

University of Westminster Eprints
http://eprints.wmin.ac.uk

Dependency theory e-learning tool.

Paul Douglas
Cavendish School of Computer Science, University of Westminster

Steve Barker
Department of Computer Science, King’s College, London

Copyright © [2004] IEEE. Reprinted from International Conference on Information
Technology: Coding and Computing (ITCC'04), 05-07 Apr 2004, Las Vegas, USA.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Dependency Theory E-Learning Tool

Paul Douglas
University of Westminster, London, UK

P.Douglas@wmin.ac.uk

Steve Barker
King’s College, London, UK

steve@dcs.kcl.ac.uk

Abstract

In this paper, we describe an e-learning tool that we have
developed to assist University students studying Relational
Schema design. The tool employs Expert System techniques
to create a learning environment in which students can ex-
plore the concepts of dependency theory, and the normal-
ization process. The tool is able to respond in an individu-
alistic way to student input and allows students to construct
their own learning environment and develop their under-
standing of the material at a pace that is controlled by the
individual student. Our formative and summative tests in-
dicate that the tool provides students with a different and
valuable type of learning experience when compared with a
traditional, textbook-based approach.

1. Introduction

We describe a learning tool that we have developed and
used to help University-level students to learn certain essen-
tial notions in database schema design, specifically within
the area of the so-called normalization [13] process, which
is based on the underlying concept of dependency the-
ory [22]. We regard the learning tool as a piece of intelligent
software, where the term “intelligently” is interpreted by us
as the capability of responding to a student’s self-selected
input by detecting, diagnosing and explaining his/her errors
or confirming that his/her understanding is correct.

We have found that students often find the theoretical
concepts of dependency theory difficult to assimilate. Tra-
ditional textbooks can offer very good coverage of the ma-
terial, but little scope for students to test their own under-
standing through a process of practical experimentation.
Many textbooks provide no practical exercises but, even
where they do, they are necessarily limited in scope, and
do not cover a sufficiently large range of levels of difficulty.
Some textbooks that do provide exercises do not give solu-
tions, so students cannot determine whether they were able
to correctly solve the problems: this is not a very useful
learning experience.

Some courses that teach Relational Databases take the
approach that the use of a schema design tool will al-
most always deliver a schema that is in third normal form
(3NF) [13], and that teaching dependency theory is not re-
ally necessary (see, for example, [3]). However, we dis-
agree with this point of view. There are many aspects
of relational database technology that are directly related
to the data dependencies that exist within a database, and
students cannot properly consider these issues without a
proper understanding of dependency theory. The use of de-
sign tools also suggests that a relational database schema
has been somehow finalized once it has been put into third
normal form, leaving students with even less understand-
ing of normal forms beyond 3NF. Students will not be able
to critically evaluate alternative designs, or make informed
choices about levels of normalization, if they do not un-
derstand the principles upon which design decisions have
been based. Functional dependencies are also important for
a proper understanding of the concepts of candiate keys, su-
perkeys, constraints, and the theoretical foundations of rela-
tional database systems.

The remainder of this paper is organized as follows. Sec-
tion 2, gives a brief overview of dependency theory and its
relationship to schema design. Section 3, covers the design
of the user interface to the software, and outlines a sample
user session. Section 4, covers normalization algorithms,
and describes our approach for implementing the software.
Section 5, discusses our evaluation of the software. Finally,
conclusions and suggestions for further work are given in
Section 6.

2. Dependency Theory and Schema Design

Databases are now widely employed in a variety of appli-
cations, and many students of Computer Science will study
database systems as part of their course. The Relational
Data Model [4] remains the most widely taught data model,
and the design of relational databases is a core component
of the computer science curriculum.

Poorly designed relational databases may exhibit redun-
dancy and update anomaly problems [4]. To minimize the

1

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

effects of these (and other) undesirable features, relational
schemas are usually refined through a process of normal-
ization. [5] and [6] introduced, respectively, second (2NF)
and third (3NF) normal forms, based on functional depen-
dencies (FDs). A FD X → Y between two sets of attributes
X and Y will apply to a relation R if and only if the follow-
ing criterion holds: for each pair of tuples t1 and t2 in the
instance of R, whenever t1 and t2 agree on the value for X
then t1 and t2 agree on the value for Y .

