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Abstract

Transportation network vulnerability envelope (TNVE), constituted by the upper and lower 
bounds of network performance among all possible disruption scenarios, has recently been 
proposed as a systematic tool to characterize the impact of simultaneous disruptions of multiple 
links in a transportation network. Both pessimistic and optimistic cases and the possible range 
of disruption consequences can be revealed by the TNVE, which can be modeled as a unified 
optimization problem without the need to enumerate and evaluate all possible disruption 
scenarios. Specifically, the TNVE problem can be formulated as a binary integer bi-level 
program (BLP), in which the upper-level problem maximizes/minimizes the remaining 
network performance under a given number of disrupted links, and the lower-level problem 
adopts the shortest path problem to check the post-disruption connectivity of each origin-
destination (O-D) pair while circumventing the cumbersome path enumeration or path set pre-
generation. However, the binary integer BLP is computationally intractable, which hinders the 
applications of TNVE in practice. This study aims to develop an efficient method based on the 
random key genetic algorithm (RKGA) for determining the TNVE under simultaneous multi-
link disruptions. The main features and benefits of the proposed method include: (a) it 
simultaneously solves the upper- and lower-bound problems at the same time while 
guaranteeing the feasibility of all solutions in the solution procedure; (b) it improves the 
computational efficiency to ensure the applicability to real transportation networks; and (c) it 
can provide a variety of alternative solutions in addition to the single optimal one, which 
facilitates the derivation of TNVE buffer and identification of sub-important links. These 
benefits make the proposed method efficient and effective for solving the TNVE problem. The 
applicability of the proposed method is demonstrated with small and medium-sized networks, 
as well as a large-scale real road network. Numerical experiments are conducted to illustrate 
the usage of TNVE for vulnerability analysis of transportation networks.

Keywords: Transportation network vulnerability envelope; Bi-level program; Random key 
genetic algorithm; Multi-link disruptions 

1. Introduction

Vulnerability is an important concept for the measurement of transportation network 
performance under abnormal conditions, which can be defined as the network’s susceptibility 
to disruptions, especially the severe events that can lead to failures of multiple infrastructures 
and significant reductions in the level of service (Berdica, 2002; Mattsson and Jenelius, 2015; 
Taylor, 2017; Gu et al., 2020). The evaluation of network vulnerability has been increasingly 
considered as an imperative topic in transportation research, which includes the tasks of 
measuring disruption consequences (i.e., network performance degradations) and identifying 
important network components (e.g., links and nodes) (Nicholson and Du, 1997; Jenelius et al., 
2006; Chen et al., 2007; Qiang and Nagurney, 2008; Ryu et al., 2018; Xu et al., 2018; Esfeh et 
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al., 2022; Gu et al., 2023). To gain a comprehensive understanding of the overall transportation 
network performance under severe disruptions, this study focuses on the vulnerability analysis 
under the simultaneous closures of multiple links. Different disruption scenarios with different 
severities are considered, which can facilitate the evaluation and planning of resilient 
transportation networks.

1.1 Review of transportation network vulnerability analysis

Transportation network vulnerability analyses are mainly conducted based on the disruption 
scenario enumeration approach, the game theoretic and optimization-based approach, and the 
approach based on sensitivity and uncertainty analysis. Table 1 briefly summarizes and 
classifies existing methods for transportation network vulnerability analysis. The disruption 
scenario enumeration is commonly used, which disrupts one link/node or simulates a disruption 
scenario at a time and then evaluates and ranks the impacts of different scenarios according to 
selected indicators. However, this approach has a combinatorial complexity to consider 
simultaneous disruptions of multiple links or nodes. For instance, if 10 links among 100 links 
are to be simultaneously disrupted, there are over 1E+13 ( 100

10C ) scenarios to be evaluated. It is 
computationally burdensome to enumerate and evaluate all possible scenarios in practice. The 
sensitivity analysis-based approach addresses the combinatorial complexity by analytically 
computing the sensitivity of certain network performance models to minor perturbations in 
parameters and inputs (e.g., road capacity, travel demand, travel information). However, it is 
inapplicable to severe disruptions that can cause a significant reduction in infrastructure 
performance. The game theoretic and optimization-based approaches avoid scenario 
enumeration by focusing on the worst case and the most important links that can maximize 
performance degradation. However, only the extremely pessimistic cases are investigated in 
this approach, while the optimistic cases and near-extreme cases are often ignored. Owing to 
the difficulty of predicting the occurrence of disruptions and the likely low possibility for 
extreme cases to take place, merely focusing on the worst-case disruption scenarios might lead 
to a biased and uncomprehensive understanding of network vulnerability.

Xu et al. (2018) defined the transportation network vulnerability envelope (TNVE) to provide 
both the best and the worst network performances under a certain number of disrupted links. 
The upper and lower bounds of a TNVE can provide the possible range of network vulnerability 
among all disruption scenarios. Ermagun et al. (2023b) investigated the relationship between 
network topology and shape of TNVE, including the lower and upper vulnerability bounds and 
the range therebetween. Besides focusing on the single lower/upper vulnerability bounds 
caused by the extreme (worst and best) cases, Gu et al. (2023) further investigated the near-
extreme cases that lead to sub-worst/sub-best post-disruption network performances. The 
TNVE buffer can then be measured, revealing the gaps between network performances in 
extreme and near-extreme cases. With the TNVE and its buffer, transportation network 
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planners and managers can cost-effectively plan for system protection against disruptions and 
prioritize system improvements to minimize disruption risks with limited resources. 

