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MACHINE LEARNING CLASS NUMBERS OF REAL QUADRATIC FIELDS

MALIK AMIR, YANG-HUI HE, KYU-HWAN LEE, THOMAS OLIVER, AND ELDAR SULTANOW

Abstract. We implement and interpret various supervised learning experiments involving real

quadratic fields with class numbers 1, 2 and 3. We quantify the relative difficulties in separating

class numbers of matching/different parity from a data-scientific perspective, apply the methodology

of feature analysis and principal component analysis, and use symbolic classification to develop

machine-learned formulas for class numbers 1, 2 and 3 that apply to our dataset.
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1. Introduction

The class number of a real quadratic field, or of a more general number field, measures how far

its ring of integers is from being a unique factorization domain (UFD). In particular, if the class

number is 1, then the ring of integers is a UFD. The Gauss class number problem for real quadratic

fields concerns whether or not there are infinitely many real quadratic fields with class number 1.

This fundamental question remains one of the central open questions in number theory to this day.

In a recent paper [HLOb], it was observed that certain supervised learning classifiers could be

used to distinguish real quadratic fields of class number 1 from those of class number 2. That

article was the second in a series, featuring also [HLOa] and [HLOc], in which the unifying theme

was the application of machine learning algorithms to arithmetic objects presented by finite lists of
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coefficients in certain Dirichlet series called ζ-functions (or L-functions). Subsequently, this series

of articles has been enhanced by [HLOP], which documents a first glimpse of unexpected aggregate

phenomena amongst the coefficients. In all of these papers, the methodology is motivated by the

general philosophy that arithmetic objects may be classified through these functions; in particular,

various interesting arithmetic invariants appear in their Laurent expansions.

In this article, we seek to formalise, generalise, and interpret the aforementioned supervised

learning experiment for real quadratic fields. In particular, we will train classifiers on data connected

to real quadratic fields with class numbers 1, 2, and 3. We will implement different classifiers to those

in [HLOb], and once again observe that a machine can learn to distinguish between class numbers

1 and 2 when trained on finitely many ζ-coefficients (i.e. Dirichlet coefficients of ζ-functions). On

the other hand, in order to accurately distinguish between class numbers 1 and 3, we incorporate

some, but not necessarily all, additional features inspired by the analytic class number formula for

real quadratic fields, that is:

(1.1) lim
s→1

(s− 1)ζd(s) =
2Rdhd√

D
,

where ζd(s) is the Dedekind zeta function of Q(
√
d), D is the discriminant, Rd is the regulator,

and hd is the class number. Inspired by experimental observations, we investigate structures in

ζ-coefficients that may account for the machine’s success, or lack thereof. This investigation in-

corporates viewpoints that are, at times purely arithmetic, at times purely data scientific, and,

ultimately, a mixture of the two. The basic arithmetic concept is the genus field, which explain

some features present in the data and allow one to develop human strategies for distinguishing

between class numbers 1 and 2 based on ζ-coefficients alone (see Section 2.2). In particular, in

the constrained settings of our experiments, observing occurrences of the value 1 is often a useful

technique for distinguishing class numbers. In Section 4.2, we will see that symbolic classification

produces a formula which recovers the same insights that we derived from genus theory. Strategies

developed from genus theory break down when considering class numbers 1 and 3. In Section 3.3,

we will introduce a cost function, the magnitude of which corresponds to the relative difficulty in

separating two class numbers. Using a search algorithm, we heuristically compute the minimum of

the cost function and so quantify a sense in which it is harder to separate class numbers 1 and 3

than it is to separate 1 and 2 (see Section 3.5).

In the rest of this introduction, we overview the subsequent sections. We begin by reviewing some

mathematical theory, including the genus field. In Section 2, we review Dedekind ζ-functions and

establish various results in genus theory that explain several statistical observations about the class

numbers of real quadratic fields. In Section 3, we explore the pairwise separation of real quadratic

fields with different class numbers using finitely many coefficients of their Dedekind ζ-functions.

More precisely, we introduce a cost function which quantifies the separability, and may be heuristi-

cally computed and optimised using the so-called bubble algorithm. The cost function is built from

certain counting functions, which enumerate square-free d such that Q(
√
d) has specified ramifica-

tion properties. Section 3 is complemented by Appendix A.1, in which we explore separation of



MACHINE LEARNING CLASS NUMBERS OF REAL QUADRATIC FIELDS 3

ζ-coefficient data using principal component analysis (PCA). In Section 4, we investigate the binary

classification of real quadratic fields with class numbers 1 and 2 using gradient boosting tree based

learning algorithms (specifically, LightGBM and CatBoost) and genetic programming (specifically,

symbolic classification). In particular, we undertake a supervised learning experiment in the style

of [HLOb], that is, using finite lists of ζ-coefficients as features, but place greater emphasis on

alternative methodologies and feature analysis. Furthermore, rediscover some results from genus

theory, first stated in Section 2, concerning the parity of class numbers. Section 4 is complemented

by Appendix A.2, in which we record additional plots and metrics for the experiments.

In Section 5, we investigate the binary classification of class numbers 1 and 3, using LightGBM.

Having previously observed that ζ-coefficients are not sufficient for high accuracy classifiers in this

case, we also incorporate various combinations of features consisting connected to equation (1.1).

In particular, we will involve the ramified primes, and some partial sums related to the Dedekind

zeta function and the Dirichlet L-function. Applying the symbolic classifier, we are lead to two

approximate formulas for the class number, the first of which is essentially equation (1.1), and the

second of which looks somewhat different but nevertheless suggests that hd is proportional (resp.

inversely proportional) to
√
D (resp. Rd).

Acknowledgements. MA is supported by Microsoft Research NE, YHH is indebted to STFC

UK, for grant ST/J00037X/2, KHL is partially supported by a grant from the Simons Foundation

(#712100), and TO acknowledges support from the EPSRC through research grant EP/S032460/1.

MA is also grateful to Vlad Serban, Maryna Viazovska, Mounir Boukadoum and Henry Cohn for

their valuable comments, discussions and teachings. We are grateful to the anonymous referee,

whose insight has had a significant impact on the clarity of this paper.

2. Genus theory

In [HLOb], we saw that a random forest classifier trained with a dataset of coefficients for the

Dedekind zeta function was able to distinguish between real quadratic fields of class numbers 1 and

2 to high accuracy. In order to explain mathematically what a machine learns from the dataset, we

review the genus field of a real quadratic field and establish various constraints on its class number

in terms of the number of ramified primes. In Section 3, we will quantify one way in which the

analogous learning task for real quadratic fields with class numbers 1 and 3 is more challenging. In

Section 4, we will use the results in this section to inform the feature analysis undertaken.