Boyce-Codd normal form (BCNF) is the highest nor-
mal form based on FDs. However, 3NF is often easier to
achieve, and is frequently employed in practical implemen-
tations (not least because dependency preserving decompo-
sitions into 3NF are always achievable, but not with decom-
positions into BCNF). 3NF is usually the level of normalisa-
tion achieved by design tools. [9] introduced the concept of
multivalued dependencies and fourth normal form (4NF).
[18] introduced join dependencies, and [10] described an
associated normal form, fifth normal form (5NF).

A much fuller treatment of the material on dependency
theory can be found in, for example, [8].

3. Interface Design

3.1. Our Development Methodology

Our approach to developing our learning tool for
database design initially involved us adopting a phenomeno-
graphic method [16] for information gathering on students’
understanding of concepts in dependency theory. By con-
ducting ‘dialogue’ sessions with students we identified the
strategies students used to understand the basic concepts.
From our review of the notes taken at the dialogue sessions,
we were able to develop a prototype system for supporting
students in learning about dependency theory.

As the software evolved, we made increasing use of
Gagne’s event-based model of instruction [11] to decide
what material a user of the tool should be offered and the or-
der in which information ought to be presented to a learner.
Following [11], prominence is given to the distinctive fea-
tures that need to be learned, different levels of learning
guidance are supported for different types of learners, in-
formative feedback is given, and learning takes place in a
student-centred, interactive way, but with support available
to students as and when they need it.

The interface is intended to be simple to use; it is menu-
based and all data entered is case-insensitive. Users are
prompted throughout a session for the correct data to enter,
and can return to the main menu at any time. It is possible to
enter multiple schemas, save them, and return to them later
within a session. Sessions can also be retained in a file and
can therefore be suspended and resumed.

3.2. A Learning Session

Users invoke the software by using the Java JRE. On
a unix system, this is started by the java command, so a
session on a typical system would start thus:

jaguar% java ˜cspub/java/schemas

whereupon the system will respond with the opening menu:

MAIN MENU
1 Enter a Schema
2 Help
3 Exit

Enter Choice (1-3):

The “help” option gives some general guidance on how
to use the system; the “exit” option terminates the program.
Normally at this stage, the user will enter a schema. The
system will first prompt the user to enter the names of the
attributes:

Enter attribute names, using spaces to separate them.
Names must be single chars or character strings only:

to which the user will typically respond with something
like:

a b c d e

The next step is for the functional dependencies to be
entered. The user is first prompted to enter a determinant,
then its dependent attributes. The process will be repeated
for each determinant. The system loops around these input
processes until a blank line is entered: for each determinant
the user is repeatedly prompted to enter another dependent
attribute until a blank line is entered; the user is then
invited to enter another determinant, and this process in
turn repeats until a blank line is entered. An example is:

Enter a determinant
If multivalued, use spaces as separators:

a

Enter a dependent attribute
If multivalued, use spaces as separators: b

Enter another dependent attribute
(return to end): c

Enter another dependent attribute

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

(return to end):

Enter another determinant
(space to end)
. . .

and so on until the process is complete, when the system
will respond with a display of the information entered and
another menu:

Your schema has attributes:
[a,b,c,d]
and FDs:
[a]–>[b]
[a]–>[c]
[c]–>[d]

Choose an option:
1 3NF Decomposition
2 Help
3 Exit

Enter Choice (1-3):

The “exit” option returns the user to the previous menu; the
“help” option gives some information about the decompos-
tion process.

The user will normally select one of the decompostion
options; an example of the output if 3NF is chosen follows:

Finding a minimal cover. . .
. . .checking right reduction
. . .checking left irreducibility
. . .checking redundant FDs
Decomposing. . .

