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ix. Abstract

In this work, Asynchrobatic Logic is presented.  It is a novel low-power 

design style that combines the energy saving benefits of asynchronous logic 

and adiabatic logic to produce systems whose power dissipation is reduced in 

several different ways.  The term “Asynchrobatic” is a new word that can be 

used  to  describe  these  types  of  systems,  and  is  derived  from  the 

concatenation and shortening of Asynchronous, Adiabatic Logic.  This thesis 

introduces  the  concept  and  theory  behind  Asynchrobatic Logic.   It  first 

provides an introductory background to both underlying parent technologies 

(asynchronous logic and adiabatic logic).  The background material continues 

with an explanation of a number of possible methods for designing complex 

data-path cells used in the adiabatic data-path.  Asynchrobatic Logic is then 

introduced as a comparison between asynchronous and Asynchrobatic buffer 

chains,  showing  that  for  wide  systems,  it  operates  more  efficiently.   Two 

more-complex sub-systems are presented, firstly a layout implementation of 

the substitution boxes from the Twofish encryption algorithm, and secondly a 

front-end  only  (without  parasitic  capacitances,  resistances)  simulation  that 

demonstrates  a  functional  system  capable  of  calculating  the  Greatest 

Common Denominator  (GCD) of  a  pair  of  16-bit  unsigned integers,  which 

under typical conditions on a 0.35µm process, executed a test vector requiring 

twenty-four  iterations  in  2.067µs  with  a  power  consumption  of  3.257nW. 

These  examples  show  that  the  concept  of  Asynchrobatic  Logic  has  the 

potential to be used in real-world applications, and is not just theory without 

application.  At the time of its first publication in 2004,  Asynchrobatic Logic 

was  both  unique  and  ground-breaking,  as  this  was  the  first  time  that 

consideration had been given to operating large-scale adiabatic logic in an 

asynchronous  fashion,  and  the  first  time  that  Asynchronous  Stepwise 

Charging (ASWC) had been used to drive an adiabatic data-path.  

xiv



Chapter 1 Introduction

1.1 Aims and Motivation

Until  quite  recently,  the  power  consumption  of  VLSI  computation 

devices had not been the major limiting factor in improvements and advances 

in  microelectronic  technology.   Computers  were  static,  powered  by  mains 

electricity,  and  even  the  most  power  hungry  microprocessor  of  a  desktop 

computer could be cooled using a fan-assisted heat-sink.  Current processors 

can consume 140W, drawing over 100A of current in the process [AMD09]! 

However,  the  rise  of  portable  consumer  electronics,  ubiquitous  computing 

devices [Weis93], and implanted or wearable bio-medical electronics means 

that  power  efficient  computation  has  become  more  important  in  widely 

deployed  technologies,  rather  than  being  confined  to  niche  and  specialist 

areas.  Also, as the dimensions of CMOS technologies have shrunk, so that 

for nanometre technologies the thickness of the gate dielectric is a countable 

number of atoms [Inte07], traditional power reduction techniques like voltage 

scaling  have  ceased  to  be  as  effective,  and  new issues  like  source-drain 

leakage and even gate leakage have become significant sources of power 

dissipation.  

Depending upon the application, there are numerous methods that can 

be used to reduce the power consumption of VLSI circuits, these can range 

from low-level measures based upon fundamental physics, such as using a 

lower  power  supply  voltage  or  using  high  threshold  voltage transistors;  to 

high-level measures such as clock-gating or power-down modes.  The two 

that motivated this investigation were asynchronous logic [Mull59] & [Spar01] 

and adiabatic logic [Koll92].  These two technologies have been combined to 

create an Asynchronous, Adiabatic Logic methodology, called  Asynchrobatic 

Logic [Will04], which is the subject of this thesis.  The name is derived as a 

concatenation and shortening of Asynchronous, Adiabatic Logic. 
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Although  known  from  very  early  in  the  history  of  computation, 

asynchronous logic  [Mull59]  has until  recently  remained more a subject  of 

academic research than commercial  interest.  However,  in applications like 

RF-powered smart cards, asynchronous implementations of microprocessors 

normally used in embedded applications have found a commercially useful 

role [Spar01].  One of the properties of asynchronous systems that make them 

useful in these applications are that circuits include a built-in insensitivity to 

variations in power supply voltage, with a lower voltage resulting in slower 

operation rather than the functional failures that would be seen if traditional  

synchronous systems were used.  Another major advantage is the fact that 

when an asynchronous system is idle there will  be no ticking clock signals, 

whereas  in  synchronous  systems,  these  clock  signals  are  propagated 

throughout  the  entire  system  and  convert  energy  to  heat,  often  without 

performing any useful computations.  

Adiabatic logic is a newer area of low-power research  [Koll92].  It is 

focused on issues associated with the thermodynamics of computation.  By 

taking this branch of physics, that usually looks at mechanical engines, and 

applying  it  to  computing  engines,  research  fields  such  as  reversible 

computation as well as adiabatic logic have been created.  By moving to a 

computing  paradigm  that  is  reversible,  energy  can  be  recovered  from  a 

computing engine, and reused to perform further calculations.  The analogy of 

regenerative  braking  is  a  good  example  which  illustrates  this  idea  in  the 

context of a familiar mechanical system.  The low-power benefit of adiabatic 

logic is that energy can be recycled by being stored and reused, thus reducing 

the amount of energy drawn directly from the power supply.  There are other 

low-power consequences of using certain realisations of adiabatic logic, but 

these  are  implementation  specific  rather  than  being  directly  due  to  the 

reversible nature of the logic.  
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The two research areas described above both had a different set of 

low-power benefits which they could bring to circuit design, and Asynchrobatic 

Logic was born out of the novel idea to attempt to find a way to unify the low-

power benefits from these fields.  When written succinctly as “unifying the low-

power  benefits  of  asynchronous  logic  and  adiabatic  logic”,  this  idea  may 

sound like a simple and innocuously easy task.  However, when it is realised 

that one of the commonly used synonyms for adiabatic logic is “clock-powered 

logic”,  and  that  from its  Greek  etymology,  “asynchronous”  has  evolved  to 

mean without synchronised clocks, it can be seen that the task of merging 

anything from these two research areas is not going to be without substantial 

challenges.   How  a  clock-powered  logic  can  be  operated  without  clocks 

appears  initially  to  be  an  impossible  and  contradictory  requirements 

specification.  

1.2 Original contributions

The original contributions that this project has added to the state-of-the-

art can be summed-up as follows:

• The novel concept of Asynchrobatic Logic.  That is, a processing circuit 

which operates both asynchronously and adiabatically.   Prior to this, 

adiabatic  processing  had  occurred  synchronously,  any  self-timed 

adiabatic  circuits  only  had  applications  as  drivers,  just  capable  of 

repeating a signal, but not performing any logical operation upon it, and 

asynchronous  logic  had  been  used  with  logic  incapable  of  charge 

recovery or adiabatic operation.  

• The application of capacitor-based, Asynchronous Stepwise Charging 

(ASWC) as a method for driving adiabatic data-path logic.  

• The design and implementation of a simple system (of a pipeline of 

buffers) to act as proof of concept.  

• The design and implementation of a complex system (a 16-bit  GCD 

calculator), capable of fulfilling the concepts of Asynchrobatic Logic.  
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• A method  for  modelling  Asynchrobatic Logic  in  Verilog,  an  industry 

standard  Hardware  Description  Language  (HDL),  which  in  the 

behavioural  paradigm  can  be  easily  extended  to  VHDL,  another 

industry standard HDL.  

• Systematic identification of other adiabatic logic families based around 

cross-coupled pairs of PMOS transistors.  However, these did not show 

any extra low-power benefits over previously disclosed technologies.  

• The  realisation  that  the  Positive  Feedback  Adiabatic  Logic  (PFAL) 

family can be used to implement complex reversible processing logic. 

Design and implementation of a Toffoli Gate [Feyn00] to demonstrate 

this,  noting  that  the  design  was  operated  under  ideal  adiabatic 

conditions,  but  with  the  caveat  that  nothing  would  preclude 

Asynchrobatic operation of such a circuit.  

• A proposal to extend the family of Knowles Adders from radix-two to 

higher-radices and the use of this as a solution to overcome the large 

fan-out or wiring density required for wide, radix-four, Asynchrobatic or 

adiabatic adders.  

• A generalisation of results for the rate of growth of the search space for 

“Free  n-ary  Decision  Diagrams”.   These  sequences  only  appear  to 

have been documented for binary and ternary decision diagrams, but 

could be usefully extended to Free Quaternary, Quinary or higher-order 

Decision  Diagrams,  with  possible  applications  being  the  design  of 

functions for Multi-Valued Logics (MVL).  

1.3 Outline of thesis

Asynchrobatic Logic  is  the  result  of  a  successful  experiment  that 

attempted to  create  a low-power  CMOS logic  structure that  operated both 

asynchronously and adiabatically.   It  is  therefore  predicated upon prior-art 

from the fields of adiabatic logic and asynchronous logic,  as well  as more 

familiar  ideas  from  the  electronic  engineering  and  computer  science 

disciplines associated with VLSI design.  The first two introductory chapters 
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provide explanations of both of these logic styles.  This thesis has approached 

this idea from the perspective of implementing an asynchronous controller to 

drive adiabatic logic, and the majority of the focus was on the adiabatic logic, 

with the asynchronous controller using previously known and unremarkable 

implementations.   The  third  introductory  chapter  examines  the  design 

methods for the dual-rail adiabatic logic families.  The initial proof of concept 

that introduced Asynchrobatic Logic and demonstrated that it was viable, was 

an  implementation  of  a  chain  of  buffers  [Will04].   These  were  compared 

against a similar structure implemented in standard asynchronous logic, and 

for a suitably wide data-path, with a reasonable switching probability,  were 

shown to have a better power efficiency.  Subsequent work demonstrated that 

more  complex  arithmetic  functions  could  be  implemented  [Will08a] and 

ultimately  that  a  complex  system  could  be  implemented.   An  important 

discovery, subsidiary to the main thrust of the work, was the realisation that 

this work had potential for use in fully reversible logic systems  [Will08b].  

This introduction will  be followed by three introductory chapters,  one 

that provides an in-depth introduction and background to adiabatic logic, and 

another  that  provides an overview of  asynchronous logic,  and a third  that 

detail the design methods for dual-rail logic used in adiabatic data-paths.  The 

chapters subsequent to this document the design details and other principles 

applied during the creation of  Asynchrobatic Logic.  The HDL modelling of 

Asynchrobatic Logic  using  Verilog,  and  issues  surrounding  physical 

implementation are considered.  Finally, an  Asynchrobatic implementation of 

Euclid's  Greatest  Common  Denominator  (GCD)  algorithm  is  presented 

[Will08c].   Conclusions are  drawn,  including comparisons of  Asynchrobatic 

Logic  against  other  authors'  works;  future  work  and  possible  commercial 

applications are proposed and discussed;  and bibliographic references are 

cited.  
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The appendices contain annotated source code.  Appendix A contains 

Verilog source code for both the single-rail and dual-rail versions of the GCD 

algorithm.  Appendix B contains the C source code for automated Ordered 

Binary  Decision  Diagram  (OBDD)  minimisation  Appendix  C  contains  the 

SPICE sources for the Twofish q-boxes and the GCD algorithm, along with 

Layout versus Schematic checking summaries for the Twofish q-boxes.  
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Chapter 2 An introduction to Adiabatic Logic

2.1 Introduction

In this chapter, the basic concepts of Adiabatic logic will be introduced. 

“Adiabatic”  is  a  term  of  Greek  origin  that  has  spent  most  of  its  history 

associated with classical thermodynamics.  It refers to a system in which a 

transition occurs without energy (usually in the form of heat) being either lost 

to or gained from the system.  In the context of electronic systems, rather than 

heat, electronic charge is preserved.  Thus, an ideal adiabatic circuit would 

operate without the loss or gain of electronic charge.  The first usage of the 

term  “Adiabatic”  in  this  context  appears  to  be  traceable  back  to  a  paper 

presented  in  1992  at  the  Second Workshop on  Physics  and  Computation 

[Koll92].  Although an earlier suggestion of the possibility of energy recovery 

was  made  by  Bennett  where  in  relation  to  the  energy  used  to  perform 

computation, he stated “This energy could in principle be saved and reused” 

[Benn82].  

2.2 Physics and Computation

The  introduction  to  this  section  details  the  etymology  of  the  term 

“adiabatic  logic”.   In  this  section,  the  underlying  physics  are  considered. 

Because  of  the  Second  Law  of  Thermodynamics,  it  is  not  possible  to 

completely convert  energy into  useful  work.   However,  the term “Adiabatic 

Logic” is used to describe logic families that could theoretically operate without 

losses, and the term “Quasi-Adiabatic Logic” is used to describe logic that 

operates with a lower power than static CMOS logic, but which still has some 

theoretical non-adiabatic losses.  In both cases, the nomenclature is used to 

indicate that these systems are capable of operating with substantially less 

power dissipation than traditional static CMOS circuits, which as is shown in 

equation  (2.1)  operates  with  a   Power,  P,  that  is  proportional  to  both  the 

Capacitive load, CL, and the square of the Voltage, V. 
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P ∝ C LV 2 (2.1)

The fact that these techniques take the operational power of adiabatic 

and quasi-adiabatic circuits below this threshold was emphasised by some 

initial  works  in  this  research  area,  which  had  titles  proclaiming  that  they 

operated “sub-CV²” [Sven94b] & [Sven96].  

The underlying principles of adiabatic logic can be traced back more 

than  two  centuries  to  the  industrial  revolution  when  James Clerk  Maxwell 

proposed his paradoxical Dæmon [Maxw71].  This led to the conclusion during 

the latter part of the twentieth century that Maxwell’s Dæmon cannot violate 

the Second Law of Thermodynamics as the erasure of information causes 

entropy  to  increase  [Land61],  [Benn73]  &  [Leff03].   This  also  led  to  the 

concept  of  a  system that  could be operated arbitrarily  slowly such that  its 

dissipation  could  asymptotically  approach  zero  as  its  speed  was  reduced 

[Youn93].  

There are several important principles that are shared by all of these 

low-power adiabatic systems.   These include only turning switches on when 

there is no potential difference across them, only turning switches off when no 

current is flowing through them, and using a power supply that is capable of 

recovering or recycling energy in the form of electric charge.  

To achieve this, in general, the power supplies of adiabatic logic circuits 

have used constant current charging (or an approximation thereto), in contrast  

to more traditional non-adiabatic systems that have generally used constant 

voltage charging from a fixed-voltage power supply.  

The power supplies of adiabatic logic circuits have also used circuit 

elements  capable  of  storing  energy.   This  is  often  done  using  inductors 

[Moon96], which store the energy by converting it to magnetic flux, or, as in 

case of  Asynchrobatic Logic,  by using capacitors,  which  can directly  store 

electric charge.  
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There are a number of synonyms that have been used by other authors 

to refer to adiabatic logic type systems, these include: “Charge recovery logic” 

[Youn93], “Charge recycling logic” [Kong96a], “Clock-powered logic” [Atha97], 

“Energy  recovery  logic”  [Hinm93]  and  “Energy  recycling  logic”  [De96c]. 

Because of the reversibility requirements for a system to be fully adiabatic, 

most of these synonyms actually refer to, and can be used interchangeably, to 

describe  quasi-adiabatic  systems.   These  terms  are  succinct  and 

self-explanatory,  so  the  only  term  that  warrants  further  explanation  is 

“Clock-Powered Logic”.  This has been used because many adiabatic circuits 

use a combined power supply and clock, or a “power-clock”.  This a variable, 

usually multi-phase, power-supply which controls the operation of the logic by 

supplying energy to it, and subsequently recovering energy from it.

The  possibility  of  using  adiabatic  logic  in  larger  systems  has  been 

shown to be viable with both clock-powered and adiabatic processors having 

been successfully implemented [Atha97], [Shin03] & [Shin04].

2.3 A review of adiabatic logic families

Over the last two decades many different adiabatic or quasi-adiabatic 

logic families have been proposed.  A substantial list of these, in approximate 

chronological order, is shown below in Table 2.1.   
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List of Adiabatic Logic families in approximate chronological order
Hot clock nMOS [Seit85]
Retractile cascades [Hall92]
Recovered Energy Logic (REL) [Hinm93]
Charge Recovery Logic (CRL) [Youn93]
Split-level Charge Recovery Logic (SCRL) [Youn94a] & [Youn94b]
Pulsed Power Supply CMOS (PPS CMOS) [Gaba94a] & [Gaba94b]
2N-2N2D [Kram94]
Adiabatic Dynamic Logic (ADL) [Dick94] & [Dick95]
Adiabatic Pseudo-Domino Logic (APDL) [Wang95]
Clocked CMOS Adiabatic Logic (CAL) [Maks95], [Maks97a] & [Maks97b]
Efficient Charge Recovery Logic (ECRL) [Moon95] & [Moon96] 1

2N-2P [Kram95] 1 
2N-2N2P [Denk94] & [Kram95] 2

Quasi-Adiabatic Ternary CMOS Logic (QAT) [Mate96] & [Mate97]
Positive Feedback Adiabatic Logic (PFAL) [Vetu96] 3

Transmission gate-interfaced APDL (T-APDL) [Lau96]
Fully Adiabatic MOS Logic (ADMOS) [De96a]
Complementary Adiabatic MOS Logic (CAMOS) [De96a] & [De96c]
Dynamic Adiabatic MOS (DAMOS) [De96b] & [De96c]
Charge Recycling Differential Logic (CRDL) [Kong96a] & [Kong96b]
Half Rail Differential Logic (HRDL) [Choe97]
Energy Efficient Logic (EEL) [Yeh97]
Pass-transistor Adiabatic Logic (PAL) [Oklo97]
Quasi-Static Energy Recovery Logic (QSERL) [Ye97]
Improved Adiabatic Pseudo-Domino Logic (IAPDL) [Lau97]
True Single-Phase CRDL (TCRDL) [Kong97]
Forward body-bias MOS (FBMOS) [Kioi97]
Reversible Energy Recovery Logic (RERL) [Lim98]
Feedback Reversible Energy Recovery Logic (fRERL) [Kwon98]
Adiabatic Differential Cascode Pass-transistor Logic (ADCPL) [Lo98]
PAL-2N [Liu98a] 3

Improved Efficient Charge Recovery Logic (IECRL) [Liu98b] 2

Bootstrapped NMOS Charge Recovery Logic (BNCRL) [Yoo98]
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True Single-Phase Energy-Recovering Logic (TSEL) [Kim98]
Modified Half Rail Differential Logic (MHRDL) [Won98]
CMOS Pass-gate No-race Charge-recycling Logic (CPNCL) [Yoo99a]
No-race Charge-recycling Differential Logic (NCDL) [Yoo99b]
Source Coupled Adiabatic Logic (SCAL) [Kim99]
Retractile Clock-Powered Logic (RCPL) [Tzar99]
Adiabatic Dynamic CMOS Logic (ADCL) [Taka00]
NMOS Energy Recovery Logic (NERL) [Kim00]
Bootstrapped Charge-Recovery Logic (BCRL) [Li00]
Adiabatic Differential Cascode Voltage Switch Logic (ADCVSL) [Suva00]
Dynamic Threshold MOS (DTMOS) ADCVSL [Lega01] & [Lega03]
High Efficient Energy Recovery Logic (HEERL) [Hong01]
Dual-Swing Charge-Recovery Logic (DSCRL) [Li01]
Efficient Adiabatic Charge Recovery Logic (EACRL) [Varg01a]
Improved Pass-Gate Adiabatic Logic (IPGAL) [Varg01b]
Complementary Pass-transistor Energy Recovery Logic (CPERL) [Chan02]
Complementary Pass-transistor Adiabatic Logic (CPAL) [Hu03] & [Hu04]
Improved Adiabatic Pseudo-Domino Logic 2 (IAPDL-2) [Widj03]
Unnamed modification to HEERL [Song04]
Improved Positive Feedback Adiabatic Logic (IPFAL) [Fisc04] 4

Energy Recovery Capacitance Coupling Logic (ERCCL) [Qian04]
2N-2N2P2D [He06]
Quasi-Static Single-phase Energy Recovery Logic (QSSERL) [Li07]
Improved Positive Feedback Adiabatic Logic (IPFAL) [Vija07a] [Vija07b] 4

1 ECRL and 2N-2P are identical
2 IECRL is similar to the already proposed 2N-2N2P
3 PAL-2N is similar to the already proposed PFAL
4 The IPFAL name is duplicated with different functionality

Table 2.1: A list of adiabatic logic families

The list in Table 2.1 does not claim to be exhaustive, but it does aim to 

provide a general idea of the progress made in this field, and to show how the 

design of adiabatic logic families has progressed over time.  Critically,  it is 

noteworthy  that  all  of  these  adiabatic  logic  families  used  synchronous 

clocking.  However, because they are early attempts or are some of the more 
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frequently cited adiabatic families that have been proposed, a number of these 

adiabatic  logic  families  warrant   to  be  given brief  descriptions.   For  those 

actually given serious consideration for use in Asynchrobatic Logic, expanded 

descriptions are provided later in this chapter: 

• Split-level Charge Recovery Logic (SCRL) [Youn94a] & [Youn94b],

◦ SCRL is a truly adiabatic logic family as it has a feedback path for 

logical  recovery.   Its  topology  resembles  static  CMOS  gates 

followed by a transmission-gate, but it has both of its power rails 

replaced  by  power-clock  signals,  hence  its  description  as  “split-

level”.  It  has complex clocking, often with eight phases.  It  is an 

extension of a simpler adiabatic logic family called Charge Recovery 

Logic (CRL) [Youn93].  

• 2N-2N2D [Kram94],

◦ 2N-2N2D is a diode-based complementary logic family.  The diodes 

mean that  it  will  have non-adiabatic  losses and is  therefore only 

quasi-adiabatic.   The  systematic  naming  of  this  logic  family 

indicates that it uses pairs of NMOS devices (designated by “2N”) 

and a pair diodes (designated by “2D”).  

• Adiabatic Dynamic Logic (ADL) [Dick94],

◦ ADL  stages  alternate  between  being  constructed  of  NMOS  and 

PMOS devices.  As with 2N-2N2D recovery occurs through diodes, 

making it only quasi-adiabatic.

• Efficient Charge Recovery Logic (ECRL) [Moon95] & [Moon96], 

◦ It appears to have been independently discovered by Kramer, who 

gave it the systematic name “2N-2P” [Kram95],

◦ ECRL and 2N-2P are identical, and are based upon the standard 

CMOS  family  called  Differential  Cascode  Voltage  Switch  Logic 

(DCVSL)  [Hell84].  This  structure  uses  pairs  of  pull-down  NMOS 

devices to evaluate functions (designated by the “2N”) and a pair of 

cross-coupled PMOS devices (designated by the “2P”) to hold state. 

It is frequently cited and has clearly been the inspiration for many 
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other  similar  adiabatic  logic  families.   Complete  recovery  of  the 

power-clock is not possible through the PMOS devices, so it is still 

only a quasi-adiabatic logic style.  ECRL/2N-2P is described in more 

detail later in this section.  

• 2N-2N2P [Denk94] & [Kram95],

◦ It was originally simply described by Denker as an “Adiabatic Logic 

Gate”, systematically named by Kramer, and later called Improved 

Efficient Charge Recovery Logic (IECRL) [Liu98b].  IECRL differs 

very slightly from the previous description by specifically using the a 

PMOS device  to  form a  pair  of  recovery  diodes.   The  previous 

works do not document how the bulk terminals are connected.  

◦ IECRL is very similar to ECRL, but with the addition of a pair of 

cross-coupled NMOS devices to give a better connection to ground 

when inputs have had their charge recovered.  IECRL/2N-2N2P is 

also described in more detail later in this section.  

• Clocked CMOS Adiabatic Logic (CAL) [Maks95],

◦ CAL is similar to 2N-2N2P, but has clocked NMOS devices between 

the NMOS decision tree and the outputs.  These are driven by a 

square-wave clock to access to the evaluation logic.  This allows it 

to use fewer clock-phases, but requires extra control signals.  

• Positive Feedback Adiabatic Logic (PFAL) [Vetu96], 

◦ Also later called PAL-2N [Liu98a],

◦ PFAL is very similar to IECRL, but has its evaluation tree connected 

between power-clock and outputs.   It  can achieve fully  adiabatic 

operation when a recovery path is provided.  PFAL is described in 

more detail later in this section.  

• Energy Efficient Logic (EEL) [Yeh97],

◦ EEL  is  an  extension  of  ECRL.   It  employs  a  pair  of  externally 

controlled, pulsed NMOS devices between power-clock and outputs 

to  allow full  charge  recovery.   However,  it  is  not  truly  adiabatic 

because it is lacks logically reversibility.  
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• Pass-transistor Adiabatic Logic (PAL) [Oklo97],

◦ The topology of PAL resembles a PFAL gate without  the pair  of 

cross-coupled NMOS devices.  The absence of pull-down NMOS 

devices means that this family lacks a good ground connection.  

• Reversible Energy Recovery Logic (RERL) [Lim98],

◦ RERL holds  its  logic  state  using  a  pair  of  cross-coupled NMOS 

devices, but evaluation and recovery occurs through transmission 

gates, like SCRL it also requires complex, eight-phase clocking.

• Efficient Adiabatic Charge Recovery Logic (EACRL) [Varg01a],

◦ EACRL has a pair of cross-coupled PMOS devices, and duplicate 

sets of evaluation logic, one set is connected between ground and 

the  outputs,  whilst  the  other  is  connected  (with  an  opposite 

assertion level) between the power-clock and the outputs.  In the 

same way  as  PFAL,  it  too  can be  made fully  adiabatic  when  a 

recovery path is provided. EACRL is the final family described in 

more detail later in this section.  

• Complementary Pass-transistor Adiabatic Logic (CPAL) [Hu03],

◦ CPAL uses a PFAL inverter  or  buffer,  with  the  main  part  of  the 

evaluation tree constructed using pass-transistors to connect to the 

gates of the NMOS pull-ups.  

Both Starosel’skii [Star02] and Amirante [Amir04] have provided good 

descriptions and classification in their works, and these works also provide an 

overview into some other adiabatic circuit styles. The earliest quasi-adiabatic 

styles such as ADL and 2N-2N2D used diodes, which means that they could 

not be loss-less.  For this reason, no diode-based families were  considered 

for  Asynchrobatic implementation.   Some  of  the  later  families  were  too 

complex, having a large implementation overhead.  This overhead was either 

related  to  the number  of  devices required,  which  would  increase the  area 

requirements,  or  due  to  excessively  complex  constraints  on  power-clock 

phasing or additional control signalling.  Consequently, these families were not 

considered for use with Asynchrobatic Logic.  
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The simple adiabatic logic families that are described below all share a 

common heritage that can be traced back to the static CMOS DCVSL family 

[Hell84].  For a designer, this is immensely useful, as the DCVSL family has 

been  in  use  for  over  twenty  years.   This  means  that  various  design 

methodologies  for  more  complex  logic  functions  have  been  thoroughly 

investigated and published.   These include a  table-based Quine-McClusky 

method  [Chu86],  Ordered  Binary  Decision  Diagram  (OBDD)  [Brya86]  & 

[Karo95]  methods,  as  well  as  various  extensions  thereto,  including  Free 

Binary Decision Diagram (FBDD) [Bern93] and 123-Decision Diagram (123-

DD) [Arma98] methods.  The OBDD of these design methodologies will  be 

detailed in Chapter 4, and PFAL gate implementations resulting from use their 

are shown in Chapter 7.  

ECRL, IECRL and PFAL are three of the simplest adiabatic or quasi-

adiabatic  logic  families  that  are  suitable  for  use  in  Asynchrobatic Logic. 

EACRL, although more complex, is also a relatively simple derivative of these, 

and could be a potential candidate for use in Asynchrobatic Logic.  Therefore, 

only these four logic families will be more fully detailed.  It should be clear to 

someone au fait with this logic style that other families including EEL could be 

used, but they will not be described herein.  This omission does not mean that 

these logic styles will  not work nor that they cannot be made to work in an 

Asynchrobatic fashion, but merely that the requirements to achieve this are 

beyond the scope of this thesis.  Each potential logic family would need to be 

evaluated  to  determine  whether  the  compromise  of  silicon  area  for  lower 

power  or  other  benefits  is  worthwhile.   Clearly,  this  should  be  done  with 

reference to a base-line, which should be ECRL as this is the simplest of the 

four-phase  DCVSL-based  adiabatic  logic  families.   Where  the  suggested 

adiabatic family has extra signals, other factors need to be considered.  For 

example, with the EEL family, the question the designer must ask is; would 

any power-savings in the data-path be counteracted by the extra power and 

silicon area required to provide a second local signal to each pipeline stage? 
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2.3.1 Efficient Charge Recovery Logic (ECRL) 

ECRL [Moon95] (also known as 2N-2P [Kram95]) is based around a 

pair  of  cross-coupled  PMOS  transistors.   Their  source  terminals  are 

connected to the power-clock, and the gate of each one is connected to the 

drain of the other.  These nodes form the complementary output signals.  The 

function is evaluated by a series of pull-down NMOS devices.  In the original 

description, the connectivity of the PMOS transistors' bulk terminals was not 

specified.   However,  experimentation  has  shown  that  better  power 

performance can be obtained by connecting the bulk to the power-clock, as 

the power-clock can be recovered to a lower voltage.  This improvement is not 

without cost, as it introduces layout constraints that require the hot n-wells of 

each Asynchrobatic stage to be kept separated.  One disadvantage of ECRL 

is that once the charge from the previous stage has been recovered from the 

gate of the NMOS devices, there is no pull-down path to ground.  This has 

implications for noise susceptibility.   Figure  2.1 shows an inverter/buffer (in 

buffer  configuration)  implemented using the ECRL style.   The power-clock 

drives the terminal labelled “Vpc”.  The dual-rail input pair “A” and dual-rail 

output pair are shown with their high and low assertion levels indicated by the 

“_H” and “_L” suffixes.     

Figure 2.1: An ECRL Buffer [Kram95] & [Moon95]
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2.3.2 Improved Efficient Charge Recovery Logic (IECRL)

IECRL  [Liu98b]  (originally  known  as  2N-2N2P  by  Kramer  et  al. in 

[Kram95], but first described by Denker in [Denk94] improves ECRL with the 

addition of a pair  of  cross-coupled NMOS devices.   This produces a logic 

family that is based around a pair of cross-coupled inverters, a structure that is 

identical to the storage elements in a Static RAM (SRAM).  The cross-coupled 

NMOS devices are an improvement over ECRL because they provide a pull-

down path to ground that remains even after the charge is recovered from the 

gates of the evaluation FETs.   However,  because of the two extra NMOS 

devices, it will require a larger area in which to be implemented.  Figure 2.2. 

shows an inverter/buffer (also in buffer configuration) implemented using the 

IECRL  style.   This  figure  uses  the  same  naming  and  assertion  level 

conventions as the ECRL circuit shown on the previous page.  

Figure 2.2: An IECRL Buffer [Denk94]
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2.3.3 Positive Feedback Adiabatic Logic (PFAL)

PFAL  [Vetu96],  like  IECRL,  is  also  based  around  a  pair  of  cross-

coupled  inverters.   However,  whilst  in  IECRL the  NMOS devices  used  to 

evaluate  the  function  are  connected  between  the  outputs  and  ground,  in 

PFAL, these evaluation NMOS devices are connected between the outputs 

and the power-clock.  The similarities between PFAL and IECRL gates are 

such that IECRL gates can be easily converted into PFAL gates.   This is done 

by re-labelling the outputs so that  their  assertion levels  are swapped,  and 

connecting the NMOS evaluation devices between the power-clock and the 

outputs rather than between ground and the outputs.  This can be made as 

easy to achieve in layout  as it  is  in abstract representations of  the circuit. 

When the power-clock is in its recovery phase, the NMOS devices between 

the  outputs  and  the  power-clock  can  allow  complete  recovery  of  those 

outputs.   This  means  that  the  low-power  performance  of  PFAL  can  be 

enhanced by making it fully reversible [Vetu96] & [Will08b].  Figure 2.3 shows 

an inverter/buffer (again in buffer configuration,  with identical signal naming 

conventions) implemented in the PFAL style.  

Figure 2.3: A PFAL Buffer [Vetu96]
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2.3.4 Efficient Adiabatic Charge Recovery Logic (EACRL)

EACRL [Varg01a] is a mixture of ideas from ECRL and PFAL, as it too 

is based around a pair of cross-coupled PMOS devices.  It uses both pull-up 

NMOS  devices  (like  PFAL)  and  pull-down  NMOS  devices  (like  ECRL)  to 

evaluate its function.  Its main disadvantage is that for multi-input functions, 

there is a substantial overhead associated with the complete duplication of the 

evaluation  logic.   EACRL  shares  another  minor  disadvantage  with  ECRL, 

because like ECRL, it could also suffer from noise as EACRL does not have a 

pull-down path to ground after the charge on its inputs had been recovered. 

EACRL suggested incorporating a recovery path.  An inverter/buffer (yet again 

in buffer configuration and with the same naming convention) implemented 

using the EACRL style is shown in Figure 2.4.  

A possible extension to EACRL is to add a cross-coupled pair of NMOS 

devices.  This is the same design modification that improved ECRL to produce 

IECRL.  This is likely to make the power consumption worse due to increased 

capacitive  load,  but  in  certain  situations  would  increase  the  circuit's 

performance  with  respect  to  signal  integrity  in  an  electrically  noisy 

environment.
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Several  of  the  papers  proposing  quasi-adiabatic  logic  families  have 

alluded to  design  improvements  that  would  render  the  designs either  fully 

adiabatic or fully able to the outputs.  These have included PFAL, EACRL and 

EEL.  However, because the circuits used as demonstrators for these families 

have been either inverters or buffer, the full potential for these designs to be 

used to implement reversible logic gates appears to have been overlooked.  It 

has now been shown that the PFAL design style can be used to implement 

fully-reversible logic gates [Will08b].   Although the paper only investigates 

Toffoli  gates  [Fred82],  it  is  obvious  to  anyone  appropriately  skilled  that 

reversible  designs  are  not  limited  to  these  gates.   This  means  that, 

theoretically, these gates can operate reversibly.  Furthermore, it is also an 

obvious  conclusion  that  this  concept  for  the  adiabatic  data-path  can  be 

extended such that it can function under Asynchrobatic operation.  

2.4 Systematic search for other potential adiabatic logic families

If a matrix of all potential constructions of simple adiabatic gates based 

upon a pair of cross-coupled PMOS devices is constructed, then simulations 

can be performed to determine which style has the lowest operational power. 

This also allows a more complete design space to be searched to ascertain if 

any other potential designs have been missed.  

In this thesis, a more systematic nomenclature is  proposed to classify 

these families.  It is as follows: 

2nd: indicates NMOS pull-down evaluation devices.  

2nu: indicates NMOS pull-up evaluation devices.  

2n: indicates a pair of cross-coupled NMOS devices.  

2p: indicates a pair of cross-coupled PMOS devices.  

This  allows  the  acronyms  of  some  of  the  adiabatic  families  to  be 

replaced  with  systematic  descriptions.   Table  2.2 shows  the  possible 
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combinations,  and  identifies  that  there  is  one  logic  style  that  has  not 

previously been presented.  

Original Acronym Systematic Nomenclature Notes
ECRL 2nd-2p
PAL 2nu-2p No path to ground!

EACRL 2nd2nu-2p
IECRL 2nd-2n2p
PFAL 2nu-2n2p

Previously unknown 2nd2nu-2n2p New!

Table 2.2: A systematic nomenclature for basic adiabatic logic families

The contributions of this work beyond the previously known state of the 

art are to have fully explored the potential design space, and to have proved 

that arbitrarily complex reversible logic functions can be implemented in both 

the adiabatic and  Asynchrobatic Logic styles.  This allowed the discovery of 

the 2nd2nu-2n2p logic family.  If the inputs were split so that the 2nd  and 2nu 

functions  were  the  forward  and  recovery  functions  respectively,  this  could 

have operated at a lower-power than PFAL, with  the evaluation happening 

through the 2nd path and the recovery through the 2nu path.  Unfortunately, in 

simulations,  this  new  logic  family  did  not  achieve  any  better  power 

performance.   However,  where  uniform  power  consumption,  rather  than 

minimum  power  consumption  is  a  target,  the  use  of  some  of  these  less 

efficient  design  styles  may be of  further  research interest.   The proposed 

systematic nomenclature could also be extended to cover more recent ideas 

such  as  the  pass-gate  inputs  used  by  CPAL,  allowing  further  methodical 

exploration of this extended potential adiabatic design space.  

2.5 Adiabatic Power Supplies

Unlike static CMOS logic,  due to being clock-powered, the adiabatic 

logic families derived from static DCVSL require a separate power supply.  It  
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is  necessary  to  consider  these,  and  whilst  brief  details  of  inductor-based 

resonant clock-power supplies is necessary for completeness, the majority of 

this section will concentrate on the capacitor-based Stepwise Charging (SWC) 

methodology.   Just as being able to design increasingly complex adiabatic 

logic families is futile if the only implementable components are buffers and 

inverters, it would be equally fruitless to design an adiabatic logic family that 

requires an excessive  number of  power-clocks,  or has power-clocks which 

have unrealisable phasing or waveform requirements.   The majority of  the 

previously described adiabatic logic families have a requirement for a four-

phase power-supply.   The phase relationships of these ideal  waveforms is 

shown in Figure 2.5.  The four different power-clock phases are labelled from 

φ0 to φ3, and the time periods are labelled  τ(0) to  τ(8).  Each power-clock 

moves from “Idle” to “Charge” to “Hold to “Recoup” and back to “Idle”.  Time 

periods  τ(0) to  τ(3) show how the power-clocks'  phases are related during 

initial  power-up  and  time periods  τ(4)  to  τ(7)  show how the  power-clocks' 

phases are related during normal operation.  It can be seen that time periods 

τ(4) & τ(8) are identical, and therefore to continue operation can be achieved 

by repeating the sequence shown in time periods τ(4) to τ(7) ad infinitum.  
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Figure 2.5: Phase relationships of adiabatic power-clocks

The early adiabatic logic families used inductor-based power supplies 

[Youn93].  These require off-chip inductors that are forced to resonate using 

relatively high-power MOSFET switches.  As can be seen in the micrograph 

presented  by  Gabara  et  al. [Gaba95],  the  physical  size  of  the  inductor  is 

similar  to  that  of  the  silicon  die!  These  were  either  synchronised  by  an 

external clock, or allowed to run freely at their resonant frequency.   These 

generate sinusoidal waveforms that represent a reasonable approximation to 

the required four-phases.  However, it is obvious that the sinusoid deviates 

from the ideal waveform substantially in the “Idle” and “Hold” phases.  This 

can be quantified to an error of approximately 14.6% of the peak voltage, and 

because the ideal waveform is piecewise linear, for the “Idle” phase only, this 

error (ΔE) is calculated from a normalised angle (θ) as shown in Equation 

(2.2).  

E = 1
2
− 1

2
cos  (2.2)
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This is derived by assuming that the normalised ideal waveform varies 

from 0V when in the “Idle” phase to 1V when in the “Hold” phase, and that the 

sinusoidal wave's minimum is at 0º and in the centre of the “Wait” phase.  This 

means that the sinusoidal waveform will  be defined by the negative cosine 

function, but to be normalised to 1V, it  will  need to be scaled by half  and 

shifted up by half.   Thus the maximum deviation of  14.6% from the  ideal 

waveform  will  occur  when  (θ = 45º),  and  although  the  function  may  be 

different, every 90º thereafter.  There are four locations, halfway through each 

phase where the ideal sinusoid and the ideal waveform are identical.  Figure 

2.6 shows how the sinusoidal waveform compares with the ideal waveform, 

and also plots the absolute difference between these two waveforms.  The 

error is important because during the “Idle” and “Hold” phases, the devices' 

power-clocks will not be driven to full-rail voltage potentially allowing leakage, 

and other power-consuming conditions to occur.  

There may be potential  to achieve less difference if  it  is  possible to 

slightly  overdrive  the  sinusoidal  waveform without  exceeding  the  electrical 

tolerances  of  the  fabrication  process.   However,  whilst  sinusoidal 
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power-clocks are used in adiabatic logic, such power-clocks do not feature in 

Asynchrobatic Logic,  so  no  further  investigations  relating  to  them  were 

performed.

An alternative, capacitor-based method that can be used as a charge 

recovering power supply is Stepwise Charging (SWC) [Sven94a] & [Sven94b]. 

It  achieves a different  approximation to the ideal  waveform which,  like the 

ideal waveform, but unlike that derived from a resonant power-clock, is static 

in its “Idle” and “Hold” phases.  The waveform can be created by successively 

charging  and  discharging  the  capacitive  load  through  various  intermediate 

voltages by means of a series of sequentially switched tank capacitors.  It is 

obvious  that  as  the  number  of  steps  approaches  infinity,  the  waveform 

becomes a progressively better approximation to the ideal waveform.  

It has been shown that for a suitably large load, even a power supply 

with a single intermediate step can improve the efficiency of some systems 

[Hahm94].  A familiar macroscopic implementation of a system that uses the 

idea of a stepwise process is a flight of locks on a canal.  

Stepwise charging waveforms are shown in Figure 2.7.  Figure  2.7(a) 

shows  an  idealised  stepwise  charging  waveform  with  three  intermediate 

stages and Figure  2.7(b)  shows the  realised stepwise  charging  waveform. 

These  deviate  from  the  ideal,  because  each  step  charges  the  load 

capacitance using a constant voltage, resulting in the shown curve.
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SWC has a number of properties that make it far more attractive than 

inductor-based designs for use in Asynchrobatic Logic: 

• It has been shown to converge at start-up [Dhar96] & [Naka04].  

• It has simple next-state logic that can easily be operated asynchronously. 

• It can be implemented in a modular fashion allowing design reuse.  

• It can be implemented using on-chip capacitors.  

• It is static during the “Idle” and “Hold” phases.  

• It does not require off-chip inductors.  

2.6 Reversible Computation

In this introduction to adiabatic logic, it is essential to look at the closely 

related area of reversible computation.  This requires that any computation 

could be performed both in a direction that would be thought of as forwards, 

processing  the  inputs  to  produce  outputs  and in  the  opposite,  reverse 

direction, where the outputs are “de-processed” to produce the inputs.  The 
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following simple  example,  which  pays  homage to  Douglas Adams and his 

science-fiction writings [Adam79], will demonstrate why this seemingly simple 

concept can be problematic in practice....  If the answer is forty-two, what was 

the question?  Even if it is known that the answer was obtained using six-bit  

unsigned integer addition, the question could be forty-one plus one or twenty 

plus twenty-two.  This problem arises as a consequence of the destruction of 

information, and this information loss occurs in the majority of processing.  An 

obvious way to make addition reversible is to preserve one of the inputs.  This 

leads to the requirement for reversible systems to have the same number of 

inputs as outputs.  For logic implementations, it is required that the function 

being used is invertible.  So for any function of three-bits, each one of the 

eight  possible  input  states  would  map to  one of  the  eight  possible  output 

states.  

A familiar application that is invertible, when thought of as a black-box, 

is a block cipher.  Its forward operation is encryption and its operation reverse 

is  decryption.   For  such a cryptosystem,  the Key remains unchanged,  but 

transforms the Plain Text into the Cipher Text or vice-versa without the loss of 

information.  An  in-depth  exposé of  the  on-going  theoretical  work  on 

Reversible  Logic,  Reversible  Computation  and associated  subject  areas is 

beyond the scope of this thesis,  but interested readers are directed to,  for 

example, the works of Kerntopf [Kern02].  

The logical reversibility of an operation is an essential part of a truly 

adiabatic system, and therefore, the majority of systems that purport to be 

adiabatic would be better described as only quasi-adiabatic, as whilst charge 

recovery allows them to operate with  more power  efficiency than standard 

static CMOS, they still  have not insignificant non-adiabatic losses.  Clearly, 

there are some designs which are reversible where the non-adiabatic losses 

have  been  substantially  reduced.   However,  just  as  friction  prevents 

mechanical systems operating without some dissipation, relegating perpetual 
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motion  machines  to  the  realms  of  pseudo-science,  electrical  resistance 

prevents even these electronic systems operating without some dissipation.  

2.7 Summary

In this chapter the concepts of adiabatic logic and quasi-adiabatic logic 

have been introduced.  Details of a large number of adiabatic logic families 

have been presented.   This  has included providing an overview of  twelve 

examples  that  are  frequently  cited,  and  expanded  descriptions  of  the  four 

candidate families: ECRL, IECRL, PFAL and EACRL, which are proposed to 

be used in Asynchrobatic Logic.  A systematic exploration of the design space 

was conducted, and although this yielded a previously unknown design, it was 

not found to have any benefits over already known designs.  

The concept of a power-clock has been introduced, detailing an ideal 

power-clock, and two possible realisable implementations.  The generation of 

power-clocks using inductor-based resonant charging, and stepwise charging 

was introduced.  Finally reversible computation was discussed, as unless a 

process is reversible, it can not be adiabatic, but only quasi-adiabatic.  
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Chapter 3 A review of asynchronous logic

3.1 Introduction

In  this  chapter,  the  basic  concepts  of  asynchronous  logic  will  be 

introduced.   Since  this  work  was  more  focused  upon  adding  a  basic 

asynchronous controller to an adiabatic data-path, the depth of coverage of 

asynchronous logic is lower.  

Like “Adiabatic”,  the term “Asynchronous” is also of Greek origin.  It 

literally  means  “without  alike  time”,  but  in  the  context  of  microelectronic 

design, its meaning has evolved to mean without a global time reference (a 

clock).  Thus asynchronous logic is a logic design style that does not use a 

clock to synchronise the performance of operations.  This is in stark contrast 

to  the  majority  of  digital  circuits  currently  in  existence,  which  have  been 

designed  using  a  synchronous  design  methodology.   Unlike  them, 

asynchronous  logic  does  not  use  a  ticking  clock,  but  instead  it  uses  a 

handshaking protocol to facilitate inter-stage communication.  

This  can  have  several  benefits  when  compared  against  traditional 

synchronous designs.  For  Asynchrobatic Logic, the most important of these 

documented  benefits  are  lower  power  and  potential  for  design  reuse. 

However,  in  some  of  the  proposed  applications,  other  benefits  like  lower 

electro-magnetic noise would also be of benefit [VBer94].  

When  compared  to  a  synchronous  system  both  asynchronous  and 

Asynchrobatic systems will  have  the  benefits  of  power-supply  voltage 

tolerance, allowing lower voltage operation than would normally be possible 

for  synchronous  systems.   This  is  because  the  synchronous  design 

methodology requires its design elements, standard cells, to be characterised 

at fixed Process, Voltage and Temperature (PVT) conditions.  The slowest of 

these  is  normally  slowest  process,  lowest  tolerable  voltage  and  highest 
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temperature.   Outside  of  the  qualified  range  the  circuits  may  fail  due  to 

violating setup-time requirements, with  data-arriving too late to be correctly 

latched by a clock edge.  This limits the voltage scaling that may be applied to 

a  synchronous  circuit.   For  both  standard  synchronous  and  standard 

asynchronous logic, the effect of lowering the voltage will reduce the power-

consumption according to equation (3.1).  

P D= f e C LV DD
2 (3.1)

in which: PD is the dynamic power dissipation,

fe is the effective switching frequency,

CL is the capacitive load, and

VDD is the supply voltage.

Other  low-power  benefits  can  be  illustrated  by  looking  forward  and 

considering a large  Asynchrobatic system in comparison to an equivalently 

large asynchronous system and an equivalently large synchronous system. 

The lack of a global clock is also a major benefit.  In the synchronous system,  

the ticking global clock would at minimum, reach a clock-gating element at the 

entry  to  each  stage,  and  consequentially  would  waste  energy.   In  the 

asynchronous and  Asynchrobatic systems, the inactive states are just that, 

inactive, and as such, with no switching occurring, only leakage power will be 

consumed.  However, in the Asynchrobatic system, there will be, on average, 

a quarter of the controllers in each of the charging states (“ Idle”, “Charge”, 

“Hold”, “Recoup”).  The active states (“Charge” and “Recoup”) require several 

operations, whilst the inactive states (“Idle”, “Hold”) require no operations.  It 

should also be noted that for  Asynchrobatic Logic, for any stage in the “Idle” 

state, the entire data-path has no potential difference across it from the power-

supply, meaning that there is not even the possibility of having any source-

drain leakage current through it! The only possible leakage current paths are 

gate-leakage from adjacent stages.   

In his introduction Sparsø notes that research into asynchronous logic 

has been taking place since the 1950’s [Spar01], and important theory had 
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been published by the end of that decade [Mull59].  However, probably the 

most  influential  development  was  Sutherland’s  invention  of  Micropipelines 

[Suth89].   These  explain  the  control  components  required  to  implement 

asynchronous  systems,  but  their  hand-shaking  protocol  does  not  suit  the 

adiabatic  parts  of  an  Asynchrobatic system.   Asynchronous  logic  is  more 

technologically mature than adiabatic logic, and as well as having been shown 

to  be  suitable  for  the  implementation  of  complex  processors  [Pave94], 

commercial asynchronous processors are now available [Hand04].   

3.2 Asynchronous signalling

There are two different types of asynchronous signalling conventions, 

two-phase and four-phase.  Two-phase signalling simply reacts to a change of 

the signals, whilst four-phase signalling is dependent upon the levels of the 

signals.  There are also two different methods for data transmission; bundled-

data and dual-rail.  For different reasons, the adiabatic data-path is already 

dual-rail,  but the chosen implementation operates using principles far more 

akin  to  those  of  bundled-data.   Whilst  a  brief  background  to  both  of  the 

signalling styles and data transmission methods will be provided, this section 

will concentrate on, and elaborate more fully, the principles of systems based 

upon  four-phase  signalling  with  bundled-data.   The  asynchronous 

communication  occurs  between  the  Asynchronous  Stepwise  Charging 

controllers, and the bundled-data is held on the adiabatic data-path.  

The  handshaking  protocols  in  asynchronous  logic  usually  use  two 

signals, a “request” from the sender to the receiver,  and an “acknowledge” 

from the receiver to the sender.  

In  dual-rail  asynchronous  logic,  a  similar  signalling  protocol  to  that 

described  for  adiabatic  logic  is  used.   These  states  are  used  to  perform 

completion detection so that for a dual-rail data-path, the next stage will  be 

activated only when all  dual-rail  outputs have a valid state.   Without error  
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detection, this requires an OR operation on each pair of bit-lines, and the AND 

of these results.  Whereas the bundled-data method assumes that a delay in 

the control logic will match the worst delay in the data-path, and uses this to 

delay the sending or request and acknowledge signals.  

