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Whole genome analysis of a
schistosomiasis-transmitting freshwater snail
Coen M. Adema et al.#

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma

mansoni. With the World Health Organization’s goal to eliminate schistosomiasis as a

global health problem by 2025, there is now renewed emphasis on snail control. Here,

we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome,

and provide timely and important information on snail biology. We describe aspects of

phero-perception, stress responses, immune function and regulation of gene expression that

support the persistence of B. glabrata in the field and may define this species as a suitable

snail host for S. mansoni. We identify several potential targets for developing novel control

measures aimed at reducing snail-mediated transmission of schistosomiasis.
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T
he fresh water snail Biomphalaria glabrata
(Lophotrochozoa, Mollusca) is of medical relevance as this
Neotropical gastropod contributes as intermediate host of

Schistosoma mansoni (Lophotrochozoa, Platyhelminthes) to
transmission of the neglected tropical disease human intestinal
schistosomiasis1. Penetration by an S. mansoni miracidium into
B. glabrata initiates a chronic infection in which the parasite
alters snail neurophysiology, metabolism, immunity and causes
parasitic castration such that B. glabrata does not reproduce but
instead supports generation of cercariae, the human-infective
stage of S. mansoni. The complex molecular underpinnings of this
long term, intimate parasite-host association remain to be fully
understood. Patently infected snails release free-swimming
cercariae that penetrate the skin of humans that they encounter
in their aquatic environment. Inside the human host, S. mansoni
matures to adult worms that reproduce sexually in the venous
system surrounding the intestines, releasing eggs, many of which
pass through the intestinal wall and are deposited in water with
the feces. Miracidia hatch from the eggs and infect another
B. glabrata to complete the life cycle. Related Biomphalaria
species transmit S. mansoni in Africa. Schistosomiasis is
chronically debilitating. Estimates of disease burden indicate
that disability-adjusted life years lost due to morbidity rank
schistosomiasis second only to malaria among parasitic diseases
in impact on global human health2.

In the absence of a vaccine, control measures emphasize
mass drug administration of praziquantel (PZQ), the only
drug available for large-scale treatment of schistosomiasis3.
Schistosomes, however, may develop resistance and reduce the
effectiveness of PZQ4. Importantly, PZQ treatment does not
protect against re-infection by water-borne cercariae released
from infected snails. Snail-mediated parasite transmission must
be interrupted to achieve long-term sustainable control of
schistosomiasis5. The World Health Organization has set a
strategy that recognizes both mass drug administration and
targeting of the snail intermediate host as crucial towards
achieving global elimination of schistosomiasis as a public
health threat by the year 2025 (ref. 6). This significant goal
provides added impetus for detailed study of the biology of
B. glabrata.

Here we characterize the B. glabrata genome and describe
biological properties that likely afford the snail’s persistence in the
field, a prerequisite for schistosome transmission, and that may
shape B. glabrata/S. mansoni interactions, including aspects
of immunity and gene regulation. These efforts, we anticipate,
will foster developments to interrupt snail-mediated parasite
transmission in support of schistosomiasis elimination.

Results
Genome sequencing and analysis. The B. glabrata genome
has an estimated size of 916 Mb (ref. 7) and comprises
eighteen chromosomes (Supplementary Figs 1–3; Supplementary
Note 1). We assembled the genome of BB02 strain B. glabrata8

(B78.5� coverage) from Sanger sequences (end reads from
B136 kbp BAC inserts8), 454 sequences (short fragments, mate
pairs at 3 and 8 kbp) and Illumina paired ends (300 bp fragments;
Supplementary Data 1). Automated prediction (Maker 2)9 yielded
14,423 gene models (Methods). A linkage map was used to assign
genomic scaffolds to linkage groups (Supplementary Note 2;
Supplementary Data 2). We mapped transcriptomes (Illumina PE
reads) from 12 different tissues of BB02 snails (Methods;
Supplementary Data 1) onto the assembly to aid gene
annotation. The pile up of reads revealed polymorphic
transcripts (containing single nucleotide variants; SNV), that
were correlated through KEGG10 analyses with metabolic

pathways represented in the predicted proteome and the
secretome (Supplementary Figs 4–7; Supplementary Note 3;
Supplementary Data 7–8). Combined with delineation of organ-
specific patterns of gene expression (Supplementary Figs 8 and 9;
Supplementary Note 4; Supplementary Data 9), this provided
potential molecular markers to help interpret B. glabrata’s
responses to environmental insults and pathogens, including
schistosome-susceptible mechanisms and resistant phenotypes.

