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Abstract—Transportation systems are particularly prone to
exhibiting overwhelming complexity on account of the numerous
involved variables and their interrelationships, unknown stochas-
tic phenomena, and ultimately human behavior. Simulation
approaches are commonly used tools to describe and study such
intricate real-world systems. Despite their obvious advantages,
simulation models can still end up being quite complex them-
selves. The field of Air Traffic Management (ATM) modeling
is no stranger to such concerns, as it traditionally involves
laborious and systematic analyses built upon computationally
heavy simulation models. This rather frequent shortcoming can
be addressed by employing simulation metamodels combined
with active learning strategies to approximate the input-output
mappings inherently defined by the simulation models in an
efficient way.

In this work, we propose an exploration framework that
integrates active learning and simulation metamodeling in a
single unified approach to address recurrent computational
bottlenecks typically associated with intense performance impact
assessments within the field of ATM. Our methodology is de-
signed to systematically explore the simulation input space in
an efficient and self-guided manner, ultimately providing ATM
practitioners with meaningful insights concerning the simulation
models under study. Using a fully developed state-of-the-art ATM
simulator and employing a Gaussian Process as a metamodel,
we show that active learning is indeed capable of enhancing
both the modeling and performances of simulation metamodeling
by strategically avoiding redundant computer experiments and
predicting simulation outputs values.

Keywords—Active Learning, Simulation Metamodeling, Air
Traffic Management Simulation Modeling, Gaussian Processes

I. INTRODUCTION

Transportation systems are inherently characterized by over-
whelming complexity and dynamism. In addition to involv-
ing numerous variables and their corresponding relationships,
these systems often exhibit stochastic behavior and unknown
random phenomena that are virtually impossible to encode
into closed-form and tractable analytic expressions [1]. As
a result simulation approaches are traditionally employed as

the de facto modeling tools to characterize and study such
systems and ultimately assess their performance. Both present
and future transport systems can be successfully studied via
simulation, additionally allowing for the assessment of current
and planned interventions [2]. Due to its intrinsically ex-
ploratory nature supported by computer-based representations,
simulation proves to be highly advantageous for planning and
policy analysis [3].

Simulation modeling has a long tradition within the trans-
portation community [2], in which many simulation-based
analyses mostly rely on manual what-if approaches in an
effort to characterize and ultimately discretize uncertainty into
a finite and intelligible set of possible future system states.
Since planning for the future inevitably involves risk and
uncertainty, the use of scenarios, and associated solutions, as
descriptive narratives of potential future states of the system
under study is widely used in planning and robust decision-
making processes [4].

The focus of this work lies in the field of Air Traffic
Management (ATM), whose main objectives are to ensure
the safety and efficiency of air traffic flows [5]. An ATM
system encompasses an overwhelming number of elements
and variables, from those related to the aircraft, their control,
and associated technologies, to the interdependent policies and
regulations, stakeholder and market conditions. The emergent
behavior resulting from the interaction between all these ele-
ments makes ATM systems inherently hard to model [6]. Due
to their complexity, ATM systems are typically approached
via simulation modeling, as it constitutes the only reliable
method capable of tackling its idiosyncrasies. Both micro and
macroscopic models are commonly used. Whereas the former
primarily focuses on behavioral foundations and individual en-
tities at the disaggregated level, the latter tends to be employed
for strategic decision-making due to their parsimonious and
high-level properties.

Despite the indisputable advantages of the above-mentioned



simulation modeling approaches, they do not come without
their drawbacks: simulation models themselves can also be-
come complex and thus computationally expensive to run. It
is expected that with more detailed and realistic models, the
potential for prohibitive simulation running times is highly
likely, which can render further analysis unfeasible and the
exploration of the simulator’s behavior difficult to attain in
a systematic manner. One of the most common challenging
problems in terms of ATM modeling is the assessment of the
performance impacts of new system-wide level solutions, as
recently highlighted in [7].

