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Abstract 

Since isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) are the 

universal precursors of both essential oil components, and the antimalarial agent artemisinin and its 

derivatives in Artemesia annua L., this paper aims to correlate the spotted differences in their 

concentrations by screening Artemesia annua L. field-grown in nine locations around the world that 

may reveal the role of any these compounds as precursors or competitors in the biosynthetic 

pathway of the sesquiterpene lactone : artemisinin.  

Principal component analysis (PCA) revealed that artemisinin is positively correlated to -pinene, 

1,8-cineole, sabinene hydrate, borneol and 1-octen-3-ol; but negatively to artemisinic acid and-

caryophyllene oxide. Hierarchical cluster analysis (HCA) classified locations into two distinct 

groups in which artemisinin concentration stood as the main driving factor to build similarities 

between the locations. 

In parallel, an improved convergence approach based on idiosyncratic similarities able to capture 

heterogeneity across individuals is proposed, which was able to classify compounds into four 

distinct clusters. Artemisinin appeared to be cross-linked to p-cymene, cis-carvyle acetate, 4-

terpinene-1-ol, -caryophyllene, -farnesene, -selinene, -selinene, -caryophyllene oxide and -

costol.  It is interesting to see how camphor and spathulenol behaved as a distinct cluster group, 

which suggests that biosynthesis of these two compounds follows a different but a competitive 

pathway ; thus limiting their production could be a key to control and enhance the production of 

artemisinin. 
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Highlights 

 New idiosyncratic clustering approach is tested for Artemesia annua L. samples

 artemisinic acid and 32 identified constituents of essential oil are correlated to artemisinin

 camphor and spathulenol behaved as a distinct cluster and competitive to artemsinin biosynthesis



1. Introduction

Several studies have revealed the potency of Artemisia species in various traditional and folk 

medicines as a treatment for fever and malaria (Ortet et al., 2008 ; Tu, 2011). Particularly, 

artemisinin isolated from the traditional Chinese herb Artemisia annua serves as a precursor to 

today’s most effective antimalarial drugs against strains of Plasmodium falciparum parasites 

(Meshnick et al., 1996). Moreover, recent reports suggest the use of Artemisia annua dried leaf 

tablets to treat resistant malaria in which the synergic role of other components with artemisinin is 

claimed to tackle plasmodium resistance (Daddy et al., 2017). However, production and 

accumulation of this endoperoxidized sesquiterpene lactone in the plant occurs at relatively low 

levels (0.01-1.4%). Therefore, understanding the biosynthetic pathway of the drug may help 

researchers to either tune its production in plant cells or mimic its biosythetic pathway into 

industrial synthetic routes. 

Despite the great diversity of terpenoids in plant kingdom, they derive from a common biosynthetic 

precursor isopentenyl diphosphate (IPP) (Bouwmeester et al., 1999). Once IPP is formed and 

available in the cytosol, the production of farnesyl diphosphate (FDP) occurs via FDP synthase 

(FPS). The next step involves the formation of amorpha-4,11-diene via the sesquiterpene cyclase, 

amorpha-4,11-diene synthase (ADS), which represents the first specific precursor of artemisinin 

(Kim et al. 2006; Kim et al., 2008; Wallaart et al., 2001). Dihydroartemisinic acid (DHAA) is 

produced through three successive reactions catalyzed in vitro by cytochrome P450, CYP71AV1 

(Teoh et al., 2006). The first reaction includes hydroxylation of amorpha-4,11-diene to form 

artemisinic alcohol, followed by an oxidation of the alcohol into artemisinic aldehyde. The latter is 

then reduced to dihydroartemisinic aldehyde and a final oxidation converts the aldehyde into the 

acid form (Wallaart et al., 1999). Finally, conversion of dihydroartemisinic acid (DHAA) into 

artemisinin is believed to be a non-enzymatic photo-oxidative reaction through the intermediate 

dihydroartemisinic acid peroxide (Wallaart et al., 2000). In parallel, the pathway branches also at 

artemisinic aldehyde to give artemisinic acid (AA) by the action of CYP71AV1 and/or ALDH1, 

and arteannuin B (AB) (Brown and Sy, 2007).  

