adult obesity. de la 

Maza and colleagues (2006) were the first to report an association between 

increased body fat and oxidative DNA damage by assessing 8-OHdG in skeletal 

muscle. These associations were based upon self-reported weight gain over the 

last 10 years by patients undergoing a hernia operation and coincided with 

increased TNF-alpha. Later, another study assessed 8-OHdG concentrations in 

lymphocytes and was unable to identify a correlation with BMI in young adults 

(Hofer, et al., 2006). In contrast, a longitudinal study indicated a correlation 

between leanness and increased oxidative stress reporting a one-point 

reduction in BMI to coincide with a 2.7% increase in urinary 8-OHdG (Mizoue, et 

al., 2007). Similar were the findings from Donmez-Altuntas and collaborators 

(2014) who reported decreased levels of 8-OHdG in plasma of obese adults 

compared to adults of healthy weight, although other biomarkers of DNA 

damage were elevated. More recently, a study conducted in over 100 obese 

and healthy weight men concluded that there were no significant differences in 

urinary 8-OHdG (Cejvanovic, et al., 2016). Overall, there are more reports of an 

inverse association between adiposity and 8-OHdG levels in adults rather than 

a positive association. Whereas in children, there is now more evidence for a 

positive association between adiposity and urinary 8-OHdG.  
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The discrepancies in results may be explained in a number of ways. Firstly, 

there are some reports that individuals with a lower BMI have an increased 

metabolic rate and may therefore exhibit higher levels of oxidative stress 

(Tamae, et al., 2009). However, in obesity, a calorie-rich diet and an abundance 

of macronutrients may call for continuity in the Krebs cycle and consequently 

lead to a leak of more electrons from the mitochondrial electron transport chain.  

These electrons promote a reduction of oxygen molecules – a process that will 

generate ROS. Obesity in children who are independent from other co-

morbidities is associated with a higher total oxidant status (Kilic, et al., 2016; 

Mohn, et al., 2005). The over-generation of ROS in obese individuals can be 

brought about by more than just a continuum in the Krebs cycle.  

 
As discussed in the previous chapter, there are numerous compelling findings 

that indicate obesity in children to be a state of chronic, low-grade inflammation.   

The excess production of ROS during inflammation in obesity is sourced from 

monocytes and neutrophils that are recruited via CRP (Vincent, & Taylor, 2006). 

In this process, monocytes can produce free oxygen radicals, hydroxyl radicals, 

hypochlorous acid, hydrogen peroxide and myeloperoxidase whereas 

neutrophils can generate oxygen radicals via NADPH oxidase (Garg, et al., 

2000). Inflammation also promotes the generation of nitric oxide – a neutrophil 

activator and contributor to oxidative stress and DNA damage (Guzik, et al., 

2003). Therefore, increased oxidative DNA damage may be caused by 

increased inflammation in obesity. In this study, obesity was independently 

associated with inflammation and oxidative DNA damage as the levels of both 

CRP and 8-OHdG were increased in the same cohort of obese participants 

grouped by BMI Z score. However, no significant correlation was noted between 

CRP and 8-OHdG markers. This may be because the markers were assessed 
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in different tissues or because of other pathological states that may 

predominate the production of ROS and perhaps are more directly associated 

with the increased urinary excretion of 8OHdG in children with obesity.  

 
Other pathological mechanisms that may drive ROS production in obesity and 

promote oxidative DNA damage include hyperglycaemia, hyperleptinaemia and 

dyslipidaemia. Excess glucose in plasma can lead to auto-oxidation of glucose, 

activation of the polyol pathway to convert glucose into sorbitol, and increased 

production of Advanced Glycation End-Products (AGE) (Vincent, & Taylor, 

2006). Excess oxidative stress has been attributed to increased levels of 

sorbitol in a mouse model but evidence of this mechanism is unknown in 

childhood obesity (Chung, et al., 2003). AGE can bind to cell surface receptors 

(RAGE) and increase the production of ROS via intracellular signalling 

pathways (Evans, et al., 2002). This receptor-ligand binding can be blocked via 

soluble RAGE receptors (sRAGE) acting as a decoy and may therefore act as a 

risk marker for cardiovascular disease (Hudson, et al., 2005). It has been 

recently demonstrated that adiposity in adolescents is inversely correlated with 

plasma levels of sRAGE (He, et al., 2014). Therefore, increased binding of 

AGEs to RAGE in obese children with hyperglycaemia may increase the 

production of ROS and promote oxidative DNA damage.  

 
Furthermore, the excess production of the leptin hormone also coincides with 

increases ROS production. Levels of leptin are positively correlated with 

childhood obesity (Venner, et al., 2006). The increased production of ROS via 

leptin has been demonstrated in cultured human endothelial cells (BouloumiÉ, 

et al., 1999). Levels of leptin also correlate with levels of CRP and inflammation 

in paediatric obesity (Pires, et al., 2014). Moreover, excess plasma leptin has 



 159 

also been associated with an abnormal lipoprotein profile in children (Wu, et al., 

2001). Low levels of high density lipoproteins in obesity and the consequent 

excess circulation of free fatty acids can trigger the production of ROS by 

disrupting the mitochondrial adenine nucleotide transporter and leading to 

increased accumulation of electrons and their reaction with oxygen to form free 

radicals (Bakker, et al., 2000). Overall, hyperglycaemia, hyperleptinaemia and 

dyslipidaemia are all etiological factors for oxidative stress in obesity. One of the 

limitations of this study is the lack of plasma glucose, lipid or hormonal status of 

the participants. This information could potentially explain the findings of 

increased oxidative DNA damage in the obese participants of this study.  

 
Increased ROS production and the disparity amongst studies about 8-OHdG 

levels in obesity may also be explained by the fluctuating status of anti-oxidant 

defence mechanisms. Anti-oxidants enzymes such as Superoxide Dismutase 

(SOD) and glutathione peroxidase (GPO) can scavenge ROS from the system. 

Both a decrease and increase in anti-oxidant mechanisms have been reported 

in childhood obesity. Reports of reduced anti-oxidant defence mechanisms in 

obesity can suggest that the production of free radicals is thriving. On the other 

hand, if obesity coincides with increased defence mechanisms then this may be 

seen as an homeostatic mechanism to clear excess production of free radicals.  

 
Firstly, dietary anti-oxidants that are essential for optimal activity of SOD 

including copper, zinc and magnesium levels are negatively correlated with BMI 

and reportedly lower in serum from obese adolescents (Lee, 2007). 

Furthermore, carnosine, a potent scavenger for reactive oxygen species was 

significantly decreased in urine from obese adolescents compared to healthy-

weight controls (Cho, et al., 2017). An extensive review also reported lower anti-
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oxidant enzyme activity across multiple studies conducted in adults (Vincent, & 

Taylor, 2006).  

 
On the other hand, obesity has been described as a state concurrent with 

increased anti-oxidant defence mechanisms. SOD activity was reported to be 

higher in a cohort of obese children compared to healthy-weight controls 

(Erdeve, et al., 2004). Similar findings have been reported by other researchers 

(Codoñer-Franch, et al., 2010; Sfar, et al., 2013). Krzystek-Korpacka and 

colleagues (2013), reported a positive correlation between BMI and SOD 

activity in girls but not boys. Along with increased serum 8-OHdG, El-Wakkad 

and colleagues (2011) also reported elevated activity of SOD and GPO in the 

same cohort of children with obesity. Therefore, it is likely that increased anti-

oxidant enzyme activity is a homeostatic phenomenon to counteract increasing 

levels of oxidative stress in obesity. In some individuals, the increased 

enzymatic activity may control levels of ROS and lower the production of 

oxidative DNA damage. Whereas in others, as demonstrated by El-Wakkad and 

colleagues in a cohort of children with obesity, increased enzymatic activity of 

antioxidants can still lead to an increase in oxidative DNA damage. This may 

also be because anti-oxidant enzyme activity can be affected by the severity of 

adiposity in children.  

 
In one investigation, overweightness has been associated with increased SOD 

activity whereas obesity in the same study is associated with reduced activity of 

SOD (Albuali, 2014). This suggests that the implications of oxidative stress 

worsen with the severity of obesity, placing obese children at higher risk of 

oxidative stress than overweight or healthy-weight children. Thereby, fluctuating 

levels of anti-oxidant enzyme activity in obesity may lead to a fluctuating status 
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of 8-OHdG. It may be worthwhile to also investigate levels of DNA repair 

enzymes: DNA glycosylase and 8-oxoguanine-DNA glycosylase, in conjunction 

with 8-OHdG levels to better predict the consequences of increased oxidative 

stress.  

 
Furthermore, an analysis of the literature suggests that it is unlikely for 

increased anti-oxidant enzyme activity to substantially control ROS production 

and prevent pathological consequences in obesity. This is because 8-OHdG is 

not the only oxidised product identified increasingly in obese patients. Increased 

BMI and waist circumference were positively correlated with levels of lipid 

peroxidation products in adults (Furukawa, et al., 2017). Malondialdehyde levels 

are reportedly doubled in obese children compared to healthy weight children 

and correlate with BMI and waist to hip ratio (Mohn, et al., 2005). Furthermore, 

a study conducted in obese children identified higher levels of oxidative stress 

coupled with increased inflammation, insulin resistance, and reduced estimated 

glomerular filtration rate (Correia-Costa, et al., 2016). Oxidative stress and the 

consequent elevation in 8-OHdG has been previously described as a biological 

factor for acquiring cancer in adult obesity (Cerdá, et al., 2014).  