2.1. Dedekind zeta functions. Let K be a number field with ring of integers OK . The Dedekind

zeta function of K is defined to be:

(2.1) ζK(s) =
∑

I≤OK

N(I)−s =
∏

p≤OK

(1−N(p)−s)−1, Re(s) > 1,

in which N denotes the norm map and the sum (resp. product) is over the non-zero (resp. prime)

ideals of OK .
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For a square-free integer d, let Kd = Q(
√
d). We say that Kd is real (resp. imaginary) if d > 0

(resp. d < 0). The discriminant D of Kd is given by

(2.2) D =

d, if d ≡ 1 (mod 4),

4d, if d ≡ 2, 3 (mod 4).

When K = Kd, we will write ζK(s) = ζd(s). We note that

(2.3) ζd(s) = ζ(s)L(s, χD),

where χD :=
(
D
·
)
is the Kronecker symbol attached to Kd, L(s, χD) is the associated Dirichlet

L-function, and ζ(s) is the Riemann zeta function. By hd, we denote the class number of Kd.

We may write

ζd(s) =
∞∑
n=1

ann
−s,

in which an denotes the nth Dirichlet coefficient of ζd(s). We will refer to the sequence (an)
∞
n=1 as

the ζ-coefficients of Kd. Using equation (2.3), we deduce that

(2.4) an =
∑
m|n

χD(m),

where the sum is over m dividing n. In particular, if n = p is prime, then equation (2.4) simplifies

to

(2.5) ap = 1 + χD(p).

Since χD is a real quadratic character, we have χD(p) ∈ {−1, 0, 1}. Thus, for p prime, equation (2.5)

implies that ap ∈ {0, 1, 2}. By construction, we have χD(p) = 0 if and only if p divides D.

Subsequently, it follows from equation (2.5) that

(2.6) ap = 1 ⇐⇒ p divides D ⇐⇒ p is ramified in Kd.

2.2. Genus fields. By definition, the genus field Ed of Kd is the maximal unramified extension of

Kd which is abelian over Q, and the extended genus field E+
d of Kd is the maximal extension of Kd

which is unramified at all finite primes and abelian over Q. Recall that a prime discriminant is a

discriminant divisible by a single prime. Write D = d1 · · · dt as a product of prime discriminants di

with t = ω(D), the number of distinct primes dividing D.

We will use the following results on genus fields (see, e.g., [Jan, Lem]):

Proposition 2.1. We have

E+
d = Q(

√
d1, . . . ,

√
dt), Ed = E+

d ∩ R,(2.7)

Gal(E+
d /Kd) ∼= C+

d /2C+
d
∼= (Z/2Z)t−1, Gal(Ed/Kd) ∼= Cd/2Cd

∼= (Z/2Z)s,(2.8)

where C+
d denotes the narrow class group of Kd and Cd the class group of Kd, and s = t − 1 if d

is a sum of two squares and s = t− 2 otherwise.
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Let nd denote the number of rational primes ramified in Kd. Since the ramified primes in Kd are

precisely those which divide D, we have nd = t = ω(D). The above proposition implies a general

result given below on the parity of class numbers hd.

Corollary 2.2. The class number hd is odd if and only if either nd = 1 or D = d1d2 with prime

discriminants d1, d2 < 0.

In Section 4.1 we will investigate datasets in which hd ≤ 2. In such sets, we deduce from

Corollary 2.2 that, if nd = 1 then hd = 1. Such implications do not hold more generally, for

example, if d = 229, then nd = 1 and hd = 3.

Proof. Assume that hd is odd. Then s = 0 in (2.8) and so t = 1 or t = 2. If t = nd = 1 then we

are done. If t = 2 then d cannot be a sum of two squares. Then d = p1, d = 2p1 or d = p1p2 with

primes p1, p2 ≡ 3 (mod 4). In all three cases, D is a product of two negative prime discriminants.

Conversely, if nd = t = 1 then s = 0 and hd is odd from (2.8), and if D = d1d2 with d1, d2 < 0,

then t = 2, s = t− 2 = 0 and hd is odd. □

Lemma 2.3. If hd = 1 and ap = 1 for some prime p ≡ 1 mod 4, then d = p.

We cannot allow primes p ≡ 3 mod 4 in Lemma 2.3. For example, h14 = 1 and a7 = 1 for K14.

Proof. Since hd = 1, we have Ed = E+
d ∩R = Kd. Since ap = 1, we know that p divides D, and p is a

prime discriminant. It follows from (2.7) that
√
p ∈ E+

d ∩R = Kd. Then we have Q(
√
p) = Kd. □

Now we establish a series of lemmas which will be utilized primarily in Sections 3.1 and 4.2. In

the former, we will rigorously evaluate certain counting functions attached to sets of real quadratic

fields. In the latter, we will compare the consequences of our Lemmas to the output of symbolic

classification.

Lemma 2.4. If hp = 1 for a prime p ≡ 1 mod 4 then hmp ≥ 2 for square-free integers m ∈ Z>1

not divisible by p.

We cannot allow primes p ≡ 3 mod 4 in Lemma 2.4. For example, h7 = h14 = 1.

Proof. Given square-free m ∈ Z>1 and p ≡ 1 mod 4, the field Kmp satisfies ap = 1. Since mp ̸= p,

Lemma 2.3 already implies that hmp ̸= 1. □

Remark 2.5. For m ≥ 1, the field Kmp satisfies ap = 1 by (2.6). If p ≡ 1 mod 4 and hp = 1, then

Lemma 2.4 implies the existence of infinitely many real quadratic fields with class number ≥ 2 such

that ap = 1. This will be relevant in Example 3.2.

Lemma 2.6. If nd ≥ 3, then hd ≥ 2. In particular, if nd ≥ 3 and hd ≤ 2, then hd = 2. Similarly,

if nd ≥ 4, then hd ≥ 4.
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Note that it is possible that Kd satisfies nd = 2 and hd = 1. This occurs, for example, if d = 7,

in which case hd = 1 and Kd is ramified at the primes 2 and 7.

Proof. The assertions follow from (2.8). □

Lemma 2.7. Assume that nd = 2 and hd ∈ {1, 2}. Let p1 be the smallest ramified prime in Kd. If

p1 ≡ 1 mod 4 (resp. p1 ≡ 3 mod 4), then hd = 2 (resp. hd = 1).

Proof. Write D = d1d2 with di prime discriminants. If p1 = d1 ≡ 1 mod 4 then d2 is also a prime

≡ 1 mod 4. Further, if hd = 1, then Lemma 2.3 yields a contradiction. Thus hd = 2.

