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Abstract 
Computational intelligent systems are becoming an increasingly attractive solution for power amplifier (PA) 

behavioural modelling, due to their excellent approximation capability. This paper utilizes an adaptive fuzzy logic 

system (AFLS) for the modelling of the highly nonlinear MIMIX CFH2162-P3 PA. Moreover, PA’s inverse model 

based also on AFLS has been developed in order to act as a pre-distorter unit. Driving an LTE 1.4 MHz 64 QAM 

signal at 880 MHz as centre frequency at PA’s input, very good modelling performance was achieved, for both PA’s 

forward and inverse dynamics. A comparative study of AFLS and neural networks (NN) has been carried out to 

establish AFLS as an effective, robust, and easy-to-implement baseband model, which is suitable for inverse 

modelling of PAs and capable to be used as an effective digital pre-distorter. Pre-distortion system based on AFLS, 

achieved distortion suppression of 84.2%, compared to the 48.4% gained using the NN-based equivalent scheme. 
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1. Introduction 
 
Modern emerging mobile systems such as High Speed Packet Access (HSPA), Long-Term Evolution (LTE), and 

Mobile Interoperability for Microwave Access (Mobile WiMAX), require radio transceivers able to support high 

data rates and throughput. One of the main trends in designing wireless transmitters is the delivery of enhanced 

transmitter functionalities through digital signal processing (DSP) schemes. Since the modulated signals of these 

wireless systems have higher peak-to-average ratio (PAR) and broad bandwidth, power amplifiers (PA) with high 

linearity are thus required [1]. However, the assumption of linearity for wireless communication systems limits their 

efficiency as such assumption is not realistic due to the nonlinear properties of the front-end components and 

semiconductor devices in the PA [2]. The simplest method is to back-off the power level to achieve high linearity, 

but with very low efficiency. In order to increase efficiency and minimize the distortion, many different linearization 

techniques, such as the feed-forward method [3], feedback method [4], analog predistortion [5] and digital 

predistortion schemes [6] have been developed. Among these techniques, digital predistortion (DPD) has become 

the most potential method due to its high accuracy and flexibility, as well as to advances in digital signal processors 

and digital-to-analog converters. The behavioural modelling and the inverse modelling of PAs are the most 
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important parts in a DPD system. Various schemes of memory or memory-less models have been reported in 

literature for behavioural modelling, such as the Volterra series model [7], Look-Up Tables (LUT) scheme [8], 

Wiener model [9], polynomial model [10], neural network (NN) model [11] and neuro-fuzzy (NF) model [12].  

The PA exhibits two nonlinear distortions, which involve the amplitude and phase distortion respectively. 

Earlier approaches attempted to model the PA behaviour by utilizing two uncoupled NN-based models that attempt 

to capture amplitude and phase responses separately [13]. An adaptive neuro-fuzzy inference system (ANFIS) for 

DPD has been discussed in [14], however the adopted scheme was static and no memory effects of PAs were 

considered. The linearization of PAs with memory effects using ANFIS has been considered in [15]. In that paper, 

two ANFIS schemes have been employed as pre-distorters for correcting the amplitude and phase distortions 

separately. Neuro-fuzzy based identification is an effective method for modelling nonlinear systems because it 

combines the advantages of neural systems and fuzzy logic systems. It is represented by fuzzy IF-THEN rules, while 

the parameters involved can be updated by a suitable learning algorithm. However, ANFIS’s main limitations are 

the exponential growth of rules subjected to the number of input variables as well as its applicability only to single 

output problems. The majority of existing neuro-fuzzy schemes, like ANFIS, follow the classic Takagi–Sugeno–

Kang (TSK) structure, where only one output is enabled [16].  

Currently, many researchers have utilized NNs’ multiple input multiple output (MIMO) modeling capabilities, 

and thus PA modeling has been implemented through the use of single NN MIMO models [17-18]. The advantage 

of a MIMO network against a two-single structures scheme is also related to the possible adaptation needed in case 

PA’s behavior is modified. The main weakness of the two-single structures scheme is the asynchronous convergence 

of the two models, where both models do not converge to an optimal model at same time, leading to over- or under-

training of one model [17]. 

To overcome the limitations of ANFIS scheme, the main objective of this paper is to associate the modelling of 

forward and inverse characteristics of a PA through a MIMO neuro-fuzzy scheme. The proposed “Adaptive Fuzzy 

Logic System” (AFLS) model, in addition to its MIMO characteristics, includes an alternative defuzzification 

scheme, and address adequately the “curse of dimensionality” rules problem, which is an inherent issue in TSK-

based neuro-fuzzy structures. The AFLS scheme is utilized for the modelling and pre-distortion of the MIMIX 

CFH2162-P3 power amplifier. Modelling procedures have been carried out for the LTE 1.4 MHz 64 QAM signal at 

880 MHz as centre frequency, at the 1dB compression point of the device under test (DUT). Experimental results 

from AFLS are then compared only with similar MIMO-based structures, such as the time-delayed neural network 

(TDNN) model. Such comparison is considered as an essential practice, as we have to emphasize the need of 

induction to the area of wireless communication systems, advanced learning-based MIMO modelling schemes, 

which may have a significant potential for an efficient DPD system. 