Two-phase asynchronous signalling is dependent upon structures that 

are edge-triggered.  An edge (either rising or falling) on the request signal is 

used to signal that data is available.   The receiver responds with an edge 

(again either rising or falling) on its acknowledge signal.  There is therefore no 

information about the state of the communication channel held in its signals' 

levels.  

Figure 3.1: Four-phase handshaking protocol [Pave94]

Four-phase signalling fits much better with the adiabatic charging and 

discharging cycle.  Whilst it could be possible to use dual-rail signalling, as 

this  is  available  in  the  adiabatic  data-path,  this  would  introduce  more 

complications than would appear to be necessary.  Figure 3.1 shows the four-
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phase request-acknowledge communication protocol.  The communication is 

initiated by the sender asserting its request signal.  This signal indicates that 

any bundled data  is  valid.   The receiver  responds to  this  by asserting  its 

acknowledge signal, showing that it has accepted the valid data.  The receiver 

negating its request signal to indicate that any subsequent data will no longer  

be valid.  Finally, the receiver negates its acknowledge to show that it is ready 

to accept new valid data.  Unlike the two-phase signalling, the state of the 

communication channel can be determined by checking its signals' levels.  

The  striking  observation  here  is  that  the  four-phases  of  the 

asynchronous communication channel directly correspond to the four states of 

the power-clock used by the adiabatic data-path.    

3.3 The Muller C-Element

Asynchronous Logic relies upon the Muller C-Element as a principle 

storage element.  For brevity, it will be referred to just as a “C-Element”.  The 

C-Element is as important to asynchronous design as the D-type Flip-Flop is 

to traditional synchronous design.  The state-space of a C-Element is shown 

in Table 3.1, with “X” representing a “don't care” state.  

It  can be seen  from this  table  that  the  output  of  a  C-Element  only 

changes when both its inputs have changed.  

Input A Input B Current Output Next Output Notes
0 0 X 0
0 1 0 0 No change
0 1 1 1 No change
1 0 0 0 No change
1 0 1 1 No change
1 1 X 1

Table 3.1: State table of a C-Element [Mull59]
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A generalised n-input C-Element extends this by requiring all input to 

be  identical  before  changing  its  output  state.   C-Elements  with  a  greater 

number of inputs can be implemented either directly in logic for C-Elements 

with up to four inputs, or by cascading several stages of C-Elements.  It is also 

possible to add “Reset” (to low or logic zero) or “Preset” (to high or logic one) 

inputs to the C-Element.  As a critical component in asynchronous design, the 

function, design, and performance of the C-Element has been investigated in 

detail by others [Sham96].  

Figure  3.2 shows  a  schematic  design  for  a  static  C-Element.   It  is 

drawn in such a way that it approximately represents a stick diagram.  This 

means that the circuit's  topology would be suitable for taking the circuit  to 

layout almost as is.  The two inputs are labelled “A” and “B” and the output is 

labelled “Z”.  They all  use positive logic assertion levels.  The usual circuit  

symbol for a C-Element is an AND gate with a capital “C” at its centre.  This 

symbol is shown in Figure 3.3.  

Figure 3.2: Schematic of static C-Element [Spar01]
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Figure 3.3: C-Element symbol [Spar01]

3.4 Asynchronous Multiplex and Demultiplex

On  its  own,  the  C-Element  can  be  used  in  simple  asynchronous 

pipelines,  and  can  be  used  to  manage  simple  “join”  operations,  where  a 

C-Element waits for several different input sources to indicate that they have 

all completed an operation and are presenting valid data.   For example, an 

adder  must  wait  until  valid  data is  present  on both inputs (and possibly  a 

carry-in too) before it can perform an addition.  However, to manage more 

complex  actions  like  decisions  or  loops,  functions  like  multiplexing  and 

demultiplexing are required.  

The multiplexing (MUX) operation chooses between a number of input 

streams depending upon a select signal.  The operation requires that both the 

select control signal and the selected input both have valid data.  However,  

the unselected inputs to the multiplexer are not required to be valid, and must  

neither be processed nor be sent an acknowledge signal.  

The demultiplexing (DeMUX) operation takes input data and a select 

control input, and must only forward the input data to one of several possible 

outputs depending upon which output is selected by the control input.  

The  MUX  and  DeMUX  operations  both  require  complementary, 

dual-rail  signals  on  their  request  inputs  from  the  control  path.   This  is 

important, because, as will be shown in later chapters, it provides a relatively 

simple  interface  between  the  adiabatic  data-path  and  the  asynchronous 

control logic.  
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Circuit  diagrams of  these Asynchronous operations as  described by 

Sparsø [Spar01]  show possible  implementations  of  MUX (Figure  3.4)  and 

DeMUX (Figure 3.5).  In the MUX, one of the two input channels (X and Y) is 

selected  by  asserting  one  of  the  complementary,  dual-rail  control  signals. 

Once  both  the  chosen  select  signal  and  the  channel  of  the  chosen  data 

source are valid, this data passes through the data-path MUXes and appears 

on the output (Z).  The DeMUX performs the opposite operation.  The input 

data (Z) is directed to only one of the outputs (X and Y) depending upon which 

control  signal  is  driven.   The control  signals (Ctrl)  have a pair  of  mutually 

exclusive request signals, and a single acknowledge.  

The control  logic  in  both  of  these diagrams uses positive logic  with 

assertion levels shown on all signals.   

Figure 3.4: Asynchronous MUX for 4-phase bundled data [Spar01]
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Figure 3.5: Asynchronous DeMUX for 4-phase bundled data [Spar01]

The multiplexer and demultiplexer are the only complex asynchronous 

decision logic used in current  Asynchrobatic Logic implementations, but for 

larger systems, there are others that may be required.  For example, access 

to  a  shared  resource,  like  a  single-port  register-file,  would  need  to  be 

controlled with arbitration logic, capable of determining which calling process 

first  requested access.  The use of shared resources that can block other 

parts of the system can cause complexity problems, that will be briefly detailed 

in the next section.  

3.5 Complexity issues in asynchronous systems

As the complexity of an asynchronous system increases, problems like 

deadlock  can  manifest  in  poorly  thought-through  designs.   Deadlock  is  a 

failure mode where multiple processes each block each other from finishing, 

meaning that no process can ever finish!  A good example of a system that 

can  fail  with  deadlock  is  the  “Dining  Philosophers”  problem,  originally 

introduced in  a  less visually  emotive  form of  five  computers attempting  to 

access five shared tape drives, and solved by Dijkstra in [Dijk65].  
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Although such issues do not occur in the simple  Asynchrobatic Logic 

demonstrations described herein, larger systems would need to be thoroughly 

designed, tested and validated to ensure that they do not exhibit this failure 

mode.  However, one of the beneficial properties of Asynchrobatic Logic that 

will be described in Chapter eight is the separation of control logic from data-

path logic.  This means that generally the asynchronous control logic can be 

verified and validated in a way that is mostly separate from the data-path.  The 

exception to this is where the result of a data-path operation is required in the 

control  logic,  but  even  in  this  case,  it  should  be  possible  to  perform the 

necessary tests without implementing the whole data-path.  

3.6 Summary

In this chapter, asynchronous logic has been introduced.  The concept 

of  using  handshaking  rather  than  a  global  clock  was  introduced,  and  the 

four-phase  handshaking  protocol  was  described.   Details  of  the  Muller-C 

Element,  which  is  a  vital  component  of  any  asynchronous  system  were 

provided,  these  included  a  state  table,  its  symbol  and  a  schematic  of  a 

possible CMOS implementation.  Schematics of more complex asynchronous 

functions that allow multiplexing and demultiplexing to occur were provided, 

and  the  problem  of  deadlock,  which  can  arise  in  complex  asynchronous 

systems was discussed.  
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Chapter 4 Design methods for dual-rail data-paths

4.1 Introduction

In this chapter the design methods for adiabatic logic families will be 

considered.   As  noted in  the  introduction,  it  is  all  very  well  being  able  to 

implement inverters or buffers, and these are commonly used to demonstrate 

that  circuits  can be implemented.   However,  this  is  not  an  adequate  test, 

because  inverters  and  buffers  are  not  able  to  perform  data  processing. 

Unless  it  is  possible  to  design  and  viably  implement  more  complex  logic 

functions, a logic family will not have any real-world applications.  Fortunately 

for Asynchrobatic Logic, there are various published design methodologies for 

Differential  Cascode  Voltage  Switch  Logic  (DCVSL)  circuits  [Chu86]  & 

[Karo95],  and these can be used to  efficiently design any of  the adiabatic 

derivatives  of  that  logic  family  which  are  used  in  the  data-paths  of 

Asynchrobatic Logic systems.  

4.2 Adiabatic design methodologies

The easiest design methodology to describe, understand or implement 

is the one based upon Ordered Binary Decision Diagrams (OBDD).  In this 

method,  the  logic  function  to  be  implemented  is  described  as  a  tree. 

Bifurcation occurs in the same order irrespective of which branch is followed, 

hence the tree being “ordered”.  Using OBDD methods is guaranteed to result 

in a functioning circuit, but this circuit may be sub-optimal.  It has been shown 

that the optimal OBDD solution(s) is dependent upon the order in which the 

variables are evaluated.   However,  for  four-inputs,  it  is  possible to use an 

exhaustive,  brute-force  search  to  discover  the  minimum solution(s).   This 

method reveals the already known result [Harr63] that every one of the 65,536 

possible functions of four inputs (including degenerate functions where one or 

more  input  variable  has  no  effect)  can  be  implemented  using  only  222 

different evaluations structures [Harr63], when their input order transformed by 
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permutation, and/or negation, and their outputs also transformed by negation. 

The ability to permute the input order is obvious and is available in single-rail 

logic.   However,  because  this  is  a  dual-rail  logic,  negation  is  also  freely 

available by swapping the asserted high and asserted low inputs or outputs. 

This result  is  clearly of  importance if  it  were desired to commercialise this 

design style as a commodity, as this value leads to a clearly defined limit on 

the required size of a universal four-input cell  library.   Although, as will  be 

shown subsequently, it may be desirable to include certain functions of more 

than four inputs in any commercial offering.  

Where the OBDD methodology becomes less useful is with AND-OR 

structures where the tree depth can be reduced.  This can be achieved by 

using  Quine-McClusky  methods,  or  by  applying  simple  transforms  to 

appropriate structures if  these are found in the design.  The improvements 

obtained by using this method in specific cases are such that the seven-input 

AND-OR function, used in look-ahead functions, can be implemented with a 

maximum depth of four gates as can an eight-way MUX, which has eleven 

inputs!  Free Binary Decision Diagram (FBDD) methods allow more freedom 

than  OBDD  methods  as  the  bifurcation  may  occur  in  different  orders  in 

different branches.  However, this increases the design space that must be 

searched if  one wishes to  find an optimal  solution by brute force.   It  also 

makes representing the order in which variables are evaluated more difficult. 

Whereas the size of an OBDD's search space grows as a factorial  of  the 

number of inputs, the FBDD space grows faster.  
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Number of Inputs
(n)

OBDD search space
(n!)

FBDD search space
(n!T)

1 1 1
2 2 2
3 6 12
4 24 576
5 120 16,558,880

Table 4.1: Growth of search space for OBDD and FBDD optimisers

Although  the  sequence  occurring  for  the  FBDD result  is  previously 

known [OEIS02], it does not appear to have been named or provided with an 

operator symbol.  In the absence of any other succinct name, this has been 

referred  to  as  a  “Tree-factorial”,  and  designated  by  using  the  !T operator, 

where the subscript-T refers to a “Tree”, and can be represented by either the 

function (4.1) or the recursive definition (4.2).  

n!T = ∏
r=1

r=n

r2n−r
∀ n∈ℕ (4.1)

n!T = { 1 if n=0
n⋅n−1!T 

2 if n0} ∀ n∈ℕ (4.2)

This “Tree factorial” function's naming is implicitly binary, but in certain 

circumstances that would need to be specified, as the function can be usefully 

extended to higher powers.  For example, ternary or tri-valued logic could be 

designed using, a Free Ternary Decision Diagram with trifurcations at each 

node.  It could have its search space represented by a “Ternary tree factorial” 

[OEIS06].   Therefore  this  result,  which  does  not  appear  to  have  been 

documented or explored for powers higher than three, may be of interest to 

those researching logic systems that consider logical possibilities other than 

just  “True”  or  “False”,  a  research  area  which  is  commonly  know  as 

Multi-Valued  Logic  (MVL).   It  would  most  likely  be  of  benefit  if  useful 

applications are found for  Free Quaternary or  Quinary Decision Diagrams. 

The sequences created by applying this function at the fourth and fifth orders 

have been submitted to, and published as new discoveries by the maintainers 
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of  the  Online  Encyclopaedia  of  Integer  Sequences  (OEIS)  [OEIS09a]  & 

[OEIS09b].  The generalised equations for a decision diagram of b th order are 

shown in the function (4.3) or the recursive definition (4.4).       

n!T b  = ∏
r=1

r=n

rbn−r 
∀ n∈ℕ (4.3)

n!T b  = { 1 if n=0
n⋅n−1!T b 

b if n0} ∀ n∈ℕ (4.4)

The  rapid  growth  of  these  search  spaces  for  higher  order  decision 

diagrams means that it would rapidly become too time-consuming to perform 

a  brute-force  search  on  structures  with  more  than  four  inputs,  and  that 

heuristic-based  methods  would  be  needed  to  find  the  optimal  variable 

ordering.   

Finally, as well as limitations introduced by computational complexity, 

there  can  be  practical  limitations  when  it  comes  to  implementing  designs 

created using theoretical FBDD methods.  These occur because the possibility 

of different variable ordering at each bifurcation can  introduce twists  in the 

required wiring.  Each input variable's wiring is dual-rail, and must cross other 

input  variable's  wiring  as  well  as  the  wiring  of  the  inter-node  connexions. 

These wiring twists would result in designs that can easily be represented as a 

circuit schematic, but are difficult or inefficient to layout because of the number 

of layers required.   

4.3 The design of logic functions

The  design  of  logic  functions  for  implementation  in  adiabatic  or 

Asynchrobatic Logic required detailing.  This is important because if there is 

not an efficient and effective design methodology for complex logic, then the 

application is only of theoretical value.  To be viable for real-world application, 

it is necessary to be able to implement arbitrary logic structure.  Asynchrobatic 

Logic  has  this  real-world  viability  because  there  are  numerous  published 
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design methodologies for DCVSL circuits that can be applied to any of the 

adiabatic families used in the data-path.  These will be explained below.  

This section of the thesis looks at the methodologies used to construct 

more  complex  logic  functions.   There  are  substantial  differences  and  a 

plethora  of  optimisation  opportunities  available  when  using  these  logic 

families.  The reason that these exist is due to the dual-rail nature of the logic 

families.  Most of the methods described were pioneered in the construction of 

DCVSL circuits, but they remain applicable to all the adiabatic families that are 

based upon that static logic family.  The design methods for adiabatic families 

that are not based on DCVSL are not within the scope of this work because 

only  DCVSL-based  adiabatic  logic  families  were  used  to  implement 

Asynchrobatic Logic.    

The  first  set  of  methods  is  based  upon  Binary  Decision  Diagrams 

(BDDs).  They are referred to by mathematicians as Directed Acyclic Graphs 

(DAG).  The application of BDDs to switching circuits was proposed as early 

as the 1950s [Lee59].  However, they were popularised by Bryant [Brya86], 

and since then, many other derivatives have been proposed.  Some of these 

will be detailed.  

The simplest concept is the Reduced Ordered Binary Decision Diagram 

(ROBDD).  This constructs the function as a tree of nodes.  Starting from the 

root, which is at the bottom of each tree, each node performs a bifurcation 

determined by the  value of  one of  the  input  variables,  and irrespective  of 

which path is followed, the sequence of the input variables is invariant.  The 

full tree can then be reduced by removing redundant nodes.  There are two 

situations where redundant nodes can occur.  The first is if both branches of 

the node point to the same function.  This means that this node plays no part 

in the decision process, and the node can be removed.  The other is where a 

node points to a function for which evaluation logic already exists.   In this 

case, the duplicated evaluation logic can be removed and the node can be 
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redirected to point at the pre-existing evaluation logic.  An example of these 

optimisations  is  shown  for  the  three-input  majority  function  in  Figure  4.1. 

Figure  4.1(a) shows the unoptimised, OBDD solution.  It  can be seen that 

node 4 and 7 can be removed as redundant, because irrespective of their 

input, they both deliver the same result.  This minimisation is shown in Figure 

4.1(b).   It  is  also evident  that nodes 5 and 6 duplicate the same function, 

meaning that one of them is redundant and can also be removed.  This results 

in Figure 4.1(c) which is the optimal ROBDD implementation of the three-input 

majority function.   

Figure 4.1: An example of OBDD minimisation

There are a number of practical, physical consequences of performing 

the reductions to achieve a ROBDD solution.  The first one, which can be 

seen in the example, is that even for a symmetrical  output function, some 

inputs may present a higher capacitive load due to containing more decision 

nodes.   The  implications  of  this  would  need  to  be  considered  to  avoid 

problems caused due to excessive fanout.  

There is another issue, which cannot be seen in the above example is 

the sensitivity of the ROBDD methodology to the variable ordering.  This can 

be demonstrated by considering a three-input function that implements a two-
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way multiplexer.  Table 4.2 shows the different truth tables that are obtained 

when two possible variable orders are used.  The OBDDs generated from 

these two possible orderings are shown in Figure  4.2.  Figure  4.2(a) shows 

how an optimal  variable ordering of {S,A,B}  can be reduced, as described 

above,  it  results  in  a  ROBDD tree  with  three nodes,  which  requires  a  six 

NMOS device implementation, with a load of one gate for each of the six dual 

rail inputs.  However, Figure 4.2(b) show how a sub-optimal variable ordering 

of {A,B,S} reduces less well.  The resulting ROBDD tree contains five nodes, 

requiring an extra four NMOS devices, doubles the load to two gates on both 

the  B  and  S  dual  rail  inputs,  and  adds  two  extra  internal  source-drain 

connections.  

  

Optimal ordering (S,A,B) Sub-optimal ordering (A,B,S)
S A B Z A B S Z
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1

Table 4.2: Effect of variable ordering in OBDDs
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The majority of the mathematical and computer science theory relating 

to the optimisation of ROBDDs is beyond the scope of this thesis, but it is  

necessary to provide some details.  The optimisation problem of finding the 

best variable ordering for a ROBDD tree has been shown to be in the hardest 

class of computational complexity problems, that is, NP-complete [Boll96], but 

fortunately,  with just four input variables, an exhaustive, brute force search 

(trying every possible combination) does not require excessive computation 

time.    As  well  as  aiming to  reduce the  number  of  decision  nodes,  other 

metrics may be of value if  two different ROBDD structures have the same 

number of nodes, but different topologies.  These could include the number of 

intermediate nodes, the maximum path length, or the total path length.   

Having  established  the  desired  function  as  a  ROBDD,  it  is  then 

necessary to translate this into a circuit capable of being implemented.  This is 

a simple task, as each node can be directly mapped to a five-terminal network 

consisting  of  two  NMOS devices.   Figure  4.3 shows  this  mapping for  the 

design of pull-up PFAL trees.  For pull-down trees, the polarity of either the 

inputs  or  the  outputs  needs  to  be  swapped.   However,  notwithstanding 

whether  the  derived  tree  uses  pull-up  or  pull-down  devices,  the  topology 

remains identical, allowing the same design methods to be used for ECRL, 

PFAL or IECRL gates.  
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Figure 4.3: Mapping a BDD node to a pair of NMOS devices

The  Free  Binary  Decision  Diagram  (FBDD)  [Bern93]  removes  the 

caveat that variables must be evaluated in the same order in every part of the 

decision tree.  This allows variables to be evaluated in different orders in each 

branch with the obvious requirement that every variable is evaluated at some 

point  between  the  root  and  the  final  branches.   If  a  FBDD  is  optimised 

following  the  same  rules  as  would  be  used  to  minimise  an  OBDD  to  a 

ROBDD, then a Reduced Free Binary Decision Diagram (RFBDD) can be 

obtained.  The same translation method can be used to convert a RFBDD into 

a circuit.  

RFBDDs can result  in  structures  with  a  smaller  number of  decision 

nodes than ROBDDs, although for trees with four-inputs or fewer, the benefits 

are minimal.  Unfortunately, as mentioned previously the use of RFBDDs can 

have  the  undesirable  side-effect  of  introducing  twisted  structures  that  are 

more difficult  to layout.   For this reason, FBDD methods were not pursued 

further.  

Another method that could have been used to design functions, was 

123-Decisions  Diagrams  (123-DD)  [Jaek97]  &  [Arma98].   However,  this 

method was not used in the design of structures used in this thesis, but may 

be of use in future work.  
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The there are two non-BDD which will be described.  The first uses the 

Quine-McClusky  method  [Chu86].   It  uses  prime  implicant  tables  to  find 

minimum variable cover.  One advantageous feature of this design style is that 

the root of the evaluation tree can have multiple connections.  This means that 

more source-drain capacitance is directly connected to the power-clock, rather 

than being on internal nodes. This means that it can be directly recovered by 

the  power-clock,  whereas  internal  nodes  can  retain  stored  charge  on  the 

capacitance of the source-drain connections.  This cannot be fully recovered.  

The other method can only be used to convert  certain static CMOS 

circuits  into  dual-rail  implementations.   The  two  complementary  evaluation 

paths of the static CMOS gate are split.  The NMOS evaluation logic has its 

inputs relabelled with  the asserted high inputs and connected between the 

power-clock  and  the  asserted  low output.   The  PMOS evaluation  logic  is 

replaced with NMOS devices, has its inputs relabelled with the asserted low 

inputs and is then connected between the power-clock and the asserted high 

output.  If the gate is followed by an inverter, its effect can be removed by 

swapping the assertion levels of the outputs.  This method can be visualised 

as folding the CMOS evaluation path in upon itself.  It is this method of direct 

conversion from static CMOS that allowed the simple implementation of the 

three-, five- and seven-input AND-OR structures which were used in radix-four 

carry look-ahead logic.  

Comparison  of  the  two  different  two-input  AND  gates  obtained  by 

different  design  methodologies  leads  to  the  conclusion  that  certain  OBDD 

structures  can  be  transformed  into  more  optimal  ones  using  a  simple 

substitution.  The possible implementations of the pull-up logic for a two-input 

PFAL  AND  gate  are  shown  in  Figure  4.4.  Figure  4.4(a)  resembles  the 

complementary  NMOS and  PMOS stacks  that  would  be  found  in  a  static 

CMOS AND gate.   The original  unoptimised BDD tree is  shown in  Figure 

4.4(b).   This  type of  transformation can be applied to  n-input  AND or  OR 

functions, which in the OBDD methodology would be formed by a lopsided 
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tree with a single path to one evaluation node, and the remainder of paths 

going to the other evaluation node with branches at every level.  By making 

the evaluation in  parallel,  it  reduces the height  of  one of  the paths.   This 

reduces the internal capacitance within the evaluation tree, which lessens the 

irreversible, non-adiabatic losses.  It also allows certain logic structures with a 

larger  number  of  inputs  to  be  implemented.   Crucially,  these  high-input 

functions include the multi-stage AND-OR logic functions used in arithmetic 

look-ahead structures.  

Figure 4.4: Possible implementations of a two-input AND function's pull-up logic 

4.4 Summary

In this chapter, some of the design methods for dual-rail logic families 

have  been  discussed.   These  methods  include  OBDDs,  FBDDs  and 

Quine-McClusky.   The  problems  caused  by  the  OBDD  design  method's 

sensitivity to variable ordering have been discussed, as has the problem of 

FBDD  methodologies  producing  designs  that  are  difficult  to  physically 

implement.  The concept of a “Tree factorial” has been introduced with respect 

to calculating the space that needs to be searched if a design needs to be 

optimised using a brute-force search of a FBDD's design space.  This concept 

of   “Tree  factorials”  was  extended  to  higher  orders,  and  resulted  in  the 

discovery of previously unknown, but potentially useful integer sequences.  It  
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has been shown how the nodes in a decision diagram can be converted into 

physical designs.  Finally, it has been shown that the use of Quine-McClusky 

based methods can be applied to reduce the height of a decision tree such 

that it can be physically implemented.
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Chapter 5 An introduction to Asynchrobatic Logic

5.1 Introduction

This chapter describes  Asynchrobatic Logic both as a novel concept 

and as a practical implementation.  It commences with the thought processes 

that led to the development of this novel technology.  It will  be followed by 

further chapters looking at how it has been refined from initial conception to a 

series of structures which show it can be viably used to implement complex 

processing structures.  

5.2 The concept of Asynchrobatic Logic

The  derivation  of  the  term  “Asynchrobatic Logic”  is  from  a 

concatenation  and  shortening  of  Asynchronous  (quasi-)  Adiabatic Logic. 

When this novel concept was introduced in 2004 [Will04], all adiabatic logic 

was designed with strict constraints on the power-clock phasing requirements. 

The removal of this barrier has important ramifications for design reuse, as it  

removes the need to add buffer stages to the pipeline in order to correctly 

synchronise the multi-phase power-clocks.  This frees designers by allowing 

them to consider just the data-path interfacing, without having to be concerned 

about the clock phasing associated with that interface.  This is a direct benefit  

of using an asynchronous design methodology.  

The idea underlying  the creation of  Asynchrobatic Logic is to find a 

viable way to  operate a low-power  adiabatic  (or  quasi-adiabatic)  data-path 

asynchronously.  This concept is obviously challenging as, until this time, all 

adiabatic  logic  families  were  documented  as  using  multiple,  multi-phase 

power-clocks, which, in general, perform their charge recycling using inductive 

elements,  whereas  asynchronous  logic  is  required  to  operate  using 

handshake signals and to not have signals that would be defined as a global 

clock.  The theoretical benefits of Asynchrobatic Logic from a low power point-
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of-view should include less switching losses, which is due to switching only 

occurring when active, charge recovery and recycling, and almost complete 

leakage reduction in inactive circuitry,  due to the absence of any potential 

difference across inactive data-path elements.  

In synchronous adiabatic systems, whether driven by a resonant driver 

or  by  synchronous Stepwise  Charging,  there  is  a  strict  phase relationship 

between the phases of the power-clock.  The ideal waveform requires one of 

each of the four phases to be in each of the possible states, and a 90° phase 

difference is required between the sinusoidal power-clocks from a resonant 

driver.   Asynchrobatic Logic  relaxes these relationships.   In  Asynchrobatic 

Logic, a pipeline stage may be left in its “Idle” state indefinitely.  From an “Idle” 

state, the next state is the transient “Charge” state.  This may only be entered 

if  the  adjacent  previous  pipeline  stage  is  in  its  stable  “Hold”  state,  and 

subsequent adjacent pipeline stages (there may be more than one following a 

demultiplexer)  are in  their  stable  “Idle”  states.   The “Charge”  state  will  be 

followed by the stable “Hold” state.  From the “Hold” state, the next state is the 

transient “Recoup” state.  This may only be entered if the adjacent previous 

pipeline stage is in its stable “Idle” state, and subsequent adjacent pipeline 

stages are in their stable “Hold” states”.  The “Recoup” state is followed by the 

stable “Idle”  state and completes the  cycle.   These relationships generate 

waveforms that closely resemble those detailed earlier in Figure 2.5, but with 

more fluidity due to overlap of stable states between adjacent pipeline stages. 

As  alluded  to,  these  relationships  become  a  little  more  complex  for  the 

demultiplex operation, as “Recoup” can occur when an adjacent subsequent 

pipeline  stage  in  an  unselected  path  is  in  its  stable  “Idle”  state.   When 

selecting between two different inputs using a multiplex operation, they only 

hold for the control inputs and active data-path.   
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5.3 The components of an Asynchrobatic Logic implementation

There  were  several  novel  and  inventive  steps  required  to  create 

Asynchrobatic Logic.  The initial  observation that led to these was that the 

four-phase  handshaking  protocol  of  asynchronous  logic  could  be  directly 

mapped onto the four-phase power-clock of certain adiabatic logic families.  It  

was then realised that each stage of elements in the data-path pipeline can be 

driven by an individually created local power-clock, and that this local power-

clock  can  be  generated  using  a  Stepwise  Charging  (SWC)  methodology. 

Whilst  the  first  of  these  realisations  is  a  relatively  simple  reuse  and  re-

appropriation of ideas from vanilla asynchronous logic, the second realisation 

was a substantial inventive step.  Prior to this, SWC had only been widely 

documented as being used to drive large capacitive loads, for instance as a 

low-power  pad-driver  for  off-chip  components  [Sven94b]  &  [Sven96]. 

Furthermore, these SWC systems had been controlled by synchronous Finite 

State Machines (FSMs) [Sven95].   The first  published suggestion of  using 

Asynchronous Stepwise  Charging (ASWC) to  drive  an adiabatic  data-path, 

was made in May 2004 [Will04].  Although the idea of using SWC to drive an 

adiabatic data-path was independently discovered for this work, the idea of 

using synchronous SWC like this appears to have been first disclosed to the 

Japanese Applied Physics press by Nakata in 2000 [Naka00], and eventually 

reported  to  the  Japanese  Electronics  press  in  November  2004  [Naka04]. 

However, Nakata's papers continued to use synchronous FSMs to drive the 

adiabatic data-path.  Irrespective of this separate and independent reportage, 

Asynchrobatic Logic  vastly  expands  the  available  complexity  of  circuitry, 

removes clock-phase restrictions from the control logic, and as will be shown, 

allows complex data-processing structures to be implemented in a reusable 

fashion.  

A  further  realisation  was  that  the  required  tank capacitors  could  be 

shared between all the Asynchrobatic pipeline stages.  The sharing of these 

capacitors also leads to a theoretical conclusion that in an average case for a 
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simple sequential pipeline, one quarter of the data-path stages will be in each 

of the four possible clock phases.  This means that as well as being recovered 

to the tank capacitors, some energy may be directly recovered from one part 

of the data-path to another.  Furthermore, the fact that these capacitors can 

be implemented as on-chip devices makes the design viable for real-world 

implementation.  Again, this is an improvement over previous adiabatic logic 

implementations, because off-chip inductors are required for resonant energy-

recovering power supplies.  These ideas allow an Asynchrobatic system to be 

split into three reusable sub-systems, an asynchronous controller, a Stepwise 

Charging circuit and an adiabatic data-path.  This separation allows complex 

designs to be created from smaller, easily verified building blocks, and this 

potential for design reuse is essential if there were a future desire to produce 

commercial products based upon Asynchrobatic Logic.  

The one minor restriction to real-world operation is the power used in 

generating the charge recovery drivers [Inde94].  It is therefore necessary to 

amortise  the  cost,  in  terms  of  power  consumption,  of  the  Asynchronous 

Stepwise Charging controller over the width of the data-path.  This means that 

in  general,  Asynchrobatic Logic  will  be  more  suitable  to  higher  data-width 

applications.   However,  even  at  modern  64-bit  processing  widths  there  is 

sufficient amortisation of these costs, and applications with 128-bit processing 

widths  or  greater  can  be  found,  both  in  general-purpose  and  niche 

applications.  This means that practical applications can be found in which to 

use this logic style.  

5.4 Design of Control Structures

The  control  structures  need  to  process  handshake  inputs  from  the 

stages adjacent to the current one.  A request handshake from a previous 

stage will  indicate one of two states.   When it  makes a rising zero-to-one 

transition, it shows that data is available, allowing the asynchronous controller  

to initiate the stepwise charging process to latch that data.  Conversely, when 
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it  makes a falling one-to-zero transition, it  indicates that the charge on the 

inputs  has  been  recovered,  and  that  the  asynchronous  controller  should 

initiate the stepwise discharging process to recover the charge.  Depending 

upon the direction of its transition, an acknowledge from the subsequent stage 

will  either  indicate  that  it  is  in  the  “Idle” state  and  that  its  inputs  may be 

changed, or that  it  has evaluated its inputs and that charge recovery may 

commence.  For simple pipeline stages, this handshaking can be achieved 

using only a C-Element, as described in Chapter three.  For operations more 

complex  than  a  simple  pipeline,  the  number  of  components  in  the 

asynchronous control logic increases.  This allows the creation of MUX and 

DeMUX operators.  The implementations of these closely follow that of Sparsø 

[Spar01].  The original asynchronous versions were shown earlier in Figures 

3.4 and 3.5.  The MUX's data-path is driven by a standard ASWC that follows 

the asynchronous MUX circuit.  In the DeMUX, the previous stage drives the 

inputs of both subsequent stages, but the DeMUX only instructs one to be 

activated.   

5.5 Design of Stepwise Charging Logic

The Asynchronous Stepwise Charging controller logic is the glue that 

allows  Asynchrobatic Logic to function.  It  is the confluence of these novel 

ideas  which  differentiates  Asynchrobatic Logic  from  pure  asynchronous 

systems and from pure adiabatic systems.  The output from the asynchronous 

controller  is  used  to  indicate  whether  stepwise  charging  or  stepwise 

discharging is to be performed.  When this input changes, it is fed into a series 

of pulse generators.  These pulse generators must generate pulses on each 

transition of the output from asynchronous controller.  They are constructed by 

performing  an  exclusive-OR  of  the  input  and  output  of  a  variable  delay 

element driven by the output from the asynchronous controller.  The variable 

delays were constructed using analogue-controlled current-starved inverters 

[West94], of the design shown in Figure 5.1.  The bias circuit is very simple, 

and  allows  the  delay  to  be  varied,  it  would  be  anticipated  that  in  larger 
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designs, this circuit would be optimised so that less current is drawn, and that 

the cost power drawn by its bias circuit would be distributed across a large 

number of delay elements.  Other alternative delay structures that could be 

considered include shunt capacitor delays [West94] and digital delays using 

multi-tapped  buffer  chains.   The  shunt  capacitor  delays  were  not  used 

because of the increase in the capacitive load was likely to be a source of  

power-consumption, and the multi-tapped buffers were not used because the 

number of switching events necessary to create the delay was likely to be a 

source of power-consumption.  

Figure 5.1: Current-starved inverters as variable delay [West94]

The design of the XOR gate is shown in Figure  5.2, although other 

equally valid designs for XOR gates exist.  
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Figure 5.2: Static CMOS 2-input XOR gate [MIT04]

The pulses are generated in the same order irrespective of whether 

charging or discharging is occurring, but the SWC circuit requires a different, 

but  symmetrical,  switching  order  depending  on  whether  it  is  performing 

charging  or  discharging.  However,  since  the  output  of  the  asynchronous 

controller  indicates the direction of  the SWC circuit,  it  can be used as the 

select input to multiplex the pulses appropriately.  Based upon this, the pulses 

are  routed,  using  pass-gate  multiplexers  where  necessary,  to  the  correct 

intermediate switches in the stepwise charging power-clock logic.  If the driven 

switch  is  a  PMOS device,  then  the  signal  is  also  inverted.   The  terminal 

switches,  which  supply  the  power  and  ground  voltages  of  the  stepwise 

charging  power-clock  logic  are  driven  by  standard  logic  functions that  are 

conditional on the “first input into” and “last output from” the pulse generator 

being equal.   This relationship is derived as follows:  If  the signals are not  

equal, then the pulses are still being generated.  If both signals are low, then 

the switch for the NMOS device to ground (P0_H) should be active.  If both 

signals are high, then the switch for the PMOS to the power-supply (P4_L) 

should be active.  The final output from the pulse generator is also buffered to 

be  used  as  the  handshake  signal  from  the  current  stage  to  the  adjacent 

stages.  The use of this type of delay makes this part of the internals of the 

57

A

B

 Z

VddVdd



SWC logic  fall  into  the “self-timed” class of  asynchronous circuits.   Circuit 

diagrams for these components are shown in Figures 5.3 and 5.4.  In Figure 

5.3, it can be seen that the number of pulse signals generated can be varied 

by changing the number of pulse generating delay and XOR gates, a feature 

which could allow the design to be made modular.  

Figure 5.3: An asynchronous stepwise charging controller [Will04]

The circuit shown in Figure 5.4 shows the three possible configurations 

that  can be used for  stepwise  charging,  the  transmission-gate  version will  

operate  universally,  but  depending  upon  the  convergence  voltage  of  a 

particular  step,  it  may be possible  to  optimise this  circuit  by removing the 

NMOS device for a convergence value close to the power-supply voltage, or 

removing an PMOS device for a convergence value close to ground.  This can 

be done because the threshold voltage of the removed device would mean it 

carried almost no current.  In the case where a NMOS device is removed, this 

is likely to prolong the time taken for the tank capacitors to converge if they all 

start from ground.  

In  contrast  to  the  resonant  charging  schemes  used  in  traditional 

adiabatic systems, those based on SWC do not require any extra circuitry to 

operate correctly upon start-up [Dhar96].  Furthermore, for an ideal load with 
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ideal pulse widths, it can be demonstrated that the voltages across the tank 

capacitors will converge [Naka04].  

Figure 5.4: A Stepwise Charging circuit [Sven94a]

However,  there  is  a  risk  that  charging  the  data-path  too  slowly  will 

cause it to lag behind the asynchronous signalling, and that this could lead to 

logical evaluation errors.  Fortunately, the ASWC serves to create a margin of 

safety.   This  is  because,  even if  the  data-path  is  not  fully  charged,  there 

should be differential  between the  two  inputs.   This  means that,  provided 

there is sufficient differential, the next stage will behave like a sense-amplifier 

and still  be  able  to  determine the state  of  its  inputs.   This  is  sub-optimal 

operation, and therefore likely to result in increased power consumption.  The 

greatest risk of this type of failure mode occurring is during start-up when all 

the tank capacitors are discharged and the only charge is supplied from the 

main power rail.  An obvious and simple solution to this is to pre-charge some 

of the tank capacitors (those switched later during the charging cycle) during 

the reset time.  An alternative that was considered, but not pursued, was to 

use  the  dual-rail  nature  of  the  data-path  to  provide  completion-detection 

[Spar01].  This could be achieved in a similar way to self-timed asynchronous 

completion-detection, by using an OR gate on the outputs of the data-path 

element furthest from the SWC circuit.  However, because of the analogue 
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nature  of  the  ramp-like,  stepwise  staircase waveform,  this  would  result  in 

logically indeterminate voltage values being applied across a digital  gate's 

inputs.  This gives rise to the possibility of causing short-circuit  currents to 

flow in these completion-detection gates for an unacceptably large proportion 

of the cycle time.  Not only would this have a negative impact on the circuit by 

increasing  its  power  consumption,  but  it  could also provoke power-related 

device failures and life-time reduction due to factors such as electromigration 

[Blac69].  

5.6 Design of data-path logic

The data-path logic for Asynchrobatic Logic can be designed in exactly 

the same way as it would be for adiabatic logic. A designer would be free to 

choose from a variety of different adiabatic families including, but not limited 

to;  Efficient  Charge  Recovery  Logic  (ECRL),  Improved  Efficient  Charge 

Recovery  Logic  (IECRL),  Positive  Feedback  Adiabatic  Logic  (PFAL)  or 

Efficient Adiabatic Charge Recovery Logic (EACRL).  The first publication of 

Asynchrobatic Logic used ECRL, but later work was performed using PFAL, 

as  it  has  been shown to  be  more  power  efficient  [Blot02]  & [Will05],  and 

because  of  its  potential  for  reversible  operations.  Because  the  design  is 

pipelined, making the data-path as short as possible will be beneficial from a 

speed point of view.  This leads to the conclusion that higher-radix arithmetic 

and  computation  structures  should  be  considered,  and,  where  possible, 

stages of logic merged.  However,  Asynchrobatic  Logic does simplify some 

parts  of  data-path  design  because  in  contrast  to  a  normal  synchronous 

adiabatic data-path, other than having a sufficient number of stages to avoid 

deadlock,  Asynchrobatic Logic does not impose any phase constraints on 

re-entrant parts of the design, leaving the join to be correctly managed by the 

asynchronous control logic.  This is in contrast an adiabatic data-path with a 

resonant power-clock which would require paths to be padded with buffers so 

that their lengths are a multiple of the phases in its clocking scheme.  Even in 

simple cases, this could add up to three stages of buffers.  More complex 
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synchronisation could require either more buffer stages, or could require the 

control structures to be made more complex.  Asynchrobatic Logic makes the 

data-path  completely  reusable.   This  potentially  allows  optimal  versions of 

frequently  used  functional  blocks  to  be  developed  and  commercialised  as 

Intellectual Property (IP).  

5.7 Implementation of an Asynchrobatic pipeline

The  proof-of-concept  for  Asynchrobatic Logic  was  published  at  the 

2004 International Symposium on Circuits and Systems [Will04].  It used the 

Asynchronous  Stepwise  Charging  control  logic  previously  detailed,  but 

coupled this with  an ECRL data-path.  However,  it  correctly observed that 

other  adiabatic  families,  including  PFAL,  could  be  used,  and  that  OBDD 

design methods could be used to design more complex cells.  It compared the 

new  Asynchrobatic  logic  methodology  with  a  standard  asynchronous 

methodology.  Some of the results from this paper are detailed below.  

5.7.1 Comparison of Asynchrobatic and asynchronous buffer chains

The initial proof of concept design was implemented using 16-bit and 

32-bit  wide  12-stage pipelines of ECRL buffer  chains.   These were  drawn 

using  Chipwise  [Kent98]  and  simulated  using  SPICE,  on  a  0.7µm (0.8µm 

drawn)  process  in  the  “typical”  process  corner.   Figure  5.5 shows  the 

floor-plan  of  the  ASWC  and  Figure  5.6 shows  the  layout  of  the  ASWC 

controller circuit as described previously.  This layout uses a combination of 

the schematics shown in Figures  5.3 and 5.4.  It was obtained from automatic 

compaction of a stick diagram.  The layers are shown as follows: active in 

green, polysilicon in red, the first metal in blue and the second metal in cyan.  

The C-Element is at the bottom of the layout, and the asynchronous power-

clock Vpc is at the top of the layout.  In general, the NMOS devices were made 

minimum  size,  and  the  PMOS  devices  were  double  the  size  of  the 
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corresponding NMOS devices.   Although some devices with a larger fan-out 

were made larger.  
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Figure 5.5: Floorplan of an Asynchronous Stepwise Charging Controller
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Figure 5.6: Layout of an Asynchronous Stepwise Charging Controller

63



This layout was extracted, as was a layout (not shown) for a data-path 

of ECRL buffers.  These buffer were driven with three different input switching 

probabilities,  0%  (static,  never  switches),  50%  (switches  every  other 

transaction), and 100% (switches every transaction).  After a simulation period 

of 10µs (50 transactions), the cumulative current consumption was measured. 

This was done in SPICE, and will be detailed in Chapter 6.  To demonstrate 

the efficiency of the data-path, separate measurements were taken for the 

control logic and the data-path logic.  The Asynchrobatic Logic versions were 

compared  against  an  asynchronous  T-Latch  Micropipeline  as  detailed  by 

Paver [Pave94].   

The worst-case average power consumption for a single transaction of 

Asynchrobatic data-path  element  was  1.4pW  per  data-path  bit,  and  the 

Asynchrobatic SWC control logic used 248pW per transaction.  This compares 

with 7pW per data-path bit per transaction for the asynchronous T-Latch, and 

124pW per transaction for the asynchronous control logic.  This shows that 

the quasi-adiabatic data-path uses five times less power than the standard 

data-path,  but  the  ASWC control  logic  uses twice  as  much  power  as  the 

standard asynchronous control logic.  Graphs showing the various cumulative 

current consumption data are shown in Figures 5.7, 5.8 and 5.9, and were first 

presented in [Will04].

64



Figure 5.7: Cumulative current consumption for data-path elements

Figure 5.7 shows the cumulative current consumption of a single data-

path element.  As would be expected, the asynchronous data-path consumed 

negligible power when static, but as the amount of switching increased, its 

power  consumption  increased  linearly.   It  can  be  seen  that  the  purely 

asynchronous design's data-path power consumption follows linearly follows 

Equation (3.1).  Conversely, the ECRL data-path showed a more-or-less fixed 

power consumption irrespective of the amount of switching, although its power 

consumption did increase slightly as the switching probability increased.  This 

variation can most likely be attributed to the non-linear nature of an ECRL 

circuit as a load on a SWC circuit causing the convergence voltages of the 

tank capacitors to vary, thus affecting the amount of recoverable charge.  
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Figure 5.8: Cumulative current for the control and data-path

Figure   5.8 shows  the  cumulative  current  for  the  each  sub-system. 

Because  the  asynchronous  control  logic  drove  its  local  clock,  its  power 

consumption was independent of the switching probability in the data-path, but 

was affected by the width of the data-path structure it was driving.  However, 

the ASWC control logic had a fixed power consumption that was independent 

of both the switching probability in the data-path and the width of the data-path 

structure being driven.  The fixed power-consumption of the ASWC control 

logic means that its power consumption cost can be amortised by increasing 

the width of the data-path.  
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Figure 5.9: Total cumulative current

Figure 5.9 shows the total cumulative current for the complete system. 

It  is  clearly  evident  that  a  16-bit,  ECRL  Asynchrobatic Logic  pipeline  will 

always  be  less  power  efficient  than  an  equivalent  asynchronous  pipeline. 

However, for a 32-bit, ECRL Asynchrobatic Logic pipeline, it can be seen that 

if more than 70% of the bits (23 bits) change, then the  Asynchrobatic Logic 

implementation will be the more efficient.  
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Figure 5.10 shows simulation output of an ECRL inverter driven by the 

Asynchronous  Stepwise  Charging  Logic  used  in  Asynchrobatic Logic.  Its 

inputs were operated with a 50% switching probability, that is a waveform that 

repeats the following four values  “0,0,1,1...”.  

The  upper  chart  shows  the  asynchronously  generated  stepwise 

power-clock.  Because the power-clock was sampled from the fourth pipeline 

stage, it is labelled “V(PC#4)”.  It is shown along with the voltages across each 

of the tank capacitors (labelled “V(C1)”, “V(C2)” and “V(C3)”).  The plot shows 

the capacitors after they have converged, but the ripples which can be seen 

are caused by charging and recovery occurring in the other pipeline stages.  

The lower graph shows the complementary outputs of an ECRL buffer. 

It can clearly be seen that ECRL buffers do not perform complete recovery 

from the asserted output, and that if no input switching occurs, some charge is 

carried over to the next transaction, but that when input switching does occur 

any stored charge is non-adiabatically dumped to ground.  It can also be seen 

that there is undershoot on the non-asserted output.  This is probably caused 

by capacitive coupling and the absence of any path to ground once the charge 

on the inputs has been recovered.   
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Figure 5.10: Performance of an Asynchrobatic ECRL pipeline
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5.8 Potential for fully reversible operations

The majority of “adiabatic” logic families mentioned in Chapter 2 are in 

fact only quasi-adiabatic.  This is because they are not logically reversible, 

which means that they have some non-adiabatic losses.  However, using the 

concept of Reversible Computation, which was introduced in section 2.6,  fully 

adiabatic,  reversible  processing  gates  could  be  constructed.   It  has  been 

shown that complex PFAL gates can be constructed so that they are fully-

reversible [Will08b].  This means that arbitrary reversible gates with up to four 

inputs  can  be  constructed.   Because  it  is  also  possible  to  drive  the 

asynchronous control logic in the reverse direction by inverting the handshake 

signals,  there  is  enormous  potential  for  the  creation  of  reversible 

Asynchrobatic logic systems.  

The  potential  for  reversibility  was  alluded  to  in  the  initial  paper 

describing PFAL [Vetu96], but in various subsequent works which utilise PFAL 

[Amir00], [Amir04], [Blot04], [Fisc05], [Fisc06] & [Teic07], this potential does 

not appear to have been explored any further.  The creators of EACRL also 

considered  reversibility  [Varg01a].   The  experimental  implementation  of  a 

Toffoli  gate  [Fred82]  using  PFAL  technology  [Will08b]  demonstrates  that 

structures from the Reversible Logic paradigm can be viably created in PFAL, 

and that for an ideal waveform, it reduced power consumption by about two-

thirds.   Conceptually  it  is  only  a  small  step  to  move  from  driving  these 

structures with  ideal  waveforms,  to  using SWC circuits  from  Asynchrobatic 

Logic.  Currently unpublished experimental results suggest that Asynchrobatic 

Logic  with  a  fully-reversible  PFAL  data-path  operates  with  lower  power 

consumption than a PFAL data-path with irreversible losses.  

Reversible  logic  design  is  a  very  different  paradigm from traditional 

logic design, as most logic functions like AND and OR are not reversible.  The 

simplest familiar logic function that can easily be made reversible is XOR.  By 

passing one input unchanged through to the output, a reversible system with 
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two inputs and two outputs is created, this results in a Controlled-NOT, where 

the one signal is inverted between input and output depending upon the value 

of the other signal, which passes through always passes through unmodified. 

Unfortunately, this gate is not universal.  However, a universal gate can be 

obtained by extending this idea to a three-input, three-output gate where the 

two signals always pass through unmodified, and the other signal is inverted 

only if both the unmodified signals hold values representing “True”.  This is 

called a Controlled-Controlled-NOT or a Toffoli  Gate.  Table  5.1 shows the 

truth-table for a Toffoli  Gate, and a Toffoli  Gate symbol  (after  [Feyn00])  is 

shown in Figure 5.11. 

 A  B  C  A'  B'  C' 
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 5.1: Truth-table for a Toffoli Gate [Feyn00]

Figure 5.11: Controlled-Controlled-NOT (CCN) 

or Toffoli Gate Symbol [Feyn00]
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Figure 5.12 shows a logic-level schematic of how a Toffoli Gate can be 

implemented  in  PFAL.   It  should  be  noted  that  because  the  PFAL 

implementation uses a dual-rail logic, a port's labels refer to a pair of wires, 

one asserted high, the other asserted low, for example the port labelled “A” 

consists of two signals, “A_H” and “A_L”.   

Figure 5.12: Schematic of a PFAL Toffoli Gate [Will08b]

The Toffoli  Gate, contained within the outer box, is created from six 

PFAL gates (one within each of the six inner boxes).  Each of these PFAL 

gates has two separate functions with separate evaluation trees, there is a 

forward-path function, and a recovery-path function.  Ten of these functions 

are just buffers, and the other two, which form the Controlled-Controlled-NOT 

(CCN), are implemented using an AND-XOR gate.  The NMOS tree for this is 

shown in Figure 5.13.  As is alluded to by the way the schematic is drawn in 

Figure  5.12,  it  is  conceptually  easier  to  think  of  the  reversible  function  as 
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existing over two adjacent pipeline stages, although in certain circumstances, 

it is possible to put a sequence of functions closer together by using the rather 

esoteric concept of the reversible function existing in the space between two 

pipeline stages.  

Figure 5.13: Evaluation tree for AND-XOR function [Will08b]

It should be evident from the evaluation tree for the AND-XOR gate, 

that in any transistor based design, the Toffoli Gates implemented are still not 

entirely loss-less.  This is due to small amounts of charge that will be retained 

on  the  three  internal  source-drain  connections  within  the  evaluation  or 

recovery logic.  

