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A B S T R A C T

Artificial intelligence and its subfields, such as machine learning, robotics, optimisation, knowledge-based sys-
tems, reality capture and extended reality, have brought remarkable advancements and transformative changes
to various industries, including the building deconstruction industry. Acknowledging AI’s benefits for decon-
struction, this paper aims to investigate AI applications within this domain. A systematic review of existing
literature focused on AI applications for planning, implementation and post-implementation activities within the
context of deconstruction was carried out. Furthermore, the challenges and opportunities of AI for deconstruction
activities were identified and presented in this paper. By offering insights into AI’s application for key decon-
struction activities, this paper paves the way for realising AI’s potential benefits for this sector.

1. Introduction

Urban population projections indicate a looming crisis for the con-
struction industry, with a doubling expected by 2050 [1]. This surge
increases the demand for housing and brings about significant envi-
ronmental and societal risks, including heightened pressure on natural
resources, increased waste generation, and exacerbated pollution levels
[2,3]. However, sustainable recovery practices, notably deconstruction,
offer promising solutions by carefully dismantling buildings into reus-
able components and materials, thereby contributing to a circular
economy [4].

In recent years, the global shift towards digitisation has witnessed a
rise in data-driven technologies, with artificial intelligence (AI)
emerging as a key player, especially in deconstruction. With its subfields
like machine learning, robotics, and optimisation, AI has been instru-
mental in streamlining complex processes in this field. For instance,
deep learning techniques have enabled the categorisation and organi-
sation of construction end-of-life waste [5]. In contrast, machine
learning predictive models have been applied to various aspects, such as
predicting deconstruction costs [7], analysing the deconstruction pro-
cess [8], assessing the technical reusability of building components [9],
and estimating end-of-life waste [10]. Robotics has demonstrated

effectiveness in tasks like component finish partitioning and removal,
insulation partitioning and removal, and adhesion removal [11]. At the
same time, optimisation techniques have enhanced deconstruction
process planning [12,13], scheduling [14,15], and salvage material lo-
gistics [16].

AI can revolutionise decision-making and productivity in the
deconstruction industry, unlocking insights from vast datasets previ-
ously archived for future reference. Data collected from smart devices,
cameras, building information modelling (BIM), and other sources can
be analysed by AI to optimise deconstruction implementation and pro-
mote sustainability. In line with this, Oluleye et al. [26] pointed out AI’s
role in automating the design for disassembly, material strength pre-
diction, and reverse logistics, among the many benefits it can offer.

Owing to these benefits, AI has garnered significant attention from
researchers in the field of deconstruction, leading to a surge in research
works and publications. However, this proliferation of studies makes it
challenging to grasp the current state of knowledge. To address this, a
comprehensive review is essential to consolidate the latest advance-
ments. Consequently, this paper aims to summarise the current state-of-
the-art AI applications in deconstruction, focusing on (a) critically
reviewing existing literature on AI in deconstruction, (b) identifying and
discussing the application and challenges of AI in deconstruction, and
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(c) identifying and discussing opportunities for AI in deconstruction.
While some related review studies in this area [18–27] have made

valuable contributions, it’s essential to note that these studies offer a
comprehensive overview from a broader viewpoint. None of them,
however, have undertaken an exhaustive examination of AI applica-
tions, particularly within the context of deconstruction, which is one of
the significant end-of-life activities with many benefits within the con-
struction industry [28–31]. This is crucial, as deconstruction presents
unique challenges such as material audit, hazardous waste handling, and
structural integrity assessment. These challenges require a focused
analysis of AI applications explicitly tailored to deconstruction sce-
narios, which might differ significantly from broader construction
contexts.

By offering an in-depth analysis focusing explicitly on the application
of AI in deconstruction, this paper provides insight into the state of AI for
deconstruction, identifying challenges and opportunities and presenting
research directions for both industry professionals and researchers.

For clarification, this paper uses ‘literature’ and ‘article’ inter-
changeably. Additionally, within this context, ‘deconstruction’ encom-
passes all sustainable end-of-life activities, including selective
demolition, partial demolition, and soft-stripping. Consequently, aca-
demic literature that focuses on these activities using AI will be deemed
relevant to this review. Also, the categorisation of literature was estab-
lished based on its alignment with one of three key stages/phases:
planning, implementation, and post-implementation. These stages were
framed through a comprehensive review of the literature by the authors,
considering the specific activities each piece of literature highlights.

These stages collectively serve as a framework for classifying the liter-
ature and were inspired by the works of [14,17].

The planning phase encompasses critical activities such as tactical
and strategic decision-making, planning, and inspection. Implementa-
tion involves the actual implementation, encompassing separation,
grasping, handling and more. Post-implementation concerns activities
after successful implementation, including sorting, transportation to
sites and recycling facilities.

2. Systematic review literature

To investigate the use of artificial intelligence for deconstruction, we
conducted a systematic literature review following PRISMA guidelines,
a method with established credibility and widespread use [3,23,32,33].
Fig. 1 shows the transparent and systematic data collection process
following PRISMA.

From Fig. 1, several renowned databases, including Scopus, Associ-
ation for Computing Machinery (ACM), IEEEXplore, ScienceDirect, and
Google Scholar, were queried to retrieve relevant literature published
until 2022. This timeframe was selected to gain insights into AI adop-
tion’s historical progression in deconstruction and identify associated
challenges and opportunities.

The choice to utilise the Scopus database stemmed from its reputa-
tion as the most prominent academic database encompassing a wide
range of scholarly topics. Scopus is renowned for indexing high-quality
literature [35], which is another compelling reason for its inclusion in
this paper. However, relying solely on Scopus could lead to omitting

studies’ 

Fig. 1. Relevant article Identification, screening, and selection [34].
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relevant literature. Consequently, additional databases such as ACM,
IEEE Xplore, ScienceDirect, and Google Scholar were also searched. This
deliberate search strategy aimed to mitigate the risk of overlooking
pertinent literature by expanding the scope beyond Scopus. By
employing a multi-database approach, this paper aimed to comprehen-
sively gather literature on AI applications in deconstruction, ensuring a
robust examination of the subject matter. Additionally, exploring mul-
tiple databases is fast becoming a norm, as can be seen in review studies,
e.g., [23,36] within the architectural, engineering and construction
(AEC) domain.