If p1 = −d1 ≡ 3 mod 4 then d2 = −p2 for a prime p2 ≡ 3 mod 4. We obtain from (2.7) that

E+
d = Q(

√
−p1,

√
−p2) and Ed = Q(

√
p1p2) = Kd. By (2.8), we have hd = 1.

□

3. Separability of ζ-coefficients

In this section, we explore the relative difficulty in distinguishing between different pairs of class

numbers using only the associated ζ-coefficients. This is in keeping with the strategy implemented

in [HLOb]. In Sections 4 and 5, we will go beyond [HLOb] and incorporate other features inspired

by the analytic class number formula into our dataset.

The separability of ζ-coefficients will be quantified in terms of a cost function, which will be

introduced in Section 3.3. The cost function is constructed in terms of certain counting functions

explored in Section 3.1. The counting functions and the cost function may be heuristically computed

and optimised using the so-called bubble algorithm introduced in Section 3.4. In Section 3.5, we

will use the bubble algorithm to establish that the problem of distinguishing between class numbers

1 and 3 is more challenging than between class numbers 1 and 2. In Section 3.2, we will explore

the role played by ζ-coefficients with non-prime indices in the separation of ζ-coefficients. In

Appendix A.1, we document alternative approaches to the separation of ζ-coefficients using PCA.

3.1. Counting functions. In this section we introduce various functions connected to counting

real quadratic fields with prescribed class number and splitting behaviour at given primes. Roughly

speaking, the idea is that when it is known that the class number can take one of two values, if

the count is zero for one class number, and non-zero for the other, then observing the splitting

behaviour determines the class number. We will be interested in the effectiveness of implementing

this strategy in Section 3.3.

Definition 3.1. For a positive real number X, a positive integer h ∈ Z>0, a vector of non-negative

integers v ∈ Z3
≥0, and positive integers ℓ,m, n ∈ Z>0, let f

v
h(ℓ,m, n) be the number of square-free

positive integers d < X such that hd = h and (aℓ, am, an) = v, where aℓ (resp. am, an) is the ℓth

(resp. mth, nth) coefficient of ζd(s).
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In symbols, we have

(3.1) fv
h : Z3

>0 → Z≥0, fv
h(ℓ,m, n) = #{d < X : hd = h and (aℓ, am, an) = v}.

The function fv
h depends on X, though this fact is suppressed from the notation.

For rational primes p, q, r, if fv
h(p, q, r) > 0 then there exists a real quadratic field with class

number h and certain splitting behaviour at p, q, r prescribed by the vector v. Indeed, we have

already mentioned in Section 2.1 that we have ap, aq, ar ∈ {0, 1, 2} and a prime p ramifies in Kd

if and only if the corresponding coefficient ap of ζd(s) is 1. Furthermore, we know that a prime is

split (resp. inert) if the corresponding coefficient is 2 (resp. 0) (cf. [Kow, equation (4.7)]).

We will refer to the inputs of fv
h as triples, and use the notation [ℓ,m, n] so as to distinguish the

inputs from the indexing vectors v.

Example 3.2. Let h = 1 and [ℓ,m, n] = [3, 5, 7]. Then, for v = (0, 1, 0) and X > 5, we have

fv
1 (3, 5, 7) = 1. For all the other v = (a, 1, c) for a, c ∈ {0, 1, 2} and (a, c) ̸= (0, 0), we have

fv
1 (3, 5, 7) = 0. Indeed, if a5 = 1, then Kd is ramified at 5, and so d = 5m for square-free m not

divisible by 5. Since h5 = 1 and 5 ≡ 1 mod 4, Lemma 2.4 implies that h5m ≥ 2 for m > 1. When

d = 5, we have a3 = a7 = 0, proving the claim.

Definition 3.3. For h ∈ Z>0 and a triple [ℓ,m, n], let gh(ℓ,m, n) be the number of v = (v1, v2, v3) ∈
Z3
≥0 such that fv

h(ℓ,m, n) > 0, where fv
h is as in equation (3.1). In symbols, we have

(3.2) gh : Z3
>0 → Z≥0, gh(ℓ,m, n) = #{v = (v1, v2, v3) ∈ Z3

≥0 : f
v
h(ℓ,m, n) > 0}.

In order to gain some familiarity with these functions, we consider first the case that ℓ,m, n are

all primes (composites will appear in the sequel). Then, since ap, aq, ar ∈ {0, 1, 2} for primes p, q, r,

a trivial bound is given by the number of all possible vectors v, i.e.,

(3.3) gh(p, q, r) ≤ 33 = 27, (h ∈ Z>0) .

Example 3.4. For h ∈ {1, 2, 3} and [ℓ,m, n] = [3, 5, 7], we will calculate gh(3, 5, 7). In Table 1, we

list the smallest d such that Kd has class number given by row and (a3, a5, a7) given by column.

An entry × indicates that the vector does not occur, which may be verified using the statements

in Section 2.2. Indeed, if a5 = 1 then it follows from Corollary 2.2 that hd is odd only when d = 5.

This accounts for 17 occurrences of × in Table 1. In all the remaining three occurrences, we have

a3 = a7 = 1. Again by Corollary 2.2, we have hd is odd only when d = 21, which explains exactly

the three occurrences of ×.

Using Table 1, we deduce:

(3.4) gh(3, 5, 7) =


18, h = 1, X > 301,

27, h = 2, X > 609,

16, h = 3, X > 7273.
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Table 1. Smallest d such that Kd has class number given by row and (a3, a5, a7) given
by column. An entry × indicates that the vector does not occur.

hd (0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 2, 0) (0, 2, 1) (0, 2, 2)
1 17 77 19 5 × × 41 14 11
2 122 182 218 185 35 65 26 119 74
3 257 2177 473 × × × 761 2429 254
hd (1, 0, 0) (1, 0, 1) (1, 0, 2) (1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 2, 0) (1, 2, 1) (1, 2, 2)
1 3 × 57 × × × 6 21 141
2 87 42 78 285 105 15 66 609 39
3 993 × 1257 × × × 321 × 1101
hd (2, 0, 0) (2, 0, 1) (2, 0, 2) (2, 1, 0) (2, 1, 1) (2, 1, 2) (2, 2, 0) (2, 2, 1) (2, 2, 2)
1 13 7 22 × × × 19 301 46
2 178 238 58 10 70 85 34 91 106
3 733 7273 142 × × × 229 469 316

In particular, we see that there exists a real quadratic field of class number 2 for every possible

combination of ramification at 3, 5, 7.