Communication in an aquatic environment. Aquatic molluscs
employ proteins for communication; for example, Aplysia
attracts conspecifics using water-soluble peptide pheromones11.
We collected B. glabrata proteins from snail conditioned water
(SCW) and following electrostimulation (ES), which induces
rapid release of proteins. The detection by NanoHPLC-MS/MS
of an orthologue of temptin, a pheromone of Aplysia12, among
these proteins (Supplementary Note 5; Supplementary Data 10)
suggests an operational pheromone sensory system in B. glabrata.
To explore mechanisms for chemosensory perception, the
B. glabrata genome was analysed for candidate chemosensory
receptor genes of the G-protein-coupled receptor (GPCR)
superfamily. We identified 241 seven transmembrane domain
GPCR-like genes belonging to fourteen subfamilies, that cluster in
the genome. RT–PCR and in situ hybridization confirmed
expression of a GPCR-like gene within B. glabrata tentacles,
known to be involved in chemosensation (Fig. 1). Use of chemical
communication systems to interact with conspecifics may have a
tradeoff effect by potentially exposing B. glabrata as a target for
parasites (Supplementary Figs 10 and 11; Supplementary Note 6;
Supplementary Data 11) and that can be developed to interfere
with snail mate finding and/or host location by parasites.

Stress and immunity. To persist in the environment, B. glabrata
must manage diverse stressors, including heat, drought,
xenobiotics, pollutants and pathogens including S. mansoni.
Additional to previous reports of Capsaspora13 a single-cell
eukaryote endosymbiont, we noted from the sequenced material
an unclassified mycoplasma (or mollicute bacteria) and viruses
(Supplementary Figs 12 and 13; Supplementary Notes 7 and 8;
Supplementary Data 12). Pending further characterization of
prevalence, specificity of association with B. glabrata, and impact
on snail biology, these novel agents may find application in
genetic modification of B. glabrata or control of snails through
use of specific natural pathogens. Five families of heat-shock
proteins (HSP): HSP20, HSP40, HSP60, HSP70 and HSP90
contribute to anti-stress response capabilities of B. glabrata. The
HSP70 gene family is the largest with six multi-exon genes, five
single-exon genes, and over ten pseudogenes (Supplementary
Figs 14–17; Supplementary Note 9; Supplementary Data 13).
In general, it is anticipated that future genome assemblies and
continued annotation efforts can identify additional B. glabrata
genes and provide updated gene models to reveal that
some current pseudogenes are in fact intact functional genes.
The existence of a single-exon HSP70 gene, however,
was independently confirmed by sequence obtained from
B. glabrata BAC clone (BG_BBa-117G16, Genbank AC233578,
basepair interval 49686-51425) and this supports the notion that
prediction of single exon gene models for several HSP70 genes
from the current genome assembly is accurate. Retention of
HSP genes in B. glabrata embryonic (Bge) cells, the only available
molluscan cell line14, enables in vitro investigation of
anti-stress and pathogen responses involving B. glabrata
HSPs (Supplementary Figs 18–22; Supplementary Note 10;
Supplementary Data 14). In addition, B. glabrata has about 99
genes encoding haem-thiolate enzymes (CYP superfamily)
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toward detoxifying xenobiotics, with representation of all
major animal cytochrome P450 clans. Eighteen genes of the
mitochondrial clan suggest that molluscs, like arthropods, but
unlike vertebrates, also utilize mitochondrial P450s for
detoxification15. Tissue-specific expression (for example, four
transcript sequences uniquely in ovotestis) suggests that 15 P450
genes serve specific biological processes. These findings indicate
potential for rational design of selective molluscicides, for
example, by inhibiting unique P450s or by activation of the
molluscicide only by B. glabrata-specific P450s (Supplementary
Note 11; Supplementary Data 16).

