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Abstract

Upper-body adiposity is adversely associated with metabolic health whereas the opposite is 
observed for the lower-body. The neck is a unique upper-body fat depot in adult humans, 
housing thermogenic brown adipose tissue (BAT), which is increasingly recognised to influence 
whole-body metabolic health. Loss of BAT, concurrent with replacement by white adipose tissue 
(WAT), may contribute to metabolic disease, and specific accumulation of neck fat is seen in 
certain conditions accompanied by adverse metabolic consequences. Yet, few studies have 
investigated the relationships between neck fat mass (NFM) and cardiometabolic risk, and the 
influence of sex and metabolic status. Typically, neck circumference (NC) is used as a proxy for 
neck fat, without considering other determinants of NC, including variability in neck lean mass. In 
this study we develop and validate novel methods to quantify NFM using dual x-ray 
absorptiometry (DEXA) imaging, and subsequently investigate the associations of NFM with 
metabolic biomarkers across approximately 7000 subjects from the Oxford BioBank. NFM 
correlated with systemic insulin resistance (Homeostatic Model Assessment for Insulin 
Resistance; HOMA-IR), low-grade inflammation (plasma high-sensitivity C-Reactive Protein; 
hsCRP), and metabolic markers of adipose tissue function (plasma triglycerides and non-
esterified fatty acids; NEFA). NFM was higher in men than women, higher in type 2 diabetes 
mellitus compared with non-diabetes, after adjustment for total body fat, and also associated with 
overall cardiovascular disease risk (calculated QRISK3 score). This study describes the 
development of methods for accurate determination of NFM at scale and suggests a specific 
relationship between NFM and adverse metabolic health.
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Abbreviations

BAT, Brown Adipose Tissue; BMI, Body Mass Index; BMP4, Bone Morphogenic Protein 4; DEXA, 
Dual Energy X-ray Absorptiometry; DNA, Deoxyribonucleic Acid; FMI, Fat Mass Index; GWAS, 
Genome Wide Association Study; HDL, High-Density Lipoprotein; HOMA-IR, Homeostatic Model 
Assessment for Insulin Resistance; hsCRP, High-Sensitivity C-Reactive Protein; NAT, Neck 
Adipose Tissue; NC, Neck Circumference; ND, Neck Diameter; NEFA, Non-Esterified Fatty Acid; 
NFM, Neck Fat Mass; ROI, Region Of Interest; SAT, Subcutaneous Adipose Tissue; SBP, Systolic 
Blood Pressure; SNP, Single Nucleotide Polymorphism; T2DM, Type 2 Diabetes Mellitus; TG, 
Triglyceride; VAT, Visceral Adipose Tissue; VFM, Visceral Fat Mass; WAT, White Adipose Tissue; 
WC, Waist Circumference
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1. Introduction

Human fat distribution influences whole body metabolism through the differential functions of 
discrete fat depots, and thereby affects cardiovascular health [1]. Neck fat accumulation is seen 
in certain adiposity redistribution syndromes, including Cushing’s disease [2], partial 
lipodystrophies [3, 4] and obesity hypoventilation syndrome [5], which all show robust 
associations with insulin resistance and metabolic abnormalities. Recent interest in neck fat has 
grown succeeding the serendipitous rediscovery of adult brown adipose tissue (BAT) following 
[18F]-labelled 2-deoxyglucose positron emission tomography, which revealed a region across the 
anterior neck and supraclavicular boundaries displaying high glucose uptake and metabolically 
active tissue.

In obesity, there is concurrent regression of BAT and replacement with white adipose tissue 
(WAT) [6–9], which has been hypothesized to contribute to metabolic complications in obesity. 
BAT whitening likely enlarges neck fat mass (NFM) due to the greater lipid storage capacity of 
WAT, thus increasing neck circumference (NC). Notably, robust relationships have been reported 
between NC and cardiometabolic risk factors including measures of blood pressure, glucose 
homeostasis, cholesterol, triglycerides, as well as standard anthropometric variables such as 
waist circumference (WC) and body mass index (BMI), and metabolic disease including type 2 
diabetes mellitus (T2DM) [10–16]. Neck adiposity has been credited as a reliable index of upper-
body fat [17], and is closely associated with abdominal adiposity and central obesity [18, 19]. 
However, after adjusting for total fat mass, NC also shows independent associations with 
biomarkers including insulin resistance, triglycerides and cholesterol, with NC outperforming WC 
in some studies [10, 20,21].