To comprehensively identify pertinent literature for inclusion in this
review, we searched five databases. We structured our search strategy
around three distinct collections of keywords, a methodology inspired
by [37]. The design of these keyword clusters was carefully crafted to
ensure a thorough search process.

Keyword Cluster 1 (KC1): comprises the term building, components,
and materials. Other keywords, such as built structure and built envi-
ronment, were unveiled as synonymous with building through a pre-
liminary search on the internet.

Keyword Cluster 2 (KC2): incorporates keywords linked to decon-
struction and sustainable recoveries such as disassembly dismantling
recovery reuse recycling and demolition.

Keyword Cluster 3 (KC3): includes the elements of AI techniques. It
involves general and specific keywords. Generic words such as artificial
intelligence machine learning deep learning intelligence robotics and
big data and exact terms such as neural network reinforcement learning
model algorithmmetaheuristics SVM clustering optimisation supervised
learning unsupervised learning image recognition object detection se-
mantic segmentation computer vision and video analytics were all
incorporated into KC3.

The search criteria KC1 & KC2 & KC3 were applied to databases
combining keywords within each cluster with "OR”. However the
overwhelming number of results and filter tool limitations within Goo-
gle Scholar made us cease searching upon reaching a point where further
search appeared redundant. As a result there is the possibility of missing
literature in Google Scholar. However we anticipate that searching other
databases will offset biases that may be present in the Google Scholar
search.

The predetermined literature inclusion criteria include (1) literature
involving the application of AI or any AI subfield for deconstruction and
(2) literature involving the development or integration of AI or its
subfield for activities synonymous with deconstruction or closely
related. Conversely, literature was excluded based on the criteria: (1)
not utilising AI or its subfield for deconstruction or closely related ac-
tivities, (2) non-English, and (3) non-peer-reviewed journals, confer-
ences, and textbooks.

Non-English language literature was excluded due to limitations in
translation services, which could hinder accurate comprehension and
analysis of research findings [3,32]. The decision to exclude other kinds
of literature was based on the rationale that peer-reviewed journals,
conferences and textbooks undergo a rigorous evaluation process by
experts in the field [38]. By focusing solely on English-language peer-
reviewed literature, this review sought to uphold rigorous/strict stan-
dards and minimise the risk of including potentially less reliable or
lower-quality literature.

Following the refined search, we recorded the results in an Excel
spreadsheet, including details such as author name, literature title, and
abstract. Duplicate entries were removed, and further reviews involving
the examination of each literature’s topic and, in some cases, the ab-
stract, introduction, and conclusion were considered to determine
relevance. We added an Excel column for “include” or “exclude,” along
with an additional column for providing reasons for each decision. In-
dependent reviewers performed this step, and Cohen’s Kappa was
calculated to assess inter-rater reliability [39]. In cases of disagreement
between reviewers, discussions were held until a consensus was reached.
Also, only pieces of literature readily accessible were considered.

Additionally, we thoroughly investigated the reference lists of the
previously identified literature. This step was taken to uncover more
literature following similar review studies [32,40,41]. As a result, eight
more pieces of literature were retrieved and found relevant, totalling 75
literatures used for this review.

3. Results and discussion

3.1. Exploratory analysis

The exploratory analysis aimed to visualise/create a map of the
current research landscape in AI for deconstruction. Consequently, we
assessed the following perspectives: publication year and type, decon-
struction activities, AI subfields, and the geographical distribution (i.e.,
first or corresponding author’s affiliation), among others. The time ho-
rizon for this analysis was set until 2022, corresponding to the period
during which the review was conducted.

Fig. 2 presents publication type and year, and we can see that an
average of seven pieces of literature were published per year, which was
consistently maintained from 2015 onwards, with a minor decline noted
in 2016. The year 2022 had the highest number of publications,
underscoring the recent emergence of AI for deconstruction.

Fig. 3 offers a comprehensive snapshot encompassing publication
types, years, AI subtypes, deconstruction phase/stages and author’s
countries. Among 26 conference articles, nine focused on building in-
spection using deep learning, forming the most significant subset.
Another five articles concentrated on material separation, predomi-
nantly leveraging robotics or a combination of robotics with other AI
subsets. Also, conference articles featured a higher representation of
separation, indicating its focus on actual deconstruction implementa-
tion, potentially due to robotics involvement.

In 48 journal articles, articles focused on inspection and decon-
struction scheduling predominated, employing deep learning,
knowledge-based systems, and robotics. Inventory and sorting were also
significant areas, predominantly utilising deep learning. Overall, AI
applications were prevalent in the planning phase (59 out of 75 iden-
tified articles), highlighting planning as the critical stage in decon-
struction. Implementation (nine articles) and post-implementation
(eight articles) received fewer mentions.

Regarding the geographical distribution of the articles, Germany and
the United States emerged as primary frontrunners, boasting the highest
aggregate of articles. An insightful scrutiny of the publication timeline
reveals that Germany and the United States have consistently main-
tained their leading positions. Furthermore, Europe takes the lead in this
specialised area of research. One plausible explanation could be the
European Union’s proactive strategy to promote circular economy ap-
proaches in 2015—a strategy that garnered extensive adoption and
endorsement through national initiatives. This has positioned Europe at
the forefront of advancements in AI for deconstruction, solidifying its
preeminent status in the field.

Fig. 4 presents the distribution of articles by publishers. Additionally,
the impact factor [42,43] and h-index [44] of publishers, which serve as
metrics for academic article contribution and reputation, were provided.
This confirms the quality of the articles—they originate from reputable
journals and conferences.

