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1. Introduction

This White Paper sets out to explain the value that metamodelling can bring to air
traffic management (ATM) research. It will define metamodelling and explore what it
can, and cannot, do. The reader is assumed to have basic knowledge of SESAR: the
Single European Sky ATM Research project [1]. An important element of SESAR, as
the technological pillar of the Single European Sky initiative, is to bring about
improvements, as measured through specific key performance indicators (KPIs), and
as implemented by a series of so-called SESAR ‘Solutions’. These 'Solutions’ are new
or improved operational procedures or technologies, designed to meet operational
and performance improvements described in the European ATM Master Plan [2].

Central to performance assessment in SESAR is its Performance Framework, and this
is supported, in part, by EATMA - the European Air Traffic Management Architecture.
This is the common architecture framework for SESAR, its means of integrating
operational and technical content developments. In these various SESAR contexts,
the term ‘metamodel’ is not used extensively, and typically describes, at a high level,
logical entity relationships, e.g. for performance data and as an architecture mapping
and database model. Whilst different definitions of metamodelling indeed prevail in
different scientific contexts, usually referring to some form of abstractions of
complexity, this White Paper sets out to present a precise definition as deployed in
NOSTROMO, relating to simulation metamodels, and the highly specific objectives
and corresponding benefits, and limitations, of such application in the performance
assessment of SESAR.
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Different SESAR Solutions variously deploy different simulations to demonstrate their
expected performance contributions across the International Civil Aviation
Organisation (ICAQO) set of eleven key performance areas (KPAs), using a number of
specific KPIs defined in the Performance Framework. Indeed, the corresponding
projects are compelled to assess performance expectations as part of the SESAR
programme. This brings challenges in terms of computational effort, simulation
consistency, assessing KPI interdependencies and general integration.

NOSTROMO does not set out to build or specify a single, integrated metamodel
for different SESAR Solutions or simulators. Nor does it aim to generalise all such
simulations. It is explained in this paper that each simulation metamodel is a
modelling proxy for, or simplified abstraction of, a specific Solution (or combination of
Solutions) simulation model. Whilst not replacing these simulations, simulation
metamodelling is a powerful complementary tool, improving the state of the art for
performance assessment, for example in terms of delivering computational efficiency
and driving enhanced standardisation.
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2. Definitions

Simulators

ATM is a complex system where
improvements such as SESAR Solutions are
constantly proposed to enhance efficiency,
capacity, resilience, and sustainability, inter
alia. Extensive studies are needed to assess
the feasibility of the concepts and their
potential benefits. Simulators are frequently
used to perform these assessments, often
across different levels of Solution maturity.

In brief, a simulator is a software program
designed to reproduce behaviour likely to
occur in the existing (ATM) system. The design
of simulators requires efficient and effective
computational models for data representation,
analysis and visualisation. Various simulator
types are available to analysts based on the
required level of the investigation and the
maturity of the proposed concept:

1. Fast-time simulatros (FTS),
2. Human-in-the-loop simulators (HITL),
3. Real-time simulators (RTS).

Metamodels

By definition, a metamodel is a model of a
model. Although the term itself is relatively
imprecise, having different meanings and
interpretations across the fields where it is
used (see [3,4,5], for other SESAR-related
metamodels), in this paper, we solely focus on
simulation metamodels [6,7,8], that is to say,
models specially designed to reproduce the
behaviour of simulation models (e.g.
simulators).
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If a simulation model corresponds to an abstraction of a particular real-world system
or phenomenon, a metamodel can be regarded as an abstraction of the simulation
model itself, as depicted in figure 2. In this White Paper, we may use the terms
‘'simulation metamodel’ and ‘metamodel’ interchangeably; also, we refer to the
process of designing and building it as ‘metamodelling’.

