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The development of a rebar counting model for reinforced concrete columns: 1 

Using an unmanned aerial vehicle and deep learning approach 2 

 3 

Abstract 4 

Inspecting the number of rebars in each column of a reinforced concrete (RC) 5 

structure is a significant task that has to be undertaken during the rebar inspection 6 

process. Conventionally, counting the rebars has relied on a manual inspection carried 7 

out by visiting inspectors. However, this approach is very time-consuming, labour-8 

intensive, and poses a potential safety risk. Previous studies have focused on the 9 

applications of counting the rebars for a production line and/or warehouse, using 10 

vision-based methods. Therefore, this study aims to propose an innovative approach 11 

incorporating the use of an unmanned aerial vehicle (UAV) on real construction sites 12 

to count the rebars automatically. For analysing the images, robust object detection 13 

methods based on deep learning (Faster R-CNN, R-FCN, SSD 300, SSD500, 14 

YOLOv5, and YOLOv6) were developed. A total of 384 models generated from six 15 

different methods were trained and implemented using datasets based on the original 16 

and augmented images with adjustments made for the hyperparameters. In a test, the 17 

best optimised model based on Faster R-CNN produced an accuracy of 94.61% at 18 

AP50. In addition, video testing demonstrated a coverage of up to 32 frames per 19 

second in the experimental environment, suggesting that this method has potential for 20 

real-time application. 21 

 22 

Practical applications 23 

Drones provide an efficient way to monitor the number of rebars in reinforced 24 

columns by capturing still images or video footage. However, manually counting the 25 
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rebars from this data in the form of images is both time-consuming and laborious. 26 

This research therefore develops an AI-driven technique, based on deep learning, 27 

designed to automate the process. In the experiment, the approach that was developed 28 

achieved an accuracy rate of 94.61% under diverse conditions on real construction 29 

sites, including non-uniform illumination and complex backgrounds (e.g., scaffolding 30 

and moulding). Nevertheless, there is potential for further improvement in certain 31 

scenarios (e.g., where there are shadows in high-illumination images, or similar 32 

objects close to the rebars). In addition, video testing demonstrated that the system 33 

could process up to 32 frames per second. Despite its limitations, the method 34 

developed in this research could be put to practical use on construction sites, except in 35 

those scenarios where it showed a lower rate of accuracy. Moreover, as 30 frames per 36 

second is often regarded as equivalent to real-time, it would also be feasible to use it 37 

for video analytics’ applications such as real-time monitoring and progress tracking. 38 

 39 

Keywords 40 

Reinforced concrete structure; Rebar counting; Unmanned aerial vehicle; Image 41 

augmentation; Deep learning; Faster R-CNN 42 
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1. Introduction 44 

Over the past few decades, reinforced concrete (RC) columns have been used 45 

mainly in areas of construction involving compression to support loads from ceiling, 46 

to floor slab or roof slab, or from beam to floor or foundation. The RC column mainly 47 

consists of two materials: concrete and rebar, which is short for reinforcing bar. While 48 

the concrete handles compressive and shear stress well, it performs poorly in terms of 49 

tensile strength. The rebars are therefore used to compensate for concrete’s weakness 50 

by increasing its tensile strength. The combination of these materials improves 51 

resistance to bending and shear forces in buildings, has a long service life and requires 52 

minimal maintenance, making rebars a cost-effective option for many construction 53 

projects (Devine et al. 2018). 54 

In designing and constructing RC columns, the number of rebars is regarded as the 55 

most important parameter, because it has a significant effect on uneven moment 56 

capacity and preventing structural collapse, while over-reinforcing a column could 57 

also lead to increased construction costs. In order to guarantee the necessary standards 58 

for RC columns, many countries have introduced codes setting out requirements (e.g. 59 

BS4449 (Whiteley 1997) in the UK, and ACI 318 (ACI committee: ACI 318-19 2019) 60 

in the US), and specifying the minimum, and maximum number of rebars in a column. 61 

When rebars are installed in the columns, they are assessed using 2D or 3D drawings. 62 

The inspection is generally carried out before the concrete is poured into the mould. 63 

Conventionally, the number of rebars is assessed by a visiting inspector manually 64 

counting the rebars in each column with the naked eye. In addition, inspectors stand at 65 

specific vantage points, such as on temporary scaffolding or ladders to observe the 66 

rebars. However, this in-person approach is time-consuming, tedious, and dangerous 67 

for workers. Recently, unmanned aerial vehicles (UAVs) equipped with a single Red-68 

https://www.sciencedirect.com/topics/engineering/unmanned-aerial-vehicles
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Green-Blue (RGB) camera have been introduced to resolve the problem on some 69 

construction sites. This makes the process faster and safer, by enabling workers to 70 

conduct the inspections remotely without entering potentially hazardous areas. 71 

Moreover, data in the form of RGB images is sufficient to enable the rebars to be 72 

counted accurately, so it is more cost effective than other types of cameras (e.g., a 73 

depth camera or laser scanner).  74 

Despite the advantages that drone-based inspection offers, it does have some 75 

critical limitations. First, flying drones is a highly regulated activity on construction 76 

sites near to certain facilities (e.g. military bases and nuclear plants), due to security 77 

and safety concerns. In addition, the photography itself is limited to some extent, for 78 

example, images taken at night-time will not be very well illuminated, while blurred 79 

images may be caused by strong vibrations due to high winds. In light of 80 

aforementioned advantages and limitations, it is argued that UAVs can most 81 

effectively be used for counting rebars in RC columns when images of rebars are 82 

visible to the naked eye. However, there is one key problem: manually interpretating 83 

the images in order to count the rebars is time-consuming, and labour-intensive. 84 