The Journal of Automation in Construction leads with six publica-
tions, boasting an impressive impact factor of 10.3 and an h-index of
157. Other significant contributors include the Journal of Cleaner Pro-
duction (three publications, impact factor: 11.1, h-index: 268), Sus-
tainability (two publications, impact factor: 4.0, h-index: 136),
Buildings (two publications, impact factor: 3.8, h-index: 45), and others,
each contributing two articles.

The substantial presence of research literature in the Journal of
Automation in Construction and other high-impact journals signifies
remarkable advancement in this field, drawing attention to this research
domain’s newness and growing importance. The fact that a prestigious
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journal has devoted many articles to this area underscores its increasing
significance within the academic community. The journal’s high h-index
and impact factor, typically associated with respected academic publi-
cations, further validate the quality of the literature reviewed in this
paper.

3.2. Artificial intelligence and subfields used for deconstruction

Artificial intelligence (AI) is the field of science and engineering
dedicated to creating intelligent machines that can replicate human
intelligence, with its origins dating back to 1956. Since its inception, AI

Fig. 2. Publication types against year.

Fig. 3. Journal types, publication year, AI types, deconstruction stages and country of author/corresponding author.
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has steadily garnered the attention of both scholars and the public. This
enduring interest results from computing power, systems, and tech-
niques advancements. AI has consistently played a pivotal role in peo-
ple’s lives, facilitating the automation of activities that were once
deemed impossible, especially in the fields of AEC [23,36].

There are many AI models and techniques. However, this section

summarises the dominant AI techniques and models for deconstruction
outlined within the selected literature, which were structured into
subfields in line with Abioye et al. [23] categorisation. As a result, five
prominent subfields stand out: Machine Learning (ML), Robotics, Opti-
mization, Knowledge-based systems, and Reality capture & extended
reality, as illustrated in Fig. 5.

Fig. 4. Publication counts per publisher.

Fig. 5. Artificial intelligence and subfields.
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3.2.1. Machine learning
Machine learning (ML) involves the application of computer systems

to learn from past data and make predictions on new - unseen data. ML
can be classified in several ways (Fig. 5). One way is to classify it based
on the model’s learning process, resulting in supervised, unsupervised,
or reinforcement learning. Another classification criterion for ML is
based on the complexity of the model, which can be either classical or
deep learning [21].

1. Supervised learning necessitates labelled input data for training,
making it suitable for solving regression or classification problems,
depending on whether the labels are discrete or continuous values
[45].

2. On the other hand, unsupervised learning operates without any
labelled data, focusing on autonomously finding patterns within the
data. Some well-known unsupervised learning techniques are clus-
tering, association rule, and dimensionality reduction.

3. Reinforcement learning, the third category, involves a learning sys-
tem, referred to as the agent, which interacts with the environment
and receives rewards for its actions. Through this feedback mecha-
nism, the agent learns to make decisions that maximise rewards [46].
Some well-known reinforcement techniques include value-based,
model-based, multi-agent, and policy-based based, among others.

Additionally, ML may be classical ML or deep learning (DL). In
classical ML, experts manually engineer features or attributes, which are
then fed into the model. As a result, the model learns from the data and
makes predictions. Examples of classical ML techniques include support
vector machines, decision trees, and ensemble methods, to mention but
a few. The effectiveness of classical ML models largely depends on the
quality of the hand-engineered features [47–50].

Conversely, DL represents a specialised subfield of ML that centres
around artificial neural networks (ANN). ANN is constructed with
interconnected nodes, forming layers of neurons. Unlike classical ML, DL
automatically learns feature representations directly from the data,
eliminating manual feature engineering. This capability is one of the
primary advantages of DL and has contributed to its widespread adop-
tion in tackling intricate tasks across diverse domains. Classical ML and
DL may still be formulated as supervised, unsupervised, or reinforce-
ment learning, depending on the problem scoping and objectives.

3.2.2. Robotics
Robotics, another significant subfield of AI, concentrates on

designing and constructing robots capable of emulating human activities
in the real world. These robots are engineered to carry out highly spe-
cialised tasks that might pose challenges for humans, and they come in
diverse shapes and forms. Based on the functionalities, robots can be
autonomous or teleoperated.

1. Autonomous robots operate independently, making decisions using
intelligence gathered through their sensors and programming
without direct human interventions.

2. Teleoperated robots are controlled by humans from a remote loca-
tion. This will be most useful in carrying out complex assignments in
hazardous environments or situations where direct human presence
is not feasible.

3.2.3. Knowledge-based
Knowledge-based systems (KBS) are inferential decision-making

engines that draw upon expert knowledge or historical data to make
informed decisions. KBS can be:

1. Case-based reasoning (CBR) learns by leveraging preceding problem-
specific knowledge to solve new instances [51].

2. The expert system (ES) learns by amalgamating expert knowledge to
devise evaluation rules for effective problem-solving [52].

3.2.4. Optimisation
Optimisation involves achieving the best possible outcomes while

adhering to constraints [53]. It focuses on maximising or minimising a
specific value or criterion by efficiently utilising available resources. It
can be deterministic or stochastic (heuristics).

1. Deterministic refers to the systematic technique that guarantees
finding optimal solutions for a given task, provided specific criteria
are met. It follows a predefined set of rules and steps to search
through the solution space and converges to the best possible solu-
tion. Some renowned examples of deterministic optimisation include
gradient descent, linear programming, and integer programming, to
mention but a few.

2. Conversely, stochastic (heuristic) methods are probabilistic methods
that do not guarantee finding the global optimum. Instead, they
attempt to find satisfactory solutions in a reasonable amount of time,
especially for complex tasks where finding the global optimummight
be computationally infeasible. Examples of methods include genetic
algorithms, simulated annealing, and particle swarm optimisation, to
mention but a few.