Formally, a simulation metamodel is any type of model that can be used to deduce
the unknown input-output mapping inherently defined by the simulation model,
essentially serving as a surrogate or proxy with respect to the associated simulator.
Although simulation models are simplified representations of the real-world system,
they can still be, and often are, complex and detailed enough to yield significant
inconveniences in their use for practical purposes. The most common shortcoming is
their tendency to exhibit expensive simulation runs. Furthermore, the size and range
of the input variable space can make it difficult to efficiently study and explore the
pbehaviour of computer simulations as a whole, even with current computing
technologies.
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Figure 2 - Relationship between the real-world system under study, the simulator and the metamodel.

Simulation metamodels can then be employed to minimise the computational
drawbacks posed by exhausting and time-consuming simulation runs by jointly
exploiting their approximate nature, functional simplicity, and fast computing. Being
approximations of the underlying simulation functions, the metamodels' design and
general performance can achieve balanced trade-offs between computational
speed and controlled accuracy loss, depending on their ultimate objectives. Another
feature of metamodels is that their respective functional structures are generally
known and analytically defined, as opposed to those of most simulators. It is
worthwhile noting that, although the average arbitrary simulator is often comprised
of a plethora of internal analytic expressions and logical relationships, it can be
externally treated as a single ‘black-box’ function with no clear mathematical formula.
Nevertheless, an ‘emergent behaviour’, resulting from its inner interactions and
dynamics that evolve over time, can be directly observed. Metamodels aim at
mimicking precisely this output behaviour, as a function of the simulation inputs.
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llustrated in figure 3 is one of the simplest metamodelling scenarios consisting of a
simulator with two input and one output variables, along with a simple linear
regression model in the role of the metamodel. Here, the metamodeling assumption
is that the unknown function f represented by the simulator, and consequently its
single output, can be reasonably well approximated by a linear combination of its two
simulation inputs plus a normally distributed noise term. Naturally, the three
parameters of this linear function have to be estimated using some data generated
by the simulator itself. This process is typically termed the ‘training’ of the model
within a machine learning context. In our particular case, this is the process through
which the metamodel learns to fit itself to the observed simulation data, ultimately
aiming at approximating the simulator’s output behaviour.

f(X1,X2)
Xl 1,422
>
SIMULATOR Y .
X, (unknown function) 7'y
>
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METAMODEL
(known function)

Figure 3 - A simple linear regression model acting as a simulation metamodel.

Despite requiring an initial and unavoidable computational effort, both for sampling
the data from the simulator and then for training, the metamodelling approach relies
on the fact that most metamodels are (and should be by default) computationally
fast, provided that their parameters are already estimated. At this point, if the
metamodel represents a fairly good approximation of the simulator, it can thus be
employed as a proxy replacement to attain a more efficient exploration of the latter's
behaviour. This exploration is conducted by means of predicting the output values
for a set (typically a rather large one) of combinations of input values that have not
been simulated. Hence, through a surrogate metamodel, exploration by proxy can
effectively bypass the need for new simulation runs with a minor and controlled
accuracy loss and instead generate predictions for unobserved input combinations.
Figure 4 summarises two important types of data sets used in metamodeling,
namely, the training set to which the metamodel is fitted and the prediction set used
to explore the simulation input by proxy and the corresponding output behaviour.
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Figure 4 - Basic ingredients of the training and prediction sets.

Typically, the training set is called a labelled set, whereas the prediction set in the
absence of the predicted values is an unlabelled set. The term ‘label’, which is
commonly associated with classification problems, is here adopted to refer to any
value lying in the range of the simulation output space. The exploration process
encompasses the prediction of labels which otherwise would have to be generated
through simulation, thereby consuming more computational resources and time.