Biomphalaria glabrata employs pattern recognition receptors
(PRRs)16 to detect pathogens and regulate immune responses.

These include 56 Toll-like receptor (TLR) genes, of which 27
encode complete TLRs (Fig. 2; Supplementary Note 12;
Supplementary Data 17), associated with a signaling network
for transcriptional regulation through NF-kB transcription
factors (Supplementary Fig. 23; Supplementary Note 13;
Supplementary Data 18). Like other lophotrochozoans,
B. glabrata shows expansion of TLR genes relative to mammals
and insects which have B10 TLRs17. Other PRRs include eight
peptidoglycan recognition-binding proteins (PGRPs), and a single
Gram-negative binding protein (GNBP; Supplementary Note 12;
Supplementary Data 17). A prominent category of B. glabrata
PRRs consists of fibrinogen-related proteins (FREPs), plasma
lectins that are somatically mutated to yield unique FREP
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Figure 1 | Candidate chemosensory receptors of B. glabrata. (a) LGUN_random_Scaffold39 contains fourteen candidate chemosensory receptor (CR)

genes (BgCRa-n). Most encode seven-transmembrane domain G-protein-coupled receptor-like proteins, BgCRm and BgCRn are truncated to

six-transmembrane domains. See Supplementary Data 11 for gene model identifiers. (b) Phylogenetic analysis (neighbour joining, scale bar represents

amino-acid substitutions per site) of chemosensory receptors on LGUN_random_Scaffold39 (protein-level). (c) Schematic of receptor showing conserved

and invariable amino acids, transmembrane domains I-VII; and location of glycosylation sites. (d) Scanning electron micrograph showing anterior tentacle,

with cilia covering the surface. Scale bar, 20mm (top); 10mm (bottom). (e) RT–PCR gel showing amplicon for BgCR509a and actin from B. glabrata tentacle.

(f,g) In situ hybridization showing sense (negative control) and antisense localization of BgCR509a mRNA in anterior tentacle section (purple).

Scale bar (f): 100 mm; (g) 50mm.
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repertoires in individual snails18. Our analyses revealed that this
PRR diversity is generated from a limited set of germline
sequences comprising 20 FREP genes with two upstream IgSF
domains preceding an fibrinogen (FBG)-like domain, and four
FREP genes encoding one immunoglobulin (IgSF) domain and
one C-terminal FBG-like domain, including one gene with an
N-terminal PAN_AP domain. FREP genes cluster in the
genome, often accompanied by partial FREP-like sequences
(Supplementary Figs 24–27; Supplementary Note 14).
A proteomics level study indicated that S. mansoni resistance in
B. glabrata associates with expression of parasite-binding FREPs
of particular gene families, as well as GREP (galectin-related
protein), FREP-like lectins that instead of a C-terminal FBG
domain contain a galectin domain19 (Supplementary Figs 18,19;
Supplementary Note 10; Supplementary Data 15). Further
analyses yielded novel aspects of B. glabrata immune
capabilities. We identified several cytokines, including twelve
homologs of IL-17, four MIF homologs, and eleven TNF
sequences (Supplementary Note 12; Supplementary Data 17).
Biomphalaria glabrata possesses gene orthologs of complement
factors that may function to opsonize pathogens (Supplementary
Figs 28 and 29; Supplementary Note 15, Supplementary Data 19).

We discovered an extensive gene set for apoptosis, a response
that can regulate invertebrate immune defense20, including
B50 genes encoding for Baculovirus IAP Repeat (BIR)
domain-containing caspase inhibitors. The expansion of
this gene family in molluscs (17 genes in Lottia gigantea,
48 in Crassostrea gigas), relative to other animal clades,
suggests important regulatory roles in apoptosis and innate
immune responses of molluscs21 (Supplementary Figs 30–32;
Supplementary Note 16; Supplementary Data 20). We
characterized a large gene complement to metabolize reactive
oxygen species (ROS) and nitric oxide (NO) that are generated by
B. glabrata hemocytes to exert cell-mediated cytotoxicity toward
pathogens, including schistosomes (Supplementary Fig. 33;
Supplementary Note 17; Supplementary Data 21).