In this paper, we propose an exploration framework that
effectively integrates active learning and simulation metamod-
eling to address the limitations posed by computationally
expensive simulation models in the context of ATM. On the
one hand, active learning is a modeling paradigm that aims
at attaining high predictive performance with few data points,
while on the other hand, simulation metamodels are designed
to approximate the input-output mappings inherently defined
by the simulation models themselves in an effort to mimic
the simulators’ output behavior. Hence, our aim is to combine
the best of both worlds into an integrated approach. To the
best of our knowledge, such kind of solution is scarcely
applied in transportation research and is nonexistent in the
ATM field. Using a fully developed state of the art agent-
based ATM simulator and employing a Gaussian Process as a
metamodel, we show that active learning is indeed capable of
enhancing both the modeling and exploration performances of
simulation metamodeling by strategically avoiding redundant
computer experiments and predicting, within a certain degree
of confidence, simulation outputs values. Additionally, we
show the computational advantages of using our metamodel
by benchmarking the approach against traditional exploration
of a simulator.

II. BACKGROUND

A. Gaussian Processes

The Gaussian Processes (GPs) [8] are a widely applied
tool within probability, statistics and machine learning fields.
Their nonlinear and nonparametric abilities make the GPs
a powerful modeling tool in a wide range of regression
and classification problems. Moreover, its Bayesian properties
enable the quantification of the uncertainty present in its own
predictions and in the data itself.

Within any regression setting, a generic D-dimensional data
set by S = {(xi, yi)|i = 1, . . . , n}, where xi ∈ RD is an
input vector, y the output (or target) variable, n the number
of observations, and D the size of the input feature space,
is first considered. After aggregating the n input vectors, we
obtain the (D × n) design matrix X . In a similar fashion for
the n targets, y is also obtained. The original data set can now
be rewritten as (X, y) ⊆ RD×(n+1). The main objective of
any regression approach is to infer the functional dependency
between the input and output variables or, in other words, the
conditional distribution of y given X , p(y|X).

As described by [8], a GP is a collection of stochastic
variables f = (ft, t ∈ T ), where any finite set of which jointly
follows a Multivariate Gaussian Distribution (MGD), and T
is a set of indices. In this sense, a GP can be trivially seen
as a straightforward generalization of a MGD. At the core of
any GP lies a pair of functions, namely, the mean and the
covariance (also called the kernel), respectively denoted by
mf (x) and kf (x, x′), where x′ is another input vector. Hence,
a GP can be simply denoted as GP(mf (x), kf (x, x′)), where
mf (x) = E[f(x)], kf (x, x′) = Cov(f(x), f(x′)) = E[(f(x)−
mf (x))(f(x′)−mf (x′))]. In the modeling context previously
mentioned, the GP-based regression approach assumes that
the relationship between the involved variables is described
by a GP, i.e., y = f(x) + ε, where ε ∼ N (0, σ2) and
f(x) ∼ GP(mf (x), kf (x, x′)).

The kernel has a critical role in determining the overall
properties and behavior of the resulting GP, as it encapsu-
lates the similarity between the points and its generalization
capabilities. The kernels typically have a certain number of
free parameters (hyperparameters of the GP) which can be
estimated by minimizing the negative marginal likelihood
subjected to the training data. The Squared Exponential (SE) is
a common choice for the GPs’ kernel. It is generically defined
as k(x, x′) = σ2

f exp
(
− 1

2 (x− x′)>M(x− x′)
)
, where σ2

f

corresponds to the variance of the underlying signal function
f , M = diag(σ)−2, and σ = [σ1, σ2, . . . , σD]>. Here, f
refers to the function intrinsically defined by the simulation
model itself, which we aim to approximate via a GP.

After the optimal hyperparameters of the kernel are ob-
tained, the posterior distribution for a single test point x∗
is given by f∗|X, y, x∗ ∼ N (̄f∗, Cov(f∗)), with f̄∗ ,
E[f∗|X, y, x∗] = k>f∗[Ky]−1y, and Cov(f∗) = V[f∗] = kf∗∗−
k>f∗[Ky]−1kf∗, where kf∗ = kf (X, x∗), kf∗∗ = kf (x∗, x∗),
and Ky is the kernel for noisy observations. We see that each
GP prediction comes in the form of Gaussian distributions with
specific mean and variance. Thus, each prediction corresponds
to a whole range of values weighted by a well-defined proba-
bility density function. Often, f̄∗ and Cov(f∗) are deemed the
predictive mean and variance of the GP, respectively.

Through Bayesian formalism, the GP framework is able to
characterize the variance within its own predictions. In fact,
the predictive variance is a critical component in GP modeling,
and it can be used to maximize information acquisition if
regarded as a measure of uncertainty. Note that any given
GP prediction can be considered uncertain if its associated
predictive variance is high. In other words, the higher the
variance is, the more scattered the predictive distribution
becomes around the mean value, consequently increasing the
range of the most likely values to be predicted. Conversely,
low variances imply narrower distributions concentrating most
of the probability density in the vicinity of the expected value.

