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Abstract: This study explores the application of various machine learning (ML) models
for the real-time prediction of the FOS/TAC ratio in microbial electrolysis cell anaerobic
digestion (MEC-AD) systems using data collected during a 160-day trial treating brewery
wastewater. This study investigated models including decision trees, XGBoost, support
vector regression, a variant of support vector machine (SVM), and artificial neural net-
works (ANNs) for their effectiveness in the soft sensing of system stability. The ANNs
demonstrated superior performance, achieving an explained variance of 0.77, and were
further evaluated through an out-of-fold ensemble approach to assess the selected model’s
performance across the complete dataset. This work underscores the critical role of ML in
enhancing the operational efficiency and stability of bio-electrochemical systems (BES), con-
tributing significantly to cost-effective environmental management. The findings suggest
that ML not only aids in maintaining the health of microbial communities, which is essential
for biogas production, but also helps to reduce the risks associated with system instability.

Keywords: machine learning; deep learning; microbial electrolysis cell anaerobic digestion;
FOS/TAC

1. Introduction
Anaerobic digestion (AD) is an effective biotechnology for converting a variety of

organic wastes into biogas. However, the stability and efficiency of AD processes are
challenged by factors such as substrate variability, organic loading rates, and the accumu-
lation of substances like volatile fatty acids (VFAs), which can lead to inhibition, causing
fluctuations in methane production and pH [1].

MEC-AD systems have been shown to achieve higher methane yields compared to
standard AD practices. Systems integrating low-voltage (poised under 2 V) electrodes
within the reactors have demonstrated greater operational stability under lower pH con-
ditions, which is beneficial for maintaining the health and efficiency of the microbial
communities responsible for biogas production [2–4]. Furthermore, the integration of
MECs with AD systems enhances substrate degradation and increases biogas production.
MEC-AD systems additionally offer potential improvements in process control by enabling
real-time monitoring, which correlates electrical signals with substrate concentrations,
significantly enhancing operational efficiency [5].

Molecules 2025, 30, 1092 https://doi.org/10.3390/molecules30051092

https://doi.org/10.3390/molecules30051092
https://doi.org/10.3390/molecules30051092
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0001-5272-433X
https://orcid.org/0000-0003-3661-9801
https://orcid.org/0000-0002-0040-377X
https://orcid.org/0000-0003-3145-3590
https://doi.org/10.3390/molecules30051092
https://www.mdpi.com/article/10.3390/molecules30051092?type=check_update&version=1


Molecules 2025, 30, 1092 2 of 18

VFAs are critical substrates in the AD process, with the most common form of methano-
genesis in conventional AD being acetotrophic methanogenesis, where acetate is the sole
carbon source. VFA concentration serves as a key indicator of process health and stabil-
ity. Monitoring VFAs is essential for preventing the digester from experiencing process
imbalances that could lead to system failures, such as acidosis. Accurate and timely mea-
surements of VFA concentrations help operators maintain optimal operating conditions,
thus maximising biogas production and improving resource efficiency. High VFA levels
can inhibit methanogens, thereby obstructing methane synthesis.

The FOS/TAC ratio, where FOS (Flüchtige Organische Säuren) represents the concen-
tration of VFAs and TAC (Totales Anorganisches Carbonat), characterises the system’s total
alkalinity or buffering capacity and is a crucial metric for maintaining equilibrium within
AD processes. Ideally, this ratio should fall between 0.3 and 0.4, although the optimal range
may differ from one system and substrate to another [6,7]. Monitoring deviations in the
FOS/TAC ratio provides early warning signs of process imbalances before substantial pH
changes occur. For instance, an elevated FOS/TAC ratio may indicate excessive VFAs or
inadequate alkalinity, conditions that can lower pH and hinder the activity of methanogenic
bacteria. Conversely, a lower ratio may signal insufficient organic loading and thus dimin-
ished biogas production. By closely observing this ratio and making necessary adjustments
such as modifying feed rates, introducing buffering agents, or altering other process pa-
rameters, operators can maintain optimal conditions, ensure efficient methane generation,
and prevent acidification-related disruptions.

Despite its significance, continuous monitoring of the AD process, including FOS/TAC
measurements, poses economic and logistical challenges. The use of live sensors for
wastewater analysis often requires substantial upfront investment and ongoing expenses
for maintenance and calibration [8]. Additionally, on-site operators must frequently collect
and analyse samples or rely on external laboratories, which not only increases labour but
also delays the availability of results [9]. These limitations underscore the potential of soft
sensor models, which leverage auxiliary variables to provide real-time optimisation and
control. By reducing reliance on costly, time-consuming monitoring methods, this offers
lower operational overheads and supports more efficient and responsive management of
the AD process [10].