The antimicrobial peptide (AMP) arsenal of B. glabrata is
surprisingly reduced compared to other invertebrate species (for
example, bivalve molluscs have multiple AMP gene families22);
our searches indicated only a single macin-type gene family,
comprising six biomphamacin genes. However, B. glabrata does
possess multigenic families of antibacterial proteins including two
achacins, five LBP/BPIs, and 21 biomphalysins (Supplementary
Fig. 34; Supplementary Note 18; Supplementary Data 22 and 23).
While gaps in functional annotation limit our interpretation
of B. glabrata immune function (Supplementary Note 19;
Supplementary Data 24 and 25), our analyses reveal a
multifaceted, complex internal defense system that must be
evaded or negated by parasites such as S. mansoni to successfully
establish infection.

Regulation of biological processes. Characterization of the
regulatory mechanisms that rule gene expression and general
biological functions is especially interesting because survival of
B. glabrata relies on the capacity to quickly recognize, respond,
and adapt to external and internal signals. In addition, a better
understanding of parasite–host compatibility will be afforded by
characterization of snail control mechanisms for gene expression
and signalling pathways as possible targets for interference by
S. mansoni to alter host physiology, including reproductive
activities, to survive in B. glabrata23. Gene expression in
B. glabrata is under epigenetic regulation24–26, we identified
chromatin-modifying enzymes including class I and II
histone methyltransferases, LSD-class and Jumonji-class histone
demethylases, class I–IV histone deacetylases, and GNAT,
Myst and CBP superfamilies of histone acetyltransferases.

Biomphalaria has homologues of DNA (cytosine-5)-
methyltransferases 1 and 2 (no homolog of DNMT3), as well
as putative methyl-CpG binding domain proteins 2/3. In silico
analyses predicted a mosaic type of DNA methylation,
as is typical for invertebrates (Supplementary Figs 35–39;
Supplementary Note 20; Supplementary Data 26). The potential
role of DNA methylation in B. glabrata reproduction and
S. mansoni interactions is reported in a companion paper27.

The B. glabrata genome also encodes the protein machinery
for biogenesis of microRNA (miRNAs) to regulate gene
expression (Supplementary Note 21; Supplementary Data 27).
Two computational methods independently predicted the same
95 pre-miRNAs, encoding 102 mature miRNAs. Of these,
36 miRNAs were observed within our transcriptome data,
another 53 miRNAs displayed Z90% nucleotide identity
with L. gigantea miRNAs. Bioinformatics predicted 107 novel
pre-miRNAs unique to B. glabrata. Based on the analysis of
binding thermodynamics and miRNA:mRNA structural features,
several novel miRNAs were predicted to likely regulate transcripts
involved in processes unique to snail biology, including secretory
mucosal proteins and shell formation (biomineralization)
that may present possible targets for control of B. glabrata
(Supplementary Figs 40–67; Supplementary Note 21 and 22;
Supplementary Data 28–33).

Periodicity of aspects of B. glabrata biology28 indicates likely
control by circadian timing mechanisms. We identified seven
candidate clock genes in silico, including a gene with strong
similarity to the period gene of A. californica. Modification of
expression of clock genes may interrupt circadian rhythms
of B. glabrata and affect feeding, egg-laying and emergence of
cercariae (Supplementary Note 23).

Neuropeptides expressed within the nervous system
coordinate the complex physiology of B. glabrata, a simultaneous
hermaphrodite snail. In silico searches identified 43 B. glabrata
neuropeptide precursors, predicted to yield over 250 mature
signalling products. Neuropeptide transcripts occurred in
multiple tissues, yet some were most prominent within terminal
genitalia (49%) and the CNS (56%), or even specific to the CNS,
including gonadotropin-releasing hormone (GnRH) and insulin-
like peptides 2 and 3 (Supplementary Fig. 68; Supplementary
Note 24; Supplementary Data 34–36). The reproductive
physiology of hermaphroditic snails is also modulated by male
accessory gland proteins (ACPs), which are delivered with
spermatozoa to augment fertilization success29. The B. glabrata
genome has sequences matching one such protein, Ovipostatin
(LyAcp10), but none of the other ACPs identified in Lymnaea
stagnalis30. Putatively, ACPs evolve rapidly and are taxon specific
(Supplementary Fig. 69; Supplementary Note 25; Supplementary
Data 34), such that they allow for specific targeting of
reproductive activity for control measures.