Image processing techniques are used to automatically interpret images by 85 

invoking one or more operations. All of the operations performed on images are 86 

subject to image processing techniques. The operations are usually carried out by 87 

computing devices such as smartphones, and desktop computers so that thousands of 88 

images can be processed quickly. There are many different image processing 89 

techniques, so the choice of which to use depends on the application, and the 90 

information and pattern of images will differ accordingly (Liu et al. 2016b). 91 

Many researchers have investigated the applicability of optimal image processing 92 

techniques within the construction industry. It has been reported that automation has 93 
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achieved an almost human performance level in certain applications, for example, the 94 

multi-classification of hand signals for crane operation (e.g. raising the boom and 95 

lowering the load) (Mansoor et al. 2023), detection of human intrusion (e.g. transition, 96 

and bending) in hazardous areas on construction sites (Mei et al. 2023), and crack 97 

classification on the inside of concrete structures (Chow et al. 2021). Accuracy rates 98 

of 94.8%, 96.05%, and 99%, respectively, for the aforementioned three applications 99 

have been achieved with continuous development. These studies indicate that it is 100 

worth undertaking research into image processing techniques in order for automation 101 

to be used in other applications. Thus, when suitable image processing techniques for 102 

counting the rebars in RC columns via images collected by UAVs can be successfully 103 

implemented, the inspection process can be undertaken with a high rate of accuracy 104 

and consistency. 105 

 106 

2. Literature Review 107 

Over the past decade, considerable efforts have been made to extend the use of 108 

various image processing techniques in the context of rebar counting. These 109 

techniques can be classified as feature-based approaches, which can also be broadly 110 

divided into two approaches: the traditional approach, and the deep learning approach. 111 

A feature (e.g., colour, or pixel intensity) refers to a characteristic that can be used to 112 

differentiate the objects in the given images. A feature extractor, which is 113 

implemented by specific operators on local portions of images, is utilised to extract 114 

the feature. The transformed feature can be then used together with operators to carry 115 

out certain tasks. The following sections explain the traditional approach and the deep 116 

learning approach within the limitations of existing research. 117 

 118 
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2.1 Traditional approach 119 

The traditional approaches utilise manual feature extraction techniques to 120 

incorporate prior knowledge in order to undertake specific tasks. The required 121 

features in all possible variations for the scenarios are manually defined according to 122 

the judgment of human experts - usually domain experts and computer vision 123 

technicians.  124 

The earliest piece of research, by Zhang et al. (2008), developed a steel bar 125 

counting method for use in a factory production line. First, a template matching 126 

algorithm was used to find the rebar area. The difference in pixel intensity between 127 

the two elements - rebars, and background objects - was used as a feature, which was 128 

extracted by a mutative threshold segmentation algorithm. This method was proved to 129 

have a misdetection rate of less than 0.01%. Liu and Ouyang (2018) subsequently 130 

developed a rebar counting model designed to be used in factory storage facilities. 131 

First, Otsu’s threshold was applied to distinguish between the pixel intensity of the 132 

rebars and the background, and then a contour identification method based on 133 

Suzuki's algorithm was used to detect the rebars. The results had an accuracy rate of 134 

98%. Xin et al. (2010) proposed a rebar counting method for use on a moving 135 

conveyor belt in factories. After segmenting the rebars and the background using 136 

Otsu’s threshold, Hough transformation was applied to detect the edges of the rebars. 137 

This method was experimentally proven to count the approximate number of steel 138 

bars, although no performance quantification was provided. Zhao et al. (2016) 139 

proposed a similar approach for counting the number of steel bars passing over 140 

moving conveyer belts. Segmented images of the rebars and the background were 141 

generated using Otsu’s threshold. A Sobel operator was then applied to detect the 142 

edges of the rebars. Finally, the centre point of each bar was located using the Hough 143 
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transformation. This system achieved an accuracy rate of 96% for a single frame. Su 144 

et al. (2010) also developed an automated method for counting moving rebars. The 145 

distance transform method was applied to calculate the radius of rebars. The steel bars 146 

were localised by combining the Hough circle transform with the estimated radius, 147 

and this method was shown to have a failure rate of 0.01%. Wu et al. (2015) also 148 

developed a technique for counting steel bars passing along moving conveyer belts. 149 

The binary image contour was obtained using Otsu’s threshold. Each concave edge 150 

point on the rebar contour was extracted using connected area analysis. Finally, an 151 

algorithm-based fault tolerance method was applied to detect and count the rebars. 152 

This system had an accuracy rate of 99.9% at detecting steel bars with diameters 153 

between 8mm and 20mm. Liu et al. (2019) developed a bundled bars counting method 154 

to be used in factory storage facility of a factory. The Prewitt operator was applied to 155 

extract the oriented gradient as a feature. This feature was then fed into a Support 156 

Vector Machine to ascertain the exsitence of rebars. An accuracy rate of 91% on 157 

average was attained in their iterative experiments. Another image processing 158 

technique was created by Lee and Park (2019). In this study, binary images of rebars 159 

and backgrounds were processed by a model based on a random forest method. In this 160 

case, the super-pixels - groups of pixels similar in colour - were used as the feature. 161 

Another random forest model was used to classify the super-pixels to determine the 162 

presence of each rebar. The precision and recall rates were 0.99, and 0.98, 163 

respectively. 164 

These provided traditional approaches have been applied to different areas related 165 

to rebar counting, most notably carrying out inspections during the manufacturing 166 

process in a factory (Liu et al. 2019; Su et al. 2010; Wu et al. 2015; Xiaohu and 167 

Jineng 2018; Xin et al. 2010; Zhao et al. 2016) and assisting with the material 168 
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management process on outdoor construction site (Lee and Park 2019). With regard to 169 

the application of such techniques in factories, research has shown that the rebars 170 

could be accurately counted through the extracted features. However, in the case of 171 

construction sites, the accuracy rate was decreased when variations such as non-172 

uniform lighting and different weather conditions appeared in the images. The 173 

resulting performance indicates that the features for counting the rebars accurately 174 

were not sufficiently well defined and extracted. This is a well-known disadvantage of 175 

the traditional approaches, as it very difficult to design features that are robust enough 176 

to cope with all possible variations of complex scenarios. Counting rebars from UAV 177 

images on real construction sites can be regarded as a complex scenario due to the 178 

complex background textures, varying scales of the rebars, and the irregular 179 

illumination. Therefore, a more robust method for dealing with the kind of complex 180 

scenarios involving many variations found on construction sites is required. 181 

 182 

2.2 Deep learning approach 183 

There is currently a growing trend to use deep learning based methods for various 184 

applications, particularly the convolutional neural network (CNN) within the 185 

computer vision field, to overcome the drawbacks of conventional methods (Chen et 186 

al. 2017). The main difference between traditional and deep learning-based methods is 187 

that the feature extractor is replaced by a CNN in the latter. Deep learning is used to 188 

automatically extract features by training a high number of trainable parameters using 189 

a large amount of images, as data driven methods.  190 

Fan et al. (2019) developed a method that could be used to count rebars in a steel 191 

producing factory. Candidate centre points of the rebars were detected using CNN, 192 

and Distance Clustering (DC) was then applied to determine the steel bars. The 193 
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accuracy rate was found to be 99.26%. A method based on deep learning for counting 194 

the number of rebars in warehouses on construction sites was proposed by Li et al. 195 