. . .checking lossless join property

The following 3NF subschemata
give the dependency preserving
decomposition of your schema:

t 1
[a,b,c]
one key: [a]

t 2
[c,d]
one key: [c]

The user can then return to the main menu, and either
enter another schema, or exit the system. We intend to add
more interactive help as we develop the software further
(see Section 6).

4. Software Implementation

4.1. Basic Algorithms

The development of increasingly rigorous normal forms,
as outlined above in Section 2, has been accompanied by
the development of algorithms that are able to perform the
normalization process. A number of algorithms exist that,
for a given input, can create a full schema with all the con-
stituent relations in a specific normal form. In addition, it is
possible to algorithmically test a given relational schema to
determine the level of normalization achieved.

The ability to create and evaluate schemas is clearly use-
ful for an educational tool designed to assist students to
learn about dependency theory. Students can be shown the
normalization process step by step, with help available to
hand. They can also undertake any number of exercises, ei-
ther set by a tutor or of the student’s own devizing, and have
their results expertly checked. It is this latter capability, in
particular, which makes our software a useful learning tool.

In overview, our learning tool includes implementations
of the following algorithms. We use Ullman’s FD-closure
algorithm [22]; we use Beeri and Honeyman’s algorithm [1]
for checking dependency-preservation after decomposition;
we use Loizou and Thanisch’s approach [14] for checking
for a lossless-join decomposition; we use Ullman [22] for
finding a minimal cover for a set of FDs; we use Gottlob’s
method [12] for computing a cover for the projection of a
set of FDs onto a subschema of the decomposition; and we
use Luchessi and Osborn’s key finding algorithm [15] to
identify candidate keys. Several decomposition algorithms
are available; we used the proposal in Ullman [22] for 3NF
and Tsou and Fischer’s approach [21] for BCNF.

4.2. Implementation

The interface program is written in Java. Java has many
advantages for this kind of application. It is widely used,
it has comprehensive internet support (see below), and it
is easy to access applications written in a variety of other
languages (through the Java Native Interface (JNI) mecha-
nism).

In addition, we use XSB to implement the main logic
programs that implement the normalization algorithms.
XSB runs on a number of platforms and offers excellent per-
formance that has been demonstrated to be far superior to
that of traditional Prolog-based systems [19]. Calls to XSB
from the interface program are handled by the YAJXB [7]
package. YAJXB makes use of Java’s JNI mechanism to in-
voke methods in the C interface library package supplied by
XSB. It also handles all of the data type conversions that are
needed when passing data between C and Prolog-based ap-
plications. YAJXB effectively provides all the functionality

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

of the C package within a Java environment.

Although we have used YAJXB in our implementation
of composite systems, we note that a number of alterna-
tive options exist. Amongst the options that we considered
for implementing composite systems were Interprolog , a
Java-based Prolog interpreter (e.g., JavaLog), or a Sockets-
based, direct communication approach.

Each of the above approaches has its own distinct draw-
backs when compared with the approach that we adopted.
Interprolog does work with XSB, so we could still take
advantage of the latter’s performance capabilities. How-
ever, Interprolog is primarily a Windows-based application.
All of our development was done on a Sun Sparc/Solaris
system; YAJXB, though primarily configured for Linux,
compiles easily on Solaris. JavaLog was discounted be-
cause we felt that it did not offer sufficient flexibility com-
pared with XSB. Finally, using sockets would give us a less
portable application because it would involve considerably
more application-specific coding. Overall, we felt that the
straightforwardness of the YAJXB interface makes it prefer-
able to the Interprolog approach so far as interfacing with
XSB is concerned. Moreover, XSB’s highly developed sta-
tus and excellent performance make it more desirable in this
context than a Java/Prolog hybrid.

The C library allows the full functionality of XSB to be
used. A variety of methods for passing Prolog-style goal
clauses to XSB exists. However, we generally found that
the string method worked well. This method involves con-
structing a string σ in a Java String type variable, and using
the xsb command string function (or similar) to pass σ to
XSB. This approach allows any string that could be entered
as a command when using XSB interactively to be passed to
XSB by the interface program. YAJXB creates an interface
object; the precise method of doing this is a call like:

i=core.xsb command string
(command.toString());

where the assignment, as one would expect, handles the
returned error code. Variations on this method allow for the
return of data where relevant.