It has been suggested that neck adipose tissue (NAT), with its proximity to the carotid blood 
vessels could play a role in regulating vascular tone through the secretion of various adipokines 
and vasomodulatory factors [22, 23]. Indeed, NC has been associated with arterial stiffness [24], 
carotid intima-media thickness [25], as well as cardiovascular outcomes [26], remaining 
significant even after correcting for visceral adipose tissue (VAT) mass. These data suggest that 
NAT, as an upper-body fat depot, could play an independent role in obesity-related metabolic 
dysfunction.

Others have suggested that the unique role that neck fat plays in metabolic health arises from its 
ability to release non-esterified fatty acids (NEFA) [27]. Upper-body adiposity has been linked to 
raised postprandial NEFA originating from non-visceral upper-body fat, such as the neck [28, 29]. 
The increased flux of NEFA from the neck to the liver may contribute to excess triglyceride 
accumulation and steatotic liver disease [30, 31].

Recording NC with a tape measure has been a typically favoured method because of its ease of 
implementation, yet this does not distinguish between fat and lean mass in the neck. A study that 
has investigated NAT volume, however, observed stronger relationships between NAT volume 
and metabolic parameters, as compared to NC [32], highlighting the need to evaluate alternative 
methods to quantify neck adiposity besides NC. Further to this, the evidence relating specifically 
to the association between NFM and obesity, sex and metabolic status is limited, despite its 
established influences on mortality and T2DM [33]. This is likely due to the limited availability of 
NFM data; the neck isn’t a standard region for dual x-ray absorptiometry (DEXA) body 
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composition outputs, and manually extracting NFM measurements from DEXA scans is a very 
time-consuming process. Thus far, machine learning methods have not been investigated as a 
tool for automated measurement of NFM. This study aims to establish and validate a novel 
method to estimate NFM from existing DEXA scans using convolutional neural networks, a class 
of machine learning that has established itself as the go-to methodology in computer vision and 
is frequently used in medical imaging studies for tasks such as disease classification and 
segmentation [34]. We applied this automated pipeline to assess NFM in a large cohort of people 
with and without T2DM, then investigated NFM in relation to relevant cardiometabolic and 
anthropometric indicators.

2. Materials and Methods
2.1 Study Population

The Oxford BioBank was utilised for all data acquisition [35]. This is a population-based 
bioresource, containing cardiovascular- and obesity-related phenotypes including biomarkers 
pertaining to fasting plasma biochemistry, genetics, anthropometrics and body composition (e.g. 
regional fat mass values) as assessed using DEXA scanning of European ancestry individuals 
living in Oxfordshire. We utilised 6955 DEXA scans to quantify NFM across individuals with and 
without T2DM. Descriptive statistics for common biomarkers including mean values and standard 
deviations were computed, partitioning by sex and T2DM status, and are presented in Table 1. 
Ethical approval was granted by the Oxfordshire Clinical Research Ethics Committee 
(08/H0606/107+5) and all participants provided informed consent.

2.2 Acquiring ROI and NFM Data

Regional fat mass can be reliably estimated using DEXA scanning, which utilises x-rays to 
quantify bone mineral density, as well as body composition parameters such as lean and 
adipose tissue. Quantification, however, largely relies on proprietary methodologies for analyses 
performed within the scanner software, which are inaccessible to users and usually not made 
available. Custom analysis for non-standardly defined regions, such as the neck, frequently 
requires manual input to select regions of interest on individual scans, which makes working with 
large DEXA databases impractical. To this end, we designed an automated pipeline utilising 
DEXA images for NFM estimation based on convolutional neural networks. Detailed 
methodology are available from Cresswell et al [36], but brief methods are summarised below 
and in Figure 1a.

