

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

An extensible complex fast Fourier transform processor chip
for real-time spectrum analysis and measurement.

Ediz Cetin
Richard Morling
Izzet Kale

School of Informatics

Copyright © [1998] IEEE. Reprinted from the Proceedings of the IEEE
Transactions on Instrumentation and Measurement, 47 (1). pp. 95-99. ISSN
0018-9456.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 1, FEBRUARY 1998 95

An Extensible Complex Fast Fourier
Transform Processor Chip for Real-Time

Spectrum Analysis and Measurement
Ediz Çetin, Richard C. S. Morling,Member, IEEE,and Izzet Kale,Member, IEEE

Abstract—This paper describes in detail the design of a CMOS
custom fast Fourier transform (FFT) processor for computing
a 256-point complex FFT. The FFT is well-suited for real-
time spectrum analysis in instrumentation and measurement
applications. The FFT butterfly processor reported here consists
of one parallel–parallel multiplier and two adders. It is capable
of computing one butterfly computation every 100 ns thus it can
compute a 256-point complex FFT in 102.4���s excluding data
input and output processes.

Index Terms—Digital signal processors, discrete Fourier trans-
form (DFT), fast Fourier transform (FFT), FFT butterfly, in-
tegrated circuit, silicon implementation, spectrum analysis, very
large scale integration.

I. INTRODUCTION

T HE discrete Fourier transform (DFT) is of consider-
able importance in instrumentation, measurement and

digital signal-processing (DSP) applications. However, the
computation burden of the DFT had prevented it from being
widely implemented in real-time applications. A fast imple-
mentation of the DFT is the fast Fourier transform (FFT).
With the development of high-speed processors, the FFT
has found many real-time applications in the field of mea-
surement and instrumentation. With users demanding higher
processing speeds for real-time measurement applications,
dedicated FFT processors are replacing general-purpose DSP’s
in some application areas [1]–[3]. A number of dedicated
FFT processor implementations have been reported in the
literature [4]–[8]. The FFT processor architecture presented in
this paper differs from all these, in that a bit-parallel pipelined
butterfly processor is used rather than the commonly used
bit-serial counterpart. Also, instead of having a column of
butterfly processors, a single butterfly processor is deployed.
In addition to this, the processor is programmable in the sense
that the basic architecture enables it to be used for different
size FFT operations and is capable of other commonly used
functions such as windowing, filtering and fast convolution.
The FFT processor chip reported in this paper is intended as
a demonstrator of the basic architecture and is restricted to
256-point transforms by virtue of the on-chip RAM size.

Manuscript received June 1, 1997; revised April 1, 1998. This work was
supported by the Overseas Research Students Award Scheme (ORS).

The authors are with the Department of Electronic Systems,
University of Westminster, London W1M 8JS, U.K. (e-mail:
cetine@cmsa.westminster.ac.uk).

Publisher Item Identifier S 0018-9456(98)05451-5.

In the following sections we shall describe the architectural
design, silicon implementation, and logic-level simulation of
our FFT processor.

II. FFT BASICS AND IMPLEMENTATION CONSIDERATIONS

The -point DFT of a sequence is defined as [9]

(1)

and the Inverse DFT (IDFT) is defined as

(2)

where

(3)

The IDFT is easily computed without any major change to
the DFT algorithm. The only extra facility required is the
conjugation of . This is simply accomplished by negating
the imaginary part of .

The algorithm used in our FFT processor implementation is
the modified version of the Cooley and Tukey’s Decimation-
In-Time (DIT) FFT algorithm with inputs in natural order and
outputs in bit-reversed order, i.e., output scrambling. This input
and output configuration is required if the processor is to be
used for filtering applications. Fig. 1 shows the form of this
scrambling.

As can be seen from Fig. 1, the modified 8-point DIT-FFT
algorithm consists of three butterfly stages. To the left, we have
eight input data samples. Input data is multiplied with the twid-
dle factor . The solid dots represent addition/subtraction.

The outputs are in bit-reversed order. Generally, an-
point DIT-FFT algorithm consists of stages, each stage
containing /2 butterfly operations [10].

Since the butterfly used here is the DIT-FFT radix-2 butter-
fly with all wordlength reductions performed at the output of
the butterfly, results from the butterfly are scaled and quantized
back to 24-bits in order to prevent overflow due to multiply and
add/subtract operations. Convergent rounding is used since it

0018–9456/98$10.00 1998 IEEE

96 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 1, FEBRUARY 1998

Fig. 1. Signal flowgraph for 8-point modified DIT-FFT with output scram-
bling.