B. Active Learning

Active learning consists of an iterative learning approach
that aims to attain high prediction performance with as few
training samples as possible. This is achieved by designing
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into the underlying learning process the ability to - according
to a certain criterion - actively select the data points from
which it learns, proving to be particularly useful for modeling
tasks where labeled data is difficult to obtain [9].

The general idea of active learning is to sequentially select
the most informative data points that simultaneously boost
the model training efficiency and improve its predictive per-
formance. Hence, it is essentially focused on improving the
overall model prediction performance, as well as on control-
ling the costs associated with acquiring new labeled instances.
The entire learning process is guided by a label provider,
also called the oracle, whose task is to provide labeled data
instances which are then successively incorporated into the
expanding training data set. Hence, a core assumption of
active learning is that a label provider must be permanently
accessible to be queried on-demand by the learning algorithm
or model. The most important aspect of the oracle is its ability
to successfully and consistently generate labeled instances
from the ground truth function inherently defining the process
under study.

As elegantly presented in [10], an arbitrary active learning
system encompasses five fundamental entities, summarized
in the following quintuple (L,U ,M,O,Q). First, L is the
labeled training set, whereas the set of unlabeled data points
is represented by U . Generally, we have that the number of
unlabeled points is significantly higher than the labeled ones,
formally enclosing the earlier mentioned scenarios character-
ized by shortages of labeled data. The machine learning model
is represented by M, whereas the oracle by O. Finally, Q is
the query function that encodes the strategies and criteria for
finding and selecting the most informative instances from U
to be added to L.

Different querying strategies can be encoded into Q, es-
sentially representing distinct approaches to the underlying
modeling problem. [9] lists several query frameworks, such
as uncertainty sampling, query-by-committee, expected model
change and error reduction, variance reduction, or density-
weighted methods. In sum, most of these frameworks rely
either on measures of informativeness or on the identifica-
tion of uncertainty regions. Whereas the former addresses
the querying problem by measuring the potential degree of
information contained within an unobserved instance, the latter
explicitly defines regions of uncertainty where the model is
less confident with respect to its own predictions. Moreover,
and due to its inner iterative nature, active learning schemes
must be stopped at a certain point in time. Regardless of the
details of its definition, it is generally expected that the stated
stopping criteria should take into account the constant trade-
off between model performance and the cost of acquiring
new labeled points. It is imperative to be able to identify
those situations in which the model is reaching its theoretical
performance threshold, that is to say, when the addition of new
training points will potentially have a negligible effect on its
performance improvement.

It is common to focus on a single output and sample one
data point in each iteration since that allows for incorporating

the information from the queried data point to decide on
which data point to query next [11], but sometimes it is
advantageous to query multiple data points at once. When
creating a metamodel for a slow simulator, the computational
time of the simulator is an important bottleneck to be aware
of, but fortunately, most simulators can be either called in
parallel or distributed across different computers. This gives
rise to the trade-off between how many data points we are
willing to query based on the current information versus how
much time we are willing to wait to get more information.
Often this trade-off is decided by the implementation of the
simulator, how much time a simulation takes, and the hardware
available.

As previously discussed, the core concept underlying active
learning is that seeking out the most informative points and ex-
ploiting uncertainty regions of the input domain space reduces
data redundancy and boosts model training efficiency, besides
saving significant computational resources in the process. In
this regard, the GP framework proves to be an appropriate
modeling tool that, due to its nonparametric and Bayesian
properties, allows it to handle both informativeness and uncer-
tainty in a relatively natural and intuitive way. Active learning
methodologies involving GPs are oftentimes associated with
exploration-exploitation problems within Bayesian optimiza-
tion contexts [12].

C. Metamodeling

The development and use of simulation metamodels [13]
can be traced back at least to the beginning of the 70s. They
constitute a type of auxiliary model that aims at approximating
the function inherently defined by the simulation model and
are explicitly defined by known and clear formula which can
be evaluated at any given point in a rather effortless manner.
Mathematical simplicity, speed, and interpretability are char-
acteristics typically attributed to metamodels. Consequently,
the use of metamodels within simulation analysis provides an
additional level of understanding of the underlying system,
as well as of the relationships between the system’s input
and output variables, while maintaining a computationally
straightforward and economical approach to the problem [14].