We used DEXA images from 495 participants from the Oxford BioBank, representing a wide 
range of BMI values, to train and validate a deep learning model placement of the neck region of 
interest (ROI), to estimate neck diameter. To get training data for the ROI placement neural 
network, for each DEXA scan, four points were placed at each corner of the ROI. The ROI was 
constructed using both skeletal and soft tissue scans to identify predefined anatomical 
landmarks. The height of the ROI was set at the top lung apices and the lower margins of the 
mandible on both the right and left sides, with the width of the ROI being adjusted to suit neck 
diameter. From here, we created a pipeline to accurately perform ROI placement, training a U-
net using 400 images and the corresponding co-ordinates obtained from these manually placed 
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ROIs [36]. We trained a second model to quantify NFM using image regression based on a study 
performing brain age estimation and our previous work [36, 37]. For this, we used DEXA images 
from 1143 participants, where we enriched the cohort to improve model performance, as the ROI 
work predates the NFM estimation work. To obtain NFM values used as ground truth in training 
the regression network, the scanner software gave a value for NFM based on the constructed 
ROI for each participant. To estimate NFM, we trained a model using only the top half of DEXA 
scan images. Output data for both models were compared to manual annotations to validate the 
model ROI placements and NFM estimation, and quantified using mean absolute error (the sum 
of absolute errors between true and estimated values divided by the sample size). We evaluated 
the ROI placement model and NFM model based on held-out testing data that were not used in 
model design or training (n= 95, n= 143, respectively). The model was then applied to the 
remaining available scans in the Oxford BioBank.

2.3 Neck Skinfold and Circumference Measurements

Measurements for neck skinfold and circumference were taken with participants standing or 
sitting, with the head straight, shoulders relaxed and looking at a distant object without bending 
the neck. The vertical midpoint between the angle of the mandible and the clavicle was located 
for use as the height of the measurement site for NC and neck skinfold. NC was measured by 
taking a tape measure taught around the neck, traversing the identified midpoints. At the same 
midpoint, skinfold was measured, in mm, 3 times using skin calipers, and the average value from 
these was taken.

2.4 NFM Adjustment

NFM is strongly related to total body fat mass (men: r = 0.80, p < 0.00001, n= 2586; women: r = 
0.82, p < 0.00001, n = 3568). Thus it was important to establish an indicator for higher or lower 
NFM abundance in relation to total body fat. We therefore divided NFM by total fat mass to 
generate a value for adjusted NFM (NFMadjFM), giving a value for relative regional neck fat 
distribution. The same calculation was conducted for visceral fat mass (VFM), to establish a 
relative value for visceral adiposity (VFMadjFM). All values for regional adipose masses were taken 
from DEXA-based measurement.

2.5 Correlation Analyses

NAT measures were correlated with variables of interest using Pearson’s correlation co-efficient 
tests. Variables were log-transformed if normality, tested using the Shapiro–Wilk test, was not met. 
Fat mass index (FMI) was calculated by dividing total fat mass (kg) by height (m) squared. Body 
mass index (BMI) was calculated by dividing total body mass (kg) by height (m) squared. 
Cardiovascular risk was calculated using a broad range of parameters that have been previously 
incorporated into a validated model named QRISK3 [38], which is used clinically to calculate risk 
of cardiovascular events within the next 10 years. Factors incorporated into this score include: 
presence of atrial fibrillation, erectile dysfunction, migraines, rheumatoid arthritis, chronic kidney 
disease, severe mental illness, systemic lupus erythematosus, type 1 diabetes and T2DM; taking 
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medications including atypical antipsychotics, corticosteroids and high blood pressure treatment; 
weight; height; ethnic origin; angina; total cholesterol to high-density lipoprotein (HDL) ratio; 
systolic blood pressure; age; sex and smoker status. In the Oxford BioBank, complete data were 
available for the presence of T2DM; blood pressure treatment; weight; height; ethnic origin; total 
cholesterol to HDL ratio; systolic blood pressure; age; sex and smoker status, while self-reported 
data were relied upon for the remaining QRISK3 components. QRISK3 score was then calculated 
using these parameters, input into the QRISK3 R package (available at: 
https://github.com/YanLiUK/QRISK3). Statistical analyses were conducted using RStudio (version 
2023.06.1+524) and R (version 4.3.1). An unpaired student’s t-test analysis was used to compare 
NFM measures across groups.