Overall, this architecture gives us a great deal of flexi-
bility. Using XSB gives us all the power of Prolog, which
has enabled us to use well-documented standard algorithms
when constructing the software. Prolog has been widely
used in the development of educational tools (see, for ex-
ample, [2] and [17]). Java would enable this to be further
developed as a web-enabled tool. In addition, Java’s ability
to interface with a DBMS would allow us to incorporate a
more sophisticated storage mechanism for retaining multi-
ple sessions, sample databases, and so forth.

5. Evaluating The Software

5.1. Formative Evaluation

For the formative evaluation of our software, we sought
comments from several colleagues involved in teaching the
material; these were our “expert reviewers” [20]). We addi-
tionally used a group of four volunteer students to test the
software; these students were learning about dependency
theory at the time at which the formative evaluation of the
software was being conducted. A number of suggestions
made by the expert reviewers and the volunteer students
were used to make minor modifications to our initial design.

We then conducted a program of small-group testing,
performed over a four week period involving approximately
six hours of contact time spread over six sessions, with a set
of four student volunteers, 2 from each of the author’s insti-
tutions. We gathered feedback about the software by using
observations and informal “interviews”. This involved one
of the authors sitting with the students and asking them to
articulate their feelings about the learning package as they
used it. We made a few further minor modifications as a
result of this process.

The students all reported that the software was useful in
terms of helping to develop their understanding of depen-
dency theory, and all agreed that the facility for testing their
own solutions to normalization problems was motivating to
use and important in developing understanding.

5.2. Summative Evaluation

The field test of the software was carried out with a small
group of 15 postgraduate students at the University of West-
minster who were studying dependency theory as part of
a database design module, and took place in the 2002/3
academic year. Students were introduced to the learning
tool in a 2 hour tutorial session; they then used the tool for
the next three weeks, both during tutorial and independent
study time.

At the end of this time, we used a 5-point Likert scale
to evaluate the students’ perceptions of the software. The
Likert scale included a total of 24 statements (with an equal
number of positive and negative statements). These items
were divided into three categories. Eight of the statements
were intended to measure the extent to which our software
and a standard text (we used [8]) were perceived as being of
value in facilitating student understanding of dependency
theory, a further eight items were intended to help to de-
cide the extent to which the software and [8] were motivat-
ing to use, and the remaining eight statements were used
to collect the students’ opinions on the value of compara-
ble features of the software and [8] (i.e., their explanations,
exercises and examples). Students were asked to indicate

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

their strength of agreement/disagreement with each state-
ment in the Likert scale. The five options were: strongly
agree, agree, unsure, disagree and strongly disagree.

13 responses to the Likert scale were returned. To pro-
duce the measures of student attitudes, a three-stage ap-
proach was adopted. The initial step involved “signing”
the 24 items included in the Likert scale as being a posi-
tive or negative statement about the software and [8]. Next,
the returns were analysed using the following system: for
each positive statement a response of “strongly agree” was
given a score of 5, an “agree” response was given a score
of 4, a score of 3 corresponded to an “undecided” re-
sponse, “disagree” was scored as a 2, and “strongly dis-
agree” was scored as a 1. Conversely, for each negative
statement, a “strongly agree” response was given a score of
-5, “agree”was scored as -4, “undecided” was recorded as a
-3, “disagree” was given a score of -2, and -1 corresponded
to a “strongly agree” response. By summing the scores for
each return, a figure corresponding to the respondent’s atti-
tude towards the software and [8] was computed. In the final
step, the [8] score for each respondent was subtracted from
the score for the software. This calculation gave a measure
of a respondent’s attitude to the software that is relative to
their attitude towards [8].1

To analyse the information produced from the Likert
scale, t-statistics were computed to compare the mean
scores for the perceptions students had of the software and
[8] .

