

University of Westminster Eprints
http://eprints.wmin.ac.uk

MDDQL-Stat: data querying and analysis through
integration of intentional and extensional semantic s.

Epaminondas Kapetanios 1
David Baer
Björn Glaus
Paul Groenewoud
Plirosoft Ltd., Semantic Technologies, Technoparkstr. 1,
Technopark Zurick, Switzerland

1Epaminondas Kapetanios now works in the Harrow School of Computer
Science, University of Westminster

Copyright © [2004] IEEE. Reprinted from 16th International Conference on Scientific
and Statistical Database Management (SSDBM'04), pp.353-356.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

MDDQL-Stat: Data Querying and Analysis through Integration
of Intentional and Extensional Semantics

Epaminondas Kapetanios, David Baer, Björn Glaus, Paul Groenewoud
Plirosoft Ltd., Semantic Technologies
Technoparkstr. 1, Technopark Zürich

CH-8005 Zurich, Switzerland

Abstract

We would like to present a prototype system enabling a
rather empirical than a formal approach to the problem
of posing queries to a semantically rich (quality aspects,
semantic distance, etc.) data integration system {G,S,M}
(Global schema, Sources, Mediation) through integration
not only of intensional but also of extensional semantics.
While the first is provided by an alphabet Ag, as given by
an ontology based global schema G, and a high level query
language (conjunction/disjunction + inequalities + statis-
tical operations), the latter enables synthesizing of data
source specific and previously transformed query results ac-
cording to well-defined set operations for heterogeneous,
distributed data sources. Our approach contrasts with other
GAV (Global-As-View) related architectures for mediation
of integrated read-only views, in that it simplifies query pro-
cessing while preserving flexibility when adding new data
sources, despite the inherited complexity of mappings due
to enhanced semantic description of data (semantic dis-
tance, quality parameters, etc.) such that statistical results
and comparisons become more meaningful.

Keywords: Data Integration, Ontology Driven Query-
ing, Statistics, Mediation

1. Motivation

Data integration systems are mostly characterized by an
architecture based on some global schema and a set of
sources with the first providing a reconciled, integrated, vir-
tual view of the underlying sources [7]. They are mostly
classified either into global-as-view approaches such as [1],
where the global schema is expressed in terms of the data
sources, or into local-as-view approaches such as [5], where
the data sources are described in terms of the global schema.
A comparison of the GAV and LAV approaches is given
in [10]. A completely different approach is “InfoSleuth”,

which uses an agent-based concept for semantic informa-
tion integration.

Formally speaking, a data integration system I is defined
by the triple < G, S, M > where G is the global schema ex-
pressed in a language Lg with an alphabet Ag , S is the
source schema expressed in a language Ls with an alpha-
bet As and M is the mapping between G and S. Therefore,
querying of integrated data sources takes the form of either
qs → qg or qg → qs depending on having the query ex-
pressed in terms of the language LMs or the language LMg ,
respectively.

In all these approaches, query answering over integrated
data sources is bound to some kind of query rewriting as
based on views [7, 8, 2]. In this paper, we introduce a data
integration system as pursued in the MDDQL-Stat data in-
tegration framework, where querying also takes place in
terms of a GAV-related data integration architecture, where
mediation is provided for integrated read-only views as un-
derlying data management policy [3]. MDDQL-Stat ex-
tends the query construction (ontology driven) mechanism,
as presented in [4], through statistical operations and their
application on query vocabulary terms.

The data integration system, however, does not make use
of views in order to specify mappings between some medi-
ation schema and sources and, therefore, avoids the inher-
ited necessity of query rewriting, which usually lead to a
maximally contained rewriting and not an equivalent one,
as well as the difficulty of specifying usable views [2]. Fur-
thermore, maximally contained rewriting assumption can-
not be tolerated when query results are bound with statisti-
cal evaluations.

This is due to the fact that query processing relies on data
source specific generation and distribution of high level,
conceptual (sub)query trees through cloning and pruning of
the original one, which reflects the submitted query qg . To
this extent, data source specific (sub)queries, such as SQL
statements, are generates directly from the data source spe-
cific high level (sub)query tree. In addition, synthesis of the
result takes place in terms of set-oriented operations, which

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

have been specified and implemented in such a way that
they comply with the semantics of union, difference and in-
tersection of sets of returned results from each data source.

This is, in turn, enabled by the transformation of het-
erogeneous values into a commonly agreed-upon, user pre-
ferred value, prior to synthesis of the query result at the me-
diator level, such that statistical operations and analytical
queries can be performed. In other words, there is no need
of manually transforming data values in order to statisti-
cally analyze the data, especially when large data reposito-
ries are concerned.