3.2.5. Reality capture and extended reality
Reality capture technologies include the techniques and tools used to

collect and generate digital representations of an object, building in-
clusive. Within these technologies, laser scanners, unmanned aerial
vehicles (UAVs), LiDAR (Light detection and ranging), photogrammetry,
videogrammetry, and digital cameras are prominent. They gather im-
ages, videos, or 3D point cloud data. Furthermore, the extension of the
reality captured refers to the extended reality (XR). XR can be Virtual
reality (VR), Augmented reality (AR), Mixed reality (MR) and similar
reality-altering technologies that immerse users in altered realities
[54–56].

1. VR offers an immersive experience, replacing the real world with a
wholly simulated or virtual environment.

2. AR augments reality with computer-generated content. In AR, digital
content is overlaid onto the user’s real-world surroundings, allowing
users to see both the real-world and the additional content the AR
device provides [57].

3. MR resembles AR but facilitates deeper engagement between the
virtual and the actual environment, offering users a heightened sense
of realism. In MR, users get a fusion of computer-generated content
within their surroundings while also being able to engage with this
content [54] actively.

To better understand these subfields, we provide some benefits and
limitations of the identified AI subfields for deconstruction (Table 1).
Shared benefits include optimised resource recovery combined with
heightened productivity. However, limitations of these AI subfields for
deconstruction include inadequate data accessibility and quality, ethical
concerns, essential AI proficiency tailored for deconstruction purposes
and seamless integration into practical applications, potential issues
with generalization, and the criticality of validation, among other
pertinent constraints.

3.3. AI application for deconstruction

Fig. 6 presents the identified areas of AI application for decon-
struction, aligning precisely with the framework established in the
introduction, delineating planning, implementation, and post-
implementation phases. From Fig.6, ten distinct activities were pre-
sented, each correlated with their sub-activities and the relevant state-
of-the-art models and subfields. Some identified activities include in-
ventory feasibility assessment, project planning and scheduling, sorting,
reverse logistics, separation, and recovery rate estimate. Additionally,
sub-activities under inventory include data collection and audit, digital

H. Balogun et al.
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data generation, and as-built recognition.

3.3.1. Artificial intelligence application in deconstruction planning
The planning phase encompasses many activities, including inspec-

tion, project planning and scheduling for the deconstruction process,
management of inventory, feasibility assessments, estimation of recov-
ery rates, and thorough cost-benefit analyses (see Fig. 6).

3.3.2. Data collection/audit/inventory
Deconstruction is a complex engineering process, like construction,

but more challenging due to lack of proper documentation. Compre-
hensive documentation should encompass a building’s historical re-
cords, modifications, maintenance activities, and inventories. Examples
of documents relevant to deconstruction include ownership and plot
boundary documents, approval documents (e.g., permits and regulatory

clearances), and strip plans of media lines and pipes (e.g., utility layouts)
[14]. Facility management, retrofits, inspections, and sampling docu-
ments offer historical facility data, aiding in maintenance understand-
ing. Specific exposure documents are critical for safety, containing
information on hazardous materials. Lastly, documentation of neigh-
bouring buildings helps assess potential impacts on adjacent structures.
These documents collectively support safe, efficient, and compliant
building deconstruction processes.

Unfortunately, many existing buildings do not have this information,
and thus, they suffer from incomplete, outdated, or fragmented building
information, resulting in partially unknown or uncertain details.
Furthermore, building information is frequently stored unstructured,
often needing more modern formats like computer-aided design (CAD)
or building information modelling (BIM), and occasionally even in non-
digital formats. More structured data is required to process building
information directly. Consequently, material and components audits are
manually possible, which implies manual measurements and examina-
tion of the existing building. A typical measurement and examination
include the use of measuring tape, torchlight, and a camera for photo-
graphs or videos.

To tackle these inventory, material audit and documentation chal-
lenges, there has been a rise in the use of reality-capturing technologies
like photogrammetry, videogrammetry, laser scanning, or combinations
thereof to semi-automatically or automatically capture and process
building information[6]. However, findings from this paper posited that
many of these reality-capturing technologies function more effectively
when integrated with other subfields of AI, such as classical ML and DL
[75,76] and expert systems [77]. ANN-based models were among the
prominent models mostly used to augment material recognition [78]
and data extraction [72]. SVM and random forest were the other ML
models discovered herein that are useful for data collection and material
auditing in partnership with reality capture technologies such as 3D
survey data, photogrammetry, and unmanned aerial vehicles, among
others [70,71,76].

Despite the breakthroughs in ML and DL for recognition, detection
and segmentation, its use, particularly for material audit and inventory,
is still hindered by challenges, including the characteristics of the ma-
terials and components, typically inconsistent dimensions and stan-
dards, high similarity, and low variability (e.g., floor, ceiling, tiles and so
on) [78]. Also, insufficient training data, particularly for classes that
form the minority, may yield poor performances for such classes [76].
Collecting more data and/or augmenting available data may solve these
challenges. Another challenge is the technical skills to annotate and
prepare data correctly and the angle from which the data is captured
[72,79]. Overcoming these challenges could facilitate the effective uti-
lisation of reality-capture technology, robotics, ML and even extended
and immersive reality for material inventory and auditing in
deconstruction.

3.3.3. Deconstruction feasibility
Evaluating a building’s deconstruction feasibility at the end of its

useful life represents a pivotal activity within the planning phase. It
revolves around the decision-making process of whether to proceed with
deconstruction. This determination can be intricate, particularly for
existing and conventional buildings not originally designed with
deconstruction.

As part of the solution to this challenge, Abdullah et al. [80] pro-
posed an intelligent decision support system using expert knowledge to
select the most appropriate building end-of-life techniques, which
include deconstruction, using criteria such as structural characteristics,
site conditions, costs, experience, reusability, and time. Anumba et al.
[81] extended the work of Abdulla et al. [82] by subjecting the different
criteria to a quantitative evaluation in terms of cost. The outcome was a
ranking of overall deconstruction feasibility based on their cost-
effectiveness. Notably, both studies include social criteria like the
health and safety of on-site workers and public acceptance. Additionally,

Table 1
AI subfields, their benefits to deconstruction and limitations.