 
In 2006, Cooke and colleagues conducted a literature review and brought to 

light that 8-OHdG is a well-established risk marker for age-related pathologies 

including cancer. It is not surprising that elevated serum or urinary 8-OHdG 

lesions are undisputedly associated with malignant tumours at multiple sites. An 

increased concentration of 8-OHdG in urine has been identified in patients with 

cancers of the buccal mucosa, breast, colo-rectum, prostate and bladder 

(Murugaiyan, et al., 2015; Kuo, et al., 2007; Guo, et al., 2016; Miyake, et al., 

2004; Chiou, et al., 2003). In serum, increased levels of 8-OHdG have also 
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been reported in patients with cancer of the breast and GI tract, but also of the 

ovaries (Himmetoglu, et al., 2009; Chang, et al., 2008; Diakowska, et al., 2007; 

Pylvas, et al., 2011). Therefore, it is likely that the detection of 8-OHdG in serum 

or urine may be a clinically useful tool. Although, the identification of 8-OHdG in 

urine also makes this marker of oxidative DNA damage suitable for screening 

vulnerable populations.  

 
There is a potential for 8-OHdG to be utilised as a clinical risk marker to detect 

early pre-cancerous processes. Salivary 8-OHdG levels are significantly higher 

in patients with precancerous lesions of the buccal mucosa (Kaur, et al., 2016). 

The detection of 8-OHdG has also been utilised as part of a routine cervical 

cancer screening programme and successfully differentiated between normal 

tissue and high-grade squamous intraepithelial lesions (Romano, et al., 2000). 

In addition, the measurement of 8-OHdG in hepatocarcinomatous tissue may 

possess prognostic value (Li, et al., 2012). Higher levels of 8-OHdG in tumour 

tissue is related to poorer outcomes following a three year period. The 

researchers also noted that 8-OHdG levels may have a role in tumour 

development as the levels of this lesion correlated positively with tumour size, 

tumour quantity, clinical stage, portal vein thrombosis and ascites.  

 
Moreover, the heterogenous activity of anti-oxidant enzymes in obesity is also 

commonly described in cancer. A decrease in anti-oxidant activity has been 

linked with DNA damage and acute lymphoblastic leukaemia in children 

(Sentürker, et al., 1997). Whereas upregulated expression of SOD has been 

identified in patients with breast cancer (Er, et al., 2004). Furthermore, 

increased activity of GPO but reduced activity of SOD has been reported in 

patients with oral cancer (Srivastava, et al., 2016). Overall, it is plausible that 
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inadequate anti-oxidant mechanisms may predispose to malignancy, by 

enabling ROS to persist and react with DNA.  

 

Presence of the 8-OHdG lesion in DNA during replication can lead to mutations. 

The GàT transversion is the most commonly described mutational consequence 

of 8-OHdG lesions (Suzuki, & Kamiya, 2017). G➔T transversion mutations in 

the p53 gene have been documented in cancers of the breast, lung and bladder 

(Coles, et al., 1992; Pfeifer, & Hainaut, 2003; Schroeder, et al., 2003). 

Furthermore, the GàT transversion has also been noted in the KRAS gene 

where it is associated with pancreatic, lung and myeloid cancer (Smit, et al., 

1988; Noda, et al., 2001; Bowen, et al., 2005). Other mutational consequences 

of the 8-OHdG adduct include G➔A and G➔C mutations (Suzuki, & Kamiya, 

2017). Additionally, 8-OHdG can also inhibit methylation of adjacent cytosines 

(Wu, & Ni, 2015). This could be a cancer causing mechanism if 

hypomethylation occurs in the region of a tumour suppressor gene.   

 

The etiological role of 8-OHdG in cancer can be explained by more than its 

increased persistence in DNA. The DNA repair enzyme 8-oxoguanine DNA 

glycosylase 1 (OGG1) enables the removal of 8-OHdG lesions to prevent 

tumorigenesis via the base excision repair (BER) pathway. Reduced activity of 

OGG1 in human peripheral blood mononuclear cells has been associated with 

increased risk of carcinogenesis in the lungs, head and neck (Paz-Elizur, et al., 

2006). In addition, a recent review has highlighted that OGG1 may also play a 

role in carcinogenesis by recruiting 8-OHdG as a ligand for gene regulation and 

activation of the Ras pathway (Ba, & Boldogh, 2018). The Ras pathway is 

frequently activated in human cancers as Ras proteins control cell shape, 

survival and progression through the cell cycle by responding to growth factors 
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(Rajalingam, et al., 2007). Mechanisms of 8-OHdG interference with gene 

transcription were first identified by Ramon and colleagues (1999). They 

demonstrated that 8-OHdG alters binding of the transcription factor Sp1 when 

located at promoter regions in HeLa cells. Black and colleagues (2001) have 

reviewed the various roles that Sp1 can have in human and animal cancer 

lines. These include, maintaining cell growth, proliferation, angiogenesis and 

apoptosis. Overall, there are implications that 8-OHdG presents with 

remarkable oncogenic signatures, and is therefore a well-established marker for 

genomic instability.  

 
Moreover, 8-OHdG levels can be elevated in cancerous and pre-cancerous 

pathologies as well as paediatric obesity. This evidence advocates the clinical 

detection of this lesion more widely to monitor genomic instability in children 

with increased adiposity.   
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4.4 Increased nuclear anomalies in the buccal mucosa 
of children with obesity 
 

Following a detailed evaluation of nuclear morphology in buccal epithelial cells, 

this research has identified obesity in children to be associated with up to a 1.7 

fold increase in the frequency of genome damage events. The statistically 

significant difference is evident whether obesity is defined by BMI Z-score, body 

fat percentiles or waist circumference percentiles. Furthermore, BMI Z-score, 

body fat percentage via bioelectrical impedance, waist circumference and waist 

to hip ratio are all strongly correlated with the total frequency of nuclear 

anomalies in the upper aerodigestive tract.  

 
In 2009, the first investigation of anthropometric markers of adiposity and 

nuclear anomalies in the buccal mucosa was conducted on a small cohort of 

Mexican children aged 7-11 years by Flores-García and colleagues. This study 

found no association between DNA damage and overweightness. The 

confounding findings may be due to the researchers choice of orcein to stain 

the cells instead of a DNA specific dye. This may have led to cytoplasmic 

genetic material being rejected as non-nuclear bodies such as debris or 

artefacts from microorganisms. More recently, Idolo and colleagues (2018) 

investigated the impact of various lifestyle factors on nuclear anomalies in the 

buccal mucosa of 6-8 year old Italians using the Feulgen stain. Despite the 

small number of obese participants in this study as well, the researchers 

concluded obesity in children to be an independent risk factor for increased 

micronuclei frequency. Therefore, the results predating this research were so 

far inconclusive. This thesis has identified five independent risk factors for an 

increased total frequency of nuclear anomalies in the buccal mucosa. Namely, 

excess salivary CRP, low salivary vitamin D, a BMI above the 98th centile, body 
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fat percentage above the 95th centile and waist circumference above the 95th 

centile.  

 
Other associations between adiposity and micronuclei frequency in children 

have been conducted on peripheral blood lymphocytes (PBLs). In 2011, 

Scarpato and colleagues first reported a 2.7 fold higher frequency of 

micronuclei in PBLs of 60 obese children compared to 38 age-matched healthy 

weight controls. In addition, they demonstrated a raised frequency of g-H2AX 

foci, TNF-a, CRP and IL-6 in the same cohort of children, implying a causative 

association between inflammation and chromosomal aberrations. Recently,  

positive associations between weight and length at birth, and nuclear anomalies 

including the frequency of MNi, NBuds/Bridges have been reported in a 

longitudinal study conducted on 87 neonates (Dass Singh, et al., 2017). The 

researchers also noted a high maternal BMI to be associated with increased 

nuclear anomalies in PBLs of their offspring. This suggests that possible 

genotoxic effects of adiposity may be transgenerational. Finally, studies 

conducted in adults have also demonstrated positive associations between 

chromosomal aberrations and weight status (Donmez-Altuntas, et al., 2014).  

 
Excess body fat has also been proposed as a pathological factor for 

chromosomal breaks following investigations with other biomarkers. In a cohort 

of adolescents, an almost 2 fold increase was found in mitomycin C induced 

DSBs when compared to healthy controls, measured by y-H2AX foci (Azzarà, et 

al., 2016). Intriguingly, the DNA damage in the obese cohort was repaired faster 

and more efficiently than in the healthy weight counterparts, indicating that 

there may be a potential for DNA repair mechanisms to be able to cope with the 

emerging accounts of DNA damage in obesity, but this warrants further 
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investigations. So far, more studies have evaluated chromosomal aberrations in 

adult obesity rather than childhood obesity. A correlation study first indicated a 

positive association between BMI in 99 females and oxidative DNA damage via 

the comet assay (Hofer, et al., 2006). Later, A positive correlation between 

increased chromosomal damage and BMI (>30) was demonstrated by the 

comet assay in pregnant women of a Pakistani population (Bukhari, et al., 

2010) and was subsequently confirmed in an Indian population too (Gandhi, & 

Kaur, 2012). Remarkably, DNA damage was also identified via the comet assay 

in women with a normal BMI but elevated fat mass (Tomasello, et al., 2011). 

This ‘normal-weight-obese’ cohort also had higher levels of oxidative DNA 

damage, measured by 8-OHdG, than the obese cohort of women. These 

findings support the need of multiple measures of adiposity to be considered for 

the assessment of genomic instability. The results in this thesis also 

demonstrate a stronger correlation between body fat percentage and nuclear 

anomalies compared with BMI. Overall, determining the causes and 

consequences of chromosomal instability in obesity should be a priority for the 

prevention of further morbidity.   

 
Firstly, we have identified increased levels of CRP in saliva in the same cohort 

of obese patients that also present with excess nuclear anomalies. However, 

there is a lack of statistically significant correlation between salivary CRP and 

nuclear anomalies in the buccal mucosa. This means that there are other 

factors that also condition the levels of DNA damage in the buccal mucosa and 

may perhaps modulate levels of inflammation. In chapter 4.1, it was concluded 

that inflammation in obesity may cause DNA damage by promoting the 

production of ROS. Therefore, it is also likely that levels of anti-oxidant enzymes 

can modulate the response to inflammation and DNA damage in obesity.  
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Our results demonstrate that the total frequency of nuclear anomalies in the 

buccal mucosa is correlated with levels of vitamin D in saliva, and that body fat 

percentage can be combined with levels of salivary vitamin D to predict DNA 

damage in the buccal mucosa. It is likely that deficient levels of salivary vitamin 

D in obesity may exacerbate the effects of adipose tissue dysfunction and 

consequent DNA damage. This is because vitamin D has been described as an 

anti-inflammatory and anti-oxidant that may also have a role in halting the cell 

cycle following DNA damage (Abbas, 2017; Fedirko, et al., 2010; Kovalenko, et 

al., 2010). Previous studies have not assessed vitamin D status and DNA 

damage simultaneously in childhood obesity. However, excess DNA damage in 

sperm cells has been related to vitamin D deficiency and excess adiposity in a 

rat model (Merino, et al., 2018).  