Fig. 2. Signal flowgraph for the DIT-FFT butterfly [10].

is bias free. The DIT-FFT radix-2 butterfly is shown in Fig. 2
[10].

The DIT-FFT butterfly takes a pair of complex input data
values “ ” and “ ” and produces a pair of complex outputs
“ ” and “ ” where

(4)

(5)

III. A RCHITECTURAL DESIGN OF THEFFT PROCESSOR

The architecture of our FFT processor can best be un-
derstood, by tracing through its operation. The operation
of the FFT processor is first partitioned into three main
processes: data input, FFT computation, and data output. The
operation cycle starts with the data input process, during which
sampled data is read in and stored in memory. During the
FFT Computation process, the FFT or inverse FFT (IFFT) is
computed on the stored data. During the output process results
of the FFT computation process are read out to the outside
world.

The FFT processor architecture consists of a single DIT-
FFT radix-2 butterfly (which is referred to as the butterfly
processing element or butterfly PE), a dual-port FIFO RAM, a
coefficient ROM, a controller and an address generation unit.
Data pathways are in the form of 24-bit two’s complement
signed fractions. Coefficients are stored as 16-bit two’s com-

Fig. 3. Block diagram representation of the FFT processor.

Fig. 4. Butterfly processing element architecture.

plement signed fractions. The block diagram representation of
the FFT processor is depicted in Fig. 3.

A. Butterfly Processing Element

The butterfly is the core calculation of the FFT and com-
putes a two point FFT. The entire FFT is performed by
combining butterflies in patterns determined by the FFT al-
gorithm. The butterfly PE takes two complex data words
from memory and computes the FFT on them. Results are
written back to the same memory locations of the inputs since
an in-place algorithm is used. This makes efficient use of
the available memory as the transformed data overwrites the
input data. However, the indexing required to determine which
location in memory to fetch the input data for each butterfly
is quite complex.

The structure of the butterfly PE employing straightforward
implementation of (4) and (5) using standard real arithmetic
units requires four multipliers, four adders, and two sub-
tractors. This level of complexity makes it unsuitable for
silicon implementation. A novel silicon area/computation-time
efficient architecture is depicted in Fig. 4.

The butterfly PE is capable of computing one butterfly
operation every four cycles. It comprises one parallel–parallel
multiplier and two adders. At each computation cycle the mul-
tiplier generates partial products of the complex multiplication

, i.e., , , , and . These
results are in 40-bit two’s complement signed fraction format.

ÇETIN et al.: EXTENDIBLE COMPLEX FFT PROCESSOR CHIP 97

TABLE I
BUTTERFLY PE SEQUENCE TABLE WHERE butterfly= b6b5b4b3b2b1b0

Since, computation of the twiddle factors is time consuming
these are pre-calculated and stored in the coefficient ROM.
Only half a cycle of is stored, i.e., range
of [1 1) with varying from 0 to 127. These are stored
as 16-bit two’s complement-signed-fractions format. The first
adder is 40 bits wide and sums the cross products of the
complex multiplication to generate the sum/difference of cross
products. The output of this adder is rounded to a 26-bit result
using convergent rounding. However, the “retain” (a variable
used in convergent rounding) word is not incremented at this
stage. Instead it is put back as 1 LSB and propagated until
the second adder. It is combined together with the “negate”
signal of the following negator and evaluated at the second
adder hence saving us a 26-bit full adder otherwise required
to increment the “retain” word. The second adder produces the
sum and difference outputs of the butterfly computation. These
results are scaled by 1/2, i.e., 1-bit right shift and clipped if
the results overflow.

Implementing the butterfly PE in this way leads to an
increase in computational speed at a cost of increased silicon
area relative to using a serial–parallel multiplier. However,
bearing the length of the transform in mind, to achieve high
throughput and high speed of operation this trade-off is cost
effective. The butterfly PE takes four cycles to compute a two-
point FFT, with a latency of five cycles. Three of these are
associated with the fact that three input components (, and

) are required before an output can be computed and two are
used to pipeline the RAMreadandwrite operations. Thus, the
write and access times of the RAM are not a critical path of the
operation of the processor. The target speed for the processor
is a clock frequency of 40 MHz which results in a butterfly
computation of 100 ns. Allowing for the pipeline delay, the
total computation time for a 256-point complex FFT is 102.4

s excluding data input and output processes. The butterfly
PE sequence is shown in Table I.