On the other side, this approach preserves the flexibil-
ity of adding and describing data sources, as known to be
the advantage of the LAV-based approaches. This also holds
even when advanced semantic descriptions of data sources
such as data quality aspects, or advanced mappings such
as semantic distances, in terms of unclear or fuzzy speci-
fication of meanings (very often with legacy systems), are
given.

The system has been implemented in Java by using a
standard client-mediator-wrapper architecture, which ad-
dresses all JDBC compliant DBMS’s. Since our focus has
been semantic heterogeneity, we are, currently, making use
of Oracle DBMS as a data repository, however, with differ-
ent user or database schemas (data sources). Having a user
or database schema provided by another DBMS, e.g., SQL-
Server, it is simply considered as an additional data source.

The data sources are described in RDF1. The integrated
result is enriched with information about the origin and
the quality of the data source. Quality measures have been
introduced. The prototype has been implemented in Java.
In addition, a Java based tool supports a semi-automatic
description of a data source (relational, object-relational
databases).

2. The Data Integration System

Client: The Global Schema and Query Language The
global schema G and queries qg are expressed in the
MDDQL-Stat ontology driven query language with an al-
phabet Ag as provided by OntoContext, a contextualized
ontology description language. For the sake of simplic-
ity, we will address only conjunctive queries with inequali-
ties and statistical operators within the MDDQL-Stat data
integration framework.

Construction of queries takes place in a human-computer
interaction driven by the system and in any selected nat-
ural (sub)language, according to meaningful suggestions
as drawn by an inference engine operating upon the ap-
plication domain semantics as described by OntoContext.

1 Resource Description Framework

datasource.xml

ontology.xml

mediator.xml

Optimizer

Scheduler

Client

Mediator

Wrapper

MDDQL−Query Tree

SQL−Query

Result−Table

M−\Join

Data

Source

Data

Source

Figure 1. The “big picture” of the system ar-
chitecture.

More details about the query construction mechanism can
be found in [4].

The query language Ag alphabet is, therefore, provided
by the terms as defined by the ontology modeling con-
structs, such as class, instance, property, etc. Each term in
the ontology, however, has an additional slot indicating the
unique Mediator Identifier MID, which maps a particular
term into a set of various data source elements at the media-
tor level, such as tables, attributes, values, etc., which might
semantically overlap.

Each constructed query by the client, however, is re-
flected and represented by a high level (conceptual) tree,
which is specified by the following constraints: the root of
the query tree is always a Class or an Instance term node.
A Class or Instance term node might have as children other
Class, Instance or Property term nodes. A Datatype Prop-
erty term node might have as children other Datatype Prop-
erty term nodes or Value term nodes. An Object Property
term node, i.e., relationship between two agents, MUST
have children, which are Classes or Instance term nodes.
An Object Property term node, i.e., relationship between
two agents, might have as children Property term nodes. A
Value term node might have as children only Value nodes.

Comparison and/or unary statistical operators are as-
signed to Value and Datatype Property term nodes only, re-
spectively. Binary or n-anary statistical operations are as-

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

signed to the whole query tree. An example of a high-
level query tree as depicted at the top of figure 2, reflecting
the query where one asks for “the symptoms, date of
birth and weight for female patients. Nodes marked
with an “E” refer to Class or Instance term nodes, nodes
marked with an “R” refer to Object Property term nodes,
nodes marked with “P” to Datatype Property term nodes
and nodes marked with “V” to Value term nodes. However,
all values referring to “female” in different data sources
should be presented in the final query result as “F”.

P: Symptoms

P: Symptoms

SMS: [AMIS:PATIETADMIT:BIRTHDAT]

V: Female

SMS: [AMIS:PATIENTADMIT:SEX,CCT2003:ANGIO_PATIENTS:GENDER,
P: Gender

 CCT2003:REVA_PATIENTS:GENDER]

SMS: {AMIS:PATIENTADMIT:HGT}
P: Height

SMS: {AMIS:PATIENTADMIT}
R: admitted in

P: Date of Birth

E: Patients
SMS: [AMIS:PATIENTADMIT, CCT2003:ANGIO_PATIENTS, CCT2003:REVA_PATIENTS]

SMS: {AMIS:SYMPTOMS}

SMS: {AMIS:CONDITION}
E: Condition

E: Patients
SMS: [AMIS:PATIENTADMIT]

R: admitted in
SMS: {AMIS:PATIENTADMIT}

E: Condition
SMS: {AMIS:CONDITION}

SMS: {AMIS:SYMPTOMS}

SMS: {AMIS:SYMPTOMS}

P: Height
SMS: {AMIS:PATIENTADMIT:HGT}

V: Female

P: Gender
SMS: [AMIS:PATIENTADMIT:SEX]

P: Date of Birth
SMS: [AMIS:PATIETADMIT:BIRTHDAT]

P: Gender

E: Patients

E: Patients

P: Gender

V: FemaleV: Female

V: Female

SMS: [CCT2003:ANGIO_PATIENTS]

SMS: [CCT2003:ANGIO_PATIENTS:GENDER]

SMS: [CCT2003:REVA_PATIENTS]

SMS: [CCT2003:REVA_PATIENTS:GENDER]

SMS: F

SMS: F

SMS: F

SMS: F

(A)
(B)

(C)

Figure 2. Generating data source specific,
high level sub-query trees

Given that the high level query term nodes are con-
structed implicitly from the ontology modeling constructs,
they also carry on the corresponding MID, which is re-
placed with the corresponding set of SMS’s, into which the
MID has been mapped, when query arrives at the media-
tor, as described below.