(2021). This method, called You Only Look Once (YOLO), produces bounding boxes 196 

to localise and classify rebars. Their experimental results produced an average 197 

precision and recall rate of 99.7% and 88.3 %, respectively. Zhu et al. (2020) 198 

proposed an approach that could be used to count rebars in an outside storage area on 199 

construction sites. They used a Receptive Field Block (RFB)-Feature Pyramid 200 

Networks (FPN) model to localise and classify the rebars, which produced a 201 

maximum F1 score of 98.17%. Hernández-Ruiz et al. (2021) developed a method for 202 

counting rebars inside a warehouse. CNN was used to establish whether there were 203 

rebars within cropped areas and DC was used to estimate the possible centres of the 204 

rebars. This method was able to achieve an average detection accuracy rate of 98.81% 205 

for round rebars and 98.57% for square rebars. Li and Chen (2022) applied the YOLO 206 

method to a large-scale dataset of steel pipes taking various on-site conditions into 207 

account. The experimental results obtained showed an average precision rate of 0.98. 208 

The studies mentioned above applied different deep learning approaches to count 209 

rebars on construction sites (Fan et al. 2019; Li et al. 2021; Li and Chen 2022; Zhu et 210 

al. 2020) or in factories (Hernández-Ruiz et al. 2021), and have been shown to have a 211 

high generalisation ability. The successful application of these methods demonstrates 212 

that deep learning approaches have a strong potential for use in complex scenarios on 213 

construction sites. Consequently, the application of image processing techniques 214 

based on a deep learning approach to investigate RC inspection using UAVs during 215 

the construction stage represents a new area of research. The study also discusses and 216 

compares other widely accepted deep learning techniques in order to further 217 

demonstrate the reliability and accuracy of such methods. 218 
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 219 

3. Proposed approach 220 

3.1 Faster R-CNN 221 

While there may be numerous alternatives to the traditional methods, integrating 222 

object detection with deep learning techniques presents a promising avenue for 223 

counting rebars. Object detection, also referred to as object recognition, involves 224 

performing two sub-tasks simultaneously: determining the Regions of Interest (ROI) 225 

for target objects; and categorising the localised objects within an image. The Faster 226 

Region-based Convolutional Neural Network (R-CNN) method (He et al. 2016) is a 227 

type of object detection approach, which is able to localise and classify the target 228 

objects in each image through the use of bounding boxes. The original Faster R-CNN 229 

method was not developed with a specific task in mind, but rather to function as a 230 

versatile object detection algorithm. This adaptable and efficient method can be 231 

customised for different tasks by training it on appropriate datasets. Faster R-CNN has 232 

been extensively employed in numerous applications requiring the localisation of 233 

target objects and the identification of their categories. 234 

Fang et al. (2018a) developed an automatic detection approach designed to detect 235 

construction workers' safety helmets using Faster R-CNN. The proposed method had 236 

a precision rate of 95.7% under a variety of conditions. Fang et al. (2018b) proposed a 237 

novel framework based on Faster R-CNN for detecting workers and equipment (e.g. 238 

an excavator) on construction sites. The results revealed a high level of average 239 

precision (workers: 91%; equipment: 95%) in detecting the target objects. Li et al. 240 

(2022b) applied Faster R-CNN to recognising which tasks workers were performing 241 

(e.g. whether they were straightening or transferring steel bars). The Faster R-CNN 242 

detector performed well, with an average accuracy rate of 96.54%. 243 
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The aforementioned research confirmed that Faster R-CNN is a promising 244 

method that can achieve an excellent rate of accuracy for different tasks on 245 

construction sites in complex scenarios involving objects of different scales and 246 

changes in illumination throughout the day. Each rebar can be represented as a 247 

predicted bounding box by a well-trained Faster R-CNN model, and the number of 248 

rebars can then be calculated by counting the bounding boxes. Therefore, Faster R-249 

CNN was selected as the main method to be used for rebar counting from the UAV 250 

images in this study.  251 

 252 

3.2 Comparative methods 253 

A comparison with other popular methods of detection was undertaken to further 254 

demonstrate the performance of Faster R-CNN. Within the computer vision field, 255 

object detection can be broadly categorised into two approaches: one-stage detection, 256 

which uses a single deep neural network, and is known to have better detection speed, 257 

while two-stage detection, which uses two deep neural networks, including Faster R-258 

CNN, is known to have better accuracy (Bu et al. 2022). In this research, the 259 

performance of Faster R-CNN was compared with both single-stage and two-stage 260 

methods. 261 

The following methods were tested, as representative of one-stage detection: 262 

YOLO: YOLOv5, and YOLOv6 (Li et al. 2022a); Single Shot MultiBox Detector 263 

(SSD): SSD300, and SSD500 (Liu et al. 2016a). The primary distinction between 264 

YOLOv5 and YOLOv6 lies in the latter's adoption of a more intricate network 265 

architecture and an additional scale of anchor boxes. This enhancement enables 266 

YOLOv6 to identify smaller objects with greater precision, positioning it as a superior 267 

alternative to its predecessor in terms of both accuracy and small object detection. 268 
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Nevertheless, YOLOv6's higher computational demands may lead to slower 269 

processing speeds. SSD300 and SSD500, on the other hand, are specifically designed 270 

to process images with dimensions of 300 x 300 pixels and 500 x 500 pixels, 271 

respectively. Because of its ability to analyse higher resolution images, SSD500 272 

outperforms SSD300 in terms of accuracy. However, its more extensive architecture 273 

necessitates greater computational resources and memory, which may result in slower 274 

performance and compatibility issues on certain devices. In summary, SSD500 275 

surpasses SSD300 in terms of accuracy and small object detection capabilities, albeit 276 

at the cost of increased computational intensity and potential speed reduction. 277 

