

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Formal versus agile: survival of the fittest.

Sue Black1
Paul P. Boca2
Jonathan P. Bowen3
Jason Gorman4
Mike Hinchey5

1 School of Electronics and Computer Science
2 Hornbill Systems Ltd
3 Museophile Ltd.
4 Codemanship Ltd.
5 Lero - the Irish Software Engineering Research Centre

Copyright © [2009] IEEE. Reprinted from Computer, 42 (9). pp. 37-45. ISSN
0018-9162.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

37SEPTEMBER 2009Published by the IEEE Computer Society0018-9162/09/$26.00 © 2009 IEEE	

COVER FE ATURE

Alan Turing provided what is probably one of the earli-
est examples of a formal proof, in which he proved a result
about what was—and, by implication, was not—comput-
able.3 But formal methods probably came into their own
in software development terms in the 1970s.

Agile methodologies are relatively new in compari-
son. In 2001, the Agile Manifesto (http://agilemanifesto.
org) put forward four main-value preferences that
focused on the following: responding to change, indi-
viduals and interaction, working software, and customer
collaboration.

This can be seen as a reaction to the previous cumber-
some waterfall model which focused on formalizing the
customer’s requirements at the beginning of the life cycle
and delivering a product at the end of the life cycle, with
not much interaction with customers in between. Agile
has been said to work best with small groups of clever
people (http://doi.acm.org/10.1145/1028664.1028720), but
this might limit its scope.

Research into integrating formal methods and agile
approaches is reasonably new. The First South East Eu-
ropean Workshop on Formal Methods (SEEFM 2003)
provided possibly the first substantial venue (http://delab.
csd.auth.gr/bci1/SEEFM03) at which the two areas could
mingle. Research carried out since then has mainly

S
oftware engineering as a discipline has gone
through many phases. Barry Boehm describes
this well in his view of 20th-/21st-century soft-
ware engineering,1 which has evolved from
hardware engineering in the 1950s to software

crafting in the 1960s, formality and the waterfall process in
the 1970s, productivity and scalability in the 1980s, concur-
rent versus sequential processes in the 1990s, and agility
and value in the 2000s. Each phase proved to be either a
progression from or reaction to the previous one.

We argue that formal methods have been around since
Charles Babbage’s and Ada Lovelace’s work on the differ-
ence and analytical engines: Brian Randell2 points out that
a concern with correctness was already present in the pre-
electronic phase: Babbage wrote about the “Verification of
the Formulae Placed on the [Operation] Cards.”

The potential for combining agile and for-
mal methods holds promise. Although it
might not always be an easy partnership,
it will succeed if it can foster a fruitful
interchange of expertise between the two
communities.

Sue Black, University of Westminster

Paul P. Boca, Hornbill Systems Ltd.

Jonathan P. Bowen, Museophile Ltd.

Jason Gorman, Codemanship Ltd.

Mike Hinchey, Lero—the Irish Software Engineering Research Centre

FORMAL
VERSUS AGILE:
SURVIVAL OF
THE FITTEST?

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

Formal methods can add value in the
agile domain, acting as a sanity check
and safety net.

COVER FE ATURE

COMPUTER	38

Hähnle argued that the KeY methodology, a formal
software development tool for object-oriented systems, is
such a method. Peter Amey9 argued that the correctness
by construction approach for developing correct software
combines formal and agile methods because it “takes
precise notation from the former and from the latter in-
cremental development.”

As can be seen, the question of whether formal and agile
methods can be combined—and if so, how—has yet to be
answered definitively.

FRIENDS NOT FOES
There is no escaping formal methods in software devel-

opment. They are everywhere: Programming languages
have a formal semantics, program generators such as
YACC generate finite-state machines, coding standards
are language subsets defined with some “formal” ratio-
nale such as preventing program crashes. Some IDEs, like
Visual Studio, have integrated static analysis tools, and the
processor on which the compiled code will run has been
formally verified.

These methods work in the background, letting devel-
opers go about their work while taking the underpinnings
for granted. Formal methods can be in the foreground too,
making precise the system’s intended behavior and assur-
ing the end product’s correctness. These methods have
been deployed in many domains, including automobiles,
trains, air-traffic control systems, and medical systems.
There is compelling evidence that they add value.10 The
deployment of formal methods has largely been within the
traditional software development framework.

We argue that formal methods can add value in the agile
domain, acting as a sanity check and safety net. Moreover,
formal methods can open up possibilities currently closed
to the agile world: deployment in safety- and mission-crit-
ical domains, for example.

ADDING VALUE
We argue our case by demonstrating that formal

methods can add value in four key areas of software
development.