Moving to  reversible  logic  is  not  without  costs.   It  adds many extra 

complications.   The  implemented  functions  must  be  invertible,  and  to 

accommodate the recovery path,  require  feedback from the outputs of  the 

subsequent stage.  The Toffoli gate is only a starting point, and any invertible 

function of four inputs or fewer can be implemented using PFAL gates.  This 

may  have  applications  to  cryptographic  algorithms  that  use  four-bit 

substitution boxes, as these could be implemented in fully reversible logic, 

possibly improving resistance to Differential Power Analysis (DPA).  
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Figure  5.14 shows  how  the  performance  of  PFAL  gates  varies 

depending upon whether  they include a recovery path,  which makes them 

reversible, or whether they are non-reversible, quasi-adiabatic gates with only 

the forward evaluation path.  

The  upper  graph  shows  the  currents  flowing  into  and  out  of  two 

adjacent stages.  There are a pair of signals labelled “I(VPC5)” and another 

pair labelled “I(VPC6)”.   The red and green signals chart the performance of 

the  reversible  circuit,  whilst  the  magenta  and  blue  signals  chart  the 

performance  of  the  non-reversible  circuit.   The  current  supplied  to  the 

reversible circuit can be seen to be greater, which is to be expected because it  

includes more devices and has has a higher capacitive load, but the current 

recovered from the reversible circuit is also greater.  

The lower graph shows the output voltage on the asserted high “C” 

output of a Toffoli gate.  It can be seen that the output voltages of the non-

reversible versions do not track the power-clock voltage all the way to ground, 

but switch later as the inputs to the evaluation stage change.  
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Figure 5.14: Performance of reversible versus non-reversible PFAL gates
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5.9 Summary

In this chapter Asynchrobatic Logic has been introduced.  It has been 

shown that once the extra cost, in terms of power, has been amortised by the 

increased power efficiency of the data-path, that it is capable of lower power  

operation than asynchronous systems.  The amortisation of the extra power is 

performed by having a wide data-path.  In the example given, it was shown 

that a 16-bit ECRL data-path would never make sufficient savings, but that 

with  a  32-bit  ECRL data-path,  if  more  that  70% (23-bits)  of  the  data  bus 

changed during each transaction,  then  Asynchrobatic logic  would  be more 

efficient. It should be noted that ECRL is a quasi-adiabatic logic family, so by 

using fully adiabatic, reversible logic structures, it is likely that the data-path's 

power consumption can be further lowered.  

The  concept  of  fully  reversible  PFAL  gates  that  can  perform  data 

processing was also presented.  A reversible Toffoli gate was implemented 

using  PFAL,  and  its  performance,  using  ideal  adiabatic  charging,  was 

compared against that of a non-reversible AND-XOR gate.  The reversible 

Toffoli  gate  used  about  two-thirds  less  power  than  the  non-reversible 

AND-XOR gate.  
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Chapter 6 Modelling and Simulating Asynchrobatic Logic

6.1 Introduction

It  is  important  to  be  able  to  describe,  model  and  simulate 

Asynchrobatic Logic systems using Hardware Description Languages  (HDLs) 

and  circuit  simulators  like  SPICE.   HDL  simulation  is  important  not  only 

because they are the industry standard, but because it would take too much 

effort  and be too error-prone to attempt to debug a SPICE simulation of a 

large system.  However, unlike the majority of traditional CMOS-based logic 

systems, Asynchrobatic Logic does not perform signalling using a single wire 

to represent a single bit.  A bit is represented on two wires, with three defined 

states,  one invalid  state  and  the  possibility  of  various  undefined states  at 

initialisation.  The defined states are shown in Table 6.1 below: 

 

State Asserted Low wire Asserted High wire
Inactive Low Voltage Low Voltage
Logic 0 High Voltage Low Voltage
Logic 1 Low Voltage High Voltage
Invalid High Voltage High Voltage

Table 6.1: Dual-rail logic states in Asynchrobatic Logic

Because of the redundancy in the signalling, extra logic can be used to 

detect certain faults.  This is because if the power-clock is asserted and the 

two  wires  have  equal  logic  values  then  there  is  clearly  a  fault.   When 

simulated in software using HDLs, these states can be detected and reported. 

In hardware, the same idea can be extended to fault and integrity checking. 

This would allow test structures constructed with XOR or XNOR gates to be 

used  for  manufacturing  tests,  and  possibly  for  tamper  detection  or  signal 

integrity checking.  However, these structures would need to be able to be 

disabled  to  prevent  unnecessary  power  consumption,  and  care  would  be 

needed to avoid short-circuit currents if static CMOS gates were used.  
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As  well  as  being  used  for  simulation,  HDLs  can  be  used  for  logic 

synthesis,  allowing  a  design  specified  using  an  HDL  to  be  implemented 

automatically.  

Verilog HDL was chosen as the HDL to use to model  Asynchrobatic 

Logic.  As well as exercising personal choice due to greater familiarity, this 

was done because it provides a better range of modelling options than VHDL. 

Specifically,  VHDL  lacks  switch-level  models  as  an  integral  part  of  its 

language specification.  Since the choice of HDL can be due to ideological 

decision-making, both Verilog and VHDL will be discussed.

6.2 Verilog modelling

At  its  simplest,  the  Verilog  model  can  be  made  using  a  series  of 

standard  latches  with  data-processing  inputs.   These  are  clocked  by  the 

outputs of modelled asynchronous components.  These are used to represent 

the various local power-clocks.  The essential part of modelling Asynchrobatic  

pipelines, and where it differs from the modelling of static CMOS, is to return 

the output or outputs of the data-path to an invalid state on the falling edge of 

the simulated power-clock.  For the single rail version, the invalid state can be 

an output of either undefined (1'bx) or high-impedance (1'bz), or the output 

could just return to logic zero.  The third option is probably the least preferable 

since it would make it difficult to disambiguate between a zero and an error 

condition.  Code Segment  1 shows a single-rail Verilog implementation of a 

two-input AND gate.  Figure  6.1 shows, for a two-input AND gate, how the 

single-rail  Verilog can be conceptualised as a logic function merged into a 

resettable  D-type  Flip-Flop,  followed  by  a  tristate  output  driver,  with  both 

controlled  by  the  same  simulated  power-clock  signal.   This  is  the  novel 

contribution  because by capturing  both  the  rising  and falling  edges of  the 

power-clock, it  can capture pipeline timing errors,  something that would be 

missed if the design was simulated using standard flip-flops or latches.   
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// Single-rail, functional
// representation of an adiabatic
// two-input AND gate
module Buffer (A,B,Z,PClk,Rst0)
input A, B; // Inputs
input Pclk; // Simulated Power-Clock
input Rst0; // Reset (active low)
output Z;   // Output
// Detect Reset, otherwise
// Simulate Charge & Hold stages
always @(posedge PClk or negedge Rst0)
  if (~Rst0) 
    #`RESET_DELAY Z <= 1'bz;
  else
// Define output function
    #`STAGE_DELAY Z <= A & B;

// Simulate Recover & Wait stages
always @(negedge PClk)
  #`STAGE_DELAY Z <= 1'bz;

endmodule
Code Segment 1: Single-rail Asynchrobatic two-input AND gate  in Verilog

Figure 6.1: Conceptualisation of a two-input AND gate for single-rail Asynchrobatic  

data-path simulation

The ideas behind the behavioural modelling of the single-rail scheme 

can be simply extended to dual-rail by the addition of extra wiring, and, in the 

majority  of  cases,  this  can  be  achieved  by  the  use  of  regular  expression 

substitutions. 
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The dual-rail implementation allows state checking can also be added 

to detect and report invalid circuit operation.  However, its effectiveness will 

depend  upon  how  the  complementary  outputs  are  generated.   For 

components like multiplexers, the state checking is more complex, because 

the unselected input does not require state checking.  The dual-rail method 

can then be replaced by switch-level models.  For the dual-rail version, the 

idle state can be modelled by the pair of complementary outputs both being 

driven  to  the  same  logic  value  (normally  both  at  zero),  although  there  is 

nothing to prevent these outputs both returning to either undefined or high-

impedance.  Code Segment  2 shows a dual-rail buffer, which also includes 

basic checking that the complementary inputs are not equal on the rising edge 

of the power-clock.  
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// Dual-rail, functional representation 
// of an adiabatic buffer

module Buffer (A_L, A_H, Z_L, Z_H, Pclk, Rst0)
input  A_L, A_H;  // Inputs to be buffered
input  Pclk;      // Simulated Power-Clock
input  Rst0;      // Reset (active low)
output Z_L, Z_H;  // Outputs
// Detect Reset, otherwise
// Simulate Charge & Hold stages
always @(posedge PClk or negedge Rst0)
  if (~Rst0) 
    begin
      #`RESET_DELAY Z_L <= 1'bx; Z_H <= 1'bx;
    end 
  else 
    begin
      if (A_L == A_H) // An invalid state
        $display("Input violation in %m at %t",$time);
        // Define both versions of output function
      #`STAGE_DELAY Z_L <= A_L; Z_H <= A_H; 
    end
// Simulate Recover & Wait stages
always @(negedge PClk) 
begin
  #`STAGE_DELAY Z_L <= 1'b0; Z_H <= 1'b0;
end
endmodule

Code Segment 2: Dual-rail Asynchrobatic buffer in Verilog

As previously noted, the major benefit that Verilog has over VHDL is its 

switch-level modelling.  This would allow the data-path to be modelled using 

primitive devices that represent the MOS switches, but with a major increase 

in simulation speed.  The primitive Verilog constructs that could be used are 

nmos, pmos, tranif0 and  tranif1.   Due  to  limitations  of  the  Verilog 

simulator  used  (Icarus  Verilog  [Icar02]),  these  models  were  not  fully 

implemented, and were not necessary, as the behavioural models were more 

than adequate.  However, the potential applications where these switch-level 

models would be useful are HDL modelling of power consumption, and as a 
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schematic  source in  applications  such as  Layout  Versus Schematic  (LVS) 

checking.  

A  minor  issue  encountered  when  attempting  to  model  such  circuits 

using HDLs is that static CMOS circuits are required for the control structures 

and adiabatic circuits are required for the data-path.  Since various functions, 

like,  for  example,  an  inverter  could  exist  in  both  design  styles,  and  are 

identically named, but not interchangeable, it  is important to use a naming 

system, or programming language concepts like package scope, to ensure 

that the different logic types are kept separated.  This may be an area where  

the use of VHDL would have advantages over Verilog.  

For the automated implementation of more complex functions, it would 

be possible to use a pre-processor, to take the description of a cell's function, 

and  pass  this  through  a  OBDD minimiser  and  optimiser  to  determine  the 

minimum tree  size  required  to  form that  function.   If  the  technology were 

commercialised, then this step would need to re-order and re-label the inputs 

and outputs to map the required output function onto an appropriate cell in the 

library.  For example, for a single-input gate, there is only one possible circuit 

design, but the inverter is a buffer with its outputs' assertion levels exchanged. 

For  a  two-input  gate,  the  XNOR function  can  be  obtained  from the  XOR 

function by simply exchanging its outputs' assertion levels, and the AND, OR, 

NAND, NOR, and versions of these with a single inverted input can all  be 

obtained from an AND gate by exchanging the assertion levels of either the 

inputs, the outputs or both.  

6.3 VHDL Modelling

It was noted in the previous section that Verilog was used for all the 

large  scale  simulations  of  Asynchrobatic Logic,  but  that  VHDL  was  an 

alternative  HDL  that  could  be  used.   Code  Segment  3 shows  a  possible 

implementation of an  Asynchrobatic buffer in VHDL.  Apart from this single 
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piece of code, no other work on simulating or modelling Asynchrobatic Logic 

was done in VHDL.  
-- VHDL model of an Asynchrobatic buffer

library IEEE;
use     IEEE.std_logic_1164.all;
entity buffer is
  port (A    : in  std_logic;
        PCLK : in  std_logic;
        RST0 : in  std_logic;
        Z    : out std_logic);
end buffer;
architecture behavioural of buffer is
begin
  process (PCLK, RST0) is
  begin
    if RST0 = '0' then
      Z <= 'X';
    elsif Rising_edge(PCLK) then
      Z <= A;
    elsif Falling_edge(PCLK) then
      Z <= 'Z';
    end if;
  end process;
end architectures behavioural;
Code Segment 3: Single-rail Asynchrobatic buffer in VHDL

6.4 Circuit level simulation

Since SPICE and SPICE-like tools exist to simulate circuits, the use of 

SPICE presents few major problems.  There are minor problems that need to 

be considered.  The primary problem with SPICE is the simulation time.  This 

can be overcome by using table look-up based SPICE simulators, but possibly 

compromises  accuracy  for  speed.   There  are  other  accuracy  issues  with 

SPICE  which  included  the  parameters  and  numerical  simulation  method. 

Other  issues  relate  to  ensuring  that  the  minutiæ of  simulation  details  are 

correct, and to correctly measuring the simulated power dissipation.  
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There are a number of extra details that need to be considered when 

performing SPICE simulations rather than just HDL modelling.  These include: 

device sizing, the connectivity of a device's bulk terminals, and when targeting 

more advanced processes, which threshold voltage (VT) of device to use.  

The VT of devices did not need to be considered for either the 0.8µm or 

0.35µm processes as only one was available.   The device sizing used in the 

adiabatic  data-path  was  minimum  length  and  minimum  width.   The 

connections to the bulk terminals were made as follows.  All NMOS devices 

had  their  bulk  terminal  connected  to  ground.   The  cross-coupled  PMOS 

devices in the data-path had their bulk terminal connected to the power-clock. 

This allows them to recover more charge through their internal diode, but for  

full-layout simulations, it would be necessary to model the reverse-biased n-

well to p-substrate diode that will be created.  

For circuits that have a physical layout implementation, a full parasitic 

extraction of at least resistance and capacitance should be performed, and 

this  was  done  for  the  initial  presentation  of  Asynchrobatic Logic.   The 

subsequent works  used front-end SPICE netlists,  that is netlists  containing 

only  ideal  devices  without  these  parasitics,  meaning  that  the  quoted 

performance  figures  are  likely  to  be  optimistic.   However,  to  maintain  the 

integrity of the research this was made clear in the publications.      

A major use of  SPICE was to  measure power consumption,  as this 

cannot be performed using HDL representations.  The initial measurements of 

power consumption were performed by using extra pseudo-circuits to perform 

these measurements.  These pseudo-circuits consisted of a current-controlled 

voltage source, controlled by the voltage source under observation, driving a 

capacitor.  This performed the integration of the current with respect to time to 

allow the power  to be calculated.   This was done following the method in 

Rabii's tutorial [Rabi03].  
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However,  propriety  extensions  to  SPICE  incorporate  measurement 

statements  (for  example,  the  .EXTRACT  card)  that  can  perform  this 

integration directly, and waveform viewers also include waveform processors 

that allow waveforms to be processed, including integration.  Equations (6.1) 

and (6.2) show how the average power (P) can be obtained by performing the 

integration of the instantaneous current, i(t), and voltage, v(t), for a fixed time 

period, from t1 to t2.  Equation (6.2) show how this can be simplified when the 

power supply, Vdd, is at a fixed voltage.  

P = 1
t 2−t1

∫
t1

t2

v t  i t  dt (6.1)

P =
V DD

t 2−t1
∫
t1

t2

iV DD
t  dt (6.2)

The  use  of  the  simplified  equation  (6.2)  should  provide  sufficiently 

accurate results,  and can be applied to static DC voltage sources.  These 

would  include  the  voltage  sources  used  to  model  the  Vdd supplies  to  the 

Asynchronous Stepwise Charging controller logic, and the Stepwise Charging 

logic.   However,  for  experiments  using  the  ideal,  piecewise-linear  voltage 

sources, it would be necessary to use the more complex method shown in 

equation (6.1).  

6.5 Summary

In this chapter, the methods of modelling and simulating Asynchrobatic 

Logic have been detailed.  It has been shown that Asynchrobatic Logic can be 

adequately, and efficiently modelled using both Verilog and VHDL.  The ability 

to use HDLs is a prerequisite to being able to design large  Asynchrobatic  

systems and would be necessary to commercialise the product, as simulating 

large systems with SPICE-like simulators makes circuits too difficult to debug, 

and  takes  too  long.   It  has  been  shown  that  behavioural  models  of  
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Asynchrobatic  Logic circuits can be constructed in both Verilog and VHDL. 

However, whilst HDL simulation is essential for functional checking, it is not a 

panacea  and  the  use  of  SPICE  is  still  required  to  measure  power 

consumption. 

The novel use of both the rising edge and falling edge of the simulated 

power-clock enhanced the ability to detect design errors that would not have 

been detected if the design had been modelled using flip-flops.   

86



Chapter 7 Implementing Asynchrobatic Logic

7.1 Introduction

The  initial  demonstration  of  Asynchrobatic Logic  was  done  using  a 

0.7µm (0.8µm drawn)  two-layer  metal  CMOS process,  but  it  was  created 

using tools no-longer viable for commercialisation, and did not demonstrate 

sufficient complexity in the data-path.  The later work upon the Adder and 

Greatest  Common Denominator  (GCD) circuits,  which  will  be  described in 

Chapter 8, was only performed using front-end netlists (without parasitics) and 

not  extracted  layout.   In  this  chapter,  some  layout  of  complex  data-path 

functions is described.  Being able to produce and verify the layout of a design 

is  an  important  step  in  showing  the  viability  of  the  technology,  as  it  

demonstrates that it is possible to produce a physical product.  

7.2 The Twofish algorithm

The  circuit  portion  chosen  to  demonstrate  viable  layout  was  the 

substitution boxes, q0 and q1, of the Twofish cryptographic algorithm [Schn98]. 

This algorithm was chosen because cryptography is a potential target use of 

Asynchrobatic Logic, and the substitution boxes are four-bits wide meaning 

that they can each be implemented using single stage logic functions.  These 

are complex eight-bit functions that are ultimately grouped into a 64-bit wide 

data-path, to form part of the F-function in a Feistel network [Feis73].  For an 

input value (x), the output (y) is defined as shown in equations (7.1) to (7.7), 

with XOR representing a bit-wise exclusive OR operation, ROR4 representing 

a  logical  Rotate  Right  operation  on  the  specified  four-bit  nibble,  and  tm[n] 

representing  a  substitution  performed  using  the  look-up  tables  detailed  in 

Table 7.1.  This is exactly as designed and documented by Schneier et al. in 

[Schn98].  
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y = qn[ x ] (7.1)

a0, b0 = [ x /16] , x mod 16 (7.2)

a1, b1 = a0 XOR b0, {a0 XOR ROR4 b0 ,1 XOR 8a0}mod 16 (7.3)

a2, b2 = t 0[a1] , t1[b1] (7.4)

a3, b3 = a2 XOR b2, {a2 XOR ROR4b2 ,1 XOR 8a2}mod 16 (7.5)

a4, b4 = t 2[a3] , t 3 [b3] (7.6)

y = 16b4a4 (7.7)

Table
n

Substitution for q0

0 1 2 3 4 5 6 7 8 9 A B C D E F

Substitution for q1

0 1 2 3 4 5 6 7 8 9 A B C D E F
t0[n] 8 1 7 D 6 F 3 2 0 B 5 9 E C A 4 2 8 B D F 7 6 E 3 1 9 4 0 A C 5
t1[n] E C B 8 1 2 3 5 F 4 A 6 7 0 9 D 1 E 2 B 4 C 3 7 6 D A 5 F 9 0 8
t2[n] B A 5 E 6 D 9 0 C 8 F 3 2 4 7 1 4 C 7 5 1 6 9 A 0 E D 8 2 B 3 F
t3[n] D 7 F 4 1 2 6 E 9 B 3 0 8 5 C A B 9 5 1 C 3 D E 6 4 7 F 2 0 8 A

Table 7.1: Look-up Tables for Twofish substitution q-boxes [Schn98]

It  can be seen that  the implementation of these two q-functions will 

more fully use the Ordered Binary Decision Diagram (OBDD) design methods. 

The procedures used are detailed.  Firstly, it is necessary to determine how 

many pipeline stages are needed.  It can be seen that functions (7.1) and (7.6) 

only serve to split the 8-bit input into two 4-bit sections and concatenate the 

resultant  two  4-bit  outputs  into  a  single  8-bit  output.   Neither  of  these 

operations require a pipeline stage.  Each of the table look-ups have only four  

inputs and can therefore be performed in a single pipeline stage, and each of  

the XOR sections also requires one pipeline stage.  The bit-wise rotations 

within the XOR sections can be simply merged.  This means that a single 

q-box requires four pipeline stages.  The 2- and 3-input XOR gates are simple 

to design, so the focus of the design work will be upon the look-up tables.  The 

first task is to calculate the output function for each bit of each table.  This will 

result in thirty-two different output functions.  These then need to be optimised 

to  a  minimal  Reduced  Ordered  Binary  Decision  Diagram  (ROBDD) 

representation.  This can be turned into Verilog and more importantly, SPICE. 
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The layout can be performed, and subsequently compared to the SPICE.  The 

Verilog  and/or  SPICE  can  be  verified  against  a  known  good  reference 

implementation, written in ANSI C, for example, so that when the layout is 

shown to match the SPICE source, the designer can have every confidence 

that the design is correct.  

7.3 Binary Decision Diagram Optimisers

In order to implement the complex input to output functions of the q-box 

tables in the Twofish algorithm it was necessary to be able to convert complex 

functions described as a hexadecimal look-up table into a circuit description.  

This can be done by using a uniform HDL description for circuits simulated in 

this way,  and an OBDD-based preprocessor to convert the function into an 

optimal  ROBDD circuit.   Code  Segment  4 shows  an  example  of  how an 

arbitrary function can be described in Verilog.  In the event, the look-up table 

data was already available and was processed standalone, but the principle of 

this type of preprocessing has clear uses in larger scale designs, where a 

higher level of automation is desirable.  

The  C  code  for  the  optimiser  software  is  shown  in  Appendix  B. 

However, its operation can be summarised as follows.  Take a representation 

of a logic function, which is supplied as a hexadecimal output function.  Given 

a variable ordering, create an OBDD representation of that output function.  

Count the number of nodes n the resulting design, and the total path length.  If 

this is better (less) than the previous best result, replace the best result with 

the current result.  Repeat this for all possible variable orderings.  Output the 

resulting OBDD as a SPICE netlist.  Repeat this operation for each of the logic 

functions.  
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// Single-rail, functional representation
// of an arbitrary adiabatic function
module q1t0b2 (A,Z,PClk,Rst0);
input [3:0] A;
input Pclk; // Simulated Power-Clock
input Rst0; // Reset (active low)
output Z; // Output
reg Z;
reg [0:15] data; // Look-up table data

// Look-up table data can be defined in each cell
// It can be extracted using regular expressions 
initial

data = 16'h1F13;

// Detect Reset, otherwise
// Simulate Charge & Hold stages
always @(posedge PClk or negedge Rst0)

if (~Rst0)
#`RESET_DELAY Z <= 1'bz;

else
// Perform table look-up

#`STAGE_DELAY Z <= data[A];

// Simulate Recover & Wait stages
always @(negedge PClk)

#`STAGE_DELAY Z <= 1'bz;

endmodule
Code Segment 4: Single-rail arbitrary adiabatic function in Verilog

7.4 Layout Design

The  layout  performed  for  the  initial  experiments  that  validated 

Asynchrobatic Logic,  were  performed  using  a  stick-diagram  layout  tool, 

Chipwise.  The resulting cells were neither ideal for re-use nor for automated 

placement.  

Amirante  [Amir04]  has  implemented  various  Positive  Feedback 

Adiabatic  Logic  (PFAL)  cells  without  recovery  devices  using  standard  cell 

based  layout  geometries.   This  would  appear  to  provide  the  good  layout 

methodology.  However, it would be easy to extend this work to the reversible 
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PFAL circuits described in Chapter 5, by having a standard cell with its core, 

central elements formed by the pair of cross-coupled inverters.   The PFAL 

evaluation trees would be placed on one side of this, which leaves space on 

the unused side for the recovery devices.  If the central core and evaluation 

trees were modularised, then it would probably be a relatively simple matter to 

construct closely interlaced reversible logic data-paths.  There are two factors 

that complicate mixing adiabatic logic cells with standard CMOS.  The first is 

the hot n-wells that must be kept isolated from each other.  This is not a new 

problem for static CMOS, as similar isolation issues can occur if it is desired to 

apply back-bias to devices.  The implication is that only n-wells sharing the 

same power-clock can be abutted.  The second issue related to the obstructed 

metal layers.  In general, standard CMOS only uses layers up to and including 

the first metal layer for routing within a standard cell.  Because of the number 

of dual-rail signals that must cross each other, it is necessary to have access 

to the second metal layer when constructing complex adiabatic logic gates. 

Clearly, these layers can be marked as obstructed for automated tools, but it 

would make adiabatic logic less suitable for older CMOS processes with only 

two metal layers.  

The Asynchronous Stepwise Charging (ASWC) controller can clearly 

be  modularised,  with  the  C-element,  the  pulse  generators,  and  the 

intermediate switching  stages all  being  separate components.   This  would 

allow the construction of ASWC circuits with an arbitrary number of steps.

The  more  complex  asynchronous  control  structures  can  be  broken 

down  into  modular  units,  most  of  which  are  components  usually  found  in 

standard CMOS cell libraries, so it should not be too difficult to go to layout for 

these.  

To show that complex circuits could be produced and validated, an LVS 

and DRC correct implementation of the q0 and q1 permutations for the Twofish 

cryptographic  algorithm [Schn98]  were  created.   This  was  done  using  an 
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AMIS  0.35um  five-layer  metal,  two-layer  poly  process.   This  is  a  good 

example,  as  these  permutations  are  constructed  both  from common  logic 

functions  (XOR  gates)  and  eight  4-bit  wide  look-up  tables,  four  in  each 

permutation.   For  a  non-reversible  implementation,  this  leads  to  thirty-two 

functions, which can be referenced according to which permutation they are 

used in (q0 or q1), their table number within that permutation (t0, t1, t2 or t3) and 

which output bit of that permutation's table they generate (from 0 to 3).  

This allows the look-up table functions to be named systematically from 

“q0t0b0”  to  “q1t3b3”,  and  also  allows  the  tables  and  permutations  to  be 

constructed hierarchically, with the look-up tables being named from “q0t0” to 

“q1t3”, and the permutations simply being “q0” and “q1”.  The OBDD-based 

layout  structure meant  that these cells could be further modularised into a 

standard core element which contains the cross-coupled PMOS and NMOS 

devices,  and  a  standard  element  containing  two  NMOS  devices  in  an 

arrangement that represents a OBDD decision node. Within the layout layout 

design,  it  is  also  very  easy  to  modify  PFAL-based  designs  into  Efficient  

Charge Recovery Logic (ECRL) or Improved Efficient Charge Recovery Logic 

(IECRL).  The conversion to IECRL is performed by disconnecting the root of 

the decision tree from the power-clock, and reconnecting it to ground, as well 

as swapping the assertion levels of the outputs.  ECRL can be obtained from 

IECRL by removing the cross-coupled NMOS devices, and leaving only a pair 

of PMOS cross-coupled devices.  

Each of these thirty-two functions was presented to be analysed using 

an OBDD reducer written in C, and capable of generating Verilog or SPICE 

output.   This analysis  shows how minimisation can be performed for more 

complex circuits.  Performing this also showed that in some cases, at the bit-

level  of  the  table,  some  of  the  functions  were  isomorphic  to  each  other, 

meaning that  the function need only be drawn once, and could then have 

different labels applied to its ports.  This result might also be of minor interest 

to cryptanalysts investigating the Twofish algorithm.   
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The layouts of these substitution boxes were drawn using Cadence's 

Virtuoso  tool  with  a  five-layer  metal,  two-layer  polysilicon  Alcatel  0.35µm 

CMOS  process.   The  floor-plans  of  both  layouts  are  identical  and  this 

floor-plan is shown in Figure 7.1.  This shows the placement and orientation of 

the cells, the location of inputs, outputs and power-clock signals, and where 

the routing channels.  The complete layouts for the q0 and q1 q-boxes, which 

were drawn hierarchically using Cadence Virtuoso, are shown in Figures 7.2 

and 7.3 respectively.  Both of these q-boxes are 96.8µm × 144.0µm.  In both 

of these layouts, the eight pairs of dual-rail inputs are on the left, the eight 

pairs of dual-rail  outputs are on the right, and the ground and power-clock 

signals run from top to bottom.  Looking from left to right, the designs can 

clearly be seen to alternate between routing channels and columns of data-

path  cells,  with  the  data-path  columns  alternating  between  sparsely  and 

densely packed cells.  The sparsely packed data-path cells, which occupy the 

first and third columns, are the XOR gates, as defined in equations (7.3) and 

(7.5),  and  the  densely  packed  cells,  which  occupy the  second  and  fourth 

columns, are the look-up tables, as defined in equations (7.4) and (7.6) and 

Table 7.1.  The hierarchical SPICE for these blocks appears in Appendix C, 

and  is  followed  by  truncated  outputs  from  Mentor  Graphics's  Calibre  tool 

which was used to perform LVS checking on these designs.  This confirms 

that all the devices in the layouts match the hierarchical SPICE.  

Since  Figures  7.2 and  7.3 show  complete  blocks,  the  necessary 

magnification makes it difficult to comprehend exactly how the internals of an 

individual cell have been drawn.  To address this, Figure 7.4 shows a close up 

example layout of a cell (q1t0b2).  It can be seen from the layout of the single  

cell, that converting a PFAL gate to either an ECRL or an IECRL gate can be 

done with minimal layout effort.  The circuit diagram for this cell (q1t0b2) is 

shown in Figure 7.5, and has been arranged in such a way as to mimic both 

the layout and the ROBDD structure used in its construction.  The minimised 

SPICE for  this  cell  (q1t0b2)  is  shown in  Code Segment  5,  this  is  a  good 

example  of  how  using  variable  re-ordering  can  improve  a  design.   The 
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reordering mapping shown in Figure 7.6 visually validates the operation of the 

variable  reordering.   This  optimisation  has  allowed  the  function  to  be 

implemented using only four nodes (obviously the minimum for any four-input, 

non-degenerate function), rather than the six that would have been required if 

the function had not been reordered.  Figure  7.7 shows the non-reordered 

OBDD and its resulting ROBDD, and Figure 7.8 shows an optimally reordered 

OBDD and its resulting ROBDD.  This optimisation therefore reduces the input 

capacitance on two of the inputs, and also lowers the number of inter-node 

connections that could store charge on their parasitic capacitances.  Another 

beneficial  consequence of  the reordering is  that  the maximum path length 

through the evaluation tree reduces from four to three, which will reduce any 

power-losses due to gate resistances.  Finally, the reordering reduces the total 

number of paths through the evaluation tree from nine to six, and this could 

make testing quicker.  

One issue which is obvious upon visual inspection of the layouts is the 

amount of  space required for the dual-rail  interconnect.  As the number of 

metal layers increases in modern deep sub-micron and nanometre processes, 

this issue should not be insurmountable.  The layout design also suggests that  

the design may have crosstalk issues.  However, because the data-path in an 

Asynchrobatic system  has  a  different  modus  operandi from  that  of  static 

CMOS, it is less likely that crosstalk will cause major problems, but any risk of 

this  could  be  minimised  by  precluding  the  use  of  adiabatic  logic  families 

without cross-coupled NMOS devices (like ECRL), and by ensuring that the 

parasitic extraction of layouts is performed to include inter-net, cross-coupled 

capacitances, and not just capacitance lumped to ground.  
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Figure 7.1: Floor-plan of Twofish q-boxes
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Figure 7.2: Layout of Twofish q0 substitution box
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Figure 7.3: Layout of Twofish q1 substitution box
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Figure 7.4: Layout of q1t0b2 cell
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Figure 7.5: q1t0b2 circuit diagram
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* PFAL circuit for q1t0b2
.SUBCKT X4X1F13
+I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+Z_H Z_L vpc gnd
* Cross-coupled PMOS devices
MP0  Z_L Z_H  vpc vpc PMOS L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc PMOS L=0.35u W=0.50u
* Cross-coupled NMOS devices
MN0  Z_L Z_H  gnd gnd NMOS L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd NMOS L=0.35u W=0.50u
* Evaluation logic
MNDL vpc I2_L B   gnd NMOS L=0.35u W=0.50u
MNDH vpc I2_H C   gnd NMOS L=0.35u W=0.50u
MNCL C   I1_L A   gnd NMOS L=0.35u W=0.50u
MNCH C   I1_H Z_L gnd NMOS L=0.35u W=0.50u
MNBL B   I4_L A   gnd NMOS L=0.35u W=0.50u
MNBH B   I4_H Z_H gnd NMOS L=0.35u W=0.50u
MNAL A   I3_L Z_H gnd NMOS L=0.35u W=0.50u
MNAH A   I3_H Z_L gnd NMOS L=0.35u W=0.50u
.ENDS
Code Segment 5: Minimised SPICE circuit of function for q1t0b2

Figure 7.6: A visual validation of variable reordering
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Figure 7.7: A non-reordered, sub-optimal ROBDD implementation of q1t0b2

There are nine paths through the non-reordered, sub-optimal, six-node 

implementation of the q1t0b2 function.  These are tabulated below in Table 

7.2.  The numbers are the node numbers from the Figure 7.7, and T0 and T1 

are the “0” and “1” Terminals respectively.  

Path Path Length
1, 2, 4, T0 3
1, 2, 4, 9, T0 4
1, 2, 4, 9, T1 4
1, 2, T1 2
1, 3, 4, T0 3
1, 3, 4, 9, T0 4
1, 3, 4, 9, T1 4
1, 3, 7, T0 3
1, 3, 7, T1 3

Table 7.2: Paths and Path Lengths for a sub-optimal ROBDD minimisation 
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Figure 7.8: A reordered, optimal ROBDD implementation of q1t0b2

There  are  six  paths  through  the  reordered,  optimal,  four-node 

implementation of the q1t0b2 function.  These are tabulated below in Table 

7.3.  The numbers are the node numbers from Figure  7.8, or the terminal 

nodes.  

Path Path Length
1, 4, 8, T0 3
1, 4, 8, T1 3
1, 4, T0 2
1, 3, 8, T0 3
1, 3, 8, T1 3
1, 3, T1 2

Table 7.3: Paths and Path Lengths for an optimal ROBDD minimisation
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7.5 Summary

In this chapter the physical design of complex layout blocks has been 

presented.   Part  of  a  complex  data-path  from  Twofish,  a  real  world 

cryptographic algorithm, has been correctly implemented such that it passes 

LVS checking.  This shows that a SPICE implementation of a design can be 

successfully checked against a layout  implementation.   It  has been shown 

from manufacturing data that it is physically possible to implement the tank 

capacitors on-chip.   The importance and usefulness of the ROBDD design 

methods has been shown, and a method has been presented that would be 

capable of automatically producing SPICE when supplied with  a functional 

description  in  Verilog.   It  has  also  been  practically  demonstrated  that  for 

efficient designs, it is essential to optimise the variable order of an OBDD to 

obtain the optimal ROBDD.  
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Chapter 8 A more complex Asynchrobatic system

8.1 Introduction

To  show  that  Asynchrobatic Logic  can  viably  implement  data 

processing  applications,  a  system  for  calculating  the  Greatest  Common 

Denominator (GCD) of two 16-bit numbers using Euclid’s method [Eucl70] is 

presented.  

The structure is presented in both Verilog and as a circuit.  As noted 

previously  in  Chapter  6,  the  importance  of  being  able  to  represent 

Asynchrobatic Logic using Verilog should not be underestimated.  The lack of 

testability  of  a  large  SPICE  netlist  would  preclude  the  implementation  of 

complex  systems,  because  of  the  excessive  duration  of  testing  and 

debugging.   A Verilog design and testing methodology allows much larger 

structures  to  be  created.   Without  a  Verilog  implementation,  even a  small 

system like this would have been extremely difficult to implement and debug.  

Euclid’s  method  calculates  the  GCD using  repeated  subtraction.   It 

uses the  two  essential  components  of  any computation  system [Böhm66], 

iteration and decision.  The pseudo-code for Euclid’s method is very simple, 

and is shown below in Code Segment  6.  Iteration can be seen in the outer 

“while” loop, and decision can be seen in the inner “if-then-else” construct. 

The  actual  implementation  is  different  from this  in  that  both  variables  are 

reassigned with one always containing the result of the subtraction, and the 

other containing the subtrahend.  
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while (a != b) do
  if (a > b) then
    a = a – b;
  else
    b = b – a;
  end if;
end while;

Code Segment 6: Pseudo-code for GCD algorithm

The complex data-path components required to implement the GCD 

calculator include a subtractor / reverse subtractor, and a comparator.  Both of 

these use radix-four look-ahead structures.  The higher-radix structures are 

used because they reduce the number of stages in the Asynchrobatic pipeline, 

but do not exceed radix-four because this would generally result in designs 

that have more than four FETs in series.  In general this type of structure 

would not comply with the electrical rules of most CMOS processes.     Simple 

data-path components like buffers and multiplexers were also required, but 

should need no detailed explanation.  

8.2 Construction of the basic data-path cells

The adiabatic data-path cells required to construct the design are as follows: 

• Buffer (also usable as an Inverter).

• Two-, Three- and Four-input AND (usable as INV-AND, NAND, NOR, etc).

• Three-, Five- and Seven-input (AND-OR)n.

• Two-input XOR (usable as XNOR).  

• Two-input MUX.  

The NMOS trees for the four-input AND, the seven-input (AND-OR)n, 

the two-input XOR and the two-input MUX are shown in Figures 8.1, 8.2, 8.3 

and 8.4 respectively.  The NMOS trees are not shown for the smaller versions 

of  AND  and  (AND-OR)n with fewer  inputs,  but  can  be  easily  derived  by 
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intelligently  removing  the  inputs  with  the  highest  index  or  indices  as 

necessary.  

Figure 8.1: NMOS tree of 4-input AND [Will08a]

Figure 8.2: NMOS tree of 7-input (AND-OR)4 [Will08a]
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Figure 8.3: NMOS tree of 2-input MUX

Figure 8.4: NMOS tree of 2-input XOR [Will08a]
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8.3 The Comparator

The comparator is required to process an input of two complementary 

data-paths and reduce them to two complementary single-bit  outputs,  “Not 

equal” and “Greater than”.  For a sixteen-bit wide data-path, using radix-four 

look-ahead, this can be achieved in three  Asynchrobatic stages.  For each 

quadrupling of the data-path width a single extra stage would be required. 

The first stage computes these functions for each pair of input bits.  The “Not 

equal” output can be thought of as the inverse of “Equal”.  “Equal” for each bit  

is the XNOR function.  This can be merged using a multi-input AND for the 

whole  data-path.   Although  the  AND  function  is  both  commutative  and 

associative, a regular structure is required so the equality results can be used 

in the “Greater than” part of the comparator.  The “Greater than” function must 

start  from  the  Most  Significant  Bit  (MSB)  and  work  towards  the  Least 

Significant Bit (LSB).  The bitwise “Greater than” function is evaluated using 

an AND function with one input negated (a “free” operation in dual-rail logics). 

If the MSBs are not equal, then it is instantly determinable which of the two 

numbers is the greater.  If the MSBs are equal, then the next pair of MSBs 

must be checked, and so-on.  The function which implements this is the same 

(AND-OR)n (where n is the radix of the comparator) which will also be used in 

the adder  block.  This  computation can be performed on a block-by-block 

basis for use with a look-ahead structure, and the carry-generation logic from 

the subtractor can be reused for this purpose.  The complete structure of the 

Comparator is shown in Figure  8.5.  The boxes on the left contain gates to 

perform the  bitwise  comparison,  and  boxes  marked  “R-4  LA”  contain  the 

radix-4 Look-Ahead logic.  The  Asynchrobatic implementation of this circuit 

has  the  obvious  disadvantage  that  the  width  of  the  data-path  decreases 

logarithmically, but since buffered versions of the values being compared are 

also required, the comparator is operated in parallel with the buffers, keeping 

the data-path width suitably large.   
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Figure 8.5: Comparator for GCD
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8.4 The Subtractor / Reverse Subtractor

The subtractor / reverse subtractor is based upon the radix-four Carry 

Look-ahead Adder (CLA) that was presented in [Will08a].  Depending upon a 

single-bit input “R”, it will perform an unsigned integer subtraction between the 

two w-bit wide data-bus inputs “A” and “B”, with “R” selecting either “A” as the 

subtrahend and “B” as the minuend, or “A” as the minuend and “B” as the 

subtrahend,  and  with  the  output  data-bus  being  “Z”,  this  is  described  by 

equation (8.1).  

Z={ A  −B if R=0
−A  B if R=1} ∀ A , B , Z ∈ 0ℤ2w

(8.1)

The implementation uses a plurality of XOR/XNOR gates (deployed as 

a  complementary  pair  of  n-bit  wide  programmable  inverters)  to  selectively 

perform the ones’ complement of a single input bus, whilst leaving the other 

unmodified.  The conversion to two’s complement is achieved by using a fixed 

carry-in  of  one  (a  “hot-one”)  into  the  LSB  of  the  subtractor.   The  initial 

“propagate” and “generate” signals are generated at the next stage, although 

because there are only three inputs, these stages could have been merged.  

This  is  followed  by  the  main  carry  look-ahead  logic,  which  in  this 

sixteen-bit  example occupies  two further  stages,  and would  increase by a 

further stage every time the data-path width was quadrupled.  This is then 

followed by a final  assimilation stage where  the initial  “propagate”  signals, 

which are buffered through the Carry Look-ahead (CL) logic, are XORed with 

the “generate” signal, calculated by the CL logic.  The complete subtractor / 

reverse subtractor is shown in Figure 8.6.  

This  particular  version  is  based upon the  Sklansky's  [Skla60]  adder 

structure,  although  there  is  nothing  to  prevent  the  Kogge-Stone  [Kogg73] 

adder  structure,  or  the  structure  of  any  of  the  Knowles  family  of  adders 

110



[Know99] being used.  The paper which disclosed the  Asynchrobatic adder 

upon which this subtractor is based [Will08a],  appears to be the first  that  

explicitly  suggests  using  Higher  Radix  Knowles  Adders  (HRKA)  in  an 

application.  However, both higher radix Sklansky adders [Will99] and higher 

radix Kogge-Stone adders [Gurk00] have previously been proposed, and there 

is another previously published work that has alluded to a multi-dimensional 

design space for parallel prefix structures [Zieg04].  
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Figure 8.6: Subtractor / Reverse subtractor for GCD [Will08a]
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8.5 Control logic

As  well  at  the  adiabatic  data-path,  there  is  also  the  asynchronous 

control logic.  The required asynchronous control structures were as follows:

• Simple pipeline element

• Pipeline element with token (active after reset)

• Multiplexer

• De-Multiplexer

The comparator and subtractor are controlled as simple pipelines.  The 

decision as to  which  of  the two buses represents the minuend and which 

represents  the  subtrahend  is  simply  implemented  as  a  multiplexer  in  the 

data-path.   However, the most complex control logic is the interface between 

the equality output of the comparator and the inputs to multiplexer where the 

while-loop is implemented.  This structure needs to be seeded with an initial 

token so that the GCD circuit will operate correctly after a reset, and needs to 

move  a  single  signal  from the  data-path  domain,  and integrate  it  into  the 

control domain.  The seeded token is marked “T0”, and it can be seen that the 

reset signal also directly drives into the data-path element.

The initialisation token is required to place the GCD calculator into a 

state where its input MUX is set so it is waiting for the two external data-path  

inputs and an external request signal.  This is also the state that the GCD 

calculator would be in just after it had produced a result.  The initial token is  

generated using the global reset signal.  For most parts of the Asynchrobatic 

controller circuitry, this signal is just required to ensure that the asynchronous 

SWC logic is in the “Idle” phase.  However, in locations where an initialisation 

token is required, the asynchronous SWC logic is required to be in the “Hold” 

phase, where the function is evaluated.  Since the single-bit control logic is 

bi-stable and could initialise into either state, the reset signal must also ensure 

that the control logic is initialised to the correct value.  
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After the input MUX, there is the comparator stage, which also buffers 

the buses.  The output from the comparator, which is in the data-path domain, 

drives  a  DeMUX,  which  is  in  the  control  domain.   This  selects  between 

outputting the result of the GCD calculation if  the comparator result shows 

both buses hold the same value, or performing a subtraction if the two buses 

contain  different  values.   The  output  from  the  subtractor,  along  with  the 

subtrahend, are fed-back into the internal inputs of the input MUX.  

The simplified structural block diagram for the complete Asynchrobatic 

GCD circuit  is  shown in Figure  8.7.   In that figure,  the rectangles labelled 

“SWC” represent the standard Asynchronous Stepwise Charging control logic 

of  a  pipeline  element.   The  rectangles  marked  “T0”,  “MUX  and  “DMX” 

represent  a  pipeline  element  with  an  initial  token,  a  multiplexer   and  a 

demultiplexer respectively.   In the data-path, the buffers and multiplexers are 

represented by their usual symbols (triangle and symmetrical trapezoid), and 

the complex data-path functions of the comparator and subtractor / reverse 

subtractor are annotated with their functions.  The reset signal is can be seen 

to be entering the data-path buffer in the element with the initial token.  The 

signals “A”, “B” and “Z” are each 16-bit wide dual-rail buses.  The request and 

acknowledge signals are the standard single-bit,  positive logic handshaking 

signals used for asynchronous communication.     
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Figure 8.7: Asynchrobatic GCD [Will08c]

8.6 Performance

The functioning  single-rail  Verilog  description  was  translated,  mainly 

using regular expressions, into a SPICE netlist.   This was simulated using 

Eldo  MACH,  a  faster  table-lookup-based  circuit  simulator  from  Mentor 

Graphics.   The  SPICE  results  were  presented  for  the  maximum  length 

Fibonacci-based test.  The results presented in [Will08c] and shown below in 

Table  8.1 kept the voltage and temperature fixed at their nominal values of 
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3.3V and 25ºC, and showed that as would be expected for an asynchronous 

design, the delay increased for a slower process.  The presented work also 

noted that the power consumption of the asynchronous controller part of the 

circuit  dominated the much larger adiabatic data-path by a factor of  about 

three.   It  is  obvious  that  the  single-bit  control  path  is  inefficient  in 

Asynchrobatic Logic,  as  was  noted  in  that  paper.   However,  it  was  later 

realised that the circuit's speed could have been improved by merging the 

logic  of  the  first  two  pipeline  stages  of  the  subtractor  into  a  single,  more 

complex, logic function.  

Process;
(3.3V; 25ºC) 

Delay 
(µs)

Controller
Power (nW)

Data-path 
Power (nW)

Total
Power (nW)

Fast-Fast 1.022 2.627 0.8034 3.430
Typical 2.067 2.577 0.6801 3.257

Slow-Slow 5.205 2.353 0.6252 2.978

Table 8.1: Performance results for GCD circuit [Will08c]

Three 10pF capacitors were used as the tank capacitors.  Based upon 

the dimensions of the q-boxes in the previous chapter,  and manufacturing 

data from the foundry [AMIS02] & [AMIS03], it is reasonable to believe that 

devices  of  this  capacitance  could  be  easily  constructed  on-chip.   This 

assertion  is  based  upon  the  typical  capacitance  of  an  on-chip  capacitor 

constructed  between  the  two  layers  of  polysilicon,  which  is  quoted  as 

1.1fF/µm² [AMIS02], these capacitors would need to occupy 9,090µm².  This 

gives  dimensions  for  these  capacitors  of  90.9µm  × 100µm.   If  these  are 

compared to the dimensions of the q-boxes from the previous chapter, it is 

clear from their similarity that this size of capacitor is perfectly viable as an 

on-chip  device.   Furthermore,  since  these  capacitors  do  not  need  to  be 

matched, and thus can have metal layers above them utilised, the parasitic 

capacitances that would naturally occur between the five metal layers above 

the capacitor can be exploited to increase the available capacitance.  This can 

be done by filling these locations with a parasitic capacitor constructed from 
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three-dimensionally interdigitated pieces of metal laid out with the unusual aim 

of  maximising  the  coupling,  area  and  fringe  capacitances  of  this  parasitic 

capacitor.

8.7 Testing

The implementation of the GCD circuit  was tested using two simple 

tests that exercise a reasonable proportion of the subtractor.  The choice of 

test  vectors for  this  circuit  is  important,  because poorly chosen or random 

tests are likely to lead to the GCD becoming a down-counter, or, if one input is 

zero, getting stuck in an infinite loop!  The worst case pair of inputs that will  

eventually produce a result would be the maximum representable value and 

either one or one less than the maximum representable value.  This is an 

artefact of the algorithm, not a fault with the circuit.  

There are a series of short tests that can be used to validate and verify 

the design.  The tests are shown in Table 8.2 below.  The first test shows that 

the GCD calculator will  correctly exit, and does not exercise the subtractor. 

The second test performs one subtraction.  The third test is the first where the 

output is different from both inputs,  showing conclusively that  the circuit  is 

performing iterations.  These tests can be extended to the required number of 

cycles by defining the relationship between the inputs as P:(n/n+1)P, with both 

values being integers.    

Relationship between 
inputs

Maximum input 
values (16-bit)

Required 
subtraction 

cycles

Expected 
result

P :    P 0xFFFF : 0xFFFF 0 0xFFFF
P : ½P 0xFFFE : 0x7FFF 1 0x7FFF
P : ⅔P 0xFFFF : 0xAAAA 2 0x5555

Table 8.2: Simple test vectors for the GCD circuit
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The only requirement for (P) is that it is a positive integer within the 

range of the bit-width (w) of the GCD circuit.  This is defined in equation (8.2). 

0 < P < 2W (8.2)

The longer test generates the well known Fibonacci series [Pisa02] on 

the internal data-paths.  This test would remain viable on ultra-wide versions 

of the GCD calculator, as lists of large Fibonacci numbers are available on-

line.  This test requires two Fibonacci numbers, F(n) and F(n-1) where F(n) is the 

nth Fibonacci, and this must adhere to the inequality shown in equation (8.3).   

F(n) ≤ 2W -1 (8.3)

With a 16-bit wide data-path, the value of n of F (n) is 24, for a 32-bit 

wide data-path it is 47, and for a 64-bit data-path it would be 96.  This shows  

that this test will scale to a usable length even for high data-path widths.  

8.8 Simulation Results

8.8.1 Verilog

The behavioural Verilog for the GCD circuit was simulated, and data 

captured from the input and output ports of the Device Under Test (DUT) as 

would be possible for a physical implementation.  Internal probes were placed 

on the outputs of the subtractor and subtractor bypass buffers so that visibility 

of the intermediate internal results was available.  These output listings are 

shown after this paragraph and continued on the subsequent page.  Input and 

Output transactions are labelled as such with the “request” and “acknowledge” 

signal being shown, and bundled-data being presented both in hexadecimal 

and decimal.  Transactions on the internal probe point are marked “M8” and 

just show the bundled data, again, both in hexadecimal and decimal.  During 

the start-up phases, signals shown as “X” are in an undefined state and after 
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operations have occurred on the data-bus, signals shown as “Z” are high-

impedance, indicating that there is no valid data on the data-bus at that time. 