However, how to effectively evaluate the TNVE and its buffer of large-scale transportation 
networks under simultaneous multi-link disruptions is still an open research question. Ermagun 
et al. (2023a, 2023b) developed a link percolation-based approach to simulate the pessimistic 
and optimistic scenarios, which focuses on the sequential disruption of important links but is 
inadequate to reflect the extreme cases under simultaneous multi-link disruptions. Xu et al. 
(2018) formulated the TNVE problem as a binary integer bi-level program (BLP) model and 
reformulated it as a single-level mixed-integer linear program (MILP) to obtain the analytical 
solution. However, they mentioned that “computational efforts required for solving MILPs are 
complex and difficult (i.e., solving large-scale MILPs is computationally expensive” (Xu et al., 
2018, p.351). Gu et al. (2023) further developed a single-level integer linear programming (ILP) 
model to derive the extreme and near-extreme cases and the TNVE buffer. Compared with Xu 
et al. (2018), the ILP model improves computational efficiency but requires pre-generating a 
path set of the transportation network, which can become cumbersome with the increase in 
network scale. In addition, the existing BLP- and ILP-based approaches derive each single 
extreme/near-extreme case separately. The TNVE analysis requires solving the corresponding 
model multiple times under each number of disrupted links, which further increases the 
computational burden when many links are to be disrupted in large-scale networks. 

Table 1. Classification of existing transportation network vulnerability analysis 

Category References Logic Limitations

Disruption 
scenario 
enumeration 
approach 
(enumeration w/o 
or with pre-scan, 
or random 
simulation)

Chen et al., 
(2007); Qiang 
and Nagurney 
(2008); Jansuwan 
and Chen (2015). 
Reviewed by 
Mattsson and 
Jenelius (2015)

One link/node is 
removed at a time, 
and the impact of 
each link/nodal 
removal is evaluated 
and ranked 
according to 
different indicators

Inapplicable to consider 
simultaneous disruptions 
of multiple links/nodes 
owing to the combinatorial 
complexity of enumerating 
all possible combinations 
of disrupted links/nodes

Sensitivity and 
uncertainty 
analyses

Nicholson and 
Du (1997); Yang 
and Chen (2009); 
Luathep et al., 
(2011); Connors 
and Watling, 
(2015); Du et al., 
(2022); Gu et al., 
(2022)

Link importance is 
the proportion of 
overall uncertainty 
of performance 
measure contributed 
by its link capacity 
uncertainty

Only valid for minor 
perturbations; inapplicable 
to large perturbations (e.g., 
link closure) in extreme 
disruption scenarios
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Game theoretic 
and optimization-
based approach

Bell (2000); Bell 
et al. (2008); 
Szeto (2011) 
Wang et al., 
(2016); Szymula 
and Bešinović 
(2020)

Important links are 
likely to be 
destroyed by the 
demon as a 
consequence of the 
game

Only consider the worst-
case scenario (i.e., 
pessimistic evaluation); 
inadequate to reveal 
network performances in 
more general disruption 
scenarios

Vulnerability 
envelope analysis

Xu et al., (2018); 
Ermagun et al., 
(2023a, 2023b);

Gu et al., (2023)

Identify important 
and sub-important 
link combinations, 
derive corresponding 
vulnerability bounds 
and buffers and 
vulnerability range 
therebetween

Need to derive each 
extreme/near-extreme case 
separately. The derivation 
of TNVE either fails to 
cover all possible 
disruption scenarios 
(Ermagun et al., 2023a, 
2023b), or requires a high 
computational effort (Xu et 
al., 2018), or pre-
generation of path sets (Gu 
et al., 2023) 

1.2 A brief review of random key genetic algorithm

In this study, we develop a method based on the random key genetic algorithm (RKGA) to 
efficiently solve the BLP-based TNVE model. Genetic algorithm (GA) is one of the well-
known evolutionary computing techniques (see Goldberg and Holland, 1988; Gen and Cheng, 
1999 for a detailed description of GA), which makes use of the biological evolution procedure 
for the update of decision variables (genes) and solutions (chromosomes). GA has been 
successfully applied to solving a variety of complex transportation problems, such as vehicle 
routing (Karakatič, 2021; Hien et al., 2022), path-finding under uncertainty (Ji et al., 2011; 
Rajabi-Bahaabadi et al., 2015), path planning (Nunes et al., 2023; Paulavičius et al., 2023), 
road maintenance (Chootinan et al., 2006; Altarabsheh et al., 2023), traffic counting location 
(Chootinan et al., 2005; Sun et al., 2021), network design (Chen et al., 2006, 2010a; Chen and 
Xu, 2012; Salman and Alaswad, 2022; Zhou et al., 2023; Ziar et al., 2023), and network 
evaluation and optimization under disruptions (Li et al., 2019; Huang et al., 2021; Liu et al., 
2022). However, the traditional GA is not directly suitable for the TNVE problem due to the 
difficulty of guaranteeing solution feasibility in the evolution process. This issue can be 
addressed by the RKGA proposed by Bean (1994), where a random key-based representation 
of a solution was introduced to maintain feasibility for each new solution. The RKGA and its 
extension, biased RKGA (Gonçalves and Resende, 2011; Andrade et al., 2021), has been 
widely applied to many classic optimization problems associated with transportation research, 
including the traveling salesman problem (Snyder and Daskin, 2006; Samanlioglu et al., 2008; 
Ruiz et al.,2019), scheduling problem (Mendes et al., 2009; Zhou et al., 2018; Andrade et al., 
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2019; Xie et al., 2022), and facility location problem (Biajoli et al., 2019; Londe et al., 2021; 
De Freitas et al., 2023). 

1.3 Contributions and organization

Benefiting from the RKGA, the proposed method contributes to the TNVE analysis in the 
following aspects: 

(a) The proposed method can reduce the computational requirement posed by the bi-level 
nature of the BLP-based TNVE model while guaranteeing solution feasibility. Furthermore, 
it can enhance computational efficiency by deriving both lower and upper vulnerability 
bounds together. Thus, the applicability of the TNVE analysis to large-scale real-world 
transportation networks is ensured.