Biosynthetic routes for artemisinin and its derivatives have been well investigated but their 

relationships to other secondary metabolites such as essential oil components are scarce or 

unknown. Since isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) 

are universal biosynthetic precursors of terpene essential oil constituents via the intervention of 

terpene synthases (TPS) (Rehman et al. 2016), their intervention may lead to favour competing 

routes; thus the accumulation or the limitation of certain class of compounds. Hence, chemometrics 

stand as an important tool to clarify which biosynthetic pathway is favoured upon an 

accumulation/production of specific metabolites, in this case essential oils.  



Principal component analysis (PCA) and hierarchical clustering analysis (HCA) have become 

important tools to catch underlying similarities and classify groups using a simplified representation 

of correlations between samples/variables. Çam et al.
 
(2009) succeeded to classify the chemotype of 

pomegranate cultivar based on the antioxidant activities of their juices, while Hossaina et al. (2011) 

used HCA to point out which polyphenolic compounds are most responsible for the in vitro 

antioxidant activity. Notable are studies of Suberu et al. (2016) using multivariate data analysis by 

discriminant function analysis (DFA) of the 13 varieties of Artemisia annua grown in Madagascar 

that helped them to identify a strong positive association between artemisinin and 

dihydroartemisinic acid. They suggested the occurrence of two different chemotypes in A. annua: 

one of high artemisinin and low artemisinic acid content and another one pertaining to those with 

low artemisinin and high artemisinic acid levels. However, PCA’s ability to separate variations 

produced by each factor is under scrutiny due to the large spread across different number of 

components, while HCA does not provide explanation on how clusters are constructed and takes 

only elements with the smallest distance between each other (i.e. the most similar elements) to 

construct the cluster. 

Phillips and Sul (2007) developed a novel convergence test approach able to capture heterogeneity 

across individuals using a varying factor-loading coefficient, which allows an endogenous 

identification of convergences and clustering variables into sub-groups. It displays the relative 

transition path for individuals, thus enabling to measure and capture the divergent behaviour of the 

individuals from the common stochastic trend that is varying across samples. This new clustering 

approach can be useful to detect relationships between secondary metabolites such as terpenoids 

and help us understand how competing biosynthetic pathways take place. 

This study aims to explore relationships of artemisinin and artemisinic acid with essential oil 

compounds based on extraction yields data collected from a set of nine different locations of an 

identical Artemesia annua genetic origin. An improved clustering convergence approach developed 

by Phillips and Sul (2007) is applied to reveal compounds that are connected to higher yields of 

artemisinin or eventually those favouring other competing routes so their accumulation could be 

associated with low yields of artemisinin. Using regression analytics, a model is constructed to 

capture the impact of changes of competing secondary metabolites on artemisinin yields. 

2. Material and Methods

2.1. Plant material 

Samples of Artemesia annua L. leaves are sourced from REAP East Africa (Kenya), GSK 

(Tasmania, Australia), SensaPharm Ltd (United Kingdom) and Mundo Sano Foundation 

(Argentina). The samples represent commercial varieties for which companies hold voucher 

specimens which are collected at optimal artemisinin concentration in the herbs (just before 

flowering). The leaves are received by courier as crushed leaves in sealed high density carton 



containers. Samples are placed in storage room under 4 ºC until utilization. In total, 9 samples are 

studied and named as follows: Argentina Conflitusato (A), Tasmania (B), Argentina Puerto valle 

(C), Argentina Carpeda 7 (D), Argentina Carpeda 6 (E), United Kingdom (F), Argentina Garruchos 

(G), Argentina Carpeda 8 (H) and East Africa (I). 

It is important to make it clear that this study does not intend to relate composition with changes in 

environmental or climate factors, which are evident in our case as these samples are sourced from 

global locations but our objective is to relate changes in artemisinin concentration with their terpene 

essential oils.  

2.2. Artemisinin quantification 

In order to estimate the total content of artemisinin and artemisinic acid in a given sample, 

extraction at 40 ºC of 20 g samples of Artemesia annua L. is performed with 200 mL of ethyl 

acetate and fresh portions are added twice every 3 hours. The three extracts are mixed and 

evaporated to dryness under vacuum and re-dissolved in 10 mL of acetonitrile. The obtained 

solutions are filtered through a 0.2 m syringe filter before injection into HPLC. In this case, 

analysis of artemisinin and artemisinic acid is realized using a Shimadzu Prominence HPLC 

equipped with a UV-vis diode array detector (SPD-M20A, DAD) coupled to an evaporative light 

scattering detector (ELSD, LTII, 350 kPa N2, nebulizer at 40 ºC). Column Betasil C18 column, set 

at a temperature of 40 ºC, is used with an acetonitrile:water (65:35 %v/v) mobile phase at an 

isocratic mode 0.8 mL min
-1

 flow rate as described elsewhere (Lapkin et al. 2009). Calibration

curves are constructed from injection into HPLC/ELSD of dilutions varying from 0.25 to 5 mg mL
-1

of standards of artemisinin provided by Neem Biotech Ltd. (Newport, Wales, UK), and artemisinic 

acid kindly provided by Walter Reed Army Institute of Research (Washington, USA).  