A role of steroid hormones in reproduction of hermaphrodite
snails with male and female reproductive organs remains
speculative. Biomphalaria glabrata has a CYP51 gene to
biosynthesize sterols de novo, yet we found no orthologs of genes
involved in either vertebrate steroid or arthropod ecdysteroid
biosynthesis. The lack of CYP11A1 suggests that B. glabrata
cannot process cholesterol to make vertebrate-like steroids.
The absence of aromatase (CYP19), required for the formation
of estrogens, is particularly enigmatic as molluscs possess
homologues of mammalian estrogen receptors. Characterization
of snail-specific aspects of steroidogenesis may identify targets to
disrupt reproduction towards control of snails. (Supplementary
Fig. 70; Supplementary Note 26; Supplementary Data 37).

Eukaryotic protein kinases (ePKs) and phosphatases constitute
the core of cellular signaling pathways, playing a central role in
signal transduction by catalyzing reversible protein
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phosphorylation in non-linearly integrated networks. Schistosoma
mansoni likely interferes with the extracellular signal-regulated
kinase (ERK) pathway to survive in B. glabrata23. Hidden Markov
model searches on the predicted B. glabrata proteome identified
240 potential ePKs, encompassing all main types of animal ePKs
(Supplementary Fig. 71; Supplementary Note 27). Similarity
searches also identified 60 putative protein phosphatases
comprising B36 protein Tyr phosphatases (PTPs) and B24
protein Ser/Thr phosphatases (PSPs) (Supplementary Figs 72–74;
Supplementary Note 28). These sequences can be studied for
understanding control of homeostasis, particularly in the
face of environmental and pathogenic insults encountered
by B. glabrata.

Bilaterian evolution. Genome study of B. glabrata can also
provide new insights into evolution of bilaterian metazoa by
increasing diversity of the relatively few lophotrochozoan taxa
that have been characterized to date (that is, platyhelminths,
leech, bivalve, cephalopod and polychaete)31–35. Comparison
of similar biological features and gene expression patterns
among lophotrochozoans, ecdysozoans and deuterostomes may
indicate the evolutionary origin of conserved gene families and
anatomical features. The prevalence in diverse taxa of metazoa,
including molluscs, arthropods and chordates, of muscular heart-
like organs that function to circulate blood or hemolymph, has
led to the proposal that these structures evolved over evolutionary
time from a primitive heart present in an urbilaterian ancestor.
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Figure 3 | Expression of cardiac genes and actin genes in B. glabrata tissues. (a) Cardiac regulatory genes. (b) Cardiac structural genes. (c) Relative

expression of actin genes in B. glabrata tissues. For (a–c), the score represents gene level aggregate of normalized FPKM counts for de novo assembled

tissue transcripts, relative to expression levels in the heart/APO sample. The counts were scaled (with median read count as 0) to indicate

expression intensity with red indicating highest, blue lowest. AG, Albumen gland; BUC, buccal mass; CNS, central nervous system; DG, digestive gland;

FOOT, headfoot; HAPO, heart/APO; KID, kidney; MAN, mantle edge; OVO, ovotestes; SAL, salivary glands; STO, stomach; TRG, terminal genitalia.