 
There is also some evidence to suggest that vitamin D deficiency, independent 

of adiposity, is associated with increased chromosomal aberrations. A recent 

study demonstrated that a sufficient serum vitamin D status may modulate the 

effects of UV-light induced micronuclei formation in human lymphocytes (Nair-

Shalliker, et al., 2012). Furthermore, vitamin D treatment has also demonstrated 

a reduction in micronuclei frequency of rat hepatocytes and in a model of 

murine lymphoma (Chatterjee, 2001). Overall, it can be postulated that vitamin 

D deficiency is a modifiable risk factor for chromosomal aberrations in children 

with obesity. It is also likely that diminishing the extent of nuclear anomalies in 

early-onset obesity may have remarkable effects on the likelihood of acquiring 

co-morbidities later in life.   

 
There is evidence that excess micronuclei frequency can be a predictor and 

driver of malignancy. Prospective research approaches have already 
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associated micronuclei occurrence in PBLs with an increased risk of developing 

cancer. Early research by Bonassi and colleagues (2006) followed up 6718 

participants across 20 sites after their participation in the Human Micronucleus 

(HUMN) project and reported a statistically significant risk of stomach and 

urogenital cancer to be associated with a high baseline frequency of 

micronuclei in lymphocytes. Another follow-up study reported remarkable 

evidence to support the link between micronuclei and risk of cancer (Murgia, et 

al., 2008). This research followed 1650 initially disease free adults for up to 14 

years. Participants that developed cancer had, on average, a three-fold 

increase in micronucleus frequency at baseline. There are multiple reports of 

micronuclei frequency being up to three folds higher in patients with cancers of 

the brain, bladder, breast, cervix, GI tract, lungs and pancreas (Appendix XIII). 

Whilst the long-term effects of micronuclei frequency in buccal cells have not 

been demonstrated to date, there has been a report that MNi frequency is well 

correlated between PBL and buccal cells in cancer patients (Podrimaj-Bytyqi, et 

al., 2018). This indicates the an increased frequency of micronuclei in buccal 

epithelial cells may also have systemic relevance.  

 
Firstly, an increased frequency of micronuclei in buccal epithelial cells has been 

consistently identified in patients with cancers of the aerodigestive tract 

including squamous cell carcinoma (Mandard, et al., 1987; Bloching, et al., 

2000; Ramirez, & Saldanha, 2002; Saran, et al., 2008). Furthermore, the buccal 

micronucleus assay has also been used to screen pre-malignant oral lesions 

such as oral submucous fibrosis and leucoplakia. Findings from such research 

initiatives have indicated that pre-malignancy in the oral tract is also associated 

with a higher frequency of MNi (Desai, et al., 1996; Saran, et al., 2008; 

Bloching, et al., 2000). Recently, Katarkar and colleagues (2014) demonstrated 
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that excess MNi in pre-malignant oral lesions is strongly correlated with 

chromosomal breakages (assessed via comet tail length) in PBLs. These 

studies clarify that an excess MNi frequency in buccal epithelial cells has a 

relevance in oral malignancies. Evidence is building that MNi frequency in 

buccal cells may also relate to cancer at other sites.  

 
In 2004, a higher frequency of micronuclei in the oral mucosa was identified in 

patients with breast and uterine cancer by Nersesyan and Adamyan. These 

results were substantiated by subsequent research in a cohort of 21 breast 

cancer patients (Flores-García, et al., 2014). The researchers also identified an 

increased frequency of other nuclear anomalies in the buccal mucosa including 

bi-nucleated cells and nuclear buds. Other evidence demonstrated that patients 

with lung, stomach or colorectal cancer can also present with an increased 

occurrence of MNi in the oral mucosa (Yildirim, et al., 2006). Moreover, 

micronuclei frequency in urothelial cells, buccal epithelial cells and peripheral 

blood lymphocytes is higher in non-smoking patients with urothelial cell 

carcinoma compared to cancer-free controls (Podrimaj-Bytyqi, et al., 2018). 

Interestingly, these researchers also demonstrated a moderate correlation 

between lymphocyte and buccal MNi frequency, suggesting that the buccal 

micronucleus assay may be a useful non-invasive tool for predicting cancer risk. 

Finally, a recent systematic meta-analysis of forty-two studies has concluded 

that the prevalence of micronuclei in the oral mucosa may be reflective of 

chromosomal instability occurring in other tissues (Feki-Tounsi, et al., 2014). 

Overall, a higher incidence of micronuclei in the oral cavity has been associated 

with cancer at eight different sites; head and neck, oral, lung, breast, stomach, 

colon, bladder and the uterus. Longitudinal studies in large cohorts may 
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consolidate the use of the buccal cytome assay as a tool for cancer risk 

prediction, particularly in the case for obese children.  

 
The increased associations between chromosomal aberrations and cancer can 

be explained by the phenomenal role of micronuclei as potential drivers of 

malignancy. There are indications that micronuclei containing whole 

chromosomes can proceed into several cell generations and be reincorporated 

into the genome following further mitotic divisions (Shimizu, 2011). Micronuclei 

division cycles can lead to catastrophic genetic re-arrangements in a single or 

few chromosomes – a newly described mutational process called 

chromothripsis (C.-Z. Zhang, et al., 2015). Such localized chromosomal re-

arrangements may be transferred to daughter nuclei in subsequent mitotic 

cycles and play a role in generating a pre-cancerous genome. This is because 

the insertion of damaged DNA and consequent end-joining base repair 

mechanisms may amplify oncogenes and lead to a loss of tumour suppressor 

gene function (Rode, et al., 2016). Chromothripsis and catastrophic DNA 

rearrangements have been described in aggressive tumours of the brain, blood 

and skin (Rausch, et al., 2012; Magrangeas, et al., 2011; Hirsch, et al., 2013). 

Furthermore, MNi can display a lack of nuclear envelope integrity when 

occurring in cancer cells (Hatch, et al., 2013). Firstly, impaired nuclear envelope 

function has been related to an increase in DNA damage in MNi within cancer 

cells – a process that may also promote chromothripsis (Hatch, et al., 2013).  

 
Secondly, it is also likely that the nuclear envelope of a micronucleus is more 

likely to rupture, causing exposure of self-DNA to the cytosol. Possible immuno-

stimulatory consequences of this event have recently been reported in a mouse 

model and human cancer cells (Mackenzie, et al., 2017). This means that the 
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occurrence of micronuclei may also drive carcinogenesis by triggering 

inflammation. Inflammation can play an important role in the carcinogenic 

transformation of cells by causing DNA alterations and by supporting the tumour 

microenvironment with chemokines for cell proliferation, survival, metastasis, 

and angiogenesis (Multhoff, et al., 2012).  

 
Interestingly, chromatids in micronuclei can also demonstrate a lack of 

important kinetochore proteins which may prevent them from being re-

incorporated into the main nucleus (Soto, et al., 2018). This phenomenon has 

been proposed as a protective mechanism of removing damaged DNA from the 

cell. However, the complete removal of a micronucleus from a cell may also 

have carcinogenic implications if the micronucleus contained a tumour 

suppressor gene. Early research has demonstrated the accumulation of p53 in 

micronuclei within cultured mammalian cells (Granetto, et al., 1996). A higher 

frequency of micronuclei has also been detected in pre-cancerous cells of the 

oral mucosa that are p53 deficient (Abbondandolo, et al., 2002). Overall, 

micronuclei are not only markers of genome damage but can also contribute to 

chromosomal instability and malignancy.  

 
The increased frequency of nuclear buds and nucleoplasmic bridges may also 

have a relevance in cancer risk. Nuclear buds and nucleoplasmic bridges have 

been described as a consequence of unrepaired DNA damage or gene 

amplification and associated with BFB cycles. It is important to emphasise that 

the addition of this biomarker to the micronucleus assay was only considered in 

the year 2000, and therefore, a limited number of studies have taken on board 

the ‘cytome approach’ (Heddle, et al., 2010). Secondly, these DNA damage 

events are scored in one category despite having their own aetiologies 
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(Thomas, et al., 2009). Nonetheless, an increased frequency of NBUDs and 

Bridges in the buccal mucosa has been identified in breast cancer patients 

(Flores-García, et al., 2014). And recently, an increased frequency of NBuds 

and Bridges was documented in PBLs from cancer patients compared to 

healthy controls (Podrimaj-Bytyqi, et al., 2018).  

 
Furthermore, NBridges may drive malignancy as BFB cycles can lead to the 

accumulation of DNA amplifications and chromosomal rearrangements seen in 

tumour genomes (Zakov, et al., 2013). DNA amplification and chromosomal 

rearrangements have been noted in cancers of the lung, breast, prostate, GI 

tract and skin (Fenech, 2002). Chromosomal instability has also been 

suggested as a potential prognostic marker for colorectal cancer, due to its 

association with poorer outcomes (Walther, et al., 2008). Chromosomal 

instability can lead to aneuploidy via malsegregation of chromosomes 

(McGranahan, et al., 2012). The resulting heterozygosity may lead to a loss of 

wild-type tumour suppressor alleles and thereby favour malignancy (Ryland, et 

al., 2015). Overall, it is undisputed that NBuds and Bridges are markers of early 

events in chromosomal instability -  a feature associated with aggressive 

malignancies. However, more research is required to confirm the clinical 

potential of an increased frequency of NBuds and Bridges in the buccal mucosa 

to predict pre-cancerous changes. 