2.3. Essential oil composition 

A dry sample of 100 g of Artemesia annua L. is suspended in 1 L of water and boiled for a period 

of six hours in a modified Clevenger-type system that allows recirculation of the condensed water 

and easy collection of the essential oil fraction at the end. This fraction is collected in vials and 

submitted for composition analysis. Extractions are performed twice and the mean values are 

reported. 

Essential oil extracts are analysed by gas chromatography coupled to mass spectrometry (GC-MS) 

(Hewlett-Packard 6890 GC coupled to a 5973A MS) using two fused-silica-capillary columns. The 

first one is a non-polar column HP5MS
™

 (30 m x 0.25 mm
2
, 0.25 m film thickness) and the

second is Stabilwax
™

 polar column consisting of Carbowax
™

-PEG (60 m x 0.2 mm
2
, 0.25 m film

thickness). GC-MS spectra are obtained using the following conditions: carrier gas He; flow rate 

0.3 mL min
-1

; split-less mode; injection volume 0.2 L; injection temperature 250 °C; the oven



temperature programme is 60 °C for 8 min increased at 2 °C min
-1

 to 250 °C then held at 250 °C for

15 min; the ionisation mode used is electronic impact at 70 eV.  

The identification of essential oil components is achieved by comparison of GC Kovats retention 

indices (R.I.) of compounds, determined with reference to homologous series of C5–C28 n-alkanes, 

with those of authentic standards available in the authors’ laboratory. The identification process is 

confirmed when possible by comparison of mass spectral fragmentation patterns with those stored 

in the MS database (National Institute of Standards and Technology and Wiley libraries) and with 

mass spectra data of literature (Bagchi et al., 2003; Tzenkova et al., 2010). Component relative 

molar concentrations are obtained directly from GC peak areas. 

2.4. Statistical Data Analysis 

Results on the metabolic profiling of different samples of Artemesia annua L. leaves are organized 

in a dataset where plant origin (individuals) is placed in lines while components (variables) are 

placed in columns in order to obtain pattern recognition analysis via descriptive statistics using 

XLSTAT software. A standardized principal component analysis (PCA) based on covariance 

(Pearson) is conducted in order to assess correlations between each component where variables are 

centred then reduced. In this case, a two dimensional (2D) factorial plan capturing the position of 

each compound relative to each other is created by depicting principal components’ values relative 

to each location (Kusa et al., 2009). In these tests, the significance level at which we estimated the 

critical values, the differences were 5% (i.e. P ≤ 0.05). 

In an attempt to arrange plant origin, a hierarchical clustering analysis (HCA) based on Ward 

aggregation method is realized using XLSAT software in order to classify locations into groups 

according to their high correlations. Dissimilarity is measured by Euclidean distance for nine 

locations according to metabolic profile of each A. annua sample. The results are illustrated as a 

dendrogram. 

2.5. Improved clustering approach 

Phillips and Sul (2007)
 
PS hereafter, propose an idiosyncratic element that is allowed to evolve over 

a variable factor and captures heterogeneity across individuals using a varying factor-loading 

coefficient by testing convergence, then identifying the endogenous convergence of clusters. 

According to them, the nonlinear transition factor model is defined as shown in equation 1: 

 = Eq.  (1) 

where  is the dependent variable observed across  individuals (compounds in our 

case) that changes according to variable elements  (locations in our case). 

In other words, the coefficient  measures the share of the common factor  for each individual 

in the panel data experiments. 



The analysis of convergence is based on the application of a relative transition coefficient, , 

which measures the loading coefficient  in relation to the panel average for a variable j. The 

parameter is approximated by equation 2: 

Eq.  (2) 

Using this parameter along with the loading coefficient it , the convergence can be assessed.