B. Address Generation Unit

The purpose of the address generation unit (AGU) is to
provide the RAM and the coefficient ROM with the correct
addresses. It also keeps track of which butterfly is being
computed in which stage. In addition to this, since address

Fig. 5. Block diagram representation of AGU.

generation during input, output, and FFT computation pro-
cesses are different it keeps track of the mode of operation of
the processor and generates the required addresses. A block
level description of the AGU is shown in Fig. 5.

The butterfly generator keeps track of which butterfly is
being computed in a particular stage. It is basically a nine-bit
up counter, since for a 256-point complex FFT there are 128
butterflies per stage and four data words per butterfly (two real
and two imaginary). The counter output is used for addressing
the RAM during input and output processes and for providing
the basic timing for the FFT process.

The stage generator keeps track of the current stage in the
FFT computation, and supplies the base index generator with
the number of the stage that is currently being computed. For
a 256-point FFT, there are eight stages, and hence the stage
generator is basically a three-bit counter which is incremented
once every 128 butterfly counts.

The IO address generator is responsible for generating
addresses for the RAM during the data input and output
processes. During the data input process the output of the
butterfly generator, “butterfly” can be used for addressing 512
locations in the RAM. However, during the data output process
data should be bit-reversed while being written to the outside
world. No extra hardware is required for implementing the
bit-reversing in our hardware, as we simply reverse the wiring.

The base index generator is responsible for generating
addresses during the FFT computation mode. FFT mode
address generation is quite complex. The butterfly has two
complex data inputs and . is referred to as “index0”
and as “index1.” “Index1” can be calculated from index0
by [8]

index1 index0 (6)

where is the index spacing which can be expressed as
where is the stage number and is the transform length.
Also “index0” can be expressed as [8]

index0 butterfly DIV butterfly MOD (7)

where “butterfly” consists of the first seven bits of the butterfly
generator, i.e., butterfly , and “index0” is

98 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 1, FEBRUARY 1998

TABLE II
BINARY REPRESENTATION OF THEINDEX0 IN A 256 POINT DIT-FFT [8]

the 8-bit wide RAM address. Table II shows the calculated
“index0” for a 256-point FFT computation for each stage [8].

As shown in Table II, “index0” can be derived by simply
rearranging the bits in the “butterfly” and inserting zeros in
the leading diagonal. “Index1” can simply be obtained from
“index0” by replacing zeros on the leading diagonal with ones
[8].

C. Controller

The sequence of events is determined by the controller
depending on the signals it receives from the surrounding units
and generates information about which mode the chip is in,
i.e., input, output, or FFT computation. This is important since
address generation in each mode is different. It also generates
other control signals to take care of required house keeping
duties, i.e., incrementing and clearing counters.

IV. SIMULATION

The whole architecture has been simulated at the logic
level using simulation models generated with Cascade Design
Automation’s EPOCH silicon compilation tool. These models
included extracted and back annotated capacitive trackload
models. The MENTOR Quicksim package was used to carry
out the extracted and back annotated simulations. During
simulations a variety of test signals including cosine and
sine waves at different frequencies were fed into the in-phase
and quadreture channels of the FFT processor. All the logic
simulation results in all modes of operation proved to be
satisfactory, and complied to the expected outputs, giving us
the green light to go for fabrication.

V. CONCLUSION

As the FFT processor was designed and optimized for
performing high-speed sum-of-products operations, it is easily
deployable in a variety of DSP based sum-of-products inten-
sive instrumentation and measurement applications, such as
correlation, convolution and digital filtering. The processor is
implemented in silicon based 0.7m CMOS technology. The
size of the chip (including pads) is 3.7 mm 4.1 mm, i.e.,
15.17 mm. The size without the pads is 2.7 mm3.2 mm,
i.e., 8.64 mm. The overall FFT chip plot can be seen in Fig. 6.

The chip architecture consists of a bit-parallel radix-2 DIT-
FFT butterfly, dual-port FIFO RAM, address generation unit
and the controller. Separate memories are used for storing

Fig. 6. FFT chip plot.

the data and the coefficients. Although the processor we have
designed and reported here is quite small and fast, there are
some improvements that can be made. Most of the cells used
to build the FFT processor have been optimized for speed
rather than area and power consumption. These blocks can
be redesigned for reduced area and power consumption. Also,
investigation into the use of more than one butterfly processing
element is another possibility. The FFT processor is capable
of computing a 256-point complex FFT in 102.4s excluding
data input and output processes. The chip is operating with a
clock frequency of 40 MHz.