As already mentioned, simulation metamodels are essen-
tially input/output functions that are employed in such a way as
to approximate the true, and usually much more complicated,
function inherently defined by the simulation model itself.
The metamodel’s functional form is explicitly specified a
priori, with many of its inputs being commonly shared with
those of the simulation model. In this regard, the domain of
applicability of the metamodel, or experimental region, should
be clearly specified. This encompasses the definition of the
input domain or region for which the metamodel should be a
valid approximation.

The performance of simulation metamodels is inevitably de-
fined by its modeling goals on an everlasting effort to balance
the trade-off between computational speed and simplicity, and
accuracy with regards to the simulation model. Therefore, it
is equally important to specify the maximum or acceptable
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accuracy loss levels within the experimental region. The meta-
model performance can be continually assessed via standard
metrics such as the root relative squared error (RRSE). Given
their modeling capabilities, the GPs have been widely used for
metamodeling tasks in several fields [15][16].

III. METHODOLOGICAL APPROACH

Our approach to tackling the computational challenges often
posed by simulation-based studies is twofold. First, we address
the computational burden by providing a metamodeling frame-
work for approximating the simulation results and enabling
prediction over unlabeled regions of the simulation input
space. By predicting simulation output values for unlabeled
input data points, a reasonable amount of simulation runs can
be skipped. Second, we adopt an active learning approach to
specifically aim at carefully selecting the data to be simulated
for posterior fitting in a more efficient way.

An overview of the methodology presented in this work
is depicted in Figure 1, showing its iterative cyclic nature
around the alternating phases of metamodeling and active
learning. The a priori preparations for this approach include
the specification of the relevant input variables to consider,
and the corresponding output variables of interest, typically
in the form of system Key Performance Indicators (KPIs).
Along with it, the values ranges of input variables are set,
and consequently, an unlabeled simulation input region for
exploration, or search grid, is defined. This search region
corresponds to the applicability domain in which we aim to
explore the simulator’s output behavior. Afterward, an initial
data set comprising of a few previously run simulation results,
i.e., labeled instances, is built, allowing the iterative process
to initiate.

It is worthwhile mentioning that, in order to establish an
operationally controlled experimental and replicable environ-
ment, we decided to follow an ‘offline’ pool-based active
learning approach. This means that a labeled simulation pool
consisting of pre-generated simulation results is used instead
of accessing the simulation model directly. In this sense, this
data set plays the role of the simulator by providing labeled
instances on-demand whenever queried. From an active learn-
ing point-of-view, this constitutes a minor adaptation that, for
all intents and purposes, has little to no impact on the analysis
conducted hereafter.

The first step of this process involves the training of the
metamodel using the above-mentioned initial set. Then, the
prediction step follows, where the fitted metamodel is used
to predict over the given unlabeled input region of interest
or applicability domain. Prediction performance assessment is
additionally carried out using a disjoint test set, effectively
ending the metamodeling phase. Subsequently, the active
learning procedure is initiated by requesting the labeled sim-
ulation pool for new data according to a pre-defined sampling
strategy (essentially enclosing some information-based crite-
rion) which is then added to the training data. Henceforward,
the entire process is repeated cyclic and iteratively until a
specific stopping criterion is satisfied. This criterion should

Figure 1. Main elements and steps of the proposed active learning metamod-
eling methodology.

consider the metamodel’s relative performance and recognize
when no further improvements are attainable solely via the
expansion of the training set. Finally, the process ends with
a trained metamodel specially tailored for the experimental
input domain specified at the beginning.

IV. EXPERIMENTS

A. Case Study

The study of ATM systems by means of agent-based sim-
ulation models is relatively recent [17][18]. Most of these
models are designed to assess the impact of a limited number
of airspace features, additionally covering small geographical
areas. In the European context, simulation methods encom-
passing the entirety of the European civil air traffic are rare,
confidential, both in terms of documentation and implemen-
tation, and oftentimes deterministic or driven by rule-based
behaviors of their agents. Moreover, almost none of these
simulators are able to generate performance metrics from the
passengers’ perspective.