Namely, if , then  , thus the cross-sectional variance of  converges to zero, and 

we have: 

Eq.  (3) 

The property in equation 3 is essential in testing the null of convergence, then clustering individuals 

into the convergence clubs. The coefficient     displays the relative transition path for individuals 

in our panel data, then measures and captures the divergent behaviour of individuals from the 

common stochastic trend that is varying according to plant origin   .  

The procedure is implemented in two stages. In the first stage, the null of overall convergence is 

tested,         and    , against the alternative of no convergence,         for all i, 

or  . In order to test this hypothesis a logarithm regression is estimated, which is based on the 

cross sectional variance ratio  as proposed by PS . The regression is defined as follows: 

Eq. (4) 

where 

Eq. (5) 

Phillips and Sul (2007) recommend to use r=0.3. Regression calculations are realised using IBM 

SPSS Statistics V.20 software. Once the regression is run, the null is accepted if the autocorrelation 

heteroskedasticity robust one tail     statistic is above the critical value, c (e.g. at 5% level of 

significance, accept the null if            . In the second stage, another test relative to the 

presence of club convergence is realized. 

3. Results and Discussion

A significant variation in terms of the relative amounts of artemisinin, artemisinic acid and major 

essential oil compounds is observed in the biomasses grown at different geographic regions, as 

shown in Table 1. Thirty-two (32) essential oil components are identified, with camphor as the 



major compound ranging from 13.05 to 55.5% (Molar). Other major components of the essential oil 

include: spathulenol (2.3-8.05%), -costol (2-5.8%), -caryophylene oxide (1.45-5.35%), borneol 

(0.08-4.65%) and -farnesene (0.31-3.2%). It is important to note that certain locations contain 

specific compounds such as cedrol, -cedrene and -bergamotene for United Kingdom (F), while 

-curcumene is found only in East Africa (I), United Kingdom (F) and Tasmania (B). The richest

location in terms of camphor yield belongs to Conflitusato Argentina (A) with 55.5%. Surprisingly, 

artemisia ketone could not be found in the examined essential oils despite being largely reported in 

the literature in a range of up to 26% (Radulović et al., 2013). 

Wang et al. (2009) spotted this composition difference in two studied essential oils where camphor, 

methyl artemisinic acid and lanceol were absent in one genotype, which had impacted negatively on 

the content in artemisinin but positively on the content of arteannuin B and dihydroartemisinic acid. 

These differences in metabolic profiles could be attributed to cultivation, environmental factors and 

harvesting period. Specifically, earlier studies have revealed significant variations of some 

flavonoids and pigments in the samples collected from different locations (Lapkin et al., 2014). If 

pure artemisinin recovery is sought, tuning downstream processing protocols for raw materials 

sourced from different places becomes inevitable. 

Certain locations are found to be rich in the oxygenated compounds like Conflitusato Argentina (A) 

(71.44%) followed by Carpeda 6 Agentina (E) (68.88%) then Puerto Valle Argentina (C) (68.79%). 

In parallel, Carpeda 7 Argentina (D) exhibited the highest artemisinin and artemisinic acid contents 

with 14.08 and 2.1 mg g
-1

 of dry leaves respectively. Artemisinin yields are reported to range from 

4.4 mg g
-1 

(Mannan et al., 2010)
 
to up to 11.5 mg g

-1
(Ferreira et al., 2013); these values are 

comparable to the studied varieties having yields from 4.09 to 14.08 mg g
-1

. 

3.1. Data analysis 

Pattern classification results indicate that artemisinin and camphor variables represent the main 

source of dispersion because of their high mean values compared to other variables, and hold higher 

standard deviations between locations. Following this step, correlation data produced by 

standardized Pearson principal component analysis (PCA) shows that artemisinin holds high 

correlation factors, positive with artemisinic acid, -pinene, 1,8-cineole, sabinene hydrate, borneol 

and 1-octen-3-ol, but negative with -caryophyllene oxide. In parallel, very weak positive 

correlations were observed towards -caryophyllene and chrysanthenyle acetate. For artemisinic 

acid, the data indicates that it is highly positively related to borneol. However, only 63% of the 

initial information could be explained by these correlations in the first factorial plans (F1 & F2). 