Testing
Writing tests prior to implementation lies at the heart

of agile development, continuously evolving a regres-
sion suite for onward development. Developers run the
regression suite for subsequent changes to the code base
to ensure that functionality does not degrade. But how do
we determine when we have tested enough? Have adequate
edge cases been considered? Most interesting domains
require an infinite number of test cases, which is clearly
impractical if not impossible to achieve. So the developer
must decide which tests will be considered and which
ruled out.

focused on new formal methods, integrating formal
methods into agile ones, and assessing the agility of
formal methods.

NEW METHODOLOGIES
eXtreme Formal Modeling (XFM; http://doi.acm.

org/10.1145/1109118.1109120) is an agile methodology that
focuses on getting a system’s specification transformed
from a natural language into a formal model. The technol-
ogy at this methodology’s heart, model checking, checks
the user stories expressed as linear temporal logic for-
mulas. Case studies—the traffic-light controller and DLX
pipeline—illustrate this approach.

The XFun methodology (ht tp://delab.csd.auth.
gr/~bci1/SEEFM03/seefm03_03.pdf) combines the uni-
fied process with X-machines, thus allowing systems
to be built that are correct and reliable with respect
to the given user requirements. The requirements

are translated into X-machines verified with model-
checking technology to determine whether various
safety properties hold.

INTEGRATING FORMAL METHODS
INTO THE AGILE PROCESS

Some researchers have argued that model checking can
be used to verify evolving agile frameworks by capturing
changes at the architectural level4—such as the Symbolic
Model Verifier (SMV) model checker, with the specifications
captured in CTL. X-machines has been used in different
ways to bolster agile methods, such as for documentation5

and for modeling use cases.6

Three areas of eXtreme Programming can benefit
from formal methods7: unit testing, incremental develop-
ment, and refactoring. The concept of specification-driven
development8 combines two compatible and comple-
mentary approaches: Design by Contract and test-driven
development.

FORMAL METHODS’ AGILITY
At the 6th International KeY symposium in 2007,

Reiner Hähnle gave a talk on agile formal methods (http://
i12www.iti.uni-karlsruhe.de/~key/keysymposium07/
slides/haehnle-agile.pdf). Hähnle’s main thrust was to
argue that newer formal methods align well with the
agile process. He then summarized what is required for a
formal method to be agile.

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

In the future, more software will be
adaptive, changing itself to cope with
new requirements or unforeseen
circumstances or to ensure resilience
in harsh environments.

39SEPTEMBER 2009

sertions can be helpful here: Each refactoring step can be
machine-checked to see whether the contract still holds.
This is by no means foolproof either—the assertion might
be incorrect or too wide in scope—but the two approaches
together can give greater assurance that errors have not
been introduced.

Greater reliability in refactoring code can be achieved
through use of automated assistants: Common code
changes that a developer would apply can be captured
as correctness-preserving transformations and applied
automatically, ensuring that refactoring preserves mean-
ing. But tools cannot invent refactorings for the user, for
this is an intellectual activity that requires inspiration—a
Eureka step.

What tools can help with, though, is encouraging the
developer to split the refactoring process into several man-
ageable steps, taking charge of the housekeeping required
to ensure that these steps are correct; some steps could
simply be the result of applying “canned” transformations,
while others might require manual proof steps.

Documentation
Many developers abhor anything to do with documenta-

tion, but this is not a problem in the agile world: Pairwise
programming is often used as an argument against writing
down technical information. By rotating teams, everyone
gets to learn how the system being developed works.

This might work in an environment where staff turn-
over is low, but what if senior team members leave? How
will the knowledge be retained? Some might therefore
regard failure to document as a risk associated with using
the agile development process.

There are many examples of long-lived software, in-
cluding shutdown loops on nuclear power plants running
for more than 30 years and a NASA spacecraft running for
more than four decades and soon to be unreachable by
communications link. We typically don’t build our systems
to be that long-lived, but we are focusing more on evolving
our software and even critical applications, with many
organizations having an evolve-buy-build policy. Moreover,
in the future, more software will be adaptive, changing
itself to cope with new requirements or unforeseen cir-
cumstances or to ensure resilience in harsh environments.
Without documentation, in the long term it will be impos-
sible to tell what such systems were originally intended to
do as opposed to what has resulted from adaptation and

Autogenerating test programs, achieved through
scripting in Python or Perl, can partially address the
coverage problem. Developers can use a functional pro-
gramming language such as Standard ML instead of one
of these traditional scripting languages to map a high-
level specification—expressed as a function—over a list
of tuples built up from the domains of interest to yield
the test cases.

