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Abstract
Background: Some individuals living with obesity may be relatively metabolically healthy, whilst 
others suffer from multiple conditions that may be linked to adverse metabolic effects or other 
factors. The extent to which the adverse metabolic component of obesity contributes to disease 
compared to the non- metabolic components is often uncertain. We aimed to use Mendelian rando-
misation (MR) and specific genetic variants to separately test the causal roles of higher adiposity 
with and without its adverse metabolic effects on diseases.
Methods: We selected 37 chronic diseases associated with obesity and genetic variants associated 
with different aspects of excess weight. These genetic variants included those associated with meta-
bolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with 
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higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample 
MR to test the effects on the chronic diseases.
Results: MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher 
adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed 
opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, 
stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney 
disease, renal cancer, and gout. Second, 9 conditions where the non- metabolic effects of excess 
weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading 
to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoar-
thritis, rheumatoid arthritis, osteoporosis, gastro- oesophageal reflux disease, gallstones, adult- onset 
asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.
Conclusions: Our results assist in understanding the consequences of higher adiposity uncoupled 
from its adverse metabolic effects, including the risks to individuals with high body mass index who 
may be relatively metabolically healthy.
Funding: Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer 
Institute.

Editor's evaluation
The authors have conducted a robust and very comprehensive study using Mendelian randomis-
ation to disentangle metabolic and non- metabolic effects of overweight on a long list of disease 
outcomes. They have tested if effects of overweight work through either or both effects for a partic-
ular condition. This is an important topic and can help us better understand how overweight influ-
ences risk of several important outcomes.

Introduction
Obesity is associated with a higher risk of many diseases, notably metabolic conditions such as type 2 
diabetes, but many individuals are often relatively metabolically healthy compared to others of similar 
body mass index (BMI). Whilst these metabolically healthier individuals may be at lower risk of some 
obesity- related conditions, they may be at risk of conditions that are linked to other aspects of obesity, 
such as the load- bearing effects. The burden of obesity on individuals and health- care systems is 
very large, and in the absence of a widely applicable, sustainable treatment or effective public health 
measures, it is important to understand the disease consequences of obesity, and how they may be 
best alleviated, in more detail.

To better understand the disease consequences of obesity, many previous studies have used the 
approach of Mendelian randomisation (MR) (Smith and Ebrahim, 2004). These studies used common 
genetic variants robustly associated with BMI as proxies for obesity to assess the causal effects of 
higher BMI on many diseases. MR studies have provided strong evidence that higher BMI leads to 
osteoarthritis (Tachmazidou et al., 2019), colorectal cancer (Thrift et al., 2015; Suzuki et al., 2021; 
Bull et al., 2020), and psoriasis (Budu- Aggrey et al., 2019), as well as metabolic conditions such as 
type 2 diabetes, cardiovascular disease (Hägg et al., 2015), and heart failure (Cheng et al., 2019; 
Corbin et al., 2016; Fall et al., 2013). Other MR studies indicate that higher BMI may lead to lower 
risk of some diseases, including postmenopausal breast cancer (Guo et al., 2016) and Parkinson’s 
disease (Noyce et al., 2017).

Obesity is heterogeneous – for example, for a given BMI, people vary widely in their amount of fat 
versus fat free mass, predominantly muscle, and their distribution of fat, predominantly subcutaneous 
versus ectopic and upper versus lower body fat. Even when there is strong evidence of causality, 
obesity may lead to disease through a variety of mechanisms. Despite many MR studies testing the 
role of higher BMI in disease, few have attempted to separate and test the different mechanisms that 
could lead from obesity to disease. Some MR studies have investigated the effects of fat distribution 
using genetic variants associated with waist- hip ratio (WHR) adjusted for BMI and shown that adverse 
fat distribution (more upper body, less lower body) leads to higher risk of metabolic disease (Emdin 
et al., 2017), some cancers (Cornish et al., 2020), and gastro- oesophageal reflux disease (Green 
et al., 2020).

https://doi.org/10.7554/eLife.72452
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Previous studies have identified genetic variants associated with more specific measures of adiposity. 
For example, several studies have characterised variants associated with ‘favourable adiposity’ (FA) or 
reduced adipose storage capacity using a variety of approaches (Ji et al., 2019; Lotta et al., 2017; 
Kilpeläinen et al., 2011; Huang et al., 2021). We recently identified 36 FA alleles which are collec-
tively associated with a favourable metabolic profile, higher subcutaneous fat but lower ectopic liver 
fat (Ji et al., 2019; Martin et al., 2021), resembling a polygenic phenotype opposite to lipodystrophy 
(Semple et al., 2011). We also identified 38 unfavourable adiposity (UFA) alleles which are associated 
with higher fat in subcutaneous and visceral adipose tissue, and higher ectopic liver and pancreatic 
fat (Ji et al., 2019; Martin et al., 2021), resembling monogenic obesity (Supplementary file 1a). We 
performed MR studies and showed that FA and UFA have opposite causal effects on six metabolic 
conditions (Martin et al., 2021). While both FA and UFA were associated with higher adiposity, FA was 
causally associated with lower risk of type 2 diabetes, heart disease, hypertension, stroke, polycystic 
ovary syndrome, and non- alcoholic fatty liver disease. In contrast, as expected, UFA was associated 
with higher risk of these conditions. These results confirmed the ability of the two sets of adiposity 
variants to partially separate out the metabolic from the non- metabolic effects of higher adiposity.