Definition 3.5. For distinct positive integers i, j ∈ Z>0, let gi,j count the number of v so that

both fv
i and fv

j are positive. That is, we define

(3.5) gi,j(ℓ,m, n) = #{v ∈ Z3
≥0 : f

v
i (ℓ,m, n) > 0 and fv

j (ℓ,m, n) > 0}.

Clearly, we have gi,j ≤ min{gi, gj}.

Example 3.6. Using Table 1, we obtain:

(3.6) g1,j(3, 5, 7) =

18, j = 2, X > 609,

27, j = 3, X > 7273.

3.2. Composite indices. In our initial investigation of the counting functions introduced in Sec-

tion 3.1, we considered only prime indices. With composite indices, the coefficients an can take

many more values than their prime counterparts. Indeed, each character value appearing in equa-

tion (2.4) is in {−1, 0, 1}, and so we see that an is an integer bounded by 1 ± Ω(n), where Ω(n)

denotes the number of prime factors dividing n (counted with multiplicity). On the other hand, the

coefficient an counts the number of ideals of norm n, which is a non-negative integer. Combining

these observations, we deduce

(3.7) an ∈ {0, 1, . . . ,Ω(n)− 1,Ω(n),Ω(n) + 1}.

The number of values actually achieved by an depends on the multiplicity in the prime factorisation

of n.

Example 3.7. If n = p2 for some prime p, then, equation (2.3) implies that

(3.8) ap2 = 1 + χD(p) + χD(p)
2 ∈ {1, 3}.
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In equation (3.8), we have ap2 = 3 (resp. ap2 = 1) if and only if p is ramified (resp. unramified).

On the other hand, if n = pq is a product of two distinct primes, then equation (2.3) implies that

(3.9) apq = 1 + χD(p) + χD(q) + χD(p)χD(q) ∈ {0, 1, 2, 4}.

In equation (3.9), we have apq = 0 if and only if p or q is inert, apq = 1 if and only if p and q are

ramified, apq = 2 if and only if Kd is ramified at one of p and q and splits at the other, and apq = 4

if and only if p and q split.

Using equation (3.7), we deduce the following analogue of equation (3.3) for non-prime indices:

(3.10) gh(ℓ,m, n) ≤ (Ω(ℓ) + 2)(Ω(m) + 2)(Ω(n) + 2).

3.3. Cost function. In order to measure separability of class numbers 1, 2, 3 in our datasets of

ζ-coefficients, we will introduce a cost function which may be heuristically calculated using the

searching algorithm described in Section 3.4.

The cost function is constructed so as to account for two key considerations. On one hand, the

cost function favours triples which minimise gi,j ; that is, we are interested in argmin(gi,j) ⊂ Z3
>0.

This is natural, since gi,j is a coarse measure of the extent to which the sets {Kd : hd = i}
and {Kd : hd = j} may be separated by the associated ζ-coefficients. Indeed, if gi,j were to

hypothetically take the value 0 at some triple [ℓ,m, n], then each v ∈ Z3
≥0 would correspond to at

most one class number.

On the other hand, the minimisation of gi,j needs to be taken in a relative way. Namely, if the

union {v : fv
i (ℓ,m, n) > 0} ∪ {v : fv

j (ℓ,m, n) > 0} is small, the size gi,j of intersection would also

tend to be small. Consequently, we define our cost function Ci,j to be the ratio of the intersection

over the symmetric difference:

(3.11) Ci,j(ℓ,m, n) :=
gi,j(ℓ,m, n)

gi(ℓ,m, n) + gj(ℓ,m, n)− 2gi,j(ℓ,m, n)

for any pair of class numbers {i, j} and any triple [ℓ,m, n] ∈ Z3
>0. Then we are searching for

(3.12) argmin(Ci,j).

We will find heuristic solutions to equation (3.12) using a searching algorithm described in the next

section.

Remark 3.8. In our heuristic calculations of the counting functions and cost function, we will

count only d whose discriminant D appears in the LMFDB. Though the LMFDB is complete for

D < 2×106, it includes some larger d and, for the purposes of this section, we note that the largest

d such that hd = 1 (resp. hd = 2, resp. hd = 3) is 34, 554, 953 (resp. 43, 723, 857, resp. 35, 598, 713).

The number of real quadratic fields in our dataset for each class number is given in Table 2.

Example 3.9. From the dataset available in the LMFDB, we find

(3.13) g1,2(3, 5, 7) = g1,2(665, 740, 940) = g1,2(520, 783, 991) = 18.
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Table 2. Number of real quadratic fields in our dataset of real quadratic fields extracted
from the LMFDB.

#{hd = 1} #{hd = 2} #{hd = 3}
177159 183436 25201

The value 18 is much lower than the tentative upper bound which comes from equation (3.10).

Indeed, we have Ω(3) = Ω(5) = Ω(7) = 1, Ω(665) = Ω(740) = Ω(940) = 3, Ω(520) = 5, Ω(783) = 4,

Ω(991) = 1, and so equation (3.10) implies that

(3.14) gh(3, 5, 7) ≤ 27, gh(665, 740, 940) ≤ 125, gh(520, 783, 991) ≤ 126,

for any positive integer h. The discrepancy between the value given in equation (3.13) and the

hypothetical upper bound in equation (3.14) means that there could potentially be many triples

[ℓ,m, n] ∈ Z3
≥0 that make gi(ℓ,m, n)−gi,j(ℓ,m, n) and gj(ℓ,m, n)−gi,j(ℓ,m, n) large and Ci,j(ℓ,m, n)

small.

3.4. The bubble algorithm for hd ∈ {1, 2}. In order to find a solution to equation (3.12),

we utilise a searching algorithm referred to as the bubble algorithm. More generally, the bubble

algorithm may be used to evaluate all counting functions introduced so far. In this section, we will

focus on {i, j} = {1, 2}. The generalisation to other pairs of class numbers is straightforward.

The terminology “bubble” is motivated by certain visualisations (bubble charts) of the value

distributions of ζ-coefficients, such as Figure 1. In Figure 1 left (resp. right), we see a cube with

axes given by coefficient triples v = (a3, a5, a7) (resp. v = (a2, a3, a5)). At each integer vector v,

we see a coloured bubble whose size is determined by fv
1 (ℓ,m, n)+ fv

2 (ℓ,m, n). The presence of the

colour red (resp. green) at v indicates that fv
1 (ℓ,m, n) > 0 (resp. fv

2 (ℓ,m, n) > 0), and the size

of the red (resp. green) contribution is proportional to the value of fv
1 (ℓ,m, n) (resp. fv

2 (ℓ,m, n)).