The incorporation of ML approaches into anaerobic digestion is on the rise, primarily
for system modelling and to refine the understanding of operational variables like predict-
ing gas yields. These ML approaches span various types, from conventional techniques
to deep learning and hybrid models, all demonstrating success in forecasting methane
production under different conditions. Anaerobic digestion is characterised by significant
dimensionality and intricacy, necessitating the monitoring of numerous parameters crucial
for operational guidance. By encapsulating the complex interrelations of biological and
chemical processes, ML models enable the prediction of parameters that would traditionally
depend on in situ sampling and labour-intensive analyses, where operators must visit sites
to collect samples for subsequent evaluation. A reactor that is inadequately monitored is
susceptible to instability due to VFA accumulation if the feedstock and operation condi-
tions are variable, for example due to seasonal changes. In practice, this may necessitate
taking the reactor offline for recovery, during which time waste remains untreated and gas
production is halted.

Recent advances in soft-sensing technologies have significantly enhanced the mon-
itoring and optimisation of AD processes. By enabling the real-time prediction of key
parameters such as VFAs, chemical oxygen demand (COD), and biogas yield, these meth-
ods address many of the challenges posed by traditional monitoring approaches [11].
In previous work, genetic programming and ANNs were trained on synthetic data to
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emulate real-world conditions, thereby improving both the precision and reliability of VFA
monitoring [12]. Another promising avenue involves reverse modelling with the ADM1
model to estimate substrate characteristics from digester output data, thereby enabling
more effective input management and greater process stability [13]. Other dynamic soft
sensors have been developed to use spatiotemporal graph convolutional networks (CNN)
that draw on both spatial and temporal data to improve VFA concentration predictions and
better accommodate industrial process variability [14]. Altogether, these methodologies
underscore the indispensable role of advanced data analytics in boosting the efficiency and
sustainability of AD systems.

This study integrates soft sensing and MEC technologies into AD processes. It employs
ML to predict FOS/TAC using real-time data from a pilot MEC-AD system. By leveraging
the rapid stabilisation inherent to MEC-AD systems, this approach reduces the length of
training datasets, accelerates initial operations, and enhances the viability of pilot stud-
ies. This strategy involves the development and assessment of predictive models prior
to integrating live FOS/TAC parameter predictions into operational workflows, offering
an effective, low-cost, in situ option for monitoring system stability. In contrast to cur-
rent investigations with AD systems which have investigated parameter prediction on
extensive, long-term datasets or synthetic simulations, these methods provide immediate
feedback for parameter estimation, increasing adaptability while decreasing reliance on
human oversight.

In demonstrating the feasibility of soft sensing in MEC-AD systems, this work high-
lights a data-driven method for reducing operational demands and associated costs. Further
investigation may reveal the viability of transferring learning between multiple MEC-AD
facilities. The emphasis on predicting FOS/TAC opens the door for broader applications
across the wastewater sector. By using digital soft triggers activated by real-time data, this
approach not only improves operational efficiency but also encourages more responsive
and economical monitoring and control solutions. Integrating this sensing and detection
framework into the workflow of AD and MEC-AD operations can unlock new potential for
cost-effective, scalable implementation in wastewater treatment applications.

2. Results and Discussion
2.1. Feature Analysis Evaluation

Feature analysis revealed that the importance scores of features ranked below the
seventh position decreased only marginally, prompting the selection of the top seven most
important features, which predominantly contributed to the overall model performance.
The feature analysis was then repeated on this subset of data, and Figure 1 highlights the
features implemented for training and optimisation in the pipeline. The target variable
and the highlighted features aligned with established knowledge of FOS/TAC prediction,
particularly with regard to pH, which emerged as highly important. This aligns with the
principle that VFA build-up relative to buffer capacity is reflected in pH values, whereby a
low pH inhibits methanogenic activity and consequently reduces methane production—an
effect observed in the monitored biogas output. Additionally, H2S ranked second in im-
portance, reflecting that in the breakdown of organics, sulphate-reducing bacteria (SRBs)
compete with methanogens for substrates such as H2 and acetate; when methanogens are in-
hibited, SRB activity increases, leading to higher hydrogen sulphide production [15,16]. Other
reactor-related features, such as the chemical oxygen demand (COD) of the equalisation
tank, the COD of the reactor, and the organic loading rate (OLR), conform to operational
understanding: fluctuations in COD feed can either inhibit or starve the reactor, causing
corresponding spikes or dips in FOS/TAC readings.
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Figure 1. Reduced feature space selected by the random forest feature importance model .