(d) Maximum Likelihood tree (Phylogeny.fr, scale bar represents amino-acid substitutions per site) showing phylogenetic relationships of actin genes,

based on amino-acid sequence alignment (ClustalW). Biomphalaria -snail; Crassostrea gigas—oyster; Haliotis iris– abalone;, Hirudo medicinalis – leech

(all lophotrochozoans); Amphimedon queenslandica, sponge, Prebilateria, ophotrochozoans), Drosophila melanogaster—fruit fly, Ecdysozoa), and the

deuterostomes Ciona intestinalis, sea squirt; Homo sapiens, human. See Supplementary Note 31 for accession numbers.
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This hypothesis is supported by similarities in core genes for
specification and differentiation of cardiac structures between
insects (in particular Drosophila) and vertebrates36,37. To further
develop this notion, we searched for molluscan cardiac-
specification and -differentiation genes in the genome of
B. glabrata. A previously characterized short cDNA sequence
from snail heart RNA led to identification of BGLB012592 as the
Biomphalaria ortholog of tin/Nkx2.5 (ref. 38). Similarity searches
with Drosophila orthologues identified most of the core cardiac
regulatory factors and structural genes in the B. glabrata genome
(Supplementary Note 29; Supplementary Data 38), with enriched
expression of these genes in cardiac tissues (Fig. 3). Pending
confirmation of functional involvement of these core cardiac
genes in heart formation, these results from a lophotrochozoan,
in conjunction with ecdysozoans and deuterostomes, merit
continued consideration of the presence of a primitive heart-
like structure and in the urbilaterian ancestor.

We also investigated in molluscs, relative to insects and
mammals, the evolution of the gene family of actins, conserved
proteins that function in cell motility (cytoplasmic actins) and
muscle contraction (sarcomeric actins)39. Previous study showed
that cephalopod actin genes40, are more closely related to one
another than to any single mammalian gene, an observation also
made another mollusc Haliotis41 and for insect actins42. Thus,
it has been proposed that actin diversification in arthropods,
molluscs and vertebrates each occurred independently. However,
it has not been determined whether different molluscan lineages
independently underwent actin gene divergence, and few studies

have analysed expression of mollusc actin genes in different
tissues41,43. We identified ten actin genes in B. glabrata that are
clustered across seven scaffolds to suggest that some of these
genes arose through tandem duplication. Expression across all
tissues indicates that four genes encode cytoplasmic actins
(Fig. 3). Protein sequence comparisons placed all B. glabrata
actins as most closely related to mammalian cytoplasmic rather
than sarcomeric actins (Supplementary Note 30; Supplementary
Data 39), a pattern also observed for all six actin genes of
D. melanogaster44. The actin genes of B. glabrata and other
molluscs were most similar to paralogs within their own genomes,
rather than to other animal orthologs (Fig. 3). One interpretation
is that actin genes diverged independently multiple times in
molluscs, similar to an earlier hypothesis for independent actin
diversification in arthropods and chordates42. Alternatively,
a stronger appearance of monophyly than really exists may
result if selective pressures due to functional constraints keep
actin sequences similar within a genome, for example if the
encoded proteins have overlapping functions.

To gain insight into the diversification of mechanisms involved
in biomineralization in molluscs, we analyzed the transcriptomic
data for B. glabrata genes involved in biomineralization. Of 1,211
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transcripts that were more than twofold upregulated in the
mantle relative to other tissues, 34 shared similarity with
molluscan sequences known to be involved in shell formation
and biomineralization. Another 177 candidate sequences
putatively involved in shell formation including 18 genes
(10.2%) with similarity to sequences of shell forming secretomes
of other marine and terrestrial molluscs were identified from
the entire mantle transcriptome (Fig. 4). Highly conserved
components of the molluscan shell forming toolkit include
carbonic anhydrases and tyrosinases33 (Supplementary Fig. 75;
Supplementary Note 31; Supplementary Data 40). In summary,
this genome-level analysis of a subset of molluscan molecular
pathways provides new insight into the evolutionary origins of
bilaterian organs, gene families and genetic pathways.