The simulation model used in this work, henceforward
referred to as Mercury, was previously developed in the frame-
work of the H2020-SESAR JU ER3 Domino1 project [19].
Mercury is a stochastic event-driven micro-level agent-based
model designed to mimic the movements of both flights
(consider reactionary effects) and passengers (including multi-
leg itineraries with possible connections) for an entire day of
operations at the European Civil Aviation Conference (ECAC)
level. This type of approach provides ATM designers and prac-
titioners with a better understanding of the involved systems
and their relationships, which typically emerge in a given
technological and operational setting. Mercury comprises a
series of entities, namely, the airline operating center (AOC),
individual flights, ground airport, network manager, arrival
and departure managers (AMAN and DMAN, respectively),
radar system, and flight air traffic management delay swapper.
As passengers have limited decisions to make, they are not
modeled as agents, although their preferences are indirectly
encoded by the airlines via a logit utility-based soft cost. All
the agents, particularly the AOC, are designed to estimate
their operational costs and to act in order to tentatively
minimize them. Different costs are considered, such as those

1https://domino-eu.com/
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TABLE I. SUMMARY DESCRIPTION OF THE MERCURY INPUT/OUTPUT
SIMULATION VARIABLES USED FOR METAMODELING.

var name description values

x1 compensation_magnitude_long1
Compensation between first and second
thresholds for long-haul passengers in euros
(C).

[0, 500, 1000,. . . , 5000]

x2 first_compensation_threshold. Threshold of arrival time after which the pas-
sengers receive a compensation in minutes. [0, 60, 120,. . . , 480]

x3 fuel_price Price per kilogram of fuel in euros (C). [0, 0.5, 1,. . . , 5]

y1
arrival_delay_min_mean Average arrival delay per flight in minutes. real-valued

y2 departure_delay_min_mean Average departure delay per flight in minutes. real-valued

y3 total_cost_mean Average total cost per flight operation in
euros (C) real-valued, positive

y4 pax_tot_arrival_delay_mean Average total arrival delay per passenger in
minutes. real-valued, positive

y5 lcc_arrival_delay_min_mean Average arrival delay per flight for low cost
carriers in minutes. real-valued

y6 lcc_total_cost_mean Average total cost per flight for low cost
carriers in euros (C). real-value, positive

TABLE II. A RANDOM LABELED RAW SAMPLE SHOWING THE TYPE AND
STRUCTURE OF THE FEATURED DATA USED IN THIS WORK.

x1 x2 x3 y1 y2 y3 y4 y5 y6

500 0 0.0 0.47 10.81 11335.41 151.74 6.96 8286.44
3500 360 3.0 0.12 11.88 120072.96 255.78 4.84 34846.82
500 60 1.5 -2.97 11.25 60685.01 206.22 5.12 17844.80
200 60 1.5 -3.62 11.22 61143.59 195.51 6.37 17552.87

in the form of costs of delays (including passenger and non-
passenger related, reactionary, and curfews breaches costs),
fuel consumption, and airspace charges.

Mercury’s input data is essentially related to airline opera-
tions and flights, passenger itineraries, ATM operational data,
fuel cost, and other charges. In terms of outputs, departing and
arrival delays, taxi times, missed connections, and compen-
sations are just some examples of detailed metrics produced
per individual flight and passenger. After aggregation, different
KPIs of the modeled system are computed. For more extensive
details on the Mercury simulator, please refer to [20].

In this work, we focus on three input variables and six KPIs,
as summarized in Table I, and on a scenario encompassing
1000 flights and their associated passengers. Besides allowing
for the construction of an illustrative experimental design to
assess the proposed active learning strategies, the choice for
this set of variables originates from ongoing work regarding
the impact analysis of Regulation 261, which essentially
establishes common rules for passenger compensation and
assistance in case of denied boarding, flight cancellation or
long delays.

B. Metamodeling framework

We construct a metamodel consisting of six - due to the six
KPIs of interest - independent GPs with a SE-ARD kernel [8]
and a constant mean, all trained on the same data set. The
input data is normalized to the unit cube, whereas the output
data is standardized to have zero mean and unit variance.
It is worthwhile remembering that in our modeling context,
a labeled data point is a point from the simulation input
space concatenated with its corresponding simulation output
value. Conversely, an unlabeled data point corresponds to a
simulation input point whose output value is unknown.

As previously mentioned, we use an ‘offline’ pool-based
active learning approach and thus, we create a data set
consisting of all the 1089 combinations of values for the
inputs given in Table I. For each combination, we then run

the simulator six times, giving a data pool U of 6534 possible
data points. For the test set, we simulate each combination
twice and take the average, yielding a test set with 1089 robust
data points covering the full input space. The initial data set
consists of four (one per input dimension plus one [21]) data
points sampled by Latin Hypercube Sampling (LHS) from U .
Given the fact that we investigate six KPIs simultaneously, we
utilize the available hardware to parallelize the simulator runs,
querying six data points per iteration, and thereby cutting the
required simulation time by six.