 
2. Adaptive Fuzzy Logic System 
 

A fuzzy system approximates an unknown mapping by inference from a set of humanly understandable statements 

or rules. Fuzzy systems represent the imprecision found in real-world problems using IF-THEN rules expressed in a 

natural language. Fuzzy set theory is a mathematical tool for translating abstract concepts found in natural language 



into computable entities. Such entities are called fuzzy sets. Mathematically, a fuzzy set A  is represented by a 

membership function defined on a domain X  given by [ ]A : X 0,1→µ ,where A is the fuzzy label or linguistic 

(value) term describing the variable x and ( )A xµ  represents the grade of membership of x belonging to the fuzzy 

set A . A fuzzy system generally consists of three parts [19]: 

• Fuzzifier: used at the front of the system to convert crisp data to fuzzy sets. Fuzzification is the process 

performed by the fuzzifier. The fuzzification process smooths out the model response, making it less 

sensitive to specific input values and hence to noise in the input.  

• Fuzzy rule base and Fuzzy inference engine: fuzzy rule base represents the knowledge base of the system 

and the fuzzy inference engine acts like a decision making logic system that combines the rules in the rule 

base according to approximate reasoning theory to produce a mapping from fuzzy sets in the input space to 

fuzzy sets in the output space.  

• Defuzzifier: used at the output of the system to convert fuzzy sets into crisp values. The defuzzification 

stage is needed to obtain a crisp output from the fuzzy output resulting from the inference of rules.  

Although NNs have good learning abilities, fuzzy logic systems lack such characteristics. The idea in NF systems is 

to merge the capabilities of model-free and trainable systems and noise tolerance of neural networks with the ability 

of dealing with imprecise situations from the fuzzy set theory.  

 
Fig. 1: AFLS Architecture 

The majority of NF systems follow a fuzzy rule-table approach that utilise the “look-up table” concept. In those 

models, an input space is divided into 1 2 nK K .... K× × × fuzzy subspaces, where iK , 1 2i , ,..,n= is the number of fuzzy 

subsets for the thi input variable [20]. As one fuzzy rule is assigned for each of these subspaces, their main drawback 

is that the number of fuzzy rules increases exponentially with respect to the number of inputs n . ANFIS is a 



classical example of such approach, where the number of fuzzy rules is related to the number of input variables as 

well as the number of membership functions for each input.  

Several methods have been used in defuzzification section, such as “centre average (CA)”, “centroid of area 

(COA)”, centre of sums (COS), etc. The COA approach is an optimal answer to defuzzification because it uses all 

available information to compute the output. One major problem, however, with this approach is its intensive 

computation and its limited applicability in neurofuzzy systems, due to the presence of a learning algorithm for the 

tuning of consequent parameters [21]. The CA defuzzifier, on the other hand, is more efficient in terms of 

implementation, but is only valid for symmetrical output membership functions. Its main disadvantage is that it 

suffers from not utilising the entire shape of the consequent membership function. The output of a CA defuzzifier is 

still the same, regardless of whether the shape is narrow or wide [22]. However, like COA, CA is suitable for MIMO 

fuzzy logic systems. Finally, defuzzification at TSK models follows a different strategy by replacing the fuzzy 

consequent part with a polynomial function of the input variables. TSK fuzzy model is by far the most popular 

candidate for single output modelling problems [16]. The proposed MIMO AFLS scheme does not follow TSK’s 

architecture, as the number of memberships for each input variable is directly associated to the number of rules, 

hence, the “curse of dimensionality” problem is significantly reduced. In addition, an alternative to CA 

defuzzification approach has been adopted, the area of balance (AOB), and its structure is shown in Fig. 1 [23]. 

AFLS’s rules are derived and extracted from given training data. In other words, its parameters can be trained 

like a neural network approach, but with its structure following the one of a fuzzy logic system. The first layer is the 

fuzzification layer, and its nodes represent the fuzzy sets used in the antecedent parts of the fuzzy rules. A 

fuzzification node receives an input and determines the degree to which this input belongs to in the node’s fuzzy set. 

The outputs of this layer are the values of “Gaussian-shape” membership functions (MF) for the input values. 
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where m
ic and m

ib are the centre and spread parameters of the membership function for the ith input and the mth rule. 

The next layer is the firing strength calculation layer. Since each fuzzy rule’s antecedent part has AND connection 

operator, the firing strengths are calculated using the product T-norm operator. The most commonly used fuzzy 

AND operations are intersection and algebraic product. In this case, the multiplication has been used, and the output 

of this layer has the following form:  
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where ( )m
i

iF
xm  is the membership value of the ith input of rule m. The number of rules, at this layer, is equal to the 

number of MFs allocated to each input variable, minimizing thus the problem of excessive number of rules as in the 

case of TSK-based models. In the classic CA defuzzification scheme, the output of AFLS is a linear combination of 

the weighted outputs of the normalised rules, as shown in the following equation 
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where m
py is considered as the centre of the membership function of the thp output of the thm rule. This layer involves 

also the normalization rules layer. Each node in this layer calculates the normalized activation strength of each rule 

by: 
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An alternative defuzzification approach, the area of balance (AOB), has been proposed as an attempt to “match” the 

accuracy of COA while preserving the simplicity of CA defuzzification method [23]. The widely used COA method 

generates the centre of gravity of the possibility distribution of a control action. Thus, in the case of a discrete 

universe, the COA method yields 
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where Q is a number of quantisation levels of the output, q
by  is the amount of control output, at the quantization 

level q  and ( )q
y byµ  represents its membership value in the output fuzzy set. In general, the higher Q is, the finer 