In the context of the NOSTROMO project, a more complex and powerful family of
metamodels is being employed, namely, the Gaussian process (GP) modelling
framework [9,10]. Indeed, GPs have been widely studied and used as simulation
metamodels across many different fields, corresponding to the de facto default
approach in most metamodelling settings. Besides their flexible non-parametric and
highly non-linear characteristics, GPs provide a native Bayesian inference system
that allows them to handle and quantify their own predictions' uncertainty and the
variability naturally present in the data. Compared with other current paradigms,
such as Deep Neural Networks, GPs require much less training data. This is a major
advantage in simulation settings, because each data point (one simulation) can
require substantial resources.
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3. Active Learning

Previously, it was mentioned that
metamodels need to be trained with
the simulation data so that they can
serve as approximators for the
simulator at hand. On the other hand,
we recognise that simulation results
might be computationally expensive
and cumbersome to generate in a
systematic manner, which ultimately
constitutes one of the core issues that
metamodelling aims to address.

In this context, active learning [11,12] emerges as a powerful learning paradigm that
enhances metamodels and underlying algorithms to attain a high predictive
performance using as little data as possible. This is achieved by an iterative scheme
that, in its simplest form, sequentially selects the most informative input data points
to be run through the simulator, eventually adding them to the current training set
for model refitting. Here, the informativeness of an arbitrary single unlabelled point is
measured as a function of its potential relative contribution to improving the
metamodel’s performance. In other words, if a data point is associated with a strong
information index, then it is more likely to pose a greater performance boost than
otherwise. Several information criteria can be adopted, but their reference is out of
the scope of this document.

In sum, active learning generally seeks to optimize and, essentially, to accelerate the
metamodel’'s learning curve by avoiding redundancy in the training set,
simultaneously making training more efficient and saving significant computational
resources, simulation run time, and workload in the process.

Metamodels and active learning are conceptually intertwined and somewhat
complementary in practical terms since both generally aim at reducing
computational costs. Whereas the metamodels' contribution to this goal lies in
providing a parsimonious approximator serving as simulation replacement, active
learning focuses on delivering an efficient training process. Overall, with the
natural combination of the two approaches, more insights concerning the simulator’s
behaviour are obtained with fewer data, i.e. at a reduced computational cost to the
maximum possible extent.

10




NOSTROMO - LESSONS LEARNED AND CONCLUSIONS

4. NOSTROMO integration approach

Within NOSTROMO, the best of both worlds are integrated into a single auxiliary
framework with the objective of complementing and improving, through active
learning and metamodelling, the current state of the art for assessing the
simulation-supported design and performance impacts of SESAR Solutions on ATM
systems. Figure 5 depicts an overview of this architecture’s main elements along with
its process flow.

Overall, the ultimate goal of this approach is to assist ATM researchers, modellers and
practitioners with an auxiliary tool to study the input-output behaviour of simulation
models in a more insightful, systematic and computationally efficient fashion. The
underlying metamodelling process includes the fulfilment of several prerequisites.
First of all, and rather obviously, it cannot advance without a clear selection of the
SESAR Solution(s) to be assessed. In addition, these Solutions must be jointly
integrated or implemented a priori into the ATM simulator, upon which
metamodelling is then performed.

The simulation model should be capable of encoding the SESAR Solutions into a
specific set of input variables and KPIs (output variables) designed for performance
assessments. These are the same variables that are eventually used by the
metamodel to approximate the simulator’s inherent function.

Training Prediction
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Figure 5 - Overview of the NOSTROMO's Active learning-based metamodelling architecture.
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Besides the simulation variables of interest, the metamodelling process itself
requires the definition of the simulation input region where it should be employed.
Here, this region is deemed the input domain of applicability, essentially
encompassing the value ranges within which metamodelling is conducted.
Furthermore, due to the iterative nature of the approach, an initial (training) set,
comprised of previously generated simulation results, must be fed to the metamodel
so that the process can be initiated. Finally, it is of utmost importance to keep in mind
the research questions to be answered by the metamodel and the case study to be
analysed in terms of performance impacts.

Finally, alternating between the metamodeling and the active learning phases, the
integrated approach is composed of four elementary steps:

1. Training: the metamodel is fitted to the simulation data;

2. Prediction: the fitted metamodel is used to predict over the simulation input
domain of applicability;

3. Request. based on some acquisition criteria, new input data points
(unlabelled) are selected to be run by the simulator;

4. Response: the simulator provides new simulation output results
corresponding to the points from step 3, which are then added to the current
training set.