2.6 Genetic Analysis

Genetic single nucleotide polymorphism (SNP) data were sourced through existing analyses 
from the Oxford BioBank, as detailed in Karpe et al [35]. Methods are briefly summarised below. 
For isolation of genomic DNA, 3 x 5ml whole blood aliquots were collected for each participant, 
before freezing at -80°C. Whole genome SNP arrays were generated using Affymetrix UK 
Biobank Axiom Array chips (now part of ThermoFisher Scientific, Waltham, MA, United States). 
Fourteen SNPs that have shown significant association with NC from previous studies were 
selected [39–41] to conduct a genetic association analysis with NFM and NC using 
measurements available in the Oxford BioBank. Individuals with complete genetic and neck fat 
data were selected (n=4518) and those with BMI > 50 or BMI < 18 were excluded, leaving 4494 
individuals (1942 male, 2552 female) for input data. All the phenotypes were first adjusted for 
sex, age, and the first 4 genetic principal components, and then the residuals from the fitting 
models were inverse-normalised and used in association with each SNP. For sex-separated 
analyses, phenotypes were adjusted for age, and the first 4 genetic principal components.

3. Results
3.1 Validation of Machine Learning-Estimated Neck Measurements

DEXA scans were fed into a machine learning model, firstly to delineate the ROI based on 
anatomical landmarks and subsequently to estimate NFM (Figure 1a). The output data from the 
machine learning-based networks were compared to manually quantified neck parameters (NFM 
and neck diameter) to validate the model estimations for ROI placement and NFM estimation. 
Analysing the ROI placement showed that the network could estimate the four neck boundary 
landmarks with an accuracy of less than 3 pixels (< 6.9mm). The plotted population distribution 
for estimated NFM averaged over 10 models showed consistently small standard deviations 
across a wide range of estimation values, demonstrating that the model could be applied across 
a wide NFM range without sacrificing estimation abilities (Figure 1b). Furthermore, when NFM 
estimations were compared to ground truth values in a held-out testing dataset (n = 143), we saw 
a strong linear correlation (Figure 1c) and a mean absolute error value of 54.8g, indicating a high 
performance accuracy from the model. Activation maps then confirmed that the network was 
focusing on the neck region to make its estimates (Figure 1a). The model highlighted areas in 
red (generally showing the neck) that it was using to make its estimates, and areas in blue 
(showing regions outside the neck, and image background) which were not prioritised in its 
decision making. Neck diameter (ND) values were calculated based on the distance between 
estimated landmarks of the ROI model, whereas NFM was estimated directly from the upper half 
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of the DEXA image (Figure 1a). Significant and strong correlations between ND and NFM were 
observed (Figure 2a & b). Assuming that the neck is cylindrical, ND will be linearly associated 
with NC, allowing us to relate our findings to the existing literature, where NC is frequently used 
as a proxy measurement for NFM. We also investigated the relationship between directly 
measured NC or neck skinfold measurements with estimated NFM in a small subset of people (n 
= 41). NC, directly measured by tape measure, showed a weaker correlation with NFM than for 
the estimated ND value, presumably because of the variability of human measurement when 
quantifying NC. Neck skinfold poorly reflected NFM, likely due to its basis on a single 
measurement in one location (Figure 2b).

3.2 NFM in Relation to Sex, Age and Diabetes

NFMadjFM, acted as an indicator for relative regional neck fat distribution. The stratified relative 
frequency histogram (Figure 3a) showed higher NFMadjFM in men compared to women, with the 
sex difference proving statistically significant when further tested with a t-test (healthy: p < 1.0 e-

70, T2DM: p < 1.4e-36). The histogram also revealed higher NFMadjFM in people with T2DM 
compared with no diabetes, which was again statistically significant for both men and women 
when tested (men: p < 6.2 e-38, women: p < 4.6 e-67). This strongly indicates that there is a 
regional shift in fat distribution towards the neck occurring with T2DM. Although the T2DM 
population was older, no clear relationship was seen between NFM and age, while positive 
significant relationships were seen for VAT in the same individuals (data not shown).

3.3 NFM is Associated with Other Fat Depot Masses, Particularly

VAT

Without controlling for total body fat, NFM correlated positively and significantly with other 
regional fat masses in men and women, with and without T2DM (Figure 4a). Weaker correlations 
were seen between NFM and measures of subcutaneous abdominal adiposity and leg fat mass, 
while correlations with VFM were strong and consistent across all 4 subgroups. However, after 
controlling for total fat mass using partial correlations, NFM remained significantly and positively 
associated with VFM, while it became negatively associated with leg fat mass in all groups. In 
women, we observed stronger negative correlations between NFM and leg fat mass compared to 
males, suggesting that females show stronger regional dimorphisms in upper- versus lower-body 
fat expansion. Negative associations were also apparent for abdominal subcutaneous fat mass 
in men with and without T2DM (Figure 4b).