This approach, while keeping the agile philosophy’s
spirit, has its drawbacks—it works for finite domains
only; infinite domains cannot be enumerated. A random
selection of test vectors could be generated for the in-
finite domains, but then the same questions would
apply.

Static-analysis and theorem-proving tools provide a
more reliable solution. The idea is to annotate the code in
various places with logical statements asserting properties
that should hold true. These assertions can be checked
without running the code to see whether they are violated.

Static checkers have reached a level of sophistication
and maturity that allows a high percentage of asser-
tions—typically 97 percent in the SPARKAda toolset, for
large-scale examples—to be checked automatically.

Requirements
In the agile world, requirements change rapidly—

developers expect this and are not fazed by the possibility
of having to discard their work and start over. Although this
way of working eventually creates a product that can be
shipped, there must be requirements traceability, otherwise
there can be little guarantee that the end product will meet
the customer’s requirements.

Once again, assertions can help. The informal
requirements—typically expressed in stylized natural
language—must be translated into the formal notation
in which the assertion is expressed and then embedded
in the code. This process has its pitfalls, as errors may be
introduced during the translation stage. Once expressed
as assertions, the requirements can be machine-checked
for inconsistencies. Finding errors in the requirements
at an early stage will reduce the amount of rework. Alas,
formal methods cannot help with the problem of require-
ments creep—it is a fact of life.

Refactoring
Developers change code to improve its performance,

make it more maintainable, and beautify it. Such changes
are made with the safety net of a regression suite, the as-
sumption being that if a change affects functionality, this
will be caught. But refactoring is a human activity, and
therefore prone to error. Testing alone cannot guarantee
that a refactoring step has not changed the code’s meaning.
It is conceivable that refactoring may introduce functional
errors that running the regression suite will not detect. As-

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

Formal methods and agile software
development have the common aim
of producing reliable software, and
combined methodologies have been
proposed.

COVER FE ATURE

COMPUTER	40

antithesis of this approach. However, the two approaches
do have the common aim of producing reliable software,
and combined methodologies have been proposed.15 Agile
methods seek to involve small incremental tasks, minimiz-
ing the need for planning.

Some formal approaches can make this difficult. De-
spite this, there are formal methods tools that allow a great
deal of flexibility and can achieve worthwhile results with
a small amount of effort.

Flexible tools
Alloy is one tool and associated language16 that makes

this approach possible. It is highly influenced by the Z no-
tation, a well-known formal specification language based
on set theory and predicate logic. Developers can use it to
check models up to a specified size. However, problems in
the modeled system are typically found using relatively
small models in practice, so there is no practical benefit
to continuing with very large models.

Other formal methods tools and approaches could also
be compatible with agile methods. Specifically, model
checkers could be effective if used at an early stage to
ensure system correctness. Model checkers allow a com-
plete search space to be analyzed automatically once the
model has been formulated to ensure there are no incon-
sistencies. The model can be changed relatively quickly
and rechecked following an agile methodology.

Another such tool, FDR, checks models in the style
of CSP (Communicating Sequential Processes). This has
been applied in the verification of protocols.11 Other model
checkers, such as Spin,17 could also be used effectively in
an agile setting.

More traditional state-based and even refinement-based
approaches might also be compatible. These allow specifi-
cation of software involving an abstract state that can be
changed using a set of operations over time, starting with
some initial state. They can also, although at greater cost
and potentially less flexibility, be used to refine the speci-
fication toward an implementation in a formal manner.
The Rodin tool (Rigorous Open Development Environ-
ment for Complex Systems; www.bcs.org/upload/pdf/
ewic_fm07_paper2.pdf), based on the B-Method,12 allows
the refinement of a specification in formal as well as tool-
supported environments. Its facilities explicitly consider
changes in the formal specification and development as
it attempts to minimize the amount of reproof needed
when the design changes. This could be helpful if formal
refinement is required in an agile development context.

Alloy example
Software typically consists of a set of operations on

some defined state, with inputs to those operations and
outputs from them. Checking if such operations have
desired and expected properties is a useful part of software

evolution. By introducing some formality into the agile
process, we can get documentation for free, such as asser-
tions and specifications of tests to be generated.

Parallelism
Our discussion has deliberately avoided any mention

of parallelism. Sequential programs are hard enough to
get right; moving to parallelism brings new challenges:
avoiding deadlock, livelock, and race conditions. Such phe-
nomena might go undetected through testing alone, and
so it is here that the formal-methods safety net becomes
essential.

