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Alan Turing provided what is probably one of the earli-
est examples of a formal proof, in which he proved a result 
about what was—and, by implication, was not—comput-
able.3 But formal methods probably came into their own 
in software development terms in the 1970s.

Agile methodologies are relatively new in compari-
son. In 2001, the Agile Manifesto (http://agilemanifesto. 
org) put forward four main-value preferences that 
focused on the following: responding to change, indi-
viduals and interaction, working software, and customer 
collaboration.

This can be seen as a reaction to the previous cumber-
some waterfall model which focused on formalizing the 
customer’s requirements at the beginning of the life cycle 
and delivering a product at the end of the life cycle, with 
not much interaction with customers in between. Agile 
has been said to work best with small groups of clever 
people (http://doi.acm.org/10.1145/1028664.1028720), but 
this might limit its scope.

Research into integrating formal methods and agile 
approaches is reasonably new. The First South East Eu-
ropean Workshop on Formal Methods (SEEFM 2003) 
provided possibly the first substantial venue (http://delab.
csd.auth.gr/bci1/SEEFM03) at which the two areas could 
mingle. Research carried out since then has mainly 

S
oftware engineering as a discipline has gone 
through many phases. Barry Boehm describes 
this well in his view of 20th-/21st-century soft-
ware engineering,1 which has evolved from 
hardware engineering in the 1950s to software 

crafting in the 1960s, formality and the waterfall process in 
the 1970s, productivity and scalability in the 1980s, concur-
rent versus sequential processes in the 1990s, and agility 
and value in the 2000s. Each phase proved to be either a 
progression from or reaction to the previous one.

We argue that formal methods have been around since 
Charles Babbage’s and Ada Lovelace’s work on the differ-
ence and analytical engines: Brian Randell2 points out that 
a concern with correctness was already present in the pre-
electronic phase: Babbage wrote about the “Verification of 
the Formulae Placed on the [Operation] Cards.”

The potential for combining agile and for-
mal methods holds promise. Although it 
might not always be an easy partnership, 
it will succeed if it can foster a fruitful 
interchange of expertise between the two 
communities.
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Hähnle argued that the KeY methodology, a formal 
software development tool for object-oriented systems, is 
such a method. Peter Amey9 argued that the correctness 
by construction approach for developing correct software 
combines formal and agile methods because it “takes 
precise notation from the former and from the latter in-
cremental development.”

As can be seen, the question of whether formal and agile 
methods can be combined—and if so, how—has yet to be 
answered definitively.

FRIENDS NOT FOES
There is no escaping formal methods in software devel-

opment. They are everywhere: Programming languages 
have a formal semantics, program generators such as 
YACC generate finite-state machines, coding standards 
are language subsets defined with some “formal” ratio-
nale such as preventing program crashes. Some IDEs, like 
Visual Studio, have integrated static analysis tools, and the 
processor on which the compiled code will run has been 
formally verified.

These methods work in the background, letting devel-
opers go about their work while taking the underpinnings 
for granted. Formal methods can be in the foreground too, 
making precise the system’s intended behavior and assur-
ing the end product’s correctness. These methods have 
been deployed in many domains, including automobiles, 
trains, air-traffic control systems, and medical systems. 
There is compelling evidence that they add value.10 The 
deployment of formal methods has largely been within the 
traditional software development framework.

We argue that formal methods can add value in the agile 
domain, acting as a sanity check and safety net. Moreover, 
formal methods can open up possibilities currently closed 
to the agile world: deployment in safety- and mission-crit-
ical domains, for example.

ADDING VALUE
We argue our case by demonstrating that formal 

methods can add value in four key areas of software 
development.

Testing
Writing tests prior to implementation lies at the heart 

of agile development, continuously evolving a regres-
sion suite for onward development. Developers run the 
regression suite for subsequent changes to the code base 
to ensure that functionality does not degrade. But how do 
we determine when we have tested enough? Have adequate 
edge cases been considered? Most interesting domains 
require an infinite number of test cases, which is clearly 
impractical if not impossible to achieve. So the developer 
must decide which tests will be considered and which 
ruled out.

focused on new formal methods, integrating formal 
methods into agile ones, and assessing the agility of 
formal methods.