Code Sequence 7, which is continued over two pages, shows four truncated 

output sequences.  The first is the initialisation that does not form part of the 

tests, but does show the inputs being initialised to the “Idle” state, and the 

reset signal forcing the outputs to go from an undefined state, also into the 

“Idle” state.  After this initialisation, the tests follow, and are clearly delineated 

from each other.   The former locations of the removed tests can be seen from 

the  large gaps in  the progression  of  simulation  time.   There  is  no ulterior 

motive for the removal of these tests as they produced the expected results; 

they have only been omitted for brevity.  

Trigger   Time Req/Ack Hexadecimal   (Decimal) 
==============================================
M8          60         zzzz zzzz (    z     z)
Inputs      70 R:0 A:0 zzzz zzzz (    z     z)
Outputs     90 R:0 A:x      zzzz       (    z)
Outputs    170 R:0 A:0      zzzz       (    z)
----------------------------------------------
Inputs    1050 R:0 A:0 FFFF FFFF (65535 65535)
Inputs    1260 R:1 A:0 FFFF FFFF (65535 65535)
Inputs    1410 R:0 A:1 FFFF FFFF (65535 65535)
Inputs    1660 R:0 A:0 zzzz zzzz (    z     z)
Outputs   1710 R:1 A:0      FFFF       (65535)
Outputs   1790 R:1 A:1      FFFF       (65535)
Outputs   2010 R:0 A:1      zzzz       (    z)
Outputs   2090 R:0 A:0      zzzz       (    z)
----------------------------------------------
Inputs  203490 R:0 A:0 AAAA FFFF (43690 65535)
Inputs  203700 R:1 A:0 AAAA FFFF (43690 65535)
Inputs  203850 R:0 A:1 AAAA FFFF (43690 65535)
Inputs  204100 R:0 A:0 zzzz zzzz (    z     z)
M8      204420         5555 AAAA (21845 43690)
M8      204720         zzzz zzzz (    z     z)
M8      205190         5555 5555 (21845 21845)
M8      205490         zzzz zzzz (    z     z)
Outputs 205700 R:1 A:0      5555       (21845)
Outputs 205780 R:1 A:1      5555       (21845)
Outputs 206000 R:0 A:1      zzzz       (    z)
Outputs 206080 R:0 A:0      zzzz       (    z)
----------------------------------------------

Continued...
Code Segment 7: Verilog results of simple GCD tests
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Trigger   Time Req/Ack Hexadecimal   (Decimal) 
----------------------------------------------
Inputs  354710 R:0 A:0 6FF1 B520 (28657 46368)
Inputs  354920 R:1 A:0 6FF1 B520 (28657 46368)
Inputs  355070 R:0 A:1 6FF1 B520 (28657 46368)
Inputs  355320 R:0 A:0 zzzz zzzz (    z     z)
M8      355640         452F 6FF1 (17711 28657)
M8      355940         zzzz zzzz (    z     z)
M8      356410         2AC2 452F (10946 17711)
M8      356710         zzzz zzzz (    z     z)
M8      357190         1A6D 2AC2 ( 6765 10946)
M8      357490         zzzz zzzz (    z     z)
M8      357960         1055 1A6D ( 4181  6765)
M8      358260         zzzz zzzz (    z     z)
M8      358740         0A18 1055 ( 2584  4181)
M8      359040         zzzz zzzz (    z     z)
M8      359510         063D 0A18 ( 1597  2584)
M8      359810         zzzz zzzz (    z     z)
M8      360290         03DB 063D (  987  1597)
M8      360590         zzzz zzzz (    z     z)
M8      361060         0262 03DB (  610   987)
M8      361360         zzzz zzzz (    z     z)
M8      361840         0179 0262 (  377   610)
M8      362140         zzzz zzzz (    z     z)
M8      362610         00E9 0179 (  233   377)
M8      362910         zzzz zzzz (    z     z)
M8      363390         0090 00E9 (  144   233)
M8      363690         zzzz zzzz (    z     z)
M8      364160         0059 0090 (   89   144)
M8      364460         zzzz zzzz (    z     z)
M8      364940         0037 0059 (   55    89)
M8      365240         zzzz zzzz (    z     z)
M8      365710         0022 0037 (   34    55)
M8      366010         zzzz zzzz (    z     z)
M8      366490         0015 0022 (   21    34)
M8      366790         zzzz zzzz (    z     z)
M8      367260         000D 0015 (   13    21)
M8      367560         zzzz zzzz (    z     z)
M8      368040         0008 000D (    8    13)
M8      368340         zzzz zzzz (    z     z)
M8      368810         0005 0008 (    5     8)
M8      369110         zzzz zzzz (    z     z)
M8      369590         0003 0005 (    3     5)
M8      369890         zzzz zzzz (    z     z)
M8      370360         0002 0003 (    2     3)
M8      370660         zzzz zzzz (    z     z)
M8      371140         0001 0002 (    1     2)
M8      371440         zzzz zzzz (    z     z)
M8      371910         0001 0001 (    1     1)
M8      372210         zzzz zzzz (    z     z)
Outputs 372420 R:1 A:0      0001       (    1)
Outputs 372500 R:1 A:1      0001       (    1)
Outputs 372720 R:0 A:1      zzzz       (    z)
Outputs 372800 R:0 A:0      zzzz       (    z)
Code Segment 7: Verilog results of GCD Fibonacci test
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8.8.2 SPICE

Having used the Verilog simulations to validate and verify the design 

and its results, the simulations can be now performed using SPICE.  

If care is not taken, SPICE can generate vast quantities of simulation 

result data, so only minimal probing of internal nodes was performed.  This 

limits which internal signals may be displayed.  

Figure 8.8 shows an example of a simulation cycle that would be used 

to take power measurements.  This figure and the following two are all from 

the same simulation run, which was performed using slow-n, slow-p models 

with nominal voltage (3.3V) and nominal temperature (25ºC).  The uppermost 

graph shows the voltages on each of the tank capacitors (labelled V(VC1), 

V(VC2) and V(VC3)).  The next graph shows one of the internally generated 

stepwise  power-clock  signals  (labelled  XDUT.ASWC0).   This  is  the  SWC 

waveform that drives the input MUX in the centre-left of Figure 8.7.  The digital 

graphs  show the  input,  output  and  internally  probed  signals,  these  clearly 

show that the data-path returns to zero when not driven, although due to the 

scale, only the transitions can be seen, rather than the values.  The input and 

output  “request” and  “acknowledge”  signals  are  shown  in  the  penultimate 

graph, and the final graph was produced by the waveform processing tool, 

and shows the result of integrating the current drawn by the power supplies 

driving the ASWC control logic (labelled “idd”) and the SWC circuit (labelled 

“ipc”).  It can be seen that the majority of of the current is drawn by the ASWC 

control logic.  
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Figure 8.9 shows a close-up of the first two transactions of the Figure 

8.8.   The uppermost graph again shows the voltages on each of the tank 

capacitors (labelled V(VC1), V(VC2) and V(VC3)).  The next graph shows one 

of  the  internally  generated  stepwise  power-clock  signals  (labelled 

XDUT.ASWC0).  The exponential charging within each charging step can be 

clearly seen.  The final, digital graph shows the two transactions in sufficient 

detail that the hexadecimal arithmetic and subsequent return-to-zero can be 

seen to be occurring correctly.  

Figure  8.10 shows the start-up cycle, which wasn't used for power or 

performance measurement.   It  can be clearly seen from this that  the tank 

capacitors converge to operational voltages quickly after computation activity 

commences, although the speed of convergence will  be determined by the 

size of the tank capacitors and the capacitive load being driven.  
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Figure 8.8: GCD complete trace
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Figure 8.9: GCD close-up 
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Figure 8.10: Start-up performance of GCD circuit



8.9 Summary

The ability to implement the GCD circuit is a major achievement, as it 

proves that  Asynchrobatic Logic can be use to implement complex systems 

that include decision and iteration.  Since these are two essential structures in 

computational systems, it is only a small step to extend this and confidently 

argue that this achievement shows that complex processing systems can be 

implemented using Asynchrobatic Logic.  

As well as producing an Asynchrobatic logic circuit that could perform 

an iterative computation, it has been shown that complex  Asynchrobatic logic 

circuits  can be modelled using Verilog HDL, which shows that even larger 

systems could be constructed if so desired.  
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Chapter 9 Conclusions and Future work

9.1 Conclusions

In  the  first  four  chapters  of  this  thesis,  the  foundations upon which 

Asynchrobatic Logic is built have been introduced.  These are Adiabatic Logic, 

Asynchronous Logic, and the design methods for dual-rail logic.  Although the 

majority  of  this  material  was  previously  known,  this  introduction  extended 

knowledge by quantifying how the number of inputs causes the size of the 

search  space  for  Free  n-ary  Decision  Diagrams  to  increase,  along  with 

suggestion possible applications in Multi-Valued Logic (MVL).  

Asynchrobatic Logic has been introduced.  It has been shown to be a 

viable method for the implementation of novel, low-power, complex systems. 

The  fact  that  an  operational  implementation  of  the  Greatest  Common 

Denominator (GCD) algorithm could be produced shows that systems capable 

of performing iteration and decision can be implemented.  The significance of 

this is that it has been shown that these two constructs are required to allow 

structured  programming  [Böhm66].   This  implies  that  Asynchrobatic Logic 

could  be  used  to  implement  arbitrarily  complex  computational  systems. 

Although the GCD was a netlist only simulation, the layout implementation of 

the  q-boxes  from  the  Twofish  algorithm  shows  that  viable  physical 

implementations can also be produced.  

As well as producing circuitry capable of implementing  Asynchrobatic 

Logic, this work has shown that it is possible to model  Asynchrobatic Logic 

using the Hardware Description Languages (HDLs) Verilog and VHDL.  The 

ability  to  model  complex  systems  using  more  abstract  representations  is 

essential because performing SPICE simulations would take too long, and any 

mistakes would be far more difficult to locate or diagnose.  
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As with any VLSI system or engineering project,  Asynchrobatic Logic 

has  made  some  compromises  to  achieve  design  goals.   The  main 

compromise  made  by  Asynchrobatic Logic  is  the  width  of  the  low-power, 

charge recovering, adiabatic data-path needed to amortise the power used in 

the  asynchronous  controller.  However,  there  can  be  no  doubt  that 

Asynchrobatic Logic achieved its basic aim of unifying the low-power benefits 

of asynchronous logic and adiabatic logic.  

The  relevance  of  the  novel  idea  of  Asynchrobatic Logic  has  been 

validated by others following the  lead,  with  the  initial  paper  that  disclosed 

Asynchrobatic Logic [Will04], being cited in at least two other papers, one from 

Carleton University, Ottawa, Canada, where the main expertise appears to be 

in adiabatic logic [Arsa07] and one from Newcastle University, Great Britain, 

where the expertise is in asynchronous logic [Asim08].  Indeed, in his paper 

Arsalan quotes directly “If the power reducing properties of these techniques  

could  be combined,  then it  should  be  possible  to  produce a  logic  design  

methodology that is only active when it is performing useful computations ,  

and  recycles  a  large  proportion  of  the  energy  used  to  perform  those  

computations.”   The  accolade  of  being  directly  quoted  is  obviously  very 

welcome.  

It  is  worth  comparing  Asynchrobatic Logic  with  the  alternative 

suggestions  for  asynchronous  and  adiabatic  logics  from  others.   The 

suggestion by Arsalan et al. [Asra07] uses a “Control and Regeneration” block 

that  appears  to  consist  of  “a  conventional  CMOS  OR”  gate.    The  idea 

appears to be to use a dual-rail asynchronous signalling method (similar to 

that  suggested  for  narrow  Asynchrobatic data-paths),  with  charge  being 

forwarded from the asserted output of the previous stage to enable adiabatic 

operation.  However, this method would seem to provide an approximation to 

adiabatic charging, but does not appear to be capable of charge recovery.  
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The suggestion of Asimakpoulos et al. [Asim08] can be summarised as 

asynchronously connecting an adiabatic data-path to a resonant clock.  This is 

a perfectly reasonable alternative suggestion, but may be somewhat harder to 

implement on silicon than it is to simulate and to do this requires peak and 

trough  detectors,  which  are  probably  just  as  complex  as  Asynchronous 

Stepwise Charging logic, and the design still requires an off-chip inductor.  

Another area where this work has extended the state-of-the-art is with 

respect to Reversible Logic.  If this work is compared with that of Khazamipour 

[Khaz05] & [Khaz06], who has investigated using Reversible Energy Recovery 

Logic (RERL), the improvements can be quantified.  Moving from using RERL, 

which has eight-phase clocking, as a method for implementing reversible logic 

circuits,  to using PFAL, which only requires four-phase clocking makes the 

clocking scheme half  as complex.   The Positive Feedback Adiabatic Logic 

(PFAL) solution requires 76 transistors.   In comparison, the RERL solution 

appears to require at least 94 devices, which means that the proposed PFAL 

solution  operates  with  at  least  20% fewer  transistors.   This  quantification 

remains in some doubt, as it is somewhat unclear from the previous work how 

many devices are required to make a two-input AND gate reversible.  Clearly 

with either four-phase clocking, or Asynchrobatic operation, the use of PFAL 

to implement reversible logic circuits represents a reduction in complexity, and 

a clear advancement of knowledge.  

9.2 Novelty claims and contributions

The main claim of novelty and advancement of the state-of-the-art is 

the concept of  Asynchrobatic Logic.  Until this concept had been introduced 

asynchronous design and adiabatic design had been separate and isolated 

fields or research.  Therefore, the introduction of a asynchronous, adiabatic 

system is a major advancement in the field of low-power microelectronics.    
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The  implementation  of  this  using  capacitor-based,  asynchronous 

stepwise charging as a method for driving adiabatic data-path logic, discloses 

a  viable  implementation  of  Asynchrobatic logic.   This  was  extended  by 

showing that complex data-paths and complex control structures can also be 

implemented.

Methods  for  modelling  Asynchrobatic Logic  in  industry  standard 

Hardware  Description  Languages  (HDLs),  like  Verilog  and  VHDL  were 

proposed.  This implemented code is novel, because to model Asynchrobatic 

logic  correctly,  both  rising  and  falling  edges  of  clock  signals  need  to  be 

considered.  

A  systematic  identification  of  other  potential  adiabatic  logic  families 

based around cross-coupled pairs of  PMOS transistors was performed.  It 

identified a previously undocumented adiabatic logic family.  However, it did 

not show any extra low-power benefits over previously disclosed technologies. 

The use of the  Positive  Feedback Adiabatic  Logic  (PFAL)  family  to 

implement complex reversible processing logic represents a substantial step 

forward.  It  allows reversible logic,  to be implemented using  Asynchrobatic 

logic, thus allowing fully adiabatic systems, to be created. 

A generalisation of results for the rate of growth of the search space for 

“Free n-ary Decision Diagrams”.  These sequences only appear to have been 

documented for binary and ternary decision diagrams, but could be usefully 

extended  to  Free Quaternary,  Quinary  or  higher-order  Decision  Diagrams, 

with  possible  applications  being  the  design  of  functions  for  Multi-Valued 

Logics (MVL).  
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9.3 Applications and future work.

There  is  no  reason  why  Asynchrobatic Logic  could  not  be 

commercialised.  Obvious wide-data-path applications for Asynchrobatic logic 

include Very Long Instruction Word (VLIW), Floating-Point, Single Instruction 

Multiple Data (SIMD), Vector and cryptographic processors.  In the field of 

cryptography, as well as obvious targets like block ciphers, there is potential to 

implement  data-paths  to  allow  processing  for  Elliptic  Curve  Cryptography 

(ECC).   These  use Galois  Field  (GF)  arithmetic  over  prime bit-widths,  for 

example GF(2173) [Leun03].  Another potential benefit of using these systems 

for cryptography is the potential to reduce side channel information leakage.  It  

is conjectured that the asynchronous nature of operations will make it harder 

to  derive  information  from  circuit  timing,  and  that  reversible  (adiabatic) 

operation  can  reduce  susceptibility  to  Differential  Power  Analysis  (DPA) 

attacks [Thap06].   Furthermore,  the dual-rail  nature of  the logic,  the lower 

power consumption and what is effectively power-supply damping caused by 

the tank capacitors should also combine to further reduce this technology’s 

susceptibility to power analysis.  This dual-rail implementation may also make 

the  circuit  more  tamper  resistant,  because  attempting  to  inject  data  could 

cause the dual-rail wiring to enter an invalid state, allowing this unauthorised 

access to be detected.  

The register-file structure presented by Moon et al. [Moon98] could be 

converted  to  Asynchrobatic operation.   This  would  allow  the  efficient 

implementation  of  systems  that  require  register-style  storage.   Whilst  the 

availability  of  register-files  is  not  absolutely  essential,  as  they  can  be 

implemented  by  the  feedback  of  reused  values  around  a  loop  with  a 

multiplexer (MUX) to allow new data to be written, this functional block would 

be one of the most desirable to implement as the suggested alternative is 

nowhere near as efficient as a randomly addressable register-file.  There are 

some more design complications with register-file design, as the Static RAM 

(SRAM) cell would need to be margined to ensure that its contents can be 
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reliably written, stored and read.  Register-files are essential components in 

most processors.

The power consumption of the asynchronous controller probably has 

potential for further optimisation.  It is likely that it could be further reduced. 

This could be achieved for example by using a lower-power logic style than 

standard static CMOS.  As an example, further work could consider using sub-

threshold, current mode circuits.  

With the demonstrated potential  to implement fully reversible circuits 

using this technology, further research looking at implementing more complex 

reversible gates would be useful.  Demonstrating more complex (and more 

useful)  reversible  gates  is  likely  to  cause  interest  in  PFAL-based 

Asynchrobatic Logic from those researching reversible computation.  

As noted previously, this work approached the idea from a position of 

intellectual strength that was more superior in terms of adiabatic logic.  The 

steeper learning curve for asynchronous logic has alluded to further areas of 

crossover that may be exploitable in the future.  There is a substantial tranche 

of work in asynchronous logic that is predicated upon the use of Differential 

Cascode Voltage Switch Logic (DCVSL) circuitry.   Given that the adiabatic 

logic circuits are also predicated, albeit in a different way, on DCVSL circuits, 

there may be further exploitable potential in this area.  The best example of 

this  is  at  the  control/data-path  interface  where  the  result  of  a  data-path 

operation is a single bit that must influence the control structure.  If this single 

bit cannot travel with other data in the wide data-path, then to operate it with 

an  Asynchrobatic power-clock would not be the most efficient method for its 

propagation, and moving it into a purely asynchronous domain is likely to be 

more efficient.  

The majority of the work performed in the evaluation of Asynchrobatic 

Logic  was  conducted  using  sub-micron,  rather  than  deep  sub-micron  or 
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nanometre  processes.   However,  there  is  evidence  from  simulations  that 

adiabatic  circuits  will  operate  when  implemented  in  deep  sub-micron 

processes, and no reason to expect this situation to change for nanometre 

processes.  In fact, the availability of devices with different threshold voltages 

(VT) devices provide further optimisation potential for all parts to the design.  

Given the extensive list of different adiabatic logic families that have 

been proposed,  and which  are  catalogued in  the  appendix,  it  would  be a 

worthwhile  exercise  to  systematically  compare  the  power,  area  and 

performance of a large number of these for several benchmark tests under 

defined process conditions on a variety of different CMOS processes.  These 

benchmarking  tests  would  ideally  use  components  that  are  of  use  in 

production systems like arithmetic  units  or  parts  of  cryptographic systems, 

rather than having tests based upon buffers or inverters.  

The decision to limit decision tree depth to four NMOS devices is based 

upon the Electrical Rule Checker (ERC) limits that are imposed on standard 

static CMOS to prevent problems caused by CMOS switches being resistive, 

non-ideal  switches.   However,  due  to  the  different  nature  of  operation  of 

Asynchrobatic Logic and the underlying  adiabatic  logic  families in  its data-

path,  it  may  be  possible  to  waive  this  arbitrary  limit  in  some  situations. 

However,  further  analysis  of  how  this  affects  performance  would  be 

necessary.  

Finally,  other  design  methods  for  obtaining  more  optimal 

implementations of functions should be investigated as and when they are 

published.  
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Appendices

Appendix A Verilog source-code
A.1 Single-rail GCD

`timescale 1ns / 100ps
`define RESET_DELAY 1.5
// The assignment delay following pseudo-power-clock
`define DP_RESET_VAL 1'bz
// The normal reset value applied to data-path cells
`define STAGE_DELAY 2
// The assignment delay following pseudo-power-clock
`define NEG_EDGE 1
// Are flop outputs reset on falling edge?
`define NEG_EDGE_VAL 1'bz
// The normal value assigned upon the falling pseudo-power-clock edge
`define LOGIC_DELAY 2.5
// The assignment delay following pseudo-power-clock

// Static CMOS cell names use ALL CAPS
// Adiabatic cell names use lower case

module C_ELE2R0 (A, B, Z, rst0);
// 2-input C-Element with reset to 0
input  A, B, rst0;
output Z;
reg    Z;
always @(A or B or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 0;
  else if (A == B)
    #`LOGIC_DELAY Z <= A;
endmodule
module C_ELE2R1 (A, B, Z, rst0);
// 2-input C-Element with reset to 1
input  A, B, rst0;
output Z;
reg    Z;
always @(A or B or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 1;
  else if (A == B)
    #`LOGIC_DELAY Z <= A;
endmodule
module C_ELE3R0 (A, B, C, Z, rst0);
// 3-input C-Element with reset to 0
input  A, B, C, rst0;
output Z;
reg    Z;
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always @(A or B or C or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 0; 
  else if ((A == B) & (B == C))
    #`LOGIC_DELAY Z <= A;
endmodule
module BUF1 (A, Z);
// Buffer
input  A;
output Z;
reg    Z;
always @(A)
  #`LOGIC_DELAY Z <= A;
endmodule
module INV1 (A, Z);
// Inverter
input  A;
output Z;
reg    Z;
always @(A)
  #`LOGIC_DELAY Z <= ~A;
endmodule
module OR2 (A, B, Z);
// 2-input OR gate
input  A, B;
output Z;
reg    Z;
always @(A or B)
  #`LOGIC_DELAY Z <= A | B;
endmodule
module AN2 (A, B, Z);
// 2-input AND gate
input  A, B;
output Z;
reg    Z;
always @(A or B)
  #`LOGIC_DELAY Z <= A & B;
endmodule
module MUX2 (S0req, S0ack, S1req, S1ack, 
             CT0req, CT1req, Ctack, Zreq, Zack, rst0);
// 2-input MUX for Asynchronous Controller
input  S0req, S1req, CT0req, CT1req, Zack;
input  rst0;
output S0ack, S1ack, CTack, Zreq;
wire   S0CT0req, S1CT1req, ZreqI;
C_ELE2R0 cel1 (S0req, CT0req, S0CT0req, rst0);
C_ELE2R0 cel2 (S1req, CT1req, S1CT1req, rst0);
C_ELE2R0 cel3 (Zack, S0CT0req, S0ack, rst0);
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C_ELE2R0 cel4 (Zack, S1CT1req, S1ack, rst0);
OR2      or2  (S0CT0req, S1CT1req, Zreq);
BUF1     buf1 (Zack, CTack);
endmodule
module DMX2 (S0req, S0ack, S1req, S1ack,
             CT0req, CT1req, Ctack, Ireq, Iack, rst0);
// 2-output DeMUX for Asynchronous Controller
input  S0ack, S1ack, CT0req, CT1req, Ireq;
input  rst0;
output S0req, S1req, CTack, Iack;
wire   S0CT0req, S1CT1req;
C_ELE2R0 cel1 (Ireq, CT0req, S0req, rst0);
C_ELE2R0 cel2 (Ireq, CT1req, S1req, rst0);
OR2      or2  (S0ack, S1ack, Iack);
BUF1     buf1 (Iack, CTack);
endmodule
module PIPELINE_ELER0 (Ireq, Iack, Zreq, Zack, aswc, rst0);
// Asynchronous pipeline element
input  Ireq, Zack;
input  rst0;
output Zreq, Iack;
output aswc;
wire   temp;
INV1     inv1 (Zack, Zack_n);
C_ELE2R0 cel1 (Ireq, Zack_n, aswc,rst0);
BUF1     buf1 (aswc, temp);
BUF1     buf2 (temp, Zreq);
BUF1     buf3 (temp, Iack);
endmodule
module PIPELINE_ELER1 (Ireq, Iack, Zreq, Zack, aswc, rst0);
// Asynchronous pipeline element with reset to active 
//(for initial tokens)
input  Ireq, Zack;
input  rst0;
output Zreq, Iack;
output aswc;
wire   temp;
INV1     inv1 (Zack, Zack_n);
C_ELE2R1 cel1 (Ireq, Zack_n, aswc,rst0);
BUF1     buf1 (aswc, temp);
BUF1     buf2 (temp, Zreq);
BUF1     buf3 (temp, Iack);
endmodule
// Single Rail models of PFAL Cells
// Can be expanded to Dual Rail
// using regular expression substitution
// CMOS models can be created using
// rpmos and nmos primitives
// aswc is the pseudo-power-clock
// rst0 is reset asserted low (for simulation purposes)
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// Basic cells

module buf1 (A, Z, aswc, rst0);
// Buffer
input  A;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= A;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module buf1r1 (A, Z, aswc, rst0);
// Buffer with reset 
input  A;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 1;
  else
    #`STAGE_DELAY Z <= A;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module xor2 (A, B, Z, aswc, rst0);
// 2-input XOR
input  A, B;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= A ^ B;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
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module xnor2 (A, B, Z, aswc, rst0);
// 2-input XNOR 
input  A, B;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= ~(A ^ B);

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module and2 (A, B, Z, aswc, rst0);
// 2-input AND
input  A, B;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= A & B;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module or2 (A, B, Z, aswc, rst0);
// 2-input OR
input  A, B;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= A | B;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
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module mux2 (A, B, S, Z, aswc, rst0);
// 2-way MUX
input  A, B, S;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= S ? B : A;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module and3 (A, B, C, Z, aswc, rst0);
// 3-input AND
input  A, B, C;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
  if (~rst0)
    #`RESET_DELAY Z <= `DP_RESET_VAL;
  else
    #`STAGE_DELAY Z <= A & B & C;

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
module and4 (A, B, C, D, Z, aswc, rst0);
// 4-input AND
input  A, B, C, D;
input  aswc, rst0;
output Z;
reg    Z;
always @(posedge aswc or negedge rst0)
if (~rst0)
  #`RESET_DELAY Z <= `DP_RESET_VAL;
else
  #`STAGE_DELAY Z <= A & B & C & D;

always @(negedge aswc)
if (`NEG_EDGE)
  #`STAGE_DELAY Z <= `NEG_EDGE_VAL;
endmodule
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module gpp2 (G1, G0, P1, Gp, aswc, rst0);
// 3-input AND2-OR
input  G1, G0, P1;
input  aswc, rst0;
output Gp;
reg    Gp;
always @(posedge aswc or negedge rst0)
if (~rst0)
  #`RESET_DELAY Gp <= `DP_RESET_VAL;
else
  #`STAGE_DELAY Gp <= G1 |(P1 & G0);

always @(negedge aswc)
if (`NEG_EDGE)
  #`STAGE_DELAY Gp <= `NEG_EDGE_VAL;
endmodule
module gpp3 (G2, G1, G0, P2, P1, Gp, aswc, rst0);
// 5-input AND2-OR-AND-OR
input  G2, G1, G0, P2, P1;
input  aswc, rst0;
output Gp;
reg    Gp;
always @(posedge aswc or negedge rst0)
if (~rst0)
  #`RESET_DELAY Gp <= `DP_RESET_VAL;
else
  #`STAGE_DELAY Gp <= G2 |(P2 &(G1 |(P1 & G0)));

always @(negedge aswc)
if (`NEG_EDGE)
  #`STAGE_DELAY Gp <= `NEG_EDGE_VAL;
endmodule
module gpp4 (G3, G2, G1, G0, P3, P2, P1, Gp, aswc, rst0);
// 7-input AND2-OR-AND-OR-AND-OR
input  G3, G2, G1, G0, P3, P2, P1;
input  aswc, rst0;
output Gp;
reg    Gp;
always @(posedge aswc or negedge rst0)
if (~rst0)
  #`RESET_DELAY Gp <= `DP_RESET_VAL;
else
  #`STAGE_DELAY Gp <= G3 |(P3 &(G2 |(P2 &(G1 |(P1 & G0)))));

always @(negedge aswc)
  if (`NEG_EDGE)
    #`STAGE_DELAY Gp <= `NEG_EDGE_VAL;
endmodule
/*
        The structural components of the subtractor 
*/
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module HALF_ADDER(A, B, P0, G0, aswc, rst0);
// Half Adder to provide "Generate" and "Propagate" signals
input  A, B;
input  aswc, rst0;
output G0, P0;
xor2 Pro (A, B, P0, aswc, rst0);
and2 Gen (A, B, G0, aswc, rst0);
endmodule
module CALF_ADDER(A, B, P0, G0, aswc, rst0);
// Carry-set Half Adder - Used for LSB of Subtractor 
input  A, B;
input  aswc, rst0;
output G0, P0;
xnor2 Pro (A, B, P0, aswc, rst0);
or2   Gen (A, B, G0, aswc, rst0);
endmodule
module PP1 (Q_in, G_in, Q_ot, G_ot, aswc, rst0);
// Level 1 Propagate/Generate Look-Ahead logic
input  G_in, Q_in;
input  aswc, rst0;
output G_ot, Q_ot;
buf1 Pr0 (Q_in, Q_ot, aswc, rst0);
buf1 Gen (G_in, G_ot, aswc, rst0);
endmodule
module PP2 (Q_in, P1_in, P0_in, G1_in, G0_in, 
            Q_ot, P_ot, G_ot, aswc, rst0);
// Level 2 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Q_in;
input  G1_in, G0_in;
input  P1_in, P0_in;
input  aswc, rst0;
output Q_ot, P_ot, G_ot;
buf1 Pr0 (Q_in,               Q_ot, aswc, rst0);
and2 Pro (P1_in, P0_in,       P_ot, aswc, rst0);
gpp2 Gen (G1_in, G0_in, P1_in,G_ot, aswc, rst0);
endmodule
module PP3 (Q_in, P2_in, P1_in, P0_in, G2_in, G1_in, G0_in, 
            Q_ot, P_ot, G_ot, aswc, rst0);
// Level 3 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Q_in;
input  G2_in, G1_in, G0_in;
input  P2_in, P1_in, P0_in;
input  aswc, rst0;
output Q_ot, P_ot, G_ot;
buf1 Pr0 (Q_in,                              Q_ot, aswc, rst0);
and3 Pro (P2_in, P1_in, P0_in,               P_ot, aswc, rst0);
gpp3 Gen (G2_in, G1_in, G0_in, P2_in, P1_in, G_ot, aswc, rst0);
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endmodule
module PP4 (Q_in, P3_in, P2_in, P1_in, P0_in, 
            G3_in, G2_in, G1_in, G0_in, 
            Q_ot, P_ot, G_ot, aswc, rst0);
// Level 4 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Q_in;
input  G3_in, G2_in, G1_in, G0_in;
input  P3_in, P2_in, P1_in, P0_in;
input  aswc, rst0;
output Q_ot, P_ot, G_ot;
buf1 Pr0 (Q_in,                                     Q_ot,aswc,rst0);
and4 Pro (P3_in,P2_in,P1_in,P0_in,                  P_ot,aswc,rst0);
gpp4 Gen (G3_in,G2_in,G1_in,G0_in,P3_in,P2_in,P1_in,G_ot,aswc,rst0);
endmodule
module SUBRSB16(A, B, R, Z, aswc, rst0);
// 16-bit, radix-4, carry look-ahead, two's complement, selectable 
//subtractor or reverse subtractor
// 16-bit inputs A and B are selectable as to which is 
// the subtrahend and minuend
// Input R selects between the following operations: +A-B or -A+B
// Subtraction performed using two's complement, 
// Input selected as subtrahend is complemented using XOR 
// (to give ones complement)
// Two's complement obtained with fixed Carry-in incorporated 
// into initial Propagate/Generate logic
input  [15:0]  A, B;
input          R;
input  [0:4]   aswc;
input          rst0;
output [15:0]  Z;
wire   [15:0]  A0, B0;
wire   [15:0]  Q0, G0;
wire   [15:0]  Q1, G1;
wire   [15:0]  Q2, G2;
wire   [15:1]  P1;
wire   [15:4]  P2;
// A0 is ones complement of A if R==0

xor2 ia0        (~R, A[00], A0[00], aswc[0], rst0);
xor2 ia1        (~R, A[01], A0[01], aswc[0], rst0);
xor2 ia2        (~R, A[02], A0[02], aswc[0], rst0);
xor2 ia3        (~R, A[03], A0[03], aswc[0], rst0);
xor2 ia4        (~R, A[04], A0[04], aswc[0], rst0);
xor2 ia5        (~R, A[05], A0[05], aswc[0], rst0);
xor2 ia6        (~R, A[06], A0[06], aswc[0], rst0);
xor2 ia7        (~R, A[07], A0[07], aswc[0], rst0);
xor2 ia8        (~R, A[08], A0[08], aswc[0], rst0);
xor2 ia9        (~R, A[09], A0[09], aswc[0], rst0);
xor2 iaa        (~R, A[10], A0[10], aswc[0], rst0);
xor2 iab        (~R, A[11], A0[11], aswc[0], rst0);
xor2 iac        (~R, A[12], A0[12], aswc[0], rst0);
xor2 iad        (~R, A[13], A0[13], aswc[0], rst0);
xor2 iae        (~R, A[14], A0[14], aswc[0], rst0);
xor2 iaf        (~R, A[15], A0[15], aswc[0], rst0);
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// B0 is ones complement of B if R==1

xor2 ib0        ( R, B[00], B0[00], aswc[0], rst0);
xor2 ib1        ( R, B[01], B0[01], aswc[0], rst0);
xor2 ib2        ( R, B[02], B0[02], aswc[0], rst0);
xor2 ib3        ( R, B[03], B0[03], aswc[0], rst0);
xor2 ib4        ( R, B[04], B0[04], aswc[0], rst0);
xor2 ib5        ( R, B[05], B0[05], aswc[0], rst0);
xor2 ib6        ( R, B[06], B0[06], aswc[0], rst0);
xor2 ib7        ( R, B[07], B0[07], aswc[0], rst0);
xor2 ib8        ( R, B[08], B0[08], aswc[0], rst0);
xor2 ib9        ( R, B[09], B0[09], aswc[0], rst0);
xor2 iba        ( R, B[10], B0[10], aswc[0], rst0);
xor2 ibb        ( R, B[11], B0[11], aswc[0], rst0);
xor2 ibc        ( R, B[12], B0[12], aswc[0], rst0);
xor2 ibd        ( R, B[13], B0[13], aswc[0], rst0);
xor2 ibe        ( R, B[14], B0[14], aswc[0], rst0);
xor2 ibf        ( R, B[15], B0[15], aswc[0], rst0);

// Produce initial Propagate and Generate signals
// LSB behaves like Full Adder with Carry in tied to 1 e.g.
//FULL_ADDER fa0 (A0[00], B0[00],1'b1, Q0[00],G0[00], aswc[1], rst0);

CALF_ADDER ha0  (A0[00], B0[00], Q0[00], G0[00], aswc[1], rst0);
HALF_ADDER ha1  (A0[01], B0[01], Q0[01], G0[01], aswc[1], rst0);
HALF_ADDER ha2  (A0[02], B0[02], Q0[02], G0[02], aswc[1], rst0);
HALF_ADDER ha3  (A0[03], B0[03], Q0[03], G0[03], aswc[1], rst0);
HALF_ADDER ha4  (A0[04], B0[04], Q0[04], G0[04], aswc[1], rst0);
HALF_ADDER ha5  (A0[05], B0[05], Q0[05], G0[05], aswc[1], rst0);
HALF_ADDER ha6  (A0[06], B0[06], Q0[06], G0[06], aswc[1], rst0);
HALF_ADDER ha7  (A0[07], B0[07], Q0[07], G0[07], aswc[1], rst0);
HALF_ADDER ha8  (A0[08], B0[08], Q0[08], G0[08], aswc[1], rst0);
HALF_ADDER ha9  (A0[09], B0[09], Q0[09], G0[09], aswc[1], rst0);
HALF_ADDER ha10 (A0[10], B0[10], Q0[10], G0[10], aswc[1], rst0);
HALF_ADDER ha11 (A0[11], B0[11], Q0[11], G0[11], aswc[1], rst0);
HALF_ADDER ha12 (A0[12], B0[12], Q0[12], G0[12], aswc[1], rst0);
HALF_ADDER ha13 (A0[13], B0[13], Q0[13], G0[13], aswc[1], rst0);
HALF_ADDER ha14 (A0[14], B0[14], Q0[14], G0[14], aswc[1], rst0);
HALF_ADDER ha15 (A0[15], B0[15], Q0[15], G0[15], aswc[1], rst0);

PP1 s00 (Q0[00], G0[00], Q1[00], G1[00], aswc[2], rst0);
PP2 s01 (Q0[01], Q0[01], Q0[00], G0[01], G0[00],
         Q1[01], P1[01], G1[01], aswc[2], rst0);
PP3 s02 (Q0[02], Q0[02], Q0[01], Q0[00], G0[02], G0[01], G0[00],
         Q1[02], P1[02], G1[02], aswc[2], rst0);
PP4 s03 (Q0[03], Q0[03], Q0[02], Q0[01], Q0[00],
         G0[03], G0[02], G0[01], G0[00], 
         Q1[03], P1[03], G1[03], aswc[2], rst0);
PP1 s04 (Q0[04], G0[04], Q1[04], G1[04], aswc[2], rst0);
PP2 s05 (Q0[05], Q0[05], Q0[04], G0[05], G0[04],
         Q1[05], P1[05], G1[05], aswc[2], rst0);
PP3 s06 (Q0[06], Q0[06], Q0[05], Q0[04], G0[06], G0[05], G0[04], 
         Q1[06], P1[06], G1[06], aswc[2], rst0);
PP4 s07 (Q0[07], Q0[07], Q0[06], Q0[05], Q0[04],
         G0[07], G0[06], G0[05], G0[04],
         Q1[07], P1[07], G1[07], aswc[2], rst0);
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PP1 s08 (Q0[08], G0[08], Q1[08], G1[08], aswc[2], rst0);
PP2 s09 (Q0[09], Q0[09], Q0[08], G0[09], G0[08],  
         Q1[09], P1[09], G1[09], aswc[2],rst0);
PP3 s0a (Q0[10], Q0[10], Q0[09], Q0[08], G0[10], G0[09], G0[08],
         Q1[10], P1[10], G1[10], aswc[2], rst0);
PP4 s0b (Q0[11], Q0[11], Q0[10], Q0[09], Q0[08],
         G0[11], G0[10], G0[09], G0[08], 
         Q1[11], P1[11], G1[11], aswc[2], rst0);
PP1 s0c (Q0[12], G0[12], Q1[12], G1[12], aswc[2], rst0);
PP2 s0d (Q0[13], Q0[13], Q0[12], G0[13], G0[12],
         Q1[13], P1[13], G1[13], aswc[2], rst0);
PP3 s0e (Q0[14], Q0[14], Q0[13], Q0[12], G0[14], G0[13], G0[12],
         Q1[14], P1[14], G1[14], aswc[2], rst0);
PP4 s0f (Q0[15], Q0[15], Q0[14], Q0[13], Q0[12], 
         G0[15], G0[14], G0[13], G0[12],
         Q1[15], P1[15], G1[15], aswc[2], rst0);

PP1 s10 (Q1[00], G1[00], Q2[00], G2[00], aswc[3], rst0);
PP1 s11 (Q1[01], G1[01], Q2[01], G2[01], aswc[3], rst0);
PP1 s12 (Q1[02], G1[02], Q2[02], G2[02], aswc[3], rst0);
PP1 s13 (Q1[03], G1[03], Q2[03], G2[03], aswc[3], rst0);
PP2 s14 (Q1[04], Q1[04], P1[03], G1[04], G1[03],
         Q2[04], P2[04], G2[04], aswc[3], rst0);
PP2 s15 (Q1[05], P1[05], P1[03], G1[05], G1[03],
         Q2[05], P2[05], G2[05], aswc[3], rst0);
PP2 s16 (Q1[06], P1[06], P1[03], G1[06], G1[03],
         Q2[06], P2[06], G2[06], aswc[3], rst0);
PP2 s17 (Q1[07], P1[07], P1[03], G1[07], G1[03],
         Q2[07], P2[07], G2[07], aswc[3], rst0);
PP3 s18 (Q1[08], Q1[08], P1[07], P1[3], G1[08], G1[07], G1[3],
         Q2[08], P2[08], G2[08], aswc[3], rst0);
PP3 s19 (Q1[09], P1[09], P1[07], P1[3], G1[09], G1[07], G1[3],
         Q2[09], P2[09], G2[09], aswc[3], rst0);
PP3 s1a (Q1[10], P1[10], P1[07], P1[3], G1[10], G1[07], G1[3],
         Q2[10], P2[10], G2[10], aswc[3], rst0);
PP3 s1b (Q1[11], P1[11], P1[07], P1[3], G1[11], G1[07], G1[3],
         Q2[11], P2[11], G2[11], aswc[3], rst0);
PP4 s1c (Q1[12], Q1[12], P1[11], P1[7], P1[3],
         G1[12], G1[11], G1[7], G1[3],
         Q2[12], P2[12], G2[12], aswc[3], rst0);
PP4 s1d (Q1[13], P1[13], P1[11], P1[7], P1[3],
         G1[13], G1[11], G1[7], G1[3],
         Q2[13], P2[13], G2[13], aswc[3], rst0);
PP4 s1e (Q1[14], P1[14], P1[11], P1[7], P1[3],
         G1[14], G1[11], G1[7], G1[3],
         Q2[14], P2[14], G2[14], aswc[3], rst0);
PP4 s1f (Q1[15], P1[15], P1[11], P1[7], P1[3],
         G1[15], G1[11], G1[7], G1[3],
         Q2[15], P2[15], G2[15], aswc[3], rst0);

buf1 o0 (        Q2[00], Z[00], aswc[4], rst0);
xor2 o1 (G2[00], Q2[01], Z[01], aswc[4], rst0);
xor2 o2 (G2[01], Q2[02], Z[02], aswc[4], rst0);
xor2 o3 (G2[02], Q2[03], Z[03], aswc[4], rst0);
xor2 o4 (G2[03], Q2[04], Z[04], aswc[4], rst0);
xor2 o5 (G2[04], Q2[05], Z[05], aswc[4], rst0);
xor2 o6 (G2[05], Q2[06], Z[06], aswc[4], rst0);
xor2 o7 (G2[06], Q2[07], Z[07], aswc[4], rst0);
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xor2 o8 (G2[07], Q2[08], Z[08], aswc[4], rst0);
xor2 o9 (G2[08], Q2[09], Z[09], aswc[4], rst0);
xor2 oa (G2[09], Q2[10], Z[10], aswc[4], rst0);
xor2 ob (G2[10], Q2[11], Z[11], aswc[4], rst0);
xor2 oc (G2[11], Q2[12], Z[12], aswc[4], rst0);
xor2 od (G2[12], Q2[13], Z[13], aswc[4], rst0);
xor2 oe (G2[13], Q2[14], Z[14], aswc[4], rst0);
xor2 of (G2[14], Q2[15], Z[15], aswc[4], rst0);
endmodule
module BUF16(I, Z, aswc, rst0);
// 16-bit wide buffer
input  [15:0]  I;
input          aswc;
input          rst0;
output [15:0]  Z;
buf1 b00 (I[00], Z[00], aswc, rst0);
buf1 b01 (I[01], Z[01], aswc, rst0);
buf1 b02 (I[02], Z[02], aswc, rst0);
buf1 b03 (I[03], Z[03], aswc, rst0);
buf1 b04 (I[04], Z[04], aswc, rst0);
buf1 b05 (I[05], Z[05], aswc, rst0);
buf1 b06 (I[06], Z[06], aswc, rst0);
buf1 b07 (I[07], Z[07], aswc, rst0);
buf1 b08 (I[08], Z[08], aswc, rst0);
buf1 b09 (I[09], Z[09], aswc, rst0);
buf1 b0a (I[10], Z[10], aswc, rst0);
buf1 b0b (I[11], Z[11], aswc, rst0);
buf1 b0c (I[12], Z[12], aswc, rst0);
buf1 b0d (I[13], Z[13], aswc, rst0);
buf1 b0e (I[14], Z[14], aswc, rst0);
buf1 b0f (I[15], Z[15], aswc, rst0);
endmodule
module MUX16(I1, I2, S, Z, aswc, rst0);
// 16-bit wide 2-way MUX
input  [15:0]  I1, I2;
input          S;
input          aswc;
input          rst0;
output [15:0]  Z;
mux2 m00 (I1[00], I2[00], S, Z[00], aswc, rst0);
mux2 m01 (I1[01], I2[01], S, Z[01], aswc, rst0);
mux2 m02 (I1[02], I2[02], S, Z[02], aswc, rst0);
mux2 m03 (I1[03], I2[03], S, Z[03], aswc, rst0);
mux2 m04 (I1[04], I2[04], S, Z[04], aswc, rst0);
mux2 m05 (I1[05], I2[05], S, Z[05], aswc, rst0);
mux2 m06 (I1[06], I2[06], S, Z[06], aswc, rst0);
mux2 m07 (I1[07], I2[07], S, Z[07], aswc, rst0);
mux2 m08 (I1[08], I2[08], S, Z[08], aswc, rst0);
mux2 m09 (I1[09], I2[09], S, Z[09], aswc, rst0);
mux2 m0a (I1[10], I2[10], S, Z[10], aswc, rst0);
mux2 m0b (I1[11], I2[11], S, Z[11], aswc, rst0);
mux2 m0c (I1[12], I2[12], S, Z[12], aswc, rst0);
mux2 m0d (I1[13], I2[13], S, Z[13], aswc, rst0);
mux2 m0e (I1[14], I2[14], S, Z[14], aswc, rst0);
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mux2 m0f (I1[15], I2[15], S, Z[15], aswc, rst0);
endmodule
module CMP16(A, B, A_EQ_B, A_GT_B, aswc, rst0);
// 16-bit, radix-4, look-ahead comparator
input  [15:0] A, B;
input  [0:2]  aswc;
input         rst0;
output        A_EQ_B, A_GT_B;
wire [15:0] EQ0, GT0;
wire  [3:0] EQ1, GT1;
// Bitwise equality
xnor2 e00 (A[00], B[00], EQ0[00], aswc[0], rst0);
xnor2 e01 (A[01], B[01], EQ0[01], aswc[0], rst0);
xnor2 e02 (A[02], B[02], EQ0[02], aswc[0], rst0);
xnor2 e03 (A[03], B[03], EQ0[03], aswc[0], rst0);
xnor2 e04 (A[04], B[04], EQ0[04], aswc[0], rst0);
xnor2 e05 (A[05], B[05], EQ0[05], aswc[0], rst0);
xnor2 e06 (A[06], B[06], EQ0[06], aswc[0], rst0);
xnor2 e07 (A[07], B[07], EQ0[07], aswc[0], rst0);
xnor2 e08 (A[08], B[08], EQ0[08], aswc[0], rst0);
xnor2 e09 (A[09], B[09], EQ0[09], aswc[0], rst0);
xnor2 e0a (A[10], B[10], EQ0[10], aswc[0], rst0);
xnor2 e0b (A[11], B[11], EQ0[11], aswc[0], rst0);
xnor2 e0c (A[12], B[12], EQ0[12], aswc[0], rst0);
xnor2 e0d (A[13], B[13], EQ0[13], aswc[0], rst0);
xnor2 e0e (A[14], B[14], EQ0[14], aswc[0], rst0);
xnor2 e0f (A[15], B[15], EQ0[15], aswc[0], rst0);

// Bitwise A>B
and2  g00 (A[00], ~B[00], GT0[00], aswc[0], rst0);
and2  g01 (A[01], ~B[01], GT0[01], aswc[0], rst0);
and2  g02 (A[02], ~B[02], GT0[02], aswc[0], rst0);
and2  g03 (A[03], ~B[03], GT0[03], aswc[0], rst0);
and2  g04 (A[04], ~B[04], GT0[04], aswc[0], rst0);
and2  g05 (A[05], ~B[05], GT0[05], aswc[0], rst0);
and2  g06 (A[06], ~B[06], GT0[06], aswc[0], rst0);
and2  g07 (A[07], ~B[07], GT0[07], aswc[0], rst0);
and2  g08 (A[08], ~B[08], GT0[08], aswc[0], rst0);
and2  g09 (A[09], ~B[09], GT0[09], aswc[0], rst0);
and2  g0a (A[10], ~B[10], GT0[10], aswc[0], rst0);
and2  g0b (A[11], ~B[11], GT0[11], aswc[0], rst0);
and2  g0c (A[12], ~B[12], GT0[12], aswc[0], rst0);
and2  g0d (A[13], ~B[13], GT0[13], aswc[0], rst0);
and2  g0e (A[14], ~B[14], GT0[14], aswc[0], rst0);
and2  g0f (A[15], ~B[15], GT0[15], aswc[0], rst0);

and4  e10 (EQ0[00], EQ0[01], EQ0[02], EQ0[03], 
           EQ1[00], aswc[1], rst0); 
and4  e11 (EQ0[04], EQ0[05], EQ0[06], EQ0[07],
           EQ1[01], aswc[1], rst0);
and4  e12 (EQ0[08], EQ0[09], EQ0[10], EQ0[11],
           EQ1[02], aswc[1], rst0);
and4  e13 (EQ0[12], EQ0[13], EQ0[14], EQ0[15],
           EQ1[03], aswc[1], rst0);
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gpp4 g10 (GT0[03], GT0[02], GT0[01], GT0[00], 
          EQ0[03], EQ0[02], EQ0[01], GT1[0], aswc[1], rst0);
gpp4 g11 (GT0[07], GT0[06], GT0[05], GT0[04],
          EQ0[07], EQ0[06], EQ0[05], GT1[1], aswc[1], rst0);
gpp4 g12 (GT0[11], GT0[10], GT0[09], GT0[08], 
          EQ0[11], EQ0[10], EQ0[09], GT1[2], aswc[1], rst0);
gpp4 g13 (GT0[15], GT0[14], GT0[13], GT0[12],
          EQ0[15], EQ0[14], EQ0[13], GT1[3], aswc[1], rst0);

and4 e20 (EQ1[3], EQ1[2], EQ1[1], EQ1[0], A_EQ_B, aswc[2], rst0);
gpp4 g20 (GT1[3], GT1[2], GT1[1], GT1[0],
          EQ1[3], EQ1[2], EQ1[1], A_GT_B, aswc[2], rst0);
endmodule
module gcd (A, B, Z, reqI, ackI, reqO, ackO, rst0);
input  [15:0] A, B;
input         reqI, ackO, rst0;
output [15:0] Z;
output        ackI, reqO;
wire [0:11] aswc;
wire [13:0] req, ack;
wire  [1:2] AEQB;
wire [15:0] A0,B0,A1,B1,A2,B2,A3,B3,S8,M8,M7,M6,M5,M4;
PIPELINE_ELER0 ctb (req[3],ack3a,req[12],ack[12],aswc[10],rst0);
buf1 fbb (A_EQ_B, AEQB[1], aswc[10], rst0);