Subfield Benefits to
deconstruction

Limitations Articles

Machine
learning

1. Accurate predictive
models

2. Enhanced resource
management

3. Precision in
dismantling
techniques

4. Optimised material
auditing

5. Streamlined
planning.

6. Improved
efficiency

7. Easy integration
with other
technology

1. Data availability
and quality

2. Explainability/
interpretability

3. Generalization
and validation

4. Computational
complexity

5. Human expertise
and integration

6. Ethical
considerations

[7,58–60]

Robotics 1. Adaptability to
various task

2. Enhance
productivity.

3. Improve safety.
4. Precision and

consistency
5. Handling heavy

loads
6. Easy integration

with other
technology

1. Complexity of
environment

2. Cost and
scalability

3. Manipulation of
variable materials

[61–64]

Knowledge
based

1. Explainability
2. Adaptability to

varied structures.
3. Documentation and

knowledge sharing
4. Easy integration

with other
technology

1. Dependency on
expert knowledge

2. Ethical and bias
considerations

3. Inability to handle
uncertainty

[65,66]

Optimization 1. Enhanced planning
and decision
making

2. Resource efficiency
3. Cost reduction
4. Adaptability to

varied scenarios.
5. Optimal material

recovery
6. Increased time

efficiency

1. Computational
Complexity

2. Data availability
and quality

3. Trade-offs and
conflicting
objectives

[12,67–69]

Reality capture
and extended
reality

1. Accurate
documentation

2. Enhanced
visualization

3. Improved planning
4. Onsite assistance

and support

1. Compatibility and
interoperability

[70–74]
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workers’ skills and prior experiences were considered factors contrib-
uting to economic criteria.

Similar literature surfaced afterwards, though they explored decon-
struction feasibility from different points using different AI subfields.
For example, deconstruction feasibility with a focus on economic gain
and time optimisation [83], economic reuse potential prediction [58]
and technical reuse potential of components [9], among others.

Drawing from the reviewed articles, deconstruction feasibility
assessment is possible using different subfields, mainly depending on the
problem formulation and criteria. It is possible using optimisation al-
gorithms [84], expert systems [80,85], and machine learning [9,86].
However, the multifaceted nature of deconstruction makes the state-of-
the-art feasibility assessment almost impractical, and this is because no
known model has developed a holistic view of the criteria that influence
deconstruction [3]. Based on this, an AI-driven predictive model
considering all significant criteria from different standpoints may pro-
vide a realistic and practical feasibility assessment for deconstruction.

3.3.4. Project planning
Effective planning is fundamental for all deconstruction activities

and crucial in attaining specific project objectives. These objectives may
involve cost reduction, material recovery maximisation, or both. The
precise goals will vary and be influenced by factors like the building’s
type, urgency, stakeholder preferences, etc. Given the unique charac-
teristics of each deconstruction project, personalised planning ap-
proaches are indispensable to address each building’s distinct
requirements comprehensively.

Deconstruction project planning consists of finding an optimal and
feasible path for deconstruction under given constraints [12]. As a
result, it is often framed as an optimisation challenge and is typically
categorised into two dimensions: strategic and operational [87]. Stra-
tegic planning delivers decision support for the entire project, consid-
ering factors like time, cost, quality, resources, risk, etc. In contrast,
operational planning predominantly concentrates on individual project

activities, and its key objective is often to shorten the project’s duration,
which is commonly addressed as a resource-constrained project sched-
uling problem (RCPSP). Common heuristics and algorithms used for
planning, generating sequences and scheduling include search tech-
niques, optimisation techniques and genetic algorithms.

Despite the progress and utility of the optimisation techniques pre-
sented in these sources, some limitations have been observed, including
limited real-life validation and a lack of automated learning of decon-
struction knowledge from existing records without extensive human
involvement [12,88,89].

3.3.5. Structure and material inspection
The challenge of manually inspecting buildings, especially consid-

ering structural and non-structural components and safety concerns, has
led to traction among researchers [90]. Some have focused on AI-driven
inspections of structural [91,92], and non-structural components [93],
while others covered both aspects [94].

Various AI subfields, notably classical ML and DL, have been utilised,
especially for image recognition and segmentation, often in integration
with robotics and expert systems. For instance, Liu et al. [95] proposed
an autonomous robot system employing recurrent neural networks for
real-time visual defect detection.

Robotics has also played a pivotal role in inspection. Balaguer et al.
[96] introduced a teleoperated robot for high-rise metallic structure
inspection, while Inoue et al. [97] employed robots for wall inspection
and deterioration estimation. Several studies have introduced expert
systems for defect prediction [98] and utilised machine learning models
for seismic vulnerability assessments [99,100].

From the retrieved articles, classification problems were predomi-
nantly tackled, except for strength and capacity predictions [92]. Con-
volutional neural networks (CNNs) were the primary choice for image
detection and recognition. The most prevalent robot types used for in-
spections were teleoperated and semi-autonomous systems.

Fig. 6. Summary of AI application for deconstruction.
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3.3.6. Cost-benefit estimate
Cost estimation is a complex task, primarily due to uncertainties

associated with the building’s condition and the availability of
comprehensive information regarding material states and values. This
inherent complexity has led to the adoption of AI techniques. Subfields
of AI, such as ML and DL, have proven valuable for analysing historical
project data and various variables to generate highly accurate estimates
of material yields, costs, and benefits. Utilising AI in this manner helps
reduce the likelihood of unforeseen expenses during the deconstruction
process.

Studies have demonstrated the relevance and accuracy of artificial
neural networks and case-based reasoning in cost estimation [7]. The
precise valuation of materials through artificial intelligence has also
been proposed [101]. Among the predictive models employed for cost
and benefit estimation, ANN with built-in layers emerged as the most
used. This preference is attributed to the complexity of the variables
involved. Furthermore, DL techniques like ANN were advantageous
because they automatically extract features from the input data without
requiring manual feature selection.