The Region-based Fully Convolutional Networks (R-FCN) method was selected 278 

as being representative of two-stage methods. The main feature of this method is that 279 

it employs FCN, which use position-sensitive score maps to predict object locations 280 

and class probabilities. With position-sensitive score maps, the algorithm is 281 

potentially less accurate than Faster R-CNN, because it eliminates the region-based 282 

feature extraction step, which is considered to be a key stage in improving the 283 

accuracy of object detection (Xiao and Kang 2021). 284 

Although the aforementioned methods typically exhibit marginally lower 285 

accuracy and faster inference times compared to Faster R-CNN, numerous studies 286 

have demonstrated their strong generalisation capabilities and reasonable inference 287 

times across various tasks (Xiao and Kang 2021). The accuracy and inference time of 288 

these methods may vary when applied to specific tasks, primarily due to the differing 289 

complexity of features associated with each task. Consequently, it is imperative to 290 

evaluate a model's effectiveness with respect to its designated purpose. Less 291 

computationally demanding approaches may prove more practical and suitable for 292 
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implementation if they demonstrate adequate accuracy in tasks such as counting 293 

rebars from UAV images. 294 

 295 

3.3 Proposed Faster R-CNN 296 

The aim of this research is to develop a method using Faster R-CNN for 297 

automatically counting the number of longitudinal rebars in images of RC columns 298 

taken by a UAV. As shown in Figure 1, the Faster R-CNN model is a compound 299 

operation that includes two interrelated processes: the Region Proposal Network 300 

(RPN) and Fast R-CNN. These two methods perform distinct yet complementary 301 

tasks: the RPN's function is to identify prospective ROIs where the target object might 302 

be located. Fast R-CNN takes the ROIs generated by the RPN and refines them to 303 

achieve greater accuracy. It also classifies these ROIs to identify the objects they 304 

contain. In this research, some of the configurations such as the architecture and 305 

hyperparameters were modified to achieve the best performance of Faster R-CNN in 306 

terms of detecting the rebars. Moreover, its accuracy at detecting rebars was 307 

investigated using different metrics. 308 

 309 

3.3.1 Training Faster R-CNN 310 

The schematic architecture of RPN, is shown in Figure 2a. RPN is a key 311 

component of the Faster R-CNN architecture, responsible for generating region 312 

proposals that are likely to contain objects. The concept of anchors is used to describe 313 

the initial rectangular region proposals generated that have a variety of defined aspect 314 

ratios and scales. They are created at the centre of a spatial window, which runs over 315 

the extracted feature maps. The primary function of the RPN is to fine-tune the 316 
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anchors based on ground truth information obtained through the RPN classifier and 317 

regressor.  318 

The Fast R-CNN’s schematic architecture is depicted in Figure 2b. The Fast R-319 

CNN consists of a feature extractor, classifier and regressor. When the RPN produces 320 

possible region proposals ranked by their abjectness scores, these proposals are sent to 321 

the Fast R-CNN model for further refinement. The first stage in this process involves 322 

pooling the features related to each region proposal. The ROI pooling layer achieves 323 

this by resizing each proposal to a fixed dimension, ensuring that they are compatible 324 

with the following fully connected layers. The classifier and regressor are utilised to 325 

classify the class probability of the detected proposal and localise each object with the 326 

comparison of ground truth annotation. As the RPN and Fast R-CNN analyse the 327 

given images by sharing the same convolutional layers, they are unified into a single 328 

network. 329 

 330 

3.3.2 Architecture 331 

Deep neural networks have the following limitation: as the depth of the network 332 

increases, the accuracy declines rapidly, which is known as the gradient vanishing 333 

problem. During the training process, the gradient of the earlier layers is computed by 334 

multiplying the gradient of the later layers. When the gradient of the later layers is 335 

less than one, the gradient of the earlier layers will be close to zero, resulting in the 336 

previous layer's gradient information becoming very small. To address this issue, a 337 

popular type of architecture, ResNet-101, is often employed. It maintains information 338 

about previous layers' gradients by forwarding the input to subsequent layers without 339 

alteration, making it easier for the network to retain information about earlier layer 340 

gradients. In addition, the architecture of the RPN is the same as that configured in the 341 
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original paper. In the last layer of the RPN, bounding boxes consisting of four 342 

coordinates with expectation values indicating the probability that an object exists, are 343 

estimated. To detect the existence of each rebar, the number of neurons in the final 344 

layer of the classifier was altered to indicate one of two classes: rebar or background.  345 

Generally, it takes a long time and requires a lot of data to train deep learning 346 

architecture from scratch. A pre-trained model that has already been developed in 347 

advance can be used as an alternative. After being pre-trained with one dataset, the 348 

model can utilise the features it has learned to perform various other tasks. In this 349 

research, ImageNet (Krizhevsky et al. 2012), which is designed for academic 350 

computer vision research, was used as one of the datasets for the pre-trained model. 351 

ImageNet contains over 14 million images, covering many general categories such as 352 

buildings, and people. Thus, in this research, the ResNet-101 feature extractor was 353 

initialised by pre-training it on ImageNet. 354 

 355 

3.2.2 Optimisation of the hyperparameters 356 

There are many tuneable hyperparameters that can be optimised to train the 357 

model. As the model performance may be altered by the use of different 358 

hyperparameters, combinations of hyperparameters are carefully optimised through 359 

experiments. However, it is almost impossible to explore all the possible 360 

configurations exhaustively, due to the constraints of time and computation resources. 361 