PIPELINE_ELER1 ctc (req[12],ack[12],req[13],ack[13],aswc[11],rst0);
buf1r1 fbc (AEQB[1], AEQB[2], aswc[11], rst0);

AN2  mx00 ( AEQB[2], req[13], A_EQ_Bmx0);
AN2  mx01 (~AEQB[2], req[13], A_EQ_Bmx1);
MUX2 mx0  (reqI, ackI, req[9], ack[9], A_EQ_Bmx0, A_EQ_Bmx1, ack[13],
           req[10], ack[10], rst0);

PIPELINE_ELER0 ct0 (req[10], ack[10], req[0], ack[0], aswc[0], rst0);
PIPELINE_ELER0 ct1 (req[0], ack[0], req[1], ack[1], aswc[1], rst0);
PIPELINE_ELER0 ct2 (req[1], ack[1], req[2], ack[2], aswc[2], rst0);
PIPELINE_ELER0 ct3 (req[2], ack[2], req[3], ack[3], aswc[3], rst0);
C_ELE3R0 ct3a (ack3a, ack3b, ack3c, ack[3], rst0);

MUX16 amx (A, S8, A_EQ_Bmx1, A0, aswc[0], rst0);
MUX16 bmx (B, M8, A_EQ_Bmx1, B0, aswc[0], rst0);
CMP16 cmp (A0,B0, A_EQ_B, A_GT_B, aswc[1:3], rst0);
BUF16 ab1 (A0, A1, aswc[1], rst0);
BUF16 bb1 (B0, B1, aswc[1], rst0);
BUF16 ab2 (A1, A2, aswc[2], rst0);
BUF16 bb2 (B1, B2, aswc[2], rst0);
BUF16 ab3 (A2, A3, aswc[3], rst0);
BUF16 bb3 (B2, B3, aswc[3], rst0);

AN2  dx00 ( A_EQ_B,req[3], A_EQ_Bdx0);
AN2  dx01 (~A_EQ_B,req[3], A_EQ_Bdx1);
DMX2 dx0  (req[11], ack[11], req[4], ack[4], A_EQ_Bdx0, A_EQ_Bdx1, 
           ack3b, req[3], ack3c, rst0);
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//Subtractor and subtrahend feedback path
PIPELINE_ELER0 ct4 (req[4], ack[4], req[5], ack[5], aswc[4], rst0);
PIPELINE_ELER0 ct5 (req[5], ack[5], req[6], ack[6], aswc[5], rst0);
PIPELINE_ELER0 ct6 (req[6], ack[6], req[7], ack[7], aswc[6], rst0);
PIPELINE_ELER0 ct7 (req[7], ack[7], req[8], ack[8], aswc[7], rst0);
PIPELINE_ELER0 ct8 (req[8], ack[8], req[9], ack[9], aswc[8], rst0);

SUBRSB16 sub (A3, B3, A_GT_B, S8, aswc[4:8], rst0);
MUX16    smx (A3, B3, A_GT_B, M4, aswc[4], rst0);
BUF16 sb1 (M4, M5, aswc[5], rst0);
BUF16 sb2 (M5, M6, aswc[6], rst0);
BUF16 sb3 (M6, M7, aswc[7], rst0);
BUF16 sb4 (M7, M8, aswc[8], rst0);

// Result output buffer 
PIPELINE_ELER0 ct9 (req[11], ack[11], reqO, ackO, aswc[9], rst0);
BUF16 sb5 (A3, Z, aswc[9], rst0);

always @(M8 or S8)
begin
  #5 $display("S8/M8   %t %H %H (%D %D)",$time,S8,M8,S8,M8);
end
endmodule
module test;
reg  [15:0] A, B;
wire [15:0] Z;
reg reqI;
wire ackI;
wire reqO;
wire ackO;
reg         rst0;
initial
begin
$display("Running %m");
$dumpfile("gcd.vcd");
$dumpvars(0,test);

// Initialise
rst0 = 0;  // Activate reset
A = 16'hZZZZ; 
B = 16'hZZZZ; 
reqI = 0;  // Invalid data on input buses

#100 rst0 = 1; // Remove reset state  
$display("--------------------------------------------------------");
A <= 16'hFFFF; B <= 16'hFFFF;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#5000 A <= 16'h7FFF; B <= 16'hFFFE;
#20 reqI=1;

#20 reqI=0;
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#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#5000 A <= 16'hFFFE; B <= 16'h7FFF;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#5000 A <= 16'hFFFF; B <= 16'hAAAA;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#5000 A <= 16'hAAAA; B <= 16'hFFFF;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#5000 A <= 46368;B <= 28657;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");
#10000 A <= 28657;B <= 46368;
#20 reqI=1;

#20 reqI=0;
#20 A <= 16'hZZZZ; B <= 16'hZZZZ;
$display("--------------------------------------------------------");

#10000 
$finish(2);
end
always @(reqI or ackI or A or B)
begin
  #5 $display("Inputs  %t Rq:%B Ak:%B A:%H B:%H (%D %D)",
                    $time, reqI, ackI,   A,   B,  A, B);
end
always @(reqO or ackO or Z)
begin
  #5 $display("Outputs %t Rq:%B Ak:%B Z:%H (%D)",
                    $time, reqO, ackO,   Z,  Z);
end
gcd  dut (A, B, Z, reqI, ackI, reqO, ackO, rst0);
BUF1 o0  (reqO, temp);
BUF1 o1  (temp, ackO);

endmodule
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A.2 Dual-rail GCD 

`timescale 1ns / 100ps
`define RESET_DELAY 1.5
// The assignment delay following pseudo-power-clock
`define DP_RESET_VAL 1'bx
// The normal reset value applied to data-path cells
`define STAGE_DELAY 2
// The assignment delay following pseudo-power-clock
`define NEG_EDGE 1
// Are flop outputs reset on falling edge?
`define NEG_EDGE_VAL 1'bz
// The normal value assigned upon the falling pseudo-power-clock edge
`define LOGIC_DELAY 2.5
// The assignment delay following pseudo-power-clock
`define DEBUG 0
`define DEBUG_DELAY 2.2
`define INTNODE 1
// Static CMOS cell names use ALL CAPS
// Adiabatic cell names use lower case
module C_ELE2R0 (A, B, Z, rst0);
// 2-input C-Element with reset to 0
input   A, B, rst0;
output  Z;
reg     Z;
always @(A or B or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 0;
  else if (A == B)
    #`LOGIC_DELAY Z <= A;
endmodule
module C_ELE2R1 (A, B, Z, rst0);
// 2-input C-Element with reset to 1
input   A, B, rst0;
output  Z;
reg     Z;
always @(A or B or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 1;
  else if (A == B)
    #`LOGIC_DELAY Z <= A;
endmodule
module C_ELE3R0 (A, B, C, Z, rst0);
// 3-input C-Element with reset to 0
input   A, B, C, rst0;
output  Z;
reg     Z;
always @(A or B or C or rst0)
  if (~rst0)
    #`RESET_DELAY Z <= 0;
  else if ((A == B) & (B == C))
    #`LOGIC_DELAY Z <= A;
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endmodule
module BUF1 (A, Z);
// Buffer
input   A;
output  Z;
reg     Z;
always @(A)
  #`LOGIC_DELAY Z <= A;
endmodule
module INV1 (A, Z);
// Inverter
input   A;
output  Z;
reg     Z;
always @(A)
  #`LOGIC_DELAY Z <= ~A;
endmodule
module OR2 (A, B, Z);
// 2-input OR gate
input   A, B;
output  Z;
reg     Z;
always @(A or B)
  #`LOGIC_DELAY Z <= A | B;
endmodule
module AN2 (A, B, Z);
// 2-input AND gate
input   A, B;
output  Z;
reg     Z;
always @(A or B)
  #`LOGIC_DELAY Z <= A & B;
endmodule
module MUX2 (S0req, S0ack, S1req, S1ack,
             CT0req, CT1req, Ctack, Zreq, Zack, rst0);
// 2-input MUX for Asynchronous Controller
input   S0req, S1req, CT0req, CT1req, Zack;
input   rst0;
output  S0ack, S1ack, Ctack, Zreq;
wire    S0CT0req, S1CT1req, ZreqI;
C_ELE2R0 cel1 (S0req, CT0req, S0CT0req, rst0);
C_ELE2R0 cel2 (S1req, CT1req, S1CT1req, rst0);
C_ELE2R0 cel3 (Zack, S0CT0req, S0ack, rst0);
C_ELE2R0 cel4 (Zack, S1CT1req, S1ack, rst0);
OR2      or2  (S0CT0req, S1CT1req, Zreq);
BUF1     buf1 (Zack, CTack);
endmodule
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module DMX2 (S0req, S0ack, S1req, S1ack,
             CT0req, CT1req, Ctack, Ireq, Iack, rst0);
// 2-output DeMUX for Asynchronous Controller
input   S0ack, S1ack, CT0req, CT1req, Ireq;
input   rst0;
output  S0req, S1req, Ctack, Iack;
wire    S0CT0req, S1CT1req;
C_ELE2R0 cel1 (Ireq, CT0req, S0req, rst0);
C_ELE2R0 cel2 (Ireq, CT1req, S1req, rst0);
OR2      or2  (S0ack, S1ack, Iack);
BUF1     buf1 (Iack, CTack);
endmodule
module PIPELINE_ELER0 (Ireq, Iack, Zreq, Zack, aswc, rst0);
// Asynchronous pipeline element
input   Ireq, Zack;
input   rst0;
output  Zreq, Iack;
output  aswc;
wire    temp;
INV1     inv1 (Zack, Zack_n);
C_ELE2R0 cel1 (Ireq, Zack_n, aswc,rst0);
BUF1     buf1 (aswc, temp);
BUF1     buf2 (temp, Zreq);
BUF1     buf3 (temp, Iack);
endmodule
module PIPELINE_ELER1 (Ireq, Iack, Zreq, Zack, aswc, rst0);
// Asynchronous pipeline element with reset to active 
// (for initial tokens)
input   Ireq, Zack;
input   rst0;
output  Zreq, Iack;
output  aswc;
wire    temp;
INV1     inv1 (Zack, Zack_n);
C_ELE2R1 cel1 (Ireq, Zack_n, aswc,rst0);
BUF1     buf1 (aswc, temp);
BUF1     buf2 (temp, Zreq);
BUF1     buf3 (temp, Iack);
endmodule
// Dual Rail models of PFAL Cells
// Could be replaced with switch level models.
// aswc is the pseudo-power-clock
// rst0 is reset asserted low (for simulation purposes)

// Basic cells
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module buf1 (A_L, A_H, Z_L, Z_H, aswc, rst0);
// Buffer
input  A_L, A_H;
input  aswc, rst0;
output Z_L, Z_H;
reg  Z_L, Z_H;

always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b",A_L,A_H);
    end
    #`STAGE_DELAY Z_H <= A_H; Z_L <= A_L; 
end
always @(negedge aswc)
if (`NEG_EDGE) begin
  #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
end
endmodule
module buf1r1 (A_L, A_H, Z_L, Z_H, aswc, rst0);
// Buffer with reset 
input  A_L, A_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= 0; Z_H <= 1;
  end else begin
    if (A_H == A_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b", A_L, A_H);
    end
    #`STAGE_DELAY Z_H <= A_H; Z_L <= A_L; 
end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module xor2 (A_L, A_H, B_L, B_H, Z_L, Z_H, aswc, rst0);
// 2-input XOR
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
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always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b", A_L, A_H, B_L, B_H);
    end
    #`STAGE_DELAY Z_H <= A_H ^ B_H; Z_L <= ~(A_L ^ B_L);  
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module xnor2 (A_L, A_H, B_L, B_H, Z_L, Z_H, aswc, rst0);
// 2-input XNOR 
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b", A_L, A_H, B_L, B_H);
    end
    #`STAGE_DELAY Z_H <= ~(A_H ^ B_H); Z_L <= A_L ^ B_L;
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module and2 (A_L, A_H, B_L, B_H, Z_L, Z_H, aswc, rst0);
// 2-input AND
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b", A_L, A_H, B_L, B_H);
    end
    #`STAGE_DELAY Z_H <= A_H & B_H; Z_L <= A_L | B_L;
  end
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always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module or2 (A_L, A_H, B_L, B_H, Z_L, Z_H, aswc, rst0);
// 2-input OR
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b", A_L, A_H, B_L, B_H);
    end
    #`STAGE_DELAY Z_H <= A_H | B_H; Z_L <= A_L & B_L;
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module mux2 (A_L, A_H, B_L, B_H, S_L, S_H, Z_L, Z_H, aswc, rst0);
// 2-way MUX
input  A_L, A_H, B_L, B_H, S_L, S_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (S_H == S_L || (S_L == 1'b1 && A_H == A_L )
                   || (S_H == 1'b1 && B_H == B_L )) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b", A_L, A_H, B_L, B_H, S_L, S_H);
    end
    #`STAGE_DELAY Z_H <= S_H ? B_H : A_H; Z_L <= S_L ? A_L : B_L;
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
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module and3 (A_L, A_H, B_L, B_H, C_L, C_H, Z_L, Z_H, aswc, rst0);
// 3-input AND
input  A_L, A_H, B_L, B_H, C_L, C_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L || C_H == C_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b", A_L, A_H, B_L, B_H, C_L, C_H);
    end
    #`STAGE_DELAY Z_H <= A_H & B_H & C_H;Z_L <= A_L | B_L | C_L;
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module and4 (A_L, A_H, B_L, B_H, C_L, C_H, D_L, D_H,
             Z_L, Z_H, aswc, rst0);
// 4-input AND
input  A_L, A_H, B_L, B_H, C_L, C_H, D_L, D_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
     #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (A_H == A_L || B_H == B_L || C_H == C_L || D_H == D_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b %b %b", A_L, A_H, B_L, B_H, 
                                          C_L, C_H, D_L, D_H);
    end
    #`STAGE_DELAY Z_H <= A_H & B_H & C_H & D_H; 
                  Z_L <= A_L | B_L | C_L | D_L;
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module gpp2 (G1_L, G1_H, G0_L, G0_H, P1_L, P1_H, 
             Z_L, Z_H, aswc, rst0);
// 3-input AND2-OR
input  G1_L, G1_H, G0_L, G0_H, P1_L, P1_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
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always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (G1_H == G1_L || G0_H == G0_L || P1_H == P1_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b",G1_H,G1_L,G0_H,G0_L,P1_H,P1_L);
    end
    #`STAGE_DELAY Z_H <= G1_H |(P1_H & G0_H);
                  Z_L <= G1_L &(P1_L | G0_L);
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module gpp3 (G2_L, G2_H, G1_L, G1_H, G0_L, G0_H, 
             P2_L, P2_H, P1_L, P1_H, Z_L, Z_H, aswc, rst0);
// 5-input AND2-OR-AND-OR
input  G2_L, G2_H, G1_L, G1_H, G0_L, G0_H, P2_L, P2_H, P1_L, P1_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (G2_H == G2_L || G1_H == G1_L || G0_H == G0_L || 
        P2_H == P2_L || P1_H == P1_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b %b %b %b %b",
         G2_H, G2_L, G1_H, G1_L, G0_H, G0_L, P2_H, P2_L, P1_H, P1_L);
    end
    #`STAGE_DELAY 
    Z_H <= G2_H |(P2_H &(G1_H |(P1_H & G0_H)));
    Z_L <= G2_L &(P2_L |(G1_L &(P1_L | G0_L)));
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
module gpp4 (G3_L, G3_H, G2_L, G2_H, G1_L, G1_H, G0_L, G0_H, 
             P3_L, P3_H, P2_L, P2_H, P1_L, P1_H,
             Z_L, Z_H, aswc, rst0);
// 7-input AND2-OR-AND-OR-AND-OR
input  G3_L, G3_H, G2_L, G2_H, G1_L, G1_H, G0_L, G0_H, 
       P3_L, P3_H, P2_L, P2_H, P1_L, P1_H;
input  aswc, rst0;
output Z_L, Z_H;
reg    Z_L, Z_H;
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always @(posedge aswc or negedge rst0)
  if (~rst0) begin
    #`RESET_DELAY Z_L <= `DP_RESET_VAL ; Z_H <= `DP_RESET_VAL ;
  end else begin
    if (G3_H == G3_L || G2_H == G2_L || G1_H == G1_L || G0_H == G0_L
     || P3_H == P3_L || P2_H == P2_L || P1_H == P1_L) begin
      $display("Complementary input violation in %m at %t",$time);
      $display("%b %b %b %b %b %b %b %b %b %b %b %b %b %b",
                      G3_H, G3_L, G2_H, G2_L, G1_H, G1_L, G0_H, G0_L,
                      P3_H, P3_L, P2_H, P2_L, P1_H, P1_L);
    end
    #`STAGE_DELAY 
    Z_H <= G3_H |(P3_H &(G2_H |(P2_H &(G1_H |(P1_H & G0_H))))); 
    Z_L <= G3_L &(P3_L |(G2_L &(P2_L |(G1_L &(P1_L | G0_L)))));
  end
always @(negedge aswc)
  if (`NEG_EDGE) begin
    #`STAGE_DELAY Z_L <= `NEG_EDGE_VAL; Z_H <= `NEG_EDGE_VAL;
  end
endmodule
/*
  The structural components of the subtractor 
*/

module HALF_ADDER(A_L, A_H, B_L, B_H,
                  P0_L, P0_H, G0_L, G0_H, aswc, rst0);
// Half Adder to provide "Generate" and "Propagate" signals
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output P0_L, P0_H, G0_L, G0_H;
xor2 Pro (A_L, A_H, B_L, B_H, P0_L, P0_H, aswc, rst0);
and2 Gen (A_L, A_H, B_L, B_H, G0_L, G0_H, aswc, rst0);
endmodule
module CALF_ADDER(A_L, A_H, B_L, B_H,
                  P0_L, P0_H, G0_L, G0_H, aswc, rst0);
// Carry-set Half Adder
// Used for LSB of Subtractor 
input  A_L, A_H, B_L, B_H;
input  aswc, rst0;
output P0_L, P0_H, G0_L, G0_H;
xnor2 Pro (A_L, A_H, B_L, B_H, P0_L, P0_H, aswc, rst0);
or2   Gen (A_L, A_H, B_L, B_H, G0_L, G0_H, aswc, rst0);
endmodule

module PP1(Qi_L, Qi_H, Gi_L, Gi_H, 
          Qo_L, Qo_H, Go_L, Go_H, aswc, rst0);
// Level 1 Propagate/Generate Look-Ahead logic
input  Qi_L, Qi_H;
input  Gi_L, Gi_H;
input  aswc, rst0;
output Qo_L, Qo_H, Go_L, Go_H;
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buf1 Pr0 (Qi_L, Qi_H, Qo_L, Qo_H, aswc, rst0);
buf1 Gen (Gi_L, Gi_H, Go_L, Go_H, aswc, rst0);
endmodule
module PP2(Qi_L, Qi_H, P1i_L, P1i_H, P0i_L, P0i_H, 
           G1i_L, G1i_H, G0i_L, G0i_H,
           Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H, aswc, rst0);
// Level 2 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Qi_L, Qi_H;
input  G1i_L, G1i_H, G0i_L, G0i_H;
input  P1i_L, P1i_H, P0i_L, P0i_H;
input  aswc, rst0;
output Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H;
buf1 Pr0 (Qi_L, Qi_H, Qo_L, Qo_H, aswc, rst0);
and2 Pro (P1i_L, P1i_H, P0i_L,P0i_H, Po_L, Po_H, aswc, rst0);
gpp2 Gen (G1i_L, G1i_H, G0i_L, G0i_H, P1i_L, P1i_H, 
          Go_L, Go_H, aswc, rst0);
endmodule
module PP3(Qi_L, Qi_H, P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H,
           G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H,
           Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H, aswc, rst0);
// Level 3 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Qi_L, Qi_H;
input  G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H;
input  P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H;
input  aswc, rst0;
output Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H;
buf1 Pr0 (Qi_L, Qi_H, Qo_L, Qo_H, aswc, rst0);
and3 Pro (P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H, 
          Po_L, Po_H, aswc, rst0);
gpp3 Gen (G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H,
          P2i_L, P2i_H, P1i_L, P1i_H,
          Go_L, Go_H, aswc, rst0);
endmodule
module PP4(Qi_L, Qi_H,
           P3i_L, P3i_H, P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H,   
           G3i_L, G3i_H, G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H,
           Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H, aswc, rst0);
// Level 4 Propagate/Generate Look-Ahead logic
// Includes Buffer for initial propagate 
input  Qi_L, Qi_H;
input  G3i_L, G3i_H, G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H;
input  P3i_L, P3i_H, P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H;
input  aswc, rst0;
output Qo_L, Qo_H, Po_L, Po_H, Go_L, Go_H;
buf1 Pr0 (Qi_L, Qi_H, Qo_L, Qo_H, aswc, rst0);
and4 Pro (P3i_L, P3i_H, P2i_L, P2i_H, P1i_L, P1i_H, P0i_L, P0i_H,
          Po_L, Po_H, aswc, rst0);
gpp4 Gen (G3i_L, G3i_H, G2i_L, G2i_H, G1i_L, G1i_H, G0i_L, G0i_H,
          P3i_L, P3i_H, P2i_L, P2i_H, P1i_L, P1i_H, 
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          Go_L, Go_H, aswc, rst0);
endmodule
module SUBRSB16(A_L,A_H,B_L,B_H,R_L,R_H,Z_L,Z_H,aswc,rst0);
// 16-bit, radix-4, carry look-ahead, two's complement, 
// subtractor/reverse subtractor 16-bit inputs A and B are selectable
// as to which is the subtrahend and minuend
// Input R selects between the following operations: +A-B or -A+B
// Subtraction performed using two's complement, 
// Input selected as subtrahend is complemented using XOR 
// (to give ones complement)
// Two's complement obtained with fixed Carry-in incorporated into
// initial Propagate/Generate logic
input  [15:0] A_L, A_H, B_L, B_H;
input         R_L, R_H;
input  [0:4]  aswc;
input         rst0;
output [15:0] Z_L, Z_H;
wire   [15:0] A0_L, A0_H, B0_L, B0_H;
wire   [15:0] Q0_L, Q0_H, G0_L, G0_H;
wire   [15:0] Q1_L, Q1_H, G1_L, G1_H;
wire   [15:0] Q2_L, Q2_H, G2_L, G2_H;
wire   [15:1] P1_L, P1_H;
wire   [15:4] P2_L, P2_H;
// A0 is ones complement of A if R==0
xor2 ia0 (R_H,R_L, A_L[00],A_H[00], A0_L[00],A0_H[00], aswc[0],rst0);
xor2 ia1 (R_H,R_L, A_L[01],A_H[01], A0_L[01],A0_H[01], aswc[0],rst0);
xor2 ia2 (R_H,R_L, A_L[02],A_H[02], A0_L[02],A0_H[02], aswc[0],rst0);
xor2 ia3 (R_H,R_L, A_L[03],A_H[03], A0_L[03],A0_H[03], aswc[0],rst0);
xor2 ia4 (R_H,R_L, A_L[04],A_H[04], A0_L[04],A0_H[04], aswc[0],rst0);
xor2 ia5 (R_H,R_L, A_L[05],A_H[05], A0_L[05],A0_H[05], aswc[0],rst0);
xor2 ia6 (R_H,R_L, A_L[06],A_H[06], A0_L[06],A0_H[06], aswc[0],rst0);
xor2 ia7 (R_H,R_L, A_L[07],A_H[07], A0_L[07],A0_H[07], aswc[0],rst0);
xor2 ia8 (R_H,R_L, A_L[08],A_H[08], A0_L[08],A0_H[08], aswc[0],rst0);
xor2 ia9 (R_H,R_L, A_L[09],A_H[09], A0_L[09],A0_H[09], aswc[0],rst0);
xor2 iaa (R_H,R_L, A_L[10],A_H[10], A0_L[10],A0_H[10], aswc[0],rst0);
xor2 iab (R_H,R_L, A_L[11],A_H[11], A0_L[11],A0_H[11], aswc[0],rst0);
xor2 iac (R_H,R_L, A_L[12],A_H[12], A0_L[12],A0_H[12], aswc[0],rst0);
xor2 iad (R_H,R_L, A_L[13],A_H[13], A0_L[13],A0_H[13], aswc[0],rst0);
xor2 iae (R_H,R_L, A_L[14],A_H[14], A0_L[14],A0_H[14], aswc[0],rst0);
xor2 iaf (R_H,R_L, A_L[15],A_H[15], A0_L[15],A0_H[15], aswc[0],rst0);

// B0 is ones complement of B if R==1
xor2 ib0 (R_L,R_H, B_L[00],B_H[00], B0_L[00],B0_H[00], aswc[0],rst0);
xor2 ib1 (R_L,R_H, B_L[01],B_H[01], B0_L[01],B0_H[01], aswc[0],rst0);
xor2 ib2 (R_L,R_H, B_L[02],B_H[02], B0_L[02],B0_H[02], aswc[0],rst0);
xor2 ib3 (R_L,R_H, B_L[03],B_H[03], B0_L[03],B0_H[03], aswc[0],rst0);
xor2 ib4 (R_L,R_H, B_L[04],B_H[04], B0_L[04],B0_H[04], aswc[0],rst0);
xor2 ib5 (R_L,R_H, B_L[05],B_H[05], B0_L[05],B0_H[05], aswc[0],rst0);
xor2 ib6 (R_L,R_H, B_L[06],B_H[06], B0_L[06],B0_H[06], aswc[0],rst0);
xor2 ib7 (R_L,R_H, B_L[07],B_H[07], B0_L[07],B0_H[07], aswc[0],rst0);
xor2 ib8 (R_L,R_H, B_L[08],B_H[08], B0_L[08],B0_H[08], aswc[0],rst0);
xor2 ib9 (R_L,R_H, B_L[09],B_H[09], B0_L[09],B0_H[09], aswc[0],rst0);
xor2 iba (R_L,R_H, B_L[10],B_H[10], B0_L[10],B0_H[10], aswc[0],rst0);
xor2 ibb (R_L,R_H, B_L[11],B_H[11], B0_L[11],B0_H[11], aswc[0],rst0);
xor2 ibc (R_L,R_H, B_L[12],B_H[12], B0_L[12],B0_H[12], aswc[0],rst0);
xor2 ibd (R_L,R_H, B_L[13],B_H[13], B0_L[13],B0_H[13], aswc[0],rst0);
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xor2 ibe (R_L,R_H, B_L[14],B_H[14], B0_L[14],B0_H[14], aswc[0],rst0);
xor2 ibf (R_L,R_H, B_L[15],B_H[15], B0_L[15],B0_H[15], aswc[0],rst0);

// Produce initial Propagate and Generate signals
// LSB behaves like Full Adder with Carry in tied to 1
CALF_ADDER ha0  (A0_L[00], A0_H[00], B0_L[00], B0_H[00],
              Q0_L[00], Q0_H[00], G0_L[00], G0_H[00], aswc[1], rst0);
HALF_ADDER ha1  (A0_L[01], A0_H[01], B0_L[01], B0_H[01], 
              Q0_L[01], Q0_H[01], G0_L[01], G0_H[01], aswc[1], rst0);
HALF_ADDER ha2  (A0_L[02], A0_H[02], B0_L[02], B0_H[02],
              Q0_L[02], Q0_H[02], G0_L[02], G0_H[02], aswc[1], rst0);
HALF_ADDER ha3  (A0_L[03], A0_H[03], B0_L[03], B0_H[03],
              Q0_L[03], Q0_H[03], G0_L[03], G0_H[03], aswc[1], rst0);
HALF_ADDER ha4  (A0_L[04], A0_H[04], B0_L[04], B0_H[04],
              Q0_L[04], Q0_H[04], G0_L[04], G0_H[04], aswc[1], rst0);
HALF_ADDER ha5  (A0_L[05], A0_H[05], B0_L[05], B0_H[05],
              Q0_L[05], Q0_H[05], G0_L[05], G0_H[05], aswc[1], rst0);
HALF_ADDER ha6  (A0_L[06], A0_H[06], B0_L[06], B0_H[06],
              Q0_L[06], Q0_H[06], G0_L[06], G0_H[06], aswc[1], rst0);
HALF_ADDER ha7  (A0_L[07], A0_H[07], B0_L[07], B0_H[07],
              Q0_L[07], Q0_H[07], G0_L[07], G0_H[07], aswc[1], rst0);
HALF_ADDER ha8  (A0_L[08], A0_H[08], B0_L[08], B0_H[08],
              Q0_L[08], Q0_H[08], G0_L[08], G0_H[08], aswc[1], rst0);
HALF_ADDER ha9  (A0_L[09], A0_H[09], B0_L[09], B0_H[09],
              Q0_L[09], Q0_H[09], G0_L[09], G0_H[09], aswc[1], rst0);
HALF_ADDER ha10 (A0_L[10], A0_H[10], B0_L[10], B0_H[10],
              Q0_L[10], Q0_H[10], G0_L[10], G0_H[10], aswc[1], rst0);
HALF_ADDER ha11 (A0_L[11], A0_H[11], B0_L[11], B0_H[11],
              Q0_L[11], Q0_H[11], G0_L[11], G0_H[11], aswc[1], rst0);
HALF_ADDER ha12 (A0_L[12], A0_H[12], B0_L[12], B0_H[12],
              Q0_L[12], Q0_H[12], G0_L[12], G0_H[12], aswc[1], rst0);
HALF_ADDER ha13 (A0_L[13], A0_H[13], B0_L[13], B0_H[13],
              Q0_L[13], Q0_H[13], G0_L[13], G0_H[13], aswc[1], rst0);
HALF_ADDER ha14 (A0_L[14], A0_H[14], B0_L[14], B0_H[14],
              Q0_L[14], Q0_H[14], G0_L[14], G0_H[14], aswc[1], rst0);
HALF_ADDER ha15 (A0_L[15], A0_H[15], B0_L[15], B0_H[15],
              Q0_L[15], Q0_H[15], G0_L[15], G0_H[15], aswc[1], rst0);

PP1 s00 (Q0_L[00], Q0_H[00], G0_L[00], G0_H[00], 
         Q1_L[00], Q1_H[00], G1_L[00], G1_H[00], aswc[2], rst0);
PP2 s01 (Q0_L[01], Q0_H[01], Q0_L[01], Q0_H[01], Q0_L[00], Q0_H[00],
         G0_L[01], G0_H[01], G0_L[00], G0_H[00], 
         Q1_L[01], Q1_H[01], P1_L[01], P1_H[01], G1_L[01], G1_H[01],
         aswc[2], rst0);
PP3 s02 (Q0_L[02], Q0_H[02], 
         Q0_L[02], Q0_H[02], Q0_L[01], Q0_H[01], Q0_L[00], Q0_H[00],
         G0_L[02], G0_H[02], G0_L[01], G0_H[01], G0_L[00], G0_H[00],
         Q1_L[02], Q1_H[02], P1_L[02], P1_H[02], G1_L[02], G1_H[02],
         aswc[2], rst0);
PP4 s03 (Q0_L[03], Q0_H[03], Q0_L[03], Q0_H[03], Q0_L[02], Q0_H[02],
         Q0_L[01], Q0_H[01], Q0_L[00], Q0_H[00], G0_L[03], G0_H[03],
         G0_L[02], G0_H[02], G0_L[01], G0_H[01], G0_L[00], G0_H[00],
         Q1_L[03], Q1_H[03], P1_L[03], P1_H[03], G1_L[03], G1_H[03],
         aswc[2], rst0);
PP1 s04 (Q0_L[04], Q0_H[04], G0_L[04], G0_H[04],
         Q1_L[04], Q1_H[04], G1_L[04], G1_H[04], aswc[2], rst0);
PP2 s05 (Q0_L[05], Q0_H[05], Q0_L[05], Q0_H[05], Q0_L[04], Q0_H[04],
         G0_L[05], G0_H[05], G0_L[04], G0_H[04], 
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         Q1_L[05], Q1_H[05], P1_L[05], P1_H[05], G1_L[05], G1_H[05],
         aswc[2], rst0);

PP3 s06 (Q0_L[06], Q0_H[06],
         Q0_L[06], Q0_H[06], Q0_L[05], Q0_H[05], Q0_L[04], Q0_H[04], 
         G0_L[06], G0_H[06], G0_L[05], G0_H[05], G0_L[04], G0_H[04], 
         Q1_L[06], Q1_H[06], P1_L[06], P1_H[06], G1_L[06], G1_H[06],
         aswc[2], rst0);
PP4 s07 (Q0_L[07], Q0_H[07], Q0_L[07], Q0_H[07], Q0_L[06], Q0_H[06],
         Q0_L[05], Q0_H[05], Q0_L[04], Q0_H[04], G0_L[07], G0_H[07],
         G0_L[06], G0_H[06], G0_L[05], G0_H[05], G0_L[04], G0_H[04],
         Q1_L[07], Q1_H[07], P1_L[07], P1_H[07], G1_L[07], G1_H[07],
         aswc[2], rst0);
PP1 s08 (Q0_L[08], Q0_H[08], G0_L[08], G0_H[08],
         Q1_L[08], Q1_H[08], G1_L[08], G1_H[08], aswc[2],rst0);
PP2 s09 (Q0_L[09], Q0_H[09], Q0_L[09], Q0_H[09], Q0_L[08], Q0_H[08], 
         G0_L[09], G0_H[09], G0_L[08], G0_H[08], 
         Q1_L[09], Q1_H[09], P1_L[09], P1_H[09], G1_L[09], G1_H[09],
         aswc[2], rst0);
PP3 s0a (Q0_L[10], Q0_H[10],
         Q0_L[10], Q0_H[10], Q0_L[09], Q0_H[09], Q0_L[08], Q0_H[08],
         G0_L[10], G0_H[10], G0_L[09], G0_H[09], G0_L[08], G0_H[08],
         Q1_L[10], Q1_H[10], P1_L[10], P1_H[10], G1_L[10], G1_H[10],
         aswc[2], rst0);
PP4 s0b (Q0_L[11], Q0_H[11], Q0_L[11], Q0_H[11], Q0_L[10], Q0_H[10],
         Q0_L[09], Q0_H[09], Q0_L[08], Q0_H[08], G0_L[11], G0_H[11],
         G0_L[10], G0_H[10], G0_L[09], G0_H[09], G0_L[08], G0_H[08],
         Q1_L[11], Q1_H[11], P1_L[11], P1_H[11], G1_L[11], G1_H[11],
         aswc[2], rst0);
PP1 s0c (Q0_L[12], Q0_H[12], G0_L[12], G0_H[12],
         Q1_L[12], Q1_H[12], G1_L[12], G1_H[12], aswc[2], rst0);
PP2 s0d (Q0_L[13], Q0_H[13], Q0_L[13], Q0_H[13], Q0_L[12], Q0_H[12],
         G0_L[13], G0_H[13], G0_L[12], G0_H[12], 
         Q1_L[13], Q1_H[13], P1_L[13], P1_H[13], G1_L[13], G1_H[13],
         aswc[2], rst0);
PP3 s0e (Q0_L[14], Q0_H[14],
         Q0_L[14], Q0_H[14], Q0_L[13], Q0_H[13], Q0_L[12], Q0_H[12],
         G0_L[14], G0_H[14], G0_L[13], G0_H[13], G0_L[12], G0_H[12],
         Q1_L[14], Q1_H[14], P1_L[14], P1_H[14], G1_L[14], G1_H[14],
         aswc[2], rst0);
PP4 s0f (Q0_L[15], Q0_H[15], Q0_L[15], Q0_H[15], Q0_L[14], Q0_H[14],
         Q0_L[13], Q0_H[13], Q0_L[12], Q0_H[12], G0_L[15], G0_H[15],
         G0_L[14], G0_H[14], G0_L[13], G0_H[13], G0_L[12], G0_H[12],
         Q1_L[15], Q1_H[15], P1_L[15], P1_H[15], G1_L[15], G1_H[15],
         aswc[2], rst0);

PP1 s10 (Q1_L[00], Q1_H[00], G1_L[00], G1_H[00],
         Q2_L[00], Q2_H[00], G2_L[00], G2_H[00], aswc[3], rst0);
PP1 s11 (Q1_L[01], Q1_H[01], G1_L[01], G1_H[01],
         Q2_L[01], Q2_H[01], G2_L[01], G2_H[01], aswc[3], rst0);
PP1 s12 (Q1_L[02], Q1_H[02], G1_L[02], G1_H[02],
         Q2_L[02], Q2_H[02], G2_L[02], G2_H[02], aswc[3], rst0);
PP1 s13 (Q1_L[03], Q1_H[03], G1_L[03], G1_H[03],
         Q2_L[03], Q2_H[03], G2_L[03], G2_H[03], aswc[3], rst0);
PP2 s14 (Q1_L[04], Q1_H[04], Q1_L[04], Q1_H[04], P1_L[03], P1_H[03],
         G1_L[04], G1_H[04], G1_L[03], G1_H[03],
         Q2_L[04], Q2_H[04], P2_L[04], P2_H[04], G2_L[04], G2_H[04],
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         aswc[3], rst0);
PP2 s15 (Q1_L[05], Q1_H[05], P1_L[05], P1_H[05], P1_L[03], P1_H[03],
         G1_L[05], G1_H[05], G1_L[03], G1_H[03],
         Q2_L[05], Q2_H[05], P2_L[05], P2_H[05], G2_L[05], G2_H[05],
         aswc[3], rst0);
PP2 s16 (Q1_L[06], Q1_H[06], P1_L[06], P1_H[06], P1_L[03], P1_H[03],
         G1_L[06], G1_H[06], G1_L[03], G1_H[03],
         Q2_L[06], Q2_H[06], P2_L[06], P2_H[06], G2_L[06], G2_H[06],
         aswc[3], rst0);
PP2 s17 (Q1_L[07], Q1_H[07], P1_L[07], P1_H[07], P1_L[03], P1_H[03],
         G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[07], Q2_H[07], P2_L[07], P2_H[07], G2_L[07], G2_H[07],
         aswc[3], rst0);
PP3 s18 (Q1_L[08], Q1_H[08], 
         Q1_L[08], Q1_H[08], P1_L[07], P1_H[07], P1_L[03], P1_H[03], 
         G1_L[08], G1_H[08], G1_L[07], G1_H[07], G1_L[03], G1_H[03]
         Q2_L[08], Q2_H[08], P2_L[08], P2_H[08], G2_L[08], G2_H[08],
         aswc[3], rst0);
PP3 s19 (Q1_L[09], Q1_H[09],
         P1_L[09], P1_H[09], P1_L[07], P1_H[07], P1_L[03], P1_H[03],
         G1_L[09], G1_H[09], G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[09], Q2_H[09], P2_L[09], P2_H[09], G2_L[09], G2_H[09],
         aswc[3], rst0);
PP3 s1a (Q1_L[10], Q1_H[10],
         P1_L[10], P1_H[10], P1_L[07], P1_H[07], P1_L[03], P1_H[03],
         G1_L[10], G1_H[10], G1_L[07], G1_H[07], G1_L[03], G1_H[03], 
         Q2_L[10], Q2_H[10], P2_L[10], P2_H[10], G2_L[10], G2_H[10],
         aswc[3], rst0);
PP3 s1b (Q1_L[11], Q1_H[11],
         P1_L[11], P1_H[11], P1_L[07], P1_H[07], P1_L[03], P1_H[03],
         G1_L[11], G1_H[11], G1_L[07], G1_H[07], G1_L[03], G1_H[03], 
         Q2_L[11], Q2_H[11], P2_L[11], P2_H[11], G2_L[11], G2_H[11],
         aswc[3], rst0);
PP4 s1c (Q1_L[12], Q1_H[12], Q1_L[12], Q1_H[12], P1_L[11], P1_H[11],
         P1_L[07], P1_H[07], P1_L[03], P1_H[03], G1_L[12], G1_H[12],
         G1_L[11], G1_H[11], G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[12], Q2_H[12], P2_L[12], P2_H[12], G2_L[12], G2_H[12],
         aswc[3], rst0);
PP4 s1d (Q1_L[13], Q1_H[13], P1_L[13], P1_H[13], P1_L[11], P1_H[11],
         P1_L[07], P1_H[07], P1_L[03], P1_H[03], G1_L[13], G1_H[13],
         G1_L[11], G1_H[11], G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[13], Q2_H[13], P2_L[13], P2_H[13], G2_L[13], G2_H[13],
         aswc[3], rst0);
PP4 s1e (Q1_L[14], Q1_H[14], P1_L[14], P1_H[14], P1_L[11], P1_H[11],
         P1_L[07], P1_H[07], P1_L[03], P1_H[03], G1_L[14], G1_H[14],
         G1_L[11], G1_H[11], G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[14], Q2_H[14], P2_L[14], P2_H[14], G2_L[14], G2_H[14],
         aswc[3], rst0);
PP4 s1f (Q1_L[15], Q1_H[15], P1_L[15], P1_H[15], P1_L[11], P1_H[11], 
         P1_L[07], P1_H[07], P1_L[03], P1_H[03], G1_L[15], G1_H[15],
         G1_L[11], G1_H[11], G1_L[07], G1_H[07], G1_L[03], G1_H[03],
         Q2_L[15], Q2_H[15], P2_L[15], P2_H[15], G2_L[15], G2_H[15],
         aswc[3], rst0);

XXX



buf1 o0 (                    Q2_L[00], Q2_H[00], Z_L[00], Z_H[00], 
         aswc[4], rst0); 
xor2 o1 (G2_L[00], G2_H[00], Q2_L[01], Q2_H[01], Z_L[01], Z_H[01], 
         aswc[4], rst0);
xor2 o2 (G2_L[01], G2_H[01], Q2_L[02], Q2_H[02], Z_L[02], Z_H[02], 
         aswc[4], rst0);
xor2 o3 (G2_L[02], G2_H[02], Q2_L[03], Q2_H[03], Z_L[03], Z_H[03],
         aswc[4], rst0);
xor2 o4 (G2_L[03], G2_H[03], Q2_L[04], Q2_H[04], Z_L[04], Z_H[04],
         aswc[4], rst0);
xor2 o5 (G2_L[04], G2_H[04], Q2_L[05], Q2_H[05], Z_L[05], Z_H[05],
         aswc[4], rst0);
xor2 o6 (G2_L[05], G2_H[05], Q2_L[06], Q2_H[06], Z_L[06], Z_H[06],
         aswc[4], rst0);
xor2 o7 (G2_L[06], G2_H[06], Q2_L[07], Q2_H[07], Z_L[07], Z_H[07],
         aswc[4], rst0);
xor2 o8 (G2_L[07], G2_H[07], Q2_L[08], Q2_H[08], Z_L[08], Z_H[08],
         aswc[4], rst0);
xor2 o9 (G2_L[08], G2_H[08], Q2_L[09], Q2_H[09], Z_L[09], Z_H[09],
         aswc[4], rst0);
xor2 oa (G2_L[09], G2_H[09], Q2_L[10], Q2_H[10], Z_L[10], Z_H[10],
         aswc[4], rst0);
xor2 ob (G2_L[10], G2_H[10], Q2_L[11], Q2_H[11], Z_L[11], Z_H[11],
         aswc[4], rst0);
xor2 oc (G2_L[11], G2_H[11], Q2_L[12], Q2_H[12], Z_L[12], Z_H[12],
         aswc[4], rst0);
xor2 od (G2_L[12], G2_H[12], Q2_L[13], Q2_H[13], Z_L[13], Z_H[13],
         aswc[4], rst0);
xor2 oe (G2_L[13], G2_H[13], Q2_L[14], Q2_H[14], Z_L[14], Z_H[14], 
         aswc[4], rst0);
xor2 of (G2_L[14], G2_H[14], Q2_L[15], Q2_H[15], Z_L[15], Z_H[15],
         aswc[4], rst0);
endmodule
module BUF16(I_L, I_H, Z_L, Z_H, aswc, rst0);
// 16-bit wide buffer
input  [15:0] I_L, I_H;
input         aswc;
input         rst0;
output [15:0] Z_L, Z_H;
buf1 b00 (I_L[00], I_H[00], Z_L[00], Z_H[00], aswc, rst0);
buf1 b01 (I_L[01], I_H[01], Z_L[01], Z_H[01], aswc, rst0);
buf1 b02 (I_L[02], I_H[02], Z_L[02], Z_H[02], aswc, rst0);
buf1 b03 (I_L[03], I_H[03], Z_L[03], Z_H[03], aswc, rst0);
buf1 b04 (I_L[04], I_H[04], Z_L[04], Z_H[04], aswc, rst0);
buf1 b05 (I_L[05], I_H[05], Z_L[05], Z_H[05], aswc, rst0);
buf1 b06 (I_L[06], I_H[06], Z_L[06], Z_H[06], aswc, rst0);
buf1 b07 (I_L[07], I_H[07], Z_L[07], Z_H[07], aswc, rst0);
buf1 b08 (I_L[08], I_H[08], Z_L[08], Z_H[08], aswc, rst0);
buf1 b09 (I_L[09], I_H[09], Z_L[09], Z_H[09], aswc, rst0);
buf1 b0a (I_L[10], I_H[10], Z_L[10], Z_H[10], aswc, rst0);
buf1 b0b (I_L[11], I_H[11], Z_L[11], Z_H[11], aswc, rst0);
buf1 b0c (I_L[12], I_H[12], Z_L[12], Z_H[12], aswc, rst0);
buf1 b0d (I_L[13], I_H[13], Z_L[13], Z_H[13], aswc, rst0);
buf1 b0e (I_L[14], I_H[14], Z_L[14], Z_H[14], aswc, rst0);
buf1 b0f (I_L[15], I_H[15], Z_L[15], Z_H[15], aswc, rst0);
endmodule
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module MUX16(I1_L, I1_H, I2_L, I2_H, S_L, S_H, Z_L, Z_H, aswc, rst0);
// 16-bit wide 2-way MUX
input  [15:0] I1_L, I1_H, I2_L, I2_H;
input         S_L, S_H;
input         aswc, rst0;
output [15:0] Z_L, Z_H;
mux2 m00 (I1_L[00], I1_H[00], I2_L[00], I2_H[00], S_L, S_H,      
          Z_L[00], Z_H[00], aswc, rst0);
mux2 m01 (I1_L[01], I1_H[01], I2_L[01], I2_H[01], S_L, S_H,
          Z_L[01], Z_H[01], aswc, rst0);
mux2 m02 (I1_L[02], I1_H[02], I2_L[02], I2_H[02], S_L, S_H,
          Z_L[02], Z_H[02], aswc, rst0);
mux2 m03 (I1_L[03], I1_H[03], I2_L[03], I2_H[03], S_L, S_H,
          Z_L[03], Z_H[03], aswc, rst0);
mux2 m04 (I1_L[04], I1_H[04], I2_L[04], I2_H[04], S_L, S_H,
          Z_L[04], Z_H[04], aswc, rst0);
mux2 m05 (I1_L[05], I1_H[05], I2_L[05], I2_H[05], S_L, S_H,
          Z_L[05], Z_H[05], aswc, rst0);
mux2 m06 (I1_L[06], I1_H[06], I2_L[06], I2_H[06], S_L, S_H,
          Z_L[06], Z_H[06], aswc, rst0);
mux2 m07 (I1_L[07], I1_H[07], I2_L[07], I2_H[07], S_L, S_H,
          Z_L[07], Z_H[07], aswc, rst0);
mux2 m08 (I1_L[08], I1_H[08], I2_L[08], I2_H[08], S_L, S_H,
          Z_L[08], Z_H[08], aswc, rst0);
mux2 m09 (I1_L[09], I1_H[09], I2_L[09], I2_H[09], S_L, S_H,
          Z_L[09], Z_H[09], aswc, rst0);
mux2 m0a (I1_L[10], I1_H[10], I2_L[10], I2_H[10], S_L, S_H,
          Z_L[10], Z_H[10], aswc, rst0);
mux2 m0b (I1_L[11], I1_H[11], I2_L[11], I2_H[11], S_L, S_H,
          Z_L[11], Z_H[11], aswc, rst0);
mux2 m0c (I1_L[12], I1_H[12], I2_L[12], I2_H[12], S_L, S_H,
          Z_L[12], Z_H[12], aswc, rst0);
mux2 m0d (I1_L[13], I1_H[13], I2_L[13], I2_H[13], S_L, S_H,
          Z_L[13], Z_H[13], aswc, rst0);
mux2 m0e (I1_L[14], I1_H[14], I2_L[14], I2_H[14], S_L, S_H,
          Z_L[14], Z_H[14], aswc, rst0);
mux2 m0f (I1_L[15], I1_H[15], I2_L[15], I2_H[15], S_L, S_H,
          Z_L[15], Z_H[15], aswc, rst0);

always @(posedge aswc)
  if (`DEBUG)
    #`DEBUG_DELAY $display("MUX     %t %H %H %H %H %H %H %H %H",
                  $time, S_L, S_H, I1_L, I1_H, I2_L, I2_H, Z_L, Z_H);

endmodule
module CMP16(A_L, A_H, B_L, B_H, 
             A_EQ_B_L, A_EQ_B_H, A_GT_B_L, A_GT_B_H, aswc, rst0);
// 16-bit, radix-4, look-ahead comparator
input [15:0] A_L, A_H, B_L, B_H;
input  [0:2] aswc;
input        rst0;
output       A_EQ_B_L, A_EQ_B_H, A_GT_B_L, A_GT_B_H;
wire [15:0] EQ0_L, EQ0_H, GT0_L, GT0_H;
wire  [3:0] EQ1_L, EQ1_H, GT1_L, GT1_H;
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// Bitwise equality
xnor2 e00 (A_L[00], A_H[00], B_L[00], B_H[00],
           EQ0_L[00], EQ0_H[00], aswc[0], rst0);
xnor2 e01 (A_L[01], A_H[01], B_L[01], B_H[01],
           EQ0_L[01], EQ0_H[01], aswc[0], rst0);
xnor2 e02 (A_L[02], A_H[02], B_L[02], B_H[02], 
           EQ0_L[02], EQ0_H[02], aswc[0], rst0);
xnor2 e03 (A_L[03], A_H[03], B_L[03], B_H[03],
           EQ0_L[03], EQ0_H[03], aswc[0], rst0);
xnor2 e04 (A_L[04], A_H[04], B_L[04], B_H[04],
           EQ0_L[04], EQ0_H[04], aswc[0], rst0);
xnor2 e05 (A_L[05], A_H[05], B_L[05], B_H[05],
           EQ0_L[05], EQ0_H[05], aswc[0], rst0);
xnor2 e06 (A_L[06],A_H[06], B_L[06], B_H[06],
           EQ0_L[06], EQ0_H[06], aswc[0], rst0);
xnor2 e07 (A_L[07], A_H[07], B_L[07],B_H[07],
           EQ0_L[07], EQ0_H[07], aswc[0], rst0);
xnor2 e08 (A_L[08], A_H[08], B_L[08], B_H[08],
           EQ0_L[08], EQ0_H[08], aswc[0], rst0);
xnor2 e09 (A_L[09], A_H[09], B_L[09], B_H[09],
           EQ0_L[09], EQ0_H[09], aswc[0], rst0);
xnor2 e0a (A_L[10], A_H[10], B_L[10], B_H[10],
           EQ0_L[10], EQ0_H[10], aswc[0], rst0);
xnor2 e0b (A_L[11], A_H[11], B_L[11], B_H[11],
           EQ0_L[11], EQ0_H[11], aswc[0], rst0);
xnor2 e0c (A_L[12], A_H[12], B_L[12], B_H[12],
           EQ0_L[12], EQ0_H[12], aswc[0], rst0);
xnor2 e0d (A_L[13], A_H[13], B_L[13], B_H[13],
           EQ0_L[13], EQ0_H[13], aswc[0], rst0);
xnor2 e0e (A_L[14], A_H[14], B_L[14], B_H[14],
           EQ0_L[14], EQ0_H[14], aswc[0], rst0);
xnor2 e0f (A_L[15], A_H[15], B_L[15], B_H[15],
           EQ0_L[15], EQ0_H[15], aswc[0], rst0);