Summarising Section 3.3 in visual language, we are interested in minimising the number of mixed

bubbles, and maximising the number of pure bubbles.

In order to compute the counting functions of Section 3.1, and hence the cost function of Sec-

tion 3.3, we define a large matrix whose rows are indexed by real quadratic fields Kd. The first

column contains d, the second column contains its class number hd, and the remaining columns

contain the values taken by the coefficients ai of ζd(s). If the matrix contains c rows in which

(aℓ, am, an) = (x, y, z), then we say that the triple [ℓ,m, n] provides c collisions for the vector

(x, y, z).

Example 3.10. A very small section of this matrix is shown in Table 3. Looking at Table 3, we

see that the triple [1, 2, 4] provides three collisions for the vector (1, 0, 1) and two collisions for the

vector (1, 2, 3). On the other hand, the triple [2, 4, 7], yields no collisions at any vector.

For each triple [ℓ,m, n], we search the entire LMFDB to generate an output of the form:

(g1(ℓ,m, n), g1,2(ℓ,m, n), g2(ℓ,m, n), C1,2(ℓ,m, n)).
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Figure 1. Value distribution for the triples (a3, a5, a7) (left) and (a2, a3, a5) (right)
where red (resp. green) bubbles correspond to class number 1 (resp. 2) real quadratic
fields.

Table 3. Sample of the matrix used to minimise C1,2.

d class number a1 a2 a3 a4 a5 a7

5 1 1 0 0 1 1 0
33 1 1 2 1 3 0 0
61 1 1 0 2 1 2 0
10 2 1 1 2 1 1 0
15 2 1 1 1 1 1 2
65 2 1 2 0 3 1 2

1309 2 1 0 2 1 2 1

Example 3.11. Consider the triple [ℓ,m, n] = [665, 740, 985]. In this case, the output of the bubble

algorithm reads as (18, 18, 57, 0.461538). In other words, (a665, a740, a985) takes 18 different values

for class number one fields, 18 common values for both class numbers, 57 different values for class

number two fields, and has a cost of 0.461538. In particular, there is no value for (a665, a740, a985)

taken by a class number 1 field which is not also taken by a class number 2 field.

Note that there may exist many pure bubbles of one colour and very few or zero pure bubbles of

the other. More precisely, the number of pure red (class number 1) bubbles is given by g1(ℓ,m, n)−
g1,2(ℓ,m, n) and that of pure green (class number 2) ones by g2(ℓ,m, n) − g1,2(ℓ,m, n). Thus, in

Example 3.11, there are no pure red bubbles and 57 − 18 = 39 pure green bubbles for [ℓ,m, n] =

[665, 740, 985].
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Actually, in the entire dataset available at LMFDB, there exist triples [ℓ,m, n] yielding 109 pure

green bubbles with no pure red bubbles. In Table 4, we list the maximal number of pure green

bubbles conditional on the constraint that there is a fixed small number of pure red bubbles.

Table 4. Maximum number of pure green bubbles (class number 2), conditional on a
prescribed small number of pure red bubbles (class number 1).

# of pure red bubbles 0 1 2 3 4
max # of pure green bubbles 109 80 60 48 33

Given 3 pure red bubbles, there is a unique triple achieving the maximum of 48 pure green

bubbles. Specifically, the triple is [691, 693, 850]. In general, a triple achieving the maximum need

not be unique. For example, given 1 pure red bubble, there are 6 triples achieving the maximum

of 80 pure green bubbles, as listed in Table 5.

Table 5. Triples [ℓ,m, n] whose value distribution yields 1 pure red bubble and 80 pure
green bubbles. In all cases, note that g1(ℓ,m, n)− g1,2(ℓ,m, n) = 1 and g2(ℓ,m, n)−
g1,2(ℓ,m, n) = 80.

ℓ m n g1 g1,2 g2 C1,2

589 637 720 48 47 127 0.580247
637 720 989 48 47 127 0.580247
585 620 931 64 63 143 0.777778
372 931 975 83 82 162 1.012346
804 931 975 83 82 162 1.012346
775 819 987 84 83 163 1.024691

3.5. Challenges in the case hd ∈ {1, 3}. The bubble algorithm naturally generalises to other

binary classification problems for class numbers in which the features are given by ζ-coefficients.

When applied to the dataset of hd ∈ {1, 3}, the best performing triples [ℓ,m, n] computed by

the bubble algorithm are summarised in Table 6. Note that the minimal value of achieved by

the cost function (which is 5/3) is much larger than the value previously seen for hd ∈ {1, 2} in

Example 3.11. This quantifies one way in which the classification of hd ∈ {1, 3} is a fundamentally

more challenging problem using only ζ-coefficients. Furthermore, when hd ∈ {1, 2}, we saw that the

value distribution for the triple [3, 5, 7], which consists of prime numbers, yields some pure green

bubbles (cf. Figure 1). On the other hand, in the case that hd ∈ {1, 3}, the bubble algorithm does

not yield a single such triple of prime numbers. Instead, the optimal values of the function C1,3

listed in Table 6 are taken by triples of composite numbers. In Section 5, we will circumvent these

challenges by introducing training sets with additional features.
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Table 6. Triples [ℓ,m, n] minimising the cost function in the case that {i, j} = {1, 3}.
In all cases, we have C1,3(ℓ,m, n) = 5/3.

ℓ m n g1(ℓ,m, n) g1,3(ℓ,m, n) g3(ℓ,m, n)
62 904 1120 14 10 12
65 1166 1868 18 15 21
65 1300 1604 19 15 20
65 1316 1820 18 15 21
258 1456 1784 19 15 20
258 1580 1784 17 15 22
262 1324 1616 12 10 14
262 1280 1844 14 10 12
269 1436 1844 21 15 18
274 1316 1820 12 10 14
274 1324 1576 12 10 14
289 1436 1576 19 15 20
1364 1568 1913 26 20 26
1374 1444 1664 20 15 19
1468 1802 1984 20 15 19

4. Class numbers 1 and 2

In this section, we investigate the binary classification of real quadratic fields with class num-

bers 1 and 2 using gradient-boosting tree-based learning algorithms and genetic programming. In

Section 4.1, we apply the LightGBM and CatBoost machine learning algorithms to finite lists of

ζ-coefficients. We report all metric scores in the form of tables and figures, including the list of

most important features used for the predictions in each model. In Section 4.2, we use a genetic

programming algorithm called symbolic classification to the ramified primes to obtain an optimal

approximation for the class number formula, and subsequently recover some results about the parity

of the class number first presented in Section 2. We maintain the notation from Section 2.