3.3.7. Recovery rate estimate
Accurately predicting the rates of salvageable and waste materials

presents a considerable challenge, as the decision to proceed with
deconstruction often hinges on the assessed value and quality/quantity
of recoverable materials within the building slated for deconstruction. In
response to this challenge, AI has been increasingly explored to predict
waste and salvageable material before commencing the deconstruction
process.

As identified, Akanbi et al. [10], Cha et al. [102], and Cha et al. [103]
have delved into the realm of AI, explicitly employing supervised DL and
ensemble ML (made up of weaker ML models) to achieve accurate pre-
dictions of waste and recoverable material.

Table 2 summarises AI subfields in planning phase activities and sub-
activities, alongside the potential opportunities. Noteworthy opportu-
nities include leveraging robotics and DL algorithms to streamline ma-
terial audits and optimise building material recovery. Furthermore, the
prospect of a predictive model for assessing deconstruction feasibility
using multidimensional criteria and applying extended and immersive
reality for virtual feasibility assessments and material potential identi-
fication stands out.

Table 2 shows the limited utilisation of robotics in planning activ-
ities, primarily attributed to cost and expertise constraints [23]. Addi-
tionally, while reality capturing exhibits substantial benefits within
inventory activities, its integration and use with extended reality still
need to be explored, showcasing the untapped potential of extended
reality in enhancing deconstruction planning activities. Thus, robotics

integrated with ML, DL, digital technologies like IoT, and extended re-
ality should be more utilised in deconstruction planning activities. This
underscores a critical gap in harnessing these advanced technologies to
their full potential within deconstruction planning activities.

3.3.8. Artificial intelligence application for implementation
Robotics plays a pivotal role across various deconstruction imple-

mentation activities. It is instrumental in tasks such as separation,
dismantling, handling, and grasping, as well as sub-activities like de-
nailing and cutting, as illustrated in Fig. 6. This is due to the inherent
physical nature of typical deconstruction implementation tasks.

Robots have been developed for dismantling interior components,
such as ceiling panels [61,117], ceiling beams [64] and partition
removal [118]. Conversely, robots designed for dismantling structural
components, like walls, have also been developed [63]. They have also
been explored for multitasking purposes [119], aiming to maximise
productivity and reduce deconstruction implementation times.

The integration of robots with other subfields, mainly classical ML,
DL, reality-capturing technology, and expert systems, is evident in most
of these studies. For instance, Leea et al. [63] introduced an autonomous
deconstruction robot equipped with a vision system capable of collect-
ing environmental feedback. While considering hardware capabilities
and human expert inputs, this system can automatically and precisely
cut concrete walls. Additionally, it includes a grasping module to ensure
safe wall cutting without damaging other building elements. Similarly,
Biggs et al. [64] developed a teleoperated robot designed explicitly for
unscrewing suspended ceiling beams. This robot utilises laser scanning
and clustering techniques to locate beams and features a motion control
module for navigating between screws. While the robot performed
admirably, occasional issues with skipped screws were encountered.

The findings from these studies underscore that most developed ro-
bots for various deconstruction activities largely remain in their exper-
imental stages, posing a challenge in evaluating their practicality for
real-world deconstruction practices. Furthermore, while these robots
hold promising potential applications, their deployment on actual
deconstruction sites faces hurdles due to the inherent unstructured na-
ture of building end-of-life scenarios [120]. Despite the potential for
reinforcement learning to address these challenges, its exploration in
this domain still needs to be explored.

3.3.9. Artificial intelligence application for post-implementation
The aftermath of deconstruction implementation presents several

challenges, some of which can be strenuous, dangerous, or technically
demanding. Post-implementation involves sorting and grading
salvageable materials to separate reusable items fromwaste, picking and
loading, planning logistics for the recovered materials, and more, as

Table 2
State-of-the-art AI applications for deconstruction planning activities, sub-activities, subfields, and opportunities.

S/
N

Activity Sub activities ML RB KBS OP RC/
XR

Opportunities

1 Inventory 1. As-built recognition [15,59,78] X 1. Robotics and Deep learning streamlined material audit
2. Digital data generation [73,77] X
3. Data collection and material audit [72,75] X

2 Feasibility
assessment

1. Decision making [85,104] X X X 1. Predictive model for feasibility assessment
2. Virtual feasibility assessment and material potential2. Reuse potential assessment [9,86] X

3 Project planning 1. Schedule planning [105,106] X 1. AI-driven insights for strategic planning and task
prioritization2. Strategic planning [107] X

4 Inspection 1. Structural damage assessment
[100,108–110]

X X X 1. XR-enabled building inspection

2. Physical damage assessment [111,112] X
5 Cost-benefit estimate 1. Value prediction [113] X 1. AI and XR high-value material recognition

2. Knowledge-based market demand estimate2. Cost estimate [114] X X
6 Recovery rate

estimate
1. Waste generation estimate [115,116] X 1. Deep learning for the material recovery rate

ML - Machine learning includes deep learning, RB – robotics, KBS-knowledge-based systems, OP-Optimization, and RC/XR – reality capture technology and extended
reality.
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illustrated in Fig. 6.
Studies in this field have explored the use of AI, including classical

ML, DL and robotics, to address these challenges. Table 3 presents the
summary of the subfields used for post-implementation.

Findings in this study revealed the use of AI subfields such as opti-
misation for post-implementation activities. For instance, Xanthopoulos
et al. [124] proposed and formulated the supply chain task for recovered
materials as an optimisation problem. Also, Duan et al. [125] investi-
gated the prediction of compressive strength in recycled aggregate using
meta-heuristic search techniques (ICA) and XGBoost. They developed a
hybrid model called ICA-XGBoost, which was argued to outperform
other models such as ICA-ANN, ICA-SVR, and ICA-ANFIS.