In this research, the following hyper parameters were chosen to optimise the deep 362 

learning model. Stochastic Gradient Descent (SGD) was used as an optimiser, which 363 

randomly sampled the batch size to update the weight of the model. In SGD, the 364 

current gradient is combined with the previous gradients multiplied by a momentum 365 

term, which is a user-defined coefficient value. The momentum values were set to 0.7 366 
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and 0.9. When the model was trained on Faster R-CNN, weight decay was used, 367 

which is a regularisation technique designed to prevent overfitting. Weight decay was 368 

applied by adding the L2 norm to the loss function for all the model weights. The L2 369 

norm was multiplied by a factor of the weight decay parameter and the values of 370 

weight decay assigned were 0.0005 and 0.001. The learning rate refers to the step size  371 

of the weight used for updating the previous weight. The values assigned to the basic 372 

learning rate were 0.00025 and 0.0001. The batch size is a hyperparameter that 373 

controls the number of sample data in one iteration. The possible values for the batch 374 

size are limited by the amount of GPU memory available. The values were set to 1 375 

and 2. The number of iterations has a significant impact on the precision and training 376 

time of the models. With fewer iterations, the training time may be shorter, but it may 377 

not achieve optimal accuracy, resulting in low precision. With more iterations, the 378 

accuracy can be optimised and stabilised, but it will require more time, resulting in 379 

greater use of resources. In this research, 20,000 and 30,000 were deemed appropriate 380 

values for training the model. In summary, 32 combinations of five different hyper- 381 

parameters, namely: batch size, learning rate, weight decay, momentum, and iteration, 382 

were used, as listed in Table 1. 383 

 384 

3.3 Evaluation of model performance 385 

In addition to the Root Mean Square Error (RMSE), which is used as the loss 386 

function for the Faster R-CNN training process, there are various other metrics that 387 

can be used to evaluate the performance of the model in object detection tasks. In this 388 

study, two aspects: average precision (AP), and detection speed, were considered. 389 

 390 

(1) AP 391 
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In object detection, AP is widely used as a numerical metric for the evaluation of 392 

accuracy. AP is the average precision across all recall values between 0 and 1 at 393 

different thresholds of Intersection over Union (IOU), referring to the proportion of 394 

the area that is common to both the predicted and ground truth bounding boxes, 395 

relative to the total area covered by both boxes. AP is calculated using the formula 396 

shown in Equation (1), where n is the total number of bounding boxes detected, i is 397 

the rank of a specific detected bounding box, p(i) is the precision value between the 398 

first, and ith detection, and Δr(i) is the change in recall values between the (i-1)th and 399 

ith detection. 400 

AP =  ∑ 𝑝(𝑖)𝛥𝑟(𝑖)𝑛
𝑖=1          (1) 401 

In this study, the following two IOU thresholds were set: AP50, and AP50:AP95. 402 

AP50:AP95 denotes that the mean AP ranges from 0.5 to 0.95 with an incremental 403 

step size of 0.05. 404 

 405 

(2) Detection speed 406 

The detection speed is the time computed by a model for a single frame. The 407 

speed is measured in FPS (Frames Per Second). One objective of measuring FPS was 408 

to ascertain how quickly the Faster R-CNN model can detect the given images. 409 

 410 

4. Experiment 411 

4.1 Dataset preparation 412 

4.1.1 Original dataset 413 

A high-precision DJI Phantom 4 Pro drone was commissioned at five unique 414 

construction sites in South Korea during peak productivity hours. Construction 415 

supervisors manually controlled the drone, thus ensuring the capture of clearly visible 416 



18 

 

images of the rebars. Representative samples from the original dataset are displayed in 417 

Figure 3. The drone's path was methodically guided in a vertical trajectory above each 418 

column, positioning it directly above the rebars at an estimated altitude of 1 to 2 419 

meters. At each position, still images were captured with the columns nearly centred 420 

in each frame. To underscore the pragmatic viability of the proposed method, rebar 421 

images were sourced under authentic operational conditions, thus encapsulating the 422 

complexities and challenges that typify bustling construction sites. This dataset 423 

contained a diverse array of variations in factors such as illumination, scale, and 424 

perspective. Moreover, other construction equipment such as scaffolding, timber and 425 

moulding were also observed in the images. 426 

In total, 728 images of rebars with a resolution of 1,500 × 900 pixels were 427 

captured. The original dataset was divided into the training set; the validation set, 428 

which was used for selecting the best trained model; and the test set for testing the 429 

performance of the chosen model. The images were split into training (60%), 430 

validation (20%), and test (20%) subsets (436, 146, and 146 images, respectively) 431 

through random selection to ensure that each subset was representative of the original 432 

dataset. 433 

 434 

4.1.2 Augmenting the dataset using training image augmentation methods 435 

Because constructing the datasets can be time-consuming and tedious, image 436 

augmentation, which involves artificially expanding the training datasets was 437 

introduced. Although there are various different augmentation techniques available, 438 

the following five augmentation techniques were applied to real-world images 439 

captured by UAVs in this research. The purpose of each augmentation technique is 440 

described briefly with the parameter used. A detailed explanation with the relevant 441 
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mathematical operations is described in previous research (Shorten and Khoshgoftaar 442 

2019). 443 

First, various images of rebars with different lighting conditions were collected. 444 

To gather a dataset that includes variations in lighting conditions, brightness 445 

augmentation can be used to artificially increase or decrease the pixel intensity of the 446 

original images to make them brighter or darker. To set the parameters for this, a pixel 447 

intensity of between -30 and 30 was randomly added. Second, the flight altitude of the 448 

UAV can cause variations in the scale of the rebars. Hence, scale augmentation can be 449 

employed to scale the images up or down by altering the original images along the 450 

coordinate axis. The original images were randomly transformed by a value of 451 

between 80% and 150% in the x and y-coordinates of their original size. Third, as 452 

blurred images caused by the strong winds were included in a dataset, the model 453 

needed to be trained to accurately recognise objects in blurred images too. To produce 454 

a blurred effect, a Gaussian filter can be applied to the original image, resulting in a 455 

more pixelated image. This process smooths the image by giving more weight to 456 

nearby pixels and less weight to more distant ones, effectively averaging the pixel 457 

values in a weighted manner. A parameter of 𝜃 for the Gaussian filter was applied 458 

randomly, ranging from 0 to 1. Furthermore, as the UAV navigates its flight path to 459 

capture images of vertical columns, its orientation relative to the columns inevitably 460 

changes. This leads to the images being taken from various angles, causing variations 461 

in the orientation of the rebars within the images. Rotation augmentation addresses 462 

this issue by rotating the original images by a specific number of degrees. In this 463 

research, the rotation angle was randomly assigned to between 5 and 90 degrees to 464 

generate a more diverse set of rotated images. In addition, UAVs capture images from 465 

different positions and altitudes as they progress along their flight path. This results in 466 
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images being taken from varying viewpoints, leading to perspective distortions. 467 