2.2. Model Comparison

After running the random search on the specified model, it was identified that among
various performance metrics, the best results were achieved with the ANN when averaged
over the five folds. The result from the best-performing models are listed in Table 1. As 5-
fold cross-validation was run independently out of fold, five sets of hyperparameters were
generated for each model; the best-performing hyperparameter configurations are listed in
Table 2. When comparing the average performance values across all folds, the traditional
models achieved a lower explained variance and higher MAE and NRMSE, indicating
lower performance.

Table 1. Average results for all models investigated in out-of-fold five-fold cross-validation, as
identified through random search.

Model Type MAE NRMSE Explained
Variance

Random Forest 0.12 0.77 0.59
SVM 0.14 0.94 0.34
XGBoost 0.13 0.81 0.55
ANN 0.072 0.48 0.77

2.3. Fold Investigation

When looking at a pilot dataset, the data’s temporal nature and the MEC-AD system’s
internal characteristics should be considered. Results illustrating the explained variance
across the five folds are depicted in Figure 2. The analysis shows that the middle three
folds tend to exhibit higher explained variance across all models. Notably, the SVM model
underperforms significantly in Fold 5, with an explained variance of −0.56, adversely
affecting the average performance, as reported in Table 1. This underperformance in
specific folds, particularly Fold 5, can be attributed to sudden shifts in loading conditions
and temperature, which pose greater challenges for models lacking the adaptability of
ANNs to complex nonlinear dynamics. Traditional models like SVM are especially sensitive
to noisy or outlier data, and while models such as random forest and XGBoost display
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reasonable efficacy during stable periods, their performance declines when operational
data deviate from typical conditions.

Figure 2. Explained variance for each model evaluated, ordered by test fold.

Table 2. Optimal hyperparameter configurations for each model derived from the independent 5-fold
cross-validation runs.

Model Type Best Fold Corresponding Best Fold Hyperparameters

SVM 2 tol = 0.0001, shrinking = True, kernel = linear,
gamma = 0.01, epsilon = 0.01, degree = 2, coef0 = 2.5,
C = 0.01

XGB 4 subsample = 0.6, lambda = 2, alpha = 0.1, estimators = 200,
maximum depth = 2, learning rate = 0.03, colsample
bytree = 1.0

RF 4 estimators = 1300, minimum sample split = 5, minimum
samples leaf = 1, maximum features = 0.7, maximum
depth = 10

ANN 4 layers = 3, neurons per layer = [64, 128, 128],
dropout = none, learning rate = 0.0013, activation = ‘relu’

Analysis of Fold 1 revealed that traditional models suffered significantly from op-
erational inconsistencies during the startup phase. These models likely struggled due
to an incomplete representation of startup conditions in the dataset. Noise introduced
by initial system adjustments led to reduced accuracy. Another key observation was the
negative impact of increased organic loading on the internal temperature of the reactor,
which fell below the optimal range for anaerobic digestion operations. This condition was
particularly evident in the data from Fold 5, where the models consistently showed poorer
performance. This suggests a lack of representation for such adverse conditions in other
parts of the training dataset, pointing to a potential gap in the diversity of operational
scenarios included during model training. However, this was found to have a lower impact
on the performance of the ANNs, which remained stable across all five folds. Techniques
such as dropout can aid ANNs avoid overfitting to noisy or outlier data [17]. This enables
the models to be more resilient to inconsistent data inputs, allowing ANNs to perform
more robustly and reliably in scenarios that inhibit the performance of traditional models,
demonstrating their suitability for handling the variabilities of industrial data streams.

Hyperparameter optimisation is important to ensure that the model is capable of
capturing the complexities of the training data without overfitting. For the SVM models,
a linear kernel with strong regularisation parameters (C = 0.01, ϵ = 0.01) proved most
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effective, indicating that a simple decision plane was optimal. In Fold 2, this configuration
achieved an MAE of 0.0614, an NRMSE of 0.678, and an explained variance of 0.788.
However, applying the same hyperparameters in Fold 1 resulted in a higher MAE (0.2178)
and lower explained variance (0.346). This highlights how temporal characteristics and
varying data distributions can significantly influence model performance. Assessing results
across the folds suggests that the linear kernel with appropriate regularisation offers better
robustness against such variations.