 
In this investigation, the largest difference in means amongst nuclear anomalies 

between obese and non-obese children was observed in the frequency of multi-

nucleated cells. Within this category, a large proportion of cells were identified 

to be bi-nucleated although cells with three or more nuclei were also observed. 
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Therefore, it is vital to deduce the possible clinical significance of such 

increased cytokinesis failure in the buccal mucosa.  

 
Recently, an increased frequency of binucleate cells has been reported in the 

buccal mucosa of breast cancer patients undergoing chemotherapy, compared 

to cancer free controls (Paz, et al., 2018). Moreover, the occurrence of 

binucleated cells in the buccal mucosa can also be 1.8x higher in patients with 

head and neck cancer (Khlifi, et al., 2013). In 2000, Morin and colleagues 

described an increased frequency of binucleate cells in lesions of the cervix. 

Later, researchers explored the independent use of cytological features to 

diagnose HPV associated endometrial cancer (Bollmann, et al., 2005). 

Multinucleated cell frequency correctly diagnosed 90.78% of cases and 

appeared to be the most sensitive cytological feature for detecting HPV 

infection. Furthermore, increased multinucleated cell frequency has been 

associated with mesothelioma across a cohort of 42 patients (Kimura, et al., 

2009). In this study, 82% of cells from patients with malignant mesothelioma 

had more than eight nuclei, compared to just 15% of cells obtained from 

patients with benign tumours.  

 
An increased frequency of binucleated cells has also been observed in cultured 

cancer cells. It is of interest that nutrient starvation of HeLa cells – a cervical 

cancer cell line, led to a significant increase in binucleated cells of which some 

were also capable of proliferating (Nishimura, et al., 2016). From this research, 

it can be postulated that despite acquiring cytokinesis failure, cancer cells are 

able to proliferate with possibly more mutagenic complications. 

 
In a recent review, tetraploidy and cytokinesis failure have been evaluated as 

mechanisms for aneuploidy in subsequent mitotic cycles. It has been suggested 
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that these events can lead to genetic diversification in cancer cells that possibly 

gives them an advantage in development (Lens, & Medema, 2019). 

Centrosomes are not just important for the appropriate segregation of 

chromosomes but also play a role in marking the cleavage plane for cytokinesis 

(Hurtley, 2001). Centrosome abnormalities are associated with cancers of the 

breast, prostate, bladder, pancreas, head and neck, oral cavity, and the 

nervous system (Weber, et al., 1998; Lingle, et al., 1998; Sato, et al., 1999; 

Mark Gustafson, et al., 2000; Pihan, et al., 2001; Thirthagiri, et al., 2007; 

Yamamoto, et al., 2009; Lingle, et al., 2002). Therefore, increased association 

between binucleated cells and carcinogenesis can be related to dysfunctional 

centrosomes.  

 
Furthermore, a number of different mitotic and cell cycle checkpoint proteins 

that regulate cytokinesis can be mutated in cancer (Sagona, & Stenmark, 

2010). The inactivation of BRCA2 has also been associated with 

carcinogenesis (Daniels, et al., 2004). This leads to the speculation that 

cytokinesis failure may be an early event in tumorigenesis. However, polyploidy 

in some types of cancer may not just be due to cytokinesis failure but can also 

be attributed to cell fusion or cell cannibalism, a phenomenon described in 

breast cancer (Krajcovic, et al., 2011; Krajcovic, & Overholtzer, 2012). To 

conclude, there is some evidence that the frequency of tetraploid cells is 

associated with malignancy. The biological mechanisms that underpin the 

formation of bi or multinucleated cells lead to the postulation that cytokinesis 

failure may lead to genetic alterations that are favourable for cancer cells.  

 
Together, these findings warrant further research into the optimisation of the 

buccal cytome assay as a potential non-invasive, clinical tool for monitoring 
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prepathological disorders in vulnerable cohorts. The molecular mechanisms that 

underpin nuclear anomalies with carcinogenesis further substantiate the need 

for this tool.
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4.5 Salivary telomere length is greater in children with 
obesity 
 

This research has identified obesity in children to be associated with up to a 

x1.5 fold increase in salivary telomere length (sTL). The classification of obesity 

via BMI percentiles, body fat percentage and waist circumference are all 

associated with a significant increase in sTL. Furthermore, sTL in children is 

positively correlated with BMI Z-score, body fat percentage, waist circumference 

but not with WHR. This research also finds a weak, yet statistically significant 

correlation between sTL and nuclear anomalies in the buccal mucosa.  

 
To date, investigations into the relationship between adiposity and telomere 

length have assessed the former in peripheral blood lymphocytes, other 

leukocytes or adipocytes. The outcomes of these investigations in children 

present with discrepancies. Firstly, a study that established a link between 

obesity and telomere shortening in adults did not verify this phenomenon in a 

cohort of 53 Caucasian children using TRF analysis (Zannolli, et al., 2008). 

However, later studies confirmed that childhood obesity can be associated with 

a state of telomere attrition. Via qPCR analysis, Al-Attas and collaborators 

(2010) reported an inverse correlation between obesity and telomere length in 

boys but not girls. A large case-control investigation conducted in 793 French 

children also using qPCR techniques, reported leukocyte telomere length (LTL) 

to be 23.% shorter in children with obesity, defined via BMI percentiles (Buxton, 

et al., 2011).  It is interesting that a subsequent study conducted in a large 

cohort of adolescents using the same methods to assess LTL reported no 

association between BMI, WHR or body fat percentage and LTL (Haidong Zhu, 

et al., 2011). Furthermore, in the same cohort, there was no association 

between the adipokines leptin, and adiponectin and LTL. However, the 
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investigators reported ethnic and sex differences such that LTL was longer in 

black African and female adolescents compared to Caucasians and males. The 

discrepancies amongst LTL and adiposity in childhood highlight the complexity 

of telomere length dynamics.  

 

Similar are the discrepancies between telomere length and adult adiposity. 

Initial reports of a negative correlation between BMI and telomere shortening 

were presented in a study conducted on 561 female twins (Valdes, et al., 2005).  

Interestingly, a subsequent study published by Nordfjäll and colleagues (2008) 

confirmed these findings with a variety of obesity parameters including BMI, 

weight, and waist and hip circumference. Similar to the results in adolescents, 

this study also reported a sex bias as the correlation is only statistically 

significant in women. An extensive study conducted by Kim and collaborators  

(2009), also reported an inverse correlation between weight gain and telomere 

length in 647 women. A number of subsequent studies have built evidence to 

support the hypothesis that increased body fat in adults is an independent 

causative factor for accelerated ageing (Appendix XIV). However, some studies 

have also found little or no association between multiple measures of adiposity 

and telomere length (Diaz, et al., 2010). In adults, harbouring the metabolic 

syndrome can alter telomere length dynamics. Obese women without metabolic 

syndrome have longer telomeres than obese women with an abnormal insulin, 

lipid and inflammatory profile (Iglesias Molli, et al., 2017).  

 

It is also likely that the dynamics of telomere length are tissue-specific, as 

telomere length results appear to contrast with those reported in peripheral 

blood. Shorter telomere length has been reported in cells of subcutaneous 

adipose tissue extracted from obese men and women (Moreno-Navarrete, et 
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al., 2010). However, studies conducted in saliva present conflicting results. Our 

results are the first to demonstrate excess salivary telomere length in childhood 

obesity compared to healthy weight controls. Similar findings have been 

reported in the only direct investigation of the effects of adult adiposity on 

salivary telomere length (An, & Yan, 2017). An and Yan (2017) have conducted 

qPCR analysis of saliva samples obtained from 2749 adults 16 years after 

recording height and weight, and conclude BMI and obesity to positively predict 

telomere length. Overall, further research is needed to confirm the contrary 

associations between greater telomere length in saliva and obesity status. 

 

The contrasting results between studies of adiposity and telomere length 

analysis across leukocytes and saliva suggests possible differences in the 

regulation of telomere length across tissues. Recent research has pointed out 

an inverse correlation between age and telomere length in lymphocytes in 

contrast to a positive correlation between age and telomere length in buccal 

cells (O'Callaghan, et al., 2008). Buccal epithelial cells contribute a large (75%) 

proportion of genomic DNA in saliva (Garbieri, et al., 2017). This is due to the 

shedding of the epithelial layer of the buccal mucosa that takes place every 2.7 

hours (Dawes, 2003). This means that only a small proportion of salivary DNA 

is from leukocytes. Furthermore, although there is a moderate correlation 

between sTL in samples obtained via the passive-drool technique and TL from 

PBLs in female adults (Goldman, et al., 2018), it is unknown whether this 

correlation is prevalent in children or may be modified by the effects of obesity.
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Nonetheless, the findings of excess telomere length in saliva samples from this 

cohort of obese children may be explained by the evidence of excess oxidative 

DNA damage in the same cohort. Recent research has uncovered a paradox 

whereby oxidative DNA damage lesions such as 8-OHdG can induce both 

telomere shortening or lengthening (Fouquerel, et al., 2016). The researchers 

demonstrated that the presence of the oxidised guanine base in single strand 

telomeric DNA may trigger upregulation of telomerase in a human cell line. The 

telomerase enzyme has been detected in normal buccal epithelial tissue with 

low activity (Rai, et al., 2016). An investigation in mice also supports these 

findings whereby strains with a deletion in the repair enzyme OGG1 had longer 

telomeres compared to the wild-type mice (Wang, et al., 2010). This is an 

interesting result because other research has demonstrated the incorporation of 

oxidised guanine to trigger chain termination, inhibition of telomerase and 

consequently, telomere shortening (Hukezalie, et al., 2012). One explanation 

for this paradox is that that low levels of the oxidised guanine base may cause 

telomere lengthening whereas higher levels may lead to telomere attrition 

(Barnes, et al., 2019). 

 

Another possible mechanism that may explain telomere lengthening in our 

cohort of obese participants is the lack of vitamin D when compared to the 

healthy-weight cohort. Treatment of an ovarian cancer cell line with 1,25-

dihydroxyvitamin D can down-regulate telomerase activity (Jiang, et al., 2004). 