Additionally, studies have explored using classical ML and DL with
robotics for sorting and classifying salvageable materials. Examples
include real-time waste classification and sorting systems using deep
learning techniques like YOLACT and ResNet-50 [5]. In a similar study,
Wang et al. [126] introduced a robot capable of identifying materials,
picking them up, and loading them. This robot utilised a Recurrent
Convolutional Neural Network (RCNN) for object detection and
employed DL techniques for path planning and motion control. Several
other studies, such as those by [122,127,128], adopted a similar
approach involving robots, DL, and image-based technologies. Con-
volutional Neural Networks (CNN) and its variants, including Faster
CNN, Recurrent CNN, Region-based CNN, and Masked RCNN, were
among these studies’ commonly used DL models for object and image
recognition. While these proposed solutions demonstrate relevance, it’s
important to note that most are still in their experimental stages and
may require further refinement for practical on-site use.

4. Challenges facing AI for deconstruction

So far, this paper has pinpointed potential prospects and upcoming
patterns in using AI for deconstruction. Recognising and deliberating on
the leading obstacles is crucial to deepen our understanding in this
domain. Fig. 7 illustrates the opportunities, challenges, directions for
future research, and the evolving trends. Five notable challenges
affecting the utilisation of AI for deconstruction are presented below.

4.1. Data availability and quality

This review uncovered a significant issue: there needs to be more
publicly available real-life datasets suitable for training AI in decon-
struction. Most of the existing data used for developing AI in this field is
privately owned. This scarcity of accessible data has hindered the
adoption of AI in deconstruction, as AI heavily rely on ample data
[47,49,129–131]. Furthermore, there needs to be more focus on sus-
tainable end-of-life, which has limited data availability specifically
tailored for deconstruction [132]. Although some studies utilised a few
open-source datasets, especially for waste classification and sorting,
many needed more quality [5]. Other efforts have been made to collect
datasets from the internet, but these often fall short of representing real-

world deconstruction sites [112].
Furthermore, using transfer learning and pre-trained models

streamlines AI model training, particularly in machine and deep
learning, and minimises data requirements by leveraging existing
knowledge for new tasks. Adapting prior model learning to related tasks
or domains is beneficial, especially for activities like material sorting
[5,133]. However, despite these advantages, the data quality problem
still needs to be solved [134].

Overall, the absence of a tailored dataset for deconstruction poses a
significant challenge in leveraging AI for deconstruction. If this chal-
lenge remains unaddressed, it could stagnate the evolution of digital
deconstruction. To overcome this obstacle, we recommend establishing
a secure data-sharing platform to encourage developing and validating
more AI solutions tailored for deconstruction. Additionally, data chal-
lenges may be tackled shortly with the rise in the use and integration of
reality-capturing technologies, including unmanned aerial vehicles
(UAV), sensors, laser scanners, and others.

4.2. Cost and scalability

The undeniable benefits of AI in deconstruction are offset by sub-
stantial initial expenses, dissuading smaller firms and subcontractors,
significant players in the industry [135,136]. This leaves firms with the
trade-off between AI adoption’s return on investment and associated
expenses. Additionally, ensuring AI’s adaptability to diverse decon-
struction workflows and project sizes is pivotal for broad acceptance.
However, integrating these AI applications smoothly across different
projects and firms poses a scalability challenge, adding complexity to
their widespread application.

4.3. Human expertise and explainability

Deconstruction, a specialised field, makes finding individuals profi-
cient in deconstruction and AI development challenging. AI’s intricate
nature creates a barrier as its inner workings are often hard to interpret,
hindering adoption. This lack of transparency may lead deconstruction
professionals to hesitate to trust AI solutions without understanding how
they arrive at conclusions. Addressing this requires developing AI
models that are not just effective but also transparent and interpretable.

Collaborations between AI experts and deconstruction industry
professionals can bridge these gaps by fostering innovation tailored to
the unique needs of deconstruction. Such collaborations aim to create
models offering insights into decision-making processes, fostering trust
among deconstruction stakeholders and potentially accelerating AI
adoption in the industry.

4.4. Complicated site conditions and uncertainties in buildings at the end
of life

Over time, buildings naturally deteriorate due to factors like weather
and accidents, among others, rendering their conditions uncertain.
Furthermore, typical sites are mostly complex and complicated [21].
These challenges significantly impact the feasibility and effectiveness of
adopting AI for deconstruction. The unpredictable state of buildings
complicates the use of AI solutions, which rely on accurate data for
decision-making. The uncertainties hinder the AI’s ability to predict and
assess salvageable materials and optimise strategies effectively, among
other possibilities.

To boost AI adoption in deconstruction, it’s vital to tackle un-
certainties and complex site conditions. Leveraging advanced technol-
ogies like IoT, sensors, and adaptive and reinforcement learning for
autonomous decision-making and accurate building assessments can
mitigate these challenges.

Table 3
Summary of subfields used for post-implementation activities and sub-activities.

Activities Sub-activities ML RB KBS OP RC/
XR

Opportunities

Sorting Grading [121] X X Sorting and
grading
automation
through
adaptive
learning

Material
classification
[122]

X X

Supply
chain

Reverse
logistics [123]

X AI-driven
Reverse
logisticsFleet route

[123]
X
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4.5. Compatibility and interoperability

Deconstruction is a specialised domain within construction, and like
construction, professionals within deconstruction are conventional in
their ways, so ensuring AI solutions seamlessly integrate with existing
tools and systems used in the deconstruction process is essential. Chal-
lenges arise when AI solutions need help fitting into current workflows
or more efficient data exchange with other on-site tools.

Addressing these challenges involves tailoring AI applications for
easy integration within the industry’s infrastructure. This aims to have
AI systems complement/enhance, rather than disrupt, established
practices. For instance, when AI tools seamlessly communicate with
inventory management or structural analysis systems, they optimise
decision-making during deconstruction. Ultimately, prioritising
compatibility and interoperability not only streamline operations but
also significantly boosts efficiency in deconstruction activities.

5. Opportunities and future direction

The paper’s findings suggest the need for further research to explore
AI’s potential in deconstruction. Therefore, some opportunities and
future research directions are outlined below (See Fig. 7).