Mediator: The Mappings and their Description The medi-
ator is responsible for mapping the MID (Mediator Identi-
fier) and, implicitly, the concept in the ontology to the cor-
responding data source elements. In order to preserve flex-
ibility, when new data sources are added, as well as to al-
leviate the task of describing semantically rich mappings,
we

• introduced a “dot” based notation of describing the
data source elements, which we call Storage Medium
Symbol (SMS). An SMS is defined by the con-
straints: a) all SMS constituents underly a sequence
order <data source>:<table>:<attribute>:<value>,
from left to right, indicating inclusion, b) for the sake
of simplicity, SMS’s referring to values are repre-
sented by :<value> only, since inclusion is implied
by the parent node, which is always a datatype prop-
erty term node.

• considered as being modeling structures themselves
rather than logic-based descriptions. This enables the

assignment of attributes to mappings such as seman-
tic distance.

An example of SMS’s is given in figure 2 and for the ex-
ample of the high level query tree. They are retrieved from
an XML based description of the modeling constructs of the
mappings. An example of a partial description of the map-
pings is given in the following:

<mddql:mediator>
<mddql:mid mid="m100">
<mddql:sms distance="1.0">

AMIS:PATIENTADMIT
</mddql:sms>
<mddql:sms distance="1.0">

CCT2003:ANGIO_PATIENTS
</mddql:sms>
<mddql:sms distance="1.0">

CCT2003:REVA_PATIENTS
</mddql:sms>

</mddql:mid>
<mddql:mid mid="m501">
<mddql:sms distance="1.0">

AMIS:PATIENTADMIT:SEX
</mddql:sms>
<mddql:sms distance="1.0">

CCT2003:ANGIO_PATIENTS:GENDER
</mddql:sms>
<mddql:sms distance="1.0">

CCT2003:REVA_PATIENTS:GENDER
</mddql:sms>

</mddql:mid>
.

</mddql:mediator>

In the example presented above, all data source el-
ements have their origin in two data sources, namely
AMIS and CCT2003. Both of them have a table with
an attribute, i.e., “SEX” in “AMIS”, “GENDER” in
“CCT2003”, which are mapped to the ontology con-
cept (property) Gender (mid="m501"). Similarly, the
concept “Patients” is reflected in both data sources. In
“AMIS”, the respective table is called PATIENTADMIT.
In the “CCT2003” source, it exists in two different ta-
bles (ANGIO_PATIENTS and REVA_PATIENTS).
Therefore, [CCT2003:ANGIO PATIENTS] and
[CCT2003:REVA PATIENTS] are considered as be-
ing two virtually different data sources. Gender con-
tains only the two categorical values “F” (mid="m1000")
and “M” (mid="m1001").

To this extent, adding a new data source becomes quite
flexible and easy, in comparison with the GAV-related ap-
proaches, since all we need to express is the data source
element in terms of an SMS and position it into the cor-
responding modeling construct of a mapping. In addition,
further attributes of a mapping can also be expressed such
as the attribute semantic distance [9] through a coefficient
d ∈ (0, 1].

The mediator, subsequently, generates a series of high
level sub-queries under the following condition: assign to
each data source a particular high level query tree, which
includes only nodes with SMS’s as refer to that particu-
lar data source (see also figure 2, where three high level
(sub)query trees (A), (B) and (C) are generated, with (B)
and (C) for the two virtual data sources). This can be rec-
ognized easily by having a look at the first constituent of an
SMS, which always refers to the data source. Data source

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

specific high level (sub)query trees are generated through
cloning and pruning of the global, high level query tree.

In addition, the mediator synthesizes the query result ac-
cording to set-oriented operations, which are, however, de-
fined for the needs of sets of tuples as returned from the ex-
ecution of the sub-queries at the different data sources. We
call these operations M-Join, M-Union and M-Difference,
since they are defined at the mediation level and for sound
but not complete, partly overlapping data sources as the ex-
tensional semantics of the MDDQL-Stat data integration
system.