Recent research has substantiated these findings again in malignant ovarian 

tumours and describe a microRNA-498 pathway may mediate this process 

(Kasiappan, et al., 2012). On the other hand, vitamin D supplementation can 

also upregulate telomerase expression and length telomeres in PBLs (H Zhu, et 

al., 2011). Therefore, there is a possible role for vitamin D in modulating the 
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expression of telomerase and maintaining telomere length. However, the 

cellular conditions and mechanisms that may drive telomere lengthening or 

shortening in the presence of vitamin D are unclear and warrant further 

research.   

 
Traditionally, greater telomere length is associated with positive health 

outcomes, whilst telomere attrition is associated with morbidity and age related 

disorders. In 1973, Olovnikov first proposed telomere shortening to be 

associated with cellular ageing and the Hayflick constant, followed by Harley 

and colleagues (1992) who further report telomere shortening as a 

phenomenon in ageing human fibroblasts. Since then, telomere shortening has 

been discussed as a biomarker for detecting the onset of multiple age related 

disorders including cardiovascular disease and diabetes, Alzheimer’s, 

Parkinson’s and arthritis (Wang, et al., 2008; Hochstrasser, et al., 2012; Xi, et 

al., 2013; Steer, et al., 2007). Telomere length has also been assessed in 

disease models of accelerated ageing including Werner’s syndrome and 

Hutchinson-Gilford Progeria (HGPS). Ishikawa and colleagues (2011) identified 

shorter telomeres in vivo from skin cells that were cultured from patients with 

Werner syndrome compared to those cultured from healthy controls. Similar 

findings were identified in patients with HGPS (Decker, et al., 2009). It is of 

interest that despite telomere shortening being a phenomenon common to both 

disorders, patients with Werner’s syndrome have an increased susceptibility to 

acquiring cancer, whereas HGPS is associated with a resistance to oncogenic 

transformations (Fernandez, et al., 2014). Although HGPS is associated with 

high levels of DNA damage, this research indicated that the expression of 

progerin can override carcinogenic processes through the cell cycle, particularly 

the inhibition of p53 and pRB. Recent evidence has shown that telomere 
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shortening may not be the primary cancer driving mechanism in Werner’s 

syndrome (Tokita, et al., 2016), but other mechanisms such as an upregulation 

of genes associated with cellular senescence may be more important (Tang, et 

al., 2016). Interestingly, a recently conducted population based follow-up study 

of 598 adults concluded that telomere length in PBLs is not associated with 

ageing or morbidity over the age of 85 years, possibly due to instabilities in 

telomere length during old age (Martin-Ruiz, et al., 2005). These findings 

indicate that telomere length maintenance is a more complex phenomenon, 

likely to modulate with normal, physiological aging as well as disease. 

Nonetheless, telomere shortening has become a well-known, undisputed 

biomarker for ageing, but its role as a biomarker for detecting early pathological 

changes in cancer, requires clarification.    

 

There is a heterogenous relationship across telomere length and different types 

of cancer. A lower mean buccal cell telomere length is seen patients with 

bladder cancer compared to cancer-free controls (Broberg, et al., 2005). A 

recent comprehensive review of over 23,000 cases has unveiled a significant 

correlation between telomere attrition in PBLs and increased risk of GI tract, 

head and neck cancers, but not skin cancers (Zhu, et al., 2016). The 

researchers have brought to light that instead, longer telomere length is a risk 

factor for acquiring skin cancer. Similarly, other studies have noted a non-linear 

relationship for cancers of the breast, pancreas and oesophagus (Risques, et 

al., 2007; Qu, et al., 2013; Skinner, et al., 2012). In the case of lung cancer, 

both telomere shortening and lengthening have been described as risk factors 

(Jang, et al., 2008; Lan, et al., 2013). Furthermore, genetic variants associated 

with longer telomere length are also associated with an increased risk of 

acquiring renal cell carcinoma (Machiela, et al., 2017). These associations 
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between lengthened telomeres and cancer risk are not surprising because 80-

90% of cancer can exhibit increased telomerase activity (Stewart, & Weinberg, 

2006). Whilst research assessing the significance of telomere length in buccal 

cells is limited, it is clearer that telomere length in PBLs is an important marker 

of genomic instability where excessive lengthening may be just as pathological 

as telomere shortening for carcinogenesis.  

 

Telomere attrition may promote generation of cancer stem cells by causing a 

series of chromosomal fusions, anaphase bridge formations and breakage-

fusion-breakage cycles that enable DNA damage to accumulate (De Lange, 

1995). Whereas lengthened telomeres may enable the cell to enter into more 

division cycles, thus increasing the susceptibility of the genome to 

abnormalities, lethal mutations as well as immortality (Hahn, et al., 1999). For 

this reason, telomeres are considered to be targets for anti-cancer therapies. 

Recently, Bejarano and colleagues (2019) demonstrated that deletion of TRF1 

shelterin protein can impair the growth of tumours in aggressive lung and 

glioblastoma mouse models. Interestingly, this induction of telomere damage 

was independent to telomere length. 

 
There is also evidence that initial telomere lengthening may lead to telomere 

attrition, due to telomeres being long but dysfunctional (Bull, et al., 2014). Bull 

and colleagues (2014) report a positive correlation between the frequency of 

nuclear anomalies in cultured human lymphocytes and telomere length. They 

concluded this to be an indicator of long, dysfunctional telomeres. Similarly, our 

research reports a positive correlation between nuclear anomalies in the buccal 

mucosa and salivary telomere length. There is evidence linking telomere 

dysfunction with increased cytokinesis failure and potentially mutagenic 
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consequences (Pampalona, et al., 2012). Considering this evidence in light of 

excess inflammation, vitamin D deficiency and oxidative DNA damage in the 

same obese cohort, leads to the speculation that the telomeres are not just 

greater in length but possibly also dysfunctional. To confirm these findings, 

further research in salivary DNA to assess levels of oxidised guanine within the 

telomeric overhang region may be required.  

 

Overall, the findings presented by this study are in contrast with other 

associations described between adiposity and telomere length dynamics. 

Further research is recommended to first confirm that obesity in childhood is 

associated with excess salivary telomere length. This research is limited in that 

the quantification of salivary DNA was conducted using a spectrophotometer, 

which has been described as an unreliable technique to quantify salivary DNA 

due to possible bacterial contamination of samples (Quinque, et al., 2006). 

Although the contamination of bacteria in samples was limited by rinsing the 

mouth prior to sample collection and by employing a commercially available kit 

to inhibit bacterial growth, there is still a chance that bacterial DNA could affect 

the quantification of salivary DNA samples. Secondly, further research is 

needed to confirm the clinical relevance of the potentially excess telomere 

length in saliva and whether this phenomenon may give rise to protective or 

pathological consequences.  
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4.6 Integrating DNA damage assessments in the clinical 
management of childhood obesity  
 

Overall, the results of this research confirm that obesity in childhood, when 

defined by one or more indices of adiposity, is concurrent with excess 

inflammation, lower vitamin D and increased genomic instability. The non-

invasive sampling employed as part of this research verifies that these 

pathological states can be detected without blood sampling. Therefore, this 

research recommends the development of a clinical algorithm to guide 

monitoring of inflammation, micronutrient status and DNA damage in children 

with obesity.  

 
Assessing inflammation, micronutrient status and DNA damage in severe 

childhood obesity may assist clinicians with selecting interventions and 

determining adequate weight-loss to prevent carcinogenesis. The resolution of 

an excess BMI to normality can take several months or years depending on the 

severity of obesity and the selected intervention. In the interim, genomic health 

could be monitored to inform progress and adherence with interventions, and 

escalate approaches where necessary.  

 
The findings of this thesis indicate that BMI Z score correlates most strongly 

with all the other markers of adiposity that include body fat percentage, waist 

circumference, and waist to hip ratio. This indicates that BMI percentiles could 

be selected as a primary method of classifying obesity, as it is in agreement 

with other markers of adiposity. Grouping participants based on their body fat 

percentage generates a greater significant difference in biomarkers. However, 

none of the differences between biomarkers are present when adiposity is 

defined by body fat percentage alone. Classification of participants via BMI Z-
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score led to a statistically significant difference across all biomarkers that were 

assessed. This means that BMI Z-score may be a more adequate predictor of 

co-morbidities compared to body fat percentage. Bohn and colleagues (2015) 

have conducted an assessment of BMI Z-score, body fat percentage via 

bioelectrical impedance, and cardiovascular disease risk markers in a cohort of 

3,327 children. They conclude that the assessment of body fat percentage is 

not superior to assessment of BMI Z-score when determining the risk of 

cardiovascular markers in children and adolescents with obesity. Therefore, 

based on the findings in this thesis, the assessment of co-morbidities should be 

recommended for patients with a BMI above the 98th centile.  

 
However, BMI Z-score like body fat percentage, is not correlated with the level 

of oxidative DNA damage assessed in urine. Whereas a moderate, positive 

correlation exists between WC, WHR and urinary 8-OHdG. In addition, waist 

circumference and waist to hip ratio are well correlated. The assessment of hip 

circumference in addition to waist circumference may introduce a higher risk of 

methodological error. Secondly, the agreement between WHR and other 

anthropometric markers in this research is poor. Finally, conducting multiple 

anthropometric assessments may be a time-consuming task in clinic. Based on 

the moderate correlation between central adiposity and oxidative DNA damage, 

this research recommends utilising waist circumference in addition to BMI Z-

score to inform the assessment and monitoring of inflammation, vitamin D 

status and genomic instability in children with obesity. 

  
It is interesting that despite obesity, assessed via BMI Z-score, being concurrent 

with increased salivary CRP, the levels of salivary CRP are not correlated with 

either of the DNA damage markers. Although, odds ratio analysis between 
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inflammation and DNA damage in the buccal mucosa does indicate that these 

two events may be linked. Whilst a causative association can neither be 

approved nor rejected, the analysis of salivary CRP could still be a component 

of the monitoring protocol. This is because inflammation is a well-known 

etiological risk factor for cancer and changes in salivary CRP levels could 

potentially inform this risk.  