Tree-based models like XGBoost and random forest with simpler configurations gen-
erally showed better performance. The best-performing XGBoost model in Fold 4 utilised
a lower max depth of 2200 estimators, and a reduced learning rate of 0.03, achieving an
MAE of 0.0629 and an explained variance of 0.774. Increasing model complexity in other
folds did not necessarily improve performance, suggesting that the models might be fitting
to specific temporal characteristics evident in those folds rather than generalising well
across the dataset. Similarly, the optimal random forest model, also in Fold 4, employed
1300 estimators, a max depth of 10, and a max features parameter of 0.7, introducing a
high level of randomisation and cutoff between the trees. This configuration resulted in an
MAE of 0.0586 and an explained variance of 0.7843. Despite using similar hyperparameters,
performance varied across other folds, emphasising the impact of data variability and the
need for tailored hyperparameter tuning.

ANN models consistently outperformed traditional models across all folds, demon-
strating robustness and superior predictive accuracy. The optimal ANN configuration in
Fold 4, featuring a three-layer architecture with neuron counts of [64, 128, 128], is high-
lighted in Figure 3. This configuration was trained with a learning rate of 0.0013. This
model achieved an MAE of 0.0428, an NRMSE of 0.3488, and an explained variance of
0.8784. Other folds with varying architectures and learning rates also performed strongly,
underscoring the ANN’s ability to capture complex nonlinear relationships inherent in
the data. The variation in network depth, neuron counts, and learning rates across folds
highlights the importance of carefully configuring these parameters to enhance model
generalisation and predictive accuracy.

Overall, these results suggest that models with simpler architectures and appropriate
regularisation tend to generalise better across different data segments. In the context of
using these models as soft sensors, the training data available prior to implementation
may be limited or may require the transfer of historical data from other trials. Utilising
simpler models often prevents overfitting to less relevant features of the data, thereby
enhancing the model’s generalisation capabilities when applied to new datasets or different
operational settings [18]. The ANNs show consistent performance, suggesting they are
well-suited to capturing the underlying dynamics present in the training data. This aligns
with findings listed in other review papers that compare application domains [10,19].

Figure 3. Neural network structure selected for out-of-fold predictions in ensemble evaluation.
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2.4. Out-of-Fold Predictions for Ensemble Evaluation

Due to the ANN model producing the best predictive results among the models
investigated, the optimal results were observed in Fold 4. Over the five folds, different sets
of hyperparameter configurations were generated to facilitate the initial implementation
and narrow down to a single model for in situ production. To achieve this, the best-
performing model structure was used to conduct an ensemble evaluation using out-of-fold
predictions derived from k-fold cross-validation. The same 5-fold cross-validation strategy,
without shuffling, was utilised.

This network architecture comprised three hidden layers with 64, 128, and 128 units,
respectively, and employed the ReLU (Rectified Linear Unit) activation function. It was
optimised using the Adam optimiser with a learning rate of 0.00129. The Adam optimiser
was chosen for its efficiency in training, especially suitable for this soft sensing applications
due to its proficiency with datasets characterised by inconsistent events, such as sudden
spikes or drops in parameters like organic load [20]. This capability makes it an excellent
choice for ensuring accurate and reliable model performance in dynamic environments.
The ReLU activation function was selected for its computational efficiency, which allows
for capturing non-linear relationships without significant computational demands [21].
To mitigate the effects of random weight initialisation and the stochastic nature of training,
five independent instances of the model were trained per fold, each with different random
seed initialisations.

The predictions from these models were averaged to produce the final prediction for
each fold’s validation set, effectively forming an ensemble basis of performance assessment.
Deterministic operations were enforced in TensorFlow. The results from this assessment
are summarised in Table 3, showing comparative results to the original hyperparameter
training pipeline. Fold 5 produced a significantly lower explained variance compared to
the other folds. However, when inspecting an average of all folds, the explained variance
was 0.62. Excluding Fold 5, this gives a performance of 0.74, indicating that this model
structure is capable of explaining a substantial amount of the variability in the data across
all folds.

Table 3. Model performance metrics across folds.