(b) The proposed method generates a population of feasible and near-optimal solutions, which 
enables the simultaneous evaluation of both extreme and near-extreme cases under 
simultaneous multi-link disruptions, which can be used to identify sub-important link 
combinations and measure TNVE buffers.

(c) With the help of the proposed method, the TNVEs of different sizes of transportation 
networks are investigated. The slopes of vulnerability bounds, range between the two 
bounds, and the near-extreme disruption scenarios with corresponding envelope buffers are 
examined, which can provide insights into the understanding and analysis of TNVE.

The remainder of this paper is organized as follows. Section 2 presents and explains the BLP-
based TNVE model, followed by the RKGA-based method to solve it in Section 3. Numerical 
experiments are carried out to illustrate the effectiveness, efficiency and applicability of the 
proposed method based on networks of different sizes in Section 4. Section 5 concludes the 
paper and provides some directions for future studies.

2. Bi-level vulnerability envelope model

This section presents the formulation and interpretation of the BLP-based TNVE model, which 
aims to maximize/minimize the network performance under simultaneous disruption of 
multiple links. Thus, by deriving the solutions to the maximization/minimization BLP models, 
one can obtain the upper/lower bounds of TNVE and identify corresponding important links. 
The BLP model can circumvent the enumeration of all possible disruption scenarios and 
obviate the need of path set pre-generation in the studied transportation network.

2.1 Notations
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Sets 

A Set of links.

W Set of O-D pairs.

Oi Set of links emanating from node i

Ii Set of links going into node i

Parameters

ta Travel cost of link a.

uw Post-disruption travel cost between O-D pair w.

u0
w Reference travel cost between O-D pair w.

θ Allowable elongation ratio of accepting a detoured route relative to a reference cost 
u0

w.

n Number of disrupted links.

e  A sufficiently small positive constant.

M A sufficiently large positive constant.

Decision variables

xa
Binary variable indicating whether link a is disrupted. xa = 1 when a is disrupted; 
otherwise, xa = 0.

ya
Binary variable indicating whether link a is used in the minimum cost route. ya = 1 when 
a is used; otherwise, ya = 0.
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zw Binary variable indicating whether O-D pair w is connected. zw = 1 when w is connected; 
otherwise, zw = 0.

2.2 Upper-level model

The upper-level model aims to find the upper/lower bound of TNVE (i.e., the 
maximum/minimum network performance) under a given number of disrupted links n, which 
is formulated as the following binary integer linear program (Xu et al., 2018):

 max , w
n

w W
f z

Î

= åx z   (Upper-bound problem) (1-1)

 min , w
n

w W
f z

Î

= åx z   (Lower-bound problem)  (1-2)

s.t.   

        a
a A

x n
Î

=å (2)

 0 1 ,w w w wMz u u M z w We q- + £ - £ - " Î (3)

 0,1 ,ax a A= " Î (4)

 0,1 ,wz w W= " Î (5)

where |A| is the size of set A (i.e., the number of links). The objective functions in Eq. (1-1) 
and Eq. (1-2) are to Error! Reference source not found.maximize and minimize the 
remaining network connectivity after disrupting n links. Eq. (2) is the cardinality constraint 
imposed on the total number of disrupted links. Constraint (3) is the linkage constraint between 
the upper- and lower-level models, where the decision variable zw is determined based on the 
variable uw obtained from the lower-level model. θ (>1) denotes the travelers’ allowable 
elongation ratio, i.e., the acceptable ratio of a post-disruption O-D travel cost relative to a 
reference cost u0

w (e.g., the shortest path travel cost between O-D pair w in a normal situation). 
When θ approaches positive infinity, only the physical connectivity is considered, i.e., travelers 
can accept all physically connected routes between each O-D pair disregarding the length of 
detour; when θ approaches 1, it implies a high requirement on the level of service, i.e., travelers 
accept only the shortest path with no detour. Eq. (4) and Eq. (5) state that the decision variables 
are binary integers. If link a is disrupted, xa = 1, and 0 otherwise; and if O-D pair w is connected, 
zw = 1, and 0 otherwise. 
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2.3 Lower-level model

The lower-level model aims to obtain the post-disruption O-D travel cost based on the link 
disruption scenario (i.e., values of decision variable xa) determined at the upper level, which 
can be considered as a virtual link cost-based shortest path problem and be formulated as the 
following linear program (Xu et al., 2018):

 min w
a a a

a A
u t M x y

Î

= + ×åy
(6)

s.t.

        
1 , if

1 , if
0, otherwisei i

a a
a O a I

i r
y y i s

Î Î

= =ì
ï- = - =í
ï=î

å å (7)

0,ay a A³ " Î (8)

where r denotes an origin, and s denotes a destination. Eq. (6) minimizes the total travel cost 
of the selected links for each O-D pair. A virtual cost M is imposed to indicate the consequence 
of link disruptions, making the objective function different from the classical shortest path 
problem. If link a is disrupted (i.e., xa = 1), its virtual link cost is at M+ ; otherwise, its cost 
remains as ta. Eq. (7) is the node conservation constraint based on the binary variable ya (ya =1 
if link a is used in the shortest path, and 0 otherwise). 

2.4 Interpretations of vulnerability envelope

The TNVE provides decision-makers with the upper and lower bounds of network vulnerability 
and the range therebetween, which are useful in the design of network protection strategies and 
prioritization of system component improvements. Particularly, the links that repeatedly appear 
in the lower-bound scenarios under different numbers of disrupted links might deserve more 
resources and actions to protect or reinforce in the pre-disruption network planning stage. 
Figure 1 exemplifies the TNVEs derived based on four transportation networks with different 
topologies. The interpretations of TNVE are demonstrated as follows:
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(1) The locations of both bounds indicate the overall network vulnerability under multi-link 
disruptions. For example, networks (a) and (d) have similar curves of the lower bound with 
network (c) but much higher curves of the upper bound. This implies networks (a) and (d) 
might be less vulnerable than network (c) as they have similar performance under 
pessimistic situations but are possible to outperform network (c) under optimistic 
situations.