ACKNOWLEDGMENT

The authors would like to thank Cascade Design Automa-
tion for the EPOCH silicon compilation tool.

REFERENCES

[1] R. Blasco-Gimenez, G. M. Asher, M. Summer, and K. J. Bradley,
“Performance of FFT-rotor slot harmonic speed detector for sensorless
induction motor drivers,”IEE Proc.—Elect. Power Applicat., vol. 143,
pp. 258–268, May 1996.

[2] P. G. Flikkema and S. G. Johnson, “Vehicle collision warning and
avoidance system using real-time FFT,” inIEEE 46th Vehicular Technol.
Conf., Mobile Technol. Human Race, 1996, vol. 3, pp. 1820–1824.

[3] G. A. Zimmerman, M. F. Garyantes, and M. J. Grimm, “A 640 MHz
32 megachannel real-time polyphase-FFT spectrum analyzer,” inConf.
Rec. 25th Asilomar Conf. Signals, Systems, Computers, 1991, vol. 1, pp.
106–110.

[4] V. D. Lecce and D. E. Sciascio, “A VLSI implementation of a novel
bit-serial butterfly processor for FFT,” inProc. Advanced Computer
Technology, Reliable Systems Applications Proc. 5th Eur. Comput. Conf.
Adv. Comput. Technol. Reliable. Syst. Appl. Comp. Euro’91, 1991, pp.
875–879.

[5] T. Chen and L. Zho, “An expandable column FFT architecture using
circuit switching networks,”J. VLSI Signal Process., vol. 6, pp. 243–257,
Dec. 1993.

[6] V. Szwarc, L. Desormeaux, W. Wong, S. P. C. Yeung, H. C. Chan, and
A. T. Kwasnievski, “A chipset for pipeline and parallel pipeline FFT
architectures,”J. VLSI Signal Process., vol. 6, pp. 253–265, Dec. 1994.

[7] R. Storn, “Radix-2 FFT-pipeline architecture with reduced noise to
signal ratio,” IEE Proc.—Vision, Image, Signal Process., vol. 141, pp.
81–88, Apr. 1994.

[8] J. Melander, T. Widhe, P. Sanbarg, K. Palmkvist, M. Vesterbacka, and
L. Wanhammar, “Implementation of a bit-serial FFT processor with a

ÇETIN et al.: EXTENDIBLE COMPLEX FFT PROCESSOR CHIP 99

hierarchical control structure,” inProce. EECCTD’95 Eur. Conf. Circuit
Theory Design, Sept. 1995, pp. 423–426.

[9] B. J. Proakis and D. G. Manolakis,Digital Signal Processing: Principles,
Algorithms and Applications,2nd ed. New York: Macmillan, 1992.

[10] W. B. Jervis and E. C. Ifeachor,Digital Signal Processing: A Practical
Approach. Reading, MA: Addison-Wesley, 1993.

Ediz Çetin was born in Lefkosa, Cyprus, in 1976.
He received the B.Eng. (Hons.) degree in control
and computer engineering in 1996 from the Univer-
sity of Westminster, London, U.K., where he is now
pursuing the Ph.D. degree.

His research interests include rapid prototyping
of digital signal processors, VHDL, digital signal
processing, silicon systems design, and global po-
sitioning systems. He has worked on design and
silicon implementation of a�� CODEC for GSM
applications.

Richard C. S. Morling (M’79) was born in Rochford, U.K. He received the
B.Sc. (honors) degree in physics from the Polytechnic of Central London,
London, U.K., in 1971, and the Ph.D. degree in information engineering from
the City University, London, in 1989.

He worked in the field of television for Decca Records Ltd., and, during
a period at the Imperial College of Science and Technology, London, was
engaged in the design of electro-myographic equipment for the Migraine Trust.
He joined the staff of the University of Westminster (formerly The Polytechnic
of Central London) in 1971. He is currently Director of the Division of
Electronic Systems. His research activities have included packet-switching
local-area networks, discrete-time signal processing structures, aircraft braking
systems, design methodologies for integrated circuit design, sigma–delta
conversion techniques and teaching methods in electronic engineering. He
is currently working on the theory and practical realization of high-fidelity
sigma–delta A/D and D/A converters.

İzzet Kale (M’88), for a photograph and biography, see this issue, p. 44.