NEW METHODOLOGIES
eXtreme Formal Modeling (XFM; http://doi.acm.

org/10.1145/1109118.1109120) is an agile methodology that 
focuses on getting a system’s specification transformed 
from a natural language into a formal model. The technol-
ogy at this methodology’s heart, model checking, checks 
the user stories expressed as linear temporal logic for-
mulas. Case studies—the traffic-light controller and DLX 
pipeline—illustrate this approach.

The XFun methodology (ht tp://delab.csd.auth.
gr/~bci1/SEEFM03/seefm03_03.pdf) combines the uni-
fied process with X-machines, thus allowing systems 
to be built that are correct and reliable with respect 
to the given user requirements. The requirements 

are translated into X-machines verified with model- 
checking technology to determine whether various 
safety properties hold.

INTEGRATING FORMAL METHODS  
INTO THE AGILE PROCESS

Some researchers have argued that model checking can 
be used to verify evolving agile frameworks by capturing 
changes at the architectural level4—such as the Symbolic 
Model Verifier (SMV) model checker, with the specifications 
captured in CTL. X-machines has been used in different 
ways to bolster agile methods, such as for documentation5 

and for modeling use cases.6

Three areas of eXtreme Programming can benefit 
from formal methods7: unit testing, incremental develop-
ment, and refactoring. The concept of specification-driven 
development8 combines two compatible and comple-
mentary approaches: Design by Contract and test-driven 
development.

FORMAL METHODS’ AGILITY
At the 6th International KeY symposium in 2007, 

Reiner Hähnle gave a talk on agile formal methods (http://
i12www.iti.uni-karlsruhe.de/~key/keysymposium07/
slides/haehnle-agile.pdf). Hähnle’s main thrust was to 
argue that newer formal methods align well with the 
agile process. He then summarized what is required for a 
formal method to be agile.
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sertions can be helpful here: Each refactoring step can be 
machine-checked to see whether the contract still holds. 
This is by no means foolproof either—the assertion might 
be incorrect or too wide in scope—but the two approaches 
together can give greater assurance that errors have not 
been introduced.

Greater reliability in refactoring code can be achieved 
through use of automated assistants: Common code 
changes that a developer would apply can be captured 
as correctness-preserving transformations and applied 
automatically, ensuring that refactoring preserves mean-
ing. But tools cannot invent refactorings for the user, for 
this is an intellectual activity that requires inspiration—a 
Eureka step.

What tools can help with, though, is encouraging the 
developer to split the refactoring process into several man-
ageable steps, taking charge of the housekeeping required 
to ensure that these steps are correct; some steps could 
simply be the result of applying “canned” transformations, 
while others might require manual proof steps.

Documentation
Many developers abhor anything to do with documenta-

tion, but this is not a problem in the agile world: Pairwise 
programming is often used as an argument against writing 
down technical information. By rotating teams, everyone 
gets to learn how the system being developed works.

This might work in an environment where staff turn-
over is low, but what if senior team members leave? How 
will the knowledge be retained? Some might therefore 
regard failure to document as a risk associated with using 
the agile development process.

There are many examples of long-lived software, in-
cluding shutdown loops on nuclear power plants running 
for more than 30 years and a NASA spacecraft running for 
more than four decades and soon to be unreachable by 
communications link. We typically don’t build our systems 
to be that long-lived, but we are focusing more on evolving 
our software and even critical applications, with many 
organizations having an evolve-buy-build policy. Moreover, 
in the future, more software will be adaptive, changing 
itself to cope with new requirements or unforeseen cir-
cumstances or to ensure resilience in harsh environments. 
Without documentation, in the long term it will be impos-
sible to tell what such systems were originally intended to 
do as opposed to what has resulted from adaptation and 

Autogenerating test programs, achieved through 
scripting in Python or Perl, can partially address the 
coverage problem. Developers can use a functional pro-
gramming language such as Standard ML instead of one 
of these traditional scripting languages to map a high-
level specification—expressed as a function—over a list 
of tuples built up from the domains of interest to yield 
the test cases.

This approach, while keeping the agile philosophy’s 
spirit, has its drawbacks—it works for finite domains 
only; infinite domains cannot be enumerated. A random 
selection of test vectors could be generated for the in-
finite domains, but then the same questions would 
apply.

Static-analysis and theorem-proving tools provide a 
more reliable solution. The idea is to annotate the code in 
various places with logical statements asserting properties 
that should hold true. These assertions can be checked 
without running the code to see whether they are violated. 

Static checkers have reached a level of sophistication 
and maturity that allows a high percentage of asser-
tions—typically 97 percent in the SPARKAda toolset, for 
large-scale examples—to be checked automatically.

Requirements
In the agile world, requirements change rapidly— 

developers expect this and are not fazed by the possibility 
of having to discard their work and start over. Although this 
way of working eventually creates a product that can be 
shipped, there must be requirements traceability, otherwise 
there can be little guarantee that the end product will meet 
the customer’s requirements.

Once again, assertions can help. The informal  
requirements—typically expressed in stylized natural 
language—must be translated into the formal notation 
in which the assertion is expressed and then embedded 
in the code. This process has its pitfalls, as errors may be 
introduced during the translation stage. Once expressed 
as assertions, the requirements can be machine-checked 
for inconsistencies. Finding errors in the requirements 
at an early stage will reduce the amount of rework. Alas, 
formal methods cannot help with the problem of require-
ments creep—it is a fact of life.

Refactoring
Developers change code to improve its performance, 

make it more maintainable, and beautify it. Such changes 
are made with the safety net of a regression suite, the as-
sumption being that if a change affects functionality, this 
will be caught. But refactoring is a human activity, and 
therefore prone to error. Testing alone cannot guarantee 
that a refactoring step has not changed the code’s meaning. 
It is conceivable that refactoring may introduce functional 
errors that running the regression suite will not detect. As-
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antithesis of this approach. However, the two approaches 
do have the common aim of producing reliable software, 
and combined methodologies have been proposed.15 Agile 
methods seek to involve small incremental tasks, minimiz-
ing the need for planning.

Some formal approaches can make this difficult. De-
spite this, there are formal methods tools that allow a great 
deal of flexibility and can achieve worthwhile results with 
a small amount of effort.

Flexible tools
Alloy is one tool and associated language16 that makes 

this approach possible. It is highly influenced by the Z no-
tation, a well-known formal specification language based 
on set theory and predicate logic. Developers can use it to 
check models up to a specified size. However, problems in 
the modeled system are typically found using relatively 
small models in practice, so there is no practical benefit 
to continuing with very large models.

Other formal methods tools and approaches could also 
be compatible with agile methods. Specifically, model 
checkers could be effective if used at an early stage to 
ensure system correctness. Model checkers allow a com-
plete search space to be analyzed automatically once the 
model has been formulated to ensure there are no incon-
sistencies. The model can be changed relatively quickly 
and rechecked following an agile methodology.

Another such tool, FDR, checks models in the style 
of CSP (Communicating Sequential Processes). This has 
been applied in the verification of protocols.11 Other model 
checkers, such as Spin,17 could also be used effectively in 
an agile setting. 

More traditional state-based and even refinement-based 
approaches might also be compatible. These allow specifi-
cation of software involving an abstract state that can be 
changed using a set of operations over time, starting with 
some initial state. They can also, although at greater cost 
and potentially less flexibility, be used to refine the speci-
fication toward an implementation in a formal manner. 
The Rodin tool (Rigorous Open Development Environ-
ment for Complex Systems; www.bcs.org/upload/pdf/
ewic_fm07_paper2.pdf), based on the B-Method,12 allows 
the refinement of a specification in formal as well as tool-
supported environments. Its facilities explicitly consider 
changes in the formal specification and development as 
it attempts to minimize the amount of reproof needed 
when the design changes. This could be helpful if formal 
refinement is required in an agile development context.

Alloy example
Software typically consists of a set of operations on 

some defined state, with inputs to those operations and 
outputs from them. Checking if such operations have  
desired and expected properties is a useful part of software 

evolution. By introducing some formality into the agile 
process, we can get documentation for free, such as asser-
tions and specifications of tests to be generated.

Parallelism
Our discussion has deliberately avoided any mention 

of parallelism. Sequential programs are hard enough to 
get right; moving to parallelism brings new challenges: 
avoiding deadlock, livelock, and race conditions. Such phe-
nomena might go undetected through testing alone, and 
so it is here that the formal-methods safety net becomes 
essential.

Model checkers, such as FDR11 (Failures Divergences 
Refinement), can prove that a system is deadlock free. 
Static analyzers, such as the one marketed by Coverity 
(www.coverity.com), can check code for potential race 
conditions. These technologies have improved in recent 
years, making them scalable to industrial-sized examples. 

Speed and availability
As well as being scalable, formal methods tools must be 

fast if they are to succeed in the agile world. Agile projects 
have frequent delivery schedules, so verifiers, for example, 
must discharge verification conditions in “quick time.” The 
agile developer does not want to be sitting around waiting 
for verification conditions to be discharged—the developer 
just wants to move on to the next feature implementation. 
Harnessing multicore architectures can be helpful in this 
respect, and research in this direction is under way.

Success depends on tool availability too—open source 
will ensure wide adoption within the industry. There is a 
move toward this, particularly in the Rodin and Deploy 
projects (http://rodin.cs.ncl.ac.uk; www.deploy-project.eu), 
where a community building freely available tools built 
upon Eclipse is growing. Another community initiative has 
provided tools for the Z specification language (http://czt.
sourceforge.net). Recently, Praxis High Integrity Systems 
(www.praxis-his.com) announced an open source version 
of its SPARK toolset (www.praxis-his.com/news/sparkPro.
asp). All these initiatives offer good news for formal meth-
ods and even better news for the agile community.

TOOL SUPPORT
Formal methods12-14 are often seen as inflexible, 

whereas agile software development is designed to be the 
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Deleting an entry is similar to adding an entry, but only 
the name is needed as input, and the entry is removed 
from the address book:

pred del (b, b’ : Book, n : Name)
{ b’.addr = b.addr - n->Addr }

Checking a property that an add operation, followed 
by a delete operation for the same name, results in the 
address book remaining unchanged can be asserted and 
checked as follows:

assert delUndoesAdd { all b, b’, b’’ :
Book, n: Name, a : Addr
|add[b,b’,n, a] and del[b’, b’’, n]
implies b.addr = b’’.addr }
check delUndoesAdd for 3

This uncovers a possibly unexpected counterexample 
where an existing name is not added but is removed by 
the deletion operation, thus changing the state. Find-
ing such a problem quickly with a tool like Alloy helps 
ensure that the software is implemented correctly once 
coding starts.

This example is simple by necessity. However, Alloy has 
been shown to scale up to larger, more realistic problems. 
For example, it has been used to model the Mondex elec-
tronic purse,18 a real product in the banking world, where 
security is paramount.

Compared to other formal approaches, developers can 
explore the security properties very quickly by modeling 
the system using Alloy. If used in the actual development, 
this would allow discovering potentially insecure situ-
ations more quickly. This would be entirely compatible 
with the agile software development process, allowing 
responsiveness to change, while simultaneously enhanc-
ing the software reliability.

A promise of synergy
Formal methods are well established in the field of 

high-integrity systems development.1 Traditionally seen 
as inflexible, they can be quite effective if the right tool 
is chosen and used judiciously. Agile methods, on the 
other hand, promise a flexible framework for software 
development, which is often needed as requirements and 
understanding of the system change and improve. Thus, 
the combination of formal and agile methods promises an 
effective synergy if used together sensibly, with appropri-
ate engineering judgment.

TIME, EFFORT, AND OTHER MYTHS
Many developers hold a widespread belief that formal 

methods are expensive and raise development costs. Even 

development that aids in validating these operations. If this 
can be done rapidly and conveniently, it becomes compat-
ible with the agile approach to software development.

As a specific example, consider an e-mail address book. 
The components of the state might be made up of people’s 
names and their e-mail addresses. Initially, its structure 
might not be important, so the components could be defined 
as signatures in Alloy. These names and e-mail addresses 
could then be related together in an address book:

sig Name, Addr { }
sig Book { addr: Name -> Addr }

A desirable property could be an invariant that deter-
mines that the number of e-mail addresses associated with 
names in the address book can be at most one per name:

pred invBook (b:Book) { all n:Name
| # b.addr[n] =< 1 }

Software with a state normally has additional con-
straints on the initial state. For example, it could be seen 
as desirable initially for the address book to have no ad-
dresses in it:

pred init (b : Book) { no b.addr }

To check that the initial state is feasible, we can assert 
that for all possible initial address books the invariant 
holds and checks for all models up to a specified size (here, 
three):

assert initOK { all b : Book
| init[b] implies invBook[b] }
check initOK for 3

If there is a counterexample, it will be displayed. Given 
a “before” state (b:Book), an operation transforms this to 
an “after” state (b’:Book). An “add” operation could add a 
name “n” and associated address “a” to the address book:

pred add (b, b’ : Book, n : Name, a :
Addr) { b’.addr = b.addr ++ n -> a }

The “++ ” operator acts like the Z relational overriding 
operator, meaning that any existing address for the name 
is replaced. Having operations respect the invariant on the 
state is desirable. This can be asserted and checked for 
models up to a specified size:

assert addOK{ all b, b’ : Book, n :
Name, a:Addr

| invBook[b] and add[b,b’,n,a] implies
invBook[b’] }
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Faster development time?
Proponents of agile methods claim that they decrease 

development time and lower development costs. While 
there have been several great success stories, the jury has 
yet to rule on critical applications. Moreover, agility has 
nothing to do with speed. Agile methods specifically ad-
dress the need to respond to customer requirements and, 
in particular, changing requirements. Their aim is to sat-
isfy customers’ needs rather than to be speedy.

That agile developers emphasize working code, rather 
than documentation, might give the impression that de-
velopment is proceeding more quickly because tangible 
progress is being made. We do not consider this a bad 
thing, but we must be careful not to incorrectly assume 
that speed is of the essence with agile methods—nor 
should it be assumed that less effort is involved.

Effort-versus-time comparison
Figure 1 shows the “shape” of the effort-time graph for 

three popular agile methods. Figure 1b shows the typi-
cal shape of an eXtreme Programming (XP) project. The 
spikes in the graph depict story implementations of various 
lengths. Note also the explicit “death” phase where effort 
is followed by a direct fall in the graph.

The spikes in Figure 1c represent the sprints in Scrum. 
These are of roughly equal duration, with typically three to 

formal methods’ supporters admit to this, while their de-
tractors use the same statistics to justify avoiding formal 
methods, even in critical applications. “Formal methods 
light,” as suggested by Cliff Jones, emphasizes the use of 
formal methods for specific parts of a system’s develop-
ment, rather than for the entire system. Other researchers 
advocate a similar approach.19

Experience has shown that, in many cases, formal 
methods can help reduce lead times and lower develop-
ment costs,20 yet the myths of increased development 
costs21 and delayed development19 persist.

How costly?
Increased setup costs can imply that development costs 

will be greater. Slower progress in early phases gives the 
impression that overall progress will be slower, yet there 
is no tangible reason to believe this. Figure 1 shows the 
typical “shape” of the effort-time curve for formal develop-
ment: The cost of development closely relates to that for 
effort. Figure 1a also shows that reduced implementation 
costs quickly mitigate the significant increase in effort at 
the outset, which also reduces postimplementation main-
tenance. Further, it has been proven that formal methods 
can greatly help ensure that we build the right system 
correctly, significantly reducing the amount of perfective 
and even adaptive maintenance.

Time

E�
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Figure 1. Effort-time curve for software development project. (a) Typical “shape” for the effort-time curve for formal development, 
showing high levels of effort initially being mitigated by lower effort later. (b) Typical effort-time curve for an XP development, 
showing story implementations as spikes. (c) Typical Scrum effort-time curve showing sprints. (d) Typical effort-time curve for the 
Dynamic System Development Method, emphasizing that effort can suddenly fall as resources are exhausted.
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traditional engineering methods like SSADM (Structured 
System Analysis and Design Method).22 Continuous cus-
tomer involvement throughout the evolutionary design 
process is a shared characteristic that can make doing agile 
methods and RAD look, on the surface, very similar.

Quick and dirty?
Most teams purporting to be doing agile software de-

velopment are not applying the level of technical rigor 
necessary to succeed at it. Most “agile” teams have actually 
only adopted Scrum’s project-management practices and 
have failed to effectively adopt “the hard disciplines” like 
test-driven development, refactoring, pair programming, 
simple design (writing the simplest code possible to satisfy 
the customer’s requirements), and continuous integration.

The main misunderstanding about agile methods is that 

teams deliver software faster. Agility is not about speed, 
but about being responsive to changing requirements. A 
faster car is not necessarily a more maneuverable one.