Therefore, a non-standardized PCA is conducted. The latter succeeded to explain more than 90% in 

a single factorial axis (F1) and reached more than 97% of correlation’s information in the first 

factorial plan (F1-F2), see Figure 1. In this case, F1 axis appears to represent intimately the 



camphor variable, while F2 axis seems to represent artemisinin well. The results show a 

congregation into three clusters where artemisinin appeared strongly linked to artemisinic acid, 

borneol, 1,8-cineole, -pinene and -terpinene. Sesquiterpenes took the negative side of F1 axis but 

are divided in two clusters with a mix of oxygenated and hydrocarbon compounds in both groups. A 

high correlation of 78% exists between artemisinin and artemisinic acid, which can be translated by 

simple regression to include other secondary metabolites with whom artemisinin hold high 

correlation (R²=0.965) into the following equation 6 : 

Eq. (6) 

Equation 6 means that an increase in artemisinic acid would not drive a substantial decrease in 

artemisinin yield. In other words, they seem to belong to the same but non-competitive biosynthetic 

pathway where artemisinic acid may be considered as a by-product of the artemisinin synthesis. Our 

results are in line with Wallaart et al. (2010) findings who noted a negative correlation between 

artemisinic acid and artemisinin. Suberu et al. (2016) also indicated that a higher accumulation of 

artemisinin can be associated with the lower concentrations of arteannuin B and artemisinic acid 

and vice versa. Nonetheless, these relationships remain strictly statistical unlike Brown and Sy’s 

experimental work using in vivo feeding trials with artemisinic acid labelled with both 
13

C and 
2
H at

the 15-position that indicated that the produced sesquiterpene metabolites retained their 

unsaturation at the 11,13-position, so excluding the conversion of artemisinin acid in A. annua into 

any 11,13-dihydro metabolite, including artemisinin (Brown and Sy, 2007).  

According to Teoh et al. (2006),
 
artemisinin and artemisinic acid are produced from the same 

precursor artemisinic aldehyde. This suggests that a reduction of artemisinic aldehyde into 

dihydroartemisinic aldehyde is not complete, which leaves a window for the production of 

artemisinic acid to take place (Vail, 2008). Furthermore, artemisinin is positively cross-linked with 

borneol and 1,8-cienole. Hence, favouring their production may boost the production of artemisinin. 

In parallel, artemisinin production seems to be negatively influenced by the occurrence of -pinene 

and 1-octen-3-ol. This implies that these compounds may belong to a distinct biosynthetic route. 

This is partly true as the production of 1-octen-3-ol is non-enzymatic and does not come from IPP 

nor DMAPP. 

In another part, aggregation of the most similar variables (compounds) across locations helped the 

construction of hierarchical ascendant clustering (HCA) in order to detect proximities between 

individuals (locations) as illustrated by a dendrogram in Figure 2. This figure revealed the presence 

of different clustering levels. The first level indicate that F and G locations belongs to the same 

chemotype, probably due to the similar yields of artemisinin, though with a different composition 

and spatial origin (United Kingdom and Argentina), while the rest of locations are believed to 



belong to a distinct chemotype. Furthermore, locations of D, H, B and C hold strong similarities, 

attributed mainly to high artemisinin content. These observations should be taken with caution as 

these are only based on statistical characteristics that take short Euclidean distances between 

compounds as an indication of high similarity, thus a strong relationship is expected. 

3.2. PS clustering approach 

Another attempt to classify compounds using a PS approach helped the construction of clusters, see 

Table 2. The estimated t-statistics of the overall convergence test indicates that the null hypothesis 

is rejected but it does not imply that there is no convergence between a restricted number of 

compounds. It may, in fact, imply that we should move to a relative convergence test, in which the 

outcomes suggest that compounds can be grouped into four distinct clusters. Figure 3 shows 

graphically how the clusters are distributed across locations. A clear gap is observed between the 

first cluster, comprising camphor and spathulenol, and the remaining clusters that seems to be 

amassed (clusters 2-4). A magnification of clusters 2-4 allows to see the discrepancy between the 

aggregated clusters. It is possible now to spot the significant shift of the cluster 2 relative to the 

clusters 3 and 4 at the location G. This can be attributed to the high content of camphor in G. 

Nonetheless, a relatively regular pattern of clusters is recorded across other locations. 

Camphor and spathulenol belong to a distinct cluster, which suggests that they are produced 

through a different biosynthetic route. In fact, spathulenol structure comprises a cycloheptanyl 

skeleton like artemisinin, which suggests it stands on a competitive pathway to artemisinin 

synthesis.  

