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Abstract  26 

Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be 27 

ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate 28 

(HCO3-), as a result of a large inter-individual variation reported (10-180 min). If such 29 

a strategy is to be practically applied, the blood analyte response needs to be 30 

reproducible and therefore, this study aimed to evaluate the degree of reproducibility 31 

of both time to peak (TTP) and absolute change in blood pH, HCO3- and sodium (Na+) 32 

following acute NaHCO3 ingestion. Methods: Fifteen male participants with 33 

backgrounds in rugby, football and sprinting completed six randomised treatments 34 

entailing ingestion of 0.2 g.kg-1 body mass (BM) NaHCO3 (SBC2a and b) twice, 0.3 35 

g.kg-1 BM NaHCO3 (SBC3a and b) twice, or two control treatments (CON1a and b) on 36 

separate days. Blood analysis included pH, HCO3- and Na+ prior to and at regular time 37 

points following NaHCO3 ingestion over a three hour period. Results: Compared to 38 

pH, HCO3- displayed greater reproducibility in intraclass correlation coefficient (ICC) 39 

analysis for both TTP (HCO3- SBC2 r = 0.77, P = 0.003, SBC3 r = 0.94, P <0.001; pH 40 

SBC2  r = 0.62, P = 0.044 SBC3 r = 0.71, P = 0.016) and absolute change (HCO3- 41 

SBC2 r = 0.89, P <0.001, SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001, 42 

SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate both the TTP and 43 

absolute change in HCO3- is more reliable compared to pH, and as such, these data 44 

provide support for an individualised NaHCO3 ingestion strategy to be used to elicit 45 

peak alkalosis consistently prior to exercise. Future work should utilise an 46 

individualised NaHCO3 ingestion strategy based on HCO3- responses and evaluate 47 

the effects on exercise performance.  48 

 49 

 50 
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Key Points 51 

• Although both the blood pH and HCO3- response following NaHCO3 displays 52 

good test-retest reliability, the HCO3- response is more reproducible. Therefore 53 

the individualised NaHCO3 ingestion strategy should be based on time to peak 54 

HCO3-. 55 

• The large inter-individual variability to achieve both peak pH and HCO3- 56 

suggests an individualised NaHCO3 ingestion strategy based on time to peak 57 

HCO3- is the most appropriate to heighten the potential ergogenic effects on 58 

performance.  59 

• Within the first 60 mins following both 0.2 and 0.3 g.kg-1 BM NaHCO3, the acid-60 

base balance kinetics are similar, meaning smaller doses of NaHCO3 may be 61 

appropriate when <60 min is available, particularly for those individuals who 62 

suffer from gastrointestinal discomfort (GI).   63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 
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1.0 Introduction 76 

Research investigating nutritional ergogenic aid strategies that delay the occurrence 77 

of metabolic acidosis during high intensity exercise have been widely investigated [4, 78 

16, 41]. In particular, exogenous enhancement of the bicarbonate buffering systems 79 

is thought to have an important role in offsetting the metabolite fatigue process, by 80 

dampening critical rises in hydrogen cations (H+) [17]. Ingestion of a known alkalotic 81 

buffer, namely sodium bicarbonate (NaHCO3), can achieve such ergogenic effects 82 

through increasing blood bicarbonate [HCO3-] concentration within the extracellular 83 

fluid of between 4-8 mmol.L-1 [36], which typically relates to the point of peak alkalosis 84 

[34]. Most common ingestion practices include doses of between 0.2 and 0.3 g.kg-1 85 

BM NaHCO3, as amounts lower than this are not considered sufficient to induce a level 86 

of peak alkalosis to improve performance [36]. Doses above this concentration 87 

exacerbate the incidence and severity of gastrointestinal (GI) discomfort [16].   88 

 89 

Multiple studies using group mean data have reported a high variation in time to peak 90 

(TTP) alkalosis (i.e. HCO3-) following various doses of NaHCO3 [6, 29, 33, 34]. Peak 91 

HCO3- has previously been observed at 40 min and 60 min following 0.2 g.kg-1 BM 92 

and 0.3 g.kg-1 BM NaHCO3 respectively [33], whereas others have reported 90 [29], 93 

120 [6] and 180 min [34]. Differences may be evident either as a result of sampling 94 

range (20-60 min), or inter-individual variation within participants, since individual 95 

absorption characteristics of blood pH and HCO3- have potentially been overlooked in 96 

previous studies [6, 29, 33, 34]. Consequently this generic approach has led to a 97 

potential reduction in the ergogenic effect on exercise performance, or caused 98 

variation in performance benefits [7, 31]. More specifically, Dias et al [7] reported a 99 

lack of consistency in performance response following NaHCO3 during a 110% peak 100 