COAy  will be [21], however the computational cost increases analogous to Q. Since the method provides good 

performance, its main characteristics, such as centre of gravity and use of the shape of membership function, have 

been adopted in the design of the proposed defuzzification approach. AFLS’s overall output utilises Kosko’s method 

with product inference [24].  

 
Fig. 2: Triangular shape membership function 

The proposed method can be explained by the following mass-less beam example. Let us consider the density (D), 

which is defined as mass (M) per unit volume (V). 

M
D

V
=            (6) 

Under the assumption that we use the same material and all shapes have the same thickness, T, then  

M ATD=           (7) 

where A is the area. Let us assume for simplicity, that the shape of the membership function used in the consequent 

part has a symmetric triangular form. The centre of gravity is passed through the halfway point of the base of that 

shape. For example, if a triangular shape and product-inference as a t-norm are used, then the shape of the 

consequent part of rule m can be shown as in Fig. 2.  



 

Fig. 3:  Consequent fuzzy set placed on mass-less beam 

If we could consider the consequent part of each rule placed on the massless beam having the pivot point at origin, 

then such visualisation is shown in Fig. 3.  

Then, 
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Assume that D in Eq. 7 is the same, thus, 
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The calculation of area A will be depended upon the type of membership function used. Under the assumption of 

symmetric shape, this method will have comparable capability with the centroid calculation method to approximate 

the output from the fuzzy set in the consequent part. By utilising the triangle shape as a membership function and the 

usage of max-product inference, the shaded area A will be derived as: 

1
2m m mA Lm=           (12) 

Deriving from Eq. 11, the output, y  will be 
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In general form, the calculation of the output O of the AFLS scheme will be 



1

1

M
m m

m p p
m

p M
m

m p
m

L y

L
O

m

m

=

=

=
∑

∑
               (14) 

where pO  is the pth output of the network, μm, the membership value of the mth rule, m
pL is the spread parameter of the 

membership function in the consequent part of the pth output of the mth rule and m
py the centre of the membership 

function in the consequent part of the pth output of the mth rule [23]. The gradient descent learning algorithm scheme 

has been used to update its various parameters, including those in Gaussian MFs. The update equations for m
py , m

pL ,

m
ic  and 

m
ib are:  
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where, Jk the objective function is defined as: 
P

2
p pk k k
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1J (O (x ) d (x ))2 =
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with P the number of outputs, dp  the desired response of the pth output and p kO ( x ) defined as in Eq. 14. 

3. Behavioural models of power amplifier 

3.1 Measurement Setup 

The experimental test-bed for measurement purposes is illustrated at Fig. 4.  Setup consists of signal generator 

Agilent MXG N5182A, the power amplifier MIMIX CFH2162-P3 as device under test (DUT), with 1dB 

compression point at 27 dBm output power level and 13dB nominal gain, one vector signal analyzer (VSA) Agilent 

E4406A and one PC with suitable software [25]. The required software utilized for these measurements, involve 

MATLAB, for creating baseband signals for signal generator, the Agilent Signal Studio Toolkit, for assistance in 

downloading process and finally the Agilent Distortion Suite 89604A for capturing signals from VSA to PC. An 

LTE 1.4 MHz 64 QAM signal, created in MATLAB environment, was used as an excitation of the DUT. This signal 

was then downloaded to the MXG via a General Purpose Interface Bus (GPIB), whereas it was up-converted to RF 

frequency of 880 MHz. The specific “download” procedure was performed via the usage of Agilent Signal Studio 

Toolkit. Subsequent measurements were carried out at power level of 1dB compression point. Signal at the output of 



MXG was passed through DUT. An attenuator of 30dB was added after the amplifier in order to make the signal 

suitable for VSA. Signal was down-converted by VSA and captured on the PC using the Distortion Suite 89604A. 

The measured signals were transferred from distortion suite to MATLAB for further processing and analysis.  

 
Fig. 4: Experimental setup  

3.2 Intelligent-based PA Forward Modelling  

In order to achieve maximum efficiency, PA should be driven near the saturation region, but since the 

orthogonal frequency-division multiplexing (OFDM) signals have high peak-to-average power ratio (PAPR), PA 

will cross over to the nonlinear region causing serious in-band distortions as well as adjacent channel interference 

(ACI) with spectrum re-growth (out-of-band distortion) in the transmitted signal [12], [26]. Nonlinear effects can be 

minimised by operating PA preferably in the linear region, but in this case, efficiency has to be compromised, thus the 

performance of an OFDM system will have to be degraded [27]. 

DPD techniques are widely used as the most cost-effective solutions for compensation of distortion effects 

[28]. Using DPD techniques, an inverse model of PA’s behaviour could be derived, and in cascade with PA could 

make the system with more or less improved linearization, depending on method. PA behavioural modelling usually 

requires a model that can extract amplitude and phase information from modulated complex waveforms.  

 
Fig. 5: Conventional NN topology for PA modelling 



The most basic proposed learning-based structure is a single-input single-output feed-forward NN utilizing complex 

input/output [29]. Such approach is illustrated at Fig. 5. One NN has been utilised to model the dynamic AM/AM 

characterization, while the other one to represent the AM/PM characteristic of DUT. The training dataset for 

AM/AM NN includes the amplitude of the PA input signal as the network training input, and the amplitude of the 

PA output signal as the desired output. The other network, AM/PM, is associated with the training dataset composed 

of the amplitude of the PA input signal as the network training input, and the phase difference between the output 

and input signals of the PA as the desired output. Once both networks are trained, they are put in a parallel, creating 

a model of DUT.  

A more effective approach, called the time-delay neural network (TDNN) is shown in Fig. 6, which takes 

advantage of the easy availability of the in-phase (I) component and quadrature (Q) component of the modulated 

waveform in the baseband, thereby saving pre and post-processing activities and can be used as a common feed-

forward NN with two inputs and two outputs [30]. In order to incorporate the memory effects existing in PA 

behaviour, the TDNN scheme incorporates related time-delayed inputs. 

 
Fig. 6: TDNN scheme modelling 

The TDNN model contains 2+ +n r  input variables, which are related with the current in-phase component and its 

𝑛𝑛 time-delayed samples as well as the current quadrature component with r of its time-delayed samples. In general, 

although the number of n  and r  delay taps can be assigned with any arbitrary integer values,  for this specific type 

of problem, these numbers have been chosen to be equal, as in-phase and quadrature components are affected 

equally by PA’s nonlinearity. The problem of order determination for nonlinear dynamic systems is still not 

satisfactorily solved and very little research seems to be devoted in this research area [20]. It is common practice to 

select the dynamic order of the model by a combination of trial and error and prior knowledge about the process. 

Obviously, if oscillatory behaviour is observed, the process must be at least of second order ( ,  1≥n r ). TDNN’s 



internal structure consists of two hidden layers and the classic sigmoid activation function has been adopted for both 

hidden and output layers. The complex input signal in the time sample 𝑘𝑘 has the Cartesian form 

( ) ( ) ( )in in inX k I k jQ k= +          (20) 

where ( )inI k  and ( )inQ k  are real values. The network’s outputs are then defined as: 
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In this paper, the same memory-based modelling approach provided by Eq. 21, has been adopted also in the 

proposed AFLS-based model. Both input and output signals have been normalized down to range [0, 1]. Final 

AFLS’s input vector consisted of present and past inputs of I and Q components of the complex input signal (i.e.

( ) ( ) ( ){ }, , 1 , ( 1)I Q I k Qk kk − − ). Optimal structure in terms of number of delay taps and number of memberships / 

rules has been achieved through a trial and error procedure. The number of membership functions per input in the 

fuzzification layer, provides a localised learning in NF systems, and generally that leads to smaller input vector 

requirements, for the case of dynamic systems [31]. Fig. 7 illustrates the AFLS model tailored to this case study. 

 
Fig.7: AFLS for PA’s forward modelling 

 
During that procedure, the performance of AFLS structure was observed through the normalized mean square error 

(NMSE) that combines errors of complex signal components, I and Q: 
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where measI  and measQ  were the measurements of baseband output signal, while estI and estQ  the normalised to 

range [0-1] AFLS’s output signals. NMSE usually is considered as a regular tool in such optimisation processes in 

wireless technology [17]. After many trials, it has been found that only 30 rules were necessary for the proposed 

AFLS model to achieve an acceptable performance for this particular experiment. The number of membership 

functions for each input variable was directly associated to the number of rules, hence, each input signal was 

“distributed” through Gaussian functions with different centres and widths to every rule node via a product operator. 



The learning rates for training of each parameter were set to 0.008, while momentum parameters to 0.55. The initial 

centre parameters of Gaussian membership functions at the fuzzification layer were equally distributed in range [0, 

1], while the initial spread parameters of these membership functions to 0.2. Finally, the initial values of centres of 

the membership functions m
py in the defuzzification part were equally distributed in the range [0, 1] while the initial 

values of spread parameters m
pL  to 0.65. The training dataset consisted of the first 30,000 (30K) patterns of the 

specific signal, while the remaining 100K patterns were used as a testing dataset. 

  
(a) AFLS (b) TDNN 

Fig. 8: PA gain for the LTE 1.4 MHz 64 QAM signal (Forward Models) 

 
Evaluation of the behavioural model performance of PAs exhibiting nonlinear memory effects is a very critical task. 

Accordingly, additional metrics need to be considered to evaluate the accuracy of a behavioural model in the 

predicting the in-band and out-of-band distortion of DUT behaviour. In cases where the out-of-band performance of 

the PA is of more importance, the adjacent channel power radio (ACPR) can be used, which is defined as the radio 

between the signal power of the adjacent channel and the power of the measured output signal within the channel. 