Model checkers, such as FDR11 (Failures Divergences
Refinement), can prove that a system is deadlock free.
Static analyzers, such as the one marketed by Coverity
(www.coverity.com), can check code for potential race
conditions. These technologies have improved in recent
years, making them scalable to industrial-sized examples.

Speed and availability
As well as being scalable, formal methods tools must be

fast if they are to succeed in the agile world. Agile projects
have frequent delivery schedules, so verifiers, for example,
must discharge verification conditions in “quick time.” The
agile developer does not want to be sitting around waiting
for verification conditions to be discharged—the developer
just wants to move on to the next feature implementation.
Harnessing multicore architectures can be helpful in this
respect, and research in this direction is under way.

Success depends on tool availability too—open source
will ensure wide adoption within the industry. There is a
move toward this, particularly in the Rodin and Deploy
projects (http://rodin.cs.ncl.ac.uk; www.deploy-project.eu),
where a community building freely available tools built
upon Eclipse is growing. Another community initiative has
provided tools for the Z specification language (http://czt.
sourceforge.net). Recently, Praxis High Integrity Systems
(www.praxis-his.com) announced an open source version
of its SPARK toolset (www.praxis-his.com/news/sparkPro.
asp). All these initiatives offer good news for formal meth-
ods and even better news for the agile community.

TOOL SUPPORT
Formal methods12-14 are often seen as inflexible,

whereas agile software development is designed to be the

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

41SEPTEMBER 2009

Deleting an entry is similar to adding an entry, but only
the name is needed as input, and the entry is removed
from the address book:

pred del (b, b’ : Book, n : Name)
{ b’.addr = b.addr - n->Addr }

Checking a property that an add operation, followed
by a delete operation for the same name, results in the
address book remaining unchanged can be asserted and
checked as follows:

assert delUndoesAdd { all b, b’, b’’ :
Book, n: Name, a : Addr
|add[b,b’,n, a] and del[b’, b’’, n]
implies b.addr = b’’.addr }
check delUndoesAdd for 3

This uncovers a possibly unexpected counterexample
where an existing name is not added but is removed by
the deletion operation, thus changing the state. Find-
ing such a problem quickly with a tool like Alloy helps
ensure that the software is implemented correctly once
coding starts.

This example is simple by necessity. However, Alloy has
been shown to scale up to larger, more realistic problems.
For example, it has been used to model the Mondex elec-
tronic purse,18 a real product in the banking world, where
security is paramount.

Compared to other formal approaches, developers can
explore the security properties very quickly by modeling
the system using Alloy. If used in the actual development,
this would allow discovering potentially insecure situ-
ations more quickly. This would be entirely compatible
with the agile software development process, allowing
responsiveness to change, while simultaneously enhanc-
ing the software reliability.

A promise of synergy
Formal methods are well established in the field of

high-integrity systems development.1 Traditionally seen
as inflexible, they can be quite effective if the right tool
is chosen and used judiciously. Agile methods, on the
other hand, promise a flexible framework for software
development, which is often needed as requirements and
understanding of the system change and improve. Thus,
the combination of formal and agile methods promises an
effective synergy if used together sensibly, with appropri-
ate engineering judgment.

TIME, EFFORT, AND OTHER MYTHS
Many developers hold a widespread belief that formal

methods are expensive and raise development costs. Even

development that aids in validating these operations. If this
can be done rapidly and conveniently, it becomes compat-
ible with the agile approach to software development.

As a specific example, consider an e-mail address book.
The components of the state might be made up of people’s
names and their e-mail addresses. Initially, its structure
might not be important, so the components could be defined
as signatures in Alloy. These names and e-mail addresses
could then be related together in an address book:

sig Name, Addr { }
sig Book { addr: Name -> Addr }

A desirable property could be an invariant that deter-
mines that the number of e-mail addresses associated with
names in the address book can be at most one per name:

pred invBook (b:Book) { all n:Name
| # b.addr[n] =< 1 }

Software with a state normally has additional con-
straints on the initial state. For example, it could be seen
as desirable initially for the address book to have no ad-
dresses in it:

pred init (b : Book) { no b.addr }

To check that the initial state is feasible, we can assert
that for all possible initial address books the invariant
holds and checks for all models up to a specified size (here,
three):

assert initOK { all b : Book
| init[b] implies invBook[b] }
check initOK for 3

If there is a counterexample, it will be displayed. Given
a “before” state (b:Book), an operation transforms this to
an “after” state (b’:Book). An “add” operation could add a
name “n” and associated address “a” to the address book:

pred add (b, b’ : Book, n : Name, a :
Addr) { b’.addr = b.addr ++ n -> a }

The “++ ” operator acts like the Z relational overriding
operator, meaning that any existing address for the name
is replaced. Having operations respect the invariant on the
state is desirable. This can be asserted and checked for
models up to a specified size:

assert addOK{ all b, b’ : Book, n :
Name, a:Addr

| invBook[b] and add[b,b’,n,a] implies
invBook[b’] }

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	42

Faster development time?
Proponents of agile methods claim that they decrease

development time and lower development costs. While
there have been several great success stories, the jury has
yet to rule on critical applications. Moreover, agility has
nothing to do with speed. Agile methods specifically ad-
dress the need to respond to customer requirements and,
in particular, changing requirements. Their aim is to sat-
isfy customers’ needs rather than to be speedy.

That agile developers emphasize working code, rather
than documentation, might give the impression that de-
velopment is proceeding more quickly because tangible
progress is being made. We do not consider this a bad
thing, but we must be careful not to incorrectly assume
that speed is of the essence with agile methods—nor
should it be assumed that less effort is involved.

Effort-versus-time comparison
Figure 1 shows the “shape” of the effort-time graph for

three popular agile methods. Figure 1b shows the typi-
cal shape of an eXtreme Programming (XP) project. The
spikes in the graph depict story implementations of various
lengths. Note also the explicit “death” phase where effort
is followed by a direct fall in the graph.

The spikes in Figure 1c represent the sprints in Scrum.
These are of roughly equal duration, with typically three to

formal methods’ supporters admit to this, while their de-
tractors use the same statistics to justify avoiding formal
methods, even in critical applications. “Formal methods
light,” as suggested by Cliff Jones, emphasizes the use of
formal methods for specific parts of a system’s develop-
ment, rather than for the entire system. Other researchers
advocate a similar approach.19

Experience has shown that, in many cases, formal
methods can help reduce lead times and lower develop-
ment costs,20 yet the myths of increased development
costs21 and delayed development19 persist.

How costly?
Increased setup costs can imply that development costs

will be greater. Slower progress in early phases gives the
impression that overall progress will be slower, yet there
is no tangible reason to believe this. Figure 1 shows the
typical “shape” of the effort-time curve for formal develop-
ment: The cost of development closely relates to that for
effort. Figure 1a also shows that reduced implementation
costs quickly mitigate the significant increase in effort at
the outset, which also reduces postimplementation main-
tenance. Further, it has been proven that formal methods
can greatly help ensure that we build the right system
correctly, significantly reducing the amount of perfective
and even adaptive maintenance.

Time

E�
or

t

Time(b)

(d)

(a)

(c)

E�
or

t

Time

E�
or

t

Time

E�
or

t

Figure 1. Effort-time curve for software development project. (a) Typical “shape” for the effort-time curve for formal development,
showing high levels of effort initially being mitigated by lower effort later. (b) Typical effort-time curve for an XP development,
showing story implementations as spikes. (c) Typical Scrum effort-time curve showing sprints. (d) Typical effort-time curve for the
Dynamic System Development Method, emphasizing that effort can suddenly fall as resources are exhausted.

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

Formal methods bring the advantage
of certainty in dealing with critical
applications, assurance, and solid
documentation, while agility brings
the benefit of flexibility, customer
satisfaction, and tangible progress.

43SEPTEMBER 2009

traditional engineering methods like SSADM (Structured
System Analysis and Design Method).22 Continuous cus-
tomer involvement throughout the evolutionary design
process is a shared characteristic that can make doing agile
methods and RAD look, on the surface, very similar.

Quick and dirty?
Most teams purporting to be doing agile software de-

velopment are not applying the level of technical rigor
necessary to succeed at it. Most “agile” teams have actually
only adopted Scrum’s project-management practices and
have failed to effectively adopt “the hard disciplines” like
test-driven development, refactoring, pair programming,
simple design (writing the simplest code possible to satisfy
the customer’s requirements), and continuous integration.

The main misunderstanding about agile methods is that

teams deliver software faster. Agility is not about speed,
but about being responsive to changing requirements. A
faster car is not necessarily a more maneuverable one.

Agile projects deliver working software sooner, but they
do this by creating small, frequent releases and effectively
prioritizing features. This creates more and earlier oppor-
tunities to adapt to customer feedback, just as with RAD.
The critical difference is that the software delivered in
each iteration is of the highest quality the team can achieve
(www.parlezuml.com/tutorials/agile_qa/Example_Agile_
Quality_Assurance_Strategy.pdf).