In this study, we aimed to investigate the effects of separate components to higher adiposity on 
risk of additional metabolic diseases and many non- metabolic diseases. We used genetic variants 
associated with BMI, body fat percentage, FA, and UFA to understand the components of higher 
adiposity that are the predominant causes of disease risk. Our findings may give guidance on some 
obesity- related risks which are not dependent on metabolic consequences, thereby guiding appro-
priate medical care.

Methods
Study design
An overview of our approach is shown in Figure 1. First, we identified diseases by performing a litera-
ture search of studies that had used MR to assess the consequences of BMI on outcome phenotypes. 
We used the search terms ‘BMI and Mendelian randomisation’ and ‘BMI and Mendelian random-
ization’. We identified 37 diseases associated with BMI and for which MR studies had previously 
been performed (Supplementary file 1b). We included all diseases regardless of the MR result in 
the published study. Second, we reperformed MR studies using BMI as an exposure. Third, for those 
diseases where MR indicated higher BMI was causal, we tested the effects of body fat percentage to 
confirm that the causal effect was due to fat mass rather than fat- free mass. Fourth, for diseases where 
MR suggested the BMI effect was due to excess adiposity, we used genetic variants more specific to 
the metabolic and non- metabolic components of higher adiposity to help understand the extent to 
which these factors influence disease.

Data sources
We used three data sources for disease outcomes: (i) published genome- wide association studies 
(GWAS; Okada et  al., 2014; Nikpay et  al., 2015; Jones et  al., 2017; Michailidou et  al., 2017; 
Phelan et al., 2017; Scelo et al., 2017; Tsoi et al., 2017; Day et al., 2018; Mahajan et al., 2018; 
Malik et al., 2018; O’Mara et al., 2018; Roselli et al., 2018; Schumacher et al., 2018; Wray et al., 
2018; An et al., 2019; Ferreira et al., 2019; Huyghe et al., 2019; Jansen et al., 2019; Kunkle et al., 
2019; Law et al., 2019; Lindström et al., 2019; Morris et al., 2019; Nalls et al., 2019; Shah et al., 
2019; Tachmazidou et al., 2019; Tin et al., 2019; Wuttke et al., 2019; Huyghe et al., 2021) and (ii) 
FinnGen (FinnGen, 2021) as our main results, and (iii) UK Biobank (RRID:SCR_012815; Collins, 2012) 
as additional validation. FinnGen is a cohort of 176,899 individuals with linked medical records. UK 
Biobank is a population cohort of >500,000 individuals aged 37–73 years recruited between 2006 and 
2010 from across the UK. For the 37 identified diseases, 25 had summary GWAS data available from 
both a published GWAS consortium and FinnGen, and 12 diseases had GWAS summary data avail-
able in FinnGen only. In addition, data from 31 of the 37 diseases were available in the UK Biobank. 
No GWAS data were available for Barrett’s oesophagus, but we included gastro- oesophageal reflux. 
The characteristics of the studies and measures, disease outcomes, and the definition of cases and 
controls are described in Supplementary file 1ci–iii.

https://doi.org/10.7554/eLife.72452
https://identifiers.org/RRID/RRID:SCR_012815
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Step 1: Search literature for Mendelian randomisation studies of BMI and 
disease

Step 2: Perform Mendelian randomisation of BMI and body fat percentage 
with disease

Step 3: Confirm whether causal effect was due to fat mass rather than fat free 
mass

Step 4: Perform Mendelian randomisation of metabolically favourable and 
unfavourable adiposity with disease

Figure 1

Step 5: Identify whether evidence of metabolic, non-metabolic, combination 
(predominantly metabolic) or combination (predominantly non-metabolic) causal 

effect, based on below illustration of how results will be interpreted

Figure 1. Study design.

https://doi.org/10.7554/eLife.72452
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GWAS of UK Biobank participants
For the GWAS of 31 diseases available in UK Biobank, we used a linear mixed model implemented in 
BOLT- LMM to account for population structure and relatedness (Loh et al., 2015). We used age, sex, 
genotyping platform, study centre, and the first five principal components as covariates in the model.