 

In addition, other possible markers that could be assessed include total ROS 

production, although this too may be modulated by anti-oxidant function. Other 

inflammatory cytokines that have been monitored in obese children include 

TNF-alpha and IL-6 (Halle, et al., 2004). It is also recommended that in order to 

fully understand the risk of co-morbidities and cancer, other investigations at 

baseline may also include markers that have been mechanistically linked with 

inflammation and DNA damage. These include plasma fasting glucose, insulin, 

lipid and oestrogen levels (Olusi, 2002; Roy, & Liehr, 1999; Lin, et al., 2005; 

Lee, & Chan, 2015). Furthermore, hyperpigmentation around the neck, axilla, 

knuckles and popliteal fossa can also signify insulin resistance and is noted 

increasingly in adolescents with obesity (Ng, 2016). Therefore, this 

dermatological condition known as Acanthosis Nigricans, may be a part of the 

initial physical work-up. Similarly, as oestrogen levels increase with puberty, 

pubertal status should also be recorded. We struggled with determining pubertal 

status in children using a self-reported questionnaire to recall the date of 

menses or state whether puberty has been achieved. For future research and 

clinical assessments, the Tanner stages should be used to determine pubertal 

status as they correlate well with sex hormone production (Rapkin, et al., 2006). 

The initial work-up should also include an evaluation of pain and skeletal injury 
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as these states may also mark inflammation. Overall, a baseline assessment of 

all these parameters is essential for informing the type of intervention that will 

need to be administered.  

 
Furthermore, this research has noted significant differences between salivary 

vitamin D levels in children with and without obesity, defined by percentage of 

body fat. However, a causative link between salivary vitamin D status and 

adiposity cannot be confirmed by this study. One of the limitations of this study 

is that although the Fitzpatrick scoring method and travel history were 

incorporated into the screening questionnaire to rule out sun exposure and skin 

type as causative factors for low vitamin D levels, we noted differences in 

interpretation of the questions by participants. Recording travel history 

depended on recall of memory, which proved to be more challenging for the 

younger participants. Therefore data from these questions was excluded from 

the analysis. Furthermore, the assessment of vitamin D status in saliva remains 

a challenge because of lower levels in saliva compared to serum, and a lack of 

studies confirming a correlation between the two fluids. Therefore, vitamin D 

analysis requires a more sensitive analytical tool for determining cut-offs in 

saliva before vitamin D supplementation can be administered. In the interim, the 

initial assessment and work-up of childhood obesity should include assessment 

of plasma vitamin D to adequately diagnose and treat a deficiency.  

 
Nonetheless, it is of interest that salivary vitamin D levels were inversely 

correlated with the level of total nuclear anomalies in the buccal mucosa. The 

multiple regression analysis in this thesis presents a model to predict the level 

of DNA damage events in the buccal mucosa based on salivary vitamin D and 

body fat percentage. In light of this result, the monitoring of vitamin D in saliva 



 189 

should be considered to predict possible implications on chromosomal integrity. 

Furthermore, deducing accurate cut-offs for vitamin D supplementation based 

on salivary levels could not be more urgent.  

 
 However, salivary vitamin D levels do not correlate with the other two markers 

of ‘genome health’ – urinary 8-OHdG and salivary telomere length. It may be 

that there are other micronutrients that when abundant or lacking in obesity, 

also play a role in triggering DNA damage or protecting from it. For example, 

obesity has been linked with an increased intake of omega-6 (Muhlhausler, & 

Ailhaud, 2013). A diet rich in omega-6 has been associated with increased DNA 

strand breaks (Bishop, et al., 2015). Furthermore, excess fructose consumption 

has also been associated with obesity, insulin resistance as well as 

carcinogenesis (Laguna, et al., 2014). Micronutrients where deficiencies are 

associated with DNA damage in children include vitamin B12, folate and α-

tocopherol (Thomas, et al., 2009; Milne, et al., 2015). It is unfortunate that the 

dietary intake of participants could not be recorded as part of this investigation. 

Having this information could have also possibly strengthened the regression 

model presented here to predict levels of nuclear anomalies in the buccal 

mucosa. Overall, the monitoring of vitamin D is recommended in combination 

with a dietary assessment to establish overall micronutrient status.  

 
This research has combined the assessment of three, well-established markers 

of genomic instability. Whilst it has been established that increased nuclear 

anomalies in the buccal mucosa and excess urinary 8-OHdG can be seen in 

patients with various types of cancer, the significance of possessing longer 

telomeres in saliva are less clear. Therefore, non-invasive monitoring of DNA 
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damage in children with obesity is recommended via the buccal micronucleus 

assay and combing this with urinary 8-OHdG could also be explored.  

 
With respect to tools for intervention, a combined approach with dietary 

modifications, increments in the level of physical activity and reduction in screen 

time are useful for weight-loss (Summerbell, et al., 2010). Indeed, such 

interventions should be implemented alongside motivational interviews, stage 

based goal-setting and parental training for adequate weight maintenance 

(Summerbell, et al., 2010). Yet, achieving and maintaining weight-loss in 

extreme obesity can be more challenging.  

 
The FDA approved drug Orlistat can be used to treat adolescent obesity in 

combination with lifestyle modifications. However, side-effects such as 

malabsorption of essential fat soluble vitamins from the gut is a cause of 

concern (Kanekar, & Sharma, 2010). When conventional methods of treatment 

fail, most often due to non-compliance, surgical interventions for extreme 

childhood obesity may be required (Widhalm, & Helk, 2015). More recently, 

gastric bypass for adolescents with severe obesity and co-morbidities has been 

acknowledged as an effective method for weight-loss surgery to improve quality 

of life (Widhalm, & Helk, 2015). It has been suggested that bariatric surgery as 

an early weight loss intervention can be more beneficial for reducing obesity 

related co-morbidities when implemented in adolescence rather than adulthood 

(Inge, et al., 2007). Since bariatric surgery prior to a progression of severe co-

morbidities has positive implications on markers of chronic diseases such as 

CVD, obstructive sleep apnoea, diabetes and NAFLD (Inge, et al., 2007), it 

would be useful to explore the impact of bariatric surgery on markers of 

systemic inflammation and DNA damage.  
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There is evidence that bariatric surgery may improve genomic stability in obese 

adults, but this phenomenon is yet to be studied in adolescents. Laparoscopic 

gastric band application has shown a reversal in oxidative DNA damage, as 

reduced levels of urinary 8-OHdG were identified 6 months after this surgical 

procedure in a group of morbidly obese patients (Kocael, et al., 2014). The 

same surgical procedure has demonstrated a reduction in DNA double strand 

breaks with decreased levels of y-H2AX positive cells up to 7 years after 

surgery and restoration of telomere length in obese men (Mitterberger, et al., 

2014; O’Callaghan, et al., 2009). Recently, Bankoglu and colleagues (2017) 

reported a reduction in DNA breaks assessed by the comet assay in 56 blood 

samples 12 months after surgery. Although, there are also some discrepancies 

amongst studies. In a study conducted on 107 obese subjects with and without 

metabolic syndrome, no extension in PBL telomere length was evident after a 

12 month follow up of bariatric surgery (Formichi, et al., 2014). However, it is 

unknown whether the obese adults in these studies were obese since 

childhood. It is therefore also unknown whether genome damaging effects of 

childhood obesity are reversible if interventions are conducted too far later in 

life. Therefore, interventions should be prioritised to correct pathological states 

associated with early-onset obesity. 

 
Whilst there is currently no evidence for the effects of bariatric surgery on 

genome health in adolescents, other interventions do suggest genome 

instability may be a reversible phenomenon in young age. A calorie-restriction 

intervention coupled with prescriptive physical activity guidelines over a two-

month period has demonstrated an increase in PBL telomere length after six 

months in a cohort of 74 adolescents (García-Calzón, et al., 2014). Similarly, in 
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a mouse model, calorie restriction was also associated with weight loss and a 

decrease in DNA damaged demonstrated by reduced comet formation  

(Setayesh, et al., 2019). Not just calories restriction but an increase in dietary 

anti-oxidants may also have the potential to reverse DNA damage. Recently, a 

two-month dietary intervention that incorporated hazelnut consumption resulted 

in improved lipid profiles as well as reduced oxidative DNA damage assessed 

via the comet assay in PBLs from adolescents (Guaraldi, et al., 2018). 

However, in severe obesity, lifestyle changes alone may be inadequate for 

achieving substantial or sustainable weight-loss (Durkin, & Desai, 2017). Whilst 

bariatric surgery appears to be propitious for improving DNA integrity and 

stability in obese adults, whether such is the case in severe adolescent obesity 

should also be explored.  
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5. Conclusion 
 
To conclude, excess adiposity in childhood is associated with an increase in 

acquired DNA damage and genomic instability. More specifically, a BMI above 

the 98th centile is concurrent with excess oxidative DNA damage in urine and 

excess chromosomal aberrations and cytokinesis defects in the buccal mucosa. 

Evidence supporting the use of salivary telomere length to monitor genomic 

instability in obesity requires clarification.  

 
There is evidence that micro-nutritional deficiency and chronic inflammation are 

detrimental for optimal ‘genome health’. This is the first research study to report 

hypovitaminosis D in saliva from children with obesity and correlate it with 

increased nuclear anomalies in the buccal mucosa. Secondly, the same cohort 

of children with obesity further present with increased levels of salivary CRP. 

Recent research confirms that salivary CRP is a reliable indicator of systemic 

inflammation. It is also well-established that inflammation is a causative factor 

for cancer whilst vitamin D may have anti-cancer properties.  

 
Overall, this research supports the development of a clinical algorithm to guide 

the assessment, intervention and monitoring of adiposity, genome health and 

pre-pathological markers of malignancy in children with obesity. It is postulated 

that such an algorithm may be used to assess the success of weight-loss 

interventions and ultimately prevent co-morbidities in childhood obesity, 

including cancer.  
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6. Future Work  
 
Future work involves developing a clinical algorithm for detecting pre-cancerous 

changes in children with obesity, and exploring the effect of weight-loss 

interventions on ‘genome health’ markers. 

