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 

Abstract— This paper proposes a novel method of estimating 

the Fourier Transform (FT) of deterministic, continuous-time 

signals, from a finite number N of their samples taken from a 

fixed-length observation window. It uses alias-free hybrid-

stratified sampling to probe the processed signal at a mixture of 

deterministic and random time instants. The FT estimator, 

specifically designed to work with this sampling scheme, is 

unbiased, consistent and fast converging. It is shown that if the 

processed signal has continuous third derivative, then the 

estimator's rate of uniform convergence in mean square is N^(-5). 

Therefore, in terms of frequency-independent upper bounds on 

the FT estimation error, the proposed approach significantly 

outperforms existing estimators that utilize alias-free sampling, 

such as total random, stratified sampling, and antithetical 

stratified whose rate of uniform convergence is N^(-1). It is proven 

here that N^(-1) is a guaranteed minimum rate for all stratified-

sampling-based estimators satisfying four weak conditions 

formulated in this paper. Owing to the alias-free nature of the 

sampling scheme, no constraints are imposed on the spectral 

support of the processed signal or the frequency ranges for which 

the Fourier Transform is estimated.  

 

Index Terms— Fourier transform estimation, nonuniform 

sampling, alias-free sampling, stratified sampling, uniform 

convergence, digital alias-free signal processing 

 

I. INTRODUCTION 

STIMATING the Fourier Transform (FT) from samples of 

the real-valued signal 𝑥(𝑡) is an important task with 

applications in various areas of science and technology, 

including astronomy [1], seismology [2], biomedical sciences 

[3], NMR spectroscopy [4], and wireless communications 

where, for example, FT estimation is used for wideband 

spectrum sensing in cognitive radio networks [5] - [6]. When 

operating on sampled data, there is a possibility that the class of 

processed signals contains subsets within which all signals have 

identical discrete-time counterparts. This gives rise to the 

aliasing phenomenon and ambiguity in solving many DSP 

problems, including FT estimation. A standard way of avoiding 

aliasing is to considerably restrict the class of acquired signals 

and choose a sampling scheme that allows telling apart all the 

signals within that class. 
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Let ℱ be the spectral support of the signal 𝑥(𝑡), and ℱ+ its 

single-sided spectral support, where ℱ ⊂ 𝑅, ℱ+ ⊂ 𝑅+, 𝑅 =
(−∞, ∞), and 𝑅+ = [0, ∞). Then, [ℱ] and [ℱ+] are the signal's 

spectral span and single-sided spectral span, i.e. the shortest 

intervals containing ℱ and ℱ+, respectively. We denote by 

ℳ(∙) the Lebesgue measure of a set. To avoid aliasing when 

using uniform sampling, it suffices to select the sampling 

frequency 𝑓𝑆 above the Nyquist rate 𝑓𝑁 = ℳ([ℱ]): 𝑓𝑆 > 𝑓𝑁. 

However, this popular solution could be inefficient unless 𝑥(𝑡) 

is a baseband signal with known spectral support. An 

alternative way of selecting a uniform sampling rate is to use 

bandpass sampling [7], which exploits the fact that there exist 

uniform sampling rates 𝑓𝑆 ∈ (𝑓𝐵,𝑚𝑖𝑛 ,  𝑓𝐵,𝑚𝑎𝑥  ], where 𝑓𝐵,𝑚𝑖𝑛 =

2ℳ([ℱ+]) and 𝑓𝐵,𝑚𝑎𝑥 = 4ℳ([ℱ+]), which do not cause 

aliasing. If the processed signals are bandpass, these rates could 

be significantly lower than 𝑓𝑁. The theoretically lowest 

sampling rate that allows perfect signal reconstruction is the 

Landau rate 𝑓𝐿 = ℳ(ℱ) [8]. However, apart from some simple 

cases, such as processing lowpass signals, it is impossible to 

avoid aliasing while sampling signals uniformly at that rate. 

The solution is to deploy nonuniform sampling. For example, 

periodic nonuniform sampling was successfully used to sample 

multiband signals at rates arbitrarily close to 𝑓𝐿, without the 

adverse effects of the aliasing phenomenon [9]. 

When the spectral support ℱ is unknown, and instead its 

conservative approximation ℱ̂: ℱ̂ ⊃ ℱ such that 𝑟 =

ℳ(ℱ) ℳ(ℱ̂)⁄ ≪ 1, has to be used to design the sampling 

scheme, the resultant sampling rates are likely to be excessive 

comparing to 𝑓𝐿; typically by a factor of 𝑟−1. Examples of such 

scenarios include instrumentation (e.g. when multiband signals 

with unknown central frequencies are acquired, as in spectrum 

analyzers), astronomy (e.g. detecting unknown periodic signals 

hidden in noise) and communication systems (e.g. wideband 

spectrum sensing). However, if an upper bound 𝑟𝑢 of the ratio 𝑟 

is known and 𝑟 ≤ 𝑟𝑢 < 1 then the approaches, such as universal 

sampling [10] or compressed sensing [11], [12] and [13], offer 

solutions with sampling rates slightly exceeding 𝑓𝑈𝐿 = 𝑟𝑢 ×

ℳ(ℱ̂). Another way of avoiding aliasing, while maintaining 

low sampling rates, emerges when signals are constrained in a 

domain other than frequency. Examples include signals with 

finite rate of innovation [14] where the sampling rate is linked 
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to the rate of innovation, rather than the spectral support of the 

signal. Nevertheless, the methodologies described in [10]- [14] 

entail devising specialized processing algorithms that use 

advanced, and computationally or numerically demanding 

optimization techniques to determine the original continuous-

time waveform or its specific properties, such as FT. 

Interesting opportunities arise when the signals are sampled 

at random rather than deterministic time instants. In such cases, 

regardless of the nature of the original continuous-time signal 

(random or deterministic), the sampled signals are always 

random. Random sampling can be arranged in a way that 

different continuous-time signals always have their random, 

discrete-time counterparts distinct. Such sampling schemes are 

called alias-free, since they circumvent the reason of aliasing – 

a possibility that the same discrete-time signal can be obtained 

by sampling different continuous-time originals. Since alias-

free sampling does not rely on knowledge of ℱ, it can be used 

when ℱ is unknown or when this set is fuzzy, i.e. there are no 

crisp borders between ℱ and its complement 𝑅 − ℱ. For 

example, when a signal 𝑥(𝑡) is observed over a finite-duration 

window, its spectrum is never perfectly confined to finite 

frequency bands.  

The use of alias-free sampling was first proposed in [15] and 

applied to estimating the power spectrum of random stationary 

signals. This notion was then revisited in various studies, e.g. 

[16], [17], and extended to the analysis of other classes of 

signals, and to target different signal processing objectives. The 

domain of signal processing that exploits alias-free sampling 

became known as Digital Alias-free Signal Processing (DASP). 

Few monographs devoted to the use of nonuniform sampling, 

e.g. [18] and [19], discuss selected issues of random sampling 

and alias-free signal processing, whilst [20] addresses DASP 

directly. A review of DASP estimators of FT can be found in 

[21], whereas [22] provides a general study of spectral analyses 

from irregularly sampled data. With aliasing being no longer a 

concern in DASP, the focus is shifted towards furnishing 

efficient estimators of the required features of the signal and 

establishing statistical accuracy as well as relevant properties of 

the results. The challenge is that these goals normally need to 

be achieved using a single realization of the random discrete-

time signal, thus, when the accessible information about the 

signal is very limited.  

This paper introduces a novel DASP method of Fourier 

transform estimation. The estimation is performed using 𝑁 

signal samples taken from a finite duration observation 

window. The approach proposed here, named Hybrid Stratified 

(HySt), is directly linked to the work in [23], [24], [25] and [26]. 

We demonstrate that the HySt estimator is unbiased, consistent 

and it uniformly converges in mean square much faster than its 

predecessors, namely the Total Random Sampling (ToRa) [23], 

[24], Stratified Sampling (StSa) [25] and Antithetical Stratified 

Sampling (AnSt) [26] estimators. It is reported in [25] that both 

pointwise and the uniform convergence rate of ToRa is exactly 

𝑁−1. In the case of StSa and AnSt, 𝑁−1 was given as a lower 

band of uniform convergence rate [25], [26], even though their 

pointwise convergence rates are as fast as 𝑁−3 for StSa and 𝑁−5 

for AnSt. In this paper we produce new results that could be 

summarized as follows: 

(a) The uniform convergence rate of 𝑁−1 is a guaranteed 

minimum for all FT estimators that use stratified sampling and 

satisfy mild assumptions of Theorem 1 presented in Section II. 

We demonstrate that these assumptions are satisfied by StSa, 

AnSt and HySt methods. 

(b) The uniform convergence rate of StSa and AnSt 

estimators does not exceed 𝑁−1. Hence, their rate of uniform 

convergence is exactly 𝑁−1. 

(c) The HySt estimator is unbiased, consistent and it 

uniformly converges in mean square at the rate 𝑁−5. Thus, this 

rate is significantly faster than 𝑁−1 - the minimum rate 

guaranteed by Theorem 1 and the actual uniform convergence 

rate of the existing DASP FT estimators, namely ToRa, StSa 

and AnSt. 

(d) The pointwise convergence rate of the HySt estimator is 

𝑁−5. By this measure, the HySt estimator outperforms ToRa 

and StSa, and matches the performance of AnSt.  

We note that there is no difference between the pointwise and 

uniform convergence rates for ToRa (𝑁−1) and HySt (𝑁−5) 

methods, whereas StSa and AnSt are characterized by slow 

uniform and much faster pointwise convergence rates. 

Consequently, the FT estimation errors show different behavior 

for these two pairs of approaches. More specifically we 

demonstrate that 

(e) The relation between the number of collected samples 𝑁 

and the FT estimation error for ToRa and HySt is hardly 

affected by the frequency for which the FT is estimated. 

(f) In the case of the StSa and AnSt, the observed estimation 

errors at individual frequencies converge slowly (at the rate of 

𝑁−1) when 𝑁 is small. Once 𝑁 passes a critical threshold, this 

rate accelerates to 𝑁−3 and 𝑁−5, respectively. These thresholds, 

however, depend on the frequency for which the FT is 

estimated. The higher the frequency the more samples are 

needed to trigger the faster convergence. 

The side-effect of the observations (d) - (f) above is that the 

performances of AnSt and the proposed HySt method are 

similar to each other when the FT is estimated at low 

frequencies. The advantage of HySt over AnSt becomes visible, 

and then grows when the estimation of the FT is shifted towards 

higher frequencies. 

The work on the HySt approach has been motivated by the 

need of constructing low-cost wideband FT estimators that use 

a small number of signal samples and avoid computationally-

expensive processing algorithms. The approaches with fast 

uniform convergence and simple algorithms, such as proposed 

HySt technique are good candidates for this role. Potential 

application areas include, but are not limited, to the domains 

mentioned in the first paragraph of this introduction. For 

example, taking measurements for FT analyses in NMR 

spectroscopy is a costly and relatively lengthy process. In areas 

such as biochemistry, the time available for collecting all NMR 

data is limited if the tested molecules, e.g. certain proteins, 

maintain their properties for a short period. In this case, 

reducing 𝑁 can be a technological and/or economic necessity. 