Fold MAE NRMSE Explained
Variance

Fold_1 0.17 0.68 0.65
Fold_2 0.045 0.49 0.78
Fold_3 0.085 0.58 0.67
Fold_4 0.048 0.38 0.86
Fold_5 0.11 1.0 0.15

Average 0.092 0.63 0.62

The use of the ensemble method provides a robust and reliable assessment of the
model’s performance. Averaging predictions from multiple models per fold mitigates
the impact of random initialisation and stochastic variations during training, leading to
more stable predictions and a reduction in the variance of performance metrics. Variations
in MAE and NRMSE across folds reflect inherent dataset variability and the challenges
associated with modelling complex biochemical processes.

By preserving the temporal sequence in cross-validation and preventing data leakage,
the model is able to learn authentic temporal patterns, which are crucial for deployment
in dynamic processing environments. The methodology addresses common challenges
in soft sensor development, including limited data availability and risks of overfitting.
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A depiction of the true versus predicted values, plotted over the course of the trial, is
presented in Figure 4. During the initial folding phase, representing the startup phase,
undetected events may have compromised data integrity, leading to increased uncertainty
in the early predictions of the model. This is evidenced by the expanded confidence
intervals and prediction intervals. Figure 5 presents an adjusted plot showing a 5-day
moving average along with the prediction and confidence intervals. In the final trial month,
reduced offline data sampling frequency necessitated linear interpolation to align online
data with offline data, potentially degrading data quality. This is reflected in the broader
prediction intervals and diminished confidence levels in later stages, indicative of the
model’s decreased predictive reliability due to inconsistent data inputs. Data at both trial
ends often showed range extremities, potentially limiting the generalisation capabilities of
models trained without these folds.

Figure 4. Depiction of the time series analysis comparing actual values to predictions using the
selected ANN structure, employing out-of-fold ensemble evaluation. The data are segmented by
training folds.

Figure 5. Visualisation presenting a 5-day moving average of the true and predicted data, clearly
highlighting variations in confidence and prediction intervals throughout the trial. Additionally, data
segmentation by training folds is shown, offering insights into the distribution of data across different
training periods.
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A direct comparison between true and predicted values is further compiled in Figure 6.
The data points predominantly fall in the range of 0.2 to 0.6 on both axes, corresponding
to periods of stable reactor operation during the field trial and indicating a prevalence
of lower FOS/TAC ratios in the dataset. There is a noticeable spread in points at higher
values, suggesting that the model’s accuracy may diminish as the FOS/TAC ratio increases,
a trend that is quantitatively supported by the accuracies and F1 scores listed in Table 4.
Specifically, this table illustrates a reduction in model accuracy from 0.79 to 0.58 and in F1
score from 0.89 to 0.73 as the FOS/TAC ratio increases from the 0.3–0.6 range to values
greater than 0.6. In this context, accuracy measures the proportion of total predictions that
the model correctly identifies, highlighting a decrease in the model’s ability to accurately
classify reactor statuses outside the stable operating range. Similarly, the F1 score, which
balances precision and recall, shows a decline, suggesting that the model becomes less
precise and comprehensive in capturing all relevant instances under higher FOS/TAC
conditions. From an operational perspective, even if there is a deviation from exact values
at these higher levels, the overall trend can still be discerned. This allows for timely
operational interventions based on the general behaviour of the system rather than on
precise predictions, helping to maintain system stability and efficiency.

Table 4. Accuracy and F1 Score by range.

Range Accuracy F1 Score

0–0.3 0.78 0.87
0.3–0.6 0.79 0.89

>0.6 0.58 0.73

Figure 6. Direct comparison of actual values to predictions from the ANN, including data from all
folds in the out-of-fold ensemble evaluation.



Molecules 2025, 30, 1092 10 of 18

3. Materials and Methods
3.1. Data Collection

This study used data from a five-month pilot trial that employed a miniWASE™
system, provided by WASE from Bristol, United Kingdom. This system is a 4000-litre,
four-chamber MEC-AD system. The model focused on the primary chamber of the MEC-
AD system, which has a capacity of 1000 litres, and incorporated data from an upstream
equalisation tank used to prepare the influent waste. A diagram depicting the reactor
configuration, which was used to compile the dataset, is presented as a block flow diagram
in Figure 7. The primary MEC-AD reactor was fed from the equalisation tank containing
homogenised influent wastewater. Following a feed event, settled solids from the efflu-
ent holding tank were recirculated back into the primary MEC-AD reactor. After this,
the primary reactor was mixed using gas mixing, recirculating methane from the reactor’s
headspace. Throughout the trial, site operators conducted daily monitoring (excluding
weekends) for four months, collected digestate samples, and managed operations. The com-
piled dataset included data from variables tracked by online sensors and lab-based analyses.
The parameters listed in Table 5 detail those that can be monitored using online methods,
which facilitates the potential use of soft sensors. Table 6 provides a statistical overview
of the dataset used in this study, summarising the key monitoring parameters and their
variations during the trial period. The average COD of the wastewater was approximately
15,939.9 mg/L, as shown in the mean values, with the maximum observed variation reach-
ing 32,948.0 mg/L, illustrating significant fluctuations in wastewater strength. Throughout
the trial, the organic loading rate was progressively increased alongside a reduction in
hydraulic retention time, achieving stable operation at 2.3 days. This adjustment is reflected
in the biogas volumes shown in Figure 8. The data were adjusted to show a 5-day moving
average, providing a clearer depiction of trends over the trial period. During the final
month, the frequency of offline data sampling decreased to about every two days during
periods of stable operation. To fill in gaps in the dataset, the data were linearly interpolated
to synchronise all the online data with the offline parameters.