Perspective transformation augmentation was applied to the images to simulate 468 

different viewpoint changes by multiplying the homography matrix with the original 469 

image's pixel coordinates. The magnitude of the perspective distortion was controlled 470 

for within the range of 0.01 to 0.15. 471 

Based on the 436 original training images, each technique was applied separately 472 

once, and then a combination of five techniques were applied at the same time. In 473 

total, 2,180 augmented images were newly generated. Figure 4 shows examples of the 474 

augmented images produced using brightness augmentation, image smoothing, and 475 

scale augmentation. 476 

 477 

4.1.3 Synthesis of final dataset 478 

To demonstrate the effectiveness of the augmentation methods, four different 479 

datasets with different purposes were prepared for the experiments: training data, 480 

training data and augmented data, validation data, and test data. Next, the rebars were 481 

annotated for counting by assigning the rectangular ground-truth bounding boxes to 482 

the area of each rebar. In this case, the rebars were annotated as ‘rebar’ and the 483 

remaining areas were designated as ‘background’. Table 2 shows the detailed 484 

distribution of annotated information for each dataset. 485 

 486 

 487 

4.3 Experimental settings 488 

All the experiments were conducted using a Windows 10 system with an Intel 489 

Core i7-7700HQ @ 2.80 GHz×8, a NVIDIA GeForce GTX 3080ti GPU and 32G 490 

RAM. The Faster R-CNN was run with Detectron2 (Wu et al. 2019). This is a 491 
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Facebook AI Research (FAIR) software system that uses state-of-the-art deep learning 492 

algorithms. Other configurations retained the default settings of Detectron2, except 493 

for the hyperparameters, as shown in Table 1. 494 

 495 

5. Results 496 

5.1 Results of training and validation 497 

Monitoring the changes in training and validation loss during the training can 498 

provide a useful indication of whether the model is converging. In addition, a model 499 

with a lower loss but a lower AP score might have a smaller overall error but could be 500 

failing to detect some objects or producing more false positives. On the other hand, a 501 

model with a higher AP score is likely to be more effective at detecting objects 502 

accurately and with fewer false positives, which is more desirable in rebar detection 503 

tasks. Therefore, when choosing the best model, the AP accuracy was prioritised over 504 

other aspects. 505 

The training and validation loss graphs for all 64 Faster R-CNN models were 506 

plotted; however, due to space constraints, they are not displayed here, but can be 507 

accessed via a link located in the "Data Availability Statement". As representative 508 

examples, the training and validation loss graphs of the models are displayed in 509 

Figure 5. For all the models, the loss curves displayed greater fluctuation in the early 510 

stages, which then progressively smoothed out with subsequent iterations. In the 511 

original and augmented datasets with 20,000 iterations, neither the training nor the 512 

validation loss converged, meaning that they showed relatively higher fluctuations. 513 

By contrast, at 30,000 iterations, the models trained on both the original and 514 

augmented datasets exhibited convergence. However, it is noteworthy that the specific 515 

iteration point at which convergence was achieved varied between the models. A 516 
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general trend for a lower validation loss was observed among the models that were 517 

trained using the augmented dataset. This pattern suggests that data augmentation 518 

effectively boosted the models' performance on the validation data. 519 

The performances of the APs (AP50, and AP50:95) in each model are displayed 520 

in Table 3, and the graphical representation are shown in Figure 6. Specific 521 

hyperparameters do not consistently yield the best performance across all datasets. 522 

With 30,000 iterations, the models trained using augmentation techniques 523 

outperformed those trained on the original dataset in terms of AP. However, when the 524 

number of iterations was reduced, the accuracy of the models trained with 525 

augmentation techniques fell below those trained on the original dataset. This 526 

suggests that the proposed augmentation techniques can enhance the models' ability to 527 

generalise, provided the appropriate hyperparameters are used.  528 

Regarding the overall AP performance, although all the Faster R-CNN models 529 

performed well at AP50, their accuracy dropped significantly when a stricter IOU 530 

metric of AP50:90 was applied. This indicates that most of the predicted bounding 531 

boxes were unable to accurately localise rebars with the corresponding ground truth 532 

boxes. Out of all the models generated, the highest performing model was case19 533 

(batch size:1, learning rate: 0.00025, weight decay: 0.001, momentum: 0.7, iteration: 534 

30,000), with the augmented dataset, which showed accuracy of 94.69%, 54.34%, and 535 

a detection speed of 0.032, at AP50 and AP50:95, respectively. As a result of the 536 

experiments, case19 was ultimately chosen to assess whether a similar level of 537 

accuracy could be achieved on real construction sites. 538 

 539 

5.2 Model evaluation in test images 540 
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The model trained by case 19 was applied to unseen images from the test dataset. 541 

The accuracy level obtained at AP50 was 94.61%, while at AP50:95, it was 54.52%, 542 

with a detection speed of 0.032. These results were closely aligned with the 543 

performance measures achieved during validation. Figure 7 and Figure 8 show 544 

examples of visually detected images that had a relatively high level and a relatively 545 

low level of accuracy, respectively. 546 

First, the images that were detected with a higher level of accuracy are shown in 547 

Figure 7. In Figure 7a, 24 rebars are depicted within a close-range view. This image 548 

also presents a relatively simplistic scenario, with good lighting and background 549 

including elements such as debris and equipment. All the rebars within the image 550 

were successfully detected by the model. Figure 7b features a more complex setting 551 

with dimmer illumination and a more cluttered background inclusive of elements such 552 

as scaffolding, moulding, and various other items. Nevertheless, the model adeptly 553 

detected all 32 rebars, unhampered by these more challenging conditions. 554 

However, there were some inaccuracies as shown in Figure 8a, which displays a 555 

near-field view of 24 rebars under medium-intensity brightness. As a result of the 556 

moderately complex background that includes elements such as a hoop and a blue 557 

mark, the model encountered difficulties in recognising objects. Pipe rings situated on 558 

the floor, in close proximity to one of the rebars, caused confusion for the model, 559 

leading it to erroneously identify one of these pipe rings as a rebar. Figure 8b exhibits 560 

a scene with 18 rebars, high illumination, a shadow cast by another object, and rain-561 

induced stains, all within a near-field view. In this image, the model failed to detect 562 

three rebars that were obscured within the shadow cast by adjacent columns. 563 

Additionally, it incorrectly interpreted a shadow of a rebar as an actual rebar. These 564 
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examples underline the challenges that can arise with object detection in variable 565 

environmental conditions. 566 

 567 

5.3 Comparison with other detectors 568 

5.3.1 Experimental configurations 569 

To ensure a fair comparison, the same adjustable configurations as for the Faster 570 