3.4 NFM is Associated with Metabolic Status

We found robust correlations between NFM and widely employed obesity metrics, such as BMI, 
total fat mass, and FMI, as depicted in Table 2. These correlations were consistent and 
significant across the subgroups, encompassing both sexes and individuals with and without 
T2DM. Significant relationships were also seen between NFM and total lean mass, but the 
association was weaker as compared to BMI, total fat mass and FMI. Stronger relationships were 
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observed between NFM and specific measures of adiposity (total fat mass and FMI), as 
compared to BMI, confirming that NFM expansion may be largely paralleled by increasing 
adiposity, as opposed to lean mass. Without correcting for total fat mass, NFM and VFM showed 
positive, significant correlations of very similar strength for insulin resistance (HOMA-IR), plasma 
triglycerides (TG), systemic low-grade inflammation (hsCRP), blood pressure (SBP) and 
cholesterol in both men and women without T2DM (data not shown). When correcting for total fat 
mass, however, relationships between NFM and these metabolic markers weakened, despite 
remaining highly significant, while those for VFM stayed largely the same (Figure 5). We used 
the QRISK3 algorithm to estimate overall cardiovascular risk in relation to NFMadjFM mass and 
VFMadjFM in a population without T2DM. NFMadjFM values were used to divide individuals into 
deciles. QRISK3 score was then compared across these deciles, to indicate how cardiovascular 
risk may change with increasing relative neck adiposity. 10-year cardiovascular event risk was 
approximately 2-fold higher comparing the lowest NFMadjFM decile with the top decile in both men 
and women (Figure 6), illustrating that a greater relative distribution of fat towards the neck 
region, independent of total adiposity, is robustly associated with multiple measures of 
cardiometabolic risk in a healthy population. VFMadjFM also showed a robust relationship with 
QRISK3 score, in both men and women, where we saw roughly 4.7-fold greater risk score when 
comparing the lowest and highest VFMadjFM deciles.

3.5 Neck Fat Genetic Analysis

To establish whether our measures of neck adiposity have a genetic component, we looked at 
measures of NFM in association with 14 literature-driven [39–41] SNPs across the Oxford 
BioBank dataset (Table 3). Notably, 8 of these SNPs that had previously demonstrated 
associations with NC were consistently and significantly linked with estimated NC or NFM in our 
dataset (as outlined in Table 4), validating the translatable utility of our data.

4. Discussion

Accumulation of fat in the neck area is not normally part of any standardized assessment of 
human adipose tissue distribution, but a quantitative estimate of fat mass in the neck region is 
likely to be clinically relevant because of the number of adiposity redistribution conditions with 
severe metabolic complications such as familial partial lipodystrophy [3, 4], Cushingoid 
syndromes [2] and obesity hypoventilation syndrome [5]. Here, we show that NFM can be reliably 
estimated using standard DEXA images in conjunction with machine learning tools. This was 
achieved by developing machine learning models that were trained to estimate either the NFM 
content or the neck ROI co-ordinates (to give ND values). 

When comparing estimated NFM and ND with real measured values for NC and skinfold, we saw 
strong positive correlations. Our genetic analyses corroborated with existing data, confirming that 
the estimated measures of NFM were in accordance with existing studies. Interestingly, SNPs 
that had been previously associated with BMI-adjusted NC, were associated with NFMadjFM, as 
opposed to non-adjusted measures of neck adiposity, confirming the functionality of our 
adjustment protocols, and further indicating that these SNPs may pertain to specific NAT 
expansion, independent of body fat mass. One such SNP, rs227724, was the leading SNP in a 
study looking at NC [41], which highlighted the overlap of this SNP with an eQTL for the NOG 
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gene, encoding the Noggin protein. Noggin expression has been shown to influence processes 
including cellular differentiation of adipose tissue, partly through interaction with BMP4 [42], 
which promoted white adipogenesis by inducing commitment of adipose precursors to the white 
adipocyte lineage [43, 44]. Still, how these SNPs relate to total upper-body adiposity and 
metabolic risk is unclear and warrants further exploration. Subsequent studies looking at DEXA 
scans in larger cohorts, such as the UK BioBank (n > 70,000), would be of benefit to assess 
NFM, as this would give the necessary power to conduct a full GWAS for NFM and NFMadjFM.