(2) The slope of vulnerability bounds indicates the sensitivity of network performance with 
respect to the disruption severities (number of disrupted links). A large slope (i.e., a steep 
decrease) of the upper bounds of networks (a) and (d) after a small number of disrupted 
links implies the corresponding range of disruption severity is critical to the network 
performance under the best-case disruption scenarios.

(3) The range between upper and lower bounds implies the uncertainty of network performance 
under a certain number of disrupted links. For instance, network (c) has a similar shape of 
the TNVE with network (b) but a larger vulnerability range, implying larger possible 
variations in network performance under different disruptions.

Overall, these interpretations help us to evaluate the performance of the network and serve as 
a guide for decision-making. 

Figure 1. Interpretation of TNVE

3. RKGA-based vulnerability envelope derivation 
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The abovementioned BLP model imposes a high computational burden to obtain exact 
solutions, which can become intractable when applied to large-scale networks (Xu et al., 2018). 
It is necessary to develop effective algorithms to improve computational efficiency. In this 
section, a heuristic method based on the RKGA is developed for solving the BLP-based TNVE 
model, which can simultaneously derive both upper and lower vulnerability bounds, as well as 
their buffers and corresponding sub-important links. 

3.1 Preliminaries on GA and RKGA

The GA is an efficient metaheuristic widely adopted to solve combinatorial optimization 
problems, which generates and evolves a large population of solutions inspired by the process 
of biological evolution. The traditional GA consists of the encoding and decoding of 
chromosomes (solutions to the model) and operators for evolving chromosomes, including 
reproduction, crossover, and mutation. First, a chromosome is encoded as a list of genes, which 
are digits representing the valuation of each decision variable in the solution. An initial 
population of chromosomes is then randomly generated for further iterations. At each iteration, 
a new population is generated including chromosomes from three operators: (1) the elite 
chromosomes (with the best fitness values) directly copied from the last iteration 
(reproduction), (2) the offspring chromosomes as a combination of genes from two parent 
chromosomes at the last iteration (crossover), and (3) the offspring chromosomes with most of 
the genes inherited from parent chromosomes but a few genes generated randomly (mutation). 
The reproduction operator maintains good solutions obtained in the evolution process, while 
the crossover and mutation operators can improve solutions by manipulating good genes and 
enhance population diversity by adding new genes to the population.

However, the traditional GA cannot be directly applied to solve the TNVE problem owing to 
its inadequacy to handle the cardinality constraint (Eq. (2)). For the TNVE problem, decision 
variables (xa) are represented by a binary integer string. Each gene has a value of either 0 or 1, 
which indicates the disruption of link a. Consider a network with n=3 and five potential 
disrupted links (i.e., |A|=5). Figure 2 shows an example of two parent chromosomes that are 
directly encoded based on the values of decision variables xa, and their offspring chromosomes 
generated by crossover. The crossover of parents a and b can lead to the violation of cardinality 
constraint (the numbers of disrupted links are respectively n=2 and n=4 in the two offspring 
chromosomes), and hence generates infeasible solutions. 
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Figure 2. An example of chromosomal encoding and crossover of traditional GA

To address the infeasibility issue, this study develops an RKGA-based method for the TNVE 
problem, where random keys are introduced in the encoding of chromosomes (Bean, 1994). In 
the encoding of chromosomes, random keys instead of binary integers are used. A simple 
ordering method is presented to decode the solution from encoded random numbers, which can 
guarantee the feasibility of the cardinality constraint. Compared with the traditional GA 
operators (i.e., reproduction-crossover-mutation), we adopt the biased crossover from the 
biased RKGA, which allows us to mate between elite and non-elite chromosomes for 
generating the offspring. Additionally, instead of the mutation step that introduces new genes 
into existing chromosomes, an immigration step is adopted to introduce new chromosomes, 
which adds more diversity to the population.

Figure 3 shows the overall framework of the RKGA-based method. An initial population is 
first generated and encoded, which is then updated by the RKGA operators for solving the 
upper- and lower-bound problems in parallel. The detailed steps of chromosomal encoding and 
each RKGA operator will be illustrated in Sections 3.2 and 3.3. The obtained optimal solutions 
with the lowest and highest objective values construct the upper and lower vulnerability bounds. 
Alternative near-optimal solutions can also be obtained to construct the TNVE buffer, which 
indicates the gaps between extreme and near-extreme disruption scenarios.

1 0 0 1 01 1 0 1 0

1 0 1 0 1

Parent a (n=3)

Parent b (n=3)

1 1 1 0 1

Offspring a (n=2)

Offspring b (n=4)

Crossover
1

2 3 4

5

1 5

2 3 4

1

2 3 4

5

1

2 3 4

5

Encoding Decoding
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Figure 3. Overall framework of the RKGA-based method for TNVE problem

3.2 Random keys chromosomal encoding
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To generate an initial population, a random key (a random real number sampled from [0,1]1) is 
generated for each gene in a chromosome, and each gene can be decoded as a binary integer 
based on the ordering of random keys. Figure 4 shows an example of encoding based on the 
same network considered in Figure 2 (i.e., |A|=5 potential disrupted links). In the decoding, the 
link with a larger random key has a higher priority to be disrupted. Under the three-link 
disruption scenario (n=3), the three genes with the largest random numbers (i.e., links 1, 2, 4) 
are decoded as disrupted links (xa=1), while the other genes are decoded as undisrupted links 
(xa=0). While under the four-link disruption scenario (n=4), links 1, 2, 3, 4 are selected as 
disrupted links. Thus, the decoding procedure of chromosome generation naturally handles the 
cardinality constraint on the number of disrupted links (Eq. (2)) and ensures solution feasibility.