Similarly, reducing the number of collected samples can result 

in significant cost savings in astronomy or seismology. In 

wideband FT-based spectrum sensing for cognitive radio 

networks, it is a challenge to maintain low sampling rates 

without knowing the extent of the monitored signals’ spectral 



support. DASP-type sensing methods do not require such prior 

information, that is often unavailable [6], and can provide a 

simple low-complexity, yet effective, low-sampling-rates 

solutions [27]. In applications, where data is stored before being 

processed, collecting less measurements reduces the memory 

requirements; and therefore can be used instead or in 

conjunction with compression techniques such as Huffman 

coding. 

The remainder of the paper is organized as follows. In 

Section II, the problem of FT estimation is formulated. Section 

III overviews the existing DASP estimators of FT and provides 

new results on their properties. It is proven there that the rate of 

uniform convergence of StSa and AnSt estimators is exactly 

𝑁−1. Theorem 1 formulates sufficient conditions under which 

DASP estimators uniformly converge at least at that rate. The 

proposed hybrid-stratified estimator is introduced and its 

features are explored in Section IV; it is proven that its uniform 

and pointwise convergence rates in mean square are 𝑁−5. 

Numerical simulations in Section V are used to compare the 

performance of the HySt approach and its DASP predecessors. 

Final remarks are stated and conclusions are drawn in Section 

VI.  

II. PROBLEM FORMULATION 

Our objective is to estimate the FT 𝑋(𝑓) of a deterministic, 

continuous-time, real-valued signal 𝑥(𝑡) truncated to the 

interval 𝒯 = [0, 𝐻], using a finite number 𝑁 of its samples. The 

target FT is defined by 

𝑋(𝑓) =̂ ∫ 𝑥(𝑡)𝑤(𝑡)𝑒−𝑗2𝜋𝑓𝑡d𝑡

𝒯

, (1) 

where the character =̂ denotes that the quantity on its left-hand 

side is defined by the expression on the right side. The 

windowing function 𝑤(𝑡), bounded by 0 ≤ 𝑤(𝑡) ≤ 1 for 𝑡 ∈
𝒯, is used to taper 𝑥(𝑡) and keep 𝑋(𝑓) smoothed. More details 

on how different shapes of 𝑤(𝑡) affect the spectrum (1) can be 

found in [28] and [29]. The range of frequencies for which 𝑋(𝑓) 

is estimated is arbitrary. No assumptions are made about the 

signal’s spectral support. 

HySt approach tackles this FT estimation problem by using 

alias-free sampling and devising a suitable unbiased estimator. 

The quality of estimation is measured by the mean square error 

𝐸𝑟𝑟𝑁(𝑓) =̂ E {|𝑋̂𝑁(𝑓) − 𝑋(𝑓)|
2

}, (2) 

where 𝑋̂𝑁(𝑓) denotes the FT estimator constructed from 𝑁 

samples of the signal 𝑥(𝑡). For unbiased estimators 𝐸𝑟𝑟𝑁(𝑓) is 

identical with the variance of the estimator 𝜎2{𝑋̂𝑁(𝑓)}. In 

relation to (1), we denote  

𝜆(𝑡, 𝑓) =̂ 𝑤(𝑡)𝑒−𝑗2𝜋𝑓𝑡 , (3) 

𝑥𝑤(𝑡) =̂ 𝑥(𝑡)𝑤(𝑡). (4) 

We also define:  

𝑥𝑘,𝑚𝑎𝑥 =̂ sup
𝑡∈𝒯

|𝑥(𝑘)(𝑡)|, (5) 

𝜆𝑘,𝑚𝑎𝑥(𝑓) =̂ sup
𝑡∈𝒯

|𝜆(𝑘)(𝑡, 𝑓)|, (6) 

where 𝑥(𝑘)(𝑡)  and 𝜆(𝑘)(𝑡, 𝑓)  denote 𝑘𝑡ℎ derivatives of 𝑥(𝑡) 

and 𝜆(𝑡, 𝑓) with respect to time 𝑡. Assuming that 𝑤(𝑡) = 1 for 

some 𝑡 ∈ 𝒯, which is true for all commonly used windowing 

functions, it is noted that 

𝜆0,𝑚𝑎𝑥(𝑓) = 1. (7) 

Common notation used here is summarized in Table I. Any 

departure from it is explained in the paper. 

 
TABLE I 

NOTATION 

𝑥(𝑡) Analyzed continuous-time signal 

𝑋(𝑓) Fourier transform of 𝑥(𝑡) 

𝑤(𝑡) Windowing function 

𝒯 A finite-duration observation window 

𝐻 Length of 𝒯 

𝑁 Number of processed samples 

𝑋̂𝑁(𝑓), 𝑋̂𝑇𝑜𝑅𝑎,𝑁(𝑓), 𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓), 

𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓), 𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓) 
FT estimates from 𝑁 samples 

𝐸{𝑋} Expected value of random variable 𝑋 

𝜎2{𝑋} Variance of random variable 𝑋 

𝐸𝑟𝑟𝑁(𝑓) Mean square estimation error 

𝜏𝑛 or 𝜏𝑁,𝑙 Random sampling instants 

𝐿𝑁 Number of strata 

∆𝑁,𝑙 Length of the 𝑙𝑡ℎ stratum 

𝑡𝑁,𝑙 Edges of strata 

𝒯𝑁,𝑙 The 𝑙𝑡ℎ stratum given by [𝑡𝑁,𝑙 , 𝑡𝑁,𝑙+1] 

𝑐𝑁,𝑙 Centre of the 𝑙𝑡ℎ stratum 

𝑔(𝑡) Stratifying function 

𝐼𝑁,𝑙(𝑓) FT of the 𝑥(𝑡) truncated to 𝒯𝑁,𝑙 

𝐼𝑁,𝑙(𝑓) Estimate of 𝐼𝑁,𝑙 

III. OVERVIEW OF ALIAS-FREE FT ESTIMATORS 

One of the early DASP estimators of FT is ToRa [23] - [24]. 

ToRa uses samples of 𝑥(𝑡) collected at time instants 𝜏𝑛 ∈ 𝒯, 

𝑛 = 0, … , 𝑁 − 1 that are IID random variables with the 

Probability Density Function (PDF) 𝑓𝑇𝑜𝑅𝑎(𝜏). The estimator 

defined by: 𝑋̂𝑇𝑜𝑅𝑎,𝑁(𝑓) = 𝑁−1 ∑ 𝑥(𝜏𝑛) 𝜆(𝜏𝑛, 𝑓) 𝑓𝑇𝑜𝑅𝑎(𝜏𝑛)⁄𝑁−1
𝑛=0  

is unbiased for any 𝑁 or 𝑓, i.e. E{𝑋̂𝑇𝑜𝑅𝑎,𝑁(𝑓)} = 𝑋(𝑓). Its 

variance is 𝜎2{𝑋̂𝑇𝑜𝑅𝑎,𝑁(𝑓)} = 𝑁−1𝜎𝑇𝑜𝑅𝑎,𝑙𝑖𝑚
2 (𝑓) where 

𝜎𝑇𝑜𝑅𝑎,𝑙𝑖𝑚
2 (𝑓) = ∫ 𝑥𝑤

2 (𝜏) 𝑓𝑇𝑜𝑅𝑎(𝜏)⁄ d𝜏
𝒯

− |𝑋(𝑓)|2. Since 

𝜎𝑇𝑜𝑅𝑎,𝑙𝑖𝑚
2 (𝑓) ≤ ∫ 𝑥𝑤

2 (𝜏) 𝑓𝑇𝑜𝑅𝑎(𝜏)⁄ d𝜏
𝒯

, where the right hand 

side does not depend on frequency, we note that 𝑋̂𝑇𝑜𝑅𝑎,𝑁(𝑓) 

uniformly converges in mean square to 𝑋(𝑓) at rate 𝑁−1. ToRa 

estimation method does not impose any significant constraints 

on the signal 𝑥(𝑡) or windowing function 𝑤(𝑡). The above 

results hold as long as the integral (1) exists.  

Two improvements to ToRa, namely StSa and AnSt, have 

been proposed in [25] and [26]. They rely on stratification of 

the interval 𝒯. In the following subsections, we explore some 

of the properties of FT estimators that use stratification and 

demonstrate how these relate to StSa and AnSt. 

A. Stratification in FT Estimation 

Stratification entails selecting 𝐿𝑁 + 1 time instants: 0 =
𝑡𝑁,0 < 𝑡𝑁,1 < ⋯ < 𝑡𝑁,𝐿𝑁

= 𝐻 and defining 𝐿𝑁 strata by 

𝒯𝑁,𝑙 =̂ [𝑡𝑁,𝑙 , 𝑡𝑁,𝑙+1], 𝑙 = 0, … , 𝐿𝑁 − 1. (8) 

The 𝑙𝑡ℎ stratum has the length 

∆𝑁,𝑙=̂ 𝑡𝑁,𝑙+1 − 𝑡𝑁,𝑙 (9) 



and its center point is 

𝑐𝑁,𝑙 =̂ (𝑡𝑁,𝑙+1 + 𝑡𝑁,𝑙) 2⁄ . (10) 

The FT (1) can be expressed by  

𝑋(𝑓) = ∑ 𝐼𝑁,𝑙(𝑓)

𝐿𝑁−1

𝑙=0

, (11) 

where 

𝐼𝑁,𝑙(𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡)𝑒−𝑗2𝜋𝑓𝑡d𝑡

𝒯𝑁,𝑙

. (12) 

The estimator 𝑋̂𝑁(𝑓) of 𝑋(𝑓) is constructed as a sum of the 𝐿𝑁 

estimators 𝐼𝑁,𝑙(𝑓) of 𝐼𝑁,𝑙(𝑓) 

𝑋̂𝑁(𝑓) = ∑ 𝐼𝑁,𝑙(𝑓)

𝐿𝑁−1

𝑙=0

. (13) 

In this paper, the strata are created with use of a stratifying 

function 𝑔(𝑡). This function is continuous on 𝒯, and separated 

from 0 by 𝑔𝑚𝑖𝑛 

𝑔(𝑡) ≥ 𝑔𝑚𝑖𝑛 > 0. (14) 

Its average value on 𝒯 is one, i.e.  

𝐻−1 ∫ 𝑔(𝑡)d𝑡

𝒯

= 1. (15) 

The boundaries 𝑡𝑁,𝑙, 𝑙 = 0, … , 𝐿𝑁 are solutions to the following 

equation 

∫ 𝑔(𝑡)d𝑡

𝑡𝑁,𝑙

0

= 𝐻
𝑙

𝐿𝑁

. (16) 

This stratification is equivalent to that proposed in [25] and 

[26]. We note that the PDF ℎ(𝑡) used in [25] and [26] is related 

to the stratifying function 𝑔(𝑡) by 𝑔(𝑡) = 𝐻 × ℎ(𝑡).  

It follows from (16) that ∫ 𝑔(𝑡)d𝑡
𝒯𝑁,𝑙

= 𝐿𝑁
−1𝐻. Since 𝑔(𝑡) is 

continuous, the mean value theorem implies the existence of 

𝑡ℎ,𝑙 ∈ 𝒯𝑁,𝑙 such that  

∆𝑁,𝑙=
1

𝑔(𝑡ℎ,𝑙)

𝐻

𝐿𝑁
. (17) 

This in turn implies that the lengths of strata are upper-bounded 

by  

∆𝑁,𝑙≤
1

𝑔𝑚𝑖𝑛

𝐻

𝐿𝑁

. (18) 

Theorem 1 below provides sufficient conditions under which 

the estimator (13) is guaranteed to uniformly converge in mean 

square to 𝑋(𝑓) at the rate 𝑁−1 or faster. Let 𝒟𝑁 ⊂ 𝒯 be the set 

of time instants at which the signal 𝑥(𝑡) is sampled and 𝒟𝑁,𝑙 ⊂
𝒟𝑁 be a subset containing those sampling instants that are used 

to calculate 𝐼𝑁,𝑙(𝑓). The subsets 𝒟𝑁,𝑙  may or may not overlap 

each other. 

Theorem 1: Suppose that each 𝐼𝑁,𝑙(𝑓) used in (13) is a linear 

combination of 𝑆 samples of the signal 𝑥(𝑡), i.e. each 𝒟𝑁,𝑙 

contains exactly 𝑆 time instants, denoted by 𝜏𝑁,𝑙,1, 𝜏𝑁,𝑙,2, 

…,𝜏𝑁,𝑙,𝑆. Hence,  

 𝐼𝑁,𝑙(𝑓) = ∑ 𝑎𝑁,𝑙,𝑟(𝑓)𝑥(𝜏𝑁,𝑙,𝑟)

𝑆

𝑟=1

, (19) 

where 𝑎𝑁,𝑙,𝑟(𝑓), 𝑙 = 1, … , 𝐿𝑁, 𝑟 = 1, … , 𝑆 are the estimator’s 

multipiers whose values are selected appropriately to the 

method used for FT estimation.  

If  

(A.1) Estimator 𝑋̂𝑁(𝑓) is unbiased, i.e. E{𝑋̂𝑁(𝑓)} =

𝑋(𝑓); 

(A.2) Estimators  𝐼𝑁,𝑙(𝑓), 𝑙 = 1, … , 𝐿𝑁 are independent 

from each other; 

(A.3) There exist 𝐴𝑟 , 𝑟 = 1, … , 𝑆, such that for any 𝑙, 𝑟 

and 𝑓, we have |𝑎𝑁,𝑙,𝑟(𝑓)| ≤ ∆𝑁,𝑙𝐴𝑟; 

(A.4) There exists 𝐷 > 0 independent of 𝑁 such that 

∑ ∆𝑁,𝑙
2𝐿𝑁−1

𝑙=0 ≤ 𝑁−1𝐷. 

Then there exists 𝐵 > 0 independent of 𝑁 such that for any 𝑓: 

𝐸𝑟𝑟𝑁(𝑓) ≤ 𝑁−1𝐵. (20) 

Proof of Theorem 1: According to assumption (A.1), the 

estimator 𝑋̂𝑁(𝑓) is unbiased. Hence, 𝐸𝑟𝑟𝑁(𝑓) = 𝜎2{𝑋̂𝑁(𝑓)}. It 

follows from (13) and assumption (A.2) that 𝐸𝑟𝑟𝑁(𝑓) =

∑ 𝜎2{𝐼𝑁,𝑙(𝑓)} 
𝐿𝑁−1
𝑙=0 . Given (19) and that 𝜎2{𝐼𝑁,𝑙(𝑓)} ≤

E {|𝐼𝑁,𝑙(𝑓)|
2

}, we conclude: 𝐸𝑟𝑟𝑁(𝑓) ≤

∑ E {|𝐼𝑁,𝑙(𝑓)|
2

} 
𝐿𝑁−1
𝑙=0 = ∑ E {|∑ 𝑎𝑁,𝑙,𝑟(𝑓)𝑥(𝜏𝑁,𝑙,𝑟)𝑆

𝑟=1 |
2

}
𝐿𝑁−1
𝑙=0 ≤

∑ E {(∑ |𝑎𝑁,𝑙,𝑟(𝑓)||𝑥(𝜏𝑁,𝑙,𝑟)|𝑆
𝑟=1 )

2
}

𝐿𝑁−1
𝑙=0 . By (5) and 

assumptions (A.3) and (A.4) we obtain: 𝐸𝑟𝑟𝑁(𝑓) ≤

𝑥0,𝑚𝑎𝑥
2 ∑ ∆𝑁,𝑙

2𝐿𝑁−1
𝑙=0 ∑ 𝐴𝑟

2𝑆
𝑟=1 , which leads to 𝐸𝑟𝑟𝑁(𝑓) ≤

𝑁−1𝑥0,𝑚𝑎𝑥
2 𝐷 ∑ 𝐴𝑟

2𝑆
𝑟=1 . Therefore, 𝐵 = 𝑥0,𝑚𝑎𝑥

2 𝐷 ∑ 𝐴𝑟
2𝑆

𝑟=1 , which 

completes the proof of Theorem 1.  

 

Theorem 1 reveals potential flexibilities when using 

stratification. The assumptions of this theorem could be 

satisfied even when not all sampling instants are chosen in a 

random manner, or some signal samples 𝑥(𝜏𝑛) are used to 

calculate more than one 𝐼𝑁,𝑙(𝑓). These possibilities are 

exploited in the proposed HySt approach. It is noted that the 

convergence rate of an estimator satisfying Theorem 1 could be 

faster than 𝑁−1. Such accelerated convergences may or may not 

be uniform. Lemma 1 below formulates a sufficient condition 

of assumption (A.4) of Theorem 1. 

Lemma 1: If the strata borders  𝑡𝑙 , 𝑙 = 0, … , 𝐿𝑁 satisfy (16), and 

the number of samples 𝑁 and strata 𝐿𝑁 are related by 

𝑁 = 𝑣𝐿𝑁 + 𝜛, (21) 

where 𝑣 ≥ 1 and 𝜛 ≥ 0; then ∑ ∆𝑁,𝑙
2𝐿𝑁−1

𝑙=0 ≤ 𝑁−1𝐷, where 𝐷 =

(𝑣 + 𝜛) 𝐻2 𝑔𝑚𝑖𝑛
2⁄ . 

 

Proof of Lemma 1: Since 𝐿𝑁 ≥ 1, it follows from (21) that 

𝑁 is lower-bounded by: 𝑁 ≥ 𝑣 + 𝜛. Additionally, we have 

𝐿𝑁
−1 = 𝑣 (𝑁 − 𝜛)⁄ = 𝑁−1𝑣 (1 − 𝜛𝑁−1)⁄ . Thus, 𝐿𝑁

−1 ≤

𝑁−1 𝑣

1−𝜛 (𝑣+𝜛)⁄
= 𝑁−1(𝑣 + 𝜛). The latter identity and (18) 

lead to: ∑ ∆𝑁,𝑙
2𝐿𝑁−1

𝑙=0 ≤ 𝐿𝑁
−1 𝐻2 𝑔𝑚𝑖𝑛

2⁄ ≤ 𝑁−1(𝑣 +

𝜛) 𝐻2 𝑔𝑚𝑖𝑛
2⁄ = 𝑁−1𝐷, where 𝐷 = (𝑣 + 𝜛) 𝐻2 𝑔𝑚𝑖𝑛

2⁄  , which 

completes the proof of Lemma 1. 

 

The three stratified approaches StSa, AnSt and HySt 

considered here use stratification strategies defined by (16) and, 

as shown in this paper, they satisfy (21). Therefore, Lemma 1 

is used to prove that assumption (A.4) of Theorem 1 holds for 

StSa, AnSt and HySt schemes. 



B. StSa Estimation of Fourier Transform 

In StSa FT estimation [25], the sampling instants are 

independent random variables distributed one per stratum, i.e. 

𝑁 = 𝐿𝑁. This satisfies (21) and thereby assumption (A.4) of 

Theorem 1. The PDF of the 𝑙𝑡ℎ sampling instant 𝜏𝑁,𝑙 is  

𝑓𝑆𝑡𝑆𝑎,𝑁,𝑙(𝜏) = {
∆𝑁,𝑙

−1 if 𝜏 ∈ 𝒯𝑁,𝑙

0 if 𝜏 ∉ 𝒯𝑁,𝑙
 (22) 

The StSa estimator 𝐼𝑁,𝑙(𝑓) of 𝐼𝑁,𝑙(𝑓) is given by 

𝐼𝑁,𝑙(𝑓) = ∆𝑁,𝑙𝑥(𝜏𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓), (23) 

which means that 𝑆 defined in assumption (A.3) of Theorem 1 

is 𝑆 = 1. The FT estimator is given by 𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓) =

∑ ∆𝑁,𝑙𝜆(𝜏𝑁,𝑙 , 𝑓)𝑥(𝜏𝑁,𝑙)
𝑁
𝑙=1 . According to [25], 𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓) is 

unbiased. Since 𝜏𝑁,𝑙 are independent from each other and 

consequently 𝐼𝑁,𝑙(𝑓) are also independent, StSa satisfies 

assumptions (A.1) and (A.2) of Theorem 1. To confirm (A.3), 

we deploy (7), (19) and (23) and note that 𝑎𝑁,𝑙,1(𝑓) =

∆𝑁,𝑙𝜆(𝜏𝑁,𝑙 , 𝑓). This leads to |𝑎𝑁,𝑙,1(𝑓)| = ∆𝑁,𝑙|𝜆(𝜏𝑁,𝑙 , 𝑓)| ≤

∆𝑁,𝑙. Since the StSa estimator satisfies all four assumptions of 

Theorem 1, its uniform convergence rate is at least 𝑁−1.  

Corollary 1 below asserts that 𝑁−1 is the fastest rate at which 

the StSa estimator can be guaranteed to uniformly converge in 

mean square. Let 𝒫𝑆𝑡𝑆𝑎 be the set of all rates at which the StSa 

estimator can be guaranteed to uniformly converge to 𝑋(𝑓). In 

other words, it contains all real numbers 𝑝 > 0 that for any 

signal 𝑥(𝑡), weighting function 𝑤(𝑡) and stratifying function 

𝑔(𝑡) there exists ℬ > 0  such that for any 𝑁 and frequency 𝑓:   

𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} < 𝑁−𝑝ℬ. (24) 

 

Corollary 1: 𝒫𝑆𝑡𝑆𝑎 = (0, 1] 
Proof of Corollary 1: if 𝑝 ∈ 𝒫𝑆𝑡𝑆𝑎 , then for any 𝑝1 ∈ (0, 𝑝) 

and for any frequency 𝑓 we have:  𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} < 𝑁−𝑝ℬ <

𝑁−𝑝1ℬ, hence, 𝑝1 ∈ 𝒫𝑆𝑡𝑆𝑎. Following this observation and the 

fact that Theorem 1 stipulates that 1 ∈ 𝒫𝑆𝑡𝑆𝑎, we note that 

(0, 1] ⊂ 𝒫𝑆𝑡𝑆𝑎. To complete the proof, it suffices to present an 

example of a signal 𝑥(𝑡), functions 𝑤(𝑡) and 𝑔(𝑡) where for 

any ℬ and 𝑝 > 1, there exist 𝑁 and 𝑓 such that (24) does not 

hold. Let 𝐻 = 1 and 𝑥(𝑡) = 𝑤(𝑡) = 𝑔(𝑡) = 1. Hence the 

length of each stratum is Δ𝑁,𝑙 = 𝑁−1. We note that 𝐼𝑁,𝑙(𝑓) =

𝑁−1 sinc(𝑓 𝑁⁄ ) exp (−𝑗2𝜋𝑓𝑐𝑁,𝑙) and its StSa estimate is 

𝐼𝑁,𝑙(𝑓) = 𝑁−1exp (−𝑗2𝜋𝑓𝜏𝑁,𝑙). Thus, 𝜎2{𝐼𝑁,𝑙(𝑓)} =

E {|𝐼𝑁,𝑙(𝑓)|
2

} − |𝐼𝑁,𝑙(𝑓)|
2

= 𝑁−2[1 − sinc2(𝑓 𝑁⁄ )] and 

𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} = 𝑁𝜎2{𝐼𝑁,𝑙(𝑓)} = 𝑁−1[1 − sinc2(𝑓 𝑁⁄ )]. For 

given ℬ and 𝑝 > 1, we select any 𝑁 that satisfies 𝑁 > √ℬ
𝑝−1

 

and frequency 𝑓 = 𝑁. In this case, 𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} = 𝑁−1  and 

𝑁−𝑝ℬ < 𝑁−𝑝𝑁𝑝−1 = 𝑁−1 = 𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)}. Therefore, 

𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} > 𝑁−𝑝ℬ, implying that if 𝑝 > 1, then 𝑝 ∉

𝒫𝑆𝑡𝑆𝑎. This completes the proof of Corollary 1. 