// Bitwise A>B
and2 g00 (A_L[00], A_H[00], B_H[00], B_L[00],
          GT0_L[00], GT0_H[00], aswc[0], rst0);
and2 g01 (A_L[01], A_H[01], B_H[01], B_L[01],
          GT0_L[01], GT0_H[01], aswc[0], rst0);
and2 g02 (A_L[02], A_H[02], B_H[02], B_L[02],
          GT0_L[02], GT0_H[02], aswc[0], rst0);
and2 g03 (A_L[03], A_H[03], B_H[03], B_L[03],
          GT0_L[03], GT0_H[03], aswc[0], rst0);
and2 g04 (A_L[04], A_H[04], B_H[04], B_L[04],
          GT0_L[04], GT0_H[04], aswc[0], rst0);
and2 g05 (A_L[05], A_H[05], B_H[05], B_L[05],
          GT0_L[05], GT0_H[05], aswc[0], rst0);
and2 g06 (A_L[06], A_H[06], B_H[06], B_L[06],
          GT0_L[06], GT0_H[06], aswc[0], rst0);
and2 g07 (A_L[07], A_H[07], B_H[07], B_L[07],
          GT0_L[07], GT0_H[07], aswc[0], rst0);
and2 g08 (A_L[08], A_H[08], B_H[08], B_L[08],
          GT0_L[08], GT0_H[08], aswc[0], rst0);
and2 g09 (A_L[09], A_H[09], B_H[09], B_L[09],
          GT0_L[09], GT0_H[09], aswc[0], rst0);
and2 g0a (A_L[10], A_H[10], B_H[10], B_L[10],
          GT0_L[10], GT0_H[10], aswc[0], rst0);
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and2 g0b (A_L[11], A_H[11], B_H[11], B_L[11],
          GT0_L[11], GT0_H[11], aswc[0], rst0);
and2 g0c (A_L[12], A_H[12], B_H[12], B_L[12],
          GT0_L[12], GT0_H[12], aswc[0], rst0);
and2 g0d (A_L[13], A_H[13], B_H[13], B_L[13],
          GT0_L[13], GT0_H[13], aswc[0], rst0);
and2 g0e (A_L[14], A_H[14], B_H[14], B_L[14],
          GT0_L[14], GT0_H[14], aswc[0], rst0);
and2 g0f (A_L[15], A_H[15], B_H[15], B_L[15],
          GT0_L[15], GT0_H[15], aswc[0], rst0);

and4 e10 (EQ0_L[00], EQ0_H[00], EQ0_L[01], EQ0_H[01],
          EQ0_L[02], EQ0_H[02], EQ0_L[03], EQ0_H[03],
          EQ1_L[00], EQ1_H[00], aswc[1], rst0);
and4 e11 (EQ0_L[04], EQ0_H[04], EQ0_L[05], EQ0_H[05],
          EQ0_L[06], EQ0_H[06], EQ0_L[07], EQ0_H[07],
          EQ1_L[01], EQ1_H[01], aswc[1], rst0);
and4 e12 (EQ0_L[08], EQ0_H[08], EQ0_L[09], EQ0_H[09],
          EQ0_L[10], EQ0_H[10], EQ0_L[11], EQ0_H[11],
          EQ1_L[02], EQ1_H[02], aswc[1], rst0);
and4 e13 (EQ0_L[12], EQ0_H[12], EQ0_L[13], EQ0_H[13],
          EQ0_L[14], EQ0_H[14], EQ0_L[15], EQ0_H[15],
          EQ1_L[03], EQ1_H[03], aswc[1], rst0);

gpp4 g10 (GT0_L[03], GT0_H[03], GT0_L[02], GT0_H[02],
          GT0_L[01], GT0_H[01], GT0_L[00], GT0_H[00],
          EQ0_L[03], EQ0_H[03], EQ0_L[02], EQ0_H[02],
          EQ0_L[01], EQ0_H[01], GT1_L[0], GT1_H[0], aswc[1], rst0);
gpp4 g11 (GT0_L[07], GT0_H[07], GT0_L[06], GT0_H[06],
          GT0_L[05], GT0_H[05], GT0_L[04], GT0_H[04],
          EQ0_L[07], EQ0_H[07], EQ0_L[06], EQ0_H[06],
          EQ0_L[05], EQ0_H[05], GT1_L[1], GT1_H[1], aswc[1], rst0);
gpp4 g12 (GT0_L[11], GT0_H[11], GT0_L[10], GT0_H[10],
          GT0_L[09], GT0_H[09], GT0_L[08], GT0_H[08],
          EQ0_L[11], EQ0_H[11], EQ0_L[10], EQ0_H[10],
          EQ0_L[09], EQ0_H[09], GT1_L[2], GT1_H[2], aswc[1], rst0);
gpp4 g13 (GT0_L[15], GT0_H[15], GT0_L[14], GT0_H[14],
          GT0_L[13], GT0_H[13], GT0_L[12], GT0_H[12],
          EQ0_L[15], EQ0_H[15], EQ0_L[14], EQ0_H[14],
          EQ0_L[13], EQ0_H[13], GT1_L[3], GT1_H[3], aswc[1], rst0);

and4 e20 (EQ1_L[3], EQ1_H[3], EQ1_L[2], EQ1_H[2],
          EQ1_L[1], EQ1_H[1], EQ1_L[0], EQ1_H[0],
          A_EQ_B_L, A_EQ_B_H, aswc[2], rst0);
gpp4 g20 (GT1_L[3], GT1_H[3], GT1_L[2], GT1_H[2], 
          GT1_L[1], GT1_H[1], GT1_L[0], GT1_H[0],
          EQ1_L[3], EQ1_H[3], EQ1_L[2], EQ1_H[2],
          EQ1_L[1], EQ1_H[1], A_GT_B_L, A_GT_B_H, aswc[2], rst0);

always @(GT0_L or GT0_H or EQ0_L or EQ0_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("cmp0    %t %B %B %B %B",
                           $time, GT0_H, GT0_L, EQ0_H, EQ0_L);
always @(GT1_L or GT1_H or EQ1_L or EQ1_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("cmp1    %t %B %B %B %B",
                            $time, GT1_H, GT1_L, EQ1_H, EQ1_L);
endmodule
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module gcd (A_L, A_H, B_L, B_H, Z_L, Z_H, reqI, ackI, reqO, ackO, 
rst0);
input  [15:0] A_L,A_H,B_L,B_H;
input         reqI,ackO,rst0;
output [15:0] Z_L,Z_H;
output        ackI,reqO;
wire [0:11] aswc;
wire [13:0] req,ack;
wire [1:2]  AEQB_L,AEQB_H;
wire [15:0] A0_L, A0_H, B0_L, B0_H, A1_L, A1_H, B1_L, B1_H,
            A2_L, A2_H, B2_L, B2_H, A3_L, A3_H, B3_L, B3_H,
            S8_L, S8_H, M8_L, M8_H, 
            M7_L, M7_H, M6_L, M6_H, M5_L, M5_H, M4_L, M4_H;

PIPELINE_ELER0 ctb (req[3],ack3a,req[12],ack[12],aswc[10],rst0);
buf1 fbb (A_EQ_B_L,A_EQ_B_H,AEQB_L[1],AEQB_H[1],aswc[10],rst0);

PIPELINE_ELER1 ctc (req[12],ack[12],req[13], ack[13], aswc[11], 
rst0);
buf1r1 fbc (AEQB_L[1],AEQB_H[1],AEQB_L[2],AEQB_H[2], aswc[11], rst0);

AN2  mx00 (AEQB_H[2],req[13],A_EQ_Bmx0);
AN2  mx01 (AEQB_L[2],req[13],A_EQ_Bmx1);
MUX2 mx0  (reqI, ackI, req[9], ack[9], A_EQ_Bmx0, A_EQ_Bmx1, ack[13], 
req[10], ack[10], rst0);

PIPELINE_ELER0 ct0 (req[10], ack[10], req[0], ack[0], aswc[0], rst0);
PIPELINE_ELER0 ct1 (req[0], ack[0], req[1], ack[1], aswc[1], rst0);
PIPELINE_ELER0 ct2 (req[1], ack[1], req[2], ack[2], aswc[2], rst0);
PIPELINE_ELER0 ct3 (req[2], ack[2], req[3], ack[3], aswc[3], rst0);
C_ELE3R0 ct3a (ack3a, ack3b, ack3c, ack[3], rst0);

MUX16 amx (A_L, A_H, S8_L, S8_H, AEQB_H[2], AEQB_L[2], A0_L, A0_H, 
aswc[0], rst0);
MUX16 bmx (B_L, B_H, M8_L, M8_H, AEQB_H[2], AEQB_L[2], B0_L, B0_H, 
aswc[0], rst0);
CMP16 cmp (A0_L, A0_H, B0_L, B0_H, A_EQ_B_L, A_EQ_B_H, A_GT_B_L, 
A_GT_B_H, aswc[1:3], rst0);
BUF16 ab1 (A0_L, A0_H, A1_L, A1_H, aswc[1], rst0);
BUF16 bb1 (B0_L, B0_H, B1_L, B1_H, aswc[1], rst0);
BUF16 ab2 (A1_L, A1_H, A2_L, A2_H, aswc[2], rst0);
BUF16 bb2 (B1_L, B1_H, B2_L, B2_H, aswc[2], rst0);
BUF16 ab3 (A2_L, A2_H, A3_L, A3_H, aswc[3], rst0);
BUF16 bb3 (B2_L, B2_H, B3_L, B3_H, aswc[3], rst0);

AN2  dx00 (A_EQ_B_H, req[3], A_EQ_Bdx0);
AN2  dx01 (A_EQ_B_L, req[3], A_EQ_Bdx1);
DMX2 dx0  (req[11], ack[11], req[4], ack[4], A_EQ_Bdx0, A_EQ_Bdx1, 
ack3b, req[3], ack3c, rst0);

//Subtractor and subtrahend feedback path
PIPELINE_ELER0 ct4 (req[4], ack[4], req[5], ack[5], aswc[4], rst0);
PIPELINE_ELER0 ct5 (req[5], ack[5], req[6], ack[6], aswc[5], rst0);
PIPELINE_ELER0 ct6 (req[6], ack[6], req[7], ack[7], aswc[6], rst0);
PIPELINE_ELER0 ct7 (req[7], ack[7], req[8], ack[8], aswc[7], rst0);

XXXV



PIPELINE_ELER0 ct8 (req[8], ack[8], req[9], ack[9], aswc[8], rst0);

SUBRSB16 sub (A3_L, A3_H, B3_L, B3_H, A_GT_B_L, A_GT_B_H, S8_L, S8_H, 
aswc[4:8], rst0);
MUX16 smx (A3_L, A3_H, B3_L, B3_H, A_GT_B_L, A_GT_B_H, M4_L, M4_H, 
aswc[4],rst0);
BUF16 sb1 (M4_L, M4_H, M5_L, M5_H, aswc[5], rst0);
BUF16 sb2 (M5_L, M5_H, M6_L, M6_H, aswc[6], rst0);
BUF16 sb3 (M6_L, M6_H, M7_L, M7_H, aswc[7], rst0);
BUF16 sb4 (M7_L, M7_H, M8_L, M8_H, aswc[8], rst0);

// Result output buffer 
PIPELINE_ELER0 ct9 (req[11], ack[11], reqO, ackO, aswc[9], rst0);
BUF16 sb5 (A3_L, A3_H, Z_L, Z_H, aswc[9], rst0);

always @(aswc)
  if (`DEBUG)
    #`DEBUG_DELAY $display("ASWC    %t %B", $time, aswc);

always @(req or ack)
  if (`DEBUG)
    #`DEBUG_DELAY $display("RqAk %t %B %B", $time, req, ack);

always @(ack3a or ack3b or ack3c)
  if (`DEBUG)
    #`DEBUG_DELAY $display("Ack3 %t %B %B %B", 
                            $time, ack3a, ack3b, ack3c);

always @(A0_L or A0_H or B0_L or B0_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("A0B0    %t %D %D %D %D",
                            $time, A0_H, A0_L, B0_H, B0_L);

always @(A1_L or A1_H or B1_L or B1_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("A1B1    %t %D %D %D %D",
                            $time, A1_H, A1_L, B1_H, B1_L);

always @(A2_L or A2_H or B2_L or B2_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("A2B2    %t %D %D %D %D", 
                            $time, A2_H, A2_L, B2_H, B2_L);

always @(A3_L or A3_H or B3_L or B3_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("A3B3    %t %D %D %D %D",
                            $time, A3_H, A3_L, B3_H, B3_L);

always @(A_EQ_B_L or A_EQ_B_H or A_GT_B_L or A_GT_B_H)
  if (`DEBUG)
    #`DEBUG_DELAY $display("GTEQ    %t EQ:%B %B GT:%B %B",
                      $time, A_EQ_B_H, A_EQ_B_L, A_GT_B_H, A_GT_B_L);

always @(M8_L or M8_H or S8_L or S8_H)
  if (`DEBUG || `INTNODE)
    #`DEBUG_DELAY $display("M8      %t %H %H %H %H (%D %D %D %D)",
              $time, S8_H, S8_L, M8_H, M8_L, S8_H, S8_L, M8_H, M8_L);
endmodule
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module test;
reg  [15:0] A_L, A_H, B_L, B_H;
wire [15:0] Z_L, Z_H;
reg reqI;
wire ackI;
wire reqO;
wire ackO;
reg         rst0;
wire temp;
initial
begin
$display("Running %m");
$dumpfile("gcd-dr.vcd");
$dumpvars(0,test);

// Initialise
rst0 = 0;  // Activate reset
A_H = 16'hZZZZ; A_L = 16'hZZZZ; B_H = 16'hZZZZ; B_L = 16'hZZZZ; 
reqI = 0;  // Invalid data on input buses

#100 rst0 = 1; // Remove reset state  
$display("--------------------------------------------------------");
A_H <=16'hFFFF; B_H <=16'hFFFF; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <=16'hZZZZ; B_L <=16'hZZZZ; 
$display("--------------------------------------------------------");
#5000 A_H <=16'h7FFF; B_H <=16'hFFFE; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <=16'hZZZZ; B_L <= 6'hZZZZ; 
$display("--------------------------------------------------------");
#5000 A_H <= 16'hFFFE; B_H <= 16'h7FFF; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <= 16'hZZZZ; B_L <= 16'hZZZZ; 
$display("--------------------------------------------------------");
#5000 A_H <=16'hFFFF; B_H <=16'hAAAA; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <= 16'hZZZZ; B_H <= 16'hZZZZ; A_L <= 16'hZZZZ; B_L <= 
16'hZZZZ; 
$display("--------------------------------------------------------");
#5000 A_H <= 16'hAAAA; B_H <= 16'hFFFF; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <=16'hZZZZ; B_L <=16'hZZZZ; 
$display("--------------------------------------------------------");
#5000 A_H <= 46368;B_H <= 28657; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;
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#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <=16'hZZZZ; B_L <=16'hZZZZ; 
$display("--------------------------------------------------------");
#10000 A_H <= 28657;B_H <= 46368; #1 A_L <= ~A_H; B_L <= ~B_H;
#20 reqI=1;

#20 reqI=0;
#20 A_H <=16'hZZZZ; B_H <=16'hZZZZ; A_L <=16'hZZZZ; B_L <=16'hZZZZ; 
$display("--------------------------------------------------------");

#10000 
$finish(2);
end
always @(reqI or ackI or A_L or A_H or B_L or B_H)
begin
  #5 $display("Inputs  %t Rq:%B Ak:%B A:%H %H B:%H %H (%D %D %D %D)",
          $time, reqI, ackI, A_H, A_L, B_H, B_L, A_H, A_L, B_H, B_L);
end
always @(reqO or ackO or Z_H)
begin
  #5 $display("Outputs %t Rq:%B Ak:%B Z:%H %H (%D %D)",
                              $time, reqO, ackO, Z_H, Z_L, Z_H, Z_L);
end
gcd  dut (A_L,A_H, B_L,B_H, Z_L,Z_H, reqI,ackI, reqO,ackO, rst0);
BUF1 o0  (reqO,temp);
BUF1 o1  (temp,ackO);

endmodule
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Appendix B C source-code

/* OBDD reduction of functions */
#include <stdio.h>
#include <stdlib.h>
#define NULL 0
#define VERTEX_ZERO 0
#define VERTEX_ONE  1
#define DEBUG 0
/*#define ECRL  0*/
/*#define IECRL 0*/
#define PFAL  1
#define LEVELS 4
#define SIZE 16
#define OTFUN 65536
/*
#define LEVELS 3
#define SIZE 8
#define OTFUN 256
*/
/*
#define LEVELS 2
#define SIZE 4
#define OTFUN 16
*/
/*
#define LEVELS 1
#define SIZE 2
#define OTFUN 4
*/
/*
SIZE = 1<<LEVELS
OTFUN= 1<<SIZE
*/

struct node {
  int    chooser;
  char   name;
  struct node *zero;
  struct node *one;
};

struct table {
  struct node  *node;
  struct table *next;
};

struct expr {
  int value;
  int size;
};
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struct choice {
  int logical;
  int physical;
};

static struct node *v0;
static struct node *v1;
static struct table *t0;
static struct choice var_ord[LEVELS];
static char node_name;
static const char *pmosl = "0.35u";
static const char *pmosw = "0.50u";
static const char *pmosm = "P";
static const char *nmosl = "0.35u";
static const char *nmosw = "0.50u";
static const char *nmosm = "N";
/* allocate storage for vertex */
struct node *obdd_alloc(void)
{
  return (struct node *) malloc(sizeof(struct node));
}

struct table *talloc(void)
{
  return (struct table *) malloc(sizeof(struct table));
}

/* 
  A tree factorial is used to calculate the complete search
  space of FBDD trees to find the minimal implementation
*/
int factorial(int in)
{
  int i;
  int fact=1;
  for(i=1;i<=in;i++)
    fact*=i;
  return fact;
}

int tree_fact(int in)
{
  int i,j;
  int fact=1;
  for(i=1;i<=in;i++)
    for(j=1;j<=(1<<(in-i));j++)
      fact*=i;
  return fact;
}
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void fact_ord_nr(int in, int size)
{
  int h;
  int i;
  int j;
  int k;
  int l;
  int used=0;
  i=in;
  for (l=size;l>0;l--) {
    h=i%l;
    k=0;
    for (j=0;j<=h;j++)
      do {
        k++;
      } while (used & (1<<k));
    var_ord[l-1].logical=h;
    var_ord[l-1].physical=k;
    used |= (1<<k);
    i/=l;
  }
}

void fact_ord_nrp(int in, int size)
{
  int h;
  int i;
  int j;
  int k;
  int l;
  int used=0;
  i=in;
  for (l=size;l>0;l--) {
    h=i%l;
    k=0;
    for (j=0;j<=h;j++)
      do {
        k++;
      } while (used & (1<<k));
    var_ord[l-1].logical=h;
    var_ord[l-1].physical=k;
    used |= (1<<k);
    i/=l;
  }
  printf("* Logical  ");
  for (l=size;l>0;l--)
    printf("%d",var_ord[l-1].logical);
  printf(" Physical ");
  for (l=size;l>0;l--)
    printf("%d",var_ord[l-1].physical);
  printf("\n");
}
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/* Can this be converted to be non-recursive? */
struct node *find_or_add(struct table *tab, 
                         int chooser, 
                         struct node *zero, 
                         struct node *one)
{
  struct node  *v;
  struct table *t;
  if (tab->node==NULL) { /* We're at the end of the linked list */
    v = obdd_alloc();
    v->chooser=chooser;
    v->name=node_name++;
    v->zero=zero;
    v->one=one;
    t = talloc();
    t->next=NULL;
    t->node=NULL;
    tab->node=v;
    tab->next=t;
    #if DEBUG
      printf("FA: Adding   %x %p %p\n", chooser, zero, one);
    #endif
  } else if (tab->node->chooser==chooser &&
             tab->node->zero   ==zero    &&
             tab->node->one    ==one) {
    v=tab->node;
    #if DEBUG
      printf("FA: Found %p\n",tab->node);
    #endif
  } else {
    v=find_or_add(tab->next, chooser, zero, one);
    #if DEBUG
      printf("FA: Next\n");
    #endif
  }
  return v;
}

void choose(struct expr f, struct expr *g, int chooser)
{
  int i;
  int new_exprl=0;
  int new_exprh=0;
  #if DEBUG
    printf("CH: Size %d\n",f.size-1);
    printf("CH: ");
  #endif
  for(i=f.size-1;i>=0;i--){
    #if DEBUG
      printf("%d ",(f.value)&(1<<i)?1:0);
    #endif
    if (i & (1<<chooser)) {
      new_exprl<<=1;
      new_exprl|=(f.value)&(1<<i)?1:0;
    } else {
      new_exprh<<=1;
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      new_exprh|=(f.value)&(1<<i)?1:0;
    }
  }
  #if DEBUG
    printf("\n");
  #endif
  #if DEBUG
    printf("CH: Split %x on %d, %x %x\n", 
                              (f.value),chooser,new_exprl,new_exprh);
  #endif
  g[0].size = g[1].size = (f.size)>>1;
  g[0].value=new_exprl;
  g[1].value=new_exprh;
}

/* Can this be converted to be non-recursive? */
struct node *robdd_build(struct table *tab, struct expr f, int ix)
{
  struct node *zero, *one;
  struct expr g[2];
  #if DEBUG
    printf("RB: Level %d\n",ix);
  #endif
  if (f.size==1) {
    if (f.value==0) {
      #if DEBUG
        printf ("RB: Returning V0\n");
      #endif
      return v0;
    } else if (f.value==1) {
      #if DEBUG
        printf ("RB: Returning V1\n");
      #endif
      return v1;
    } else {
      printf("RB: f=%d\n",f.value);
      printf("RB: ERROR Can't return V0 or V1 @ Top Level\n");
      }
    } else {
/* The decision can be made on i, 1 or some arbitrary number between
 these limits */
    #if DEBUG
      printf("RB: Level %d lvo %d pvo %d\n",
                ix,(var_ord[ix-1].logical),(var_ord[ix-1].physical));
    #endif
    choose(f,&g[0],(var_ord[ix-1].logical));
    #if DEBUG
      printf("RB: f %x o %x l %x\n",f.value,g[0].value,g[1].value);
    #endif
    zero = robdd_build(tab, g[0], ix-1);
    one  = robdd_build(tab, g[1], ix-1);
    if (zero == one) {
      #if DEBUG
        printf ("RB: No Node\n");
      #endif
      return zero;
    } else {
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      #if DEBUG
        printf ("RB: Add node %x %p %p\n",ix,zero,one);
      #endif
      return find_or_add(tab, var_ord[ix-1].physical, zero, one);
    }
  }
}

/* Can this be converted to be non-recursive? */
int obdd_print(struct node *node)
{
  int totals =0;
  if (node->chooser==0) {
    if (node==v0) {
      printf("0 "); /* Zero function */
      return 0;
    }
    if (node==v1) {
      printf("1 "); /* Ones function */
      return 0;
    }
    printf("ERROR (obdd print)\n");
    }
  printf("%d=L: ",node->chooser);
  if (node->zero==v0)
    printf("0 ");
  else if (node->zero==v1)
    printf("1 ");
  else
    totals+=obdd_print(node->zero);
  printf("%d=H: ",node->chooser);
  if (node->one==v0)
    printf("0 ");
  else if (node->one==v1)
    printf("1 ");
  else
    totals+=obdd_print(node->one);
  return totals+1;
}

int obdd_count(struct node *node)
{
  int totals =0;
  if (node->chooser==0) {
    if (node==v0) {
      return 1;
    }
    if (node==v1) {
      return 1;
    }
    printf("ERROR (obdd count)\n");
  }
  totals+=obdd_count(node->zero);
  totals+=obdd_count(node->one);
  return totals;
}
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int table_count(struct table *entry)
{
  int count =0;
  while (entry->next!=NULL) {
    count++;
    entry=entry->next;
  }
  return count;
}

/* Can this be converted to be non-recursive? */
int obdd_print_tab(struct table *entry)
{
  int totals =0;
  struct node *left;
  struct node *right;
  if (entry->node==NULL)
    return 0;
  else {
    printf("Node %c ",entry->node->name);
    left=entry->node->zero;
    right=entry->node->one;
    printf("I%d=L: ",entry->node->chooser);
    if (left==v0)
      printf("0 ");
    else if (left==v1)
      printf("1 ");
    else
      printf("%c ",left->name);
    printf("I%d=H: ",entry->node->chooser);
    if (right==v0)
      printf("0 ");
    else if (right==v1)
      printf("1 ");
    else
      printf("%c ",right->name);
    totals +=obdd_print_tab(entry->next);
  }
  return totals+1;
}

void print_spice_header(int func_id)
{
  int i;
  printf(".Subckt X%dX%0*X\n+",LEVELS,SIZE>>2,func_id);
  for(i=1;i<=LEVELS;i++) 
    printf("I%d_H I%d_L ",i,i);
  printf("Z_H Z_L vpc gnd\n");
  printf("MP0  Z_L Z_H  vpc vpc %s L=%s W=%s\n",pmosm,pmosl,pmosw);
  printf("MP1  Z_H Z_L  vpc vpc %s L=%s W=%s\n",pmosm,pmosl,pmosw);
  #ifdef IECRL
    printf("MN0  Z_L Z_H  gnd gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw); 
    printf("MN1  Z_H Z_L  gnd gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw);
  #endif
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  #ifdef PFAL
    printf("MN0  Z_L Z_H  gnd gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw); 
    printf("MN1  Z_H Z_L  gnd gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw);
  #endif
}

/* Can this be converted to be non-recursive? */
int obdd_print_spice(int func_id, 
                     struct table *entry, 
                     struct node *root)
{
  int totals =0;
  struct node *left;
  struct node *right;
  if (entry->node==NULL) {
    print_spice_header(func_id);
    return 0;
  } else {
    totals +=obdd_print_spice(func_id,entry->next,root);

    left=entry->node->zero;
    if(entry->node==root) {
      #ifdef ECRL
        printf("MN%cL gnd I%d_L ",
                            entry->node->name, entry->node->chooser);
      #endif
      #ifdef IECRL
        printf("MN%cL gnd I%d_L ",
                           entry->node->name,  entry->node->chooser);
      #endif
      #ifdef PFAL
        printf("MN%cL vpc I%d_L ",
                            entry->node->name, entry->node->chooser);
      #endif
  } else
      printf("MN%cL %c   I%d_L ",
         entry->node->name, entry->node->name, entry->node->chooser);
    if (left==v0) {
      #ifdef ECRL
        printf("Z_H ");
      #endif
      #ifdef IECRL
        printf("Z_H ");
      #endif
      #ifdef PFAL
        printf("Z_L ");
      #endif
  } else if (left==v1) {
      #ifdef ECRL
        printf("Z_L ");
      #endif
      #ifdef IECRL
        printf("Z_L ");
      #endif
      #ifdef PFAL
        printf("Z_H ");
      #endif
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    } else
      printf("%c   ",left->name);
    printf("gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw);

    right=entry->node->one;
    if(entry->node==root) {
      #ifdef ECRL
        printf("MN%cH gnd I%d_H ",
                            entry->node->name, entry->node->chooser);
      #endif
      #ifdef IECRL
        printf("MN%cH gnd I%d_H ",
                            entry->node->name, entry->node->chooser);
      #endif
      #ifdef PFAL
        printf("MN%cH vpc I%d_H ", 
                            entry->node->name, entry->node->chooser);
      #endif
    } else
      printf("MN%cH %c   I%d_H ", 
         entry->node->name, entry->node->name, entry->node->chooser);
    if (right==v0) {
      #ifdef ECRL
        printf("Z_H ");
      #endif
      #ifdef IECRL
        printf("Z_H ");
      #endif
      #ifdef PFAL
        printf("Z_L ");
      #endif
    } else if (right==v1) {
      #ifdef ECRL
        printf("Z_L ");
      #endif
      #ifdef IECRL
        printf("Z_L ");
      #endif
      #ifdef PFAL
        printf("Z_H ");
      #endif
    } else
    printf("%c   ",right->name);
  printf("gnd %s L=%s W=%s\n",nmosm,nmosl,nmosw);
  return totals+1;
  }
}

/*
  To free the nodes (avoiding excessive memory usage) both the
  linked list and the ROBDD tree nodes need to be removed.  
*/
void free_table(struct table *entry)
{
  struct table *tab;
  while (entry->next!=NULL) {
    free(entry->node);
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    tab=entry;
    entry=entry->next;
    free(tab);
  }
  free(entry);
}

void print_spice_footer(struct table *entry, struct node *root)
{
  while (entry->node!=NULL)
    entry=entry->next;
  if (root->chooser==0) {
    if (root==v0) {
      #ifdef ECRL
        printf("R0 gnd Z_H 1m\n"); /*Zero function*/
      #endif
      #ifdef IECRL
        printf("R0 gnd Z_H 1m\n"); /*Zero function*/
      #endif
      #ifdef PFAL
        printf("R0 vpc Z_H 1m\n"); /*Zero function:PFAL*/
      #endif
      printf(".Ends\n");
    } else if (root==v1) {
      #ifdef ECRL
        printf("R1 gnd Z_L 1m\n"); /*Ones function*/
      #endif
      #ifdef IECRL
        printf("R1 gnd Z_L 1m\n"); /*Ones function*/
      #endif
      #ifdef PFAL
        printf("R1 vpc Z_L 1m\n"); /*Ones function:PFAL*/
      #endif
      printf(".Ends\n");
    } else {
      printf("ERROR (print spice footer)\n");
    }
  } else {
    printf(".Ends\n");
  } 
}

int main ()
{
  struct node *root;
  struct table *tab;
  struct expr expr;
  int i;
  int j;
  #if DEBUG
    int t;
  #endif
  int decs;
  int mindecs;
  int bestj;
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  int paths;
  int minpaths;
  int qval[32]={
    0x7670, 0x2F4A, 0x3C2D, 0x945E, 
    0x2B8B, 0xA6B8, 0xC1D9, 0xF0A3, 
    0xA633, 0xD83A, 0x3CA6, 0xD6E0, 
    0xE8E4, 0x6761, 0xF306, 0xA1CB, 
    0x3CE1, 0xAF84, 0x1F13, 0x7926, 
    0x935C, 0x73A8, 0x4DD8, 0x546D, 
    0x3A27, 0x254F, 0xF461, 0x4375, 
    0xF630, 0x85B9, 0x2BF0, 0xCB13};

  int q_equivs[32][2]={
    {0x035F, 0x1F13}, {0x036F, 0x2B8B},
    {0x036F, 0xE8E4}, {0x036F, 0xF630},
    {0x037E, 0x254F}, {0x037E, 0x2F4A},
    {0x03D7, 0x7670}, {0x03D7, 0xAF84},
    {0x03DD, 0xF0A3}, {0x03DE, 0xA633},
    {0x03DE, 0xF306}, {0x067B, 0x546D},
    {0x067B, 0xD6E0}, {0x067B, 0xF461},
    {0x067E, 0x4DD8}, {0x06B7, 0x3A27},
    {0x06B7, 0x4375}, {0x06BD, 0xA6B8},
    {0x077A, 0x6761}, {0x07B5, 0x73A8},
    {0x07B5, 0xC1D9}, {0x07E3, 0xCB13},
    {0x07E6, 0xD83A}, {0x07F1, 0x2BF0},
    {0x07F8, 0x3C2D}, {0x169B, 0x945E},
    {0x16AD, 0x7926}, {0x16BC, 0x3CA6},
    {0x16BC, 0x935C}, {0x179A, 0xA1CB},
    {0x17AC, 0x85B9}, {0x19E6, 0x3CE1}};

  int equ;
  v0=obdd_alloc();
  v0->chooser=0;
  v0->zero=NULL;
  v0->one=NULL;
  v0->name='0';

  v1=obdd_alloc();
  v1->chooser=0;
  v1->zero=NULL;
  v1->one=NULL;
  v1->name='1';

  t0=talloc();
  t0->node=NULL;
  t0->next=t0;

  node_name='A';

  expr.size=SIZE;
  for (i=0;i<32;i++){
    expr.value=qval[i];
    /* Repeat for every order to find minimum F/OBDD tree */
    mindecs=OTFUN;
    minpaths=OTFUN;
    bestj=0;
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    for (j=0;j<factorial(LEVELS);j++) {
      tab=talloc();
      tab->node=NULL;
      tab->next=NULL;
      fact_ord_nr(j, LEVELS);
      node_name='A';
      #if DEBUG
        printf("MN: i %x  j %x  tab %p  root %p\n", i, j, tab, root);
        for (t=0;t<LEVELS;t++)
          printf("MN: pv%d %d lv%d %d\n",               
                       t,var_ord[t].physical,t,var_ord[t].logical);
        printf("MN: Levels %d\n",LEVELS);
      #endif
      root=robdd_build(tab,expr,LEVELS);
      decs=table_count(tab);
      paths=obdd_count(root);
      #if DEBUG
        printf("MN: j %d decs %d mind %d best %d\n",                 
                      j,      decs,   mindecs, bestj);
      #endif
      if (decs<mindecs) {
        mindecs=decs;bestj=j;
      }
      if (decs==mindecs && paths<minpaths) {
        minpaths=paths;bestj=j;
      }

      free_table(tab);
      node_name='A';
    }
    tab=talloc();
    tab->node=NULL;
    tab->next=NULL;
    fact_ord_nrp(bestj, LEVELS);
    node_name='A';
    root=robdd_build(tab,expr,LEVELS);
    obdd_print_spice(qval[i],tab,root);
    decs=table_count(tab);
    paths=obdd_count(root);
    print_spice_footer(tab,root);
    printf("* Value: %X Order: %2d Nodes: %d Paths: %2d\n",
                     qval[i],  bestj,     decs,     paths);
    equ=0;
    while (q_equivs[equ][1]!=qval[i])
      equ++;
    printf("* Base:  %04X Equivs: ",q_equivs[equ][0]);
    for (j=0;j<32;j++)
      if (q_equivs[equ][0]==q_equivs[j][0])
        printf("%X ", q_equivs[j][1]);
    printf("\n\n");
    free_table(tab);
    node_name='A';
  }
  return 0;
}
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Appendix C SPICE source-code
C.1 SPICE for q-boxes

.SUBCKT xor2 I1_H I1_L I2_H I2_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNCL vpc I1_L A   gnd N L=0.35u W=0.50u
MNCH vpc I1_H B   gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I2_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I2_H Z_H gnd N L=0.35u W=0.50u
.ENDS
.SUBCKT xor3 I1_H I1_L I2_H I2_L I3_H I3_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNEL vpc I1_L C   gnd N L=0.35u W=0.50u
MNEH vpc I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H A   gnd N L=0.35u W=0.50u
MNCL C   I2_L A   gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Logical  0010 Physical 1243
.SUBCKT q0t0b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNEL vpc I1_L C   gnd N L=0.35u W=0.50u
MNEH vpc I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H A   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I4_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I4_H A   gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 7670 Order: 12 Nodes: 5 Paths:  9
* Base:  03D7 Equivs: 7670 AF84 
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* Logical  2000 Physical 3124
.SUBCKT q0t0b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I3_L E   gnd N L=0.35u W=0.50u
MNGH vpc I3_H F   gnd N L=0.35u W=0.50u
MNFL F   I1_L Z_H gnd N L=0.35u W=0.50u
MNFH F   I1_H A   gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I2_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 2F4A Order:  2 Nodes: 7 Paths:  9
* Base:  037E Equivs: 254F 2F4A 

* Logical  3000 Physical 4123
.SUBCKT q0t0b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNEL vpc I4_L C   gnd N L=0.35u W=0.50u
MNEH vpc I4_H D   gnd N L=0.35u W=0.50u
MNDL D   I1_L C   gnd N L=0.35u W=0.50u
MNDH D   I1_H A   gnd N L=0.35u W=0.50u
MNCL C   I2_L A   gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 3C2D Order:  3 Nodes: 5 Paths: 10
* Base:  07F8 Equivs: 3C2D 

* Logical  2000 Physical 3124
.SUBCKT q0t0b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I3_L E   gnd N L=0.35u W=0.50u
MNHH vpc I3_H G   gnd N L=0.35u W=0.50u
MNGL G   I1_L C   gnd N L=0.35u W=0.50u
MNGH G   I1_H F   gnd N L=0.35u W=0.50u
MNFL F   I2_L Z_H gnd N L=0.35u W=0.50u
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MNFH F   I2_H Z_L gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L A   gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 945E Order:  2 Nodes: 8 Paths: 10
* Base:  169B Equivs: 945E 

* Logical  0200 Physical 1423
.SUBCKT q0t1b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I1_L D   gnd N L=0.35u W=0.50u
MNFH vpc I1_H E   gnd N L=0.35u W=0.50u
MNEL E   I2_L Z_L gnd N L=0.35u W=0.50u
MNEH E   I2_H A   gnd N L=0.35u W=0.50u
MNDL D   I4_L B   gnd N L=0.35u W=0.50u
MNDH D   I4_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_H gnd N L=0.35u W=0.50u
MNCH C   I2_H A   gnd N L=0.35u W=0.50u
MNBL B   I2_L A   gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 2B8B Order:  8 Nodes: 6 Paths:  9
* Base:  036F Equivs: 2B8B E8E4 F630 

* Logical  3100 Physical 4213
.SUBCKT q0t1b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I4_L E   gnd N L=0.35u W=0.50u
MNGH vpc I4_H F   gnd N L=0.35u W=0.50u
MNFL F   I2_L D   gnd N L=0.35u W=0.50u
MNFH F   I2_H A   gnd N L=0.35u W=0.50u
MNEL E   I2_L C   gnd N L=0.35u W=0.50u
MNEH E   I2_H D   gnd N L=0.35u W=0.50u
MNDL D   I1_L Z_H gnd N L=0.35u W=0.50u
MNDH D   I1_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I1_L A   gnd N L=0.35u W=0.50u
MNCH C   I1_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_H gnd N L=0.35u W=0.50u
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MNAH A   I3_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: A6B8 Order:  7 Nodes: 7 Paths: 10
* Base:  06BD Equivs: A6B8 

* Logical  0000 Physical 1234
.SUBCKT q0t1b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I1_L C   gnd N L=0.35u W=0.50u
MNGH vpc I1_H F   gnd N L=0.35u W=0.50u
MNFL F   I2_L D   gnd N L=0.35u W=0.50u
MNFH F   I2_H E   gnd N L=0.35u W=0.50u
MNEL E   I3_L A   gnd N L=0.35u W=0.50u
MNEH E   I3_H Z_H gnd N L=0.35u W=0.50u
MNDL D   I3_L Z_H gnd N L=0.35u W=0.50u
MNDH D   I3_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I2_L B   gnd N L=0.35u W=0.50u
MNCH C   I2_H Z_L gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: C1D9 Order:  0 Nodes: 7 Paths:  9
* Base:  07B5 Equivs: 73A8 C1D9 

* Logical  2000 Physical 3124
.SUBCKT q0t1b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNEL vpc I3_L B   gnd N L=0.35u W=0.50u
MNEH vpc I3_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L Z_L gnd N L=0.35u W=0.50u
MNDH D   I2_H C   gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I1_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I1_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: F0A3 Order:  2 Nodes: 5 Paths:  6
* Base:  03DD Equivs: F0A3 

* Logical  3200 Physical 4312
.SUBCKT q0t2b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
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MNFL vpc I4_L E   gnd N L=0.35u W=0.50u
MNFH vpc I4_H B   gnd N L=0.35u W=0.50u
MNEL E   I3_L A   gnd N L=0.35u W=0.50u
MNEH E   I3_H D   gnd N L=0.35u W=0.50u
MNDL D   I1_L B   gnd N L=0.35u W=0.50u
MNDH D   I1_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_H gnd N L=0.35u W=0.50u
MNCH C   I2_H Z_L gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I1_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I1_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: A633 Order: 11 Nodes: 6 Paths:  8
* Base:  03DE Equivs: A633 F306 

* Logical  0000 Physical 1234
.SUBCKT q0t2b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I1_L D   gnd N L=0.35u W=0.50u
MNHH vpc I1_H G   gnd N L=0.35u W=0.50u
MNGL G   I2_L E   gnd N L=0.35u W=0.50u
MNGH G   I2_H F   gnd N L=0.35u W=0.50u
MNFL F   I3_L Z_H gnd N L=0.35u W=0.50u
MNFH F   I3_H Z_L gnd N L=0.35u W=0.50u
MNEL E   I3_L A   gnd N L=0.35u W=0.50u
MNEH E   I3_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H C   gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I3_L A   gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: D83A Order:  0 Nodes: 8 Paths: 10
* Base:  07E6 Equivs: D83A 

* Logical  3000 Physical 4123
.SUBCKT q0t2b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I4_L C   gnd N L=0.35u W=0.50u
MNGH vpc I4_H F   gnd N L=0.35u W=0.50u
MNFL F   I1_L D   gnd N L=0.35u W=0.50u
MNFH F   I1_H E   gnd N L=0.35u W=0.50u
MNEL E   I2_L A   gnd N L=0.35u W=0.50u
MNEH E   I2_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_H gnd N L=0.35u W=0.50u
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MNCL C   I2_L A   gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 3CA6 Order:  3 Nodes: 7 Paths: 10
* Base:  16BC Equivs: 3CA6 935C 

* Logical  1100 Physical 2314
.SUBCKT q0t2b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I2_L C   gnd N L=0.35u W=0.50u
MNHH vpc I2_H G   gnd N L=0.35u W=0.50u
MNGL G   I3_L E   gnd N L=0.35u W=0.50u
MNGH G   I3_H F   gnd N L=0.35u W=0.50u
MNFL F   I1_L A   gnd N L=0.35u W=0.50u
MNFH F   I1_H Z_L gnd N L=0.35u W=0.50u
MNEL E   I1_L D   gnd N L=0.35u W=0.50u
MNEH E   I1_H A   gnd N L=0.35u W=0.50u
MNDL D   I4_L Z_L gnd N L=0.35u W=0.50u
MNDH D   I4_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I3_L Z_H gnd N L=0.35u W=0.50u
MNCH C   I3_H B   gnd N L=0.35u W=0.50u
MNBL B   I1_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I1_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: D6E0 Order:  5 Nodes: 8 Paths: 11
* Base:  067B Equivs: 546D D6E0 F461 

* Logical  1200 Physical 2413
.SUBCKT q0t3b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I2_L D   gnd N L=0.35u W=0.50u
MNFH vpc I2_H E   gnd N L=0.35u W=0.50u
MNEL E   I1_L A   gnd N L=0.35u W=0.50u
MNEH E   I1_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I4_L B   gnd N L=0.35u W=0.50u
MNDH D   I4_H C   gnd N L=0.35u W=0.50u
MNCL C   I1_L A   gnd N L=0.35u W=0.50u
MNCH C   I1_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I1_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I1_H A   gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: E8E4 Order:  9 Nodes: 6 Paths:  9
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* Base:  036F Equivs: 2B8B E8E4 F630 

* Logical  0000 Physical 1234
.SUBCKT q0t3b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I1_L C   gnd N L=0.35u W=0.50u
MNFH vpc I1_H E   gnd N L=0.35u W=0.50u
MNEL E   I2_L B   gnd N L=0.35u W=0.50u
MNEH E   I2_H D   gnd N L=0.35u W=0.50u
MNDL D   I3_L Z_L gnd N L=0.35u W=0.50u
MNDH D   I3_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 6761 Order:  0 Nodes: 6 Paths:  9
* Base:  077A Equivs: 6761 

* Logical  2000 Physical 3124
.SUBCKT q0t3b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I3_L A   gnd N L=0.35u W=0.50u
MNFH vpc I3_H E   gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H A   gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: F306 Order:  2 Nodes: 6 Paths:  8
* Base:  03DE Equivs: A633 F306 

* Logical  2000 Physical 3124
.SUBCKT q0t3b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I3_L E   gnd N L=0.35u W=0.50u
MNHH vpc I3_H G   gnd N L=0.35u W=0.50u
MNGL G   I1_L C   gnd N L=0.35u W=0.50u
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MNGH G   I1_H F   gnd N L=0.35u W=0.50u
MNFL F   I2_L Z_L gnd N L=0.35u W=0.50u
MNFH F   I2_H Z_H gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I2_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: A1CB Order:  2 Nodes: 8 Paths: 10
* Base:  179A Equivs: A1CB 

* Logical  3000 Physical 4123
.SUBCKT q1t0b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I4_L C   gnd N L=0.35u W=0.50u
MNFH vpc I4_H E   gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H A   gnd N L=0.35u W=0.50u
MNCL C   I2_L A   gnd N L=0.35u W=0.50u
MNCH C   I2_H B   gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 3CE1 Order:  3 Nodes: 6 Paths: 10
* Base:  19E6 Equivs: 3CE1 

* Logical  2000 Physical 3124
.SUBCKT q1t0b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNEL vpc I3_L C   gnd N L=0.35u W=0.50u
MNEH vpc I3_H D   gnd N L=0.35u W=0.50u
MNDL D   I1_L A   gnd N L=0.35u W=0.50u
MNDH D   I1_H B   gnd N L=0.35u W=0.50u
MNCL C   I1_L B   gnd N L=0.35u W=0.50u
MNCH C   I1_H Z_L gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I2_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
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* Value: AF84 Order:  2 Nodes: 5 Paths:  9
* Base:  03D7 Equivs: 7670 AF84 

* Logical  1200 Physical 2413
.SUBCKT q1t0b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNDL vpc I2_L B   gnd N L=0.35u W=0.50u
MNDH vpc I2_H C   gnd N L=0.35u W=0.50u
MNCL C   I1_L A   gnd N L=0.35u W=0.50u
MNCH C   I1_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I4_L A   gnd N L=0.35u W=0.50u
MNBH B   I4_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 1F13 Order:  9 Nodes: 4 Paths:  6
* Base:  035F Equivs: 1F13 

* Logical  0000 Physical 1234
.SUBCKT q1t0b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I1_L E   gnd N L=0.35u W=0.50u
MNHH vpc I1_H G   gnd N L=0.35u W=0.50u
MNGL G   I2_L F   gnd N L=0.35u W=0.50u
MNGH G   I2_H A   gnd N L=0.35u W=0.50u
MNFL F   I3_L A   gnd N L=0.35u W=0.50u
MNFH F   I3_H C   gnd N L=0.35u W=0.50u
MNEL E   I2_L B   gnd N L=0.35u W=0.50u
MNEH E   I2_H D   gnd N L=0.35u W=0.50u
MNDL D   I3_L Z_H gnd N L=0.35u W=0.50u
MNDH D   I3_H C   gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I3_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 7926 Order:  0 Nodes: 8 Paths: 12
* Base:  16AD Equivs: 7926 

* Logical  2000 Physical 3124
.SUBCKT q1t1b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I3_L E   gnd N L=0.35u W=0.50u
MNGH vpc I3_H F   gnd N L=0.35u W=0.50u
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MNFL F   I2_L C   gnd N L=0.35u W=0.50u
MNFH F   I2_H A   gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L A   gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 935C Order:  2 Nodes: 7 Paths: 10
* Base:  16BC Equivs: 3CA6 935C 

* Logical  3000 Physical 4123
.SUBCKT q1t1b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I4_L D   gnd N L=0.35u W=0.50u
MNGH vpc I4_H F   gnd N L=0.35u W=0.50u
MNFL F   I1_L E   gnd N L=0.35u W=0.50u
MNFH F   I1_H Z_L gnd N L=0.35u W=0.50u
MNEL E   I2_L Z_H gnd N L=0.35u W=0.50u
MNEH E   I2_H B   gnd N L=0.35u W=0.50u
MNDL D   I1_L A   gnd N L=0.35u W=0.50u
MNDH D   I1_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L B   gnd N L=0.35u W=0.50u
MNCH C   I2_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I3_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I2_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I2_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 73A8 Order:  3 Nodes: 7 Paths:  9
* Base:  07B5 Equivs: 73A8 C1D9 

* Logical  2200 Physical 3412
.SUBCKT q1t1b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I3_L D   gnd N L=0.35u W=0.50u
MNGH vpc I3_H F   gnd N L=0.35u W=0.50u
MNFL F   I4_L C   gnd N L=0.35u W=0.50u
MNFH F   I4_H E   gnd N L=0.35u W=0.50u
MNEL E   I1_L A   gnd N L=0.35u W=0.50u
MNEH E   I1_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I4_L B   gnd N L=0.35u W=0.50u
MNDH D   I4_H C   gnd N L=0.35u W=0.50u
MNCL C   I1_L A   gnd N L=0.35u W=0.50u
MNCH C   I1_H Z_H gnd N L=0.35u W=0.50u
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MNBL B   I1_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I1_H A   gnd N L=0.35u W=0.50u
MNAL A   I2_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I2_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 4DD8 Order: 10 Nodes: 7 Paths: 12
* Base:  067E Equivs: 4DD8 