5 
 

power output cycling time to exhaustion (TTE). Fifteen recreationally active 101 

participants consumed 0.3 g.kg-1 BM NaHCO3 on four occasions, or a placebo on two 102 

occasions. Only one participant produced ergogenic effects in all NaHCO3 treatments, 103 

with five failing to improve in any treatment. This suggests some degree of intra-104 

individual variation is evidence, which may be as a result of intra-individual blood 105 

responses, although this is difficult to define as only group mean blood responses were 106 

reported. 107 

 108 

A contemporary approach involves individualising the ingestion strategy, and 109 

Stannard et al. [36] reported TTP HCO3- displayed a large inter-individual variation 110 

(0.2 g.kg-1 BM = 40-165 min, 0.3 g.kg-1 BM = 75-180 min). These findings challenge 111 

the aforementioned studies who reported group level analysis following NaHCO3 112 

supplementation at a fixed time frame [17, 31, 33]. Furthermore, variations in TTP 113 

arguably provides insight to the commonly reported inter and intra-individual variations 114 

following NaHCO3 ingestion on performance [7, 31], as participants may not have 115 

elicited peak alkalosis at the commencement of exercise [17]. Recent work by Miller 116 

et al. [19] supports this claim, demonstrating during repeated sprint cycling (10 x 6 s) 117 

total work done (TWD) improved by 11% with an individualised ingestion strategy, a 118 

response greater than the 5% change in a similar study employing a standardised 119 

ingestion strategy [3]. 120 

 121 

Further research to identify individualised NaHCO3 ergogenic strategies that elicit 122 

peak alkalosis are necessary. Equally for practical application in the field, a greater 123 

understanding of the reproducibility of blood analytes (pH and HCO3-) following acute 124 

NaHCO3 is required. Daily biological variation, either short term or long term, may 125 
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occur in response to changes in nutritional practices and therefore effect daily acid 126 

load fluxes (potential renal acid load; PRAL) [23, 27, 28] with the potential to affect the 127 

reproducibility of TTP alkalosis. As a result, this may negatively affect the efficacy of 128 

employing an individualised NaHCO3 ingestion strategy to improve exercise 129 

performance consistently. Therefore, the aim of this study was to assess the 130 

reproducibility of the individual blood pH, HCO3- and Na+ response following acute 131 

NaHCO3 ingestion in both 0.2 and 0.3 g.kg-1 BM doses.  132 

 133 

2.0 Materials and Methods 134 

2.1 Participants 135 

Participants were recruited on the basis they may gain a performance benefit from 136 

enhancing their buffering capacity (McNaughton et al., 2016). As a result, sixteen team 137 

and individual sports participants with backgrounds in rugby, football and running 138 

volunteered for this single blind, randomised, crossover designed study. One 139 

participant withdrew from the study due to GI upset (vomiting) from NaHCO3 (0.3g.kg-140 

1 BM dose; first session), therefore 15 male participants (n=5 rugby, n=7 football, n=3 141 

sprinting) completed the study (height 1.81 ± 0.06 m, body mass 84 ± 8 kg, age 21 ± 142 

2 years, VO2MAX 52.1 ± 2.2 ml.kg-1.min-1). Participants habitually completed four 143 

exercise bouts per week (4 ± 1 p.wk-1), lasting two hours per session (2 ± 0 hr) and 144 

had ten years training experience (10 ± 3 years) within their respective sports. Ethical 145 

approval was obtained from Departmental Research Ethics Committee (SPA-REC-146 

2015-325) and each participant provided written informed consent and completed a 147 

health screening procedure prior to data collection. The research was conducted in 148 

accordance with the Helsinki declaration. Participants were verbally screened to 149 
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ensure NaHCO3 or similar intracellular or extracellular buffers such as beta alanine 150 

were not ingested for six months prior to, or outside of the experimental conditions.  151 

 152 

2.2 Pre-experiment procedures 153 

Participants visited the laboratory on seven occasions at the same time of day to 154 

minimise the effects of circadian rhythms [26] and 4 hr postprandial. Avoidance of 155 

alcohol and any strenuous/unaccustomed exercise was requested 24 hr period prior 156 

to experimental treatment arm [30]. Caffeine and spicy foods were also prohibited 12 157 

hr prior to experimental treatments, as they may influence metabolic regulation [14, 158 

42]. Compliance to the above procedures was checked via a written log of nutritional 159 

intake 24 hr prior to each experimental treatment, which was replicated for each visit 160 

(adherence = 100%) and was later analysed for reproducibility. Each treatment was 161 

conducted at least seven days apart to allow for washout of residual NaHCO3 [3]. The 162 

NaHCO3 used in this study was purchased from the manufacturer and stored safely 163 

accordingly to laboratory guidelines to avoid contamination of other stimulants. 164 