4.1. Learning hd ∈ {1, 2} from the prime index coefficients of ζd(s). To each square-free

d ∈ Z>0, we attach the vector

(4.1) v(d) = (ap)p prime
p≤1000

∈ Z168,

where ap is the pth Dirichlet coefficient of ζd(s). The dimension 168 is the number of primes ≤ 1000.

Using equation (2.5), we observe that v(d) ∈ {0, 1, 2}168. Using the vectors in equation (4.1), we

introduce the labelled dataset

(4.2) D1,2 = {v(d) → hd},

where d varies over square-free positive integers such that hd ∈ {1, 2} and d appears in the LMFDB

[LMFDB]. As was noted in Remark 3.8, the dataset is complete for d such that D < 2× 106, and

contains some larger d (the largest d such that hd ∈ {1, 2} being 43, 723, 857).
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The labelled dataset in (4.2) is different to that in [HLOb, Section 6.1], which also incorporated

the ζ-coefficients with composite indices. Our choice to include only prime indices seems intuitively

reasonable, since all coefficients can be recovered from those of prime index via (2.1). Whilst it was

observed in Section 3.2 (in particular, Example 3.9) that ζ-coefficients with composite indices yield

greater separation between real quadratic fields of different class numbers, prime indices are nev-

ertheless sufficient for the high accuracy classifiers in the context of this section. We furthermore

note that the exclusion of composite indices can also be motivated by the correlation matrix in

Figure 3, which shows that composite indices sharing similar prime decomposition are highly cor-

related. Excluding the composite indices therefore allows for faster training, better generalization,

and more reliable (permutation) feature importance.

To build our LightGBM and CatBoost supervised learning models, we will use the automated

machine learning library AutoMLjar [PP]. Our choice to use LightGBM and CatBoost was moti-

vated in large part by Figure 4, which shows that LightGBM and CatBoost are, in addition to being

fast to train, among the best performing models that can be built using AutoMLjar for our experi-

ment. Furthermore, they often represent state-of-the-art models on tabular data. We will consider

a training/testing split of 70/30 for D1,2, together with a 10-fold cross validation performed on the

training set, since other splits including 30/70 produce similar results. All the folders generated by

AutoMLjar, including codes, datasets and figures for all experiments presented in this article can

be found in the GitHub repository [Amir]. Tables 7 summarizes various performance scores for the

LightGBM and CatBoost models, and Figure 6 summarizes the KS statistics.

Figure 8 summarizes the permutation feature importance. Looking at Figure 8, we observe that

the small prime index coefficients are the most important features for the prediction of the class

number. In particular, the triple (a2, a3, a5) is the most important for all models. Table 8 gives the

value distribution of this triple, from which we can clearly see an unequal distribution depending

Figure 3. Correlation matrix of the first ten coefficients of the Dedekind zeta functions
ζd(s) of real quadratic fields with hd ∈ {1, 2}.
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Figure 4. Comparison of the LightGBM and CatBoost learning models against other
AutoMLjar models on a 70/30 split for the binary classification task hd = 1 vs hd = 2.

Table 7. Performance metrics over the training set of the LightGBM and CatBoost
model for the binary classification task hd = 1 vs hd = 2 with split 70/30. As is
standard, AUC is the ”area under the receiver operating characteristic curve”, F1 is the
F1-score and MCC, the Matthews correlation coefficient. All these quantities need to
be close to 1 for a good model. LogLoss is the log of the loss function and needs to be
close to 0.

Model Logloss AUC F1 Accuracy MCC
LightGBM 0.0687 0.99776 0.9902 0.9902 0.9804
CatBoost 0.0323 0.9992 0.9952 0.9951 0.9903

Figure 6. KS statistic plot over the training set of the LightGBM (right) and CatBoost
model (left) for the binary classification task hd = 1 vs hd = 2 with split 70/30.

on whether hd = 1 or hd = 2. This unequal distribution of the data is much more pronounced in

the case where a2 = a3 = a5 = 1 and it is visualized in Figure 1.
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This points towards the distribution of ones in the sequences of prime coefficients, namely,

towards the number nd of primes that ramify in Kd and that can be captured in the first 1000

coefficients of the function ζd(s). This is in line with the lemmas in Section 2. Table 9 shows the

distribution of ramified primes against the class number and Table 10 represents the distribution

of ramified primes appearing in the first 1000 coefficients of the function ζd(s).

Figure 8. Permutation feature importance for the LightGBM (left) and Catboost
(right) model for the binary classification task hd = 1 vs hd = 2 on a 70/30 split.

LightGBM CatBoost

Table 8. Number of real quadratic fields with class number hd ∈ {1, 2} in dataset
D1,2 for specified values of the ζ-coefficients a2, a3, a5

hd a2 = 0 a3 = 0 a5 = 0 a2 = 1 a3 = 1 a5 = 1 a2 = 2 a3 = 2 a5 = 2
1 74868 76965 88786 27804 23650 1 74487 76544 88372
2 60392 69501 75225 62773 44673 33013 60271 69262 75198

Table 9. Number of real quadratic fields with class number hd ∈ {1, 2} in dataset
D1,2 for specified number nd of ramified primes

hd nd = 1 nd = 2 nd = 3
1 64522 112637 0
2 0 52451 130985

4.2. Learning hd ∈ {1, 2} with symbolic classification. In this section, we will construct a

learning model obtained from an genetic programming algorithm called symbolic classification [Kor].

We will explore how symbolic classification can be used to produce an explicit predictor for the

class number of real quadratic fields in our dataset, using the software HeuristicLab [Wag]. Such a

predictor will provide an approximation to the class number formula for our dataset. This approach

has been used in theoretical physics, e.g. [UT], to develop good approximations for certain physical

quantities based on a given set of learning features. In our setting, we will see that reasonable
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Table 10. Detected ramified primes in the first 1000 coefficients of the function ζd(s)
for fields Kd with class number hd = 1, 2 from dataset D1,2.

hd # of detected ramified primes # of fields with this property
0 65468

1 1 108527
2 3164
0 806

2 1 49595
2 101978
3 31057

approximations to the class number formula (1.1) can be discovered using simpler learning features.

Such approximations, as we will see, are able to shed light on interesting properties of real quadratic

fields. In particular, they will allow us to recover some results in Section 2 on the parity of the

class number.

Using the real quadratic fields of Section 4.1, we create a labeled dataset DSC
1,2 by considering

as learning features the number nd of ramified primes in Kd and the ramified primes themselves.

Since hd ∈ {1, 2}, we have nd ≤ 3 by Lemma 2.6 and write the ramified primes as p1, p2, p3. By

convention, if there is no second (resp. third) ramified prime, we will set p2 = 0 (resp. p3 = 0).

Our dataset DSC
1,2 can be summarized as follows

DSC
1,2 = {(nd, p1, p2, p3) → hd}.

As the dataset DSC
1,2 is quite large, running symbolic classification becomes computationally de-

manding. We thus sample randomly 50, 000 data points from DSC
1,2 and construct a dataset where

fields of class number 1 and 2 are chosen evenly. In this section, we use a training and testing split of

40/60. We will apply our approximate formulas to the whole LMFDB and test their performances.

Our symbolic classifier was built using the following parameters of HeuristicLab. The population

size was fixed to 100, the fitness function used was mean squared error, the crossover method used

was subtree swapping crossover, the mutator was multi symbolic expression tree manipulator and for

elitism, we kept one elite at every generation to favor population exploration and avoid exploitation.

For the alphabet of functions, we used various mix of the available functions.

Among all the formulas we have generated, the simplest one in terms of length and depth of the

model is the following approximation of the class number formula:

(4.3) h
(1,2)
d = 0.17257 sin(1.5703 p1) + 0.72004nd,

We note that the coefficient 1.5703 of p1 is approximately equal to π/2. Equation (4.3) yields the

following predictor ϕ(d) for hd, which has accuracy 98% on the training and testing set, and whose
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accuracy persists when applied to the entire dataset DSC
1,2:

(4.4) ϕ(d) =

1 if h
(1,2)
d < t,

2 if h
(1,2)
d ≥ t,

for t = 1.5115.

The value t appearing in (4.4) serves as the threshold for (4.3). The classification metrics for

(4.4) are listed in Figure 10. Class number 1 fields denote the positive class and Figure 10 shows

in particular that our formula predicts no false negatives, very few false positives, and is thus

well-suited to study the relationship between p1, nd and hd from the data.

Figure 10. Summary of the classification metrics for (4.3) used in the binary classifi-
cation task hd = 1 vs hd = 2.

Looking at equation (4.3), we note that only the number nd of ramified primes and the first

ramified prime p1 are selected by the genetic algorithm and sufficient to distinguish class number

1 and 2 real quadratic fields with very high accuracy. It is natural to ask what kind of information

we can extract from h
(1,2)
d .

If nd = 1 (resp. nd = 3) then it is easy to see that ϕ(d) = 1 (resp. ϕ(d) = 2) from (4.3), regardless

of the value of p1. Thus we recover the (consequence written after) Lemma 2.2 and Lemma 2.6

(both under the additional hypothesis that hd ∈ {1, 2}), and ϕ distinguishes between class number

1 and 2 fields with 100% accuracy. In the case nd = 2, we have the following conditions imposed

on p1:

(4.5) h
(1,2)
d < t ⇐⇒ 4n− 2.2724 < p1 < 4n+ 0.27174, n ∈ Z>0.

By analyzing equation (4.5), we find that the allowed primes are those p1 congruent to 3 mod 4

and p1 = 2. If, instead, we investigate the h
(1,2)
d ≥ t condition, then we find the missing primes p1
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congruent to 1 mod 4. In other words, we have recovered Lemma 2.7. All together it reflects the

general fact about parities given in Corollary 2.2.

Though a data point in DSC
1,2 contains p1, p2, p3, the formula in (4.3) has only the first ramified

prime p1, which agrees with Lemma 2.7 (in the case nd = 2). It is interesting to see that our

machine learning model has learned this fact from data alone.

We will see in Section 5.1 that such a classification failed in the case of class number 1 and 3

fields. This gives evidence that one cannot expect to distinguish fields with the same parity using

only the simple features nd and the list of ramified primes.

5. Class numbers 1 and 3

We now turn to the classification of real quadratic fields of class number 1 and 3. We attempt to

mimic the structure of Section 4, but include new ideas to circumvent the difficulties we encounter.

Based on the minimal values of the cost function in Section 3.5, we may suspect that classifiers

trained on ζ-coefficients alone are not as accurate as they are in the case of class numbers 1 and 2.

This is borne out in our implementation, in which, trained on these features, neither LightGBM

nor Symbolic Classification succeeded in distinguishing real quadratic fields of class number 1 or 3.

Subsequently, we incorporate other features, such as the regulator and partial sums.

5.1. Balancing data and selecting features. There is a large imbalance between the 25,201 real

quadratic fields with class number 3 and the 177,159 with class number 1 included in [LMFDB].

To avoid any bias in the construction of our dataset, we will restrict ourselves to the 11,531 real

quadratic fields of class number 3 with discriminant D ≤ 106. To construct a balanced dataset

including the same number of real quadratic fields with class number 1 evenly distributed over

discriminant ranges, we sample class number 1 fields randomly from the sets {Kd : i · 105 ≤ D ≤
(i+ 1) · 105}, i ∈ {0, . . . , 9}, as many as class number 3 fields in each interval. For example, there

are 1,261 fields with class number 3 in the interval 1 ≤ D ≤ 105 and so in this interval, we pick the

same amount of class number 1 fields.

Our dataset thus consists of 23,062 fields. For each of them, we compute the vector v(d) as in

(4.1), the discriminant D, the regulator Rd, the number nd of ramified primes, the ramified primes

p1, p2 where we set p2 = 0 in the case that only one prime ramifies, and the partial sums Sζd and

SχD defined by

Sζd :=
1000∑
n=1

an
n

and SχD :=
1000∑
n=1

χD(n)

n
.

The partial sums Sζd and SχD are motivated by ζd(s) and L(s, χD), respectively. Our dataset can

thus be summarized as

DSC
1,3 = {(v(d), D,Rd, Sζd , SχD , nd, p1, p2) → hd}.
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5.2. Learning hd ∈ {1, 3} from DSC
1,3. The problem of classifying real quadratic fields of class

number 1 and 3 is much more difficult than the problem of classifying those with class number 1

and 2. Section 3.5 discussed this problem from a conceptual perspective. In this section, we observe

the increased difficulty from a practical standpoint.

In Table 11 we summarise the features and testing accuracy for various experiments using the

LightGBM classifier. As in Section 4, the data segregation is 70/30, together with a 10-fold cross

validation performed on the training set.

Table 11. Performance of LightGBM on various combinations of learning features for
the binary classification task of hd = 1 vs hd = 3.

Row Number Features Testing Accuracy
1 (ap)p≤1000 53.34%
2 (ap)p≤1000, nd, pi 54.87%
3 (ap)p≤1000, Sζd 52.87%
4 (ap)p≤1000, Rd 91.21%
5 (ap)p≤1000, D 53.75%
6 (ap)p≤1000, D, Rd 99.38%
7 D, Rd, Sζd 99.84%
8 (ap)p≤1000, SχD 53.45%
9 D, Rd, SχD 99.93%
10 (api)

10
i=1, D, Rd 99.90%

11 (api)
5
i=1, D, Rd 99.54%

12 (api)
3
i=1, D, Rd 99.55%

13 (api)
2
i=1, D, Rd 97.51%

14 ap1 , D, Rd 88.46%

There are various observations we can make from Table 11. Row 4 shows that the regulator

and the prime index coefficients are strong predictors for the class number. When we add the

discriminant in row 6, we obtain an almost perfect classification. Also look at the following rows

where high accuracies are attained with Sζd and SχD . Of course, this could be expected from the

class number formula (1.1), and we will generate some approximate formulas to hd in Section 5.3.

As in Section 4, rows 10-14 show the importance of the small prime index coefficients.

Row 2 suggests that the values nd and the number of ramified primes detected in the sequence of

prime index ζ-coefficients may be uniformly distributed over our dataset of class number 1 and 3.

Indeed, Table 12 and 13 show this phenomenon. Consequently, nd cannot be taken as a meaningful

feature for classification. This situation is in stark contrast with the case of class number 1 and 2.

5.3. Learning hd ∈ {1, 3} with symbolic classification. Using the same parameters as in Sec-

tion 4.2, we will explore two formulas yielded by symbolic classification. The classification metrics

are listed in Figure 12. Unlike in Section 4.2, the formulas are not tested on the entire LMFDB

but only on our dataset.
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Table 12. Detected ramified primes in the first 1000 coefficients of the function ζd(s)
for real quadratic fields of class number 1 and 3 in dataset DSC

1,3.

hd # of detected primes # of fields with this property
0 4250

1 1 6904
2 386
0 4284

3 1 6858
2 389

Table 13. Number of ramified primes in fields Kd of class number hd ∈ {1, 3} from
dataset DSC

1,3 in terms of their class number.

class number hd nd = 1 nd = 2
1 4258 7282
3 4288 7243

The first formula obtained is closely related to the class number formula (1.1):

(5.1) h
(1,3)
d =

1

2

√
DSχD

Rd
.

The following predictor attains 100% accuracy on both the training and testing data:

(5.2) ϕ(d) =

1, if h
(1,3)
d < t,

3, if h
(1,3)
d ≥ t,

for t = 1.963.

This result shows the capability of symbolic classification to discover an effective formula from a

dataset. On the other hand, [D03, Proposition 5] implies that SχD may be well approximated by

the sum χD(2)/2 + χD(3)/3 + χD(5)/5. Consequently, the analytic class number formula suggests

that hd is determined by D, Rd, and the coefficients a2, a3, and a5. Given these inputs, symbolic

classification yields the following unexpected formula:

(5.3)

h̃
(1,3)
d =

1.8858
√
D

Rd exp(−0.5468a2 − 0.2718a3) cos(sin(−0.2556a3)) cos(−0.1962a5) cos4(−0.1952a5)
.

This is rather unlike anything from the classical theory, and offers limited mathematical insight to

the problem. Nevertheless, the following predictor based on equation (5.3) attains around 99.8%

accuracy both on the training and test set:

(5.4) ϕ(d) =

1 if h̃
(1,3)
d < t,

3 if h̃
(1,3)
d ≥ t,

for t = 15.97.
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Figure 12. Classification metrics of the formulas (5.1) and (5.3)

equation (5.1) equation (5.3)

Appendix A.

A.1. Dimensionality reduction. In Section 3, we explored how class number data may be sep-

arated using the bubble algorithm. In this appendix, we visualize how PCA clusters our data with

respect to the axes of maximal variance. To perform this dimensionality reduction, we compress

the features (an)
1000
n=1 to a 3-dimensional space.

The case of class number 1 and 2 real quadratic fields is depicted in Figure 14, where we observe

that there are forbidden zones for class number 1 fields. It would be interesting to study explicitly

these constraints. In addition, we can see that the two classes are not entirely separated or mixed

in this 3-dimensional representation of the data. This shows that our data responds moderately

to linear methods and points towards the fact that non linear algorithms, such as LightGBM and

CatBoost, can perform better. Furthermore, looking at Figure 16, we see that the prime index

coefficients alone are not separable through PCA. Note that this does not imply that non-linear

separability is unfeasible as we have successfully distinguished these two classes in Section 4 using

non-linear algorithms.

In the case of class number 1 and 3 fields in Figures 17, 19 and 20, we see that the data is

much less separable from the point of view of PCA. In contrast to Figure 14, Figure 17 shows

that the coefficients of class number 1 and 3 fields are completely mixed, which can explain the

greater difficulty in classifying such fields, and there is no noticeable difference between Figure 19

and Figure 16. Figure 20 shows the result when the first 10 prime coefficients are combined with

other features Rd and D. Recall that, with all these features combined, we could obtain a high

accuracy as indicated in Table 11.
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Figure 14. Dimensionality reduction using PCA for (an)
1000
n=1 in the case of real qua-

dratic fields of class number hd ∈ {1, 2} (1: blue; 2: yellow)

Figure 16. Dimensionality reduction using PCA for (ap) p≤1000
p:prime

in the case of real

quadratic fields of class number hd ∈ {1, 2} (1: blue; 2: yellow)

A.2. Supplementary material for Section 4.1. In Section 4.1, we focused largely on the per-

mutation feature importance. In Figures 22 and 24, we record the calibration curves and confusion

matrices for 70/30 splits.



24 M. AMIR, Y.-H. HE, K.-H. LEE, T. OLIVER, AND E. SULTANOW

Figure 17. Dimensionality reduction using PCA for (an)
1000
n=1 in the case of real qua-

dratic fields of class number hd ∈ {1, 3} (1: blue; 3: yellow)

Figure 19. Dimensionality reduction using PCA for (ap) p≤1000
p:prime

in the case of real

quadratic fields of class number hd ∈ {1, 3} (1:blue; 3: yellow)
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Figure 20. Dimensionality reduction using PCA for D,Rd and the first 10 ap-
coefficients in the case of real quadratic fields of class number hd ∈ {1, 3} (1:blue;
3: yellow)

Figure 22. Calibration curves of the LightGBM model (left) and CatBoost model
(right) on a 70/30 split of the dataset for the binary classification task of quadratic
fields with class number hd = 1 vs hd = 2.
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Figure 24. Confusion matrix of the LightGBM model (left) and CatBoost model
(right) on a 70/30 split of the dataset for the binary classification task of quadratic
fields with class number hd = 1 vs hd = 2.
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