In the overall measure of the two methods, the average
difference in the ratings of the software and [8] produced
a t-statistic of 2.75 in favour of the software, and no stu-
dent reported that [8] was “better” than the software. The
t-statistic for comparative ratings is significant at the 2%
level. The t-statistic for the comparison of average differ-
ences was 2.11. This value is statistically significant at the
5% level. Unsurprisingly, given the overall results, the soft-
ware was also perceived to be “better” than [8] in all three
of the sub-categories of Likert scale items.

6. Conclusions and Further Work

The results of our analysis of the software suggest that
the tool is of value to students learning about dependency
theory. There are several ways in which the tool could be
further developed. In particular, we plan to produce a web-
based interface, which will make the tool both easier to use,
and more widely accessible. In addition, we plan to extend
the help information, so that students will have access to
pop-up help windows at all stages of the normalization pro-
cess. We would also like to conduct additional tests of the

1A positive score indicates a more favourable attitude towards the soft-
ware than [8]; a negative score represents a more favourable attitude to-
wards [8] than towards the software.

software, possibly including trials to attempt to determine
whether students using the tool are able to demonstrate im-
proved learning by a concomitant improvement in assess-
ment scores.

References

[1] C. Beeri and P. Honeyman. Preserving functional dependen-
cies. In SIAM Journal of Computing, 10(3), pages 647–656,
1981.

[2] I. Bratko. PROLOG Programming for Artificial Intelligence.
Addison-Wesley, 1986.

[3] B. Byrne. Top down approaches to database design tend to
produce fully normalised designs anyway. In Proceedings
of TLAD, 2003.

[4] E. Codd. A relational model of data for large shared data
banks. In CACM 26(2), pages 120–125, 1970.

[5] E. Codd. Further Normalization of the Data Base Relational
Model. Prentice-Hall, 1972.

[6] E. Codd. Recent investigations in relational database sys-
tems. In IFIP, pages 1017–1021, 1974.

[7] S. Decker. Yet Another Java XSB Bridge. http://www-
db.stanford.edu/%7Estefan/rdf/yajxb/.

[8] R. Elmasri and S. Navathe. Fundamentals of Database Sys-
tems. Benjamin/Cummings, 2001.

[9] R. Fagin. Multivalued dependencies and a new normal form
for relational databases. In TODS 2(3), pages 262–278,
1977.

[10] R. Fagin. Normal forms and relational database operators.
In SIGMOD, pages 153–160, 1979.

[11] R. M. Gagne. The Conditions of Learning. Holt, Reinhart
and Winston, 1970.

[12] G. Gottlob. Computing covers for embedded functional de-
pendencies. In Proceedings of ACM Symposium on Princi-
ples of Database Systems, pages 58–69, 1987.

[13] W. Kent. A simple guide to five normal forms in relational
database theory. In CACM 13(6), pages 377–387, 1970.

[14] G. Loizou and P. Thanisch. Testing a dependency-preserving
decomposition for losslessness. In Information Systems,
8(1), pages 25–27, 1983.

[15] C. Lucchesi and S. Osborn. Candidate keys for relations.
In Journal of Computer and System Sciences, 17(2), pages
270–279, 1978.

[16] F. Marton and P. Ramsden. What does it take to improve
learning? Kogan Page, 1988.

[17] J. Nichol, J. Briggs, and J. Dean. Prolog, Children and Stu-
dents. Kogan-Page, 1988.

[18] J. Rissanen. Independent components of relations. In TODS
2(4), pages 317–325, 1977.

[19] K. Sagonas, T. Swift, and D. Warren. Xsb as an efficient
deductive database engine. In ACM SIGMOD Proceedings,
page 512, 1994.

[20] M. Tessmer. Planning and Conducting Formative Evalua-
tions. Kogan-Page, 1993.

[21] D. Tsou and P. Fischer. Decomposition of a relation scheme
into boyce-codd normal form. In SIGACT News 14(3), pages
23–29, 1982.

[22] J. Ullman. Principles of Database and Knowledge-base Sys-
tems, Volume I. Computer Science Press, 1988.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
0-7695-2108-8/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