We adopt three different active learning strategies laid out
in the following section. To benchmark the proposed method
and the strategies, we implement the well-known linear re-
gression with a degree of two as a metamodel and replace the
active learning with LHS sampling the number of data points
corresponding to that of the active learning framework. The
performance of all the strategies is averaged across 30 runs
and evaluated by the Relative Root Square Error (RRSE) on
a separate test set. The active learning is run for 20 iterations
corresponding to 120 simulations.

C. Active Learning Strategies

A central component in the active learning (AL) frame-
work is the AL strategy which specifies how to choose the
next points to be labeled by the oracle. Three different AL
strategies are explored: random sampling and two kinds of
variance-based sampling. The former consists of querying six
data points at random. The first variance-based strategy is
the common criterion when applying AL with a GP as the
metamodel [16]. For a single output, it uses the inherent
predictive variance (var) from the GP to query the data point
with the largest variance, i.e. xnew = arg maxx var(x) for
x ∈ U . We extend this to multiple outputs by applying the
strategy for each output individually in each iteration.

However, some outputs may exhibit more variance than
others and are thus more interesting. Therefore, we propose to
allocate the available resources differently and therefore weigh
the different outputs according to their average variance, such
that for each data point to query, we choose, with a certain
probability, an output to which the variance-based criterion
described above is applied. In this way, the outputs with high
variance are favored, although the ones with low variance still
have a chance of affecting the process. The average variance is
computed by taking the mean of the predictive variance for all
the unique data points in the unlabeled data set U and for each
output dimension. Afterward, the average variance across all
the outputs is normalized such that they sum to 1, effectively
converting it into a probability distribution, which is then used
for choosing the output.

D. Results

The performances of the different AL strategies are shown
in Figure 2. For all outputs, the baseline consisting of the
linear regression with LHS is beaten by one of the approaches
with GPs and AL, and it is the worst-performing approach for
half of them. The outputs can be divided into two groups:
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Figure 2. Performance of the baseline and three active learning strategies, averaged over 30 runs. The shaded regions show the ±1 standard deviations.
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Figure 3. The predictions of arrival delay after 0, 10, and 20 iterations.

the outputs in the first row, where the metamodel achieves an
RRSE significantly below one, and those in the second row,
where it achieves a performance around one. In the former,
the RRSE values below one indicate that the corresponding

outputs follow a clear signal which is indeed a function of the
inputs. Contrariwise, the RRSE values close to one, displayed
in the latter case, indicate that the outputs are treated as
random noise, yielding that they are being modeled indepen-
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Figure 4. The predictions of total cost after 0, 10, and 20 iterations.

dently of the considered inputs. Regarding the AL schemes
for the first group, the strategy variance with probabilities
is on par with random but significantly better than variance.
For the second group, variance is performing best, followed
by variance with probabilities achieving almost the same
performance. Thus across the six outputs, the best performing
strategy is the variance-based criterion with probabilities since
it is either comparable to the others or significantly better. In
other words, it is a robust choice no matter the magnitude of
noise in the output.

The curves in Figure 2 also show that the effect of querying
more data diminishes through the AL iterations. The real
impact of this appears when examining the predictions for
the outputs after 0, 10, and 20 iterations. Given the three-
dimensional inputs, we visualize the predictions for two inputs
and then average the predictions across the third input, thus
giving nine plots for an output. In Figure 3, the contours of
the predictions of the arrival delay are shown. The predictions
change significantly when going from 0 to 10 iterations,
whereas they are almost identical after 10 and 20 iterations,
showing that the metamodel almost does not change in the last
ten iterations. Additionally, the predictions from the metamod-
els describe the behavior of the simulators, e.g., they show that
the input fuel price has the largest effect on the arrival delay.
Similar insights are obtained for the total cost in Figure 4,

where only minor changes occur between iteration 10 and
20. Again, the fuel price has the largest effect on the total
cost, though the interaction of the first compensation threshold
and compensation magnitude have a significant impact too. In
sum, these two figures show that fewer than 20 iterations might
be sufficient in practice and how the metamodeling framework
describes and reveals the simulator’s behavior.