Figure 7. Block-flow diagram depicting the operational reactor setup. Components and flows are
labelled as follows: (A) waste equalisation tank, (B) primary MEC-AD reactor, (C) effluent holding
tank, (1) feeding inlet, (2) gas outlet, (3) tank 1 outlet, (4) sludge recirculation, (5) effluent outlet.
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Figure 8. Trends in organic loading rate (OLR) and biogas volume over the trial period. The lines
represent 5-day moving averages for both parameters.

Table 5. Monitoring parameters and their units.

Parameter Unit

Equalisation Tank pH -
Equalisation Tank COD mg/L
Feed Volume L
Organic Loading Rate kg COD/m3· day
Reactor pH -
Reactor COD mg/L
Current A
Temperature °C
CH4 %
H2S ppm
Hydraulic Retention Time days
Biogas Production L
FOS/TAC -

Table 6. Statistical overview of the dataset employed in this study.

Parameter Mean Std Dev Min 25% 50% 75% Max

Equalisation Tank pH 6.18 0.57 4.99 5.80 6.25 6.64 7.47
Equalisation Tank COD 15,939 4299 4900 13,996 15,462 17,914 32,948
Feed Volume 303 106 0 240 288 400 500
Organic Loading Rate 5.28 2.08 0 3.96 5.00 6.58 13.37
Reactor pH 7.22 0.21 6.50 7.10 7.21 7.31 7.70
Reactor COD 4158 1725 1761 2644 3682 5117 7834
Current 2162 716 240 1866 2283 2515 3990
Temperature 32.79 3.10 20.3 31.19 33.97 34.80 36.80
CH4 Percentage 68.09 4.29 51.6 65.7 67.8 70.4 82.0
H2S 687 383 7 427 632 952 1942
Hydraulic Retention Time 3.30 1.83 0 2.30 3.10 3.80 16.1
Biogas Production 1569 625 254 1099 1387 2078 3128
FOS/TAC 0.43 0.22 0.10 0.29 0.38 0.53 1.29
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3.2. Investigation Approach

A comparison is presented between traditional and deep-learning-based ML methods.
Traditional approaches, including regression analysis and decision trees, often require
fewer computational resources, resulting in faster training and prediction times on smaller
datasets [22]. However, these approaches can struggle with complex, non-linear relation-
ships and may not scale as effectively for large datasets or adapt as flexibly to new data as
deep learning techniques [23].

Deep learning models, notably artificial neural networks (ANNs), excel in handling
intricate patterns within large datasets and can automatically extract relevant features,
minimising manual feature engineering [24]. They have the capacity to adapt continuously
to new data with relatively minor re-engineering efforts. Nevertheless, their lack of trans-
parency can prevent interpretability and validation, especially for high-dimensional data.
Ongoing research in explainable artificial intelligence is working to mitigate this challenge
and enhance the trustworthiness and usability of deep learning models [25].

The research methodology employed a systematic workflow, beginning with data
context analysis, followed by data cleaning, feature analysis, and dimensionality reduction.
Subsequent to these initial steps, a variety of modelling techniques were introduced and
evaluated, spanning both traditional and deep learning approaches. SVM can effectively
filter out noise by ignoring deviations within a certain threshold ϵ. This capability is viable
for applications where data can be noisy and relationships between variables are complex
or not fully represented in the dataset. SVM balances model complexity with predictive
accuracy, which makes it particularly suitable for accurately predicting parameter trends [26].