The ACPR can be calculated for both the lower and upper adjacent channels. In a logarithmic representation ACPR 

can be presented as 

[ ] [ ] [ ]adj fundACPR dB P dBm P dBm= −         (23) 

where fundP  denotes overall power integrated in the main channel, expressed in dBm , while adjP  is defined as 

[ ] 1010 log ( )adj adjL adjUP dBm P P= +        (24) 

where adjLP  and adjUP  are powers integrated in adjacent channels. Peak to average power ratio (PAPR) is defined 

as the ratio between the maximum instantaneous power in time and the average power of the output signal 
2
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Single-carrier systems are not exposed to the impairments in the front-end, as the OFDM transceivers. The high 

PAPR problem associated with multicarrier signals is one of the principal impairments in the implementation of 
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OFDM systems. The linear operation of the PA over a large dynamic range increases the implementation cost and 

reduces the power efficiency. Output signals were normalised down to the main channel level of input signal, in 

order to display the distortion, and subsequently to illustrtate the level of distortion suppression.   

The error vector magnitude (EVM) is a common figure of merit for assessing the quality of digitally 

modulated signals. It is defined as the difference between magnitudes of the ideal reference signal and the measured 

output (transmitted) signal, after the compensation in time, amplitude, frequency, phase and DC offset.  

[ ]
( ) ( ) ( ) ( )

( ) ( )

22

1
2

1

% *
ˆ

10
ˆ

0

n

i
n

i

I i I i Q i Q i
EVM

I i Q i

=

=

  − + −   =
+  

∑
∑
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where ˆ( ),  ( )I i I i  and ˆQ( ),  Q( )i i  are the, normalized to range [0, 1], reference and measured ,  QI  components 

respectively. This particular metric is widely utilised by microwave engineers as it contains information about 

amplitude and phase errors in the signal [28]. NMSE for testing the “training” and “testing” datasets were -43.54dB, 

and -42.08dB respectively for the specific LTE 1.4 MHz 64 QAM signal. PAPR for the input signal has been 

calculated to 10.21dB. Figs. 8a and 9 illustrate AFLS’s modelling performance of the PA, using the LTE 1.4 MHz 

64 QAM signal at 880MHz as centre frequency. Fig. 8a represents the PA gain at 1dB compression point. 

 
Fig. 9: Power spectrum density of the AFLS/TDNN model outputs vs. the real PA (Forward Models).   

 
As it is shown from Fig. 9, PA’s AFLS-based forward model seems to be very accurate.  Table 1 provides the 

performance indicators for the measured input and output signals, as well as AFLS’s output signal. Fig. 8a reveals 

very good matching results for the PA nonlinear gain, while almost identical spectra of the real PA output and 

AFLS’s output confirm model’s accuracy. Such performance can be also verified through EVM and ACPR 

performance parameters, while an excellent NMSE provides additional evidence of such good modelling structure.  

Although AFLS utilises the standard gradient descent method for learning purposes, training process was 

performed very fast (i.e. approx. 90 min), using a PC with an i7-2630QM CPU. The main reason for achieving such 

fast training process is due to the “structural design” of neurofuzzy systems. All NF systems follow the so-called 
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localised learning compared to MLP’s global learning concept [32]. Such localised learning is achieved through the 

use of Gaussian based functions in the fuzzification part.  

Forward Model ACPR [dB] 

±1.4 MHz offset 

EVM [%] 

PA input LOW 

-36.19 

HIGH 

-34.28 

 

/ 

Real PA -30.89 -30.00 8.66 

AFLS model (training dataset) -30.84 -29.98 8.54 

AFLS model (testing dataset) -30.82 -30.11 8.53 

TDNN model (testing dataset) -30.85 -30.11 8.58 

 
Table 1: Forward model performance 

 
In parallel with the proposed AFLS architecture, a TDNN structure has been attempted, using time-delayed inputs 

for I  and Q  components. After a few trials, a suitable TDNN was constructed with an input vector consisted of 

eight variables, ( ) ( ) ( ) ( ) ( ){ }, , 1 , (k 1), 2 , (k 2), 3 , (k 3)I Q I k Q Ik k Q I k Qk − − − − − −  with two hidden layers (with 20 and 12 

nodes respectively). The gradient descent learning method has been also utilized to this case, while learning rate and 

momentum parameters have been set to 0.1 and 0.2 respectively. The NMSE for the testing dataset was calculated to 

-38.28 dB, while the related PAPR index to 9.92dB for the same LTE 1.4 MHz 64 QAM signal. Following Table 1, 

TDNN had a similar to AFLS performance in terms of ACPR and EVM, however, such result has been achieved 

with a high computational cost (i.e. 24 hours training time and enormous network structure). In theory, TDNN could 

be simplified by adopting the one-hidden layer approach, however practice has revealed that in real applications, 

always a two-hidden layer strategy outperforms in terms of accuracy the single one-hidden-layer approach. Figs. 8b 

and 9 illustrate TDNN’s modelling performance of the PA, using the LTE 1.4 MHz 64 QAM signal at 880MHz as 

centre frequency utilising the same training and testing dataset as in the case of AFLS. 