 

It is shown in [25] that if the derivative of 𝑥𝑤(𝑡) is 

continuous, then at individual frequencies the convergence rate 

of the StSa estimator can be as fast as 𝑁−3. Specifically, for 

each frequency 𝑓, the following holds: 

lim
𝑁→∞

𝑁3𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)} = 𝜎𝑆𝑡𝑆𝑎,𝑙𝑖𝑚
2 (𝑓), where 𝜎𝑆𝑡𝑆𝑎,𝑙𝑖𝑚

2 (𝑓) =

𝐴𝑆𝑡𝑆𝑎𝑓2 + 𝐵𝑆𝑡𝑆𝑎 , 𝐴𝑆𝑡𝑆𝑎 = 𝐻3𝜋2 ∫ 𝑥𝑤
2 (𝑡) 3𝑔3(𝑡)⁄ d𝑡

𝒯
, and 

𝐵𝑆𝑡𝑆𝑎 = 𝐻3 ∫ [𝑥𝑤
(1)(𝑡)]

2
12𝑔3(𝑡)⁄ d𝑡

𝒯
. We show here that in 

order to observe this accelerated convergence, the number of 

samples 𝑁 that have to be collected increases with frequency 𝑓. 

The proof is by contradiction. Let’s assume that opposite is true, 

i.e. for any 𝜀 > 0, there exists 𝑁0 such that for any 𝑁 ≥ 𝑁0 and 

frequency 𝑓: |𝜎𝑆𝑡𝑆𝑎,𝑙𝑖𝑚
2 (𝑓) − 𝑁3𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁(𝑓)}| < 𝜀. If this 

was true, we would have: 𝜎𝑆𝑡𝑆𝑎,𝑙𝑖𝑚
2 (𝑓) < 𝑁0

3𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁0
(𝑓)} +

𝜀 for any 𝑁 > 𝑁0 and 𝑓. However, it follows from Theorem 1 

that 𝜎2{𝑋̂𝑆𝑡𝑆𝑎,𝑁0
(𝑓)} < 𝑁0

−1𝐵. Therefore, 𝜎𝑆𝑡𝑆𝑎,𝑙𝑖𝑚
2 (𝑓) <

𝑁0
2𝐵 + 𝜀, and consequently for any 𝑓:  𝐴𝑆𝑡𝑆𝑎𝑓2 + 𝐵𝑆𝑡𝑆𝑎 <

𝑁0
2𝐵 + 𝜀. Since the left hand side of the last expression goes to 

infinity when 𝑓 → ∞, this relation cannot hold for all 𝑓 

regardless of how 𝑁0 was selected. This confirms that, in 

general, in order to observe the accelerated convergence, the 

number of collected samples 𝑁0 has to increase with 𝑓.  

C. AnSt Fourier Transform Estimates 

In the AnSt approach [26], two samples of 𝑥(𝑡) are collected 

in each stratum, i.e. 𝑁 = 2𝐿𝑁, which conforms with (21) and 

satisfies assumption (A.4) of Theorem 1. The first sample is 

selected randomly in the same way as for StSa. The second one 

is taken in an antithetical manner, i.e. if the first sampling time 

in the 𝑙𝑡ℎ stratum is 𝜏𝑁,2𝑙, the second one is 𝜏𝑁,2𝑙+1 = 2𝑐𝑁,𝑙 −

𝜏𝑁,2𝑙. The estimators of 𝐼𝑁,𝑙(𝑓) are 

𝐼𝑁,𝑙(𝑓) = 0.5∆𝑁,𝑙[𝜆(𝜏𝑁,2𝑙 , 𝑓)𝑥(𝜏𝑁,2𝑙)

+ 𝜆(𝜏𝑁,2𝑙+1, 𝑓)𝑥(𝜏𝑁,2𝑙+1)]. 
(25) 

Consequently, the antithetical stratified FT estimator of 𝑋(𝑓) is 

given by 𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓) = 0.5 ∑ ∆𝑁,𝑙[𝜆(𝜏𝑁,2𝑙 , 𝑓)𝑥(𝜏𝑁,2𝑙) +𝑁
𝑙=1

𝜆(𝜏𝑁,2𝑙+1, 𝑓)𝑥(𝜏𝑁,2𝑙+1)]. It is shown in [26] that 𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓) is 

unbiased. Hence, assumption (A.1) is satisfied. Since for 𝑙 ≠ 𝑘, 

the pair of random time instants (𝜏𝑁,2𝑙 , 𝜏𝑁,2𝑙+1) is statistically 

independent from (𝜏𝑁,2𝑘, 𝜏𝑁,2𝑘+1), assumption (A.2) also holds. 

Additionally, it follows from (19), (25) and (7) that 𝑆 = 2, 

|𝑎𝑁,𝑙,1(𝑓)| = 0.5∆𝑁,𝑙|𝜆(𝜏𝑁,2𝑙 , 𝑓)| ≤ 0.5∆𝑁,𝑙, and |𝑎𝑁,𝑙,2(𝑓)| =

0.5∆𝑁,𝑙|𝜆(𝜏𝑁,2𝑙+1, 𝑓)| ≤ 0.5∆𝑁,𝑙, confirming that (A.3) of 

Theorem 1 is fulfilled with 𝐴1 = 𝐴2 = 0.5. Thus, according to 

Theorem 1 the AnSt estimator uniformly converges in mean 

square to 𝑋(𝑓) at least at rate 𝑁−1 . 

Similarly to the StSa case, we show that the uniform 

convergence rate of AnSt estimation is exactly 𝑁−1. This is 

formally stated by Corollary 2. Let 𝒫𝐴𝑛𝑆𝑡  be the set of all rates 

at which the AnSt estimator can be guaranteed to uniformly 

converge to 𝑋(𝑓), i.e. a collection of all real numbers 𝑝 > 0 

that for any signal 𝑥(𝑡), weighting function 𝑤(𝑡) and stratifying 

function 𝑔(𝑡) there exists ℬ > 0  such that for any 𝑁 and 

frequency 𝑓: 

𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} < 𝑁−𝑝ℬ,   𝑝 ∈ 𝒫𝐴𝑛𝑆𝑡 . (26) 

 

Corollary 2: 𝒫𝐴𝑛𝑆𝑡 = (0, 1] 
Proof of Corollary 2: By repeating the initial steps of the 

proof of Corollary 1, with the relevant changes, we can show 

that (0, 1] ⊂ 𝒫𝐴𝑛𝑆𝑡 . To complete the proof it suffices to present 

an example of a signal 𝑥(𝑡) and functions 𝑤(𝑡) and 𝑔(𝑡) where 

for any ℬ and 𝑝 > 1, there exist 𝑁 and 𝑓 such that (26) does not 

hold. Again, we use: 𝐻 = 1 and 𝑥(𝑡) = 𝑤(𝑡) = 𝑔(𝑡) = 1, 

hence Δ𝑁,𝑙 = 𝑁−1 and 𝐼𝑁,𝑙(𝑓) =



𝑁−1 sinc(𝑓 𝑁⁄ ) exp (−𝑗2𝜋𝑓𝑐𝑁,𝑙). However, the AnSt estimate 

of 𝐼𝑁,𝑙(𝑓) is 𝐼𝑁,𝑙(𝑓) = 𝑁−1 exp(−𝑗2𝜋𝑓𝑐𝑁,𝑙) cos (2𝜋𝑓(𝑐𝑛 −

𝜏𝑁,2𝑙)). Hence, E {|𝐼𝑁,𝑙(𝑓)|
2

} = 𝑁−2[0.5 + 0.5 sinc(2𝑓 𝑁⁄ )]. 

Using |𝐼𝑁,𝑙(𝑓)|
2

= 𝑁−2 sinc2(𝑓 𝑁⁄ ), we attain: 𝜎2{𝐼𝑁,𝑙(𝑓)} =

E {|𝐼𝑁,𝑙(𝑓)|
2

} − |𝐼𝑁,𝑙(𝑓)|
2

= 𝑁−2[0.5 + 0.5 sinc(2𝑓 𝑁⁄ ) −

sinc2(𝑓 𝑁⁄ )]. Taking into account that 𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} is the 

sum of 𝐿𝑁 = 𝑁 2⁄  components, 𝜎2{𝐼𝑁,𝑙(𝑓)}, we get 

𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} = 𝑁−1[0.25 + 0.25 sinc(2𝑓 𝑁⁄ ) −

0.5 sinc2(𝑓 𝑁⁄ )]. For a given ℬ and 𝑝 > 1, we select any 𝑁 

satisfying 𝑁 > √4ℬ
𝑝−1

 and choose frequency 𝑓 = 𝑁. This leads 

to 𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} = 0.25𝑁−1. We also note that 𝑁−𝑝ℬ <

0.25𝑁𝑝−1𝑁−𝑝 = 0.25𝑁−1 = 𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)}. Subsequently, 

𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} > 𝑁−𝑝ℬ, which means that if 𝑝 > 1 then 𝑝 ∉

𝒫𝐴𝑛𝑆𝑡 . This finalizes the proof of Corollary 2. 