Statistical operations are all implemented as be-
ing classes, since semantics of statistical operators vary
considerably when more than one data source is con-
sidered, e.g., the average of data source specific aver-
ages does not equal the average of all returned tuples
from the data sources. They are made available at the me-
diator level, however, one can have them running on the
client site too. The latter option is recommended when
the amount of data upon which the statistical opera-
tions are performed and, therefore, which needs to be
transferred to the client, is rather low.

Prior to synthesis of the query result, the generated high
level (sub)queries are delegated to the relevant data source
where they get transformed into the data source specific
query language such as SQL with respect to the required
value transformations as described below.

Wrapper: Data source description Two main tasks have
to be accomplished by the wrapper: (a) transformation of
the MDDQL-Stat high-level (sub)query tree into a database
specific query language such as SQL, (b) transformation
of the results into the desired (as stated by the high level
query) formats, i.e., integration of extensional semantics.
For both tasks, the wrapper needs to access the data source
(database) description (database schema elements such as
tables, attributes, primary/foreign keys, data types, mea-
surement units, etc., enhanced by quality parameters such
as completeness and soundness), as provided in an RDF like
syntax [6].

For task (a), generation of data source specific query
statements takes place in terms of traversing the MDDQL-
Stat high level (sub)query tree in a depth-first strategy,
where the generation of the statement is conceived as an au-
tomaton having as an initial state q0 = {S0, F0, W0}, where
S0 ≡ F0 ≡ W0 ≡ {}, with S, F , W representing the
SELECT, FROM, WHERE (conditional) parts of the state-
ment. In order to accomplish this task, however, the wrap-
per needs the information about the database schema ele-
ments as provided by the data source description.

Following the example given in figure 2, the generated
SQL queries at each relevant data source, which correspond
the high level sub-queries (A), (B) and (C), would have
taken the form:

SELECT {ID}, C.SYMPTOMS, P.HGT, P.BIRTHDAT FROM PATIENTADMIT P, CONDITION C WHERE

P.PATIENT ID = C.PATIENT ID AND P.SEX = ’female’

SELECT {ID} FROM ANGIO PATIENTS A WHERE A.GENDER = ’F’

SELECT {ID} FROM REVA PATIENTS R WHERE R.GENDER = ’1’

For task (b), the wrapper transforms the (sub)query re-
sults into a common format based on the information about
the scale, the unit, etc., as well as access to a unit transfor-
mation table. The quality parameters are not used for the
query at this stage, but will be added to the result, leaving it
to the mediator and the user to decide how to use them.

Acknowledgments: We would like to express our thanks
to Prof. Dr. Gustavo Alonso, Dept. of Computer Science,
ETH-Zürich, for his comments and valuable feedback.

References

[1] C. Goh, S. Bressan, S. Madnick, and M. Siegel. Context In-
terchange: New Features and Formalisms for the Intelligent
Integration of Information. ACM Transactions on Informa-
tion Systems, 17(3):270–293, 1999.

[2] A. Halevy. Answering Queries Using Views: A Survey.
VLDB Journal, 2001.

[3] R. Hull. Managing semantic heterogeneity in databases: A
theoretical perspective. In Proceedings of the 1997 ACM
SIGMOD international conference on Management of data.
ACM Press, 1997.

[4] E. Kapetanios and P. Groenewoud. Query Construction
through Meaningful Suggestions of Terms. In T. Andreasen,
A. Motro, H. Christiansen, and H.-L. Larsen, editors, Flexi-
ble Query Answering Systems, volume 2522 of Lecture Notes
in Artificial Intelligence, pages 226–239, Copenhagen, Den-
mark, October 2002. Springer.

[5] T. kirk, A. Y. Levy, Y. Sakiv, and D. Srivastava. The Infor-
mation Manifold. In Proc. of the AAAI 1995 Spring Symp. on
Information Gathering from Heterogeneous, Distributed En-
vironments, pages 85–91, 1995.

[6] O. Lassila and R. R. Swick. Resource Descrip-
tion Framework (RDF) model and syntax specification.
Technical report, World Wide Web Consortium, 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[7] M. Lenzerini. Data integration: a theoretical perspec-
tive. In Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database sys-
tems, pages 233–246. ACM Press, 2002.

[8] Y. Papakonstantinou and V. Vassalos. Architecture and Im-
plementation of an XQuery-based Information Integration
Platform. Data Engineering Bulletin, March March 2002.

[9] L. Pontieri, D. Ursino, and E. Zumpano. An approach for the
extensional integration of data sources with heterogeneous
representation formats. Data and Knowledge Engineering,
45:291–331, 2003.

[10] J. D. Ullman. Information Integration Using Logical Views.
In Proc. of the 6th Inter. Conf. on Database Theory (ICDT
97), volume 1186 of Lecture Notes in Computer Science,
pages 19–40. Springer, 1997.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

	footer1:

