

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

A general and scalable solution for heterogeneous workflow
invocation and nesting

Tamas Kukla1
Tamas Kiss1
Gabor Terstyanszky1
Peter Kacsuk2

1 School of Informatics, University of Westminster

2 Laboratory of the Parallel and Distributed Systems, Computer and
Automation Research Institute, Hungarian Academy of Sciences

Copyright © [2008] IEEE. Reprinted from 3rd Workshop on Workflows in
Support of Large-Scale Science, in conjunction with SC 2008. IEEE, pp. 1-8.
ISBN 9781424428274.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

A General and Scalable Solution for Heterogeneous
Workflow Invocation and Nesting

Tamas Kukla, Tamas Kiss, Gabor Terstyanszky
Centre for Parallel Computing, School of Informatics
University of Westminster, 115 New Cavendish Street

London W1W 6UAW, United Kingdom
Email: T.Kukla@student.westminster.ac.uk

T.Kiss@westminster.ac.uk
G.Z.Terstyanszky@westminster.ac.uk

Peter Kacsuk
Laboratory of the Parallel and Distributed Systems

Computer and Automation Research Institute
Hungarian Academy of Sciences

1111 Kende u. 13, Budapest, Hungary
Email: kacsuk@sztaki.hu

Abstract—Several widely utilized, Grid workflow management
systems emerged in the last decade. These systems were devel-
oped by different scientific communities for various purposes.
Enhancing these systems with the capability of invoking and
nesting the workflows of other systems within their native
workflows makes these communities to be able to carry out cross-
organizational experiments and share non-native workflows. The
novel solution described in this paper allows the integration
of different workflow engines and makes them accessible for
workflow systems in order to achieve this goal. The solution
is based on an application repository and submitter, which
exposes different workflow engines and executes them using the
computational resources of the Grid. In contrast with other
approaches, our solution is scalable in terms of both number
of workflows and amount of data, easily extendable in the sense
that the integration of a new workflow engine does not require
code re-engineering, and general, since it can be adopted by
numerous workflow systems.

I. INTRODUCTION

Workflow allows e-Scientists to express their experimental
processes in a structured way and provides a glue to integrate
their remote applications. Several Grid workflow management
systems, such as Triana [1], P-GRADE [2], Taverna [3],
Kepler [4], CppWfMS [5], YAWL [6], or the K-Wf Grid [7],
were developed for different scientific purposes. Making those
systems interoperable in order to help e-Scientists to carry
out inter-organizational experiments and reuse workflows that
were developed in a workflow management system they are
not familiar with raises a few fairly complex issues. In order to
achieve cross-organizational collaboration between these sci-
entific communities, workflows should be able to interoperate,
communicate with and/or invoke each other during execution.

The WfMC (Workflow Management Coalition) defines
workflow interoperability in general in [8] as: ”The ability
for two or more Workflow Engines to communicate and work
together to coordinate work.” In this definition the workflow
engine is a piece of software that provides the workflow
run-time environment. Sharing workflows is also a natural
desire of e-Scientists, since it speeds up the design phase,
improves the quality by allowing the usage of already validated
workflows. Many projects and research groups are working
in this field. The Workflow Management Research Group [9]

of the OGF (Open Grid Forum) is focusing on workflow
sharing and interoperability [10]. The Workflow Management
Coalition [11] tries to decrease the risks of using business
process management and workflow products via interoperabil-
ity standards. The CppWfMS project is aiming to achieve
workflow language interoperability.

Since workflow management systems were developed for
various purposes, they differ in several aspects. Most systems
are coupled with one workflow engine. Taverna uses Freefluo,
Triana uses Triana Engine, K-Wf Grid uses GWES [7], older
versions of P-GRADE used Condor DAGMan [12], while its
recent version uses its own engine called Xen. Many workflow
systems use dissimilar workflow description languages. While
Triana is able to interpret BPEL (Business Process Execution
Language), its own defined language and additional workflow
formats (since its workflow interpreter is extendable), most
systems are restricted to one language. Taverna workflows are
represented in Scufl, older versions of P-GRADE used Condor
DAG, now it uses its own defined format, Kepler uses MoML,
YAWL system uses YAWL language, while K-WfGrid uses
GWorkflowDL [13]. Because of the diversity of workflow lan-
guages, e-Scientists are unable to reuse workflows within their
accustomed workflow management system if the workflow in
question, was created in another system.

Workflow description languages can be based on various
workflow formalisms. Some workflow languages, such as the
Condor DAG, use simple directed acyclic graph (DAG) work-
flow structure that does not allow the usage of loop, recursion
or nested workflow. However Scufl, that is also a DAG based
language, is extended with control constraints supporting the
usage of if/else, case and loop structures within Taverna
workflows. The new version of the P-GRADE portal also
uses a DAG based language, which is extended with recursion
and workflow nesting. YAWL language and GWorkflowDL are
based on Petri Nets, while BPEL, BPML (Business Process
Modeling Language) and XLANG (XML based Language
defined by Microsoft) are Pi-Calculus based. Both Petri Nets
and Pi-Calculus have a wider range of expression capabilities,
for instance they allow the concept of non-determinism.

Because of these differences, it is not a trivial issue to

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

express a workflow of one type in the description language
of another. For instance, a Petri Net based workflow cannot
always be converted into a DAG based language, since DAG
cannot express iteration or non-deterministic choice.

Furthermore, most workflow management systems are re-
stricted to use one (Grid) middleware. Hence, it might be a
problem to reuse nodes of a workflow that was created in an-
other workflow management system, because the node might
not run on other middleware. Fault tolerance and monitoring
policies are various as well, but this may not cause serious
obstacles to achieve interoperability. However, dissimilar data
representations and data resources used by different workflow
management systems might cause data incompatibility, which
also has to be resolved.

Since most workflow management systems cannot share
workflows, workflow components and/or workflow data with
each other, it is a slightly complex issue to attain the interop-
erability of their workflows at any level.

This paper describes a solution, which allows the integration
of various workflow engines and makes them accessible for
Grid based workflow systems in order to attain interoperability
between them. In contrast with other approaches, our solution
is scalable in terms of both number of workflows and amount
of data, extendable in the sense that the integration of a new
workflow engine to the system does not require code re-
engineering, only user level understanding of the engine in
question, and general, since it can be adopted to any Grid
workflow system.

The rest of this paper is structured as follows. Section II
describes possible solutions that may bring workflow interop-
erability into effect. Section III specifies the requirements of a
generic and scalable workflow engine integration approach.
Section IV introduces a general solution and its reference
implementation, which fulfils these requirements. Section V
presents a case study workflow, that, as a high-level, hetero-
geneous workflow, encapsulates workflows of three different
workflow systems. Finally, Section VI concludes our discus-
sion and highlights our future plans.

II. APPROACHES TO WORKFLOW INTEROPERABILITY

Several projects are aiming to attain interoperability be-
tween workflows of different systems. This section describes
the solutions that can bring workflow interoperability into
effect.

Workflow description language standardization would make
workflow management systems to be able to exchange their
workflows. This would realize interoperability via workflow
sharing by defining a standard workflow description language
and convincing existing workflow management system devel-
opers and users to use this standard. This is rather unlikely to
happen in the near future.

If such a standard format will be defined and accepted,
workflow management systems will either adopt this format or
define import/export processes for workflow translation [14].
Assuming that various workflows are available from different
workflow repositories, this solution would allow e-Scientists

to reuse workflows created in different workflow management
systems and execute them using the system which they are
already familiar with. XPDL (XML Process Definition Lan-
guage) was defined by the WfMC for this purpose, however
it did not gain universal acceptance so far.

YAWL [15] (Yet another workflow language) is based on
an extensive analysis of (more than 30) existing workflow
systems using a set of workflow patterns described in [16].
Because of its expressive power and formal semantics, YAWL
might be a candidate to be used as an intermediate language
for workflow translations. See, for instance, BPEL to YAWL
translation described in [17].

The CppWfMS workflow system, that was developed by
CNAF department of the National Institute of Nuclear Physics
in Italy, is able to abstract from the workflow description
language, as it is described in [18]. This system defines inter-
faces for workflow description translation to achieve workflow
language interoperability. The CppWfMS system contains a
JDL (Job Description Language, that is able to describe simple
jobs as well as DAG based workflows) to GWorkflowDL
converter and also a Scufl to GWorkflowDL converter, that
transforms simple Scufl workflows using XSLT (Extensible
Stylesheet Language Transformations). However, because of
the different expression capabilities of the workflow languages,
it is not always possible to translate one language to another.

Since standardization is not likely to happen in the near
future and workflow translation is not always possible, an
alternative approach to attain workflow interoperability could
be realized by workflow engine integration. This makes a
workflow management system to be able to execute non-native
workflows by integrating different workflow engines into one
system. Hence, these engines can be invoked when a non-
native workflow is to be executed. The system will not be able
to interpret these workflows; therefore, users will not be able
to modify them. The basic idea behind this approach is that
by executing a workflow in its native environment (by its own
workflow engine), significantly reduces the complexity of the
problem, although it does not provide workflow manipulation
capabilities only workflow execution.

Fig. 1. (i) Tightly and (ii) loosely coupled workflow engine integration

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

Non-native workflow engines can be integrated to a work-
flow system in either (i) tightly or (ii) loosely coupled fashion.
See Figure 1. Tightly coupled integration means that the non-
native engines will run at the same site as the workflow system,
while loosely coupled approach allows access to these engines
via services and the engines are executed remotely to the
workflow system. In the case of loosely coupled integration
Web/Grid services could ensure the communication for work-
flow execution. Two different approaches to this interoperabil-
ity level are described in [19], that deals with interoperability
between different workflow engines and provides a solution for
high level heterogeneous workflow design within the SIMDAT
project. The first approach, that is also described in [20], is to
wrap each workflow as a Web/Grid service and create a client
which is able to invoke the workflow service. The client can be
used to invoke the workflow from any workflow management
system. However publishing workflows as web services and
creating clients for those services makes the whole process
complicated, so an automated mechanism is needed to ease
workflow publishing for the users. The second approach to
this interoperability level is to wrap the functionalities of the
different workflow engines as Web/Grid services and create
clients for workflow execution. The client passes the workflow
written in the appropriate workflow language and the input
data to the workflow engine that will execute it and give
back the results to the client. This client can be used in any
workflow management system for workflow execution.

Many further projects are aiming to solve workflow inter-
operability by integrating workflow engines. The CppWfMS
defines interfaces not only for workflow description transla-
tion, as it was mentioned above, but for workflow engine
integration as well. The architecture of the YAWL system also
provides a solution for workflow engine integration via the
YAWL interoperability broker, which provides an interface for
workflow engine execution. Finally, the VLE-WFBus [21] sys-
tem, developed by the Dutch Virtual Laboratory for e-Science
project, provides a meta workflow system, that encapsulates a
few popular workflow engines and allows the composition of
high-level heterogeneous workflows via a Vergil based GUI
provided by the Ptolemy project [22].

In contrast with the above described workflow engine inte-
gration solutions we are aiming to realize a workflow engine
integration approach that: (a) provides a generic solution,
which can be adopted to any Grid workflow system, (b) is
scalable in the sense of both number of workflows and amount
of data, and (c) the integration of a new workflow engine to
the system should not require code re-engineering, only user
level understanding of the engine in question. Next section
describes the requirements of such an approach.

III. REQUIREMENTS OF WORKFLOW ENGINE INTEGRATION

Our goal is to provide a solution for workflow sharing and
interoperability between Grid workflow systems by integrating
different workflow engines. The integration enables workflow
systems to execute non-native workflows. When a workflow
system needs to execute a non-native workflow, the system

does not even have to be able to interpret that workflow
description or know how the workflow will be executed. For
the native system, these workflows are black boxes with some
certain input and/or output data.

A workflow consists of nodes (which are usually jobs, ser-
vice calls or human interactions), data, and data connections.
Nodes process input data and produce output data that can
be connected to the input of the next node. The inputs and
outputs of a node are called ports.

Workflow engine integration is able to realize two types
of workflow interoperability: (i) non-native workflow nesting
(nested sub-process model of interoperability) and (ii) non-
native workflow invocation (chained model of interoperabil-
ity). See Figure 2. Non-native workflow nesting means syn-
chronous workflow execution, where the nested Workflow is
represented as a node of the native workflow. The execution
of such a workflow happens when the representing node is
to be executed, since at this point all the input parameters
of the workflow are available. When the execution of the
non-native workflow finished, the workflow outputs will be
ready to be transferred to the sites where the following nodes
in the workflow graph will further process them. Hence, the
execution of embedded workflows should be scheduled in the
same way as they were ordinary nodes.

Non-native workflow invocation means asynchronous work-
flow execution, where the non-native workflow is invoked
by a node of the native workflow. The invoker node should
transfer the data that is required for the execution and start
the enactment. Once the execution of the invoked workflow
begun, there is no further interest in it.

Fig. 2. (i) Non-native workflow nesting (synchronous execution) and (ii)
non-native workflow invocation (asynchronous execution)

As it is illustrated on Figure 1, depending on the location of

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

Fig. 3. Exposing Taverna workflow engine using GEMLCA Administration Portlet

the non-native engines the integration can be either tightly or
loosely coupled. In the case of tightly coupled integration,
non-native workflow engines are integrated directly to the
workflow systems. In general, in the case of n ∈ N systems,
n(n−1) workflow engine integrations have to be implemented.
Moreover, if a new version of a workflow engine emerges,
n− 1 integration will have to be upgraded.

Loosely coupled integration means that the workflow sys-
tems are extended with an interface via which they can
access further workflow engines that will execute the non-
native workflows. The non-native workflow engines are not
integrated to the workflow systems directly, but via a mediator
(for instance a service) that manages the non-native workflow
execution. This technique provides an adoptable and easily
extendable solution. In general, in the case of n ∈ N systems,
2n integrations have to be implemented (n workflow engine
and n mediator client integrations). If a new version of a
workflow engine emerges, only one integration will have to be
upgraded. Therefore, it is not recommended to integrate non-
native workflow engines to workflow management systems
directly, in a tightly coupled fashion. It is suggested to realise
loosely coupled integration.

In the case loosely coupled integration is realized via a
service, the workflow engines can be executed either on the
site where this workflow engine integration service is or
on a third party computer. In order to support scalability,
non-native workflow engines are best executed on the com-
putational resources of the Grid. This approach brings two
advantages: (1) it ensures scalability in the sense of number of
running workflow instances, since the enactment of each non-
native workflow can be scheduled to an individual, un-utilized

computational node. (2) Both non-native child-workflows and
ordinary nodes of the parent workflow are executed on the
computational resources provided by the Grid. In the case of
data intensive workflows, data transfer is critical. Executing
workflow engines on the Grid enables e-Scientists to improve
the performance of data transfer between ordinary nodes and
non-native child-workflows, since non-native workflows are
best to be scheduled ’close’ to the sites where the native nodes
are executed (from the perspective of data transfer). In order
to achieve this, a mechanism is needed that helps e-scientist
to control where the non-native engine will be executed.

IV. REALIZING WORKFLOW ENGINE INTEGRATION

This section describes a generic solution and its reference
implementation, which fulfils the above requirements. The
solution integrates different workflow engines to a Grid appli-
cation repository and submitter service, called GEMLCA [23].
Via GEMLCA, Grid based workflow systems can access
non-native workflow engines if they have to execute such
workflows. The reference implementation integrates Taverna,
Triana, and Kepler workflow engines to the P-GRADE portal
workflow management system through GEMLCA. The solu-
tion can be adopted by any workflow system by integrating
the GEMLCA web service client to the given system. That
particular workflow system will be able to execute any kind
of workflow of which engine resides in a GEMLCA repository.

Within the P-GRADE portal, a workflow node (job) rep-
resents an application that has command line interface and
can be submitted to the Grid. This application is defined and
uploaded to the portal by the user at workflow editing time.
Since, most workflow engines have command line interface,

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

Fig. 4. Legacy Code Interface Description of a Taverna engine

it would be possible to execute such a non-native workflow
engine within a P-GRADE portal workflow as a job if the
software dependencies of the engine were resolved at the
computational node where the workflow engine job would be
submitted. However, it is not a sufficient solution to expect
from the users to upload a workflow engine as their P-
GRADE workflow jobs each time they need to execute non-
native workflows and to keep in mind where the software
dependencies are resolved. Therefore, a mediator is needed
that manages the execution of non-native workflows on the
Grid.

GEMLCA, that is unique in a sense that it is an application
repository extended with a job submitter, allows the deploy-
ment of legacy code applications on the Grid. An application
can be exposed via a GEMLCA service and can be executed
using a GEMLCA client. The legacy application is stored
either in the repository of a GEMLCA service or on a third
party computational node where GEMLCA can access it. To
publish a legacy application via GEMLCA, only a basic user-
level understanding of the legacy application is needed, code
re-engineering is not required. As soon as the application
is deployed, GEMLCA is able to submit it using either
GT2, GT4 [24] or gLite [25] Grid middleware. GEMLCA
also provides a list of computational sites where the legacy
application in question can be executed (these sites are defined
by the administrator that publishes the legacy application)
and allows e-Scientists to select a suitable site. Command-
line workflow engines, just like other legacy applications, can

be published via GEMLCA, without code re-engineering and
can be automatically executed by GEMLCA on the Grid at a
computational node where the required software background is
available. If the workflow engine requires credentials to utilize
further Grid resources for workflow execution, these are auto-
matically provided by GEMLCA through proxy delegation.

Three engines (engine of Taverna, Triana, and Kepler)
have been installed onto our cluster at the University of
Westminster to a shared disk that any cluster node can access.
The engines were en-wrapped by scripts so as to provide a
general command line interface for them. This interface is
the following:

wfsubmit.sh -w wf_descriptor [-p wf_input_params] [-i

wf_input_files] [-o wf_output_files]

Where wf_descriptor is the workflow descriptor file,
wf_input_params is a text file containing the input pa-
rameters of the workflow, wf_input_files is an archive
file containing the input files that will be processed by the
workflow, finally, wf_output_files is also an archive
file that contains the files that were created as a result
of the workflow execution. During workflow execution, the
wrapper scripts decompress the workflow input files, execute
the workflow by parameterizing and invoking the workflow
engine and finally compress the workflow outputs into one
archive file.

In order to make the workflow engines accessible, they have

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

Fig. 5. Parametrization of non-native workflow execution

to be published via a GEMLCA service. This can be done
using the GEMLCA Administration Portlet, that provides a
web based graphical user interface and can be used either as a
stand alone portlet or it can be integrated to any JSR-168 [26]
based portal. Figure 3 shows how the Taverna engine can be
exposed using this Portlet. First, the administrator defines the
Grid and the GEMLCA service through which the engine
will be published. (These are not illustrated on the figure.)
Second, the input and output parameters of the workflow
engine have to be defined. Then, the back-end specific data,
that describes how and where the application can be executed,
has to be specified. Next, the administrator has to upload
the application (in this case the Taverna workflow engine) or
specify the location where the application resides. Since, the
engine is already installed on our cluster it does not have to
be uploaded, only the location of the wrapper script has to be
given. It should be noted that multiple locations of an engine

Fig. 6. Non-native workflow execution via GEMLCA

can be defined and multiple instances of the same engine
can be uploaded and mapped to different computational sites.
Finally, all this information is stored in an XML based LCID
(Legacy Code Interface Description) file, that is generated by
the portlet. This LCID file can be seen on Figure 4. According
to this description, the Taverna-1.7-WF engine application has

four command line file parameters: three input files and one
output file. These parameters suit the interface specified by the
wrapper script that will invoke the Taverna engine. The back-
end that manages the execution uses the GT2 Grid middleware.
The engine will be executed on the cluster at ngs.wmin.ac.uk
and does not have to be transferred to this location, since it
is already installed to a shared directory, that any cluster node
and NGS user can access.

The engines can be installed to any cluster that is based on
GT2, GT4 or gLite grid middleware or it even can be placed
to a GEMLCA repository. In which case, GEMLCA transfers
the application to the desired computational node before
execution. Any further workflow engine that has command
line interface can be deployed to GEMLCA. The deployment
requires only user level understanding of the engine and does
not require code re-engineering. Writing wrapper scripts is not
necessary either, we developed them only to provide a generic
command line interface for the engines that we integrated.

Figure 6 illustrates how a published workflow engine can
be executed using GEMLCA as a non native workflow node
within a workflow system that adopted the solution. The node
connects to the GEMLCA service via which the non-native
workflow engine can be executed. GEMLCA knows where the
instances of the engine reside and on which computational
resources those instances can be executed and/or submitted
to. GEMLCA provides a list of these sites and the e-Scientist
has to choose on which site the engine has to be executed.
GEMLCA receives the workflow description and the workflow
input data, parameterizes and executes the engine on the
selected computational site. When the workflow execution is
finished the results are gathered and transferred to the site
where the next computational nodes in the original workflow
will process them.

GEMLCA is integrated to the P-GRADE portal in a fashion
that applications in GEMLCA are represented as P-GRADE
workflow nodes. This approach realizes non-native workflow
nesting, since, P-GRADE is able to execute any applica-
tion exposed via GEMLCA as P-GRADE nodes, including

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

Fig. 7. Heterogeneous P-GRADE workflow embedding Triana, Taverna and Kepler workflows

workflow engines with command line interfaces. In order to
realize asynchronous workflow invocation, GEMLCA has to
be integrated in a special way that allows the asynchronous
execution of GEMLCA jobs.

The P-GRADE portal provides graphical user interface for
specifying GEMLCA nodes at workflow editing time. Figure 5
shows how a Taverna engine should be parametrized within
the portal. First, the user selects the Grid and the GEMLCA
service where the engine is deployed. Second, the user selects
the legacy application, which in our case is the Taverna engine,
and the computational site where the engine will be executed.
A parameter table, that is specific to the selected engine shows
up. Next, the user specifies the input and output arguments
of the application. In the case of the Taverna engine, the e-
Scientist has to set the Taverna workflow descriptor file, a file
that contains the workflow input parameters, and an archive
file that contains all the workflow input files. Finally, the name
of the workflow outputs archive file has to be defined as well.
The parametrization of the Triana engine is identical to the
Taverna engine, while the Kepler engine that is installed on
our cluster does not provide interface for specifying workflow
input parameters. Therefore, only three parameters have to be
specified in its parameter table: a Kepler workflow descriptor
file, an archive file that contains the input files of the workflow,
and the name of the archive file that will contain all the output
files.

The file parameters will be represented as ports of the

GEMLCA workflow node in the workflow graph. These ports
can be connected to ports of other workflow nodes enabling
run-time generation of the workflow input data and the work-
flow descriptor files and further processing the outputs of the
embedded workflow by the following nodes.

V. CASE STUDY

This section presents a P-GRADE workflow, which embeds
a Taverna, a Kepler and a Triana workflow. It should be
noted that this is not a real life example; it serves only
demonstration purposes by presenting how different workflows
of different workflow systems can interoperate and form a
heterogeneous high level workflow. The P-GRADE workflow,
that can be seen on the left hand side of Figure 7, consists of
three nodes. Each node represents an embedded workflow of
another workflow system. It should be noted that the inputs
and outputs of the embedded workflows are files; there is no
data transformation between them. If data transformation is
needed, transformator jobs have to be defined by the user.

The first node, that represents a Taverna workflow, has three
input ports representing three files: (0) the Taverna workflow
descriptor, (1) the workflow input parameters and (2) the work-
flow input files zipped into one file. This embedded Taverna
workflow fetches several images, creates a few directories and
places the images into those directories as image files. Then,
the whole directory structure is zipped into an archive file by
the wrapper script and appears on the output port (3) of the
first node in the P-GRADE workflow.

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

This archive file is fed to the next P-GRADE node, which
represents a Kepler workflow. This node has two input ports:
(0) the Kepler workflow descriptor file and (1) the workflow
input files zipped into an archive file containing the images.
This workflow goes through the directory structure of the
archive input file and manipulates each image that it finds.
The manipulation includes edge highlighting, picture resizing
and image type conversion. Finally the new images are zipped
to another archive file by the wrapper script and will appear on
the output port (2) of the second P-GRADE workflow node.

The Triana node, similarly to the Taverna workflow, has
three input ports: (0) the Triana workflow descriptor file, (1)
the workflow input parameters and (2) the workflow inputs
zipped into one archive, which is generated by the Keper
node. This workflow couples the pictures that are in the zip
file, merges each couple and converts the merged pictures to
grayscale images. Then, one colour component, that can be
blue, green or red, are taken of the grayscale pictures and
saved as new image files. Finally, these files are compressed
to the last archive file by the wrapper script, and will serve as
the output of the Triana as well as the P-GRADE workflow
and will appear on the output port (3) of the node.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a general solution to workflow in-
teroperability and sharing at the level of workflow integra-
tion. The solution exposes various workflow engines via a
GEMLCA service, that is capable of executing the engines
on the Grid. Hence, it keeps the data at computational sites
and offers a solution that is scalable in terms of number of
workflows and amount of data. Workflow engine deployment
to this system does not require any code re-engineering, user
level understanding is sufficient. The reference implementation
exposes three workflow engines (Taverna, Triana and Kepler)
via a GEMLCA service.

Since GEMLCA is integrated to the P-GRADE workflow
system, P-GRADE became capable of executing non-native
Taverna, Triana and Kepler workflows inside a P-GRADE
workflow. The solution can be adopted by any other workflow
system by integrating the GEMLCA web service client to
the given workflow system. Any system that adopts this
solution becomes a workflow system that supports high-level
heterogeneous workflow design and execution.

The approach described in this paper supports two models
of interoperability: asynchronous workflow execution (invo-
cation) and synchronous workflow execution (nesting). Al-
though, the reference implementation supports only workflow
nesting, the same approach can be used to implement asyn-
chronous workflow invocation.

Our main concern is to investigate and realize further
workflow interoperability models and to extend the solution
with a workflow repository. The integration technique can be
applied not only for workflow engine integration. A publica-
tion that mainly concerns with data middleware integration to
Grid workflow systems will describe a solution based on this
approach in the near future.

REFERENCES

[1] S. Majithia et al., “Triana: a graphical Web service composition and
execution toolkit,” Web Services, 2004. Proceedings. IEEE International
Conference on, pp. 514–521, 2004.

[2] P. Kacsuk and G. Sipos, “Multi-Grid, Multi-User Workflows in the P-
GRADE Grid Portal j,” Journal of Grid Computing, vol. 3, pp. 221–238,
2006.

[3] T. Oinn et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflows,” pp. 3045–3054, 2004.

[4] B. Ludäscher et al., “Scientific Workflow Management and the Kepler
System,” Concurrency and Computation: Practice & Experience, 2005.