In terms of complexity, the adopted TDNN structure required 418 weights to be optimised via training 

process, while AFLS model only 360 parameters (including centres/spreads and weights at fuzzification and 

defuzzification parts respectively). However, complexity could be also associated with the amount of time needed 

for training. As TDNN training is based on a global learning approach compared to the local learning for the case of 

AFLS, more than 50,000 epochs were required for TDNN to achieve an acceptable performance. In the case of 

AFLS, however only 4,000 epochs required, even using the same gradient descent learning algorithm. 

The choice on not utilising ANFIS model in this case study is further justified by the exponential number of 

rules and parameters required for designing such model. With the same number of inputs, as in the AFLS case, and 

with three minimum fuzzy memberships per input, 81 fuzzy rules are needed for an ANFIS architecture, which is 

considered as an operation with high computational cost. As the defuzzification section follows the classic TSK 

scheme, 405 and 24 parameters are required for the consequent and premise section of this architecture.  

 



3.3 Intelligent-based PA Inverse Modelling  

The principle of pre-distortion is to distort the PA input signal by an additional device called a pre-distorter (PD), 

whose characteristics are the inverse of those of the amplifier. In our case, the main aim is the development of a 

learning-based model that inverts PA’s nonlinearities/dynamics. Such an inverse model could be placed in cascade 

with the PA, in order to provide an overall linearization of the transmission process. An AFLS-based inverse model 

structure has been developed using the same principles as the forward model, however the number of rules was 

increased to 40, while the input vector required additional time-delayed variables, increasing to six inputs,

( ) ( ) ( ) ( ){ }, , 1 , (k 1), 2 , (k 2)I Q I k Q Ik k Qk − − − − . Learning and momentum rates were kept the same as for the forward model 

case. The training procedure has been performed, with the reverse input-output dataset. The input signal was 

considered as the desired output, while the output baseband signal was the training dataset. Similarly to the previous 

case, 30K and 100K patterns were used for training and testing respectively.  

 

 

 

 

(a) AFLS (b) TDNN 

Fig. 10: PA gain for the LTE 1.4 MHz 64 QAM signal (Inverse Models) 

 
With the increased number of input variables as well as rules, 6000 epochs were required to adequately train the 

specific AFLS inverse model. NMSE for testing the “training” and “testing” datasets were -44.27dB, and -44.15dB 

respectively for the specific LTE 1.4 MHz 64 QAM signal. Figs. 10a and 11 show AFLS’s “inverse” modelling 

performance of the PA, using the LTE 1.4 MHz 64 QAM signal at 880MHz as centre frequency. It has to be noted, 

that labels “Input Power” and “Input PSD” at Figs. 10 and 11 respectively, are actually the PA’s output, as 

according to identification theory, in inverse modelling, PA’s output represents the input in the inverse model. In 

addition, Table 2 presents the statistical performances for the inverse modelling development. A more detailed 

inspection at the spectra of the models’ output signals revealed some mismatches within frequency bands. The 

scattered samples on lower power levels were a consequence of the out-of-band model behaviour, which did not 

track the DUT perfectly. Spectra of the models’ output signals had also mismatches in the beginning and ending 

frequency regions. The explanation for that was related to the frequency range of the measurement. It would be 

preferable that the measurement of the signals be in range five times bigger than the signal occupied bandwidth. 
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Additionally, mismatches detected in a conversion through the VSA and distortion suite. Filtering brings an 

additional transfer part in the system, thus changing the overall transfer characteristics, different from the one in the 

main channel [25]. However, very good modelling results for the testing dataset have been produced, and ACPR and 

EVM metrics simply verify the outcome. 

 
Fig. 11: Power spectrum density of the AFLS/TDNN model outputs vs. the real PA (Inverse Models).   

 
Similarly to the AFLS case, a TDNN has been developed for the “inverse” modelling problem. Two hidden layers 

with 15 and 6 nodes have been adopted for this case, while the input vector increased to 10 inputs in order to provide 

an acceptable performance (i.e. ( ) ( ) ( ) ( ) ( ) ( ){ }, , 1 , (k 1), 2 , (k 2), 3 , (k 3), 4 , (k 4)I Q I k Q I k Q I k Q I k Qk k − − − − − − − − ). The NMSE for 

testing dataset was calculated as -36.67dB for the LTE 1.4 MHz 64 QAM signal. Good performance as indicated 

from Table 2 was achieved however through an extensive training time of 50,000 epochs, lasting more than 40 

hours. Supervised learning of a NN is viewed as surface-fitting process in a high-dimensional surface. The 

dimensions of such surface are direct related to the number of NN’s input variables [20]. In the case of inverse 

modelling, TDNN required 10 input variables, compared to 6 inputs for the case of AFLS. Hence, the difficulty and 

time required to obtain an accurate approximation surface for the case of TDNN has been significantly increased. 

Fig. 11 illustrates also TDNN’s “inverse” modelling performance of the PA, using the LTE 1.4 MHz 64 QAM signal 

at 880MHz as centre frequency. 

Inverse Model ACPR [dB] 

±1.4 MHz offset 

EVM [%] 

 LOW HIGH / 

AFLS model (training dataset) -35.56 -33.51 2.38 

AFLS model (testing dataset) -35.63 -33.76 2.42 

TDNN model (testing dataset) -36.01 -34.15 1.47 

 
Table 2: Inverse model performances 
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In TDNN models, all normalized inputs are fed to the hidden layer, while in the case of AFLS each input is fuzzified 

/ decomposed through Gaussians membership functions. Both inverse models share the same learning training 

algorithm, i.e. the gradient descent method. In terms of complexity, the adopted inverse TDNN structure required 

275 weights to be optimised via training process, while AFLS model 640 parameters (including centres/spreads and 

weights at fuzzification and defuzzification parts respectively). As the number of these membership functions is 

equal to the numbers of rules, this architecture has however advantages over the classic ANFIS neuro-fuzzy model. 

In fact, an inverse ANFIS model utilising the same number of input variables as in the case of AFLS, would require 

729 fuzzy rules (under the assumption that minimum three membership functions were used per input). Such 

enormous structure is practically not efficient for any real application. The increased number of Gaussian 

membership functions in AFLS-based inverse model, although increases the number of parameters to be optimised, 

maintains however the required number of rules at low level.  

 

4. Power Amplifier Pre-distortion using Inverse Model 
 

In the pre-distortion concept, a pre-distorter block is placed before the amplifier block, and this pre-distorter should 

exhibit a behaviour which is the inverse of the amplifier’s nonlinear behaviour, so that the two blocks together 

ultimately behave linearly. Fig. 12 shows a layout of a pre-distortion system. The pre-distorter should in fact have a 

transformation function to compensate for the amplifier’s nonlinear behaviour. An ideal pre-distortion response is 

the inverse response function of the RF transmitter [17]. 

 
Fig. 12: Generic Layout of a Pre-distortion System 

Initially, both inverse models (AFLS and TDNN) were evaluated as potential pre-distorters in cascade with the 

“forward” learning-based models of the DUT, in a simulation experiment. Then, pre-distorter systems were tested 

for the LTE 1.4 MHz 64 QAM signal on the real DUT (PA MIMIX CFH2162-P3). The scenario was to pass first an 

input signal to the pre-distorter unit, (PA’s inverse model) and then through the PA to obtain a linearly gained signal 

at the output.  

The spectra of the input signal, output signal and signal at the output of the cascade DPD+PA are illustrated at 

Fig. 13. Fig. 13a illustrates the performance of the DPD on the AFLS forward model which resembles the real PA, 

while in Fig. 13b, the proposed DPD scheme is applied on the real PA. In these two experiments, the input signal 

(LTE 1.4 MHz 64 QAM) was used as the input of the pre-distorter, which is the first block in the DPD system. 

AFLS inverse model has been utilized in this case as the DPD component. For the simulation pre-distortion case, 

spectral re-growth improvement for the LTE 1.4 MHz 64 QAM signal was 19.58dB for the upper band, and 

18.50dB for the lower band. Spectral re-growth improvement was calculated as difference between power levels of 

distorted output signal and signal at the output of system with DPD, at ±1.2 MHz offset. The results acquired from 

testing the pre-distorter in real environment, without using the AFLS model for the device under test, revealed again 

DPD Digital to 
RF 

Input Output 

  

PA 



an improvement of the spectral re-growth at the level of 15.18dB for the upper band, and 15.00dB for the lower 

band.  

  
(a) DPD_AFLS + PA_AFLS (Simulation) (b) DPD_AFLS + PA_DUT (real experiment) 

Fig. 13: DPD Power spectrum densities at 880 MHz for the LTE 1.4 MHz 64 QAM signal (AFLS case) 

 
These spectra have shown that it is possible to decrease the distortion coming from the PA using the proposed 

intelligent based scheme. This is also observable through the performance parameters, ACPR and EVM. As can be 

seen from Table 3, ACPRs were very close to ACPR of the input signal and EVM was very small. That means that 

the output of system with a pre-distorter was almost completely linear transformation from the original input. 

AFLS - case   ACPR [dBc]  (Simulation) 
±1.4 MHz offset  

ACPR [dBc] (Real PA)  
±1.4 MHz offset EVM [%] 

PA input  LOW 
-36.66 

HIGH 
-34.76 

LOW 
-36.24 

HIGH 
-34.32 / 

PA output without DPD  -26.98 -26.61 -30.91 -30.02 8.68 
PA output with DPD  -36.49 -34.64 -36.06 -34.18 1.32 

 
Table 3: Pre-distortion System Performance using AFLS model 

 
PA’s gain in the DPD+PA configuration differs from its counterpart without using pre-distortion as shown from Fig. 

14, while Fig. 15 reveals an almost perfect matching with a linear system regarding AM/AM and AM/PM dynamical 

characteristics. 

 
Fig. 14: PA’s Gain in a DPD+PA configuration 
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Unlike existing predistortion techniques which utilise two separate ANFIS networks for the power amplifier 

linearization, the presented method utilised a compact structure simpler than earlier NF approaches.  