Figure 2. Example of random keys chromosomal encoding 

3.3 RKGA Operators

RKGA operators, which are reproduction, crossover, and immigration, will be applied to 
maintain good solutions and introduce new solutions. These three operators generate a new 
population at each iteration until the stopping criteria are met (e.g., the maximum number of 
generations). The RKGA operators used in this study are described below. 

3.3.1 Reproduction

1 In this paper, the random keys are randomly drawn from a uniform distribution over the interval [0,1] via the “
numpy.random.uniform” component in Python.
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Reproduction is a process of selecting solutions (i.e., parents) from a pool of populations for 
mating purposes within the feasible region. It directs the genetic search toward the promising 
area of the search space. The solutions are selected based on their fitness value. The fitness 
value of solution c (vc) is computed as follows:

( )c c
c P

v z
Î

= å x (9)

where P  is the population; x denotes the vector of c
ax , which indicates whether link a is 

disrupted on chromosome c. cz  is the objective value derived based on the decision variables 
c
ax  carried by solution c. Once the link disruption pattern x is given, the virtual link cost used 

in Eq. (6) is fixed, and hence the lower-level model can be efficiently solved by existing 
shortest path algorithms. The corresponding objective value cz  can then be evaluated based on 
the shortest path travel time between each O-D pair obtained at the lower level. Based on the 
ranking of fitness values, the solutions are grouped into elite and non-elite populations. The 
elite chromosomes are copied to the next generation in the reproduction step.

3.3.2 Crossover

The crossover operator provides the means to stochastically manipulate the existing solutions 
to generate new offspring. The developed method adopts the biased crossover used in the 
biased RKGA, which crosses between elite and non-elite populations. Here, we use the roulette 
wheel selection to randomly select the candidate solution from each population. The solution 
with a better fitness value (i.e., a higher/lower value in the upper-bound/lower-bound problem) 
will occupy a larger portion on the roulette wheel and have a larger probability to be selected. 
The selection process is based on a random number drawn between 0 and 1 (similar to spinning 
the roulette wheel) and the solution associated with the intercepted portion of the wheel will 
enter the mating pool. The chance for an individual solution to be selected (or probability of 
survival) is determined based on the distance measure within the corresponding population:

min maxmin max

min max

c oror
c

c or
c

v v

v v

-
F =

-å
, (10)

where vmin and vmax are the minimum and maximum fitness values in the corresponding group, 
which are respectively used in the upper- and lower-bound problems. In this way, the new 
offspring inherit characteristics from both populations. 

Genetic materials may be exchanged at different points along the chromosomes. The crossover 
operator can be a one-point crossover or a slightly complicated multi-point crossover. In this 
study, we use the uniform crossover in which the exchanges of genetic materials occur at the 
points corresponding to the crossover mask. The crossover mask is a list of binary variables 
with the same length as the chromosome, which indicates whether the parent chromosome 
supplies genetic units to the offspring. For example, the offspring resembles the characteristics 
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of the elite chromosome if the value of the corresponding mask is 1, or the characteristics of 
the non-elite chromosome otherwise. In this study, we use the probability of 70% to generate 
crossover mask 1, which means that the offspring resembles 70% of the characteristics of the 
elite parent and 30% characteristics of the non-elite parent. The crossover operator is illustrated 
in Figure 5.

Figure 5. Illustration of crossover operator

3.3.3 Immigration

The traditional GA includes a mutation operator to introduce new genes into the chromosome 
pool, which provides an ability to jump out of the local optima whenever it is getting trapped. 
However, the probability of introducing new genes is small based on the mutation operator that 
randomly changes some genes in the existing chromosome. In RKGA, the immigration 
operator shown in Figure 6 is adopted to generate a more diverse population. The immigration 
operator randomly generates a small proportion of new chromosomes following the same 
technique of generating the initial population, which brings higher diversity. In summary, the 
population in the new generation is comprised of the elite solutions copied in the reproduction 
operator, the offspring solutions obtained in the crossover operator, and the new solutions 
generated in the immigration operator.

Figure 6. Illustration of immigration operator
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4. Numerical results

To demonstrate the proposed RKGA-based method for solving the TNVE problem, 
experiments are conducted based on three networks for different purposes. The proposed 
method is coded using Python and runs on a personal computer with an INTEL® Core (TM) 
i7-6700@3.40GHz CPU and 16GB RAM with Windows 10 operating system. First, a small 
network is used to verify the effectiveness of the proposed algorithm and to analyze the 
convergence performances with respect to algorithm parameters. Then, a medium-size network 
is employed to illustrate the evaluation of TNVE based on the upper and lower vulnerability 
bounds and the vulnerability range therebetween. Finally, the applicability to large-scale 
transportation networks is demonstrated based on the network in Winnipeg, Canada. The 
ability of the proposed method to identify sub-important link combinations and analyze TNVE 
buffer is also shown via the experiment on the Winnipeg network.

4.1 Small network

The toy network shown in Figure 7 consists of 6 nodes, and 16 directed links (Xu et al., 2018). 
There are 14 O-D pairs consisting of (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 
4), (4, 1), (4, 2), (4, 3), (5, 6), and (6, 5). The population size is set as 32. The uniform crossover 
with a crossover rate of 0.7 is adopted. A 10% immigration rate and a 10% reproduction rate 
are used. The elongation ratio θ is set as a sufficiently large positive constant, indicating that 
in this section, the TNVE analysis considers the physical connectivity of each O-D pair 
disregarding the length of detour under disruption.
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Figure 7. Toy network (adapted from Xu et al., 2018)
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4.1.1 Vulnerability envelope