 165 

2.3 Maximal oxygen uptake protocol 166 

Initially, an incremental ramp maximal oxygen uptake (VO2max) test on an 167 

electromagnetically braked cycle ergometer was conducted (Lode Excalibur, 168 

Germany). After a 5 min warm up (70 W), participants began cycling at their respective 169 

self-selected cadence (n = 10, 80 r.min-1; n = 5, 90 r.min-1) at a power output of 75 W. 170 

This then increased by 1 W every 2 s (30 W.min-1) until volitional exhaustion. Using a 171 

gas analyser (Cosmed, K5, Italy), samples were continuously analysed for oxygen 172 

consumption (VO2), carbon dioxide expired (VCO2) and respiratory exchange ratio 173 
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(RER). Data was averaged over the last thirty seconds of exercise to determine the 174 

VO2MAX.  175 

 176 

2.4 Main treatment arms 177 

Administered in a block randomised method, the subsequent six treatments involved 178 

two treatment arms of no treatment (CON1a, CON1b) to assess daily variation of blood 179 

analytes, two treatment arms requiring ingestion of 0.2 g.kg-1 (SBC2a, SBC2b), and 180 

two with 0.3 g.kg-1 BM NaHCO3 (SBC3a, SBC3b). Solutions were mixed by a 181 

laboratory technician not involved with the research by mixing 400 ml of water with 50 182 

ml of flavoured sugar free squash and placed within a refrigerator to enhance 183 

palatability [19]. Treatments were administered single blind and participants ingested 184 

within 10 min for all treatments [36].  185 

 186 

An arterialised finger prick capillary blood sample was obtained from the finger whilst 187 

in a rested and seated state, prior to NaHCO3 ingestion. Arterialisation was achieved 188 

by warming the hand with a heated blanket (45oC) for 5 min prior to each individual 189 

sample [12]. After NaHCO3 ingestion, a further 15 blood samples were obtained over 190 

a 180 min period in each treatment (Table 1). At multiple time points, a GI 191 

questionnaire (VAS scale; 0 = no instance, 10 = most severe) was completed as per 192 

previous research within a range of symptoms [19] (Table 3). Participants remained 193 

seated throughout, with only toilet breaks permitted. No food was allowed to be 194 

consumed during this period, and water was consumed ab libitum, with total volume 195 

replicated in subsequent treatment arms. Blood samples were collected in 100 µl 196 

heparin-coated clinitubes (Radiometer Medical Ltd, Denmark) and subsequently 197 

analysed for blood pH, HCO3- and Na+ (ABL800 BASIC, Radiometer Medical Ltd. 198 
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Denmark). This radiometer has demonstrated a low bias in pH, PCO2 and Na+ 199 

(ABL800 reference manual; [25]) and reported a correlation coefficient of r >0.98 for 200 

both HCO3- and pH against other commercially available blood gas analysers [37]. 201 

Moreover, a small pilot study (n = 8) also revealed high test-retest reliability for both 202 

HCO3- (16 samples: CV: 3.0 to 4.9%) and pH (16 samples: CV: 0.17% to 0.20%) at 203 

both resting levels and following NaHCO3 ingestion.   204 

 205 

2.5 Statistical analysis 206 

A priori power calculation was conducted using a statistical software package (SPSS 207 

Sample Power 3, IBM, Chicago, USA). Based upon the expected population 208 

correlation of r = 0.80 between both NaHCO3 conditions (SBC2 and SBC3), a 209 

minimum of 11 participants were required to achieve 80% power (P <0.05).  210 

 211 

Assessed variables were initially analysed for normality (Shapiro-Wilks and Q-Q plots) 212 

and homogeneity of variance/sphericity (Mauchly) respectively. To assess the 213 

differences between conditions, T-Tests were used. For non-normally distributed data, 214 

a Mann-Whitney U test was used with Z score and significance reported (e.g. GI data). 215 

Likewise for violations of sphericity the appropriate correction was applied 216 

(Greenhouse Geisser). Both one (Treatment) and two (Treatment * Time) way 217 

repeated measured ANOVA was used to analyse differences in blood parameters with 218 

Bonferroni-corrections applied. Tukeys honestly significance difference (HSD) post-219 

hoc analysis was carried out to assess interactions, by calculating the minimal 220 

difference required between means to identify significance had been achieved [40]. 221 

Statistical significance was set a P >0.05. 222 

 223 
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Limits of agreement (LOA) with 95% percent limits and Bland-Altman plots were 224 

utilised for within-subject variance and to determine if data was heteroscedastic (Bland 225 

and Altman, 1986). This method is widely used [20, 35] and accounts for bias between 226 

the mean differences [8]. Intraclass correlation coefficient (ICC) were displayed with r 227 

value and significance level, as per previous recommendations [1]. Coefficient of 228 

variation (CV) is reported using SD/mean*100. Correlation between HCO3- and pH 229 