* Logical  0000 Physical 1234
.SUBCKT q1t1b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I1_L D   gnd N L=0.35u W=0.50u
MNHH vpc I1_H G   gnd N L=0.35u W=0.50u
MNGL G   I2_L Z_H gnd N L=0.35u W=0.50u
MNGH G   I2_H F   gnd N L=0.35u W=0.50u
MNFL F   I3_L E   gnd N L=0.35u W=0.50u
MNFH F   I3_H A   gnd N L=0.35u W=0.50u
MNEL E   I4_L Z_H gnd N L=0.35u W=0.50u
MNEH E   I4_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I2_L B   gnd N L=0.35u W=0.50u
MNDH D   I2_H C   gnd N L=0.35u W=0.50u
MNCL C   I3_L A   gnd N L=0.35u W=0.50u
MNCH C   I3_H Z_L gnd N L=0.35u W=0.50u
MNBL B   I3_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I3_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 546D Order:  0 Nodes: 8 Paths: 11
* Base:  067B Equivs: 546D D6E0 F461 

* Logical  2200 Physical 3412
.SUBCKT q1t2b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I3_L C   gnd N L=0.35u W=0.50u
MNGH vpc I3_H F   gnd N L=0.35u W=0.50u
MNFL F   I4_L D   gnd N L=0.35u W=0.50u
MNFH F   I4_H E   gnd N L=0.35u W=0.50u
MNEL E   I1_L A   gnd N L=0.35u W=0.50u
MNEH E   I1_H Z_H gnd N L=0.35u W=0.50u
MNDL D   I1_L Z_H gnd N L=0.35u W=0.50u
MNDH D   I1_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I4_L A   gnd N L=0.35u W=0.50u
MNCH C   I4_H B   gnd N L=0.35u W=0.50u
MNBL B   I1_L A   gnd N L=0.35u W=0.50u
MNBH B   I1_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I2_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I2_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 3A27 Order: 10 Nodes: 7 Paths: 10
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* Base:  06B7 Equivs: 3A27 4375 

* Logical  2000 Physical 3124
.SUBCKT q1t2b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I3_L E   gnd N L=0.35u W=0.50u
MNGH vpc I3_H F   gnd N L=0.35u W=0.50u
MNFL F   I1_L C   gnd N L=0.35u W=0.50u
MNFH F   I1_H Z_H gnd N L=0.35u W=0.50u
MNEL E   I1_L B   gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I2_L C   gnd N L=0.35u W=0.50u
MNDH D   I2_H Z_L gnd N L=0.35u W=0.50u
MNCL C   I4_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I4_H Z_H gnd N L=0.35u W=0.50u
MNBL B   I2_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I2_H A   gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 254F Order:  2 Nodes: 7 Paths:  9
* Base:  037E Equivs: 254F 2F4A 

* Logical  2000 Physical 3124
.SUBCKT q1t2b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNHL vpc I3_L D   gnd N L=0.35u W=0.50u
MNHH vpc I3_H G   gnd N L=0.35u W=0.50u
MNGL G   I1_L Z_L gnd N L=0.35u W=0.50u
MNGH G   I1_H F   gnd N L=0.35u W=0.50u
MNFL F   I2_L A   gnd N L=0.35u W=0.50u
MNFH F   I2_H E   gnd N L=0.35u W=0.50u
MNEL E   I4_L Z_L gnd N L=0.35u W=0.50u
MNEH E   I4_H Z_H gnd N L=0.35u W=0.50u
MNDL D   I1_L B   gnd N L=0.35u W=0.50u
MNDH D   I1_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_H gnd N L=0.35u W=0.50u
MNCH C   I2_H A   gnd N L=0.35u W=0.50u
MNBL B   I2_L A   gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: F461 Order:  2 Nodes: 8 Paths: 11
* Base:  067B Equivs: 546D D6E0 F461 

* Logical  1110 Physical 2341
.SUBCKT q1t2b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
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MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I2_L C   gnd N L=0.35u W=0.50u
MNGH vpc I2_H F   gnd N L=0.35u W=0.50u
MNFL F   I3_L D   gnd N L=0.35u W=0.50u
MNFH F   I3_H E   gnd N L=0.35u W=0.50u
MNEL E   I4_L Z_H gnd N L=0.35u W=0.50u
MNEH E   I4_H A   gnd N L=0.35u W=0.50u
MNDL D   I4_L Z_L gnd N L=0.35u W=0.50u
MNDH D   I4_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I3_L A   gnd N L=0.35u W=0.50u
MNCH C   I3_H B   gnd N L=0.35u W=0.50u
MNBL B   I4_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I4_H A   gnd N L=0.35u W=0.50u
MNAL A   I1_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I1_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 4375 Order: 17 Nodes: 7 Paths: 10
* Base:  06B7 Equivs: 3A27 4375 

* Logical  2200 Physical 3412
.SUBCKT q1t3b0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I3_L B   gnd N L=0.35u W=0.50u
MNFH vpc I3_H E   gnd N L=0.35u W=0.50u
MNEL E   I4_L D   gnd N L=0.35u W=0.50u
MNEH E   I4_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I1_L A   gnd N L=0.35u W=0.50u
MNDH D   I1_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_H gnd N L=0.35u W=0.50u
MNCH C   I2_H Z_L gnd N L=0.35u W=0.50u
MNBL B   I4_L Z_H gnd N L=0.35u W=0.50u
MNBH B   I4_H A   gnd N L=0.35u W=0.50u
MNAL A   I2_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I2_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: F630 Order: 10 Nodes: 6 Paths:  8
* Base:  036F Equivs: 2B8B E8E4 F630 

* Logical  1110 Physical 2341
.SUBCKT q1t3b1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I2_L D   gnd N L=0.35u W=0.50u
MNGH vpc I2_H F   gnd N L=0.35u W=0.50u
MNFL F   I3_L E   gnd N L=0.35u W=0.50u
MNFH F   I3_H B   gnd N L=0.35u W=0.50u
MNEL E   I4_L Z_L gnd N L=0.35u W=0.50u
MNEH E   I4_H Z_H gnd N L=0.35u W=0.50u
MNDL D   I3_L A   gnd N L=0.35u W=0.50u
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MNDH D   I3_H C   gnd N L=0.35u W=0.50u
MNCL C   I4_L B   gnd N L=0.35u W=0.50u
MNCH C   I4_H A   gnd N L=0.35u W=0.50u
MNBL B   I1_L Z_L gnd N L=0.35u W=0.50u
MNBH B   I1_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I1_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I1_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: 85B9 Order: 17 Nodes: 7 Paths: 10
* Base:  17AC Equivs: 85B9 

* Logical  3000 Physical 4123
.SUBCKT q1t3b2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNFL vpc I4_L D   gnd N L=0.35u W=0.50u
MNFH vpc I4_H E   gnd N L=0.35u W=0.50u
MNEL E   I3_L Z_H gnd N L=0.35u W=0.50u
MNEH E   I3_H Z_L gnd N L=0.35u W=0.50u
MNDL D   I1_L B   gnd N L=0.35u W=0.50u
MNDH D   I1_H C   gnd N L=0.35u W=0.50u
MNCL C   I2_L Z_L gnd N L=0.35u W=0.50u
MNCH C   I2_H A   gnd N L=0.35u W=0.50u
MNBL B   I2_L A   gnd N L=0.35u W=0.50u
MNBH B   I2_H Z_H gnd N L=0.35u W=0.50u
MNAL A   I3_L Z_L gnd N L=0.35u W=0.50u
MNAH A   I3_H Z_H gnd N L=0.35u W=0.50u
.ENDS
* Value: 2BF0 Order:  3 Nodes: 6 Paths:  8
* Base:  07F1 Equivs: 2BF0 

* Logical  1100 Physical 2314
.SUBCKT q1t3b3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z_H Z_L vpc gnd
MP0  Z_L Z_H  vpc vpc P L=0.35u W=0.50u
MP1  Z_H Z_L  vpc vpc P L=0.35u W=0.50u
MN0  Z_L Z_H  gnd gnd N L=0.35u W=0.50u
MN1  Z_H Z_L  gnd gnd N L=0.35u W=0.50u
MNGL vpc I2_L C   gnd N L=0.35u W=0.50u
MNGH vpc I2_H F   gnd N L=0.35u W=0.50u
MNFL F   I3_L E   gnd N L=0.35u W=0.50u
MNFH F   I3_H Z_H gnd N L=0.35u W=0.50u
MNEL E   I1_L Z_L gnd N L=0.35u W=0.50u
MNEH E   I1_H D   gnd N L=0.35u W=0.50u
MNDL D   I4_L Z_L gnd N L=0.35u W=0.50u
MNDH D   I4_H Z_H gnd N L=0.35u W=0.50u
MNCL C   I3_L A   gnd N L=0.35u W=0.50u
MNCH C   I3_H B   gnd N L=0.35u W=0.50u
MNBL B   I1_L A   gnd N L=0.35u W=0.50u
MNBH B   I1_H Z_L gnd N L=0.35u W=0.50u
MNAL A   I4_L Z_H gnd N L=0.35u W=0.50u
MNAH A   I4_H Z_L gnd N L=0.35u W=0.50u
.ENDS
* Value: CB13 Order:  5 Nodes: 7 Paths:  9
* Base:  07E3 Equivs: CB13 
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*.Include ./xor_cells.cdl
*.Include ./q_cells.cdl

.SUBCKT q0t0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4X7670 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd 
+ q0t0b0
XX4X2F4A I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q0t0b1
XX4X3C2D I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q0t0b2
XX4X945E I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q0t0b3
.ENDS
.SUBCKT q0t1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4X2B8B I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q0t1b0
XX4XA6B8 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q0t1b1
XX4XC1D9 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q0t1b2
XX4XF0A3 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q0t1b3
.ENDS
.SUBCKT q0t2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4XA633 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q0t2b0
XX4XD83A I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q0t2b1
XX4X3CA6 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q0t2b2
XX4XD6E0 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q0t2b3
.ENDS
.SUBCKT q0t3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4XE8E4 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q0t3b0
XX4X6761 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q0t3b1
XX4XF306 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q0t3b2
XX4XA1CB I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q0t3b3

LXV



.ENDS

.SUBCKT q1t0
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4X3CE1 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q1t0b0
XX4XAF84 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q1t0b1
XX4X1F13 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q1t0b2
XX4X7926 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q1t0b3
.ENDS
.SUBCKT q1t1
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4X935C I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q1t1b0
XX4X73A8 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q1t1b1
XX4X4DD8 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q1t1b2
XX4X546D I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q1t1b3
.ENDS
.SUBCKT q1t2
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4X3A27 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q1t2b0
XX4X254F I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q1t2b1
XX4XF461 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q1t2b2
XX4X4375 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q1t2b3
.ENDS
.SUBCKT q1t3
+ I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L
+ Z0_H Z0_L Z1_H Z1_L Z2_H Z2_L Z3_H Z3_L
+ vpc gnd
XX4XF630 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z0_H Z0_L vpc gnd
+ q1t3b0
XX4X85B9 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z1_H Z1_L vpc gnd
+ q1t3b1
XX4X2BF0 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z2_H Z2_L vpc gnd
+ q1t3b2
XX4XCB13 I1_H I1_L I2_H I2_L I3_H I3_L I4_H I4_L Z3_H Z3_L vpc gnd
+ q1t3b3
.ENDS
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.SUBCKT q0
+ X0_H X0_L X1_H X1_L X2_H X2_L X3_H X3_L
+ X4_H X4_L X5_H X5_L X6_H X6_L X7_H X7_L
+ Y0_H Y0_L Y1_H Y1_L Y2_H Y2_L Y3_H Y3_L
+ Y4_H Y4_L Y5_H Y5_L Y6_H Y6_L Y7_H Y7_L
+ vpc0 vpc1 vpc2 vpc3 gnd

Xa03 X7_H X7_L X3_H X3_L           a13_H a13_L vpc0 gnd xor2
Xa02 X2_H X2_L X6_H X6_L           a12_H a12_L vpc0 gnd xor2
Xa01 X5_H X5_L X1_H X1_L           a11_H a11_L vpc0 gnd xor2
Xa00 X0_H X0_L X4_H X4_L           a10_H a10_L vpc0 gnd xor2

Xb03 X7_H X7_L X0_H X0_L X4_H X4_L b13_H b13_L vpc0 gnd xor3
Xb02 X6_H X6_L X3_H X3_L           b12_H b12_L vpc0 gnd xor2
Xb01 X5_H X5_L X2_H X2_L           b11_H b11_L vpc0 gnd xor2
Xb00 X1_H X1_L X4_H X4_L           b10_H b10_L vpc0 gnd xor2

Xqt0
+ a10_H a10_L a11_H a11_L a12_H a12_L a13_H a13_L 
+ a20_H a20_L a21_H a21_L a22_H a22_L a23_H a23_L
+ vpc1 gnd q0t0
Xqt1
+ b10_H b10_L b11_H b11_L b12_H b12_L b13_H b13_L
+ b20_H b20_L b21_H b21_L b22_H b22_L b23_H b23_L
+ vpc1 gnd q0t1

Xa13 a23_H a23_L b23_H b23_L             a33_H a33_L vpc2 gnd xor2
Xa12 b22_H b22_L a22_H a22_L             a32_H a32_L vpc2 gnd xor2
Xa11 a21_H a21_L b21_H b21_L             a31_H a31_L vpc2 gnd xor2
Xa10 b20_H b20_L a20_H a20_L             a30_H a30_L vpc2 gnd xor2

Xb13 a23_H a23_L b20_H b20_L a20_H a20_L b33_H b33_L vpc2 gnd xor3
Xb12 a22_H a22_L b23_H b23_L             b32_H b32_L vpc2 gnd xor2
Xb11 a21_H a21_L b22_H b22_L             b31_H b31_L vpc2 gnd xor2
Xb10 b21_H b21_L a20_H a20_L             b30_H b30_L vpc2 gnd xor2

Xqt2
+ a30_H a30_L a31_H a31_L a32_H a32_L a33_H a33_L
+  Y0_H  Y0_L  Y1_H  Y1_L  Y2_H  Y2_L  Y3_H  Y3_L
+ vpc3 gnd q0t2
Xqt3 
+ b30_H b30_L b31_H b31_L b32_H b32_L b33_H b33_L
+  Y4_H  Y4_L  Y5_H  Y5_L  Y6_H  Y6_L  Y7_H  Y7_L
+ vpc3 gnd q0t3
.ENDS
.SUBCKT q1
+ X0_H X0_L X1_H X1_L X2_H X2_L X3_H X3_L
+ X4_H X4_L X5_H X5_L X6_H X6_L X7_H X7_L
+ Y0_H Y0_L Y1_H Y1_L Y2_H Y2_L Y3_H Y3_L
+ Y4_H Y4_L Y5_H Y5_L Y6_H Y6_L Y7_H Y7_L
+ vpc0 vpc1 vpc2 vpc3 gnd

Xa03 X7_H X7_L X3_H X3_L           a13_H a13_L vpc0 gnd xor2
Xa02 X2_H X2_L X6_H X6_L           a12_H a12_L vpc0 gnd xor2
Xa01 X5_H X5_L X1_H X1_L           a11_H a11_L vpc0 gnd xor2
Xa00 X0_H X0_L X4_H X4_L           a10_H a10_L vpc0 gnd xor2
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Xb03 X7_H X7_L X0_H X0_L X4_H X4_L b13_H b13_L vpc0 gnd xor3
Xb02 X6_H X6_L X3_H X3_L           b12_H b12_L vpc0 gnd xor2
Xb01 X5_H X5_L X2_H X2_L           b11_H b11_L vpc0 gnd xor2
Xb00 X1_H X1_L X4_H X4_L           b10_H b10_L vpc0 gnd xor2

Xqt0
+ a10_H a10_L a11_H a11_L a12_H a12_L a13_H a13_L 
+ a20_H a20_L a21_H a21_L a22_H a22_L a23_H a23_L
+ vpc1 gnd q1t0
Xqt1
+ b10_H b10_L b11_H b11_L b12_H b12_L b13_H b13_L
+ b20_H b20_L b21_H b21_L b22_H b22_L b23_H b23_L
+ vpc1 gnd q1t1

Xa13 a23_H a23_L b23_H b23_L             a33_H a33_L vpc2 gnd xor2
Xa12 b22_H b22_L a22_H a22_L             a32_H a32_L vpc2 gnd xor2
Xa11 a21_H a21_L b21_H b21_L             a31_H a31_L vpc2 gnd xor2
Xa10 b20_H b20_L a20_H a20_L             a30_H a30_L vpc2 gnd xor2
 
Xb13 a23_H a23_L b20_H b20_L a20_H a20_L b33_H b33_L vpc2 gnd xor3
Xb12 a22_H a22_L b23_H b23_L             b32_H b32_L vpc2 gnd xor2
Xb11 a21_H a21_L b22_H b22_L             b31_H b31_L vpc2 gnd xor2
Xb10 b21_H b21_L a20_H a20_L             b30_H b30_L vpc2 gnd xor2

Xqt2
+ a30_H a30_L a31_H a31_L a32_H a32_L a33_H a33_L
+  Y0_H  Y0_L  Y1_H  Y1_L  Y2_H  Y2_L  Y3_H  Y3_L
+ vpc3 gnd q1t2
Xqt3 
+ b30_H b30_L b31_H b31_L b32_H b32_L b33_H b33_L
+  Y4_H  Y4_L  Y5_H  Y5_L  Y6_H  Y6_L  Y7_H  Y7_L
+ vpc3 gnd q1t3
.ENDS

C.2 LVS summaries

==> q0_lvs_summary <==

           Matched    Matched    Unmatched    Unmatched   Component 
           Layout     Source     Layout       Source       Type
           -------    -------    ---------    ---------    ---------
Nets:          210        210            0            0
Instances:     378        378            0            0    MN(N)
                64         64            0            0    MP(P)
           -------    -------    ---------    ---------
Total Inst:    442        442            0            0

==> q1_lvs_summary <==

          Matched    Matched    Unmatched    Unmatched    Component
          Layout     Source     Layout       Source       Type
          -------    -------    ---------    ---------    ---------
Nets:         212        212            0            0
Instances:    382        382            0            0    MN(N)
               64         64            0            0    MP(P)
          -------    -------    ---------    ---------
Total Inst:   446        446            0            0
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C.3 SPICE for GCD
* tt 3.3V 25C
*********************************************************************
* Process: tt
** including /home/spice/FAB_AME/ntyp.dat
.MODEL EN3 NMOS             LEVEL   = 53
* Full SPICE Models redacted pursuant to Non Disclosure Agreement
*********************************************************************
** including /home/spice/FAB_AME/ptyp.dat
.MODEL EP3 PMOS        LEVEL   = 53
* Full SPICE Models redacted pursuant to Non Disclosure Agreement
*********************************************************************

* Voltage: 3.3V
.PARAM VVDD=3.3
* Temperature: 25C
.TEMP 25
* Include Testbench
** including ./Testbench.spi
* GCD Testbench 
* eldo -power -i Testbench.spi

* Include Models
* Process
*.INCLUDE '/home/spice/FAB_AME/nslow.dat'
*.INCLUDE '/home/spice/FAB_AME/pslow.dat'
*.INCLUDE '/home/spice/FAB_AME/ntyp.dat'
*.INCLUDE '/home/spice/FAB_AME/ptyp.dat'
*.INCLUDE '/home/spice/FAB_AME/nfast.dat'
*.INCLUDE '/home/spice/FAB_AME/pfast.dat'
* Voltage
*.PARAM vvdd=3.0
*.PARAM vvdd=3.3
*.PARAM vvdd=3.6
* Temperature
*.TEMP 125 
*.TEMP 25
*.TEMP -40
* Include Model Aliases
** including ./defmod.spi
* DEFMOD statements to correct models
.DEFMOD N EN3
.DEFMOD P EP3

.OPTION Mach

.OPTION LIMPROBE = 3000

.OPTION Mach_MaxDcIterations = 750

.OPTION mach_DcAlgorithm = AUTO

* Include Subcircuits
** including ././AN2.spi
* AN2
.SUBCKT ND2 A B Z VDD GND
MPA Z A VDD VDD P L=0.35U W=2.40U
MPB Z B VDD VDD P L=0.35U W=2.40U
MNA NAB A GND GND N L=0.35U W=1.60U
MNB Z B NAB GND N L=0.35U W=1.60U
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.ENDS
*.INCLUDE './INV1.spi'

.SUBCKT AN2 A B Z VDD GND
XND2 A  B ZN VDD GND ND2
XIV1 ZN    Z VDD GND IV1
.ENDS
** including ././CE2.spi
* CE2
.SUBCKT CE2 A B Z VDD GND
MPAI PAB A VDD VDD EP3 L=0.35U W=2.40U
MPBI ZN  B PAB VDD EP3 L=0.35U W=2.40U
MPAR PZN A VDD VDD EP3 L=0.35U W=0.50U
MPBR PZN B VDD VDD EP3 L=0.35U W=0.50U
MPFZ ZN ZB PZN VDD EP3 L=0.35U W=0.50U
MPZB ZB ZN VDD VDD EP3 L=0.35U W=0.50U
MPZO Z  ZN VDD VDD EP3 L=0.35U W=2.40U
MNZO Z  ZN GND GND EN3 L=0.35U W=1.60U
MNZB ZB ZN GND GND EN3 L=0.35U W=0.50U
MNFZ ZN ZB NZN GND EN3 L=0.35U W=0.50U
MNBR NZN B GND GND EN3 L=0.35U W=0.50U
MNAR NZN A GND GND EN3 L=0.35U W=0.50U
MNBI ZN  B NAB GND EN3 L=0.35U W=1.20U
MNAI NAB A GND GND EN3 L=0.35U W=1.20U
.ENDS
** including ././CE2R0.spi
* CE2R0
.SUBCKT CE2R0 A B RN Z VDD GND
MPAI PAB A VDD VDD EP3 L=0.35U W=2.40U
MPBI ZN  B PAB VDD EP3 L=0.35U W=2.40U
MPAR PZN A VDD VDD EP3 L=0.35U W=0.50U
MPBR PZN B VDD VDD EP3 L=0.35U W=0.50U
MPFZ ZN ZB PZN VDD EP3 L=0.35U W=0.50U
MPZB ZB ZN VDD VDD EP3 L=0.35U W=0.50U
MPZO Z  ZN VDD VDD EP3 L=0.35U W=2.40U
MNZO Z  ZN GND GND EN3 L=0.35U W=1.60U
MNZB ZB ZN GND GND EN3 L=0.35U W=0.50U
MNFZ ZN ZB NZN GND EN3 L=0.35U W=0.50U
MNBR NZN B NN  GND EN3 L=0.35U W=0.50U
MNAR NZN A NN  GND EN3 L=0.35U W=0.50U
MNBI ZN  B NAB GND EN3 L=0.35U W=1.20U
MNAI NAB A NN  GND EN3 L=0.35U W=1.20U

MPRS ZN RN VDD VDD EP3 L=0.35U W=0.50U
MNRS NN RN GND GND EN3 L=0.35U W=2.40U
.ENDS
** including ././CE2R1.spi
* CE2R0
.SUBCKT CE2R1 A B RN Z VDD GND
MPAI PAB A PN  VDD EP3 L=0.35U W=2.40U
MPBI ZN  B PAB VDD EP3 L=0.35U W=2.40U
MPAR PZN A PN  VDD EP3 L=0.35U W=0.50U
MPBR PZN B PN  VDD EP3 L=0.35U W=0.50U
MPFZ ZN ZB PZN VDD EP3 L=0.35U W=0.50U
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MPZB ZB ZN VDD VDD EP3 L=0.35U W=0.50U
MPZO Z  ZN VDD VDD EP3 L=0.35U W=2.40U
MNZO Z  ZN GND GND EN3 L=0.35U W=1.60U
MNZB ZB ZN GND GND EN3 L=0.35U W=0.50U
MNFZ ZN ZB NZN GND EN3 L=0.35U W=0.50U
MNBR NZN B GND GND EN3 L=0.35U W=0.50U
MNAR NZN A GND GND EN3 L=0.35U W=0.50U
MNBI ZN  B NAB GND EN3 L=0.35U W=1.20U
MNAI NAB A GND GND EN3 L=0.35U W=1.20U

MPRS PN RB VDD VDD EP3 L=0.35U W=3.20U
MNRS ZN RB GND GND EN3 L=0.35U W=0.50U

MPRI RB RN VDD VDD EP3 L=0.35U W=0.50U
MNRI RB RN GND GND EN3 L=0.35U W=0.50U
.ENDS
** including ././CE3.spi
* CE3
.SUBCKT CE3 A B C Z VDD GND
MPAI PAB A VDD VDD EP3 L=0.35U W=2.40U
MPBI PBC B PAB VDD EP3 L=0.35U W=2.40U
MPCI ZN  C PBC VDD EP3 L=0.35U W=2.40U
MPAR PZN A VDD VDD EP3 L=0.35U W=0.50U
MPBR PZN B VDD VDD EP3 L=0.35U W=0.50U
MPCR PZN C VDD VDD EP3 L=0.35U W=0.50U
MPFZ ZN ZB PZN VDD EP3 L=0.35U W=0.50U
MPZB ZB ZN VDD VDD EP3 L=0.35U W=0.50U
MPZO Z  ZN VDD VDD EP3 L=0.35U W=2.40U
MNZO Z  ZN GND GND EN3 L=0.35U W=1.60U
MNZB ZB ZN GND GND EN3 L=0.35U W=0.50U
MNFZ ZN ZB NZN GND EN3 L=0.35U W=0.50U
MNCR NZN C GND GND EN3 L=0.35U W=0.50U
MNBR NZN B GND GND EN3 L=0.35U W=0.50U
MNAR NZN A GND GND EN3 L=0.35U W=0.50U
MNCI ZN  C NBC GND EN3 L=0.35U W=1.20U
MNBI NBC B NAB GND EN3 L=0.35U W=1.20U
MNAI NAB A GND GND EN3 L=0.35U W=1.20U
.ENDS
** including ././DLY.spi
* DLY
.SUBCKT DLY A Z VPB VNB VDD GND
MPAR PAV VPB VDD VDD P L=0.35U W=1.20U
MPAO B   A   PAV VDD P L=0.35U W=1.20U
MNAO B   A   NAV GND N L=0.35U W=0.80U
MNAR NAV VNB GND GND N L=0.35U W=0.80U

MPBR PBV VPB VDD VDD P L=0.35U W=1.20U
MPBO C   B   PBV VDD P L=0.35U W=1.20U
MNBO C   B   NBV GND N L=0.35U W=0.80U
MNBR NBV VNB GND GND N L=0.35U W=0.80U

MPCR PCV VPB VDD VDD P L=0.35U W=1.20U
MPCO D   C   PCV VDD P L=0.35U W=1.20U
MNCO D   C   NCV GND N L=0.35U W=0.80U
MNCR NCV VNB GND GND N L=0.35U W=0.80U
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*MPDo Z D vdd vdd P L=0.35u W=1.20u
*MNDo Z D gnd gnd N L=0.35u W=0.80u

MPDR PBV VPB VDD VDD P L=0.35U W=1.20U
MPDO E   D   PBV VDD P L=0.35U W=1.20U
MNDO E   D   NBV GND N L=0.35U W=0.80U
MNDR NBV VNB GND GND N L=0.35U W=0.80U

MPER PCV VPB VDD VDD P L=0.35U W=1.20U
MPEO F   E   PCV VDD P L=0.35U W=1.20U
MNEO F   E   NCV GND N L=0.35U W=0.80U
MNER NCV VNB GND GND N L=0.35U W=0.80U

MPFO Z F VDD VDD P L=0.35U W=1.20U
MNFO Z F GND GND N L=0.35U W=0.80U

.ENDS
** including ././DMX.spi
* DMX DeMultiplexor

.SUBCKT DMX S0REQ S0ACK S1REQ S1ACK CT0REQ CT1REQ CTACK 
+ IREQ IACK VDD GND
XS0 IREQ CT0REQ S0REQ VDD GND CE2
XS1 IREQ CT1REQ S1REQ VDD GND CE2
XO1 S0ACK S1ACK IACK VDD GND OR2
XB1 IACK CTACK VDD GND BF1 
.ENDS
** including ././INV1.spi
* INV1
.SUBCKT IV1 A Z VDD GND
MP Z A VDD VDD P L=0.35U W=2.40U
MN Z A GND GND N L=0.35U W=1.60U
.ENDS
.SUBCKT BF1 A Z VDD GND
XI0 A NET VDD GND IV1
XI1 NET Z VDD GND IV1
.ENDS
** including ././MUX.spi
* MUX
.SUBCKT MUX S0REQ S0ACK S1REQ S1ACK CT0REQ CT1REQ CTACK 
+ ZREQ ZACK VDD GND
XS0  S0REQ CT0REQ S0CT0REQ VDD GND CE2
XS1  S1REQ CT1REQ S1CT1REQ VDD GND CE2
XZ0  ZACK S0CT0REQ S0ACK VDD GND CE2
XZ1  ZACK S1CT1REQ S1ACK VDD GND CE2
XO1  S0CT0REQ S1CT1REQ ZREQ VDD GND OR2
XB1  ZACK CTACK VDD GND BF1
.ENDS
** including ././OR2.spi
* OR2
.SUBCKT NR2 A B Z VDD GND
MPA PAB A VDD VDD P L=0.35U W=2.40U
MPB Z B PAB VDD P L=0.35U W=2.40U
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MNA Z A GND GND N L=0.35U W=1.60U
MNB Z B GND GND N L=0.35U W=1.60U
.ENDS
*.INCLUDE './INV1.spi'

.SUBCKT OR2 A B Z VDD GND
XNR2 A  B ZN VDD GND NR2
XIV1 ZN    Z VDD GND IV1
.ENDS
** including ././XR2.spi
* XR2
.SUBCKT XR2 A B Z VDD GND
MPN1 Q A VDD VDD P L=0.35U W=2.30U
MPN2 I B Q   VDD P L=0.35U W=2.30U

MNN1 I A GND GND N L=0.35U W=0.80U
MNN2 I B GND GND N L=0.35U W=0.80U

MPAI P I VDD VDD P L=0.35U W=2.30U
MPA1 Z A P   VDD P L=0.35U W=2.30U
MPA2 Z B P   VDD P L=0.35U W=2.30U

MNAI Z I GND GND N L=0.35U W=0.80U
MNA1 Z A N   GND N L=0.35U W=1.20U
MNA2 N B GND GND N L=0.35U W=1.20U

.ENDS

** including ././SWCR0.spi
* SWCR0
* Stepwise charging circuit - reset to 0

.SUBCKT SWCR0 REQI ACKI REQO ACKO RST0
+ VPB VNB VDDL VDDS VC3 VC2 VC1 GND VPC

XINVA ACKO NACKO VDDL GND IV1
XCE2R0 REQI NACKO RST0 RISE VDDL GND CE2R0
XINVR RISE FALL VDDL GND IV1
XINVF FALL DI0 VDDL GND IV1

XDLY1A DI0 DI1 VPB VNB VDDL GND DLY
XDLY1B DI1 DI2 VPB VNB VDDL GND DLY
XDLY1C DI2 DI3 VPB VNB VDDL GND DLY

XINVO DI3 DLO  VDDL GND IV1
XINVQ DLO REQO VDDL GND IV1
XINVB DLO ACKI VDDL GND IV1

XXR1A DI0 DI1 P1 VDDL GND XR2
XXR1B DI1 DI2 P2 VDDL GND XR2
XXR1C DI2 DI3 P3 VDDL GND XR2

XND2S4 RISE DI3 S4L VDDL GND ND2
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MPR1 P1 RISE S3H VDDL P L=0.35U W=1.20U
MNR1 P1 FALL S3H GND  N L=0.35U W=0.80U
MPF1 P3 FALL S3H VDDL P L=0.35U W=1.20U
MNF1 P3 RISE S3H GND  N L=0.35U W=0.80U
XINVS3 S3H S3L VDDL GND IV1

R0 P2 S2H 1M
XINVS2 S2H S2L VDDL GND IV1

MPR3 P1 FALL S1H VDDL P L=0.35U W=1.20U
MNR3 P1 RISE S1H GND  N L=0.35U W=0.80U
MPF3 P3 RISE S1H VDDL P L=0.35U W=1.20U
MNF3 P3 FALL S1H GND  N L=0.35U W=0.80U

XNR2S0 RISE DI3 S0H VDDL GND NR2

MPSW4 VDDS S4L VPC VDDS P L=0.35U W=4.80U
MPSW3 VC3  S3L VPC VDDS P L=0.35U W=3.60U
MPSW2 VC2  S2L VPC VDDS P L=0.35U W=2.40U
MNSW2 VC2  S2H VPC GND  N L=0.35U W=1.60U
MNSW1 VC1  S1H VPC GND  N L=0.35U W=1.60U
MNSW0 GND  S0H VPC GND  N L=0.35U W=1.60U
.ENDS

** including ././SWCR1.spi
* SWCR1
* Stepwise charging circuit - reset to 0

.SUBCKT SWCR1 REQI ACKI REQO ACKO RST0
+ VPB VNB VDDL VDDS VC3 VC2 VC1 GND VPC

XINVA ACKO NACKO VDDL GND IV1
XCE2R1 REQI NACKO RST0 RISE VDDL GND CE2R1
XINVR RISE FALL VDDL GND IV1
XINVF FALL DI0 VDDL GND IV1

XDLY1A DI0 DI1 VPB VNB VDDL GND DLY
XDLY1B DI1 DI2 VPB VNB VDDL GND DLY
XDLY1C DI2 DI3 VPB VNB VDDL GND DLY

XINVO DI3 DLO  VDDL GND IV1
XINVQ DLO REQO VDDL GND IV1
XINVB DLO ACKI VDDL GND IV1

XXR1A DI0 DI1 P1 VDDL GND XR2
XXR1B DI1 DI2 P2 VDDL GND XR2
XXR1C DI2 DI3 P3 VDDL GND XR2

XND2S4 RISE DI3 S4L VDDL GND ND2

MPR1 P1 RISE S3H VDDL P L=0.35U W=1.20U
MNR1 P1 FALL S3H GND  N L=0.35U W=0.80U
MPF1 P3 FALL S3H VDDL P L=0.35U W=1.20U
MNF1 P3 RISE S3H GND  N L=0.35U W=0.80U
XINVS3 S3H S3L VDDL GND IV1

R0 P2 S2H 1M
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XINVS2 S2H S2L VDDL GND IV1

MPR3 P1 FALL S1H VDDL P L=0.35U W=1.20U
MNR3 P1 RISE S1H GND  N L=0.35U W=0.80U
MPF3 P3 RISE S1H VDDL P L=0.35U W=1.20U
MNF3 P3 FALL S1H GND  N L=0.35U W=0.80U

XNR2S0 RISE DI3 S0H VDDL GND NR2

MPSW4 VDDS S4L VPC VDDS P L=0.35U W=1.60U
MPSW3 VC3  S3L VPC VDDS P L=0.35U W=1.60U
MPSW2 VC2  S2L VPC VDDS P L=0.35U W=1.60U
MNSW2 VC2  S2H VPC GND  N L=0.35U W=1.60U
MNSW1 VC1  S1H VPC GND  N L=0.35U W=1.60U
MNSW0 GND  S0H VPC GND  N L=0.35U W=1.60U
.ENDS
** including ././a2o.spi
* A2O
.SUBCKT PG2 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L Z_H Z_L VPC GND
MP0 Z_L Z_H  VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L  VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H  GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L  GND GND N L=3.5E-07 W=5E-07
MU0 GL0 G0_L VPC GND N L=3.5E-07 W=5E-07
MU1 GH0 G0_H VPC GND N L=3.5E-07 W=5E-07
MU2 GL0 P1_L VPC GND N L=3.5E-07 W=5E-07
MU3 Z_H P1_H GH0 GND N L=3.5E-07 W=5E-07
MU4 Z_L G1_L GL0 GND N L=3.5E-07 W=5E-07
MU5 Z_H G1_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././a2oao.spi
* A2OAO
.SUBCKT PG3 
+ G2_H G2_L P2_H P2_L 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L Z_H Z_L VPC GND
MP0 Z_L Z_H  VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L  VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H  GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L  GND GND N L=3.5E-07 W=5E-07
MU0 GL0 G0_L VPC GND N L=3.5E-07 W=5E-07
MU1 GH0 G0_H VPC GND N L=3.5E-07 W=5E-07
MU2 GL0 P1_L VPC GND N L=3.5E-07 W=5E-07
MU3 GH1 P1_H GH0 GND N L=3.5E-07 W=5E-07
MU4 GL1 G1_L GL0 GND N L=3.5E-07 W=5E-07
MU5 GH1 G1_H VPC GND N L=3.5E-07 W=5E-07
MU6 GL1 P2_L VPC GND N L=3.5E-07 W=5E-07
MU7 Z_H P2_H GH1 GND N L=3.5E-07 W=5E-07
MU8 Z_L G2_L GL1 GND N L=3.5E-07 W=5E-07
MU9 Z_H G2_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././a2oaoao.spi
* A2OAOAO
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.SUBCKT PG4 
+ G3_H G3_L P3_H P3_L 
+ G2_H G2_L P2_H P2_L 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L Z_H Z_L VPC GND
MP0 Z_L Z_H  VPC VPC P L=3.5E-07 W=10E-07
MP1 Z_H Z_L  VPC VPC P L=3.5E-07 W=10E-07
MN0 Z_L Z_H  GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L  GND GND N L=3.5E-07 W=5E-07
MU0 GL0 G0_L VPC GND N L=3.5E-07 W=5E-07
MU1 GH0 G0_H VPC GND N L=3.5E-07 W=5E-07
MU2 GL0 P1_L VPC GND N L=3.5E-07 W=5E-07
MU3 GH1 P1_H GH0 GND N L=3.5E-07 W=5E-07
MU4 GL1 G1_L GL0 GND N L=3.5E-07 W=5E-07
MU5 GH1 G1_H VPC GND N L=3.5E-07 W=5E-07
MU6 GL1 P2_L VPC GND N L=3.5E-07 W=5E-07
MU7 GH2 P2_H GH1 GND N L=3.5E-07 W=5E-07
MU8 GL2 G2_L GL1 GND N L=3.5E-07 W=5E-07
MU9 GH2 G2_H VPC GND N L=3.5E-07 W=5E-07
MUA GL2 P3_L VPC GND N L=3.5E-07 W=5E-07
MUB Z_H P3_H GH2 GND N L=3.5E-07 W=5E-07
MUC Z_L G3_L GL2 GND N L=3.5E-07 W=5E-07
MUD Z_H G3_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././and2.spi
* AND2 
.SUBCKT AND2 A_H A_L B_H B_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H ABH GND N L=3.5E-07 W=5E-07
MU2 Z_L B_L VPC GND N L=3.5E-07 W=5E-07
MU3 ABH B_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././and3.spi
* AND3 
.SUBCKT AND3 A_H A_L B_H B_L C_H C_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H ABH GND N L=3.5E-07 W=5E-07
MU2 Z_L B_L VPC GND N L=3.5E-07 W=5E-07
MU3 ABH B_H BCH GND N L=3.5E-07 W=5E-07
MU4 Z_L C_L VPC GND N L=3.5E-07 W=5E-07
MU5 BCH C_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././and4.spi
* AND4
.SUBCKT AND4 A_H A_L B_H B_L C_H C_L D_H D_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
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MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H ABH GND N L=3.5E-07 W=5E-07
MU2 Z_L B_L VPC GND N L=3.5E-07 W=5E-07
MU3 ABH B_H BCH GND N L=3.5E-07 W=5E-07
MU4 Z_L C_L VPC GND N L=3.5E-07 W=5E-07
MU5 BCH C_H CDH GND N L=3.5E-07 W=5E-07
MU6 Z_L D_L VPC GND N L=3.5E-07 W=5E-07
MU7 CDH D_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././buf1.spi
* BUF1
.SUBCKT BUF1 A_H A_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H VPC GND N L=3.5E-07 W=5E-07
.ENDS
** including ././buf1r0.spi
* BUF1
.SUBCKT BUF1R0 A_H A_L Z_H Z_L R_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H VPC GND N L=3.5E-07 W=5E-07
MPR Z_L R_L VPC VPC P L=3.5E-07 W=2E-06
.ENDS
** including ././buf1r1.spi
* BUF1
.SUBCKT BUF1R1 A_H A_L Z_H Z_L R_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 Z_L A_L VPC GND N L=3.5E-07 W=5E-07
MU1 Z_H A_H VPC GND N L=3.5E-07 W=5E-07
MPR Z_H R_L VPC VPC P L=3.5E-07 W=5E-07
.ENDS
** including ././buf1x16.spi
* BUF1 x16

*.INCLUDE './buf1.spi'

.SUBCKT BUF1X16 
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
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+ Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+ Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+ Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+ VPC GND
X00 A00_H A00_L Z00_H Z00_L VPC GND BUF1
X01 A01_H A01_L Z01_H Z01_L VPC GND BUF1
X02 A02_H A02_L Z02_H Z02_L VPC GND BUF1
X03 A03_H A03_L Z03_H Z03_L VPC GND BUF1
X04 A04_H A04_L Z04_H Z04_L VPC GND BUF1
X05 A05_H A05_L Z05_H Z05_L VPC GND BUF1
X06 A06_H A06_L Z06_H Z06_L VPC GND BUF1
X07 A07_H A07_L Z07_H Z07_L VPC GND BUF1
X08 A08_H A08_L Z08_H Z08_L VPC GND BUF1
X09 A09_H A09_L Z09_H Z09_L VPC GND BUF1
X10 A10_H A10_L Z10_H Z10_L VPC GND BUF1
X11 A11_H A11_L Z11_H Z11_L VPC GND BUF1
X12 A12_H A12_L Z12_H Z12_L VPC GND BUF1
X13 A13_H A13_L Z13_H Z13_L VPC GND BUF1
X14 A14_H A14_L Z14_H Z14_L VPC GND BUF1
X15 A15_H A15_L Z15_H Z15_L VPC GND BUF1
.ENDS
** including ././mux2.spi
* MUX2 
.SUBCKT MUX2 A_H A_L B_H B_L S_H S_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 SLA S_L VPC GND N L=3.5E-07 W=5E-07
MU1 SHB S_H VPC GND N L=3.5E-07 W=5E-07
MU2 Z_L A_L SLA GND N L=3.5E-07 W=5E-07
MU3 Z_H A_H SLA GND N L=3.5E-07 W=5E-07
MU4 Z_L B_L SHB GND N L=3.5E-07 W=5E-07
MU5 Z_H B_H SHB GND N L=3.5E-07 W=5E-07
.ENDS
** including ././mux2x16.spi
* BUF1 x16

*.INCLUDE './mux2.spi'

.SUBCKT MUX2X16 
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+ B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+ B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+ B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+ S_H S_L
+ Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+ Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+ Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+ Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+ VPC GND
X00 A00_H A00_L B00_H B00_L S_H S_L Z00_H Z00_L VPC GND MUX2
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X01 A01_H A01_L B01_H B01_L S_H S_L Z01_H Z01_L VPC GND MUX2
X02 A02_H A02_L B02_H B02_L S_H S_L Z02_H Z02_L VPC GND MUX2
X03 A03_H A03_L B03_H B03_L S_H S_L Z03_H Z03_L VPC GND MUX2
X04 A04_H A04_L B04_H B04_L S_H S_L Z04_H Z04_L VPC GND MUX2
X05 A05_H A05_L B05_H B05_L S_H S_L Z05_H Z05_L VPC GND MUX2
X06 A06_H A06_L B06_H B06_L S_H S_L Z06_H Z06_L VPC GND MUX2
X07 A07_H A07_L B07_H B07_L S_H S_L Z07_H Z07_L VPC GND MUX2
X08 A08_H A08_L B08_H B08_L S_H S_L Z08_H Z08_L VPC GND MUX2
X09 A09_H A09_L B09_H B09_L S_H S_L Z09_H Z09_L VPC GND MUX2
X10 A10_H A10_L B10_H B10_L S_H S_L Z10_H Z10_L VPC GND MUX2
X11 A11_H A11_L B11_H B11_L S_H S_L Z11_H Z11_L VPC GND MUX2
X12 A12_H A12_L B12_H B12_L S_H S_L Z12_H Z12_L VPC GND MUX2
X13 A13_H A13_L B13_H B13_L S_H S_L Z13_H Z13_L VPC GND MUX2
X14 A14_H A14_L B14_H B14_L S_H S_L Z14_H Z14_L VPC GND MUX2
X15 A15_H A15_L B15_H B15_L S_H S_L Z15_H Z15_L VPC GND MUX2
.ENDS
** including ././or2.spi
* OR2 
.SUBCKT ORR2 A_H A_L B_H B_L Z_H Z_L VPC GND
XAND2 A_L A_H B_L B_H Z_L Z_H VPC GND AND2
.ENDS
** including ././xnor2.spi
* XNOR2 
.SUBCKT XNOR2 A_H A_L B_H B_L Z_H Z_L VPC GND
XXOR2 A_H A_L B_H B_L Z_L Z_H VPC GND XOR2
.ENDS
** including ././xor2.spi
* XOR2 
.SUBCKT XOR2 A_H A_L B_H B_L Z_H Z_L VPC GND
MP0 Z_L Z_H VPC VPC P L=3.5E-07 W=5E-07
MP1 Z_H Z_L VPC VPC P L=3.5E-07 W=5E-07
MN0 Z_L Z_H GND GND N L=3.5E-07 W=5E-07
MN1 Z_H Z_L GND GND N L=3.5E-07 W=5E-07
MU0 ABL A_L VPC GND N L=3.5E-07 W=5E-07
MU1 ABH A_H VPC GND N L=3.5E-07 W=5E-07
MU2 Z_L B_L ABL GND N L=3.5E-07 W=5E-07
MU3 Z_H B_H ABL GND N L=3.5E-07 W=5E-07
MU4 Z_H B_L ABH GND N L=3.5E-07 W=5E-07
MU5 Z_L B_H ABH GND N L=3.5E-07 W=5E-07
.ENDS
** including ././cmp16.spi
* CMP16

*.INCLUDE './and2.spi'
*.INCLUDE './xor2.spi'
*.INCLUDE './a2oaoao.spi'
*.INCLUDE './and4.spi'

.SUBCKT CMP16 
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
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+ B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+ B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+ B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+ NE_H NE_L GT_H GT_L VPC0 VPC1 VPC2 GND

* Stage 0

* Note inversion of output.
XE000 A00_H A00_L B00_H B00_L EQ000_L EQ000_H VPC0 GND XOR2
XE001 A01_H A01_L B01_H B01_L EQ001_L EQ001_H VPC0 GND XOR2
XE002 A02_H A02_L B02_H B02_L EQ002_L EQ002_H VPC0 GND XOR2
XE003 A03_H A03_L B03_H B03_L EQ003_L EQ003_H VPC0 GND XOR2
XE004 A04_H A04_L B04_H B04_L EQ004_L EQ004_H VPC0 GND XOR2
XE005 A05_H A05_L B05_H B05_L EQ005_L EQ005_H VPC0 GND XOR2
XE006 A06_H A06_L B06_H B06_L EQ006_L EQ006_H VPC0 GND XOR2
XE007 A07_H A07_L B07_H B07_L EQ007_L EQ007_H VPC0 GND XOR2
XE008 A08_H A08_L B08_H B08_L EQ008_L EQ008_H VPC0 GND XOR2
XE009 A09_H A09_L B09_H B09_L EQ009_L EQ009_H VPC0 GND XOR2
XE010 A10_H A10_L B10_H B10_L EQ010_L EQ010_H VPC0 GND XOR2
XE011 A11_H A11_L B11_H B11_L EQ011_L EQ011_H VPC0 GND XOR2
XE012 A12_H A12_L B12_H B12_L EQ012_L EQ012_H VPC0 GND XOR2
XE013 A13_H A13_L B13_H B13_L EQ013_L EQ013_H VPC0 GND XOR2
XE014 A14_H A14_L B14_H B14_L EQ014_L EQ014_H VPC0 GND XOR2
XE015 A15_H A15_L B15_H B15_L EQ015_L EQ015_H VPC0 GND XOR2

* Note inversion of B-input.
XG000 A00_H A00_L B00_L B00_H GT000_H GT000_L VPC0 GND AND2
XG001 A01_H A01_L B01_L B01_H GT001_H GT001_L VPC0 GND AND2
XG002 A02_H A02_L B02_L B02_H GT002_H GT002_L VPC0 GND AND2
XG003 A03_H A03_L B03_L B03_H GT003_H GT003_L VPC0 GND AND2
XG004 A04_H A04_L B04_L B04_H GT004_H GT004_L VPC0 GND AND2
XG005 A05_H A05_L B05_L B05_H GT005_H GT005_L VPC0 GND AND2
XG006 A06_H A06_L B06_L B06_H GT006_H GT006_L VPC0 GND AND2
XG007 A07_H A07_L B07_L B07_H GT007_H GT007_L VPC0 GND AND2
XG008 A08_H A08_L B08_L B08_H GT008_H GT008_L VPC0 GND AND2
XG009 A09_H A09_L B09_L B09_H GT009_H GT009_L VPC0 GND AND2
XG010 A10_H A10_L B10_L B10_H GT010_H GT010_L VPC0 GND AND2
XG011 A11_H A11_L B11_L B11_H GT011_H GT011_L VPC0 GND AND2
XG012 A12_H A12_L B12_L B12_H GT012_H GT012_L VPC0 GND AND2
XG013 A13_H A13_L B13_L B13_H GT013_H GT013_L VPC0 GND AND2
XG014 A14_H A14_L B14_L B14_H GT014_H GT014_L VPC0 GND AND2
XG015 A15_H A15_L B15_L B15_H GT015_H GT015_L VPC0 GND AND2

* Stage 1

XE100
+ EQ003_H EQ003_L EQ002_H EQ002_L 
+ EQ001_H EQ001_L EQ000_H EQ000_L
+ EQ100_H EQ100_L VPC1 GND AND4
XE101
+ EQ007_H EQ007_L EQ006_H EQ006_L 
+ EQ005_H EQ005_L EQ004_H EQ004_L
+ EQ101_H EQ101_L VPC1 GND AND4
XE102
+ EQ011_H EQ011_L EQ010_H EQ010_L 
+ EQ009_H EQ009_L EQ008_H EQ008_L
+ EQ102_H EQ102_L VPC1 GND AND4
XE103
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+ EQ015_H EQ015_L EQ014_H EQ014_L
+ EQ013_H EQ013_L EQ012_H EQ012_L
+ EQ103_H EQ103_L VPC1 GND AND4