Genetic variants
We used four sets of genetic variants as proxies of four exposures (Supplementary file 1d).

Body mass index
In the broadest category, we used a set of 73 variants independently associated with BMI at genome- 
wide significance (p<5 × 10–8). These variants were identified in the GIANT consortium of up to 
339,224 individuals of European ancestry (Locke et al., 2015).

Body fat percentage
We used 696 variants from a GWAS in the UK Biobank (Martin et al., 2021). We used bio- impedance 
measures of body fat % taken by the Tanita BC- 418MA body composition analyser in 442,278 individ-
uals of European ancestry.

The BMI and body fat percentage variants were partially overlapping (n = 5 variants), but we used 
exposure- trait- specific weights for each variant.

FA variants
There are 36 FA variants (Martin et  al., 2021). These variants were identified in two steps. First, 
they were associated (at p<5 × 10–8) with body fat percentage and a composite metabolic pheno-
type consisting of body fat percentage, HDL- cholesterol, triglycerides, SHBG, alanine transaminase, 
and aspartate transaminase. Second, in a k- means clustering approach (a hard clustering approach) 
(Martin et al., 2021), they formed a cluster of variants that were collectively associated with higher 
HDL- cholesterol, higher SHBG, and lower triglycerides and liver enzymes – resembling a phenotype 
opposite to lipodystrophy.

UFA variants
There are 38 UFA variants (Martin et al., 2021). These variants were identified in two steps. First, they 
were associated (at p<5 × 10–8) with body fat percentage and a composite metabolic phenotype as 
detailed above. Second, in a k- means clustering approach (Martin et al., 2021), they formed a cluster 
of variants that were collectively associated with lower HDL- cholesterol, lower SHBG, and higher 
triglycerides and liver enzymes - resembling monogenic obesity.

Mendelian randomisation
We investigated the causal associations between the four exposures (BMI, body fat percentage, FA, 
and UFA) and 37 disease outcomes by performing two- sample MR analysis (Pierce and Burgess, 
2013). We used the inverse- variance weighted (IVW) approach as our main analysis, and MR- Egger 
and weighted median as sensitivity analyses in order to detect and partially account for unidentified 
pleiotropy of our genetic instruments. For BMI, we used effect size estimates from the GWAS of BMI 
(Locke et al., 2015), and for body fat percentage, FA, and UFA, we used effect size estimates from 
the GWAS of body fat percentage (442,278 European ancestry individuals from the UK Biobank study) 
(Ji et al., 2019).

To estimate the effects of variants on our disease outcomes, we used two main sources of data: 
FinnGen GWAS summary results and published GWAS of the same diseases (Supplementary file 
1ci–ii). We performed MR within each data source and then meta- analysed the results across the two 
datasets using a random- effects model with the R package metafor (RRID:SCR_003450; Viechtbauer, 
2010), where the data was available in both. For one published GWAS (the GECCO consortium), 
we only had information for FA and UFA variants. To provide further MR evidence, we used a third 
source of disease data – disease status in the UK Biobank (Supplementary file 1ciii). We ran the same 
models but did not meta- analyse with published GWAS and FinnGen because most of the body fat 
percentage, FA, and UFA variants were identified in the UK Biobank.

https://doi.org/10.7554/eLife.72452
https://identifiers.org/RRID/RRID:SCR_003450
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We obtained heterogeneity Q statistics for each IVW MR and MR- Egger, and I2 statistics for each 
MR- Egger analysis using the MendelianRandomization R package (Yavorska and Burgess, 2017). All 
statistical analyses were conducted using R software (R Development Core Team, 2020). Given the 
number of tests performed, we used a Benjamini–Hochberg false discovery rate (FDR) procedure and 
an FDR of 0.1 to define meaningful results for each of the four exposures (Benjamini and Hochberg, 
1995).

Results
We identified 37 diseases as associated with obesity and for which MR studies had previously been 
performed. Of these 37, 5 metabolic conditions were part of our previous study that validated 
the use of FA and UFA genetic variants as a way of partially separating the metabolic from non- 
metabolic components of higher adiposity (Martin et al., 2021). Once we had tested BMI and body 
fat percentage, we further characterised the likely causal component of higher adiposity using FA and 
UFA variants as follows (Figure 1, step 5): (i) diseases with evidence that the metabolic effect of higher 
adiposity is causal. Here, MR using the UFA genetic variants indicated that higher adiposity with its 
adverse metabolic consequences was causal to disease, whilst MR using the FA genetic variants indi-
cated that higher adiposity with favourable metabolic effects was protective (at FDR 0.1). (ii) Diseases 
with evidence that there is a non- metabolic causal effect (e.g. mechanical effect, psychological/
adverse social effect). Here, MR using the FA genetic variants indicated that higher adiposity without 
its adverse metabolic consequences was likely contributing to the disease, as well as the MR using 
the UFA genetic variants. (iii) Diseases with evidence that there is a combination of causal effects but 
with a predominantly metabolic component. Here, MR using the UFA genetic variants indicated that 
higher adiposity with its adverse metabolic consequences was causal to disease, and MR using the FA 
genetic variants was directionally consistent with higher adiposity with favourable metabolic effects 
being protective but FDR > 0.1. (iv) Diseases with evidence that there is a combination of causal 
effects but with a predominantly non- metabolic component. Here, MR using the UFA genetic variants 
indicated that higher adiposity without its adverse metabolic consequences was likely contributing to 
the disease, and MR of the FA genetic variants was directionally consistent with this but FDR > 0.1.