TTP was calculated using Pearson correlation, from Hopkins spreadsheet [11]. 230 

Statistical procedures were completed using SPSS version 22 (IBM, Chicago, USA) 231 

and calculations were carried out using Microsoft Excel 2013 (Microsoft Inc., USA). 232 

 233 

3.0 Results 234 

3.1 Nutritional intake 235 

Total daily calorie intake was highly reproducible for all treatments (r = 0.78, P <0.001; 236 

Mean ± SD = 2283 ± 75), as was carbohydrate (r = 0.97 P <0.001; 253 ± 4 g), protein 237 

(r = 0.98, P <0.001; 85 ± 2 g) and fat (r = 0.97, P <0.001; 126 ± 3 g) intake. 238 

 239 

3.2 Gastrointestinal upset 240 

Both the severity, and TTP GI displayed excellent reproducibility in SBC2 and SBC3 241 

(severity SBC2 r = 0.92, P <0.001; LOA: B -0.5, -3.1, +2.2; TTP SBC2 r = 0.91, P 242 

<0.001; LOA: B 5, -38, +47 vs. severity SBC3 r = 0.90, P <0.001; LOA: B -0.4, -4.7, 243 

+3.8; TTP SBC3 r = 0.78, P = 0.005; LOA: B 7, -64, 77). In total 8/15 of the participants 244 

reported symptoms of GI in both SBC2 and SBC3, and the specific symptoms are 245 

depicted in Table 3. The severity of GI was decreased in SBC2 compared to SBC3 246 

(mean = 2.0 vs. 3.6), however not significantly (Z = 0.922, P = 0.356). TTP GI in SBC2 247 
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was established earlier in SBC2 compared to SBC3 (mean = 29 vs. 36 min), however 248 

not significantly (Z = 0.439, P = 0.661). 249 

 250 

3.2 Reproducibility of blood pH, HCO3- and Na+ 251 

Baseline measures for both HCO3- (r = 0.83, P <0.001) and Na+ (Na+ r = 0.86, P 252 

<0.001) displayed excellent reproducibility, whereas pH displayed good reproducibility 253 

(r = 0.66, P = 0.002). Values for ICC across the three hour sampling period ranged 254 

from fair to excellent (r = 0.530-0.914) for pH in SBC2 and good to excellent (r = 0.76-255 

0.92) in SBC3 upon excluding two poor values at 80 (r = 0.05) and 85 min (r = 0.01). 256 

Reproducibility for HCO3- in SBC2 demonstrated excellent reproducibility (r = 0.76-257 

0.87), whereas SBC3 displayed good to excellent (r = 0.65-0.87) reproducibility across 258 

all time points (Table 1).  259 

 260 

TTP HCO3- demonstrated greater reproducibility for SBC3 compared to SBC2 (SBC3 261 

ICC: r = 0.94, P <0.001; LOA: B 2.3, -15.9, +20.5 vs. SBC2 ICC: r = 0.77, P = 0.003; 262 

LOA: B -6, -36, +24). Likewise, TTP pH demonstrated a greater reproducibility for 263 

SBC3 compared to SBC2 (SBC3 ICC: r = 0.71, P = 0.016; LOA: B 2.3, -37.3, +42; 264 

SBC2 ICC: r = 0.62, P = 0.044; LOA: B 2.3, -39.3, +42). The correlation between TTP 265 

pH and TTP HCO3- was greater in SBC2 compared to SBC3 (SBC2 r = 0.61 and r = 266 

0.66; SBC3 r = 0.26 and r = 0.17). The relationship between TTP Na+ was greater for 267 

SBC2 compared to SBC3, however neither were significant in ICC and displayed large 268 

bias in LOA analysis (SBC2 ICC: r = 0.75, P = 0.838; LOA: B 8.7, +41.8, -73.2; SBC3 269 

ICC: r = 0.56, P = 0.061; LOA: B 15, +44.4, -71.9).  270 

 271 
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Absolute change (peak change from baseline) for HCO3- displayed high reproducibility 272 

for SBC2 compared to SBC3 (SBC2 ICC: r = 0.90, P <0.001; LOA: B 0.1, -0.9, +1.1 273 

vs. SBC3 ICC: r = 0.76, P = 0.008; LOA: B 0.1, -1.9, +2.0). The absolute change in pH 274 

was highly reproducible in SBC2 compared to SBC3 (SBC2 ICC: r = 0.84, P = 0.001; 275 

LOA: B -0.1, -0.04, +0.03 vs. SBC3 ICC: r = 0.62, P = 0.041; LOA: B 0.01, -0.04, 276 

+0.05). In contrast, the absolute change in Na+ displayed no relationship in both SBC2 277 

(ICC: r = 0.10, P = 0.562; LOA: B 0.1, -4.9, +5.1) or SBC3 (ICC: r = 0.10, P = 0.425; 278 