 
Firstly, there is a need to establish adequate cut-offs for salivary vitamin D and 

salivary CRP at which there is an increased risk of oxidative DNA damage and 

nuclear anomalies. Secondly, there is a need to define reference values for 8-

OHdG in urine and nuclear anomalies in the buccal mucosa whereby increased 

risk of malignancy, pre-malignancy and malignancy can be reported.   

 
Furthermore, the excess telomere length identified in the obese cohort requires 

corroboration. It is recommended that DNA quantification in saliva be performed 

via a fluorescent based technique that is specific for human DNA, rather than a 

spectrophotometer (Quinque, et al., 2006). Secondly, this experiment could be 

coupled with quantifying the expression of telomerase in RNA. Other enzymes 

that can modulate telomere length such as TEN1 (Kasbek, et al., 2013). 

Furthermore, as 8-OHdG may also play a role in the activation of telomerase, 

quantification of 8-OHdG in saliva may explain the findings of excess telomere 

length (Fouquerel, et al., 2016). Finally, whilst the significance of telomere 

length in PBLs is clearer, It is also important to establish the relevance of 

excess salivary telomere length in cancer.  

 
In addition, the buccal cytome assay protocol can also make use of molecular 

probes for DNA adduct, aneuploidy and chromosome break assessment within 

the nuclei of buccal cells (Ramirez, et al., 1999). This analysis could provide 
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more specific detail of the contents of micronuclei and thus establish stronger 

mechanistic links with cancer.  

 
There is also a need to confirm the reversibility of DNA damage in children with 

obesity via weight-loss interventions and vitamin D supplementation. Such 

research could help establish which interventions models are more relevant for 

children that present with obesity and increased DNA damage. Overall, further 

work is need to define a clinical algorithm that would be useful for preventing 

co-morbidities in childhood obesity and optimising genome health. 
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8. Appendix  
I. Participant Information Booklet for Parents (Clinic Version) 
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II. Participant Information Booklet for 10-18 year olds (Clinic Version) 
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III. Parental Consent Form (Clinic Version) 

 

 

Version 9 28.06.17 
When completed: 1 for participant; 1 for 
researcher site file; 1 to be kept in medical notes. 

 
 

 
IRAS ID: 212869       Centre Number:                     Study Number:  

Participant Identification Number for this trial: 

CONSENT FORM 

Title of Project: Genome Instability in Childhood Obesity 

Name of Researcher:                                                                                                                           

1. I confirm that I have read the ‘Participant Information Booklet for Parents’ dated 28.06.17 

(version 9) for the above study. I have had the opportunity to consider the information,          

ask questions and have had these answered satisfactorily. 

 
2. I understand that my child’s participation is voluntary and that I am free to withdraw them 

 at any time without giving any reason, without their medical care or legal rights being  

affected. 

 
3. I understand that relevant sections of my child’s medical notes and data collected during  

the study, may be looked at by doctors and/or responsible individuals from the NHS Trust or 

regulatory authorities only, where it is relevant to my child taking part in this research.  

I give permission for these individuals to have access to my child’s records.  

 
4. I understand that the information collected about my child will be used to support 

other research in the future, and may be shared anonymously with other researchers. 

 
5. I agree to my General Practitioner being informed of my child’s participation in the study. 

 

6. I understand the study includes undertaking research on my child’s donated human tissue 

(urine and saliva). 

7.  
8. I agree to take part in the above study.  

 
            

Name of Parent   Date    Signature 

 
            

Name of Person  Date    Signature 
taking consent   
 

Please initial box 
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IV Assent Form (Clinic Version) 

  
 
   

Principal Investigator: Dr Martha Ford-Adams, IRAS ID: 212869  Assent form v4.0 21.02.17 
   

 

 
Assent Form for 11-15 year olds 

 
Research study title: Genome Instability in Childhood Obesity   

Please tick as appropriate:   

I have been given the ‘Participation Information Booklet for Yes No 
11-15 year olds’, and had its contents explained to me. r r 

I have had an opportunity to ask any questions and I am happy Yes No 
with the answers given to me. r r 

I understand that I can leave the study at any time I want to. Yes No 
 r r 

I understand that if I leave the research, any information about me Yes No 
will also be removed from the study unless it is anonymous and r r 
therefore not possible.   

I understand the study will be researching using my urine and Yes No 
saliva r r 

I would like to know about the overall results from the study and I Yes No 
understand I will not be given individual results. r r 

I confirm I am willing to be a participant in the above research Yes No 
study. r r 
 
 
 
Child’s Full Name : ___________________ Date: _______________ 
 
------------------------------------------------------------------------------------------------------------------  
To be completed by researcher: 
 
Parent/Guardian’s full name: ___________________  
 
Date of consent: _______________ 
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V. Participant Information Booklet for Parents (School Version) 

  

Information for Parents (School Version) 

Chief Investigator:     Mrs Moonisah Usman
m.Bajwa@my.Westminster.ac.uk

Principal Investigator: Dr Emanuela Volpi
e.Volpi@Westminster.ac.uk /020 79115000 ext. 64156

Information for Parents 

Version 3. 27.09.16

What happens next? 
If you are happy for your child to participate in the research study 
then please complete the attached consent form and hand it back 
to the school reception using the envelope provided. We will then 
ask your child for their permission using an ‘assent form’. A trained 
member of the research team will measure your child and collect 
samples in a designated room at your school, ensuring all needs of 
privacy and confidentiality are met. 

Thank you for reading through this information! 

If you have any further questions please do not hesitate to 
contact a member of the research team:
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VI. Participant Information Booklet for 10-18 year olds (School Version) 

 

Information for 11-15 year olds

If you have any more questions, speak to your 
school teacher or you can contact a member 
from the research team:

Chief Investigator:     Mrs Moonisah Usman

m.Bajwa@my.Westminster.ac.uk

Principal Investigator: Dr Emanuela Volpi
e.Volpi@Westminster.ac.uk

020 79115000 ext. 64156

Information for Children 

Version 3. 30.09.16
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VII. Parental Consent Form (Schools Version) 
 

 

Chief Investigator: Moonisah Usman Principal Researcher: Dr Emanuela Volpi 
Version	6.	03.01.17	

 
 
	   

Consent Form   

Research Title: Genome Instability in Childhood Obesity   

Please tick as appropriate:   

I have been given the Participation Information Booklet for Parents Yes No 
and/or had its contents explained to me. r r 

I have had an opportunity to ask any questions and I am satisfied Yes No 
with the answers given. r r 

I understand I have a right to withdraw my child from the research Yes No 
at any time and I do not have to provide a reason. r r 

I understand that if I withdraw my child from the research, any data Yes No 
included in the results will be removed if that is practicable (I r r 
understand that once anonymised data has been collated into   
other datasets it may not be possible to remove that data).   

I understand the study includes undertaking research on my child’s Yes No 
donated human tissue (urine and saliva). r r 

I would like to receive information relating to the results from this Yes No 
study. r r 

I wish to receive a copy of this Consent form. Yes No 
 r r 

I confirm I am willing for my child to be a participant in the above Yes No 
research study. r r 

I note the data collected may be retained in an archive and I am Yes No 
happy for my data to be reused as part of future research r r 
activities, in fully anonymised form.   
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VIII. Assent Form (School Version) 
 

 
 
 

 
 
 

Assent Form for 11-15 year olds 
 
Research study title: Genome Instability in Childhood Obesity   

Please tick as appropriate:   

I have been given the Participation Information Booklet for Yes No 
children, and had its contents explained to me. r r 

I have had an opportunity to ask any questions and I am happy Yes No 
with the answers given to me. r r 

I understand that I can leave the study at any time I want to. Yes No 
 r r 

I understand that if I leave the research, any information about me Yes No 
will also be removed from the study unless it is anonymous and r r 
therefore not possible.   

I understand the study will be researching using my urine and Yes No 
saliva r r 

I would like to know about the overall results from the study and I Yes No 
understand I will not be given individual results. r r 

I confirm I am willing to be a participant in the above research Yes No 
study. r r 
 
 
 
Child’s Full Name : _____________ ______ Date: _______________ 
 
--------------------------------------------------------------------------------------------------------------------------------  
To be completed by researcher: 
 
Parent/Guardian’s full name: ___________________ Date of consent: _______________ 
 
 
 
 
 
 
 
 
 
 
 
 
Chief Investigator: Moonisah Usman Principal Researcher: Dr Emanuela Volpi 
Version 3. 03.01.17 
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IX. Medical Questionnaire  

 

 Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17  
   

Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17 
 
   

 
Participant Screening Form (Medical Questionnaire) 

 
Study Title Genome Instability in Childhood Obesity (GICO) 
 
Date of Consent: Participant Code:  
 
Age (y): Gender: Ethnicity: 
Height (m): Weight (kg): BMI (Kg/m2): Body Fat (%) 
Waist Circ. (mm): Hip Circ. (mm):  Saliva Flow Rate (ml/min): 
 
Please answer the following questions, as honestly as possible.  
All your answers will be kept strictly confidential and none of your data will be  
identifiable in this study.  

 
Q1 Have you had previous exposure to X-rays? If yes, please provide details of date and type of scan: 

 
 
 

Q2 Have you had any dental treatment in the last 6 weeks? If yes, please indicate briefly what treatment you had: 
 
 

Q3 Do you currently suffer from tooth decay, or sense any sort of swelling or pain in your mouth? If yes, please indicate 
briefly your condition:                                                                  

Q4 Have you consumed anything to eat or drink 
(including water), or brushed your teeth in the last 30 
minutes? 

Please circle as appropriate: 
Yes 
No 

Q5 Have you participated in any vigorous physical 
activity in the last one hour? 
 