We may thus hypothesise that control of spathulenol and camphor biosynthesis may lead to 

maximize artemisinin yield in the plants. In parallel, artemisinin seems to be associated with the 

production of major sesquiterpene hydrocarbons, such as -costol, -caryophyllene, -farnesene 

and -caryophyllene oxide. Interestingly, the last three compounds are reported to be produced 

along with artemisinin parent “amorpha-4,11-diene” under enzymatic catalysis from the same 

precursor farnesyl diphosphate (Weathers et al., 2011),
 
which may explain their aggregation with 

artemisinin in the same cluster. Artemisinin acid seems to be linked mainly to a mix of oxygenated 

and hydrocarbon monoterpenes, but essentially to the sesquiterpene Germacren D which shares the 

same skeleton with artemisinic acid. However, they derive from competing biosynthetic routes as 

Germacren D is produced via the cyclization of farnesyl diphosphate by Germacren A synthase, 

unlike artemisinin acid that is produced via cyclization of farnesyl disphosphate by amorphadiene 

synthase (Nguyen et al., 2010). This observation supports the proficiency of the PS clustering 

approach to provide distinct clusters. 

4. Conclusions



Considerable variations are observed between Artemesia annua L. samples sourced from nine 

locations in terms of artemisinin, artemisinic acid and essential oil components in which 

Argentinean varieties hold the highest artemisinin yields. 

The PCA statistical analysis enabled us to classify this complex dataset, but it has failed to match 

some of the underlying relationships between compounds with the available literature on 

biosynthetic routes. Hierarchical clustering analysis (HCA) indicated the presence of three levels of 

relationships between the nine studied locations, mainly arising from their relative content in 

artemisinin. In parallel, the idiosyncratic approach developed by Philips & Sul succeeded, to a large 

extent, to emphasise the role of sesquiterpene hydrocarbons in the biosynthetic route of artemisinin, 

while advocating a new approach to maximize artemisinin content through control of other terpenic 

compounds spathulenol and camphor production in the plants. This new information may contribute 

to elucidate controlling mechanisms of artemisinin biosynthesis, a key to an improved artemisinin 

biotechnology in the transgenic A. annua. In addition, the new convergence tool may evolve as 

support tool to reveal biosynthetic routes in other plants.  
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Table 1.  Artemisinin, artemisinic acid and essential oils composition of Artemesia annua L. from nine locations 

Composition (%) RI
†

Conflitusato 

(Argentina) 

(A) 

Tasmania 

(B) 

Puerto valle 

(Argentina) 

(C) 

Carpeda 7 

(Argentina) 

(D) 

Carpeda 6 

(Argentina) 

(E) 

UK 

 (F) 

Garruchos 

(Argentina) 

(G) 

Carpeda 8 

(Argentina) 

(H) 

East Africa 

(I) 