Steps 1-4 are repeated cyclically until a stopping criterion is satisfied. This criterion
can be defined, for example, as a function of the metamodel's performance, such as
accuracy and error-based metrics, or simply the number of iterations to be
performed with respect to the available time, budget and resources. The active
learning and metamodelling process eventually provides a trained metamodel
designed to help answer the posed research questions and assess the performance
impact of the previously selected SESAR Solutions.

It is important to always bear in mind the approximative nature of the metamodel
which calls for careful handling of the trade-off between speed, accuracy and
computational budget. This balance should constantly be monitored and adjusted
whenever required, to ensure the metamodeling’s ultimate objectives are attained.
This means that, if the finally obtained metamodel is not fit for purpose, it can be
reintroduced in the active learning metamodelling cycle to allow its parameters to be
reestimated. Consequently, and on a similar note, it is equally crucial to recognize
and identify the performance threshold from which the mere addition of new training
points will not significantly improve the ability of the metamodel to approximate the
simulation results. In those cases, and especially from a metamodelling perspective,
requesting more simulation results might prove to be a waste of computational
resources.

12
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5. Applicability of metamodelling approach

Pros of using the metamodelling approach

As stated previously, a metamodel is a a tool used to approximate the output of a
simulator, typically in situations where the simulator is computationally expensive or
complex. Characteristics include functional simplicity, computational speed, and
general intelligibility. Contrary to simulation models, metamodels are explicitly
defined by known analytical mathematical formulas, which contributes to an
enhanced understanding of the dynamics and associations between the simulation
inputs and the outputs of interest. Furthermore, the exploration of the simulation
input space, and corresponding output behaviour, is greatly improved. Whilst
conducted by surrogate approximation, this exploration allows for fast and efficient
identification of patterns and general trends, and it is even able to correct itself via
active learning whenever the metamodel's performance starts to drop below
unacceptable levels.

In essence, metamodels serve as stand-
ins for simulators. In the context of the
SESAR Performance Framework, they
are specially conceived to focus on the
input/output variables that specifically
encode the Solutions under study. Due
to their computational speed and their
ability to predict 'in bulk’, it makes it easy
to run up to thousands of combinations
of input values in a manner of seconds.

Another important feature of metamodels is their portability. In principle, a fully-
trained metamodel should be easily executable and relatively minimal dependencies
across different machines and operating systems, especially when compared to the
average ATM simulator. For similar reasons, and by adopting current cloud
deployment technologies, it should be fairly straightforward to make metamodels
available worldwide via application programming interfaces (APIs).

Cons of using the metamodelling approach

It is essential to be aware of the unavoidable approximate nature of simulation
metamodels, which come with a trade-off of decreased accuracy and precision.

13
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Consequently, metamodels should be regarded as auxiliary tools that complement
the conventional simulation-based analyses, not their substitution. To this end,

NOSTROMO's approach takes advantage of the benefits of simulation
metamodelling while also addressing its shortcomings. This approach involves using
metamodels and simulation models together, rather than replacing the simulation
models, in a combined modelling. While the metamodel aims at reducing the
exploratory redundancy by trying to seek the most informative and distinct input
data points, the simulation model ensures, by providing labelled data whenever
necessary, that this exploration process is maintained close enough to the simulation
data distribution.

In practice, another important aspect of metamodelling, especially when coupled
with active learning strategies, is that it does not represent a universal and plug-
and-play approach. Depending on the characteristics and design details of the
simulator in question, the construction of corresponding metamodels might require
more or less implementation effort. This is particularly true for those cases when the
input/output data require some sort of transformation or encoding, for example,
from categorical to numerical values or when the simulator runs over multiple data
log files. Eventually, each metamodel is highly tailored for the specific ATM
simulator, SESAR Solutions and case studies under study.