Figure 8 shows the upper and lower vulnerability bounds and the identified important link 
combinations under each number of disrupted links (n). The results show that the proposed 
method can replicate the exact solutions obtained via the analytical solution procedure from 
Xu et al. (2018). Specifically, the resulting TNVE is exactly consistent with that obtained under 
the complete path set, which is more optimistic (i.e., has higher lower and upper vulnerability 
bounds) than the TNVE derived under a more restrictive path set (Gu et al., 2023). However, 
the analytical solution method developed by Xu et al. (2018) requires higher computational 
efforts and needs to separately solve the upper- and lower-bound problems (i.e., solve the 
TNVE model two times: one for the maximization problem and another for the minimization 
problem). On the other hand, the single-level ILP-based vulnerability envelope model 
developed by Gu et al. (2023) requires a pre-generation path set, which can be cumbersome in 
large-scale networks. The proposed method is more computationally efficient and can 
simultaneously determine both upper and lower bounds at the same time without a priori path 
set information. For more analysis of the resulting TNVEs under different path sets, readers 
are referred to Xu et al. (2018) and Gu et al. (2023).
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Figure 8. TNVE with disrupted links for both upper and lower bounds of the small network

4.1.2 Convergence performance with respect to algorithm parameters

In this section, we analyze the sensitivity of convergence performance of the proposed method 
with respect to the population size and number of generations. Six different cases, including 
three lower-bound problems (termed LB) and three upper-bound problems (termed UB), are 
selected for the sensitivity analysis with respect to the population size. 1,000 generations with 
100 trials for each generation are used in the experiment. Figure 9(a) shows the average number 
of iterations to reach the convergence when the population size varies from 8 to 256. In all 
cases, a larger size of population requires fewer iterations for convergence. From the 
comparison among different cases, the upper-bound problem tends to converge slower than the 
lower-bound problem. The number of disrupted links also has a significant impact on the 
convergence speed. When the number of disrupted links increases from 2 to 6, the number of 
possible link combinations dramatically increases. Thus, a much larger number of iterations 
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are required to solve the corresponding lower-bound problem. Similarly, when the number of 
disrupted links increases from 10 to 13, the combinatorial complexity decreases, leading to a 
significant decrease in the number of converged iterations required by the corresponding upper-
bound problem.

(a) Average number of converged iterations with varying population sizes

(b) Probability of reaching convergence after 100 trials with varying numbers of generations

Figure 9. Convergence performance with respect to algorithm parameters

Figure 9(b) shows the percentage of convergence in 100 trials under varying numbers of 
generations. In this experiment, 4-link disruption and 10-link disruption, which have the same 
combinatorial complexity, are respectively examined in the lower- and upper-bound problems. 
The vertical axis indicates the convergence probability. For example, 83% indicate that the 
optimal solutions are found 83 times among 100 trials. The observed convergence percentage 
is unsatisfactory when a small population or fewer generations is used. The convergence 
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becomes more likely with the increase in population size and number of generations and can 
be guaranteed when the population size reaches 128 or the number of generations reaches 5,000. 

4.2 Medium network

The Sioux Falls network shown in Figure 10(a) is a widely adopted network to test various 
transportation models, including those focusing on the network evaluation and optimization 
under disruptions (Xu et al., 2021). Successfully applying the RKGA method in the Sioux Falls 
network verifies its higher computational efficiency and applicability than the exact method 
developed by Xu et al. (2018). There are 24 nodes, 76 directed links, and 552 O-D pairs in the 
network. In this experiment, we set the population size as 2,048 and the number of generations 
as 2,000. The elongation ratio parameter q  is set to 1.5. We consider pairwise link disruptions, 
where one road disruption indicates the closures of bi-directional links (e.g., the disruption of 
the road between nodes 1 and 2 indicates the simultaneous closures of links 1 and 3). 

The upper and lower vulnerability bounds obtained from the proposed method are shown in 
Figure 10(b). Note that there is a total of 7.55E+22 possible combinations, and hence it is 
computationally difficult to find vulnerability bounds via the analytical method. From Figure 
10(b), the lower bound has a steep decrease from n = 1 to n = 8. In this segment of disruption 
severity, disrupting one more road can lead to the disconnections of 45 O-D pairs in the worst 
case. On the other hand, the severity segment from n = 14 to n = 26 witnesses a steep decrease 
in the upper bound, in which 24 O-D pairs become disconnected under the disruption of one 
more road. The largest slope of the lower bound occurs at n = 4. Compared to the worst case 
under 3-link disruption, the worst case of 4-link disruption can disconnect 72 more O-D pairs. 
n = 20 is a critical point in the upper-bound problem, where 30 more O-D pairs become 
disconnected compared to n = 19. This implies that more attention should be paid to the 
reinforcement and protection of important links identified under critical disruption severities, 
where the transportation network is more sensitive to the severity of multi-link disruptions. 

Figure 10(c) investigates the vulnerability range, i.e., the difference between upper and lower 
bounds under each disruption severity, which implies the uncertainty in network vulnerability 
(Ermagun et al., 2023b). The largest vulnerability range is 357 from n = 10 to n = 14. In this 
section, the network may perform distinctly in pessimistic and optimistic cases, implying a 
high variation in the network performance in different disruption scenarios. The decision-
makers are suggested to treat these disruption severities with caution and avoid biased network 
performance evaluation by considering both pessimistic and optimistic cases.
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Figure 10. Sioux Falls network topology and the corresponding vulnerability bounds and 
vulnerability range

4.3 Winnipeg network 

In this section, we assess the vulnerability under bridge disruptions in the city of Winnipeg, 
Manitoba, Canada. The urban road network is shown in Figure 11, which consists of 154 zones, 
1,067 nodes, 2,535 links, and 4,345 O-D pairs. There are 15 major bridges spatially located for 
crossing the Red River (eastbound– westbound direction) and the Assiniboine River 
(northbound–southbound direction). The rivers divide the city into three major regions, 
implying the importance of bridges in road network connectivity. Region 2 includes the central 
business district (CBD) area and has relatively more O-D pairs. Region 1 is a larger area than 
region 3 with more O-D pairs (see Table 2). We classify the 15 bridges into three groups based 
on their role in network connectivity: group A (A1-A5) connecting regions 1 and 2; group B 
(B1 to B4) connecting region 1 and 3; and group C (C1 to C6) connecting region 2 and 3. The 
algorithm parameters are set as follows: the population size is 512, the number of generations 
is 500, the crossover rate is 0.7, a 10% immigration rate and a 10% reproduction rate are used. 
The elongation ratio parameter (θ) is set as 2.0, i.e., the analysis considers travelers to accept 
two times as long as their shortest path. 
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Figure 11. Locations of 15 bridges in the Winnipeg network