Random forest (RF) creates an ensemble of decision trees, enhancing generalisation
and reducing overfitting by combining multiple estimators [27]. XGBoost extends this ap-
proach by applying gradient boosting principles that iteratively refine residual errors from
preceding models, incorporating built-in regularisation and flexible hyperparameters [28].
On the deep learning front, ANNs learn data representations through interconnected layers
of neurons and adjust parameters via backpropagation to minimise error functions [29].
An overview of this integrated workflow is depicted in Figure 9.

This study focuses on comparing the applicability of these diverse approaches, using
data from the MEC-AD system field trial, for in situ FOS/TAC prediction. By examining
their training efficiency, predictive accuracy, scalability, and interpretability, this study
definitively selects the most appropriate modelling strategy for the given domain.

3.2.1. Evaluation Metrics

To assess the predictive performance, this study employs several standard evaluation
metrics. The R2 score, or the coefficient of determination, measures the proportion of
variance in the dependent variable explained by the model,

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

The normalised root mean square error (NRMSE) provides a scale-independent mea-
sure of prediction accuracy,

NRMSE =

√
1
n ∑n

i=1(yi − ŷi)2

y − min(y)

The mean absolute error (MAE) captures the average magnitude of the errors in a set
of predictions,
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MAE =
1
n

n

∑
i=1

|yi − ŷi|

where
yi = actual value of the dependent variable for the i-th sample,
ŷi = predicted value of the dependent variable for the i-th sample,
y = mean of the actual values,
min(y) = minimum of the actual values,
n = total number of samples.

Figure 9. ML investigation processes and model comparisons used in the development of the soft
sensing model. Models investigated include SVM, random forest, XGBoost, and ANNs, the best
performing model was then selected for more robust analysis
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3.2.2. Feature Reduction

Initial manual reduction in the operational dataset was performed to only include data
from the equalisation tank and the primary reactor in the MEC-AD system. Further feature
importance analysis was conducted using a random forest model, which was selected for
its effective handling of complex, interrelated features without the need for transformation
or scaling. In the random forest algorithm, feature importance is assessed by calculating
the decrease in node impurity across all trees in the forest when a particular feature is used
to split the data. The average reduction in impurity provides a measure of the feature’s
ability to enhance model accuracy [30–32]. The ensemble method used by random forest
reduces error variance compared to other methods like linear models or single decision
trees, thereby improving the model’s ability to generalise to new data. Unlike linear models
that may overlook interactions among features, random forest captures these interactions
without requiring explicit specification, making it adept at modelling complex ecological
systems. Furthermore, the robustness of random forest against overfitting, even with a
large number of features and complex data structures, ensures more reliable and consistent
feature importance rankings.

3.2.3. Out-of-Fold Cross Data Training and Evaluation Methodology

To compare the performance of the listed models, an out-of-fold cross-validation
approach was employed during training. This ensured a robust evaluation and mitigates
potential variability and biases due to data quality or sampling rates from different periods
of the field trial dataset. The dataset was partitioned into five folds without shuffling
to preserve any inherent structure within the data. In each fold, 20% of the data were
reserved for final validation, while the remaining 80% constituted the training set. Nested
cross-validation was performed within each training set for hyperparameter tuning. Conse-
quently, each model was validated five times using the optimal hyperparameters selected
during the tuning process.

Hyperparameter optimisation for the traditional models was conducted using the
RandomizedSearchCV function from the scikit-learn library, version 1.6.1 [33]. This method
adopts a stochastic approach by randomly sampling combinations from specified distribu-
tions of hyperparameters over a predefined number of iterations. A scoring function was
defined to systematically evaluate the performance of each hyperparameter combination.
This approach is designed to improve the predictive accuracy of the soft sensor by effec-
tively exploring the parameter space. For tuning the artificial neural network (ANN), the
Keras Tuner library, version 1.4.7, was employed due to its effectiveness in systematically
exploring the hyperparameter space of neural networks. All software components were
implemented using Python 3.