Furthermore, metamodels, like most data-driven models, do also suffer from the so-
called ‘curse of dimensionality' phenomenon [13,14,15], which refers to the problem of
exponential data sparsity in high-dimensional spaces. Whilst metamodeling is a
useful approach, it is unwise to consider that a metamodel can entirely approximate
the simulation model as a whole. This would be rather impractical, if not virtually
impossible, for most simulation approaches with numerous input variables, as the
number of required simulation runs would be too high, inevitably rendering the
metamodeling itself unattractive and computationally unable to meet its goals.
Instead, the domain of applicability, or experimental region, should be established
first, in which the metamodel should be a valid approximation [7]. In essence, this
simplification can be regarded as restricting the metamodel training to a limited area
within the sparse simulation input-output space, instead of considering all the input
variables at once, which reduces its dimensionality to more manageable and
intelligible sizes.

14
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6. Metamodel objectives and limitations

Metamodel capabilities

A metamodel is a tool that quickly and efficiently approximates the output of a
simulator. This enables the exploration of the input-output simulation space with
much less computational effort. Given a Solution, or multiple ones, already integrated
and implemented within the simulation

model in question, and a concrete case
study, the metamodel is able to run §
multiple input combination values and

predict their corresponding output

values in a relatively short amount of

time (especially when compared with ap .

the simulator's average runtimes), a 1
consequently bypassing exhausting and blllt
systematic simulations runs. Due to y
approximation, accuracy is sacrificed to

the detriment of faster speeds and

exploratory abilities. Besides model

approximation and exploration (prediction) of the simulation input-output mapping,
metamodels can also be used for optimization support, sensitivity analysis, and
verification and validation [7,13,16,17].

Limitations of the metamodelling approach

In essence, metamodels act as proxy replacements for simulators. In the context of
the SESAR Performance Framework, they are specially conceived to focus on the
r input/output variables that specifically
encode the Solutions under study.
Therefore, metamodels cannot combine
Solutions for themselves, nor they can
generalize across different simulation
models. Instead, generalization is only
conducted across the input space of the
same simulator and for a given SESAR
Solution. Similarly, metamodels cannot
be used for extrapolation purposes for
other case studies and sets of
input/output variables that have not
considered during their design and training in the first place.

15
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Generalisation of the NOSTROMO approach to any simulator

The metamodel treats the simulation model as a black box that transforms an input
space of values into an output space of values, regardless of the numerical
computations that run underneath it. Some simulation models are naturally more
straightforward to metamodel than others, mostly depending on, but not limited to,
the complexity of their input-output relationship, the number and type of variables,
and the size or range of the variables' values spaces. Note, however, that whereas
the approach is theoretically applicable to any simulator, the obtained metamodels
are simulator-specific, thus not generalizable.

Integration of different Solutions within the metamodelling
approach

Most metamodels are agnostic to the design and implementation details of the
simulation model it aims to approximate. If the simulator in question already
integrates the different Solutions by encoding them into specific simulation rules,
function, procedures and input/output variables, then the metamodelling procedure
follows naturally, as depicted in figure 6. Therefore, distinct Solutions can be
integrated with the metamodeling approach as long as they are first integrated and
implemented in the simulator of interest.
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Figure 6 - Integration of several Solutions into a single simulator for posterior metamodelling.
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The metamodel aims to mimic the latter and not the former. Metamodels are not
designed to model Solutions per se. Instead, they model the simulation input-output
relationships representing Solutions which are encoded into the simulator and
represented via simulation input variables and output KPIs.

In the simplest case, a unique metamodel is required per simulator and Solution.
However, if Solutions are implemented into a single simulator, the metamodel should
be able to accommodate them by adding new input-output variables to the
metamodelling dimension space.