Table 2. Number of O-D pairs between regions

Region 1 Region 2 Region 3 Total

Region 1 454 798 253 1,505

Region 2 311 1,136 275 1,722

Region 3 183 653 282 1,118

Total 2,587 810 948 4,345

4.3.1 Vulnerability envelope
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The optimal solutions to upper- and lower-bound models obtained from the RKGA method are 
shown in Figure 12. Compared with the TNVE of the Winnipeg network derived by Gu et al. 
(2023), the TNVE from the RKGA method is much more optimistic given its relatively higher 
upper/lower bounds with flatter slopes. This can be attributed to the complete path set 
considered by the proposed method, which is more optimistic than the behaviorally generated 
path set considered by Gu et al. (2023). While it is computationally burdensome to enumerate 
a path set for applying the single-level ILP-based vulnerability envelope model (Gu et al., 
2023), the RKGA method inherently avoids the path set generation process by solving the 
lower-level shortest path problem. The complete path set embedded in the RKGA method is 
beneficial for vulnerability assessment under various extreme disruptive events, in which the 
most important task is to retain connected paths between each O-D pair, even though the paths 
might not be frequently used in normal conditions. 

In the TNVE, the lower bound steeply decreases from n = 5 to n = 11, whereas the upper bound 
has a quick decrease from n = 14 to n = 15. In the severity segment from n = 1 to n = 11, 
disrupting one more road averagely leads to disconnections of 185 O-D pairs in the worst case. 
As for the upper bound, from n = 14 to n = 15, an average of 1,160 O-D pairs are disconnected 
due to one more road disruption. The largest slope of the lower bound occurs at n = 9, where 
545 more O-D pairs become disconnected compared with n = 8. n = 14 is a critical point in the 
upper bound, at which 1,255 more O-D pairs are disconnected compared with n = 13. The 
largest range between lower and upper bounds is 1,999, which occurs at n = 11. 

Figure 12 also shows the disrupted bridges on the upper and lower bounds. In the upper-bound 
problem, at least one bridge in each bridge group remains intact, which enables the connections 
of most O-D pairs. Under the 13-bridge disruption, all bridges in group B are disrupted, making 
many O-D pairs from region 1 to region 3 disconnected. When n = 14, all bridges in groups B 
and C are disrupted, thus O-D pairs related to region 3 (the region disclosed by bridge groups 
B and C) are disconnected. This leads to a steep decrease in the upper bound. On the lower 
bound, when disruption severity is relatively low (n < 7), the bridges in group C, especially 
bridge C5, are identified as important links as their disruptions can lead to the worst case. This 
could be explained based on the network topology. The connectivity of O-D pairs between 
regions 2 and 3 largely depends on the bridges in Group C. There are no alternative bridges for 
C5 when q  = 2.0, as C5 is relatively far away from its adjacent bridges (C4 and C6) compared 
with other bridges. However, the worst-case disruption pattern is completely changed at n = 7. 
The bridges in groups A and B become more important as they together determine the 
connectivity of O-D pairs from/to region 1. When n = 9, all bridges in groups A and B are 
disrupted, which can disconnect all routes between region 1 and the other regions.
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Figure 12. TNVE of the Winnipeg network under various bridge disruption scenarios 
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4.3.2 Vulnerability envelope buffer and sub-important bridges 

The proposed method is also capable of generating a pool of solutions at each generation, from 
which we can obtain a variety of alternative good solutions, although not necessarily optimal, 
to the TNVE model. These solutions provide near-optimal lower and upper bounds and sub-
important link combinations, which play a critical role in network vulnerability analysis (Gu et 
al., 2023). The features and effects of deriving multiple alternative solutions are illustrated in 
Figure 13. First, we show the envelope buffer (difference in network performances) between 
the optimal and near-optimal vulnerability bounds found by the proposed method. Larger 
buffers are found on the lower bounds, while the buffers on the upper bounds are mainly 
negligible. Furthermore, buffers become significant when the lower bound is steep, e.g., in the 
severity segment from n = 5 to n = 9. Then, we demonstrate the effects of multiple solutions 
by identifying the most and sub-important bridge combinations from the top 10 solutions at n 
= 9 (i.e., the solutions with the top 10 lowest objective values), where the largest buffer is 
found. Comparing to the optimal solution which disrupts all bridges in groups A and B, the 
near-optimal solutions either close bridges in Group C (solutions 2, 4, 5) instead of bridges in 
Group B, or replace one bridge in Group B (B4) by one bridge in Group C (solutions 3 and 6-
10). These near-optimal solutions can provide distinct bridge combinations that are worth 
reinforcement or protection in practice. In addition, the difference between the objective values 
of different solutions implies the difference in the importance of bridge combinations. For 
instance, the difference between solutions 1 and 2 indicates that closing bridges in Group C 
instead of Group B may cause at least 319 fewer O-D disconnections. The comparison between 
solutions 1 and 3 shows that the extreme case given by the optimal solution only takes place 
when a whole group of bridges are simultaneously disrupted. If one bridge in another group is 
closed instead of B4 in Group B, at least 458 more O-D pairs remain connected. Therefore, in 
addition to focusing on the worst cases which can only be triggered by the extreme disruption 
scenarios that are less likely to happen, it is also worthwhile to consider the sub-optimal bridges 
with great impacts on more general but still severe near-extreme cases.
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Figure 13. TNVE buffer and corresponding optimal and near-optimal solutions