 

It has been shown in [26] that if 𝑥𝑤(𝑡) has continuous second 

derivative, the AnSt estimator can converge as fast as 𝑁−5 at 

individual frequencies.  Specifically, for a given frequency 𝑓, 

the following holds: lim
𝑁→∞

𝑁5𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓)} = 𝜎𝐴𝑛𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) 

where 𝜎𝐴𝑛𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) = 𝐴𝐴𝑛𝑆𝑡𝑓4 + 𝐵𝐴𝑛𝑆𝑡𝑓2 + 𝐶𝐴𝑛𝑆𝑡,  

𝐴𝐴𝑛𝑆𝑡 =
32

45
𝐻5𝜋4 ∫

𝑥𝑤
2 (𝑡)

𝑔5(𝑡)
d𝑡

𝒯
,  

𝐵𝐴𝑛𝑆𝑡 =
8

45
𝐻5𝜋2 ∫

2[𝑥𝑤
(1)

(𝑡)]
2

−𝑥𝑤
(2)

(𝑡)𝑥𝑤(𝑡)

𝑔5(𝑡)
d𝑡

𝒯
, and 𝐶𝐴𝑛𝑆𝑡 =

2

45
𝐻5 ∫

[𝑥𝑤
(2)

(𝑡)]
2

𝑔5(𝑡)
d𝑡

𝒯
. Similarly to the StSa case, for this 

accelerated convergence be observed the number of processed 

samples 𝑁 must generally increase with frequency 𝑓. We prove 

this fact by contradiction. Let’s assume that for any 𝜀 > 0 there 

exists 𝑁0 such that for any 𝑁 ≥ 𝑁0 and frequency 𝑓: 

|𝑁5𝑋̂𝐴𝑛𝑆𝑡,𝑁(𝑓) − 𝜎𝐴𝑛𝑆𝑡,𝑙𝑖𝑚
2 (𝑓)| < 𝜀. This assumption implies 

𝜎𝐴𝑛𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) < 𝑁0

5𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁0
(𝑓)} + 𝜀. By Theorem 1: 

𝜎2{𝑋̂𝐴𝑛𝑆𝑡,𝑁0
(𝑓)} < 𝑁0

−1𝐵. Thus, 𝜎𝐴𝑛𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) < 𝑁0

4𝐵 + 𝑁0
5𝜀, 

and 𝐴𝐴𝑛𝑆𝑡𝑓4 + 𝐵𝐴𝑛𝑆𝑡𝑓2 + 𝐶𝐴𝑛𝑆𝑡 < 𝑁0
2𝐵 + 𝑁0

3𝜀. Since this 

relation cannot hold for any 𝑓 regardless of how 𝑁0 is selected, 

we conclude that 𝑁0 must in general increase with the frequency 

𝑓.  

IV. HYBRID-STRATIFIED SAMPLING AND FOURIER 

TRANSFORM ESTIMATION 

In this section, we introduce the HySt method and explore its 

features. In particular, we show that the uniform convergence 

of the HySt estimator significantly outperforms its predecessors 

described in the previous section.  

A. HySt Estimator of Fourier Transform 

In the HySt approach, the sampling instants are a mixture of 

deterministic and random variables. The random instants 𝜏𝑁,𝑙, 

𝑙 = 0, … , 𝐿𝑁 − 1 are selected in the same manner as those in 

StSa. The deterministic ones are the strata borders: 𝑡𝑁,𝑙, 𝑙 =
0, … , 𝐿𝑁. The total number of processed samples is 

𝑁 = 2𝐿𝑁 + 1. (27) 

It follows from (18) that ∆𝑁,𝑙≤
2

𝑔𝑚𝑖𝑛

𝐻

𝑁−1
. Since 𝐿𝑁 ≥ 1 and 

consequently 𝑁 ≥ 3 we get 

∆𝑁,𝑙≤
3

𝑁

𝐻

𝑔𝑚𝑖𝑛

. (28) 

The HySt estimator of 𝐼𝑁,𝑙(𝑓) is a linear combination of  

𝑥(𝑡𝑁,𝑙), 𝑥(𝜏𝑁,𝑙) and 𝑥(𝑡𝑁,𝑙+1) 

𝐼𝑁,𝑙(𝑓) =̂ 𝛼𝑁,𝑙(𝑓)𝑥(𝑡𝑁,𝑙) + 𝛽𝑁,𝑙(𝑓)𝑥(𝜏𝑁,𝑙)

+ 𝛾𝑁,𝑙(𝑓)𝑥(𝑡𝑁,𝑙+1), 
(29) 

where  

𝛼𝑁,𝑙(𝑓) =̂ Δ𝑁,𝑙
−1 ∫(𝑡𝑁,𝑙+1 − 𝑡)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

− (𝑡𝑁,𝑙+1 − 𝜏𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓), 

(30) 

  𝛽𝑁,𝑙(𝑓) =̂ ∆𝑁,𝑙𝜆(𝜏𝑁,𝑙 , 𝑓), (31) 

𝛾𝑁,𝑙(𝑓) =̂ Δ𝑁,𝑙
−1 ∫(𝑡 − 𝑡𝑁,𝑙)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

− (𝜏𝑁,𝑙 − 𝑡𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓). 

(32) 

Hence, the estimator of 𝑋(𝑓) is 

𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓) = ∑ 𝛼𝑁,𝑙(𝑓)𝑥(𝑡𝑁,𝑙) + 𝛽𝑁,𝑙(𝑓)𝑥(𝜏𝑁,𝑙)

𝐿𝑁−1

𝑙=0

+ 𝛾𝑁,𝑙(𝑓)𝑥(𝑡𝑁,𝑙+1). 

(33) 

We demonstrate that 𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓) satisfies the assumptions 

(A.1) - (A.4) of Theorem 1 and therefore uniformly converges 

in mean square to 𝑋(𝑓) at the rate 𝑁−1 or faster. According to 

(11) and (13), assumption (A.1) holds if all 𝐼𝑁,𝑙(𝑓) are unbiased. 

In fact: E{𝐼𝑁,𝑙(𝑓)} = E{𝛼𝑁,𝑙(𝑓)}𝑥(𝑡𝑁,𝑙) + E{𝛽𝑁,𝑙(𝑓)𝑥(𝜏𝑁,𝑙)} +

E{𝛾𝑁,𝑙(𝑓)}𝑥(𝑡𝑁,𝑙+1). Now, we note that E{𝛼𝑁,𝑙(𝑓)} =

Δ𝑁,𝑙
−1 ∫ (𝑡𝑁,𝑙+1 − 𝑡)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
− E{(𝑡𝑁,𝑙+1 − 𝜏𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓)} =

Δ𝑁,𝑙
−1 ∫ (𝑡𝑁,𝑙+1 − 𝑡)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
− Δ𝑁,𝑙

−1 ∫ (𝑡𝑁,𝑙+1 −
𝒯𝑁,𝑙

𝜏)𝜆(𝜏, 𝑓)d𝑡 = 0, E{𝛽𝑁,𝑙(𝑓)𝑥(𝜏𝑁,𝑙)} =

Δ𝑁,𝑙
−1 ∫ ∆𝑁,𝑙𝜆(𝜏, 𝑓)𝑥(𝜏)d𝜏

𝒯𝑁,𝑙
= ∫ 𝜆(𝜏, 𝑓)𝑥(𝜏)d𝜏

𝒯𝑁,𝑙
= 𝐼𝑁,𝑙(𝑓), 

and E{𝛾𝑁,𝑙(𝑓)} = Δ𝑁,𝑙
−1 ∫ (𝑡 − 𝑡𝑁,𝑙)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
− E{(𝜏𝑁,𝑙 −

𝑡𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓)} = Δ𝑁,𝑙
−1 ∫ (𝑡 − 𝑡𝑁,𝑙)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
− Δ𝑁,𝑙

−1 ∫ (𝜏 −
𝒯𝑁,𝑙

𝑡𝑁,𝑙)𝜆(𝜏, 𝑓)d𝑡 = 0. By combining these observations, we 

confirm that E{𝐼𝑁,𝑙(𝑓)} = 𝐼𝑁,𝑙(𝑓) and thus E{𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓)} =

𝑋(𝑓). 

Assumption (A.2) is also satisfied since for 𝑙 ≠ 𝑘, the random 

time instants 𝜏𝑁,𝑙 and 𝜏𝑁,𝑘 are independent from each other. 

Consequently, 𝐼𝑁,𝑙(𝑓) and  𝐼𝑁,𝑘(𝑓) are also independent. To 

confirm assumption (A.3), we note that 𝑆 = 3. By using (7), we 

get: |𝛼𝑁,𝑙| ≤ Δ𝑁,𝑙
−1 ∫ (𝑡𝑁,𝑙+1 − 𝑡)|𝜆(𝑡, 𝑓)|d𝑡

𝒯𝑁,𝑙
+ (𝑡𝑁,𝑙+1 −

𝜏𝑁,𝑙)|𝜆(𝜏𝑁,𝑙 , 𝑓)| ≤ Δ𝑁,𝑙
−1 ∫ (𝑡𝑁,𝑙+1 − 𝑡)d𝑡

𝒯𝑁,𝑙
+ ∆𝑁,𝑙= 1.5∆𝑁,𝑙. 

Hence 

|𝛼𝑁,𝑙| ≤ 1.5∆𝑁,𝑙 , (34) 

and then,   

|𝛽𝑁,𝑙| ≤ ∆𝑁,𝑙|𝜆(𝜏𝑁,𝑙 , 𝑓)| ≤ ∆𝑁,𝑙 (35) 



and |𝛾𝑁,𝑙| ≤ Δ𝑁,𝑙
−1 ∫ (𝑡 − 𝑡𝑁,𝑙)|𝜆(𝑡, 𝑓)|d𝑡

𝒯𝑁,𝑙
+ (𝜏𝑁,𝑙 −

𝑡𝑁,𝑙)|𝜆(𝜏𝑁,𝑙 , 𝑓)| ≤ Δ𝑁,𝑙
−1 ∫ (𝑡 − 𝑡𝑁,𝑙d𝑡)

𝒯𝑁,𝑙
+ ∆𝑁,𝑙= 1.5∆𝑁,𝑙. This 

yields  

|𝛾𝑁,𝑙| ≤ 1.5∆𝑁,𝑙 . (36) 

The relationships (34) - (36) confirm that (A.3) is satisfied with 

𝐴1 = 𝐴3 = 1.5 and 𝐴2 = 1. Finally, we use (27) and Lemma 1 

to affirm that assumption (A.4) holds. This concludes the proof 

that HySt estimator uniformly converges to 𝑋(𝑓) at least at rate 

𝑁−1. 

Before we investigate further the properties of the HySt 

estimator, we use elementary calculations to show that 

ℒ0,𝑙 =̂ 𝛼𝑁,𝑙(𝑓) + 𝛽𝑁,𝑙(𝑓) + 𝛾𝑁,𝑙(𝑓) = ∫ 𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

, (37) 

ℒ1,𝑙 =̂− 𝛼𝑁,𝑙(𝑓)
∆𝑁,𝑙

2
+ 𝛽𝑁,𝑙(𝑓)(𝜏𝑁,𝑙 − 𝑐𝑁,𝑙)

+ 𝛾𝑁,𝑙(𝑓)
∆𝑁,𝑙

2

= ∫(𝑡 − 𝑐𝑁,𝑙)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

, 

(38) 

ℒ2,𝑙 =̂ 𝛼𝑁,𝑙(𝑓)
∆𝑁,𝑙

2

8
+ 𝛽𝑁,𝑙(𝑓)

(𝜏𝑁,𝑙 − 𝑐𝑁,𝑙)
2

2

+ 𝛾𝑁,𝑙(𝑓)
∆𝑁,𝑙

2

8

=
∆𝑁,𝑙

2

8
∫ 𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

− 𝜆(𝜏𝑁,𝑙 , 𝑓) [
∆𝑁,𝑙

3

8

− ∆𝑁,𝑙

(𝜏𝑁,𝑙 − 𝑐𝑁,𝑙)
2

2
]. 