LOA: B 1.3, -6.2, +8.7). 279 

 280 

3.3 Differences between treatments 281 

TTP HCO3- was not significantly different between SBC2 and SBC3 (all P >0.05) 282 

(Table 2). Whereas, TTP pH occurred significantly later in SBC3a compared to SBC2a 283 

(+17 min; P <0.026), however non-significantly later in SBC3b compared to SBC2b 284 

(+8 min; P = 0.392) (Table 2). TTP Na+ occurred significantly later in SBC3a compared 285 

to SBC2a (+32 min; P = 0.027) and 25 min later for SBC3b compared to SBC2b (P = 286 

0.061). A large inter-individual variation in TTP pH, HCO3- and Na+ in both SBC 287 

treatments was observed (Table 2).  288 

 289 

The absolute change in blood analytes HCO3- and pH can be observed in Table 2. 290 

Absolute change in HCO3- was greater in SBC3 compared to SBC2 (P <0.001; Table 291 

2). Absolute pH change was significantly greater for SBC3a compared to SBC2a (+0.2; 292 

P = 0.018), however not in SBC2b and SBC3b (+0.1; P = 0.242). Absolute change in 293 

Na+ was significantly greater in SBC3 compared to SBC2 (P >0.05; Figure 1). A large 294 

inter-individual variation in absolute change of pH, HCO3- and Na+ in both SBC2 and 295 

SBC3 was observed (Table 2). Lastly, up to 60 min post NaHCO3 ingestion both HCO3- 296 
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and pH was not significantly different between SBC2 and SBC3 (all P >0.05; Figure 297 

1).  298 

 299 

4.0 Discussion 300 

This is the first study to investigate the reproducibility of individual blood analytes pH, 301 

HCO3- and Na+ following acute induced metabolic alkalosis. Our findings suggest 302 

blood pH and HCO3- are highly reproducible in most participants (13 out of 15), 303 

whereas in contrast, Na+ displays poor reproducibility. In light of both the TTP and 304 

absolute change reflecting greater reproducibility for HCO3-, combined with the lack of 305 

correlation between pH and HCO3- (no to moderate correlation; section 3.2), it is 306 

essential a prior knowledge of HCO3- absorptions characteristics following NaHCO3 307 

ingestion is obtained. As such, practitioners and athletes should develop their 308 

respective NaHCO3 dosing strategies based on TTP HCO3-.  309 

 310 

The present studies data challenges the common ingestion strategy of 0.3 g.kg-1 BM 311 

NaHCO3 1 to 4 hours prior to exercise [16, 29, 34], displaying a large inter-individual 312 

variation to obtain peak alkalosis (Table 2). For instance the absolute changes in 313 

HCO3- observed in this study for SBC2 (~5.7 mmol.L-1) and SBC3 (~7.1 mmol.L-1) 314 

(Table 2) were greater than the typical change with standardised ingestion strategies 315 

[33]. This is also within the range of absolute change that is suggested to be required 316 

to potentially produce ergogenic effects (>5 mmol.L-1; [5]). Moreover, in light of similar 317 

reports of inter-individual variation [19, 36, 34] a standardised ingestion strategy is not 318 

suitable to heighten the potential ergogenic effects from alkalotic substances (i.e. 319 

NaHCO3 and sodium citrate). Rather, an individualised ingestion strategy is more 320 
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relevant to optimise peak alkalosis and therefore, individuals should identify their 321 

respective alkalotic peak.  322 

 323 

TTP HCO3- was achieved considerably earlier in the present study (<90 min), 324 

compared to previous work (>95 min) who adopted the same ingestion window (10 325 

min) [36]. Both studies controlled nutritional intake and employed the same 4 hr post 326 

prandial strategy, however, as 10% of food is suggested to be present in the stomach 327 

even after a 4 hr fast [36], small contributions from meal volume, composition and 328 

texture may have produced equivocal time frames. It is more plausible however, the 329 

differences in NaHCO3 administration (solution vs. capsule) between studies explains 330 

the discrepancies in TTP, due to the differential rapid emptying of liquids vs. the slower 331 

emptying of solids [10]. In support, TTP HCO3- has occurred earlier in other studies 332 

employing solution [5, 19, 24, 29, 31] compared to capsule NaHCO3 administration [5, 333 

31, 36]. In future, individuals should consider the time until competition/exercise and 334 

the palatability of NaHCO3 in solution; or the high amount of capsules (~20) required 335 

within their respective ingestion strategies. 336 

 337 

In some participants, the absolute HCO3- change lacked reproducibility (SBC3 n = 6; 338 

SBC2 n = 2), with differences >1 mmol.L-1 observed (Table 2). Participant 1 for 339 

instance, elicited a 6.9 mmol.L-1 change in HCO3- in SCB3a compared to a 5.6 mmol.L-340 