Artemisinin (mg/g) - 7.82 9.69 11.27 14.08 9.31 3.29 3.28 12.95 4.09 

Artemisinic acid (mg/g) - 0.98 1.14 0.82 2.10 1.23 0.63 0.35 1.20 0.53 

Monoterpene hydrocarbons 

1 -pinene 936 0.41 0.17 0.18 0.31 0.08 0.01 0.15 0.47 0.01 

2 camphene 941 1.10 1.32 1.22 2.05 0.28 t
‡

0.61 3.00 0.05 

3 -pinene 974 0.10 0.05 0.05 0.15 0.03 t
‡

0.01 0.13 t
‡

4 p-cymene 1019 1.50 0.80 0.65 1.25 0.88 0.05 0.91 1.15 0.27 

5 Limonene 1023 0.01 0.07 0.02 0.12 0.02 1.95 0.09 0.06 t
‡

6 -terpinene - 0.15 0.10 0.10 0.18 0.06 0.10 0.08 0.22 0.06 

Oxygenated Monoterpenes

7 1,8-cineole 1025 1.50 1.15 2.05 2.45 0.65 0.23 0.72 3.00 0.37 

8 Sabinene hydrate <cis> 1062 0.35 0.38 0.40 0.35 0.25 0.02 0.08 0.25 0.02 

9 Chrysantenone - 0.13 0.14 0.36 0.18 0.23 0.03 0.20 0.41 0.03 

10 Chrysanthenyl acetate - 0.31 0.22 0.20 0.29 0.32 0.62 0.27 0.58 0.03 

11 1,8-dihydrocineole  0.65 0.20 0.10 0.15 0.55 0.14 0.45 0.12 1.20 

12 Carvyl acetate <cis> - 1.10 0.18 0.10 0.15 1.05 0.05 1.15 0.12 0.58 

13 camphor 1129 55.50 49.85 52.30 50.90 46.40 43.05 47.15 47.75 44.10 

14 pinocarvone 1151 0.29 0.18 0.18 0.21 0.25 0.18 0.22 0.34 0.20 

15 Borneol 1161 1.90 3.30 2.95 4.65 2.85 0.08 0.31 4.10 0.68 

16 Terpinen-4-ol 1172 0.80 0.42 0.55 0.75 0.70 0.70 0.78 0.80 1.10 

17 -terpineol  0.23 0.21 0.25 0.31 0.25 0.19 0.22 0.30 0.26 

18 Carveol <cis> 1219 0.28 0.05 0.05 0.19 0.28 0.05 0.10 0.25 0.01 



Sesquiterpene hydrocarbons 

19 -copaene 1375 0.50 0.53 0.55 0.52 0.25 0.60 0.69 0.52 0.45 

20 -cedrene - - - 0.45 - - 

21 -caryophyllene 1421 1.80 1.32 2.00 2.30 1.60 2.20 1.45 2.30 2.70 

22 -farnesene 1456 0.70 0.31 0.75 0.85 0.80 1.30 1.05 0.90 3.20 

23 -curcumene - - 2.50 - - - 0.20 - - 3.15 

24 -bergamotene - - - - - - 2.50 - - - 

25 Germacren D 1468 1.75 1.00 1.85 2.25 2.25 0.70 0.67 2.40 2.40 

26 -selinene  0.85 0.45 1.10 0.95 0.77 2.55 1.10 1.05 1.30 

27 -selinene - 0.50 0.45 0.55 0.65 0.78 0.55 0.85 0.65 0.85 

Oxygenated sesquiterpenes 

28 -caryophyllene oxide 1576 2.10 2.70 2.30 1.95 1.45 5.35 4.00 1.65 4.40 

29 Spathulenol 1564 4.05 2.30 4.05 3.60 7.00 8.05 6.55 3.55 5.00 

30 -costol - 2.00 3.05 2.95 2.75 3.05 5.80 2.55 2.45 4.50 

31 cedrol - - - - - - 0.85 - - - 

Others 

32 1-octen-3-ol 973 0.25 0.28 0.20 0.30 0.20 - 0.10 0.55 0.06 

Total oxygenated compounds - 71.44 64.61 68.79 68.88 65.28 65.39 64.95 65.67 62.48 

Total non-oxygenated compounds - 9.37 9.07 9.02 11.58 7.80 13.16 7.35 12.85 14.44 

Total Unidentified compounds - 18.96 26.04 21.99 26.72 27.60 20.93 23.02 

†
: retention indices calculated on DB1-column 

‡ : 
t: traces 



Table 2. Clustering results of the convergence test run according to Phillips and Sul (2007). 520 

521 

Overall Test Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Estimated t-

statistics* [-3.92<-1.65] [-1.48>-1.65] [-1.57>-1.65] [-1.53>-1.65] [-1.50>-1.65] 

Composition no 

convergence 

Camphor 

Spathulenol 

Artemisinin 

p-Cymene

cis-Carvyle acetate 

4-Terpinene-1-ol

-Caryophyllene

-Farnesene

-Selinene

-Selinene

-costol

-Caryophyllene oxide

Artemisinic acid 

Camphene 

1,8-Cineole 

Pinocarvone 

-Terpineol

1,8-Dihydrocineole 

Borneol 

-Copaene

Germacren D 

Chrysanthenyle acetate 

-Pinene

-Pinene

Limonene 

-Terpinene

Chrysantenone 

cis-Carveol 

-Cedrene

-Curcumene

-Bergamotene

Cedrol 

1-Octen-3-ol

cis-Sabinene hydrate 

* Underlined value indicates the rejection of the null of convergence at P <0.05 level of significance, while values in bold refer to the non-rejection of 

this hypothesis. 



Figure captions 

Fig. 1 Factorial plan distribution of essential oils components from non-standardized Pearson 

clustering analysis 

Fig. 2 Dendrogram representing relationships based on similarities between compounds of A. annua 

sourced from nine locations  

Fig. 3 Transition curves of clusters 1 to 4 across nine locations with magnification of clusters 2 to 4 

(clusters’ compositions, see Table 2). 
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