(39) 

and according to (34) - (36), we have 

ℳ𝑙 =̂ |𝛼𝑁,𝑙| + |𝛽𝑁,𝑙| + |𝛾𝑁,𝑙| ≤ 4∆𝑁,𝑙 . (40) 

 

B. Fast Uniform Convergence of HySt Estimation 

In this subsection, we prove that if the signal 𝑥(𝑡) has a 

continuous third derivative in some open interval 𝒯𝐵 comprising 

𝒯: 𝒯 ⊂ 𝒯𝐵 then the rate of uniform convergence of the HySt 

estimator is at least 𝑁−5. The analyses in the next subsection 

combined with this result prove a stronger statement, namely 

that this rate is exactly 𝑁−5. Let  

ℰ𝑁,𝑙(𝑓) =̂ 𝐼𝑁,𝑙(𝑓) − 𝐼𝑁,𝑙(𝑓), (41) 

denote the error of estimating  𝐼𝑁,𝑙(𝑓). Subsequently, the 

variance of 𝐼𝑁,𝑙(𝑓) is 

𝜎2{𝐼𝑁,𝑙(𝑓)} = E {|ℰ𝑁,𝑙(𝑓)|
2

}. (42) 

Since for 𝑙 ≠ 𝑘 𝐼𝑁,𝑙(𝑓) and  𝐼𝑁,𝑘(𝑓) are independent from each 

other, the variance of HySt estimator is given by  

𝜎2{𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓)} = ∑ E {|ℰ𝑁,𝑙(𝑓)|
2

}

𝐿𝑁−1

𝑙=0

. (43) 

Consider the following second order Taylor expansions of 𝑥(𝑡) 

about each stratum center 𝑐𝑁,𝑙  

𝑥(𝑡) = 𝑥(𝑐𝑁,𝑙) + (𝑡 − 𝑐𝑁,𝑙)𝑥(1)(𝑐𝑁,𝑙)

+
(𝑡 − 𝑐𝑁,𝑙)

2

2
𝑥(2)(𝑐𝑁,𝑙) + 𝑟𝑁,𝑙(𝑡). 

(44) 

Since 𝑥(3)(𝑡) is continuous in 𝒯𝐵 and therefore bounded in 𝒯, 

the remainder 𝑟𝑁,𝑙(𝑡) can be put in the Lagrange form 𝑟𝑁,𝑙(𝑡) =

(𝑡−𝑐𝑁,𝑙)
3

6
𝑥(3)(𝑡̃), where 𝑡̃ ∈ 𝒯𝑁,𝑙 is chosen to satisfy (44) and 

|𝑥(3)(𝑡̃)| ≤ 𝑥3,𝑚𝑎𝑥 < ∞. For any 𝑡 ∈ 𝒯𝑁,𝑙: |𝑡 − 𝑐𝑁,𝑙| ≤ 0.5∆𝑁,𝑙, 

we get |𝑟𝑁,𝑙(𝑡)| ≤
∆𝑁,𝑙

3

48
|𝑥(3)(𝑡̃)|, and  

|𝑟𝑁,𝑙(𝑡)| ≤
∆𝑁,𝑙

3

48
𝑥3,𝑚𝑎𝑥 . (45) 

By substituting (44) in (12), and deploying (7) and (37)-(38), 

we obtain 

𝐼𝑁,𝑙(𝑓) = ℒ0,𝑙𝑥(𝑐𝑁,𝑙) + ℒ1,𝑙𝑥
(1)(𝑐𝑁,𝑙)

+ ∫
(𝑡 − 𝑐𝑁,𝑙)

2

2
𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

𝑥(2)(𝑐𝑁,𝑙)

+ 𝜒𝑙, 

(46) 

where 𝜒𝑙 = ∫ 𝜆(𝑡, 𝑓)𝑟𝑁,𝑙(𝑡)d𝑡
𝒯𝑁,𝑙

. It follows from (7) and (45) 

that |𝜒𝑙| ≤ ∆𝑁,𝑙
4 𝑥3,𝑚𝑎𝑥 48⁄ . By utilizing (28), we get  

|𝜒𝑙| ≤ 𝑁−4
27

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥 . (47) 

From (44),  the signal samples 𝑥(𝑡𝑁,𝑙), 𝑥(𝜏𝑁,𝑙) and 𝑥(𝑡𝑁,𝑙+1) 

can be expressed as: 𝑥(𝑡𝑁,𝑙) = 𝑥(𝑐𝑁,𝑙) −
∆𝑁,𝑙

2
𝑥(1)(𝑐𝑁,𝑙) +

∆𝑁,𝑙
2

8
𝑥(2)(𝑐𝑁,𝑙) + 𝑟𝑁,𝑙(𝑡𝑁,𝑙), 𝑥(𝜏𝑁,𝑙) = 𝑥(𝑐𝑁,𝑙) + (𝜏𝑙 −

𝑐𝑁,𝑙)𝑥(1)(𝑐𝑁,𝑙) +
(𝜏𝑙−𝑐𝑁,𝑙)

2

2
𝑥(2)(𝑐𝑁,𝑙) + 𝑟𝑁,𝑙(𝜏𝑁,𝑙), and 

𝑥(𝑡𝑁,𝑙+1) = 𝑥(𝑐𝑁,𝑙) +
∆𝑁,𝑙

2
𝑥(1)(𝑐𝑁,𝑙) +

∆𝑁,𝑙
2

8
𝑥(2)(𝑐𝑁,𝑙) +

𝑟𝑁,𝑙(𝑡𝑁,𝑙+1). By substituting these in (29), and using (30) - (32) 

and (37) - (39), we obtain 

𝐼𝑁,𝑙(𝑓) = ℒ0,𝑙𝑥(𝑐𝑁,𝑙) + ℒ1,𝑙𝑥
(1)(𝑐𝑁,𝑙) + ℒ2,𝑙𝑥

(2)(𝑐𝑁,𝑙)

+ 𝜒̂𝑙  
(48) 

where 𝜒̂𝑙 = 𝛼𝑁,𝑙(𝑓)𝑟𝑁,𝑙(𝑡𝑙) + 𝛽𝑁,𝑙(𝑓)𝑟𝑁,𝑙(𝜏𝑙) +

𝛾𝑁,𝑙(𝑓)𝑟𝑁,𝑙(𝑡𝑙+1). An upper bound for |𝜒̂𝑙| can be calculated 

using (40) and (45): |𝜒̂𝑙| ≤ |𝛼𝑁,𝑙(𝑓)||𝑟𝑁,𝑙(𝑡𝑙)| +

|𝛽𝑁,𝑙(𝑓)||𝑟𝑁,𝑙(𝜏𝑙)| + |𝛾𝑁,𝑙(𝑓)||𝑟𝑁,𝑙(𝑡𝑙+1)| ≤ ℳ𝑙

∆𝑁,𝑙
3

48
𝑥3,𝑚𝑎𝑥 ≤

∆𝑁,𝑙
4

12
𝑥3,𝑚𝑎𝑥. Subsequently, by (28), we get 

|𝜒̂𝑙| ≤ 𝑁−4
27

4

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥 . (49) 

Now we derive the estimation error (41). By subtracting (46) 

from (48), we get  

ℰ𝑁,𝑙(𝑓) = {
∆𝑁,𝑙

2

8
∫ 𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
− 𝜆(𝜏𝑙 , 𝑓) [

∆𝑁,𝑙
3

8
−

∆𝑁,𝑙
(𝜏𝑁,𝑙−𝑐𝑁,𝑙)

2

2
] − ∫

(𝑡−𝑐𝑁,𝑙)
2

2
𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙
} 𝑥(2)(𝑐𝑁,𝑙) + 𝜒̂𝑙 − 𝜒𝑙.  

Therefore, 



ℰ𝑁,𝑙(𝑓) = 0.5 [ ∫ 𝑧𝑁,𝑙(𝑡)𝜆(𝑡, 𝑓)d𝑡

𝒯𝑁,𝑙

− ∆𝑁,𝑙𝑧𝑁,𝑙(𝜏𝑁,𝑙)𝜆(𝜏𝑁,𝑙 , 𝑓)] 𝑥(2)(𝑐𝑁,𝑙)

+ 𝜒̿𝑙  

(50) 

where 𝑧𝑁,𝑙(𝑡) =̂
∆𝑁,𝑙

2

4
− (𝑡 − 𝑐𝑁,𝑙)

2

= (
∆𝑁,𝑙

2
− 𝑡 + 𝑐𝑁,𝑙) (

∆𝑁,𝑙

2
+

𝑡 − 𝑐𝑁,𝑙) = (𝑡𝑁,𝑙+1 − 𝑡)(𝑡 − 𝑡𝑁,𝑙) and 𝜒̿𝑙 = 𝜒̂𝑙 − 𝜒𝑙. It can be 

checked that the function 𝑧𝑁,𝑙(𝑡) has the following properties 

∫ 𝑧𝑁,𝑙(𝑡)d𝑡

𝒯𝑁,𝑙

=
∆𝑁,𝑙

3

6
 (51) 

∫ 𝑧𝑁,𝑙
2 (𝑡)d𝑡

𝒯𝑁,𝑙

=
∆𝑁,𝑙

5

30
 (52) 

∫ 𝑧𝑁,𝑙(𝑡)|𝑡 − 𝑐𝑁,𝑙|d𝑡

𝒯𝑁,𝑙

=
∆𝑁,𝑙

4

32
 (53) 

and, if 𝑡 ∈ 𝒯𝑁,𝑙 , then  

0 ≤ 𝑧𝑁,𝑙(𝑡) ≤ ∆𝑁,𝑙
2 4⁄  (54) 

Since E{𝑧𝑁,𝑙(𝜏𝑁,𝑙)} = Δ𝑁,𝑙
−1 ∫ 𝑧𝑁,𝑙(𝜏)d𝜏

𝒯𝑁,𝑙
, then (51) implies  

𝐸{𝑧𝑁,𝑙(𝜏𝑁,𝑙)} = ∆𝑁,𝑙
2 6⁄ . (55) 

From (47) and (49), we derive 

|𝜒̿𝑙| ≤ 𝑁−4 135

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥. (56) 

It follows from (50), (5) and (7) that |ℰ𝑁,𝑙(𝑓)| ≤

0.5 [∫ 𝑧𝑁,𝑙(𝑡)d𝑡
𝒯𝑁,𝑙

+ ∆𝑁,𝑙𝑧𝑁,𝑙(𝜏𝑙)] 𝑥2,𝑚𝑎𝑥 + |𝜒̿𝑙|. Consequently, 

we have: 

 |ℰ𝑁,𝑙(𝑓)| ≤ 0.5 (
∆𝑁,𝑙

3

6
+

∆𝑁,𝑙
3

4
) 𝑥2,𝑚𝑎𝑥 + |𝜒̿𝑙| ≤

5

24
∆𝑁,𝑙

3 𝑥2,𝑚𝑎𝑥 +

|𝜒̿𝑙| ≤ 𝑁−3 (
45

8

𝐻3

𝑔𝑚𝑖𝑛
3 𝑥2,𝑚𝑎𝑥 + 𝑁−1 135

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥). 