1 change in SBC3b. Additionally, there were two participants who failed to reproduce 341 

a similar TTP HCO3-, with over 15 mins difference in both SBC2 and SBC3 (Table 2). 342 

It is unclear why this was observed in our study considering participants replicated 343 

nutritional intake. Nonetheless, some individuals may require a test-retest to evaluate 344 

the reproducibility of the absolute change in HCO3-, which presents a logistical 345 
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limitation to the practitioner/athlete. Whether such discrepancies would translate to a 346 

lack of consistency in the performance response is unknown, however, research by 347 

McNaughton [16] has demonstrated that with HCO3- differences of around 1 mmol.L-1 348 

different performance responses occur.  Future work should assess if discrepancies 349 

in either TTP or absolute change within such individuals effects performance 350 

responses.  351 

 352 

For four of the participants, the absolute change in HCO3- following SBC2 was not 353 

enhanced further following SBC3. For instance, participant 1 displayed a minimal 354 

improvement of 0.1 mmol.L-1 between SBC2 and SBC3. In comparison, participant 13 355 

increased nearly two fold between SBC2 (+4.8 mmol.L-1) and SBC3 (+8.8 mmol.L-1). 356 

This suggests identification of the absolute HCO3- change between different doses of 357 

NaHCO3 is required, as some fail to display any further increase in HCO3- from doses 358 

above 0.2 g.kg-1 BM NaHCO3. Meaning for those individuals who display small 359 

changes between NaHCO3 doses, ingestion of >0.2 g.kg-1 BM NaHCO3 may not be 360 

warranted. This finding is of practical significance to individuals who suffer from GI 361 

upset from a 0.3 g.kg-1 BM dose, considering the same acid-base response can be 362 

elicited from a smaller dose. Further research may wish to evaluate if both doses 363 

improve performance to a similar extent in individuals who respond this way.  364 

 365 

This study reports HCO3- and pH between SBC2 and SBC3 were not significantly 366 

different up to 60 min, supporting previous findings [36]. This suggests that if a limited 367 

time is available prior to exercise (<60 min), it may be plausible for individuals to ingest 368 

a smaller dose. This may be of significance to individuals who participate in two bouts 369 

of exercise with a small amount of recovery (e.g. track and field athletes) or those who 370 
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suffer from GI upset, as lower doses have been shown to reduce the severity and 371 

incidence of such occurrences [16].  372 

 373 

Inconsistencies in pH reproducibility observed in this study could be explained by the 374 

breadth of factors that affect pH, including contributions from intracellular buffering 375 

such as carnosine, phosphocreatine and phosphates [9, 13]. Moreover, as ingestion 376 

of a NaHCO3 bolus will initially and directly increase HCO3- concentration, the effect 377 

on pH is secondary and therefore may lead to increased variability [9]. A variability in 378 

pH has also been observed in a recent study, even when HCO3- was similar [7]. For 379 

instance, following NaHCO3 ingestion, pH increased by 0.045 ± 0.029 in one treatment 380 

compared to only 0.027 ± 0.054 in another. Conversely, in the same treatments, HCO3- 381 

increased by 6.1 ± 2.3 and 5.9 ± 2.7 mmol.L-1 respectively, but one of the limitations 382 

in this study was that data were analysed on a group level, and only at two time points. 383 

Alternatively, the effect on nutritional intake may have caused pH variability. It is well 384 

known that the level of acid/alkaline (PRAL) within nutritional intake may affect the 385 

acid base balance [27, 28]. Therefore, a limitation of this study is that only a 24 hr 386 

nutrition log was completed. Further research may wish to investigate the effects of 387 

PRAL and longitudinal nutritional practices on NaHCO3 absorption characteristics.   388 

 389 

The Na+ response displayed a high intra-individual variability following NaHCO3 390 

(section 3.2; Figure 1). This study requested participants to replicate nutritional 391 

practices prior to experiments and analysis revealed this was highly reproducible 392 

(section 3.1), however not specifically Na+ ingestion, therefore small changes in total 393 

Na+ ingested may explain these findings. Moreover, whilst the volume of water was 394 

controlled for during experimental treatments, a limitation of this study is the frequency 395 
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of ingestion was not measured, which may have also effected Na+ concentrations [21]. 396 

Nonetheless it is unclear whether small differences in total Na+ ingested, or frequency 397 

of water consumption would account for a meaningful change. An alternative factor, 398 

although speculative, may be gastric emptying which has displayed intra-individual 399 

variability in previous work [2, 22, 38]. In view of our analysis being focused on blood 400 

Na+, different quantities may/or may not have reached the bloodstream on the second 401 

time of ingesting the same NaHCO3 dose and consequently produced equivocal 402 

responses.  403 

 404 

It is proposed that disturbances to the acid base balance of the stomach, from high 405 