4.3.3 Sensitivity analysis of acceptable elongation ratio

The acceptable elongation ratio q  is an important factor reflecting the required service level in 
the post-disruption transportation network. In this section, we conduct a sensitivity analysis for 
understanding the possible changes in vulnerability bounds and ranges with respect to different 
elongation ratios. Specifically, we examine the TNVEs under θ = 1.0, 2.0, and 10.0. If θ = 1.0, 
only the shortest path is acceptable between each O-D pair; while θ = 2.0 and θ = 10.0 
respectively indicate that travelers can accept two and ten times as long as the shortest path 
between each O-D pair. As shown in Figures 14(a)-(c), both upper and lower bounds rise with 
the increase of θ (i.e., more O-D pairs are considered as connected when the elongation 
requirement is relaxed). An obvious difference between θ =1.0 and θ =2.0 is that the upper 
bound of θ = 2.0 becomes flat under simultaneous disruptions of 1 to 13 bridges (as opposed 
to a linear decreasing rate), while the lower bound of θ = 2.0 generally decreases at a linear rate 
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(as opposed to a nonlinear decreasing rate) from 6 to 10 disrupted bridges. When θ is further 
relaxed to 10, the difference between the upper and lower bounds is negligible under 
disruptions of 1 to 8 bridges, as the two bounds are identically flat. 

Figure 14. Vulnerability envelops with different elongation parameters

As can be seen from Figure 14(d), different values of θ lead to obviously distinct patterns of 
vulnerability range. Furthermore, the evolution of vulnerability range changes at n = 9, the 
point at which the largest slope of the lower bound and the largest envelope buffer can be found. 
Before n = 9, a smaller value of θ (θ = 1.0) leads to a larger vulnerability range than a larger 
values of θ (θ = 2.0 or θ = 10.0). After n = 9, the range induced by a small θ is quickly 
decreasing, while the ranges led by larger values of θ continue to increase until n = 11. Overall, 
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a restrictive requirement on the network service level (i.e., a low value of q ) tends to make the 
network evaluation outcomes sensitive to mild disruptions. This parameter setting can be used 
for network evaluation and decision-making in recurrent and non-severe perturbation 
conditions like heavy congestion and partial road closure caused by infrastructure maintenance. 
When longer detours are allowed, the uncertainty in network vulnerability is lower and the 
network is more likely to perform well under low disruption severities (i.e., n < 9). The critical 
points with significant changes in the slope of vulnerability bound, size of vulnerability range, 
and buffer between extreme and near-extreme cases can be more obviously observed under 
severe disruptions. Therefore, the outcomes from a large q  are applicable to facilitate the 
decision-making oriented at non-recurrent disruptions with serious consequences, such as 
natural disasters and terrorist attacks.

5. Conclusion

This study develops a method based on the RKGA for solving the TNVE problem, which 
reveals not only the upper and lower bounds but also their buffers of transportation network 
performance under simultaneous disruptions of multiple links. The proposed method has two 
major computational benefits: (a) it derives the upper and lower vulnerability bounds 
simultaneously without the need to iteratively solve the TNVE model under a given disruption 
severity, and (b) it improves computational efficiency and guarantees solution feasibility by 
implicitly handling the cardinality constraint with respect to the number of disrupted links. The 
improved computational efficiency ensures the applicability to large-scale real-world 
transportation networks. In addition, the proposed method can provide a pool of solutions to 
the TNVE problem that reveals the TNVE buffers and identifies a variety of sub-important link 
combinations, which play a critical role in vulnerability-oriented decision-making (Gu et al., 
2023). The numerical examples using the small and medium-sized networks demonstrate the 
effectiveness and efficiency of the proposed method. The numerical results of the Winnipeg 
network case study verify its applicability in large-scale real-world transportation networks. 
We observe that: (1) the rankings of link importance can be significantly different under 
different disruption severities due to the combinatorial complexity of the TNVE problem, (2) 
slightly altering the most important link combination may lead to much milder degradations 
than the extreme case, which implies the need of also considering the more likely sub-important 
links and TNVE buffers in TNVE analyses, and (3) the valuation of acceptable elongation ratio 
can significantly influence the TNVE analysis results and should be selected based on the 
targeted disruption scenarios. 

The proposed study is still subject to several limitations. First, the present vulnerability 
envelope model focuses on the simultaneous independent disruptions of multiple network 
components, while the spatial-temporal correlations among infrastructures and their sequential 
disruptions are not considered in the analysis. It will be also interesting to account for the 
sequential disruptions (Ermagun et al., 2023a, 2023b), cascading effect (Duan et al., 2023), and 
spatial dependency among transportation infrastructures (Li et al., 2014; Esfeh et al., 2022). 
Second, this study investigates the vulnerability envelope under general disruptions. However, 
as shown in the TNVE buffer analysis, the probability that the post-disruption network 
performance reaches the upper/lower vulnerability bounds might be low in real-world events. 
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It will be valuable to analyze the vulnerability envelope regarding specific disruptive events 
that are important to the studied transportation system, which calls for further considering the 
occurrence probability and probabilistic consequence of the targeted disruptions based on 
historical data (Esfeh et al., 2020, 2022). Third, the proposed method is mainly applied to road 
networks. It is necessary for TNVE analyses to also account for the topology and service 
features of urban rail transit networks (e.g., Ermagun et al., 2023a), which serves as the 
backbone of many densely populated megacities like Hong Kong. 

Based on this study, a few directions are worthy of further investigation: (1) To extend the 
current application to a multi-modal transport network with public transit modes and emerging 
mobility services. (2) To further consider more behavioral features of travelers’ rerouting under 
disruption, such as the congestion effect, inertia effect, and dynamic learning and choice 
adjustment. (3) To consider more serviceability-based network performance measures for the 
TNVE analysis, such as system travel cost, network capacity, and utility-based accessibility.
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