Since  𝑁 ≥ 3,  we reach 

|ℰ𝑁,𝑙(𝑓)| ≤ 𝑁−3 [
45

8

𝐻3

𝑔𝑚𝑖𝑛
3 𝑥2,𝑚𝑎𝑥 +

45

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥] (57) 

Substituting (57) in (43) yields 𝜎2{𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓)} ≤

𝐿𝑁𝑁−6 [
45

8

𝐻3

𝑔𝑚𝑖𝑛
3 𝑥2,𝑚𝑎𝑥 +

45

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥]

2

. Since 𝐿𝑁 ≤ 0.5𝑁, 

we conclude that 

 𝜎2{𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓)} ≤ 0.5𝑁−5 [
45

8

𝐻3

𝑔𝑚𝑖𝑛
3 𝑥2,𝑚𝑎𝑥 +

45

16

𝐻4

𝑔𝑚𝑖𝑛
4 𝑥3,𝑚𝑎𝑥]

2

 

(58) 

which proves the following theorem: 

 

Theorem 2: If the signal 𝑥(𝑡) has continuous third derivative in 

𝒯𝐵, the HySt estimator converges uniformly to 𝑋(𝑓) at least at 

the rate 𝑁−5.  

C. Asymptotic variance of the HySt estimator 

In this section, we derive the asymptotic variance of the HySt 

estimator. Theorem 3 below states the main result.  

Theorem 3: If 𝑤(𝑡) and 𝑥(𝑡) have continuous first and third 

derivatives in 𝒯𝐵 respectively then 

lim
𝑁→∞

𝑁5𝜎𝐻𝑦𝑆𝑡,𝑁
2 (𝑓) = 𝜎𝐻𝑦𝑆𝑡,𝑙𝑖𝑚

2 (𝑓), (59) 

where 𝜎𝐻𝑦𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) =

2

45
𝐻5 ∫

𝑤2(𝑡)[𝑥(2)(𝑡)]
2

𝑔5(𝑡)
 d𝑡

𝒯
.  

Theorem 3 implies that uniform convergence rate for signals 

with nonzero second derivative cannot be faster than 𝑁−5. By 

combining this observation with Theorem 2 we conclude that 

the uniform convergence rate of HySt estimators is exactly 𝑁−5.  

Proof of Theorem 3: We start with applying the mean 

value theorem to 𝜆(𝑡, 𝑓) and noting that for any 𝑓 and 𝑡 ∈ 𝒯𝑁,𝑙  

there exists 𝑡̅ ∈ 𝒯𝑁,𝑙 such that 

𝜆(𝑡, 𝑓) = 𝜆(𝑐𝑁,𝑙 , 𝑓) + 𝜆(1)(𝑡̅, 𝑓)(𝑡 − 𝑐𝑁,𝑙). (60) 

By substituting (60) in (50) and using (51), we express the 

estimation error by  

ℰ𝑁,𝑙(𝑓) = Γ𝑁,𝑙(𝑓) + Λ𝑁,𝑙(𝑓), (61) 

where 

Γ𝑁,𝑙(𝑓) =̂ [
∆𝑁,𝑙

3

12
−

∆𝑁,𝑙

2
𝑧𝑙(𝜏𝑙)] 𝜆(𝑐𝑁,𝑙 , 𝑓)𝑥(2)(𝑐𝑁,𝑙) (62) 

and   

Λ𝑁,𝑙(𝑓) =̂ [ ∫ 𝑧𝑁,𝑙(𝑡)(𝑡 − 𝑐𝑁,𝑙)𝜆(1)(𝑡̅, 𝑓)d𝑡

𝒯𝑁,𝑙

− ∆𝑁,𝑙𝑧𝑁,𝑙(𝜏𝑁,𝑙)(𝜏𝑁,𝑙

− 𝑐𝑁,𝑙)𝜆(1)(𝜏𝑁̅,𝑙 , 𝑓)]
𝑥(2)(𝑐𝑁,𝑙)

2
+ 𝜒̿𝑙 . 

(63) 

Since 

|Γ𝑁,𝑙(𝑓)| ≤ [
∆𝑁,𝑙

3

12
+

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)] |𝜆(𝑐𝑁,𝑙 , 𝑓)||𝑥(2)(𝑐𝑁,𝑙)|, then 

by deploying (5), (7), (28) and (54), we get |Γ𝑁,𝑙(𝑓)| ≤
5

24
∆𝑁,𝑙

3 𝑥2,𝑚𝑎𝑥 ≤ 𝑁−3 45

8

𝐻3𝑥2,𝑚𝑎𝑥

𝑔𝑚𝑖𝑛
3  and conclude  

Γ𝑁,𝑙(𝑓) = 𝑂(𝑁−3). (64) 

Similarly, |Λ𝑁,𝑙(𝑓)| ≤ [∫ 𝑧𝑁,𝑙(𝑡)|𝑡 − 𝑐𝑁,𝑙||𝜆
(1)(𝑡̅, 𝑓)|d𝑡

𝒯𝑁,𝑙
+

∆𝑁,𝑙𝑧𝑙(𝜏𝑁,𝑙)|𝜏𝑁,𝑙 − 𝑐𝑁,𝑙||𝜆
(1)(𝜏𝑁̅,𝑙 , 𝑓)|]

𝑥(2)(𝑐𝑁,𝑙)

2
+ 𝜒̿𝑙 and since 

|𝜏𝑁,𝑙 − 𝑐𝑁,𝑙| ≤ 0.5∆𝑁,𝑙, we get from (28) and (56) |Λ𝑁,𝑙(𝑓)| ≤
5

64
∆𝑁,𝑙

4 𝜆1,𝑚𝑎𝑥𝑥2,𝑚𝑎𝑥 ≤ 𝑁−4 𝐻4

𝑔𝑚𝑖𝑛
4 (

405

64
𝜆1,𝑚𝑎𝑥𝑥2,𝑚𝑎𝑥 +

135

16
𝑥3,𝑚𝑎𝑥). Thus,  

Λ𝑁,𝑙(𝑓) = 𝑂(𝑁−4). (65) 

Additionally, E {|ℰ𝑁,𝑙(𝑓)|
2

} = E {|Γ𝑁,𝑙(𝑓)|
2

} +

E {|Λ𝑁,𝑙(𝑓)|
2

+ 2Re[Γ𝑁,𝑙
∗ (𝑓)Λ𝑁,𝑙(𝑓)]}. Utilizing (64) and (65), 

we obtain E {|ℰ𝑁,𝑙(𝑓)|
2

} = E {|Γ𝑁,𝑙(𝑓)|
2

} + 𝑂(𝑁−7). The 

variance (43) is 𝜎2{𝑋̂𝐻𝑦𝑆𝑡,𝑁(𝑓)} = ∑ E {|Γ𝑁,𝑙(𝑓)|
2

} 
𝐿𝑁−1
𝑙=0 +

𝑂(𝑁−6). Substituting this in (59) yields   

𝜎𝐻𝑦𝑆𝑡,𝑙𝑖𝑚
2 (𝑓) = lim

𝑁→∞
𝑁5 ∑ E {|Γ𝑁,𝑙(𝑓)|

2
} 

𝐿𝑁−1

𝑙=0

 (66) 



By using (62) and (3) we get E {|Γ𝑁,𝑙(𝑓)|
2

} = E {[
∆𝑁,𝑙

3

12
−

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} |𝜆(𝑐𝑁,𝑙 , 𝑓)|
2

[𝑥(2)(𝑐𝑁,𝑙)]
2

= E {[
∆𝑁,𝑙

3

12
−

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} 𝑤2(𝑐𝑁,𝑙)[𝑥(2)(𝑐𝑁,𝑙)]
2
.  It follows from (55) 

that E {
∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)} =

∆𝑁,𝑙
3

12
. Therefore: E {[

∆𝑁,𝑙
3

12
−

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} = 𝜎2 {
∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)}. We note that 

𝜎2 {
∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)} = E {[

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} − (
∆𝑁,𝑙

3

12
)

2

, where 

E {[
∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} =
∆𝑁,𝑙

4
∫ 𝑧𝑁,𝑙

2 (𝑡)d𝑡
𝒯𝑁,𝑙

. By (52), we get: 

E {[
∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑁,𝑙)]

2

} =
∆𝑁,𝑙

6

120
, and hence E {[

∆𝑁,𝑙
3

12
−

∆𝑁,𝑙

2
𝑧𝑁,𝑙(𝜏𝑙)]

2

} =
1

720
∆𝑁,𝑙

6 . This implies  

E {|Γ𝑁,𝑙(𝑓)|
2

} =
1

720
∆𝑁,𝑙

6 𝑤2(𝑐𝑁,𝑙)[𝑥(2)(𝑐𝑁,𝑙)]
2
 (67) 

By substituting (67) in (66) and using (17), we get 

lim
𝑁→∞

𝑁5𝜎𝐻𝑦𝑆𝑡,𝑁
2 (𝑓) =

1

720
lim

𝑁→∞
𝑁5 ∑ ∆𝑁,𝑙

6 𝑤2(𝑐𝑁,𝑙)[𝑥(2)(𝑐𝑁,𝑙)]
2𝐿𝑁−1

𝑙=0 =

𝐻5

720
lim

𝑁→∞

𝑁5

𝐿𝑁
5 ∑

𝑤2(𝑐𝑁,𝑙)[𝑥(2)(𝑐𝑁,𝑙)]
2

𝑔5(𝑡ℎ,𝑙)
∆𝑁,𝑙

𝐿𝑁−1
𝑙=0 . We also note that 

lim
𝑁→∞

𝑁5 𝐿𝑁
5⁄ = 32. Hence by Riemann integral 

lim
𝑁→∞

𝑁5𝜎𝐻𝑦𝑆𝑡,𝑁
2 (𝑓) =

2

45
𝐻5 ∫

𝑤2(𝑡)[𝑥(2)(𝑡)]
2

𝑔5(𝑡)
 d𝑡

𝒯
, which 

completes the proof of Theorem 3. 

V. NUMERICAL EXAMPLES 

The numerical examples presented in this section compare 

the performances of ToRa, StSa, AnSt and HySt estimators. We 

consider the following signal 𝑥(𝑡) comprising two spectral 

components centred around 2kHz and 70kHz 

𝑥(𝑡) = 𝐴1 sinc(𝐵(𝑡 − 𝑑)) cos(2𝜋𝑓1(𝑡 − 𝑑))

+ 𝐴2 cos(2𝜋𝑓2𝑡) 
(68) 

where 𝐴1 = 105, 𝐵 = 0.5kHz, 𝑓1 = 2kHz, 𝑑 = 7.5ms, 𝐴2 =
5 × 103 and 𝑓2 = 70kHz. The length of the observation 

window 𝒯 is 𝐻 = 15ms. Its Fourier Transform 𝑋(𝑓) defined 

by (1) is calculated with the use of the Hanning window 𝑤(𝑡) =
0.5 − 0.5 cos(2𝜋𝑡/𝐻). It will be estimated using each of the 

four DASP methods discussed in this paper. For each of the 

three stratified estimators, we used 𝑔(𝑡) = 1. Fig. 1 shows the 

magnitude of the target Fourier Transform 𝑋(𝑓). 