E. Computational advantages

In this section, we quantify the performance gains of
employing a metamodeling strategy compared to using a
more manual approach traditionally encompassing exhausting
Monte Carlo simulation-based sampling schemes. We denote
this setup as the full system, where we perform 10 simulations
for each unique input data point. In other words, for each
different combination of the input values, we run the simulator
10 times. In regard to quantifying the computational demand of
the system, the 10 simulations per data point can be considered
a conservative number since sometimes the data points are
simulated 50 or 100 times [20], [22]. We can view the full
system as a naive way of sampling simulation results.

We use the same input values as given in Table I with 1089
unique combinations of input values. Each combination is then
simulated 10 times such that the full system requires 10890
simulation runs. Utilizing the same hardware specifications as
for the metamodeling, each simulation takes approximately 20
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minutes, and we are able to do six simulations in parallel. The
simulation time for the full system is then

Full system : 10890 sim · 20 min/6 = 25.2 days (1)

The resulting metamodels fitted to four initial data points and
20 iterations each with six data points, takes only 7 hours
(the metamodels’ training time plus the active learning process
itself take less than five minutes in total):

Metamodel : 124 sim · 20 min/6 = 7 hrs (2)

With this setup, the metamodel is ∼ 86 times faster than
the full system, though it should be kept in mind that the
computational time of the full system is dependent on the
number of combinations and repetitions. A plot showing the
simulation time as a function of the number of different input
values is seen in Figure 5.
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Figure 5. A comparison of the full system with 10 simulations per input
combination and the metamodel fitted to 124 simulations.

Though the metamodel is much faster, it is not necessarily as
accurate as the full system. For this reason, there is a constant
concern for a balanced trade-off between computational speed
and accuracy (or predictive performance), during the entire
active learning process. On the one hand, we aim at bypass-
ing the maximum number of simulation runs, while on the
other hand, we want a metamodel capable of approximating
the simulator’s output behaviour with minor and controlled
accuracy losses. These two objectives are of opposite natures,
thus we should be able to recognize when the metamodel has
reached its modelling performance plateau from which the cost
of acquiring new simulation data points is likely a waste of
time and computational resources.

In the following, we quantify the speed-up and accuracy
of the two approaches by investigating the RRSE between
the mean predictions from the full system and those of the
metamodel. Often, not only the mean prediction is of interest
but also the associated uncertainty which, by its turn, comes
in the form of predictive variance. Thus, to account for this
uncertainty, we additionally measure the Intersection Over
Union (IOU) between the confidence intervals of the mean
predictions given by ±2 standard deviations. This will capture
whether the mean predictions are off by imprecise predictions
or due to high stochasticity present within the simulator’s
output. The standard deviations from the full system are
calculated directly from the 10 simulations per unique input

data point, and for the metamodel, they are taken from
variance predictions directly provided by the Gaussian Process
framework.

In Figure 6, we once again observe a clear distinction of
the two types of outputs mentioned earlier, with the arrival
delay, total cost and lcc total cost exhibiting almost no or little
dispersion, in contrast to the remaining outputs. Nevertheless,
in both cases the metamodel was able to successfully follow
not only the mean but also the dispersion around it across the
majority of the input combinations. These results brings to
our attention the importance of considering a fitted metamodel
that can explicitly model the expected values together with the
corresponding variances of the output variables, given arbitrary
simulation input combinations. While RRSE is a generally
good metric to quantify the accuracy of a metamodel, it
might be insufficient, or even misleading, when a high degree
of random noise is present, which is the case of departure
delay, pax. arrival delay and lcc arrival delay. It is true that
we are interested in the average behaviour of the simulator,
although it is equally important to ensure that the metamodel
successfully captures most of the output variance generated by
the simulation’s inner stochastic nature.

Finally, we compare the accuracy of two metamodels M64
and M124 fitted to 64 and 124 simulations, respectively, using
the AL strategy variance with probability. Their performance
are evaluated against the mean and standard deviation from
the full system. The results are averaged across 30 runs and
are seen in Table III. The table shows two results: 1) running
60 simulations more give significantly better predictions, in
terms of the RRSE, for the three outputs with low or almost
no dispersion, whereas no significant improvements - rather
worsening - are observed for the other three outputs, and 2) for
the predictions of M124 either the RRSE is low, demonstrating
that the mean predictions are very close to the ones of the full
system, or the IOU is high, illustrating that even with high
stochasticity in the output, making the mean prediction of the
metamodel slightly off, the IOU is high.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an integrated modeling frame-
work that integrates active learning with simulation metamod-
els in order to reduce the computational hindrances so often
attributed to intense and systematic simulation-based analysis,
particularly within the context of ATM systems.