The configuration was set to run up to 60 trials, each with five executions to account for
stochastic variability. Within these trials, the number of hidden layers (ranging from 1–4),
units per layer (32–128), and learning rate (1 × 10−4–1 × 10−2) were varied and evaluated
via cross-validation. Averaging across multiple executions further mitigated performance
variance. Through this process, we identified the three-layer architecture comprising 64,
128, and 128 units as the most robust model. The Keras Tuner library supports various
search strategies, including random search, Hyperband, and Bayesian optimisation, each
offering specific advantages in terms of speed and efficiency. In our application, performing
multiple executions per trial enhanced the reliability of the results by mitigating variability
arising from random initialisation and other stochastic factors.
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4. Conclusions
This study conducted an empirical investigation using a field trial dataset to approach

the challenges and opportunities inherent in implementing data-driven soft sensing mod-
els under realistic operational conditions. Contrary to numerous previous studies that
depended on extensive datasets derived from prolonged operational periods, the method-
ology employed demonstrates the feasibility of achieving substantial model performance
with a pilot dataset of under 150 days. This feasibility is attributed, in part, to the configura-
tion of the examined process as an MEC-AD system, which can achieve stable operational
conditions in a shorter period compared to traditional AD systems. As a result, the requisite
lead time for data acquisition prior to deploying a soft sensor is reduced, thus facilitating
the integration of these technologies into operation without necessitating prolonged base-
line trials. The FOS/TAC levels, observed over three months of stable operation, adapted to
changes in organic loading and specific microbial activity. Further investigation should be
undertaken to evaluate how models developed under these conditions perform in less sta-
ble operational conditions such as those linked to instability. To mitigate these limitations,
it is crucial to expand the variety of operational data and integrate datasets from diverse
trials. Incorporating advanced data analytics can provide deeper insights into the rarity and
uniqueness of the data and the states of the reactor. Additionally, when analysing across
multiple datasets, a variety of feature analysis methods should be considered and com-
pared to assess commonalities and differences exhibited by different operational datasets.
Methodologies surrounding feature analysis should be expanded to provide further in-
sights into inherent feature importance variability. This expanded analysis will enhance
understanding of which features consistently influence model performance and how they
vary across different operational conditions, thus supporting the development of more
robust and adaptive models. Identifying periods of data scarcity or states of the reactor that
are poorly characterised enables a more precise quantification of the model’s uncertainty.
This approach aligns with the principles of explainable artificial intelligence (XAI), which
emphasises not only transparency but also the reliability of models under varying condi-
tions. When deploying these models in industrial process controls, acknowledging and
communicating these uncertainties can ensure that decisions are made with appropriate
caution [34].

To further enhance the predictive capabilities of these models, future work could
explore the monitoring of microbial communities as a key variable in the ML pipeline
for methane yield. Approaches may look to utilise data on microbial shifts within the
model pipeline to enhance predictive outputs over extended time periods. By integrating
microbial community data, we may facilitate a more comprehensive understanding of
bioprocesses, ultimately leading to optimised operational strategies [35,36].

The impact of sampling rate should also be noted, as extended periods of interpola-
tion between data points can negatively affect data quality. Either new methods of gap
filling should be investigated or these periods should be removed from the training set.
Although the ANN exhibited superior performance in this analysis, the introduction of
novel data from additional trials could potentially render other modelling approaches more
viable. An increase in data volume could enhance the efficacy of traditional models, thereby
increasing their feasibility, particularly in scenarios requiring regular retraining. Further-
more, in contexts where multiple sites operate in real time with frequent model updates,
models characterised by lower computational demands may prove more advantageous,
especially when implemented across a distributed network. Prolonged intervals of data
interpolation may adversely affect model accuracy, underscoring the necessity to either
refine gap-filling methodologies or exclude inferior data segments from the training dataset.
While ANN demonstrated superior outcomes with the current dataset, the acquisition of
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supplementary data from other trials might enable traditional models to compete more
effectively, potentially rendering them more economically viable and computationally effi-
cient options, representing an imperative consideration for distributed, real-time process
monitoring across multiple sites.

Evaluating the robustness and practical advantages of these soft sensors through live
trials in a 4000 L scale-up MEC-AD trial system presents a unique research opportunity to
advance this technology. With the current developments in ML predictions, these models
can now be integrated directly into the operational loop and tested across various oper-
ational pilots on the same system. This allows for a continuous assessment of how to
integrate these predictive modelling methods into ongoing operations effectively. High-
lighting model explainability, continuous retraining, and integration into process controls
will ensure that operators can trust and efficiently utilise these predictive tools. Ultimately,
the innovation demonstrated in this work leveraging a small dataset facilitated by the rapid
stabilisation of an MEC-AD system opens promising pathways for deploying soft sensing
solutions in settings where extended data collection periods would be impractical. This
stands to accelerate the practical adoption of data-driven analytics in a broader range of
real-world operations, targeting implementation in a period close to that of commissioning.
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ANN Artificial neural network
CNN Convolutional neural network
COD Chemical oxygen demand
DNN Deep neural network
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SVR Support vector regression
TS Total solids
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