Agile projects deliver working software sooner, but they 
do this by creating small, frequent releases and effectively 
prioritizing features. This creates more and earlier oppor-
tunities to adapt to customer feedback, just as with RAD. 
The critical difference is that the software delivered in 
each iteration is of the highest quality the team can achieve 
(www.parlezuml.com/tutorials/agile_qa/Example_Agile_
Quality_Assurance_Strategy.pdf).

In this sense, agile software development learned an 
important lesson from RAD: Prototypes tended to wind 
up being the end product the customer used. The RAD 
discipline hinged on the prototypes serving as a high-
fidelity specification created quickly using a user-friendly 
interface and  technologies like Microsoft Visual Basic. 
Once the customer had signed off on a finished proto-
type, RAD teams were then supposed to apply rigorous 
methods to build a high-quality software system in a “se-
rious” language like C++, based on the UI prototype. All 
things being equal, the reality was that many RAD teams 
were forced to release software built around the prototype 
code itself, with its cobbled-together and largely untested 
underlying logic. Such was the psychological pitfall of 
showing customers something that looked like a finished 
product.

eight sprints per development project. There is no specific 
death phase in Scrum, but as we might expect, following 
the final sprint, the level of effort falls off dramatically in 
postimplementation.

As Figure 1d shows, the Dynamic System Development 
Method (DSDM) presents a compelling, almost flat graph 
that ends suddenly. This occurs because DSDM focuses 
on an acceptable level of effort. As resources allow, devel-
opers implement functionality. If resources are limited, 
compromises must be made to determine implementation 
priorities. While the flat graph and fixed overall cost might 
seem attractive, this means certain requirements might 
never be implemented.

Moreover, the likely casualties of any resource limita-
tions will be nonfunctional requirements, which customers 
often don’t even realize they need, and which can have 
significant implications for critical applications. Formal 
methods perform best when highlighting many such re-
quirements, helping us understand them, and enabling us 
to ensure they are fully implemented.

Something’s a myth
The details of these graphs are not important, however. 

Rather, they show an interesting phenomenon: Notwith-
standing the significant differences in the graphs’ “shapes,” 
the area beneath the curve—the total effort required and, 
as a consequence, the total cost—is not significantly dif-
ferent except in DSDM, which places a firm limitation on 
resources.

This means that neither formal nor agile methods offer 
significant reductions in effort over the competing ap-
proach. Rather, formal methods bring the advantage of 
certainty in dealing with critical applications, assurance, 
and solid documentation, while agility brings the benefit of 
flexibility, customer satisfaction, and tangible progress. Yet 
the claimed benefits of development speed and reduced 
effort for agile methods might be overstated.

CULTURAL DIVIDE
Many people in and out of the formal methods com-

munity make the mistake of believing that agile software 
development is about rapidly “throwing together” software 
to ensure quick delivery of valuable features, at the expense 
of qualities like reliability, security, and maintainability.

Agile methods have earned this dubious reputation 
for several reasons, but two in particular stand out. First, 
some confuse agile methods with rapid-application de-
velopment (RAD). This technique employs user-interface 
prototypes to garner quick feedback from customers so 
that designs can evolve rapidly toward something more 
useful.

What agile methods and RAD share is that both are 
highly feedback-driven and arguably fall under the banner 
of evolutionary software design to a larger extent than 
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vided they are applied sympathetically to the core agile 
values and principles and, most importantly, only when 
they are truly needed and will add value.

What conflict?
We see no reason why there should be any practical 

conflict between agile software development and formal 
methods. Clearly, however, a possible cultural divide cur-
rently makes the agile and formal methods communities 
incompatible collaborators. This divide could stem largely 
from a lack of understanding between the two commu-
nities. Therefore, an ongoing process of interaction and 
exchange might well be the best remedy for helping agile 
and formal methods practitioners discover and apply the 
best of both worlds.

F
ormal methods can survive in an agile world; 
they are not obsolete and can be integrated into 
it. The potential for combining agile and formal 
methods holds promise. It might not always be 
an easy partnership, and succeeding will depend 

on a fruitful interchange of expertise between the two 
communities. Conducting a realistic trial project using a 
combined approach with an appropriate formal methods 
tool in a controlled environment will help assess the effec-
tiveness of such an approach. 
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