[5] CppWfMS, “CppWfMS on-line documentation,” 2008. [Online].
Available: http://wfms.forge.cnaf.infn.it/documentation/index.html

[6] W. van der Aalst, L. Aldred, M. Dumas, and A. ter Hofstede, “Design
and implementation of the YAWL system,” Proceedings of The 16th
International Conference on Advanced Information Systems Engineering
(CAiSE 04), 2004.

[7] A. Hoheisel, “Grid Workflow Execution Service-Dynamic and interac-
tive execution and visualization of distributed workflows,” Proceedings
of the Cracow Grid Workshop, 2006.

[8] WfMC, “Workflow Management Coalition Terminology and Glossary,”
Workflow Management Coalition, 1999.

[9] WFM-RG, “Workflow Management Research Group Project Website,”
2008. [Online]. Available: http://forge.gridforum.org/sf/projects/wfm-rg

[10] M. Shields, “Gridnet2 activities for wfm re-
search group,” Oct. 2007. [Online]. Available:
http://wiki.cs.cf.ac.uk/twiki/bin/viewfile/Sandbox/OpenGridForu
m21?rev=1;filename=GridNet Ian.ppt

[11] WfMC, “Workflow Management Coalition Website,” 2008. [Online].
Available: http://www.wfmc.org

[12] J. Frey, “Condor DAGMan: Handling Inter-Job Dependencies,” Tech.
rep., University of Wisconsin, Dept. of Computer Science, http://www.
cs. wisc. edu/condor/dagman, Tech. Rep., 2002. [Online]. Available:
http://www.bo.infn.it/calcolo/condor/dagman/

[13] S. Pellegrini, F. Giacomini, A. Ghiselli, and A. Hoheisel, “Using
GWorkflowDL for Middleware-Independent Modeling and Enactment
of Workflows,” Proceedings of the CoreGRID Integration Workshop,
2008.

[14] WfMC, “Workflow Management Coalition Workflow Standard - Interop-
erability Abstract Specification,” Workflow Management Coalition, 1999.

[15] W. van der Aalst and A. ter Hofstede, “YAWL: yet another workflow
language,” Information Systems, vol. 30, no. 4, pp. 245–275, 2005.

[16] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow Patterns,” Distributed and Parallel Databases, vol. 14, no. 1,
pp. 5–51, 2003.

[17] A. Brogi and R. Popescu, “From BPEL Processes to YAWL Workflows,”
2006.

[18] S. Pellegrini, F. Giacomini, and A. Ghiselli, “A PRACTICAL AP-
PROACH FOR A WORKFLOW MANAGEMENT SYSTEM,” Proceed-
ings of the CoreGRID Workshop, 2007.

[19] M. Ghanem, N. Azam, and M. Boniface, “Workflow Interoperability in
Grid-based Systems,” Cracow Grid Workshop, 2006.

[20] P. Kacsuk and T. Kiss, “Towards a scientific workflow-oriented compu-
tational World Wide Grid,” CoreGRID Technical Report, 2007.

[21] Z. Zhao, S. Booms, A. Belloum, C. de Laat, and B. Hertzberger, “VLE-
WFBus: A Scientific Workflow Bus for Multi e-Science Domains,” e-
Science and Grid Computing, 2006. e-Science’06. Second IEEE Inter-
national Conference on, pp. 11–11, 2006.

[22] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao,
and H. Zheng, “Overview of the Ptolemy Project,” University of
California, Berkeley, Engineering-Electrical Engineering and Computer
Sciences, 2003.

[23] T. Delaitre et al., “GEMLCA: Running Legacy Code Applications as
Grid Services,” Journal of Grid Computing, vol. 3, no. 1, pp. 75–90,
2005.

[24] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” Journal of Computer Science and Technology, vol. 21, no. 4,
pp. 513–520, 2006.

[25] E. Laure et al., “Programming the Grid with gLite,” Computational
Methods in Science and Technology, vol. 12, no. 1, pp. 33–45, 2006.

[26] P. Specification, “The Java Community Process, JSR 168,” 2003.

Authorized licensed use limited to: University of Westminster. Downloaded on June 2, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