R-CNN model, including the hyperparameters (e.g. batch size, and iteration), and 571 

backbone architecture based on ResNet-101 were used with different datasets 572 

(original and augmented datasets) for other detectors: YOLOv5, YOLOv6, SSD300, 573 

SSD500, and R-FCN. The other features used were the same as in the corresponding 574 

original version. To accommodate the customised configurations, the codes were 575 

adjusted accordingly using the MMDetection platform (Chen et al. 2019) to run the 576 

models with all of these detectors. 577 

 578 

5.3.2 Comparison of performance 579 

In this experiment, 64 different models were run across six different detectors, 580 

giving a total of 384 unique models. Their respective training and validation losses, 581 

along with their performance metrics, are documented and can be accessed via a link 582 

located in the "Data Availability Statement". In summary, the loss patterns observed 583 

were akin to those detailed in Figure 5 for the Faster R-CNN model. All the models 584 

exhibited considerable volatility in their loss curves during the initial stages, gradually 585 

becoming more stable as the iterations increased. Nonetheless, none of the models 586 

reached a point of complete convergence, either with the original or augmented 587 

datasets, and showed a marked instability around the 20,000-iteration point. 588 
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Convergence was only achieved with the original dataset and the augmented version 589 

at 30,000 iterations. 590 

A comparison of the best models using six different methods with APs, and 591 

different detection speeds is presented in Table 4. While all the models performed 592 

well in terms of detecting rebars at AP50 after being trained on a dataset of UAV 593 

images, their performance dropped significantly when a stricter IOU metric of 594 

AP50:90, was applied. This result indicates that most of the predicted bounding boxes 595 

had a lower overlap with the corresponding ground-truth boxes. Out of all the models, 596 

the proposed Faster R-CNN model had advantages in terms of accuracy. Compared to 597 

the one-stage detectors, the two-stage detectors (Faster R-CNN and R-FCN) achieved 598 

higher AP rates at all the IOU levels. Although they take longer to detect objects due 599 

to including the additional step of region proposal generation, the estimated detection 600 

speed was still reasonably good. Of the one-stage detectors, YOLOv6 performed best 601 

for the selected metrics. 602 

 603 

5.3.2 Video testing 604 

Video analytics offers significant benefits for applications such as real-time 605 

monitoring, and progress tracking. The best model based on Faster R-CNN was 606 

demonstrated via video testing. This model was able to process an image in a 607 

remarkable 0.032 seconds, meaning that it can effectively cover up to 32FPS. Thus, a 608 

video captured at 30FPS by a superintendent could be analysed in real time. Figure 9 609 

shows a representative example of sequential frames processed by the Faster R-CNN 610 

model. The model correctly counted 25 rebars when the columns in the image were 611 

nearly centred, as exemplified in frames #246, #247, and #248. By contrast, when the 612 

columns were not centred (as seen in frames #348, #349, and #350), there was a 613 
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noticeable decrease in accuracy. This variation in accuracy might be attributable to the 614 

characteristics of the training dataset, which was mostly captured in a vertical 615 

trajectory, with columns nearly centred in each frame. Despite this limitation, the 616 

model could still prove highly effective for counting rebars in real time, especially 617 

when the columns are well-centred within the frame. 618 

 619 

6. Conclusions 620 

In this paper, a novel strategy was proposed for automatically counting the rebars 621 

in an RC structure using UAVs and Faster R-CNN. In order to implement the model 622 

with a high generalisation ability, 64 models, which comprised various combinations 623 

of two different datasets and 32 hyper parameters were trained and validated. After 624 

selecting the most optimised model, its real performance using the unseen data was 625 

evaluated. In addition, the other widely accepted detectors used in many different 626 

areas of application were compared to test the performance of the proposed Faster R-627 

CNN model. From the experimental results, the following conclusions were drawn:  628 

(1) One of the objectives of this research was to rapidly generate synthetic data 629 

with diverse variations to enhance the accuracy of rebar counting. Utilising five 630 

augmentation techniques - brightness, scale, blurring, perspective, and rotation - the 631 

models trained on the augmented datasets demonstrated superior accuracy compared 632 

to those using the original dataset, given sufficient iterations. This methodology could 633 

also prove beneficial for similar applications within construction settings, such as 634 

deducing rebar spacing and estimating rebar diameters. 635 

(2) Based on the most optimised model (i.e. case 19), the test results showed a 636 

94.61%, and 54.52% level of accuracy at AP50 and AP50:95, respectively, and a 637 

detection speed of 0.032 seconds. The resulting performance produced a reliable level 638 
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of accuracy in counting the rebars in complex scenarios but still had potential for 639 

improvement in certain other scenarios (e.g. shadow in high illumination images, and 640 

similar objects close to the rebars). The most optimised model that was generated 641 

could be used for practical purposes on construction sites, except in those scenarios in 642 

which it had a low rate of accuracy. 643 

(3) A comparison with other widely used detectors was carried out to evaluate the 644 

performance of the Faster R-CNN model. The results showed that the proposed Faster 645 

R-CNN model outperformed the following popular methods: YOLOv5, YOLOv6, 646 

SSD300, SSD500, and R-FCN, in terms of rebar counting accuracy. In addition, video 647 

testing of the Faster R-CNN model demonstrated that it had coverage of up to 32 648 

frames per second in the experimental environment, meaning that it has considerable 649 

potential for real-time investigations. 650 

The architecture used in this research showed promising results, but it is still a 651 

long way from achieving near-perfect accuracy. Thus, advanced architectures that 652 

incorporates additional convolutional or attention-based layers may be better at 653 

capturing the intricate patterns of rebars, leading to more accurate detection, which 654 

could be investigated in future research. In addition, the current model was shown to 655 

have limitations when the columns are not centred in the frames. Therefore, to 656 

enhance the model's robustness, the datasets should be enriched with more diverse 657 

video footage, captured in real time from a variety of construction sites and under 658 

different environmental conditions.  659 

 660 

 661 

 662 

 663 
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Data Availability Statement 664 