Repetitive landscape. Repeat content analysis showed that 44.8%
of the B. glabrata assembly consists of transposable elements
(TEs; Fig. 5; Supplementary Figs 76-78; Supplementary Note 32;
Supplementary Data 41), comparable to Octopus bimaculoides
(43%)34 and higher than observed in other molluscs: Owl limpet,
L. gigantea (21%)31; Pacific oyster, C. gigas (36%)32; Sea hare,
A. californica (30%)45. The fraction of unclassified elements in
B. glabrata was high (17.6%). Most abundant classified repeats
were LINEs, including Nimbus46 (27% of TEs, 12.1% of the
genome), and DNA TEs (17.7% of TEs, 8% of the genome). Long
terminal repeats (LTRs) represented 6% of TEs (1.7% of the
genome), and non-mobile simple repeats comprised 2.6% of the
genome (with abundant short dinucleotide satellite motifs).
Divergence analyses of element copy and consensus sequences
indicated that DNA TEs were not recent invaders of the
B. glabrata genome; no intact transposases were detected in the
assembly. A hAT DNA transposon of B. glabrata (B1,000 copies)
has significant identity with SPACE INVADERS (SPIN) which
horizontally infiltrated a range of animal species, possibly through
host-parasite interactions47. Overall, our results reinforce a model
in which diverse repeats comprise a large fraction of molluscan
genomes.

Discussion
The genome of the Neotropical freshwater snail B. glabrata
expands insights into animal biology by further defining
the Lophotrochozoan lineage relative to Ecdysozoa and
Deuterostomia. An important rationale for genome analysis of
B. glabrata pertains to its role in transmission of S. mansoni in the
New World. Most of the world’s cases of S. mansoni infection,
however, occur in sub-Saharan Africa where other Biomphalaria
species are responsible for transmission, most notably
Biomphalaria pfeifferi. Likely due to a shared common ancestor,
B. glabrata provides a good representation of the genomes of
African Biomphalaria species48,49. At least 90% sequence identity
was shared among 196 assembled transcripts collected from
B. pfeifferi (Illumina RNAseq) and the transcriptome of
B. glabrata (Supplementary Note 33; Supplementary Data 42–43).
Accordingly, our analyses of the B. glabrata genome likely reveal
biological features that define snail species of the genus
Biomphalaria as effective hosts for transmission of human
schistosomiasis. This work provides several inroads for control
of Biomphalaria snails to reduce risks of schistosome
(re)infection of endemic human populations, an important
component of the WHO strategy aimed at elimination of the
global health risks posed by schistosomiasis6. The following are
among options that can be considered50. The genetic information
uncovered may be applied to characterize and track the field
distribution of snail populations that differ in effectiveness of
parasite transmission. Targeting aspects of pheromone-based

communication among Biomphalaria conspecifics may alter the
mating dynamics of these snails and perhaps also to interfere with
the intermediate host finding of larval schistosomes. Molluscicide
design may be tailored to impact unique gene products and
mechanisms for gene regulation, reproduction and metabolism
toward selective control of Biomphalaria snails. Finally, genetic
modification of determinants of intermediate host competence
may alter schistosome transmission by Biomphalaria. In
summary, this report provides novel details on the biological
properties of B. glabrata, including several that may help
determine suitability of B. glabrata as intermediate host for
S. mansoni, and points to potential approaches for more effective
control efforts against Biomphalaria to limit the transmission of
schistosomiasis.