Understanding the relationship between NFM and the mass of other fat depots is essential to 
comprehensively assess the role of regional adiposity in cardiometabolic health. Fat distribution, 
independent of total fat mass, is an important determinant of metabolic health, with upper-body 
adiposity, particularly in the abdominal visceral compartment, being associated with adverse 
metabolic signatures [45], while lower-body adipose tissue accumulation appears protective [46]. 
NFM notably associated with abdominal adiposity, although when controlling for total body fat, 
we found that this positive relationship only held true for VFM and not subcutaneous adipose 
tissue (SAT). In agreement with this, longitudinal data has suggested that increases in NC are 
accompanied by increases in VAT to a greater extent than SAT [47]. This interesting relationship 
between NFM and VFM may be a product of shared developmental origins or functional 
properties. Linkage between NAT and VAT is evident in inherited lipodystrophies, such as the 
Dunnigan type familial partial lipodystrophy, where mutations in the Lamin A/C gene are 
specifically associated with the maintenance of visceral, neck and facial adipose tissues, 
concurrent with the loss of SAT [48]. Both NAT and VAT are also more responsive to 
glucocorticoids [48–50] and may produce more cortisol [51], compared to subcutaneous depots, 
as seen in Cushing’s disease, where hypercortisolism accompanies notable neck and visceral 
adiposity in conjunction with reduced SAT mass [2, 48]. 

NFMadjFM and VFM were higher in individuals with T2DM and higher in men compared to women, 
implying that there is a shift in fat distribution, favouring NFM, dependent on both sex and 
metabolic status. Sex-dependent differences may result from steroid hormone responses; SAT is 
more oestradiol responsive compared to NAT and VAT [49]. Thus, in pre-menopausal women, 
where oestradiol levels are comparatively higher than in men, SAT expansion is favoured over 
VAT and NAT expansion. These effects may be further augmented by the sexual dimorphism in 
glucocorticoid responses; males may show heightened transcriptional responses to 
glucocorticoids [52], and also site-dependent differences in adipose tissue expansion capacity 
following glucocorticoid exposure, as compared to females [53, 54]. In mice, testosterone 
treatment increased corticosterone-induced adipocyte hypertrophy and BAT whitening [55], 
potentially due to sex hormone-mediated modulation of glucocorticoid receptors [56]. Thus, 
differences in sex hormone and cortisol responses may contribute to BAT whitening and 
subsequent enlargement of NFM [57]. This may further explain the higher NFM observed in 
T2DM, since T2DM has also been associated with higher cortisol secretion compared to healthy 
controls [58]. 

In light of the observed strong correlations between NFM and VFM, as well as the associations 
with T2DM, we explored the relationships between NFM, and a range of commonly used 
parameters that associate with obesity-related complications, such as hsCRP, plasma 
triglycerides, total/HDL cholesterol ratio, insulin resistance (HOMA-IR), systolic blood pressure, 
and markers of adipose tissue lipolysis (NEFA). The observed significant associations were in 
accordance with existing studies, which have highlighted the relationships between NC and 
metabolic, as well as inflammatory, markers [26]. These relationships paralleled those of VAT 
before correcting for total body fat mass, which is of relevance considering that VAT 
accumulation is a strong predictor for cardiometabolic outcome, as compared to SAT expansion 



11

[59–61]. When correcting for total fat mass, NFMadjFM showed weaker associations than VFMadjFM 

with the selected risk factors, showing that relative neck adiposity does not predict 
cardiometabolic biomarkers as well as relative visceral adiposity. Weaker associations between 
NFM and metabolic biomarkers after correcting for total adiposity likely reflect the strong 
relationship between NFM and total fat mass in this healthy population. Still, given that NFMadjFM 

was significantly higher in individuals with T2DM, it would be valuable to establish whether these 
relationships change in metabolic disease, where we see a notable increase in NFMadjFM. In the 
healthy population, the range of VFMadjFM values greatly exceeded that of NFMadjFM, and thus 
studies of NFMadjFM in a more varied cohort would be valuable for better establishing the 
associations between NFMadjFM and metabolic risk. 

In an attempt to assess the overall impact of NFM on cardiovascular health, we used the 
QRISK3 algorithm to compare QRISK3 score across deciles of NFMadjFM. This showed a 2-fold 
greater risk of 10-year cardiovascular events when comparing the bottom with the top decile. 
Notably, this analysis was made after adjusting for total fat mass, thus relative neck adiposity is 
an independent predictor of cardiovascular disease risk. VFMadjFM was a better predictor, and 
showed strong associations with blood pressure, which was not the case for NFMadjFM, potentially 
explaining the steeper association with VFMadjFM deciles and QRISK3, as compared with 
NFMadjFM. Still, these results agree with current research depicting the associations between NC 
and cardiometabolic outcomes, particularly in relation to T2DM [11, 14, 15, 20]. Here, however, 
we uniquely discover that neck adiposity is an independent contributor to cardiometabolic risk, 
highlighting its potential utility as a clinical predictor for cardiometabolic disease.
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9. Figure and Table Legends

Table 1

Cohort Summary Data. Mean and standard deviation values for common metabolically relevant 
variables. Data are subdivided by sex and T2DM status. BMI = body mass index ( weight (kg) / 
height (m2) ), HOMA-IR = Homeostatic Model Assessment for Insulin Resistance ( glucose 
(mmol/L) x insulin (mmol/L) / 22.5 ) ; LDL = low-density lipoprotein; HDL = high-density 
lipoprotein ; TG = triglyceride ; NEFA = non-esterified fatty acid ; hsCRP = high-sensitivity C-
reactive protein.
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Table 2

Associations between common body mass metrics, and neck fat mass. Data are divided by sex 
and T2DM status (n=6934). BMI = body mass index (weight (kg) / height (m2) ; FMI = fat mass 
index ( total fat mass (kg) / height (m2)

Table 3

SNPs previously associated with neck circumference or neck adiposity. RSID = Reference SNP 
cluster ID ; REF = reference base ; ALT= alternative base; MAF= minor allele frequency; OBB = 
Oxford BioBank

Table 4

SNPs associated with predicted neck parameters and corresponding findings from GWAS 
cohorts. RSID = Reference SNP cluster ID ; REF = reference base ; ALT= alternative base; 
MAF= minor allele frequency; OBB = Oxford BioBank ; FDR = false discovery rate ; ND = neck 
diameter ; NC = neck circumference ; NFMadjFM = neck adipose tissue mass adjusted to total 
body fat mass.

Figure 1

NFM estimation pipeline and validation. a) DEXA images were used as input to the NFM 
estimation model which produces probabilities of neck fat measurement estimates for each 
subject. An ensemble average of 10 models per measurement is used to make predictions more 
robust. Model activation maps are shown as an intermediate step, to enable visual assurance 
that the trained models are indeed focusing on the neck region. b) NFM average estimations and 
standard deviation across 10 models for NFM (n = 6955) c) Validation scatterplot. Ground truth 
compared to estimated values for NFM (n = 143). Mean absolute error (MAE) = 54.8g

Figure 2

Associations between neck fat parameters. NFM units are in grams, NFMadjFM units are the 
proportion of NFM to total fat mass, and the remaining variables are measured in centimetres. a) 
Correlations between predicted ND, NFMadjFM, and NFM. Data is stratified and coloured by 
subgroup in scattergraph and density plots (n = 6934). NFM values are log-transformed. Pearson 
correlation co-efficients are coloured by strength of association and significance is indicated by 
asterisks (* p<0.05 ; ** p < 0.01 ; *** p < 0.001 ). b) Correlations between predicted neck fat 
parameters (NFM, ND), and actual measurements (NC, neck skinfold). Actual neck fat 
measurements were taken from a subset of the T2DM group (n= 41), as detailed in Section 2.3. 
Scatterplots and density plots for each variable are displayed on the lower-left and central line of 
the grid respectively, and Pearson correlation co-efficients are displayed in the upper-right panel, 
coloured by strength of association. Neck skinfold values are log-transformed. Asterisks indicate 
significance of association (* p<0.05; ** p < 0.01 ; *** p < 0.001).
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Figure 3

Distribution of NFMadjFM stratified by sex and T2DM. Relative frequency histogram, illustrating 
differences in NFMadjFM. Data are stratified and coloured by subgroup. Horizontal bars 
representing the interquartile range for each group are shown above the histogram, and the 
median values are represented by the point within the bar (n = 6394).

Figure 4

NFM associations with other adipose depot masses. a) Correlations between NFM and other fat 
depots (n=6934). Scattergraphs and density plots are stratified and coloured by subgroup. 
Pearson correlation co-efficients are displayed in the upper-right panel, with asterisks indicating 
the significance of associations (* p<0.05 ; ** p < 0.01 ; *** p < 0.001). b) Partial correlation 
analysis between NFM and other adipose tissue masses, controlling for total fat mass. Analyses 
are stratified by group, and coloured by strength of association (n=6934). Asterisks indicate the 
significance of associations (* p<0.01 ; ** p < 0.001 ; *** p < 0.0001)

Figure 5

Correlation between NFMadjFM and relevant cardiometabolic risk variables. All values have been 
log-transformed. Scatterplots and density plots are stratified and coloured by sex, using the non-
T2DM population. On the upper-right panel, Pearson correlation co-efficients are displayed, and 
boxes are coloured by strength of association. Asterisks indicate the significance of association 
(* p<0.05 ; ** p < 0.01 ; *** p < 0.001). HOMA-IR = Homeostatic Model Assessment for Insulin 
Resistance ( glucose (mmol/L) x insulin (mmol/L) /22.5 ) ; TG = triglyceride ; Total/HDL 
cholesterol = total cholesterol / high-density lipoprotein cholesterol ; SBP = systolic blood 
pressure ; NEFA = non-esterified fatty acid ; hsCRP= high-sensitivity C-reactive protein.

Figure 6

QRISK3 scores, stratified by NFMadjFM and VFMadjFM. Relative differences in QRISK3 score 
across the deciles is captioned in the coloured bubbles, and is relative to the score of the first 
decile. Data are stratified and coloured by sex, using the non-T2DM groups. a) QRISK3 score 
stratified by NFMadjFM b) QRISK3 score stratified by VFMadjFM 
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Table 1: Cohort Summary Data

No Diabetes T2DM

Variable Sex Mean ± SD N Mean ± SD N

Male 43.36 ± 8.60 2586 60.68 ± 10.37 487Age

Female 42.68 ± 7.81 3568 59.47 ± 11.15 314

Male 26.60 ± 4.11 2584 30.58 ± 5.27 480BMI

Female 25.45 ± 5.07 3562 32.34 ± 6.37 310

Male 301.14 ± 155.29 2586 497.82 ± 223.98 487Neck Fat Mass

Female 228.16 ± 128.49 3568 445.99 ± 199.74 314

Male 12.65 ± 1.22 2577 14.49 ± 1.70 408Neck Diameter

Female 11.47 ± 1.19 3559 14.20 ± 1.91 258

Male 3.24 ± 2.27 2543 9.76 ± 7.48 30HOMA-IR

Female 2.65 ± 1.64 3516 10.97 ± 8.55 10

Male 3.42 ± 0.87 2561 3.55 ± 1.00 30LDL

Female 3.09 ± 0.82 3566 4.13 ± 1.17 10
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Male 1.20 ± 0.32 2584 1.03 ± 0.20 31HDL

Female 1.52 ± 0.39 3568 1.55 ± 1.66 11

Male 1.34 ± 0.86 2586 1.56 ± 0.87 487TAG

Female 0.94 ± 0.48 3568 1.51 ± 0.72 314

Male 42.56 ± 28.29 2580 70.43 ± 55.15 31Glycerol

Female 61.56 ± 35.3 3561 73.62 ± 19.08 10

Male 427.55 ± 202.27 2586 600.41 ± 261.71 487NEFA

Female 510.17 ± 240.24 3568 728.84 ± 279.66 314

Male 1.70 ± 5.32 2579 3.56 ± 5.24 31HsCRP

Female 1.81 ± 3.99 3558 6.05 ± 5.34 10

Table 2: Associations with Neck Fat Mass

Cohort BMI Total Fat Mass Total Lean Mass FMI

Male No Diabetes 0.75 0.80 0.30 0.80

Female No Diabetes 0.80 0.82 0.36 0.82

Male T2DM 0.78 0.82 0.45 0.82

Female T2DM 0.76 0.79 0.52 0.79
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Note: p < 0.00001 for all displayed associations

Table 3: All SNP Lookups
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Table 4: Significant SNPs of Interest
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Coefficient
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FDR
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OBB SNP 
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