Using an illustrative case study built upon a state-of-the-
art ATM simulator and employing a Gaussian Process as
a metamodel, we showed that active learning strategies are
capable of increasing the modeling performances of simula-
tion metamodeling approaches in a more efficient way. The
results show that the baseline benchmark represented by the
straightforward linear regression performed worse than the
proposed approach. On the other hand, we found that the
proposed multi-output metamodel together with the variance-
based active learning strategy favoring the high-variance out-
put dimensions is the overall best performing approach. Addi-
tionally, we were able to identify a strong association between
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Figure 6. Comparison between the metamodel (variance w/ probabilities, fitted to 124 simulation results) and the full system. The dots are the mean predictions
from the metamodel and the full system, and the lines are confidence intervals given by ±2 standard deviations. The 10 input combinations are chosen at
random and are displayed as (compensation magnitude, compensation threshold, fuel price).

TABLE III. COMPARISON OF THE RRSE AND IOU BETWEEN THE METAMODEL (VARIANCE W/ PROBABILITIES, FITTED TO 64 AND 124 SIMULATION
RESULTS) AND THE FULL SYSTEM.

Metamodel Arrival Delay Total Cost LCC Total Cost Departure Delay Pax. Arrival Delay LCC Arrival Delay
#simulations RRSE IOU RRSE IOU RRSE IOU RRSE IOU RRSE IOU RRSE IOU

64 0.33 (±.07) .50 (±.04) 0.28 (±.03) .06 (±.01) 0.33 (±.04) .15 (±.03) 1.13 (±.12) .78 (±.01) 1.15 (±.12) .78 (±.01) 1.17 (±.22) .75 (±.02)
124 0.12 (±.01) .73 (±.01) 0.02 (±.01) .43 (±.02) 0.04 (±.01) .45 (±.02) 1.25 (±.13) .76 (±.02) 1.25 (±.12) .77 (±.01) 1.10 (±.13) .76 (±.02)

output variables that can be simply described as random noise
and the ability of active learning to effectively improve the
metamodel’s learning. We also showed that, when compared to
the more traditional ad-hoc and manual sampling approaches,
the cojoint use of active learning and metamodeling strategies
can greatly improve not only the exploration of the simulation
input space but also reduce the computational burden often
associated to the latter.

The core contributions of this work are part of the foun-
dations of a broader aim encompassing the development of
an auxiliary tool that enhances the simulation-based studies
of ATM systems. The direct implication of this framework is
to provide an auxiliary modeling tool capable of exploring
the behavior of stochastic multi-KPIs simulators in an ap-
proximative but computationally fast fashion and eventually
to guide the simulation analysis in a more efficient way
facilitating the analysis work of both ATM researchers and
practitioners. Notice that it is not our goal to dismiss the sim-
ulators entirely after the metamodels are obtained. Instead, the
proposed methodology reflects our intentions of deploying the
active learning-based metamodels along with the simulators
themselves as a unified bundled modeling framework, as both
types of models play a fundamental and complementary role
within this integrated approach. While the metamodel aims

at reducing the exploratory redundancy by trying to seek the
most informative and distinct input data points, the simulation
model ensures that this exploration process is maintained on
the right track. In the end, the performance of the metamodel,
and of the approach itself, will always be a function of the
complexity of the simulator, the input ranges and amount of
the input variables.

This work raised interesting questions that will definitely
draw several lines of work in the near future. The relation
between randomly distributed output variables and the efficacy
of active learning strategies should be further investigated.
Naturally, another possible step forward is to apply the pro-
posed methodology to a wider range of inputs and outputs,
possibly also taking into account discrete variables, in more
complex and realistic simulation scenarios, for example, by
considering a larger number of flights. The introduction of
discrete variables is likely to lead to novel combinatorial
challenges not present in this work. We also plan to employ
multi-output GPs in the future, as they are able to identify
correlations within the output variables via convolution, and
experiment with alternative covariance functions. Furthermore,
we will inevitably move to ‘online’ active learning frameworks
where the simulation models are queried directly in lieu of
pre-generated labeled pools.
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