Methods
The genetic material used for sequencing the genome of the hermaphroditic
freshwater snail Biomphalaria glabrata was derived from three snails of the BB02
strain (shell diameter 8, 10 and 12 mm, respectively), established at the University
of New Mexico, USA from a field isolate collected from Minas Gerais, Brazil, 2002
(ref. 8). Using a genome size estimate of 0.9–1 Gb (ref. 7), we sequenced fragments
(450 bp read length; 14.08� coverage) and paired ends from 3 kb long inserts
(8.12� ) and 8 kb long inserts (2.82� ) with reads generated on Roche 454
instrumentation, plus 0.06� from bacterial artificial chromosome (BAC) ends8 on
the ABI3730xl. Reads were assembled using Newbler (v2.6)51. Paired end reads
from a 300 bp insert library (53.42� coverage) were collected using Illumina
instrumentation and assembled de novo using SOAP (v1.0.5)52. The Newbler
assembly was merged with the SOAP assembly using GAA53 (see Supplementary
Data 1 for accession numbers of sequence data sets). Redundant contigs in the
merged assembly were collapsed and gaps between contigs were closed through
iterative rounds of Illumina mate-pair read alignment and extension using custom
scripts. We removed from the assembly all contaminating sequences, trimmed
vectors (X), and ambiguous bases (N). Short contigs (r200 bp) were removed
prior to public release. In the creation of the linkage group AGP files, we identified
all scaffolds (145 Mb total) that were uniquely placed in a single linkage group
(Supplementary Note 2; Supplementary Data 2). Note that because of low marker
density, scaffolds could not be ordered or oriented within linkage groups. The final
draft assembly (NCBI: ASM45736v1) is comprised of 331,400 scaffolds with an
N50 scaffold length of 48 kb and an N50 contig length of 7.3 kb. The assembly
spans over 916 Mb (with a coverage of 98%, 899 Mb of sequence with B17 Mb of
estimated gaps). The draft genome sequence of Biomphalaria glabrata was aligned
with assemblies of Lottia and Aplysia (http://biology.unm.edu/biomphalaria-
genome/synteny.html) and deposited in the DDBJ/EMBL/GenBank database
(Accession Number APKA00000000.1). It includes the genomes of an unclassified
mollicute (Supplementary Note 7; accession numbers CP013128). The genome
assembly was also deposited in Vectorbase54 (https://www.vectorbase.org/
organisms/biomphalaria-glabrata). Computational annotation using Maker2
(ref. 9) yielded 14,423 predicted gene models, including 96.5% of the 458 sequences
from the CEGMA core set of eukaryotic genes55. Total RNA was extracted from 12
different tissues/organs dissected from several individual adult BB02 B. glabrata
snails (shell diameter 10–12 mm; between 2 and 10 snails per sample to obtain
sufficient amounts of RNA). RNA was reverse transcribed using random priming,
no size selection was done. Illumina RNAseq (paired ends) was used to generate
tissue-specific transcriptomes for albumen gland (AG); buccal mass (BUC); central
nervous system (CNS); digestive gland/hepatopancreas (DG/HP); muscular part of
the headfoot (FOOT); heart including amebocyte producing organ (HAPO);
kidney (KID); mantle edge (MAN); ovotestis (OVO); salivary gland (SAL);
stomach (STO); terminal genitalia (TRG), see Supplementary Data 1 for accession
numbers of sequence data sets. RNAseq data were mapped to the genome assembly
(Supplementary Note 3). No formal effort was made to use the RNA-data to
systematically enhance the structural annotation. VectorBase did, however, make
this RNAseq data available in WebApollo56 such that the community could use
these data to correct exon-intron junctions, UTRs, etc. through community
annotation. All of these community-based updates have been incorporated and are
available via the current VectorBase gene set. Repeat features were analyzed and
masked (Supplementary Note 32; see Vectorbase Biomphalaria-glabrata-BB02_
REPEATS.lib, Biomphalaria-glabrata-BB02_REPEATFEATURES_BglaB1.gff3.gz).
Further methods and results are described in the Supplementary Information.

Data availability. The sequence data that support the findings of this study have
been deposited in GenBank with the accession codes SRX005826, -27, -28;
SRX008161, -2; SRX648260, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71;
SRA480937; SRA480939; SRA480940; SRA480945; TI accessions2091872204-
2092480271; 2104228958-2104243968; 2110153721-2118515136; 2181062043-
2181066224; 2193113537-2193116528; 2204642410-2204763511; 2204820860-
2204852286; 2213009530-2213057324; 2260448774-2260450167. Also see
Supplementary Data 1. The assembly and related data are available from

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15451

8 NATURE COMMUNICATIONS | 8:15451 | DOI: 10.1038/ncomms15451 | www.nature.com/naturecommunications

http://biology.unm.edu/biomphalaria-genome/synteny.html
http://biology.unm.edu/biomphalaria-genome/synteny.html
https://www.vectorbase.org/organisms/biomphalaria-glabrata
https://www.vectorbase.org/organisms/biomphalaria-glabrata
http://www.nature.com/naturecommunications


VectorBase, https://www.vectorbase.org/organisms/biomphalaria-glabrata. The
Biomphalaria glabrata genome project has been deposited at DDBJ/EMBL/
GenBank under the accession number APKA00000000.1
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