5.1. Robotics and deep reinforcement learning for material audit

Integrating deep reinforcement learning (DRL) for material audit
during deconstruction can revolutionise how robots identify, classify,
and handle various buildingmaterials. By utilising DRL, robots equipped
with sensors and cameras can learn to accurately classify materials
which are typically difficult to distinguish [78]. This technology allows
the robots to continuously improve their material recognition abilities
over time, enhancing the precision and efficiency of material audits.
Additionally, DRL empowers these robots to develop optimised sorting
strategies, learning how to prioritise materials for recycling, reuse, or
specific processing based on their properties. This approach streamlines

the material audit process, maximises resource recovery, and promotes a
circular economy.

5.2. XR-driven feasibility assessment and material reuse potential

Exploring extended reality (XR) in assessing material reuse potential
and evaluating deconstruction feasibility is a significant opportunity for
future research. By leveraging XR technologies like augmented reality
(AR) and virtual reality (VR), researchers can create immersive mock-
ups that analyse and visualise potential salvageable material for reuse
or recycling from buildings. These simulations could provide valuable
insights into recoveredmaterials’ condition, usability, and suitability for
repurposing. Additionally, XR-driven feasibility assessments can virtu-
ally simulate and evaluate the deconstruction process, allowing stake-
holders to assess challenges, optimise methodologies, and make
informed decisions before physically undertaking the deconstruction.
This innovative approach streamlines decision-making processes and
contributes to more efficient and cost-effective practices within the
deconstruction industry.

5.3. AI-driven reverse logistics

Integrating AI subfields like robotics, optimisation, reality-capturing
systems, and machine learning models presents a transformative op-
portunity for reverse logistics. By deploying these innovations, the
intelligent screening of recovered materials at collection points can be
readily automated. Furthermore, the advanced capabilities in optimi-
sation algorithms can help solve complex tasks as intricate as path and
route optimisation. This streamlines the redirection of the retrieved
materials to locations suitable for repurposing/further processing.
Leveraging this innovative approach to select the most efficient routes
would reduce transportation time while maximising opportunities for
material recovery. This convergence of AI-driven technologies would
significantly contribute towards more efficient, sustainable, and
streamlined materials management in reverse logistics operations

Fig. 7. AI for deconstruction: opportunities, challenges, trends, and future directions.
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within deconstruction.

6. Conclusion

The potential impact of AI on various industries, particularly in
tackling and enhancing overall productivity, is undeniable. The decon-
struction sector, facing productivity issues and numerous hurdles, stands
to benefit significantly from AI’s transformative capabilities. With the
rapid evolution of digital technologies, AI has the potential to synergise
and magnify the effects of these technological advancements within the
deconstruction process.

This paper thoroughly investigates the application of AI for decon-
struction, encompassing an analysis of recent and relevant studies
covering various uses of AI within deconstruction. Our research aims to
gauge the extent to which AI has been employed for deconstruction
processes, exploring its utilisation across diverse activities. We provided
an overview covering AI concepts, types, and subfields, revealing their
uses within deconstruction. Furthermore, we outlined the limitations
and benefits of each AI subfield, offering a concise summary of their
contributions to the field of deconstruction.

Several well-known databases, including Scopus, Association for
Computing Machinery (ACM), IEEEXplore, ScienceDirect, and Google
Scholar, were searched to retrieve relevant literature/articles published
until 2022. This decision was reached to have a comprehensive collec-
tion of studies on AI applications for deconstruction, ensuring a robust
examination of the subject.

Based on the retrieved literature (i.e., the gathered data), we cat-
egorised AI subfields into five: machine learning, robotics, optimisation,
knowledge-based systems, reality-capture technologies, and extended
reality. Additionally, we organised the applications of these subfields
within the context of deconstruction into three stages/phases: planning,
implementation, and post-implementation. This structuring allows for a
comprehensive understanding of how these AI subfields are utilised at
different stages of the deconstruction process, from initial planning to
actual implementation and subsequent post-implementation activities.

The paper’s findings underscored that machine learning, deep
learning, optimisation, and knowledge-based systems emerged as
prominent AI subfields extensively employed in deconstruction activ-
ities. Conversely, the exploration/ utilisation of robotics, reinforcement
learning, and extended reality remained comparatively limited within
the AI literature dedicated to deconstruction. Furthermore, despite
generative AI’s advancement and hype in other studies [137], their
potential contributions to deconstruction processes remain largely un-
explored and underutilised.

The paper highlights that AI integration in deconstruction is gaining
momentum owing to emerging trends like reality-capturing technolo-
gies and BIM. However, many are still in their conceptual or laboratory
phases. Moreover, we identified challenges impeding the adoption of AI
for deconstruction and provided actionable recommendations to over-
come these hurdles. Overall, this paper is a valuable resource for re-
searchers and industry professionals, offering insights into relevant AI
uses and ongoing research within deconstruction.

Furthermore, this paper provides an overview of what is already in
existence (i.e., the AI application areas and the subfields that were
employed) and some challenges from the existing literature affecting AI
for deconstruction; also, we have suggested possible areas in decon-
struction professional can exploit AI for efficiency and productivity
(please see Fig. 7). This paper highlights areas that are yet to be
explored, and open for research. This will help and serve as a starting
point for deconstruction practitioners and researchers in the following
ways. For example, support the AI skill force without deconstruction
domain expertise to understand areas where AI can be used for decon-
struction purposes and help deconstruction practitioners just starting on
AI adoption to note subfields and methods that are relevant/feasible for
deconstruction activities.

Despite its contributions, it is essential to acknowledge the

limitations of this paper. The paper focused solely on journals, confer-
ences, and textbooks, possibly neglecting valuable insights from other
literature types. Consequently, the research findings may not present a
complete overview of the available literature on AI for deconstruction.
Furthermore, the paper primarily examined the methodologies
employed in the literature rather than focusing on their results. This
narrow focus may have limited our discussion and hindered the thor-
ough validation of the methods used.

These limitations highlight areas for future research. Future studies
should address these shortcomings by incorporating data from various
sources, evaluating the results, and validating the methods employed in
the literature.
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