Integration of multiple simulators in a single metamodel

In principle, each metamodel is designed to approximate a specific simulator using a
particular set of simulation input-output variables. Metamodels can be regarded as
proxy replacements of the underlying simulators, and, as such, they act as
computationally faster modelling surrogates. Therefore, metamodels are limited to
the simulators for which they were individually built. This means that each
metamodel approximately mirrors the behaviour of a given simulation model,
especially through generalisation across the simulation input space. Still, it cannot go
beyond that, as both are firmly intertwined. Metamodelling represents a single one-
to-one relationship between a metamodel and a simulator. Hence, it is not
inherently designed to integrate different simulators.

In practice, it might be feasible to design a metamodel that integrates multiple
simulators insofar that the simulators in question are technically and meaningfully
integrable in the first place. Notice, however, that the integration capabilities lie
mostly on the integrability of the underlying simulators and not on the metamodelling
approach per se. In this case, the metamodel will regard the final integrated
simulators simply as a novel simulator.

Figure 7 illustrates two possible simplified ways of integrating two simulators, A and B,
with posterior metamodelling in mind, each one individually implementing its own
homonymous Solution. The first situation comprises the case where the output of one
simulator serves directly as the input to the other.

ELD SIMULATOR A Outputs , / Inputs g SIMULATOR B Outputs s
Solution A 4 Solution B 4

v

Figure 7 - Serial integration of two simulators implementing different Solutions and corresponding metamodel.
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Here, we observe that the metamodel approximates the black box whose simulation
variables are the inputs of Simulator A and the outputs from Simulator B, being
completely agnostic to this serialised integration.

Alternatively, the two simulators can be integrated via parallelisation, as depicted in
Figure below. In this situation, both simulators can have their own input spaces and
share a set of common variables. The integration itself is performed by somehow
individually combining the outputs generated by each simulator in a meaningful and
useful way. This integration is independent of and occurs a priori to the metamodel’s
building process. Once again, the metamodel only considers the newly formed
simulator’s input and output variables, ignoring its inner simulation subcomponents.

Inputs Outputs
i | siMuLATOR A il .
" Solution A " _
é Outputs ;g
gr. F Y
Inputs Outputs =
P=Sie o| smuLatore pUsie .
Solution B
i
L=
3 METAMODEL

Figure 8 - Parallel integration of two simulators implementing different Solutions and corresponding metamodel.

For all intents and purposes, the simulator resulting from the integration of
independent simulators is a new simulator (depicted with dashed lines in both
figures) from a metamodelling perspective. The metamodel takes no part in this
integration process which is only limited by the ability and utility of combining the
simulators in question and, consequently, the associated Solutions. If an arbitrary set
of simulators can be integrated in a reasonable and meaningful manner, then a
metamodel can be used to approximate the resulting integrated simulator as it is
regarded as a new simulation model. Therefore, building a metamodel that
encompasses multiple simulators makes sense only if the simulators themselves can
be integrated a priori and run as a whole. The combination of Solutions, and thus its
corresponding metamodelling, is heavily dependent on the success of incorporating
them into a single simulator, via integration, as seen before, or from scratch. The lack
of standardisation and use of different technologies and programming platforms
between simulators might represent a major obstacle in practice. Moreover, even if it
is technically possible, one should always firstly investigate if the combination of
certain Solutions does indeed make sense from theoretical, research and practical
perspectives.

18
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7. NOSTROMO dashboard

Metamodels aim to remove computational barriers to perform a complete and
efficient exploration of the input-output space defined by complex simulation models.
The usefulness of this exploration is ultimately linked to a decision-making process
where computational tractability is a necessary but not sufficient condition. The way
in which the results of the model are presented is crucial, so that they can be clearly
analyzed in order to make better informed decisions.

These two needs can be reconciled through the development of a dashboard
equipped with a set of interactive visualisation tools that allow the user to analyse the
outputs of the metamodels and explore trade-offs between KPIs with the ultimate
purpose of supporting different types of decision-making process related to
performance management.

Figure 8 - NOSTROMO Interactive Dashboard.