XG100
+ GT003_H GT003_L EQ003_H EQ003_L
+ GT002_H GT002_L EQ002_H EQ002_L
+ GT001_H GT001_L EQ001_H EQ001_L
+ GT000_H GT000_L GT100_H GT100_L VPC1 GND PG4
XG101
+ GT007_H GT007_L EQ007_H EQ007_L
+ GT006_H GT006_L EQ006_H EQ006_L
+ GT005_H GT005_L EQ005_H EQ005_L 
+ GT004_H GT004_L GT101_H GT101_L VPC1 GND PG4
XG102 
+ GT011_H GT011_L EQ011_H EQ011_L 
+ GT010_H GT010_L EQ010_H EQ010_L
+ GT009_H GT009_L EQ009_H EQ009_L 
+ GT008_H GT008_L GT102_H GT102_L VPC1 GND PG4
XG103 
+ GT015_H GT015_L EQ015_H EQ015_L 
+ GT014_H GT014_L EQ014_H EQ014_L
+ GT013_H GT013_L EQ013_H EQ013_L 
+ GT012_H GT012_L GT103_H GT103_L VPC1 GND PG4

* Stage 2

* Note inversion of output.
XE200 
+ EQ103_H EQ103_L EQ102_H EQ102_L 
+ EQ101_H EQ101_L EQ100_H EQ100_L
+ NE_L NE_H VPC2 GND AND4

XG200 
+ GT103_H GT103_L EQ103_H EQ103_L 
+ GT102_H GT102_L EQ102_H EQ102_L
+ GT101_H GT101_L EQ101_H EQ101_L 
+ GT100_H GT100_L GT_H GT_L VPC2 GND PG4

.ENDS
** including ././sub16.spi
* SUB16

*.INCLUDE './buf1.spi'
*.INCLUDE './xor2.spi'
*.INCLUDE './xnor2.spi'
*.INCLUDE './or2.spi'
*.INCLUDE './and2.spi'
*.INCLUDE './and3.spi'
*.INCLUDE './and4.spi'
*.INCLUDE './a2o.spi'
*.INCLUDE './a2oao.spi'
*.INCLUDE './a2oaoao.spi'

* Half Adder
.SUBCKT HA A_H A_L B_H B_L G_H G_L P_H P_L VPC GND
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XG0 A_H A_L B_H B_L G_H G_L VPC GND AND2 
XP0 A_H A_L B_H B_L P_H P_L VPC GND XOR2
.ENDS
* Not Half Adder
.SUBCKT NHA A_H A_L B_H B_L G_H G_L P_H P_L VPC GND
XG0 A_H A_L B_H B_L G_H G_L VPC GND ORR2 
XP0 A_H A_L B_H B_L P_H P_L VPC GND XNOR2
.ENDS
* Radix-4 Propagate/Generate cells
.SUBCKT GPG1 
+ G0_H G0_L P0_H P0_L 
+ GO_H GO_L PO_H PO_L VPC GND
XG1 G0_H G0_L GO_H GO_L VPC GND BUF1 
XP1 P0_H P0_L PO_H PO_L VPC GND BUF1
.ENDS
.SUBCKT GPG2 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L P0_H P0_L 
+ GO_H GO_L PO_H PO_L VPC GND
XG2 G1_H G1_L P1_H P1_L G0_H G0_L GO_H GO_L VPC GND PG2 
XP2 P1_H P1_L P0_H P0_L PO_H PO_L VPC GND AND2
.ENDS
.SUBCKT GPG3 
+ G2_H G2_L P2_H P2_L 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L P0_H P0_L 
+ GO_H GO_L PO_H PO_L VPC GND
XG3 G2_H G2_L P2_H P2_L G1_H G1_L P1_H P1_L G0_H G0_L 
+ GO_H GO_L VPC GND PG3 
XP3 P2_H P2_L P1_H P1_L P0_H P0_L PO_H PO_L VPC GND AND3
.ENDS
.SUBCKT GPG4 
+ G3_H G3_L P3_H P3_L 
+ G2_H G2_L P2_H P2_L 
+ G1_H G1_L P1_H P1_L 
+ G0_H G0_L P0_H P0_L 
+ GO_H GO_L PO_H PO_L VPC GND
XG4 G3_H G3_L P3_H P3_L G2_H G2_L P2_H P2_L
+ G1_H G1_L P1_H P1_L G0_H G0_L GO_H GO_L VPC GND PG4 
XP4 P3_H P3_L P2_H P2_L P1_H P1_L P0_H P0_L PO_H PO_L VPC GND AND4
.ENDS
* Subtract/Reverse subtract
.SUBCKT SUB16 
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+ B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+ B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+ B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+ R_H R_L
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+ Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+ Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+ Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+ Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+ VPC0 VPC1 VPC2 VPC3 VPC4 GND

* Stage 0

* This could be merged with stage 1 using a complex gate.
XIA00 R_L R_H A00_H A00_L A000_H A000_L VPC0 GND XOR2
XIA01 R_L R_H A01_H A01_L A001_H A001_L VPC0 GND XOR2
XIA02 R_L R_H A02_H A02_L A002_H A002_L VPC0 GND XOR2
XIA03 R_L R_H A03_H A03_L A003_H A003_L VPC0 GND XOR2
XIA04 R_L R_H A04_H A04_L A004_H A004_L VPC0 GND XOR2
XIA05 R_L R_H A05_H A05_L A005_H A005_L VPC0 GND XOR2
XIA06 R_L R_H A06_H A06_L A006_H A006_L VPC0 GND XOR2
XIA07 R_L R_H A07_H A07_L A007_H A007_L VPC0 GND XOR2
XIA08 R_L R_H A08_H A08_L A008_H A008_L VPC0 GND XOR2
XIA09 R_L R_H A09_H A09_L A009_H A009_L VPC0 GND XOR2
XIA10 R_L R_H A10_H A10_L A010_H A010_L VPC0 GND XOR2
XIA11 R_L R_H A11_H A11_L A011_H A011_L VPC0 GND XOR2
XIA12 R_L R_H A12_H A12_L A012_H A012_L VPC0 GND XOR2
XIA13 R_L R_H A13_H A13_L A013_H A013_L VPC0 GND XOR2
XIA14 R_L R_H A14_H A14_L A014_H A014_L VPC0 GND XOR2
XIA15 R_L R_H A15_H A15_L A015_H A015_L VPC0 GND XOR2

XIB00 R_H R_L B00_H B00_L B000_H B000_L VPC0 GND XOR2
XIB01 R_H R_L B01_H B01_L B001_H B001_L VPC0 GND XOR2
XIB02 R_H R_L B02_H B02_L B002_H B002_L VPC0 GND XOR2
XIB03 R_H R_L B03_H B03_L B003_H B003_L VPC0 GND XOR2
XIB04 R_H R_L B04_H B04_L B004_H B004_L VPC0 GND XOR2
XIB05 R_H R_L B05_H B05_L B005_H B005_L VPC0 GND XOR2
XIB06 R_H R_L B06_H B06_L B006_H B006_L VPC0 GND XOR2
XIB07 R_H R_L B07_H B07_L B007_H B007_L VPC0 GND XOR2
XIB08 R_H R_L B08_H B08_L B008_H B008_L VPC0 GND XOR2
XIB09 R_H R_L B09_H B09_L B009_H B009_L VPC0 GND XOR2
XIB10 R_H R_L B10_H B10_L B010_H B010_L VPC0 GND XOR2
XIB11 R_H R_L B11_H B11_L B011_H B011_L VPC0 GND XOR2
XIB12 R_H R_L B12_H B12_L B012_H B012_L VPC0 GND XOR2
XIB13 R_H R_L B13_H B13_L B013_H B013_L VPC0 GND XOR2
XIB14 R_H R_L B14_H B14_L B014_H B014_L VPC0 GND XOR2
XIB15 R_H R_L B15_H B15_L B015_H B015_L VPC0 GND XOR2

* Stage 1

* Note XHA00 includes two's complement correction.
XHA00 A000_H A000_L B000_H B000_L
+ G000_H G000_L P000_H P000_L VPC1 GND NHA
XHA01 A001_H A001_L B001_H B001_L
+ G001_H G001_L P001_H P001_L VPC1 GND HA
XHA02 A002_H A002_L B002_H B002_L
+ G002_H G002_L P002_H P002_L VPC1 GND HA
XHA03 A003_H A003_L B003_H B003_L
+ G003_H G003_L P003_H P003_L VPC1 GND HA
XHA04 A004_H A004_L B004_H B004_L
+ G004_H G004_L P004_H P004_L VPC1 GND HA
XHA05 A005_H A005_L B005_H B005_L
+ G005_H G005_L P005_H P005_L VPC1 GND HA
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XHA06 A006_H A006_L B006_H B006_L
+ G006_H G006_L P006_H P006_L VPC1 GND HA
XHA07 A007_H A007_L B007_H B007_L
+ G007_H G007_L P007_H P007_L VPC1 GND HA
XHA08 A008_H A008_L B008_H B008_L
+ G008_H G008_L P008_H P008_L VPC1 GND HA
XHA09 A009_H A009_L B009_H B009_L
+ G009_H G009_L P009_H P009_L VPC1 GND HA
XHA10 A010_H A010_L B010_H B010_L
+ G010_H G010_L P010_H P010_L VPC1 GND HA
XHA11 A011_H A011_L B011_H B011_L
+ G011_H G011_L P011_H P011_L VPC1 GND HA
XHA12 A012_H A012_L B012_H B012_L
+ G012_H G012_L P012_H P012_L VPC1 GND HA

XHA13 A013_H A013_L B013_H B013_L
+ G013_H G013_L P013_H P013_L VPC1 GND HA
XHA14 A014_H A014_L B014_H B014_L
+ G014_H G014_L P014_H P014_L VPC1 GND HA
XHA15 A015_H A015_L B015_H B015_L
+ G015_H G015_L P015_H P015_L VPC1 GND HA

* Stage 2

XS000 G000_H G000_L P000_H P000_L  
+ G100_H G100_L P100_H P100_L VPC2 GND GPG1
XS001 G001_H G001_L P001_H P001_L 
+ G000_H G000_L P000_H P000_L  
+ G101_H G101_L P101_H P101_L VPC2 GND GPG2
XS002 G002_H G002_L P002_H P002_L 
+ G001_H G001_L P001_H P001_L 
+ G000_H G000_L P000_H P000_L  
+ G102_H G102_L P102_H P102_L VPC2 GND GPG3
XS003 G003_H G003_L P003_H P003_L 
+ G002_H G002_L P002_H P002_L 
+ G001_H G001_L P001_H P001_L 
+ G000_H G000_L P000_H P000_L  
+ G103_H G103_L P103_H P103_L VPC2 GND GPG4
XS004 G004_H G004_L P004_H P004_L  
+ G104_H G104_L P104_H P104_L VPC2 GND GPG1
XS005 G005_H G005_L P005_H P005_L 
+ G004_H G004_L P004_H P004_L
+ G105_H G105_L P105_H P105_L VPC2 GND GPG2
XS006 G006_H G006_L P006_H P006_L 
+ G005_H G005_L P005_H P005_L 
+ G004_H G004_L P004_H P004_L
+ G106_H G106_L P106_H P106_L VPC2 GND GPG3
XS007 G007_H G007_L P007_H P007_L 
+ G006_H G006_L P006_H P006_L 
+ G005_H G005_L P005_H P005_L 
+ G004_H G004_L P004_H P004_L  
+ G107_H G107_L P107_H P107_L VPC2 GND GPG4
XS008 G008_H G008_L P008_H P008_L  
+ G108_H G108_L P108_H P108_L VPC2 GND GPG1
XS009 G009_H G009_L P009_H P009_L 
+ G008_H G008_L P008_H P008_L  
+ G109_H G109_L P109_H P109_L VPC2 GND GPG2
XS010 G010_H G010_L P010_H P010_L 
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+ G009_H G009_L P009_H P009_L 
+ G008_H G008_L P008_H P008_L  
+ G110_H G110_L P110_H P110_L VPC2 GND GPG3
XS011 G011_H G011_L P011_H P011_L 
+ G010_H G010_L P010_H P010_L 
+ G009_H G009_L P009_H P009_L 
+ G008_H G008_L P008_H P008_L  
+ G111_H G111_L P111_H P111_L VPC2 GND GPG4
XS012 G012_H G012_L P012_H P012_L  
+ G112_H G112_L P112_H P112_L VPC2 GND GPG1
XS013 G013_H G013_L P013_H P013_L 
+ G012_H G012_L P012_H P012_L  
+ G113_H G113_L P113_H P113_L VPC2 GND GPG2
XS014 G014_H G014_L P014_H P014_L 
+ G013_H G013_L P013_H P013_L 
+ G012_H G012_L P012_H P012_L  
+ G114_H G114_L P114_H P114_L VPC2 GND GPG3
XS015 G015_H G015_L P015_H P015_L 
+ G014_H G014_L P014_H P014_L 
+ G013_H G013_L P013_H P013_L 
+ G012_H G012_L P012_H P012_L  
+ G115_H G115_L P115_H P115_L VPC2 GND GPG4

* Q100 == P100
XB001 P001_H P001_L Q101_H Q101_L VPC2 GND BUF1
XB002 P002_H P002_L Q102_H Q102_L VPC2 GND BUF1
XB003 P003_H P003_L Q103_H Q103_L VPC2 GND BUF1
* Q104 == P104
XB005 P005_H P005_L Q105_H Q105_L VPC2 GND BUF1
XB006 P006_H P006_L Q106_H Q106_L VPC2 GND BUF1
XB007 P007_H P007_L Q107_H Q107_L VPC2 GND BUF1
* Q108 == P108
XB009 P009_H P009_L Q109_H Q109_L VPC2 GND BUF1
XB010 P010_H P010_L Q110_H Q110_L VPC2 GND BUF1
XB011 P011_H P011_L Q111_H Q111_L VPC2 GND BUF1
* Q112 == P112
XB013 P013_H P013_L Q113_H Q113_L VPC2 GND BUF1
XB014 P014_H P014_L Q114_H Q114_L VPC2 GND BUF1
XB015 P015_H P015_L Q115_H Q115_L VPC2 GND BUF1

* Stage 3

XS100 G100_H G100_L P100_H P100_L 
+ G200_H G200_L P200_H P200_L VPC3 GND GPG1
XS101 G101_H G101_L Q101_H Q101_L 
+ G201_H G201_L P201_H P201_L VPC3 GND GPG1
XS102 G102_H G102_L Q102_H Q102_L 
+ G202_H G202_L P202_H P202_L VPC3 GND GPG1
XS103 G103_H G103_L Q103_H Q103_L 
+ G203_H G203_L P203_H P203_L VPC3 GND GPG1
XS104 G104_H G104_L P104_H P104_L 
+ G103_H G103_L P103_H P103_L 
+ G204_H G204_L P204_H P204_L VPC3 GND GPG2
XS105 G105_H G105_L P105_H P105_L 
+ G103_H G103_L P103_H P103_L 
+ G205_H G205_L P205_H P205_L VPC3 GND GPG2
XS106 G106_H G106_L P106_H P106_L 
+ G103_H G103_L P103_H P103_L 
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+ G206_H G206_L P206_H P206_L VPC3 GND GPG2
XS107 G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G207_H G207_L P207_H P207_L VPC3 GND GPG2
XS108 G108_H G108_L P108_H P108_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G208_H G208_L P208_H P208_L VPC3 GND GPG3
XS109 G109_H G109_L P109_H P109_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G209_H G209_L P209_H P209_L VPC3 GND GPG3
XS110 G110_H G110_L P110_H P110_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G210_H G210_L P210_H P210_L VPC3 GND GPG3
XS111 G111_H G111_L P111_H P111_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G211_H G211_L P211_H P211_L VPC3 GND GPG3
XS112 G112_H G112_L P112_H P112_L 
+ G111_H G111_L P111_H P111_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G212_H G212_L P212_H P212_L VPC3 GND GPG4
XS113 G113_H G113_L P113_H P113_L 
+ G111_H G111_L P111_H P111_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G213_H G213_L P213_H P213_L VPC3 GND GPG4
XS114 G114_H G114_L P114_H P114_L 
+ G111_H G111_L P111_H P111_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G214_H G214_L P214_H P214_L VPC3 GND GPG4
XS115 G115_H G115_L P115_H P115_L 
+ G111_H G111_L P111_H P111_L 
+ G107_H G107_L P107_H P107_L 
+ G103_H G103_L P103_H P103_L 
+ G215_H G215_L P215_H P215_L VPC3 GND GPG4

*
*
*
*
XB104 P104_H P104_L Q204_H Q204_L VPC3 GND BUF1
XB105 Q105_H Q105_L Q205_H Q205_L VPC3 GND BUF1
XB106 Q106_H Q106_L Q206_H Q206_L VPC3 GND BUF1
XB107 Q107_H Q107_L Q207_H Q207_L VPC3 GND BUF1
XB108 P108_H P108_L Q208_H Q208_L VPC3 GND BUF1
XB109 Q109_H Q109_L Q209_H Q209_L VPC3 GND BUF1
XB110 Q110_H Q110_L Q210_H Q210_L VPC3 GND BUF1
XB111 Q111_H Q111_L Q211_H Q211_L VPC3 GND BUF1
XB112 P112_H P112_L Q212_H Q212_L VPC3 GND BUF1
XB113 Q113_H Q113_L Q213_H Q213_L VPC3 GND BUF1
XB114 Q114_H Q114_L Q214_H Q214_L VPC3 GND BUF1
XB115 Q115_H Q115_L Q215_H Q215_L VPC3 GND BUF1
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* Stage 4

XO000 P200_H P200_L   Z00_H Z00_L VPC4 GND BUF1
XO001 P201_H P201_L G200_H G200_L Z01_H Z01_L VPC4 GND XOR2
XO002 P202_H P202_L G201_H G201_L Z02_H Z02_L VPC4 GND XOR2
XO003 P203_H P203_L G202_H G202_L Z03_H Z03_L VPC4 GND XOR2
XO004 Q204_H Q204_L G203_H G203_L Z04_H Z04_L VPC4 GND XOR2
XO005 Q205_H Q205_L G204_H G204_L Z05_H Z05_L VPC4 GND XOR2
XO006 Q206_H Q206_L G205_H G205_L Z06_H Z06_L VPC4 GND XOR2
XO007 Q207_H Q207_L G206_H G206_L Z07_H Z07_L VPC4 GND XOR2
XO008 Q208_H Q208_L G207_H G207_L Z08_H Z08_L VPC4 GND XOR2
XO009 Q209_H Q209_L G208_H G208_L Z09_H Z09_L VPC4 GND XOR2
XO010 Q210_H Q210_L G209_H G209_L Z10_H Z10_L VPC4 GND XOR2
XO011 Q211_H Q211_L G210_H G210_L Z11_H Z11_L VPC4 GND XOR2
XO012 Q212_H Q212_L G211_H G211_L Z12_H Z12_L VPC4 GND XOR2
XO013 Q213_H Q213_L G212_H G212_L Z13_H Z13_L VPC4 GND XOR2
XO014 Q214_H Q214_L G213_H G213_L Z14_H Z14_L VPC4 GND XOR2
XO015 Q215_H Q215_L G214_H G214_L Z15_H Z15_L VPC4 GND XOR2

.ENDS
** including ././GCD.spi
* GCD

.SUBCKT GCD REQIN ACKIN REQOUT ACKOUT RST0
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+ B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+ B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+ B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+ Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+ Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+ Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+ Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND 

XCTC REQ3 ACK3A REQ12 ACK12 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC10 SWCR0
XFBC ANEB0_H ANEB0_L ANEB1_H ANEB1_L ASWC10 GND BUF1

XCTB REQ12 ACK12 REQ13 ACK13 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC11 SWCR1
XFBB ANEB1_H ANEB1_L ANEB2_H ANEB2_L RST0 ASWC11 GND BUF1R0 

XMX0 REQIN ACKIN REQ9 ACK9 ANEB2_L ANEB2_H ACK13 REQ10 ACK10
+ VDD GND MUX

XCT0 REQ10 ACK10 REQ0 ACK0 RST0
+ VPB VNB VDD VDDSWC  VC3 VC2 VC1 GND ASWC0 SWCR0
XCT1 REQ0 ACK0 REQ1 ACK1 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC1 SWCR0
XCT2 REQ1 ACK1 REQ2 ACK2 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC2 SWCR0
XCT3 REQ2 ACK2 REQ3 ACK3 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC3 SWCR0
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XCT3A ACK3A ACK3B ACK3C ACK3 VDD GND CE3

XAMX
+ A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+ A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+ A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+ A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+ S8_15_H S8_14_H S8_13_H S8_12_H S8_11_H S8_10_H S8_09_H S8_08_H
+ S8_07_H S8_06_H S8_05_H S8_04_H S8_03_H S8_02_H S8_01_H S8_00_H
+ S8_15_L S8_14_L S8_13_L S8_12_L S8_11_L S8_10_L S8_09_L S8_08_L
+ S8_07_L S8_06_L S8_05_L S8_04_L S8_03_L S8_02_L S8_01_L S8_00_L
+ ANEB2_H ANEB2_L 
+ A0_15_H A0_14_H A0_13_H A0_12_H A0_11_H A0_10_H A0_09_H A0_08_H
+ A0_07_H A0_06_H A0_05_H A0_04_H A0_03_H A0_02_H A0_01_H A0_00_H
+ A0_15_L A0_14_L A0_13_L A0_12_L A0_11_L A0_10_L A0_09_L A0_08_L
+ A0_07_L A0_06_L A0_05_L A0_04_L A0_03_L A0_02_L A0_01_L A0_00_L
+ ASWC0 GND MUX2X16

XBMX
+ B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+ B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+ B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+ B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+ M8_15_H M8_14_H M8_13_H M8_12_H M8_11_H M8_10_H M8_09_H M8_08_H
+ M8_07_H M8_06_H M8_05_H M8_04_H M8_03_H M8_02_H M8_01_H M8_00_H
+ M8_15_L M8_14_L M8_13_L M8_12_L M8_11_L M8_10_L M8_09_L M8_08_L
+ M8_07_L M8_06_L M8_05_L M8_04_L M8_03_L M8_02_L M8_01_L M8_00_L
+ ANEB2_H ANEB2_L
+ B0_15_H B0_14_H B0_13_H B0_12_H B0_11_H B0_10_H B0_09_H B0_08_H
+ B0_07_H B0_06_H B0_05_H B0_04_H B0_03_H B0_02_H B0_01_H B0_00_H
+ B0_15_L B0_14_L B0_13_L B0_12_L B0_11_L B0_10_L B0_09_L B0_08_L
+ B0_07_L B0_06_L B0_05_L B0_04_L B0_03_L B0_02_L B0_01_L B0_00_L
+ ASWC0 GND MUX2X16

XCMP
+ A0_15_H A0_14_H A0_13_H A0_12_H A0_11_H A0_10_H A0_09_H A0_08_H
+ A0_07_H A0_06_H A0_05_H A0_04_H A0_03_H A0_02_H A0_01_H A0_00_H
+ A0_15_L A0_14_L A0_13_L A0_12_L A0_11_L A0_10_L A0_09_L A0_08_L
+ A0_07_L A0_06_L A0_05_L A0_04_L A0_03_L A0_02_L A0_01_L A0_00_L
+ B0_15_H B0_14_H B0_13_H B0_12_H B0_11_H B0_10_H B0_09_H B0_08_H
+ B0_07_H B0_06_H B0_05_H B0_04_H B0_03_H B0_02_H B0_01_H B0_00_H
+ B0_15_L B0_14_L B0_13_L B0_12_L B0_11_L B0_10_L B0_09_L B0_08_L
+ B0_07_L B0_06_L B0_05_L B0_04_L B0_03_L B0_02_L B0_01_L B0_00_L
+ ANEB0_H ANEB0_L AGTB_H AGTB_L ASWC1 ASWC2 ASWC3 GND CMP16

XAB1 
+ A0_15_H A0_14_H A0_13_H A0_12_H A0_11_H A0_10_H A0_09_H A0_08_H
+ A0_07_H A0_06_H A0_05_H A0_04_H A0_03_H A0_02_H A0_01_H A0_00_H
+ A0_15_L A0_14_L A0_13_L A0_12_L A0_11_L A0_10_L A0_09_L A0_08_L
+ A0_07_L A0_06_L A0_05_L A0_04_L A0_03_L A0_02_L A0_01_L A0_00_L
+ A1_15_H A1_14_H A1_13_H A1_12_H A1_11_H A1_10_H A1_09_H A1_08_H
+ A1_07_H A1_06_H A1_05_H A1_04_H A1_03_H A1_02_H A1_01_H A1_00_H
+ A1_15_L A1_14_L A1_13_L A1_12_L A1_11_L A1_10_L A1_09_L A1_08_L
+ A1_07_L A1_06_L A1_05_L A1_04_L A1_03_L A1_02_L A1_01_L A1_00_L
+ ASWC1 GND BUF1X16
XBB1 
+ B0_15_H B0_14_H B0_13_H B0_12_H B0_11_H B0_10_H B0_09_H B0_08_H
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+ B0_07_H B0_06_H B0_05_H B0_04_H B0_03_H B0_02_H B0_01_H B0_00_H
+ B0_15_L B0_14_L B0_13_L B0_12_L B0_11_L B0_10_L B0_09_L B0_08_L
+ B0_07_L B0_06_L B0_05_L B0_04_L B0_03_L B0_02_L B0_01_L B0_00_L
+ B1_15_H B1_14_H B1_13_H B1_12_H B1_11_H B1_10_H B1_09_H B1_08_H
+ B1_07_H B1_06_H B1_05_H B1_04_H B1_03_H B1_02_H B1_01_H B1_00_H
+ B1_15_L B1_14_L B1_13_L B1_12_L B1_11_L B1_10_L B1_09_L B1_08_L
+ B1_07_L B1_06_L B1_05_L B1_04_L B1_03_L B1_02_L B1_01_L B1_00_L
+ ASWC1 GND BUF1X16

XAB2 
+ A1_15_H A1_14_H A1_13_H A1_12_H A1_11_H A1_10_H A1_09_H A1_08_H
+ A1_07_H A1_06_H A1_05_H A1_04_H A1_03_H A1_02_H A1_01_H A1_00_H
+ A1_15_L A1_14_L A1_13_L A1_12_L A1_11_L A1_10_L A1_09_L A1_08_L
+ A1_07_L A1_06_L A1_05_L A1_04_L A1_03_L A1_02_L A1_01_L A1_00_L
+ A2_15_H A2_14_H A2_13_H A2_12_H A2_11_H A2_10_H A2_09_H A2_08_H
+ A2_07_H A2_06_H A2_05_H A2_04_H A2_03_H A2_02_H A2_01_H A2_00_H
+ A2_15_L A2_14_L A2_13_L A2_12_L A2_11_L A2_10_L A2_09_L A2_08_L
+ A2_07_L A2_06_L A2_05_L A2_04_L A2_03_L A2_02_L A2_01_L A2_00_L
+ ASWC2 GND BUF1X16
XBB2 
+ B1_15_H B1_14_H B1_13_H B1_12_H B1_11_H B1_10_H B1_09_H B1_08_H
+ B1_07_H B1_06_H B1_05_H B1_04_H B1_03_H B1_02_H B1_01_H B1_00_H
+ B1_15_L B1_14_L B1_13_L B1_12_L B1_11_L B1_10_L B1_09_L B1_08_L
+ B1_07_L B1_06_L B1_05_L B1_04_L B1_03_L B1_02_L B1_01_L B1_00_L
+ B2_15_H B2_14_H B2_13_H B2_12_H B2_11_H B2_10_H B2_09_H B2_08_H
+ B2_07_H B2_06_H B2_05_H B2_04_H B2_03_H B2_02_H B2_01_H B2_00_H
+ B2_15_L B2_14_L B2_13_L B2_12_L B2_11_L B2_10_L B2_09_L B2_08_L
+ B2_07_L B2_06_L B2_05_L B2_04_L B2_03_L B2_02_L B2_01_L B2_00_L
+ ASWC2 GND BUF1X16

XAB3 
+ A2_15_H A2_14_H A2_13_H A2_12_H A2_11_H A2_10_H A2_09_H A2_08_H
+ A2_07_H A2_06_H A2_05_H A2_04_H A2_03_H A2_02_H A2_01_H A2_00_H
+ A2_15_L A2_14_L A2_13_L A2_12_L A2_11_L A2_10_L A2_09_L A2_08_L
+ A2_07_L A2_06_L A2_05_L A2_04_L A2_03_L A2_02_L A2_01_L A2_00_L
+ A3_15_H A3_14_H A3_13_H A3_12_H A3_11_H A3_10_H A3_09_H A3_08_H
+ A3_07_H A3_06_H A3_05_H A3_04_H A3_03_H A3_02_H A3_01_H A3_00_H
+ A3_15_L A3_14_L A3_13_L A3_12_L A3_11_L A3_10_L A3_09_L A3_08_L
+ A3_07_L A3_06_L A3_05_L A3_04_L A3_03_L A3_02_L A3_01_L A3_00_L
+ ASWC3 GND BUF1X16
XBB3 
+ B2_15_H B2_14_H B2_13_H B2_12_H B2_11_H B2_10_H B2_09_H B2_08_H
+ B2_07_H B2_06_H B2_05_H B2_04_H B2_03_H B2_02_H B2_01_H B2_00_H
+ B2_15_L B2_14_L B2_13_L B2_12_L B2_11_L B2_10_L B2_09_L B2_08_L
+ B2_07_L B2_06_L B2_05_L B2_04_L B2_03_L B2_02_L B2_01_L B2_00_L
+ B3_15_H B3_14_H B3_13_H B3_12_H B3_11_H B3_10_H B3_09_H B3_08_H
+ B3_07_H B3_06_H B3_05_H B3_04_H B3_03_H B3_02_H B3_01_H B3_00_H
+ B3_15_L B3_14_L B3_13_L B3_12_L B3_11_L B3_10_L B3_09_L B3_08_L
+ B3_07_L B3_06_L B3_05_L B3_04_L B3_03_L B3_02_L B3_01_L B3_00_L
+ ASWC3 GND BUF1X16

XDX0 REQ11 ACK11 REQ4 ACK4 ANEB0_L ANEB0_H ACK3B REQ3 ACK3C
+ VDD GND DMX

XCT4 REQ4 ACK4 REQ5 ACK5 RST0 
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC4 SWCR0
XCT5 REQ5 ACK5 REQ6 ACK6 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC5 SWCR0
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XCT6 REQ6 ACK6 REQ7 ACK7 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC6 SWCR0
XCT7 REQ7 ACK7 REQ8 ACK8 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC7 SWCR0
XCT8 REQ8 ACK8 REQ9 ACK9 RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC8 SWCR0

XSUB4
+ A3_15_H A3_14_H A3_13_H A3_12_H A3_11_H A3_10_H A3_09_H A3_08_H
+ A3_07_H A3_06_H A3_05_H A3_04_H A3_03_H A3_02_H A3_01_H A3_00_H
+ A3_15_L A3_14_L A3_13_L A3_12_L A3_11_L A3_10_L A3_09_L A3_08_L
+ A3_07_L A3_06_L A3_05_L A3_04_L A3_03_L A3_02_L A3_01_L A3_00_L
+ B3_15_H B3_14_H B3_13_H B3_12_H B3_11_H B3_10_H B3_09_H B3_08_H
+ B3_07_H B3_06_H B3_05_H B3_04_H B3_03_H B3_02_H B3_01_H B3_00_H
+ B3_15_L B3_14_L B3_13_L B3_12_L B3_11_L B3_10_L B3_09_L B3_08_L
+ B3_07_L B3_06_L B3_05_L B3_04_L B3_03_L B3_02_L B3_01_L B3_00_L
+ AGTB_H AGTB_L 
+ S8_15_H S8_14_H S8_13_H S8_12_H S8_11_H S8_10_H S8_09_H S8_08_H
+ S8_07_H S8_06_H S8_05_H S8_04_H S8_03_H S8_02_H S8_01_H S8_00_H
+ S8_15_L S8_14_L S8_13_L S8_12_L S8_11_L S8_10_L S8_09_L S8_08_L
+ S8_07_L S8_06_L S8_05_L S8_04_L S8_03_L S8_02_L S8_01_L S8_00_L
+ ASWC4 ASWC5 ASWC6 ASWC7 ASWC8 GND SUB16

XSMX4 
+ A3_15_H A3_14_H A3_13_H A3_12_H A3_11_H A3_10_H A3_09_H A3_08_H
+ A3_07_H A3_06_H A3_05_H A3_04_H A3_03_H A3_02_H A3_01_H A3_00_H
+ A3_15_L A3_14_L A3_13_L A3_12_L A3_11_L A3_10_L A3_09_L A3_08_L
+ A3_07_L A3_06_L A3_05_L A3_04_L A3_03_L A3_02_L A3_01_L A3_00_L
+ B3_15_H B3_14_H B3_13_H B3_12_H B3_11_H B3_10_H B3_09_H B3_08_H
+ B3_07_H B3_06_H B3_05_H B3_04_H B3_03_H B3_02_H B3_01_H B3_00_H
+ B3_15_L B3_14_L B3_13_L B3_12_L B3_11_L B3_10_L B3_09_L B3_08_L
+ B3_07_L B3_06_L B3_05_L B3_04_L B3_03_L B3_02_L B3_01_L B3_00_L
+ AGTB_H AGTB_L 
+ M4_15_H M4_14_H M4_13_H M4_12_H M4_11_H M4_10_H M4_09_H M4_08_H
+ M4_07_H M4_06_H M4_05_H M4_04_H M4_03_H M4_02_H M4_01_H M4_00_H
+ M4_15_L M4_14_L M4_13_L M4_12_L M4_11_L M4_10_L M4_09_L M4_08_L
+ M4_07_L M4_06_L M4_05_L M4_04_L M4_03_L M4_02_L M4_01_L M4_00_L
+ ASWC4 GND MUX2X16

XSB5
+ M4_15_H M4_14_H M4_13_H M4_12_H M4_11_H M4_10_H M4_09_H M4_08_H
+ M4_07_H M4_06_H M4_05_H M4_04_H M4_03_H M4_02_H M4_01_H M4_00_H
+ M4_15_L M4_14_L M4_13_L M4_12_L M4_11_L M4_10_L M4_09_L M4_08_L
+ M4_07_L M4_06_L M4_05_L M4_04_L M4_03_L M4_02_L M4_01_L M4_00_L
+ M5_15_H M5_14_H M5_13_H M5_12_H M5_11_H M5_10_H M5_09_H M5_08_H
+ M5_07_H M5_06_H M5_05_H M5_04_H M5_03_H M5_02_H M5_01_H M5_00_H
+ M5_15_L M5_14_L M5_13_L M5_12_L M5_11_L M5_10_L M5_09_L M5_08_L
+ M5_07_L M5_06_L M5_05_L M5_04_L M5_03_L M5_02_L M5_01_L M5_00_L
+ ASWC5 GND BUF1X16

XSB6
+ M5_15_H M5_14_H M5_13_H M5_12_H M5_11_H M5_10_H M5_09_H M5_08_H
+ M5_07_H M5_06_H M5_05_H M5_04_H M5_03_H M5_02_H M5_01_H M5_00_H
+ M5_15_L M5_14_L M5_13_L M5_12_L M5_11_L M5_10_L M5_09_L M5_08_L
+ M5_07_L M5_06_L M5_05_L M5_04_L M5_03_L M5_02_L M5_01_L M5_00_L
+ M6_15_H M6_14_H M6_13_H M6_12_H M6_11_H M6_10_H M6_09_H M6_08_H
+ M6_07_H M6_06_H M6_05_H M6_04_H M6_03_H M6_02_H M6_01_H M6_00_H
+ M6_15_L M6_14_L M6_13_L M6_12_L M6_11_L M6_10_L M6_09_L M6_08_L
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+ M6_07_L M6_06_L M6_05_L M6_04_L M6_03_L M6_02_L M6_01_L M6_00_L
+ ASWC6 GND BUF1X16

XSB7
+ M6_15_H M6_14_H M6_13_H M6_12_H M6_11_H M6_10_H M6_09_H M6_08_H
+ M6_07_H M6_06_H M6_05_H M6_04_H M6_03_H M6_02_H M6_01_H M6_00_H
+ M6_15_L M6_14_L M6_13_L M6_12_L M6_11_L M6_10_L M6_09_L M6_08_L
+ M6_07_L M6_06_L M6_05_L M6_04_L M6_03_L M6_02_L M6_01_L M6_00_L
+ M7_15_H M7_14_H M7_13_H M7_12_H M7_11_H M7_10_H M7_09_H M7_08_H
+ M7_07_H M7_06_H M7_05_H M7_04_H M7_03_H M7_02_H M7_01_H M7_00_H
+ M7_15_L M7_14_L M7_13_L M7_12_L M7_11_L M7_10_L M7_09_L M7_08_L
+ M7_07_L M7_06_L M7_05_L M7_04_L M7_03_L M7_02_L M7_01_L M7_00_L
+ ASWC7 GND BUF1X16

XSB8
+ M7_15_H M7_14_H M7_13_H M7_12_H M7_11_H M7_10_H M7_09_H M7_08_H
+ M7_07_H M7_06_H M7_05_H M7_04_H M7_03_H M7_02_H M7_01_H M7_00_H
+ M7_15_L M7_14_L M7_13_L M7_12_L M7_11_L M7_10_L M7_09_L M7_08_L
+ M7_07_L M7_06_L M7_05_L M7_04_L M7_03_L M7_02_L M7_01_L M7_00_L
+ M8_15_H M8_14_H M8_13_H M8_12_H M8_11_H M8_10_H M8_09_H M8_08_H
+ M8_07_H M8_06_H M8_05_H M8_04_H M8_03_H M8_02_H M8_01_H M8_00_H
+ M8_15_L M8_14_L M8_13_L M8_12_L M8_11_L M8_10_L M8_09_L M8_08_L
+ M8_07_L M8_06_L M8_05_L M8_04_L M8_03_L M8_02_L M8_01_L M8_00_L
+ ASWC8 GND BUF1X16

XCT9 REQ11 ACK11 REQOUT ACKOUT RST0
+ VPB VNB VDD VDDSWC VC3 VC2 VC1 GND ASWC9 SWCR0
XSB9 
+ A3_15_H A3_14_H A3_13_H A3_12_H A3_11_H A3_10_H A3_09_H A3_08_H
+ A3_07_H A3_06_H A3_05_H A3_04_H A3_03_H A3_02_H A3_01_H A3_00_H
+ A3_15_L A3_14_L A3_13_L A3_12_L A3_11_L A3_10_L A3_09_L A3_08_L
+ A3_07_L A3_06_L A3_05_L A3_04_L A3_03_L A3_02_L A3_01_L A3_00_L
+ Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+ Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+ Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+ Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+ ASWC9 GND BUF1X16

.ENDS

* Capacitors
C1 VC1 0 10p
C2 VC2 0 10p
C3 VC3 0 10p
.IC V(VC3)=0 V(VC2)=0 V(VC1)=0

* Bias
VPB VPB 0 DC '0.725*VVDD'
VNB VNB 0 DC '0.275*VVDD'

* PSU
VDDEXT VDDEXT 0 DC 'VVDD'
VDD    VDD    0 DC 'VVDD'
VDDSWC VDDSWC 0 DC 'VVDD'
VSS    GND    0 DC 0

* Reset
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VR0 RST0 0 DC 0 PULSE VVDD 0 0N 0.1N 0.1N 40N 1

XDUT REQIN ACKIN REQOUT ACKOUT RST0
+A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
+A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
+B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
+B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L
+Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
+Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L
+VPB VNB VDD VDDSWC VC3 VC2 VC1 GND GCD

XIV1  REQOUT RA0 VDDEXT GND IV1
XIV2  RA0 RA1    VDDEXT GND IV1
XIV3  RA1 RA2    VDDEXT GND IV1
XIV4  RA2 ACKOUT VDDEXT GND IV1

.SETBUS AH 
+A15_H A14_H A13_H A12_H A11_H A10_H A09_H A08_H
+A07_H A06_H A05_H A04_H A03_H A02_H A01_H A00_H
.SETBUS AL 
+A15_L A14_L A13_L A12_L A11_L A10_L A09_L A08_L
+A07_L A06_L A05_L A04_L A03_L A02_L A01_L A00_L
.SETBUS BH 
+B15_H B14_H B13_H B12_H B11_H B10_H B09_H B08_H
+B07_H B06_H B05_H B04_H B03_H B02_H B01_H B00_H
.SETBUS BL 
+B15_L B14_L B13_L B12_L B11_L B10_L B09_L B08_L
+B07_L B06_L B05_L B04_L B03_L B02_L B01_L B00_L

.SETBUS ZH 
+Z15_H Z14_H Z13_H Z12_H Z11_H Z10_H Z09_H Z08_H
+Z07_H Z06_H Z05_H Z04_H Z03_H Z02_H Z01_H Z00_H
.SETBUS ZL 
+Z15_L Z14_L Z13_L Z12_L Z11_L Z10_L Z09_L Z08_L
+Z07_L Z06_L Z05_L Z04_L Z03_L Z02_L Z01_L Z00_L

* Fibonacci:   F24 &   F23 
* Fibonacci: 46368 & 28657
*      :  B520 &  6FF1
*      :  4ADF &  900E

.SIGBUS AH VHI=VVDD VLO=0 TFALL=10N TRISE=10N BASE=HEXA
+     0  0    25N B520   150N B520   200N 0
+ 12000N 0 12025N B520 12150N B520 12200N 0  
.SIGBUS AL VHI=VVDD VLO=0 TFALL=10N TRISE=10N BASE=HEXA
+     0  0    25N 4ADF   150N 4ADF   200N 0
+ 12000N 0 12025N 4ADF 12150N 4ADF 12200N 0 

.SIGBUS BH VHI=VVDD VLO=0 TFALL=10N TRISE=10N BASE=HEXA
+     0  0    25N 6FF1   150N 6FF1   200N 0
+ 12000N 0 12025N 6FF1 12150N 6FF1 12200N 0 
.SIGBUS BL VHI=VVDD VLO=0 TFALL=10N TRISE=10N BASE=HEXA
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+     0  0    25N 900E   150N 900E   200N 0
+ 12000N 0 12025N 900E 12150N 900E 12200N 0 

.SETBUS A0H 
+XDUT.A0_15_H XDUT.A0_14_H XDUT.A0_13_H XDUT.A0_12_H 
+XDUT.A0_11_H XDUT.A0_10_H XDUT.A0_09_H XDUT.A0_08_H
+XDUT.A0_07_H XDUT.A0_06_H XDUT.A0_05_H XDUT.A0_04_H 
+XDUT.A0_03_H XDUT.A0_02_H XDUT.A0_01_H XDUT.A0_00_H
.SETBUS A0L 
+XDUT.A0_15_L XDUT.A0_14_L XDUT.A0_13_L XDUT.A0_12_L 
+XDUT.A0_11_L XDUT.A0_10_L XDUT.A0_09_L XDUT.A0_08_L
+XDUT.A0_07_L XDUT.A0_06_L XDUT.A0_05_L XDUT.A0_04_L 
+XDUT.A0_03_L XDUT.A0_02_L XDUT.A0_01_L XDUT.A0_00_L
.SETBUS B0H 
+XDUT.B0_15_H XDUT.B0_14_H XDUT.B0_13_H XDUT.B0_12_H 
+XDUT.B0_11_H XDUT.B0_10_H XDUT.B0_09_H XDUT.B0_08_H
+XDUT.B0_07_H XDUT.B0_06_H XDUT.B0_05_H XDUT.B0_04_H 
+XDUT.B0_03_H XDUT.B0_02_H XDUT.B0_01_H XDUT.B0_00_H
.SETBUS B0L 
+XDUT.B0_15_L XDUT.B0_14_L XDUT.B0_13_L XDUT.B0_12_L 
+XDUT.B0_11_L XDUT.B0_10_L XDUT.B0_09_L XDUT.B0_08_L
+XDUT.B0_07_L XDUT.B0_06_L XDUT.B0_05_L XDUT.B0_04_L 
+XDUT.B0_03_L XDUT.B0_02_L XDUT.B0_01_L XDUT.B0_00_L
.SETBUS M8H 
+XDUT.M8_15_H XDUT.M8_14_H XDUT.M8_13_H XDUT.M8_12_H 
+XDUT.M8_11_H XDUT.M8_10_H XDUT.M8_09_H XDUT.M8_08_H
+XDUT.M8_07_H XDUT.M8_06_H XDUT.M8_05_H XDUT.M8_04_H 
+XDUT.M8_03_H XDUT.M8_02_H XDUT.M8_01_H XDUT.M8_00_H
.SETBUS M8L 
+XDUT.M8_15_L XDUT.M8_14_L XDUT.M8_13_L XDUT.M8_12_L 
+XDUT.M8_11_L XDUT.M8_10_L XDUT.M8_09_L XDUT.M8_08_L
+XDUT.M8_07_L XDUT.M8_06_L XDUT.M8_05_L XDUT.M8_04_L 
+XDUT.M8_03_L XDUT.M8_02_L XDUT.M8_01_L XDUT.M8_00_L
.SETBUS S8H 
+XDUT.S8_15_H XDUT.S8_14_H XDUT.S8_13_H XDUT.S8_12_H 
+XDUT.S8_11_H XDUT.S8_10_H XDUT.S8_09_H XDUT.S8_08_H
+XDUT.S8_07_H XDUT.S8_06_H XDUT.S8_05_H XDUT.S8_04_H 
+XDUT.S8_03_H XDUT.S8_02_H XDUT.S8_01_H XDUT.S8_00_H
.SETBUS S8L 
+XDUT.S8_15_L XDUT.S8_14_L XDUT.S8_13_L XDUT.S8_12_L 
+XDUT.S8_11_L XDUT.S8_10_L XDUT.S8_09_L XDUT.S8_08_L
+XDUT.S8_07_L XDUT.S8_06_L XDUT.S8_05_L XDUT.S8_04_L 
+XDUT.S8_03_L XDUT.S8_02_L XDUT.S8_01_L XDUT.S8_00_L

VREQI REQIN 0 DC 0 PULSE 0 VVDD 75N 0.1N 0.1N 50N 12075N

.PLOTBUS AH VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS AL VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS BH VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS BL VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS ZH VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS ZL VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS A0H VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS A0L VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS B0H VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS B0L VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS M8H VTH1=0.2*VVDD VTH2=0.8*VVDD

XCIII



.PLOTBUS M8L VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS S8H VTH1=0.2*VVDD VTH2=0.8*VVDD

.PLOTBUS S8L VTH1=0.2*VVDD VTH2=0.8*VVDD

.PARAM STOPTIME = 24000n

.OPTION AEX

.OPTION ALIGNEXT

.OPTION EXTMKSA

.OPTION NOASCII

.EXTRACT TRAN LABEL=XReqIn1   XUP(V(reqIn),  0.5*vvdd, 1)

.EXTRACT TRAN LABEL=XReqOut1  
+ XUP(V(reqOut), 0.5*vvdd, MEAS(XReqIn), stoptime, 1)
.EXTRACT TRAN LABEL=CalcTime1 
+ TPDUU(V(reqIn),  V(reqOut), VTH=0.5*vvdd, OCCUR=1)

.EXTRACT TRAN LABEL=XReqIn    XUP(V(reqIn),  0.5*vvdd, 2)

.EXTRACT TRAN LABEL=XReqOut   
+ XUP(V(reqOut), 0.5*vvdd, MEAS(XReqIn), stoptime, 2)
.EXTRACT TRAN LABEL=CalcTime 
+ TPDUU(V(reqIn),  V(reqOut), VTH=0.5*vvdd, OCCUR=2)

.EXTRACT TRAN LABEL=IntVdd1    
+ INTEG(I(Vdd),  MEAS(XReqIn1), MEAS(XReqOut1))
.EXTRACT TRAN LABEL=IntVddSwc1
+ INTEG(I(VddSwc), MEAS(XReqIn1), MEAS(XReqOut1))

.EXTRACT TRAN LABEL=VddPwr1    vvdd*MEAS(IntVdd1)

.EXTRACT TRAN LABEL=VddSwcPwr1 vvdd*MEAS(IntVddSwc1)

.EXTRACT TRAN LABEL=IntVdd   
+ INTEG(I(Vdd),    MEAS(XReqIn), MEAS(XReqOut))
.EXTRACT TRAN LABEL=IntVddSwc
+ INTEG(I(VddSwc), MEAS(XReqIn), MEAS(XReqOut))

.EXTRACT TRAN LABEL=VddPwr    vvdd*MEAS(IntVdd)

.EXTRACT TRAN LABEL=VddSwcPwr vvdd*MEAS(IntVddSwc)

.EXTRACT TRAN LABEL=Cap3_1 YVAL(V(vc3),MEAS(XReqOut1))

.EXTRACT TRAN LABEL=Cap2_1 YVAL(V(vc2),MEAS(XReqOut1))

.EXTRACT TRAN LABEL=Cap1_1 YVAL(V(vc1),MEAS(XReqOut1))

.EXTRACT TRAN LABEL=Cap3   YVAL(V(vc3),MEAS(XReqOut))

.EXTRACT TRAN LABEL=Cap2   YVAL(V(vc2),MEAS(XReqOut))

.EXTRACT TRAN LABEL=Cap1   YVAL(V(vc1),MEAS(XReqOut))

.TRAN 1N 'STOPTIME' UIC
*.PROBE TRAN VTOP
.PROBE TRAN V(REQIN) V(REQOUT) V(ACKIN) V(ACKOUT)
.PROBE TRAN V(VC3) V(VC2) V(VC1) V(RST0)
.PROBE TRAN V(XDUT.ASWC0)
.PROBE TRAN W
.PROBE TRAN I(VDD) I(VDDSWC)

*END

.END
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Expertise:

• Reduced complexity FIR/IIR filter design techniques and their efficient realizations.
• Fixed/adaptive FIR/IIR filter techniques for transmission/reception paths of future mobile communication systems.
• Design and implementation of comms novel adaptive schemes for non-linear distortion compensation and frequency estimation.
• Sigma-Delta modulator based systems.
• Sigma-Delta based data acquisition and conversion systems with their associated DSP.
• Sigma-Delta based fractional frequency synthesis systems and compression techniques.
• Ultra-low-power algorithms for real-time biomedical,  comms systems applications including hearing aids and mathematical  

morphology.
• Reduced complexity ultra-low-power algorithms and architectures for fixed-point custom and FPGA based arithmetic circuits.
• Power/space/performance-efficient implementation of image/audio/video processing algorithms on custom/FPGA platforms.
• Ultra-low-power reconfigurable full-custom mixed Analog/Digital processor development and design.
• The MPEG standard and its custom silicon/FPGA implementations.
• Imaging techniques for the analysis of peripheral blood films for blood parasite detection, e.g. malaria
• Interpretation and analysis of images in the presence of speckle noise, e.g. Ultrasound, x-ray microscopy.
• Applied optical computer vision solutions for routine and time-consuming tasks.
• Global Navigation Satellite Systems, including software configurable receiver designs, as well as reduced complexity receivers  

for GPS, Galileo, GLONASS and other emerging standards.
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