  
(a) AM/AM Characteristics (b) AM/PM Characteristics 

Fig. 15: DPD+PA characteristics  

 
Similarly to the case of AFLS, the implemented TDNN inverse model has been also utilized as part of DPD 

configuration. The spectra of the input signal, output signal and signal at the output of the cascade DPD+PA using 

TDNN are illustrated at Fig. 16. Fig. 16a illustrates the performance of the DPD on the TDNN forward model which 

resembles the real PA, while in Fig. 16b, the DPD-TDNN scheme is applied on the real PA. 

  
(a) DPD_TDNN + PA_TDNN (Simulation) (b) DPD_TDNN + PA_DUT (real experiment) 

Fig. 16: DPD Power spectrum densities at 880 MHz for the LTE 1.4 MHz 64 QAM signal (TDNN case) 

 
For the simulation pre-distortion case, spectral re-growth improvement for the LTE 1.4 MHz 64 QAM signal was 

11.76dB for the upper band, and 11.44dB for the lower band. The results acquired from testing the pre-distorter in 

real environment, without using the TDNN model for the device under test, revealed again an improvement of the 

spectral re-growth at the level of 10.27dB for the upper band, and 11.14dB for the lower band. As can be also seen 

from Table 4, ACPRs were close to ACPR of the input signal and EVM was very small. That means that the output 

of system with a pre-distorter was an acceptable linear transformation from the original input. 

The comparison of the presented techniques was for the DUT at frequency of 880MHz for the same LTE signal with 

1.4 MHz bandwidth. Adjacent channels for measurement of the ACPR performance were at 1.4 MHz offset with 
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bandwidth of 1.08 MHz. The trainings of the pre-distorters were carried out on the same PC, in order to have the 

same base for comparison. This 1.08 MHz channel bandwidth was the real occupied bandwidth of the used LTE 1.4 

MHz 64 QAM signal. 

TDNN - case   ACPR [dBc]  (Simulation) 
±1.4 MHz offset  

ACPR [dBc] (Real PA)  
±1.4 MHz offset EVM [%] 

PA input  LOW 
-36.22 

HIGH 
-34.30 

LOW 
-36.69 

HIGH 
-34.76 / 

PA output without DPD  -30.90 -30.01 -26.98 -26.61 8.66 
PA output with DPD  -35.73 -33.85 -33.73 -32.50 1.37 

 
Table 4: Pre-distortion System Performance using TDNN model 

 

Table 5 illustrates a comparison of the intelligent based schemes utilised for DPD pre-distortion. EVM results reveal 

that predistortion process was successful for both methods. The ACPR difference and spectral re-growth show a 

very good performance of the AFLS method in the proposed inverse-based DPD system. It has to be mentioned that 

ACPR is in logarithmic scale, thus AFLS and TDNN performances are not considered as equivalent. In addition, 

distortion suppression (DS) is much improved using the AFLS scheme both in simulation but also in the 

experimental case. DS is calculated by checking the differences of power levels at 1.2±  MHz offset of input signal 

/output without DPD and input signal/output with DPD. Furthermore, the time required for the AFLS training with 

the same computer was much smaller than for the neural network. As a conclusion, distortion suppression and 

training time are the main parameters that point out AFLS’s superiority over TDNN. 

 

 AFLS (Real PA) TDNN (Real PA) 

ACPR difference between linearly 

 gained signal and output of DPD+PA  

system [dB]  ±1.4 MHz offset  

LOW             -0.18 LOW             -2.96 

HIGH            -0.14 HIGH            -2.26 

EVM [%]  1.32  1.37  

 Distortion suppression (DS) [%]  

 

Simulation:   93.3 Simulation:   78.23 

Real:    84.2 Real: 48.4   

Structure of pre-distorter  
•  6 inputs  

•  40 rules  

• 10 inputs  

• 15 neurons in first hidden layer  

• 6 neurons in second hidden layer  

Training time  ~2h  >24h  

 

Table 5: Comparative overview of used DPD techniques for LTE 1.4 MHz 64 QAM signal 
 
5. Conclusions  
Linearization of power amplifiers is essential considering requirements of nowadays communication systems. A 

novel technique for modelling and linearization based on a neuro-fuzzy approach has been described. A detailed 



structure explanation was presented as well as the training procedure and the update of system parameters. This 

technique was explored for the LTE 1.4 MHz 64 QAM signal at 880 MHz as centre frequency driven to the MIMIX 

CFH2162-P3 power amplifier. Models for forward and inverse characteristics were validated through NMSE and 

matching spectra. Pre-distortion of the device under test was best shown through the spectral re-growth 

improvement. A comparative study utilizing a TDNN-based DPD scheme has been carried out, which proved the 

superiority of AFLS scheme in terms of training time and the improvement in spectral re-growth. Future work will 

be focused on improving AFLS model by incorporating a pre-processing clustering stage. Such initiative will 

eventually reduce complexity of AFLS network, thus reducing more the training time and making system even more 

convenient for use in real-life systems. Furthermore, investigation of applicability of the proposed methods on 

different physical devices, like Field Programmable Gate Array (FPGA) evaluation platform, will be carried out. 
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