All data, models, and code generated or used during the study appear in the 665 

submitted article. The dataset obtained, trained model, and test results, video output 666 

can be downloaded from Figshare data repository (Wang 2023). 667 
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 772 

Tables 773 

Table 1 Combinations of hyperparameters used in this research 774 

Case 
Hyperparameters 

Batch size Learning rate Weight decay Momentum Iteration 

1 1 0.00025 0.0005 0.7 20,000 

2 1 0.00025 0.0005 0.9 20,000 

3 1 0.00025 0.0001 0.9 20,000 

4 1 0.00025 0.0001 0.7 20,000 

5 1 0.001 0.0005 0.7 20,000 

6 1 0.001 0.0005 0.9 20,000 

7 1 0.001 0.0001 0.7 20,000 

8 1 0.001 0.0001 0.9 20,000 

9 2 0.00025 0.0005 0.7 20,000 

10 2 0.00025 0.0005 0.9 20,000 

11 2 0.00025 0.0001 0.7 20,000 

12 2 0.001 0.0001 0.7 20,000 

13 2 0.001 0.0005 0.7 20,000 

14 2 0.001 0.0005 0.9 20,000 

15 2 0.00025 0.0001 0.9 20,000 

16 2 0.001 0.0001 0.9 20,000 

17 1 0.00025 0.0005 0.7 30,000 

18 1 0.00025 0.0005 0.9 30,000 

19 1 0.00025 0.0001 0.7 30,000 

20 1 0.00025 0.0001 0.9 30,000 

21 1 0.001 0.0005 0.7 30,000 

22 1 0.001 0.0005 0.9 30,000 

23 1 0.001 0.0001 0.7 30,000 

24 1 0.001 0.0001 0.9 30,000 

25 2 0.00025 0.0005 0.7 30,000 

26 2 0.00025 0.0005 0.9 30,000 

27 2 0.00025 0.0001 0.7 30,000 

28 2 0.00025 0.0001 0.9 30,000 

29 2 0.001 0.0005 0.7 30,000 

30 2 0.001 0.0005 0.9 30,000 

31 2 0.001 0.0001 0.7 30,000 

32 2 0.001 0.0001 0.9 30,000 

 775 

Table 2 Detailed distribution of constructed datasets 776 

Purpose Number of images Rebars 

   

Training 436 10,734 

Training, and augmentation 2,616 64,404 

Validation 146 3,842 

Test 146 3,700 
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 777 

Table 3 Rankings of trained models with different hyperparameters and datasets 778 

 779 

 780 

Table 4 Comparison of results produced by different detectors 781 

 782 

Total 3,344 82,680 

   

Rank Data Case AP50 
AP 

(50:95) 
Rank Data Case AP50 

AP 

(50:95) 

1 Aug. case19 94.74 54.47 33 Aug. case5 89.21 47.66 

2 Aug. case30 94.64 53.94 34 Ori. case31 89.08 47.57 

3 Aug. case18 94.59 52.84 35 Aug. case7 89.05 49.01 

4 Aug. case29 94.58 53.62 36 Aug. case8 89.02 48.52 

5 Aug. case17 94.52 53.75 37 Ori. case20 88.88 47.86 

6 Aug. case24 94.04 52.98 38 Ori. case29 88.86 46.63 

7 Aug. case32 93.86 52.66 39 Ori. case27 88.71 46.83 

8 Aug. case26 93.73 53.32 40 Aug. case2 88.54 48.38 

9 Aug. case27 93.57 54.38 41 Ori. case24 88.53 47.11 

10 Aug. case25 93.28 52.78 42 Aug. case16 88.48 47.59 

11 Aug. case23 93.19 52.79 43 Aug. case10 88.26 47.43 

12 Aug. case20 93.08 53.67 44 Aug. case1 88.25 48.20 

13 Aug. case21 92.82 53.55 45 Aug. case9 87.97 47.91 

14 Aug. case28 92.80 52.33 46 Aug. case12 87.81 47.62 

15 Aug. case22 92.73 52.37 47 Aug. case3 87.78 48.03 

16 Aug. case31 92.64 52.57 48 Aug. case4 87.77 47.48 

17 Ori. case21 90.31 48.02 49 Ori. case11 87.28 43.04 

18 Ori. case25 90.23 47.45 50 Ori. case14 87.24 42.35 

19 Ori. case26 90.22 47.25 51 Ori. case1 87.19 43.06 

20 Ori. case28 90.16 46.90 52 Ori. case9 87.05 43.55 

21 Ori. case30 90.06 47.01 53 Ori. case3 87.02 43.95 

22 Ori. case19 89.91 46.64 54 Ori. case4 86.93 42.41 

23 Ori. case23 89.83 47.92 55 Ori. case12 86.92 44.12 

24 Aug. case6 89.76 48.95 56 Ori. case10 86.74 43.35 

25 Ori. case22 89.73 46.33 57 Ori. case13 86.63 43.15 

26 Aug. case11 89.73 47.38 58 Ori. case7 86.62 42.57 

27 Aug. case14 89.71 49.35 59 Ori. case5 86.50 42.66 

28 Aug. case13 89.58 48.49 60 Ori. case2 86.35 42.95 

29 Aug. case15 89.55 48.72 61 Ori. case16 86.18 42.90 

30 Ori. case17 89.43 46.99 62 Ori. case8 85.80 43.44 

31 Ori. case18 89.37 47.97 63 Ori. case15 85.71 43.34 

32 Ori. case32 89.31 47.88 64 Ori. case6 85.70 42.73 

 Validation Test 

Model AP50 AP(50:95) AP50 AP(50:95) 
Detection 

speed 

SSD300 89.19 46.01 88.27 48.27 0.018 

SSD500 89.78 46.62 89.32 49.13 0.019 

YOLOv5 91.36 50.29 90.73 50.21 0.017 
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YOLOv6 92.34 50.76 91.95 50.59 0.016 

R-FCN 93.13 51.38 93.02 51.32 0.024 

Faster R-CNN 94.69 54.34 94.61 54.47 0.032 