In this sense, agile software development learned an
important lesson from RAD: Prototypes tended to wind
up being the end product the customer used. The RAD
discipline hinged on the prototypes serving as a high-
fidelity specification created quickly using a user-friendly
interface and technologies like Microsoft Visual Basic.
Once the customer had signed off on a finished proto-
type, RAD teams were then supposed to apply rigorous
methods to build a high-quality software system in a “se-
rious” language like C++, based on the UI prototype. All
things being equal, the reality was that many RAD teams
were forced to release software built around the prototype
code itself, with its cobbled-together and largely untested
underlying logic. Such was the psychological pitfall of
showing customers something that looked like a finished
product.

eight sprints per development project. There is no specific
death phase in Scrum, but as we might expect, following
the final sprint, the level of effort falls off dramatically in
postimplementation.

As Figure 1d shows, the Dynamic System Development
Method (DSDM) presents a compelling, almost flat graph
that ends suddenly. This occurs because DSDM focuses
on an acceptable level of effort. As resources allow, devel-
opers implement functionality. If resources are limited,
compromises must be made to determine implementation
priorities. While the flat graph and fixed overall cost might
seem attractive, this means certain requirements might
never be implemented.

Moreover, the likely casualties of any resource limita-
tions will be nonfunctional requirements, which customers
often don’t even realize they need, and which can have
significant implications for critical applications. Formal
methods perform best when highlighting many such re-
quirements, helping us understand them, and enabling us
to ensure they are fully implemented.

Something’s a myth
The details of these graphs are not important, however.

Rather, they show an interesting phenomenon: Notwith-
standing the significant differences in the graphs’ “shapes,”
the area beneath the curve—the total effort required and,
as a consequence, the total cost—is not significantly dif-
ferent except in DSDM, which places a firm limitation on
resources.

This means that neither formal nor agile methods offer
significant reductions in effort over the competing ap-
proach. Rather, formal methods bring the advantage of
certainty in dealing with critical applications, assurance,
and solid documentation, while agility brings the benefit of
flexibility, customer satisfaction, and tangible progress. Yet
the claimed benefits of development speed and reduced
effort for agile methods might be overstated.

CULTURAL DIVIDE
Many people in and out of the formal methods com-

munity make the mistake of believing that agile software
development is about rapidly “throwing together” software
to ensure quick delivery of valuable features, at the expense
of qualities like reliability, security, and maintainability.

Agile methods have earned this dubious reputation
for several reasons, but two in particular stand out. First,
some confuse agile methods with rapid-application de-
velopment (RAD). This technique employs user-interface
prototypes to garner quick feedback from customers so
that designs can evolve rapidly toward something more
useful.

What agile methods and RAD share is that both are
highly feedback-driven and arguably fall under the banner
of evolutionary software design to a larger extent than

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	44

vided they are applied sympathetically to the core agile
values and principles and, most importantly, only when
they are truly needed and will add value.

What conflict?
We see no reason why there should be any practical

conflict between agile software development and formal
methods. Clearly, however, a possible cultural divide cur-
rently makes the agile and formal methods communities
incompatible collaborators. This divide could stem largely
from a lack of understanding between the two commu-
nities. Therefore, an ongoing process of interaction and
exchange might well be the best remedy for helping agile
and formal methods practitioners discover and apply the
best of both worlds.

F
ormal methods can survive in an agile world;
they are not obsolete and can be integrated into
it. The potential for combining agile and formal
methods holds promise. It might not always be
an easy partnership, and succeeding will depend

on a fruitful interchange of expertise between the two
communities. Conducting a realistic trial project using a
combined approach with an appropriate formal methods
tool in a controlled environment will help assess the effec-
tiveness of such an approach.

Acknowledgments
Jonathan Bowen thanks Anthony Hall for inspiration with

Alloy while teaching an MSc course on validation and verifica-
tion at University College London in 2007. Bowen is a visiting
professor at King’s College London. This work was supported
in part by Science Foundation Ireland grant 03/CE2/I303_1 to
Lero—the Irish Software Engineering Research Centre.

References
	 1.	 B. Boehm, “A View of 20th- and 21st-Century Software

Engineering,” Proc. 28th Int’l Conf. Software Eng., ACM
Press, 2006, pp.12-29.

	 2.	 B. Randell, The Origins of Digital Computers: Selected
Papers, Springer-Verlag, 2nd ed., 1975.

	 3.	 A.M. Turing, “Checking a Large Routine,” Report of a Con-
ference on High Speed Automatic Calculating Machines,
University Mathematical Laboratory, Cambridge, 1949,
pp. 67-69.