The NOSTROMO dashboard is a web-based platform where the user can visualise
the impact on performance of alternative decisions in a simple but rigorous way,
allowing a comparative assessment. It communicates dynamically with the
metamodel to be investigated through the NOSTROMO API to allow a simple and
fast exploration of the simulator's input-output space. The methodology chosen for
the representation of results is the following: (i) the user can define combinations of
inputs of interest through a series of tool selectors; (i) this information is
communicated to the metamodel so that it makes the corresponding prediction; (iii)
the metamodel outputs are sent back to the dashboard to be visualised in the
chosen plots. Given the computational speed of metamodels, this combined
approach enables visual exploration in real time.
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8. Conclusions and lessons learned

In summary, it is important to note that metamodels are limited by their intrinsic
approximative nature and one-to-one relationship with respect to the
simulator being approximated. NOSTROMO's metamodelling framework is
simulator-oriented, i.e. an individual metamodel is produced per simulator, where
simulator can be set-up to model one or more Solutions. As already mentioned,
metamodels cannot combine Solutions for themselves, nor they can generalize
across different simulation models. Instead, generalization is only conducted across
the input space of the same simulator and for a given SESAR Solution or Solutions
modelled within it. Similarly, metamodels cannot be used for extrapolation purposes
for other case studies and sets of input/output variables that have not been
considered during their design and training in the first place.

The effectiveness of metamodelling
Exploratory approach is largely dependent on the
a“""'ﬂ‘“ﬂ‘m’ complexity of the simulation model's
input-output, the number and type of
variables, and the size or range of the
variable values spaces. However, the
metamodels created are not
necessarily generalizable and are
specific to the simulation model.

Mataratel ' The final results of the project with real
; case studies and the most complex

NOSTROMO

Samutalor Exploitation’

Simulator Solutions selected during the project
el Tm showed that the metamodeling
approach followed by NOSTROMO
provides results very close to the simulator with much less computational time,
allowing a deeper assessment of a Solution, amplifying the exploration of the
simulation input and output behaviour space, helping to identify patterns and trends.

The interactive dashboard built for NOSTROMO was developed as a web
application, so that it is accessible from multiple devices by different users
concurrently. The system architecture is distributed between the user interface itself
(front end) running on the user device and the components executing the system
logic (back end) running on a server.

Finally, additional lessons learned regard the applicability of the NOSTROMO
metamodelling approach to ATM performance assessment:
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There is no universal/plug-and-play or unique metamodeling solution. Each
simulation model, case study, and their modelling objectives and research
questions often require individual processing and methodological tuning.

The process of active learning and metamodeling is relatively exploratory.
Several parameters, such as the initial data set, stopping criteria, acquisition
function and family of metamodels (Gaussian processes, neural networks, etc.)
have to be tested before setting them.

Simulation models with non-numerical input and output variables/parameters
require additional steps prior to the application of the methodology itself, such as
data conversion and encoding, as well as collection and merging/fusion. The
latter is particularly relevant when the simulation data are scattered across
multiple log files.

The wide range of designs and implementations of the simulation models
available in the context of SESAR may hinder their compatibility with the current
NOSTROMO architecture (methodology + API). While it is true that the
developed API constitutes only a proof-of-concept seed of what could become a
common SESAR metamodeling platform and novel paradigm for the field, current
and future simulation models should be enhanced with their own individual APlIs.
This should greatly improve the adoption of and integration with the broader and
future vision for the proposed architecture.

The metamodelling coupled with the dashboard effectively make simulation and
its results more explainable especially to decision-makers and other stakeholders
who are not simulation experts.

The presented methodology can effectively enhance scenario-based and what-if
analyses, greatly contributing to a more comprehensive and in-depth ATM
performance assessment framework.

The NOSTROMO methodology is not meant to replace traditional simulation-
based analyses, but to complement them, especially in the area of network-level
performance assessment. With that in mind, where the analysis goals lie in the
precise assessment of particular micro-level events (e.g. evolution of flight
trajectories), metamodelling would not be an appropriate tool.
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