Na+ load accompanying NaHCO3 ingestion, can cause the onset of GI upset [36]. 406 

Considering participants who suffered from GI upset in this study, TTP GI broadly 407 

corresponded with peak Na+ in SBC2 (peak GI = ~30 min, peak Na+ = 41 min), 408 

however not as strongly in SBC3 (peak GI = ~35 min, peak Na+ = ~70min). The 409 

absolute change in Na+ was significantly higher in SBC3 compared to SBC2 (~2 vs. 410 

~6 mmol.L-1), however the incidence and severity of GI upset was not significantly 411 

different. Therefore, it is unclear if the magnitude of change in Na+ is useful to predict 412 

the onset of GI upset. Interestingly, the same severity from nausea in SBC2 and 413 

diarrhoea in SBC3 was observed in participant 8 (Table 3), with this theme apparent 414 

for seven participants in total. As such, these differences between doses will plausibly 415 

effect the ability to perform exercise variably. It is therefore important to evaluate the 416 

severity of the specific symptom suffered from GI upset and make judgement on the 417 

cost:benefit of NaHCO3 ingestion.  418 

 419 

5.0 Conclusion 420 
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In summary, the blood analyte response following acute NaHCO3 ingestion is highly 421 

reproducible. The practitioner/athlete should identify both the TTP and absolute 422 

change in HCO3- to determine both the time, and amount to ingest prior to usage in 423 

training or competition. Caution should be taken however with participants who 424 

displayed intra-individual variation in both TTP and absolute change in HCO3-, with 425 

these individuals potentially not suitable for NaHCO3 ingestion. Future work should 426 

investigate why some participants fail to reproduce the blood analyte response from 427 

NaHCO3 ingestion, including investigation into the role of PRAL and longitudinal 428 

nutritional practices. Lastly, based on both SBC2 and SBC3 eliciting a change in 429 

HCO3- that may improve performance, establishing the performance response utilising 430 

an individualised NaHCO3 strategy is required.  431 
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Figure Legends 

Figure 1: Mean blood analyte responses for blood bicarbonate (HCO3-), pH and 

sodium (Na+) following CON (solid square), SBC2 (solid triangle) and SBC3 (solid 

circle). Some error bars and time points (5 min interval samples) are omitted for clarity. 
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Tables 

Table 1: Statistical summary table of limit of agreement analysis (LOA) and coefficient of variation (CV) of both blood pH and 

bicarbonate (HCO3
-) following SBC2 and SBC3. Time points included cover the respective time taken to achieve peak (TTP) pH or 

HCO3
-.  

 

Table 2: Individual data displaying time to peak (TTP) (in mins) and absolute change (peak change from baseline) in both pH and 

blood bicarbonate (HCO3
-) (mmol.L-1) following SBC2a, SBC2b, SBC3a and SBC3b. CV = coefficient of variation, SEM = standard 

error of measure. 

 

Table 3: The most severe individual symptom of GI upset suffered following SBC2a, SBC2b, SBC3a and SBC3b. 
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Table 1 

A (pH)             
             
SBC2                         

   Time Point 40 60 80 85 90 95 100 120 125 130 135 140 
LOA                         

    Bias -0.001 -0.007 0.001 0.004 -0.002 -0.001 -0.001 0.000 -0.008 -0.007 -0.004 0.001 

    SD 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.01 

     - -0.04 -0.05 -0.02 -0.04 -0.03 -0.03 -0.03 -0.03 -0.05 -0.06 -0.03 -0.03 

    + 0.04 0.04 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.03 

 

CV 0.4 0.3 0.3 0.2 0.2 0.3 0.3 0.30 0.3 0.3 0.4 0.3 

Interpretation Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

 

SBC3             

   Time Point 40 60 80 85 90 95 100 120 125 130 135 140 
LOA             
   Bias -0.001 0.005 0.003 0.002 0.007 -0.002 0.002 0.006 0.005 0.001 0.005 0.005 

   SD 0.01 0.02 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

   - -0.03 -0.02 -0.05 -0.03 -0.02 -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 

   + 0.03 0.04 0.06 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.04 

 

CV 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 

Interpretation Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 
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B (HCO3-) 

SBC2          

   Time Point 40 60 80 85 90 95 100 120 125 
LOA          
   Bias 0.1 0.4 0.4 0.3 0.5 0.2 0.3 0.3 0.0 

   SD 1.4 1.2 1.1 1.2 1.1 1.2 1.0 1.1 0.9 

    - -2.7 -2.0 -1.9 -2.0 -1.7 -2.1 -1.7 -1.8 -1.8 

   + 2.8 2.7 2.6 2.6 2.7 2.5 2.2 2.4 1.8 

 