	 4.	 N. Niu and S. Easterbrook, “On the Use of Model Checking
in Verification of Evolving Agile Software Frameworks: An
Exploratory Case Study,” Proc. 3rd Int’l Workshop on Mod-
elling, Simulation, Verification and Validation of Enterprise
Information Systems, INSTICC Press, 2005, pp. 115-117.

	 5.	 C. Thomson and M. Holcombe, “Using a Formal Method
to Model Software Design in XP Projects,” Annals of Math-
ematics, Computing and Teleinformatics, vol. 1, no. 3, 2005,
pp. 44-53.

Incremental releases
In an agile methods project, customers see a finished

product in each small release—the underlying code is
of a high-enough quality for production release, should
the customer demand it. Another important lesson that
agile development addresses is that the first release of a
software system usually fosters many such releases. Ex-
perience has shown that we can be sure a system’s design
will change as our understanding of the problem domain
evolves and users’ needs change with time.

“Embracing change” is thus a cornerstone of agile soft-
ware development’s values, but it is more than a noble
sentiment. For agile teams to embrace long-term change
release after release, the delivered software must accom-
modate change. Experience demonstrates that, over time,
as software grows, change becomes increasingly harder
and more expensive. A feature request that might have
taken a day or two in the first few weeks of a project could,
a year or two later, take several weeks.

Technical debt
As they deliver software, teams accrue what the agile

community refers to as “technical debt” in their code.
This includes things like bugs, design issues, and other
code-quality problems that are potentially introduced with
every addition or change to the code. These issues have a
detrimental impact on developer productivity. Bug fixes
divert effort from adding valuable new features. Unman-
aged dependencies cause a ripple effect23 that can turn tiny
changes into mammoth wholesale restructurings. Badly
thought-out naming can make code very difficult to under-
stand, even for the developers who wrote it. As technical
debt builds up, the net effect is to hamper the teams’ efforts
to accommodate changes to requirements.

Teams that do not take serious steps to minimize techni-
cal debt quickly find that change can become prohibitively
expensive, making the project unresponsive to new cus-
tomer requirements. For this reason, we find that it is not
only possible to apply rigor in agile software development,
it is actually necessary to succeed at it.

Making it work
We propose that by rigorously applying techniques

like test-driven development (www.parlezuml.com/
tutorials/tdad.ppt; www.agileitea.org/public/deliverables/
ITEA-AGILE-D2.7_v1.0.pdf),24,25 and by running our tests
through practices such as adversarial pair programming
and mutation testing, agile methods can lead to software
of a high-enough integrity for the majority of computing
applications (www-users.cs.york.ac.uk/~paige/Writing/
issre04.pdf). We also see no impediments to complement-
ing agile practices with orthogonal techniques like Design
by Contract, guided inspections, symbolic execution, static
analysis, model checking, and even theorem proving—pro-

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

45SEPTEMBER 2009

	25.	 E.M. Maximilien and L. Williams, “Assessing Test-Driven
Development at IBM,” Proc. 25th Int’l Conf. Software Eng.,
IEEE CS Press, 2003, pp. 564-569.

Sue Black heads the Department of Information and
Software Systems at the University of Westminster. Her
research interests are software measurement, software
quality, and software evolution. Black received a PhD in
software engineering from London South Bank University.
She is a member of the IEEE and the ACM, a Fellow of the
Royal Society of Arts, and a Fellow of the British Computer
Society. Contact her at sueblack@gmail.com or www.sue-
black.co.uk.

Paul P. Boca is quality engineering manager at Hornbill
Systems, Ltd. His research interests are software qual-
ity, program transformation, and formal methods. Boca
received a PhD in computer science from Queen Mary, Uni-
versity of London. He is a member of the IEEE Computer
Society, the ACM, Formal Methods Europe, American Soci-
ety for Quality, and the British Computer Society. Contact
him at paul.boca@googlemail.com.

Jonathan P. Bowen is chairman at Museophile Ltd. He is
also an emeritus professor at London South Bank Uni-
versity, a visiting professor at King’s College London
(2007-2009), and a visiting professor at the University of
Westminster from 2010. His research interests are in the
area of software engineering in general and formal meth-
ods in particular. Bowen received an MA in engineering
science from the University of Oxford. He is a Fellow of
the British Computer Society and Royal Society of Arts
and a member of the IEEE and the ACM. Contact him at
jpbowen@gmail.com, http://jpbowen.googlepages.com.

Jason Gorman is a director at Codemanship Ltd. His re-
search interests are test-driven development, UML, and
software analysis and measurement. He received a BSc in
physics from the University of Surrey. He is a member of
the British Computer Society, the International Association
of Software Architects, and the Agile Alliance. Contact him
at jason.gorman@codemanship.com; www.codemanship.
com.