In the first experiment we estimate the MSE defined by (2) 

by averaging the squared errors obtained from 1000 

independent simulations. The results for ToRa, StSa, AnSt and 

HySt methods against the number of signal samples 𝑁 are 

shown in Fig. 2, separately for frequencies 2, 70 and 160 kHz. 

These plots reveal that the MSE of HySt and ToRa estimators 

are nearly insensitive to the frequency for which the error is 

estimated. As previously explained, this is attributed to the fact 

that these estimators’ pointwise and uniform convergence rates 

are identical. On the other hand, for StSa and AnSt, the 

accelerated convergence rates become visible once the number 

of collected samples 𝑁 is sufficiently large for the considered 

frequency. Hence, the estimation errors as functions of 𝑁 are 

frequency-sensitive. Fig. 2a shows that at 2kHz, when 𝑁 <
104, the estimators that use stratification exhibit quality similar 

to each other and notably better than that of ToRa. At higher 

frequencies, HySt significantly outperforms all other 

approaches. The plots for 70kHz presented in Fig. 2b show that 

when 𝑁 < 1800 the error for StSa and AnSt estimation is better 

aligned with that of ToRa than with their fast decay rates of 𝑁−3 

and 𝑁−5, respectively. Only when 𝑁 exceeds 1800, the 

accelerated rates of StSa and AnSt become visible. Their 

sluggish behavior and inferior performance comparing to HySt 

become even more profound when the examined frequency 𝑓 is 

further increased. The results for 𝑓 = 160kHz in Fig. 2c show 

that the accelerated convergence of StSa and AnSt start when 

𝑁 > 3200. We also note that for 𝑁 = 10,000, the AnSt and 

HySt exhibit the same performance at 𝑓 = 2kHz. However, 

HySt outperforms AnSt by 20dB at 70kHz and by 

approximately 30dB at 160kHz. 

 
Fig. 1. Magnitude of the Fourier Transform of 𝑥(𝑡) defined by (68). The insets 

show details of the results in the neighborhoods of 2kHz and 70kHz. 

 

In the second experiment, we set the number of signal 

samples to 𝑁 = 400 (401 in the case of HySt) and run ten 

independent simulations for each of the four methods. The 

magnitudes of the estimated FT for ToRa, StSa and AnSt are 

shown in Fig. 3, whilst Fig. 4 presents the results for HySt. This 

experiment illustrates the opportunities and difficulties in 

detecting spectral components of the analyzed signals when 

using DASP-based FT estimators. The monitored frequency 

range is confined to [0, 𝑓𝑚𝑎𝑥]. Since there is no theoretical 

upper limit above which DASP approaches stop working, the 

frequency 𝑓𝑚𝑎𝑥 is arbitrarily chosen as 𝑓𝑚𝑎𝑥 = 160kHz.  

Examination of the depicted results confirms that all ten 

displayed estimates produced by the four estimators 

consistently reveal the presence of the low-frequency 

component centered at 2kHz. The differences between the 

estimates in the neighborhood of this frequency are bigger for 

the slowly converging ToRa than for the faster counterparts 

StSa, AnSt and HySt. However, at 𝑓 = 70kHz, only HySt 

estimate exposes the presence of the second spectral 



component. The estimation errors for ToRa, StSa and AnSt 

approaches are so big that they mask this component. By 

scrutinizing Fig. 2c and making crude analyses, it could be 

argued that ToRa, StSa and AnSt need around 𝑁 = 1000 signal 

samples to reveal the spectral component at 70 kHz. But in 

order to match the quality of HySt estimation at 𝑓 = 70kHz,  
 

(a) 

 
(b)  

 
(c)  

 
Fig. 2. MSE of the FT estimation as a function of the number of collected signal 

samples 𝑁 for ToRa, StSa, AnSt and HySt at 2, 70 and 160kHz.   

ToRa needs around 10,000 samples while StSa and AnSt need 

3000 samples. For comparison, if uniform sampling was used 

to estimate the FT then the smallest number of collected 

samples that that allows avoiding aliasing up to 160kHz is 

4800. This is approximately twelve times more than what was 

used by the HySt estimator. If the FT were to be estimated with 

the same accuracy in a frequency range stretching beyond 

160kHz the HySt approach can deliver these results without 

taking additional samples. However, uniform sampling would 

require increasing the density of samples and therefore 

collecting more data. 

VI. FINAL REMARKS AND CONCLUSIONS 

We introduced the HySt approach for alias-free (DASP) FT 

estimation and showed that it outperforms by various measures 

its predecessors that tackle the same problem. In this section, 

we briefly discuss selected topics that could be of interest to 

potential users of HySt and other DASP approaches. 

All four DASP estimators use “multiply-and-accumulate” 

process to estimate the FT. Therefore, once the complex-valued 

multipliers for the collected samples are known, each of these 

four methods takes 2𝑁 multiplications and 2𝑁 − 2 additions to 

obtain the estimate at a single frequency point. It has been 

demonstrated that the HySt method often needs less signal 

samples to match or exceed the performance of the other three 

existing approaches. This potentially makes HySt the most 

computationally-efficient DASP solution for FT estimation. 

Similarly to ToRa, StSa and AnSt, the HySt multipliers can be 

calculated as soon as the weighting function 𝑤(𝑡) and the 

sampling instants are known. The integrals needed in (30) and 

(32) to calculate the HySt multipliers 𝛼𝑁,𝑙(𝑓) and 𝛾𝑁,𝑙(𝑓) are 

independent from the random sampling instants and, thereby, 

can be pre-calculated even if these random instants are selected 

in real-time. Consequently, the workload related to 

incorporating the effect of the random sampling instants on the 

multipliers is more or less the same for all four DASP 

approaches. 

Each of the four DASP Fourier transform estimates considered 

in this paper can be represented by 𝑋̂𝑁(𝑓) = 𝑋(𝑓) + Δ𝑋𝑁(𝑓), 

where Δ𝑋𝑁(𝑓) is a zero-mean random variable whose variance 

uniformly converges to zero when 𝑁 goes to infinity. Thus, for 

a sufficiently large 𝑁, the estimated FT can be made arbitrarily 

similar to the 𝑋(𝑓) target. This observation helps addressing the 

questions about the frequency resolution of DASP estimators as 

well as their ability of detecting weak spectral components in 

the analyzed signals. Such features are ultimately determined 

by 𝑋(𝑓) defined by (1) rather than by the choice of a specific 

DASP method. The situation complicates when 𝑁 is small and 

the increased variance of Δ𝑋𝑁(𝑓) adds noise-like spectrum to 

𝑋(𝑓). As a result, any less distinct features of 𝑋(𝑓) can be 

obscured and even made invisible in 𝑋̂𝑁(𝑓). In the second 

numerical example, the 70kHz component of the analyzed 

signal could not be detected by any DASP method, apart from 

the HySt estimator. For 𝑁 ≅ 400, only the variance of the HySt 

estimator was small enough to reveal specific features of 𝑋(𝑓) 

at this frequency. 
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Fig. 3. The magnitude of the estimated Fourier Transform in 10 independent 

experiments for (a) ToRa, (b) StSa and (c) AnSt Fourier transforms. The 

insets show details of the results in the neighborhood of 2kHz. 

 

 
Fig. 4. The magnitude of the estimated Fourier Transform in 10 independent 

experiments with HySt estimator. The insets show details of the results in the 

neighborhoods of 2kHz and 70kHz. 

 

The FT error estimation analyses are more complex if the 

signal samples are noisy. It is clear that such noise adds an extra 

layer of error to the estimates. Detailed analysis of how much 

error is added and a comparison of how different DASP 

approaches are affected is outside the scope of this paper.  

An important question about the HySt FT estimator is 

whether its variance can be reduced by suitably selecting the 

stratifying function 𝑔(𝑡). The answer is yes, however, 

determining the optimal shape of 𝑔(𝑡) requires solving a 

functional-analysis optimization problem that could be 

numerically difficult to tackle. A simplified closed form 

solution presented below minimizes the variance (59) subject to 

constraints (15) and 𝑔(𝑡) ≥ 0. We note that although the 

resultant 𝑔(𝑡) is guaranteed to be non-negative it may not 

necessarily satisfy (14).  

Based on the cost (59) and constraint (15), we form the 

following Lagrangian  

𝐿(𝑔(∙), 𝜉) =
2

45

𝐻5

𝑁5
∫

𝑤2(𝑡)[𝑥(2)(𝑡)]
2

𝑔5(𝑡)
 d𝑡

𝒯

+ 𝜉 [𝐻−1 ∫ 𝑔(𝑡)d𝑡

𝒯

− 1 ], 

(69) 

where 𝜉 is the Lagrange multiplier. By equating the functional 

and partial derivatives of (69) with respect to 𝑔(𝑡) and 𝜉, 
respectively, we get  

𝛿𝐿(𝑔(𝜏), 𝜉)

𝛿𝑔(𝑡)
= −

2

9

𝐻5

𝑁5

𝑤2(𝑡)[𝑥(2)(𝑡)]
2

𝑔6(𝑡)
+ 𝜉𝐻−1 = 0, (70) 

  

𝜕𝐿(𝑔(𝜏), 𝜉)

𝜕𝜉
= 𝐻−1 ∫ 𝑔(𝑡)d𝑡

𝒯

− 1 = 0. (71) 

It follows from (70) that 𝑔(𝑡) = 𝑎 √|𝑤(𝑡)𝑥(2)(𝑡)|
3

, where 𝑎 =

𝐻 × √
2

9𝜉𝑁5

6
 is not fully known because of the dependence on 𝜉. 

We calculate 𝑎 by solving (71). Since ∫ 𝑔(𝑡)d𝑡
𝒯

=



𝑎 ∫ √|𝑤(𝑡)𝑥(2)(𝑡)|
3

d𝑡
𝒯

,  therefore 𝑎 =
𝐻

∫ √|𝑤(𝑡)𝑥(2)(𝑡)|
3

d𝑡𝒯

 and 

the optimal 𝑔(𝑡) is given by   

𝑔(𝑡) = 𝐻
√|𝑤(𝑡)𝑥(2)(𝑡)|
3

∫ √|𝑤(𝑡)𝑥(2)(𝑡)|
3

d𝑡
𝒯

. (72) 

Since in typical cases 𝑥(2)(𝑡) is not known, a pragmatic solution 

is to choose 𝑔(𝑡) that is proportional to √|𝑤(𝑡)|3
 and scaled so 

that (71) is satisfied. 

 Finally, it is important to mention that the “infinite bandwidth” 

of the DASP approaches could in practice be limited to a very 

wide but finite range of frequencies. First, if all the sampling 

instants are selected as multiples of some short time interval ℎ, 

then, the alias-free analysis can be performed only up to 

0.5ℎ−1Hz. The second limiting factor, which was identified and 

analyzed in [23] with respect to ToRa, is the input clock jitter. 

All the analyses in this paper were made under the assumption 

that the sampling instants used in calculating the HySt 

multipliers are the same as when the signal samples were taken. 

However, any random error between them results in high-

frequency bias of the FT estimates. A practical rule derived in 

[23] is that DASP should not be used for signal analyses above 

0.1𝜎−1Hz, where 𝜎 is the standard deviation of the input-clock 

jitter. 
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