CV 6.2 5.4 5.2 4.2 4.6 5.1 4.5 4.8 4.6 

Interpretation Good Good Good Excellent Excellent Good Excellent Excellent Excellent 

 

SBC3          

   Time Point 40 60 80 85 90 95 100 120 125 
LOA          
   Bias -0.1 0.0 0.0 0.1 0.0 0.1 -0.1 0.3 0.3 

   SD 1.0 1.1 1.2 1.2 1.2 1.2 1.2 1.5 1.1 

    - -2.2 -2.3 -2.4 -2.3 -2.4 -2.3 -2.4 -2.6 -1.7 

   + 1.9 2.2 2.4 2.4 2.4 2.4 2.2 3.2 2.4 

 

CV 3.6 3.8 4.6 4.7 5.1 5.5 5.5 5.6 4.7 

Interpretation Excellent Excellent Excellent Excellent Good Good Good Good Excellent 

* LOA = limits of agreement, SD = standard deviation, + = upper bound, - = lower bound. CV = coefficient of Variation. 
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Table 2 

* TTP = time to peak, CV = coefficient of variation, SEM = standard error of mean.  

pH 
(TTP)     

HCO3
- 

(TTP)    
pH (Abs. 

∆)     

HCO3
- 

(Abs. 
∆)    

P.no SBC2a SBC2b SBC3a SBC3b SBC2a SBC2b SBC3a SBC3b SBC2a SBC2b SBC3a SBC3b SBC2a SBC2b SBC3a SBC3b 
1 80 85 125 95 80 85 125 100 0.08 0.05 0.08 0.07 6.8 5.6 6.9 5.6 

2 85 120 80 85 85 80 80 80 0.03 0.06 0.07 0.08 5 4.8 6 5.4 

3 80 40 125 100 60 60 90 90 0.07 0.08 0.13 0.08 6 7.2 6.5 6.3 

4 40 40 60 60 60 60 95 95 0.07 0.07 0.14 0.13 4.8 4.9 7.9 8 

5 60 60 90 90 60 60 85 85 0.06 0.10 0.14 0.07 7.1 7.2 9.3 7.1 

6 60 125 80 140 80 125 100 120 0.10 0.12 0.09 0.09 7.1 7.3 8.3 8.4 

7 140 135 130 130 85 85 60 60 0.10 0.10 0.08 0.07 5.3 5 6.5 6.6 

8 100 130 100 90 85 95 100 90 0.11 0.10 0.10 0.09 7.2 7.2 7.5 9.3 

9 40 60 100 100 60 85 95 95 0.11 0.14 0.12 0.12 5.2 5.4 7.3 7 

10 40 130 80 80 95 85 80 80 0.06 0.06 0.08 0.10 5.2 5 6.2 6.2 

11 120 135 135 120 85 85 120 120 0.10 0.10 0.10 0.09 4.8 4.3 4.9 6.1 

12 60 40 90 100 60 40 40 40 0.05 0.04 0.05 0.08 5 4.9 5.9 6.2 

13 140 95 125 120 100 125 95 80 0.07 0.06 0.10 0.10 4.8 4.6 8.8 7.7 

14 95 100 120 95 85 95 85 80 0.07 0.07 0.10 0.11 5.4 4.7 6.6 8.1 

15 130 85 90 90 80 85 90 90 0.07 0.10 0.09 0.10 6.1 6.1 7.8 7.6 

Mean 85 92 102 100 77 83 89 87 0.08 0.08 0.10 0.09 5.7 5.6 7.1 7.0 

SD 35 37 23 20 14 23 21 20 0.02 0.03 0.02 0.02 0.9 1.1 1.2 1.1 

CV 40.5 38.5 21.8 19.9 17.2 26.4 22.5 22.3 29.1 31.4 25.2 23.2 15.6 17.7 13.6 17.0 

SEM 9.2 9.5 6.0 5.3 3.6 5.9 5.4 5.2 0.01 0.01 0.01 0.00 0.2 0.3 0.3 0.3 
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Table 3 

P.no SBC2a SBC2b SBC3a SBC3b  
1 None None None None 

2 Flatulence None None None 

3 Flatulence None Bowel Urgency Bowel Urgency 

4 Stomach Cramp Belching Belching Stomach Ache 

5 None None None None 

6 None None None None 

7 Stomach Bloating Stomach Cramp Bowel Urgency Stomach Ache 

8 Stomach ache Nausea Stomach cramp Diarrhoea 

9 Bowel urgency Bowel urgency None Stomach bloating 

10 Stomach Bloating Stomach Bloating Stomach Ache Stomach Ache 

11 Diarrhoea Diarrhoea Diarrhoea Diarrhoea 

12 None None Bowel Urgency None 

13 Nausea Nausea Nausea Nausea 

14 None None None None 

15 None None None None 

 