Please circle as appropriate: 
Yes 
No 

Q6 Do you have, or have suffered from any medical conditions? If yes, please explain briefly your condition:  
 
    

Q7 Are you currently taking any medications, including vitamin, mineral or other herbal supplementation? If yes, please 
provide brief details of what you take: 
 
 

Q8 Please indicate your travel history abroad, over the last 12 months. This is only to help us determine exposure to the 
sun.  
 
Destination:…………....…    Duration of stay:…………..   Month of Return:………. 
 
Destination:…………....…    Duration of stay:…………..   Month of Return:………. 
 
Destination:…………....…    Duration of stay:…………..   Month of Return:………. 
 

 
Please turn over to complete the questionnaire.  
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 Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17  
   

Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17 
 
   

Q9. Please complete the Fitzpatrick Skin Typing test* below by entering your total score into the allocated 
spaces. This will help us to determine your skin type:  

 

 

 

 
*(Fitzpatrick TB. Arch Dermatol. 1988;124(6):869-871) 
Please turn over to complete the final part of the questionnaire.  
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 Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17  
   

Principal Investigator: Dr Murray Bain, IRAS ID 212869  V8.0 21.02.17 
 
   

Female participants please proceed to question 12. Male participants please continue to question 10.  
 
Q10 Have you gone through puberty? 
Q11  When did you go through puberty? 

End of questionnaire for male participants. 
Q12 Have you started having periods?  

 
Please circle as appropriate: 

Yes 
No 

If no, please go to the end of 
questionnaire.  

Q13 Please record the date of your first period:  
Q14 Please record the date of your last period:  
Q15 How often do you have a period?   
                                                                                                        
 

End of Questionnaire - Thank you for your participation!  
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X. Invitation Letter (School Parents/Guardians)  

 
 
 
 

 
 

  
 
Draft Letter of Invitation for Parents V4 27/09/16 
Chief Investigator: Moonisah Bajwa   Principal Investigator: Dr Emanuela Volpi 
 

 

 

Dear Parent/Guardian, 

Your child is being invited to take part in a research study titled: ‘Genome Instability in Childhood Obesity – 
(GICO)’, in collaboration with The Harris Academy Battersea and the University of Westminster.   

The purpose of the research is to establish the different effects of body fat on health. It will require your child to 
be measured, provide a urine and some saliva samples, and complete a medical questionnaire.  

Please note: 

1. Participation in this study is entirely voluntary. If your child wishes to participate, all information collected 
will be kept anonymous. 

2. If your child does, or does not wish to participate, it will not affect their activities or involvement at The 
Harris Academy.  

3. All research activities will be carried out at The Harris Academy, and you or your child will not be required 
to carry out any travel. 

4. This research study has been checked and approved by the relevant Research Ethics Committee.   

For further information about the study, please refer to the attached Participant Information Booklet for Parents, 
and Participant Information Booklet for 11-15 Year olds. 

If you and your child agree to take part in the study, you should carefully read and complete the attached Consent 
form. Please keep the Participant Information Booklets for your own reference, and return the consent form to 
the school reception by <insert date>. If you do not return these forms, your child will not be included in the study 
automatically.  

Following your consent, we will start by taking your child through the questions on the ‘medical questionnaire’ 
before collecting any samples from them. A copy of this questionnaire is included for your reference only.  

If you have any further questions, please contact <NAME> on <insert number> or the research team using the 
contact details at the back of the Information Booklet for Parents.  

 

Kind regards, 

<Organisation >  
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XII. Normality test results  
 
Assessment of data for Gaussian distribution via the D'Agostino-Pearson 
normality test (p=0.05, n=112). 
 
 Mean ± SD Range  Passed 

normality test? 
Age (years) 14.11 ± 2.308 10.0 - 18.0 No 

BMI  29.72 ± 12.69 15.10 - 

63.60 

No 

BMI (Z-score) 1.828 ± 1.821 -2.3 - 4.86 No 

WHR 0.858 ± 0.0994 0.571 - 

1.383 

No 

Body Fat (%) 32.66 ± 12.44 5 – 58.9 No 

CRP (pg/mL) 2002 ± 1313 341.8 - 

7789 

No 

Vitamin D (ng/mL) 7.070 ± 4.493 0 – 17.44 No 

DNA Damage in BM 

(%) 

1.263 ± 0.617 0.2 - 3 Yes 

8-OHdG  

(ng/mL creatinine) 

171.3 ± 102.0 18.18 – 546 No 

Telomere Length 

(kb/diploid genome) 

165 ± 94.45 24.26 - 

482.1 

No 
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XIII. Associations between micronuclei (MNi) frequency in PBLs and site-specific malignancy 
and pre-malignancy.  
 

Cancer Site Study Population Key Findings  Authors, Date 

Bladder 158 patients/ 158 controls (age 

matched) 

Increase in MN frequency associated with 

increased risk of cancer  

Pardini et al., 2017 

(Pardini, et al., 2017) 

Breast 91 patients/96 controls Higher frequency of MNi in breast cancer 

patients  

Varga et al., 2006 

45 patients/  85 controls (age 

matched)  

Higher frequency of MNi in breast cancer 

patients 

Santos et al., 2010.  

220 patients/95 controls No significant difference of MNi frequency 

between patients and controls 

Bolognesi et al., 2014  

Follow up of 1650 adults Higher frequency of MNi at baseline in cancer 

patients. 

Murgia et al., 2008  

Colorectal 25 cancer patients/ 26 polyp patients/ 

31 controls  

2.1x higher frequency of MNi in cancer 

patients than controls. Polyp patients had 

1.5x higher frequency of MNi than controls.  

Maffei et al., 2014  

Encephalon Follow up of 1650 adults Higher frequency of MNi at baseline in cancer 

patients. 

Murgia et al., 2008  
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Endometrial  59 patients/ 59 controls 20% higher frequency of MNi in patients. 

 

Aires et al., 2011 

20 endometrial hyperplasia patients/ 

20 cancer patients/ 20 controls 

2.9x higher frequency of MNi in women with 

endometrial cancer. 

Kiraz et al., 2016  

Lung 216 small cell lung cancer patients/ 

173 Non-small cell lung cancer 

patients/ 204 controls 

Higher MNi frequency in lung cancer patients.  El-Zein et al., 2006  

Lymphoma Follow up of 1650 adults Higher frequency of MNi at baseline in cancer 

patients. 

Murgia et al., 2008  

Oral Follow up of 1650 adults Higher frequency of MNi at baseline in cancer 

patients. 

Murgia et al., 2008  

Pancreatic  346 patients/ 449 controls 1.6x higher MNi frequency in pancreatic 

cancer patients. 

Chang, Li and Li, 2011  

Stomach 6718 adult participants across 20 sites  Higher frequencies of MNi were associated 

with increased risk of stomach cancer. 

Bonassi et al., 2007  

Urogenital 6718 adult participants across 20 sites Higher frequencies of MNi were associated 

with increased risk of urogenital cancer. 

Bonassi et al., 2007 
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XIV  Associations between adiposity and telomere length.  
 
Date Study type  Study population Cell type & technique for 

telomere length test 

Key findings Reference 

2005 Case 

control 

561 female twins  PBLs via TRF TRF length was lowest in the obese cohort and 

correlated with BMI and serum leptin. 

(Valdes, et al., 

2005) 

2008 Correlation 989 adults Leucocytes via qPCR Inverse correlation between BMI and TL in women.  (Nordfjäll, et al., 

2008) 

2008 Case 

control 

53 children/23 

adults  

PBLs via TRF No difference in TL in children. Obese adults had 

shorter TL.  

(Zannolli, et al., 

2008) 

2009 Correlation 

follow-up 

647 female adults  Leucocytes via qPCR High BMI and hip circumference inversely 

correlated with TL. Obese females had shortest TL.   

(Kim, et al., 2009) 

2010 Case 

control 

51 obese/ 21 non-

obese adults  

Subcutaneous adipose 

tissue via Southern 

blotting 

BMI inversely correlated with TL. Formerly obese 

patients had shorter TL than never-obese. 

(Moreno-

Navarrete, et al., 

2010) 

2010 Correlation 317 adults 

(aged 40-64 years) 

Leukocytes via qPCR No significant correlations between BMI or visceral 

adipose tissue and TL.  

(Diaz, et al., 

2010) 

2010 Correlation 2284 females Leukocytes via qPCR Waist circumference was inversely correlated with 

TL.  

(Cassidy, et al., 

2010) 

2011 Correlation 309 non-Hispanic 

white participants 

aged 8 to 80 years  

Leukocytes via qPCR BMI, waist circumference, hip circumference, total 

body fat, and visceral adipose tissue volume 

inversely correlated with TL.   

(Lee, et al., 2011) 
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2011 Case 

control 

793 children (aged 

2-17 years) 

Leukocytes via qPCR 23.9% shorter TL in obese children.   (Buxton, et al., 

2011) 

2011 Case 

control 

667 adolescents Leukocytes via qPCR Shorter TL is not associated with childhood obesity.  (Haidong Zhu, et 

al., 2011) 

2012 Correlation 

at baseline 

and 7yr 

follow up 

2721 elderly 

subjects 

Leukocytes via qPCR BF% and subcutaneous fat inversely correlated 

with TL.  No correlation between BMI and TL. 7 

year follow up showed inverse correlation with BMI 

and BF%.   

(Njajou, et al., 

2012) 

 

2013 Correlation 2,912 females 

(aged 40-70 years) 

Leukocytes via qPCR TL is inversely correlated with BMI, waist 

circumference, waist-to-height ratio, weight, and hip 

circumference but not waist to hip ratio.  

(Cui, et al., 2013) 

2016 Correlation 7527 adults  

(aged 20-84) 

Leukocytes via qPCR Telomere length is inversely correlated with BMI, 

waist circumference, BF% and C-reactive protein.  

(Rehkopf, et al., 

2016) 

2017 Correlation 

follow-up 

2749 adults Saliva via qPCR BMI positively predicts salivary telomere length 

over 16 years.  

(An, & Yan, 2017) 

2018 Correlation 497 Lebanese 

adults  

PBLs via qPCR Telomere length is inversely associated with waist 

circumference but not with BMI.  

(Zgheib, et al., 

2018) 
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