Mike Hinchey is scientific director of Lero—the Irish Soft-
ware Engineering Research Centre—and a professor of
software engineering at the University of Limerick, Ireland.
His research interests include self-managing software and
formal methods for system development. Hinchey received
a PhD in computer science from the University of Cam-
bridge. He is a senior member of the IEEE and currently
chairs the IFIP Technical Assembly. Contact him at mike.
hinchey@lero.ie.

	 6.	 D. Dranidis, K. Tigka, and P. Kefalas, “Formal Modeling of
Use Cases with X-Machines,” Proc. 1st South-East European
Workshop on Formal Methods, CD-ROM, 2003, pp. 72-83.

	 7.	 Á. Herranz and J.J. Moreno-Navarro, “Formal Agility, How
Much of Each?” Taller de Metodologías Ágiles en el Desar-
rollo del Software, VIII Jornadas de Ingeniería del Software y
Bases de Datos (JISBD 2003), Grupo ISSI, 2003, pp. 47-51.

	 8.	 J.S. Ostroff, D. Makalsky, and R.F. Paige, “Agile Specifica-
tion-Driven Development,” Proc. Extreme Programming,
LNCS 3092, Springer-Verlag, 2004, pp. 104-112.

	 9.	 P. Amey, “Correctness by Construction”; https://buildsecurityin.
us-cert.gov/daisy/bsi/articles/knowledge/sdlc/613-BSI.pdf,
2006.

	10.	 A. Hall, “Realising the Benefits of Formal Methods,” J. Uni-
versal Computer Science, vol. 13, no. 5, 2007, pp. 669-678.

	11.	 S. Creese and J. Reed, Verifying End-to-End Protocols Using
Induction with CSP/FDR, Parallel and Distributed Process-
ing, LNCS 1586, Springer-Verlag, 1999, pp. 1243-1257.

	12.	 J-R. Abrial, “Formal Methods in Industry: Achievements,
Problems, Future,” Proc. 28th Int’l Conf. Software Engineer-
ing, ACM SIGSOFT, 2006, pp. 761-768.

	13.	 P.P. Boca, J.P. Bowen, and J.I. Siddiqi, eds., Formal Methods:
State of the Art and New Directions, Springer, 2009.

	14.	 M.G. Hinchey et al., “Software Engineering and Formal
Methods,” Comm. ACM, vol. 51, no. 9, Sept. 2008, pp.
54-59.

	15.	 G. Eleftherakis and A.J. Cowling, “An Agile Formal De-
velopment Methodology,” Proc. 1st South-East European
Workshop on Formal Methods (SEEFM 03):Agile Formal
Methods: Practical, Rigorous Methods for a changing
world, CD-ROM, 2003, pp. 36-47.

	16.	 D. Jackson, Software Abstractions: Logic, Language, and
Analysis, MIT Press, 2006.

	17.	 G.J. Holzmann, The Spin Model Checker: Primer and Refer-
ence Manual, Addison-Wesley, 2003.

	18.	 T. Ramananandro, “Mondex, an Electronic Purse:
Specification and Refinement Checks with the Alloy
Model-Finding Method,” Formal Aspects of Computing J.,
vol. 20, no. 1, 2008, pp. 21-39.

	19.	 J.P. Bowen and M.G. Hinchey, “Seven More Myths of Formal
Methods,” IEEE Software, vol. 12, no. 4, 1995, pp. 34-41.

	20.	 M.G. Hinchey and J.P. Bowen, eds., Applications of Formal
Methods, Prentice-Hall, 2005.

	21.	 J.A. Hall, “Seven Myths of Formal Methods,” IEEE Software,
vol. 5, no. 7, 1990, pp. 11-19.

	22. L. Rackley and A. Walker, SSADM in Practice, Palgrave
Macmillan, 1995.

	23.	 S.E. Black, “Deriving an Approximation Algorithm for
Automatic Computation of Ripple Effect Measures,”
J. Information and Software Technology, June 2008, pp.
723-736.

	24.	 A. Marchenko, P. Abrahamsson, and T. Ihme, “Long-Term
Effects of Test-Driven Development: A Case Study,” Agile
Processes in Software Engineering and Extreme Program-
ming, LNBIP, 2009, pp. 13-22.

on all conferences sponsored by the IEEE Computer Society

SAVE 25%IEEE Computer Society Members

www.computer.org/join

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 06:39:21 EST from IEEE Xplore. Restrictions apply.