We grouped these disease outcomes into seven major categories – cardiovascular and metabolic 
conditions, musculoskeletal, gastrointestinal, nervous, integumentary and respiratory systems, and 
cancer. MR analysis of five conditions (coronary artery disease, hypertension, stroke, type 2 diabetes, 
and polycystic ovary syndrome) was part of our previous study (Martin et al., 2021). We focused on 
the MR of body fat percentage if a causal effect of BMI was indicated, and the MR of FA and UFA 
if a causal effect of BMI and body fat percentage was indicated, but have presented all results in 
Supplementary file 1e for completeness. Where random- effects meta- analyses were performed, the 
heterogeneity statistics are given in Supplementary file 1f.

(i) Diseases with evidence that the metabolic effect of higher adiposity 
is causal
When comparing the MR analyses for FA and UFA, our results provided evidence that the metabolic 
effect of higher adiposity is contributing causally to coronary artery disease, peripheral artery disease, 
hypertension, stroke, type 2 diabetes, and gout (Figures 2–12, Supplementary file 1e). For stroke, 
our results were consistent when using sub- types of the condition (Figure 3—figure supplement 1, 
Supplementary file 1g). Our results also indicated that the metabolic effect of higher adiposity is 
causal to chronic kidney disease, although the results from BMI and body fat percentage were less 
conclusive (Figure 3).

(ii) Diseases with evidence that there is a non-metabolic causal effect
When comparing the MR analyses for FA and UFA, our results provided evidence that some non- 
metabolic effect of higher adiposity is contributing causally to venous thromboembolism, deep vein 
thrombosis, osteoarthritis, and rheumatoid arthritis (Figures  2–12, Supplementary file 1e). For 
osteoarthritis, our results were consistent when using sub- types of the condition (Figure 5—figure 
supplement 1, Supplementary file 1g).

https://doi.org/10.7554/eLife.72452
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(iii) Diseases with evidence that there is a combination of causal effects 
but with a predominantly metabolic component
When comparing the MR analyses for FA and UFA, our results provided evidence that the metabolic 
effect of higher adiposity is the predominate cause of the link between higher BMI and polycystic ovary 
syndrome, heart failure, and atrial fibrillation. Our results also provided evidence that the metabolic 
effect of higher adiposity is the predominate cause of the link between higher BMI and a reduced risk 
of breast cancer and higher risk of renal cancer, although the results from body fat percentage were 
less conclusive (Figures 2–12, Supplementary file 1e).

Figure 2. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on type 2 diabetes, hypertension, polycystic ovary syndrome and coronary 
artery disease. The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically 
determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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(iv) Diseases with evidence that there is a combination of causal effects 
but with a predominantly non-metabolic component
When comparing the MR analyses for FA and UFA, our results suggested that some non- metabolic 
effect of higher adiposity is the predominant cause of the link between higher BMI and gallstones, 
gastro- oesophageal reflux disease, adult- onset asthma, and psoriasis (Figures 2–12, Supplementary 
file 1e). Our results also indicated that some non- metabolic effect of higher adiposity is causal to 

Figure 3. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on stroke, peripheral artery disease, heart failure, atrial fibrillation and chronic 
kidney disease. The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically 
determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on sub- types of stroke.

https://doi.org/10.7554/eLife.72452
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osteoporosis, although the results from BMI were less conclusive (Figure 5). Our results found no 
evidence (at p<0.05) of an effect of BMI or adiposity on child- onset asthma (Figure 9—figure supple-
ment 1, Supplementary file 1g).

All other disease outcomes
Fifteen disease outcomes did not fit the criteria for definitions i–iv. For five of these conditions, our 
MR results indicated a causal effect of higher BMI or adiposity, but results from FA and UFA were 
inconclusive: pulmonary embolism, depression, endometrial cancer, lung cancer, and prostate cancer 
(Figures 2–12, Supplementary file 1e). Additionally, we identified some evidence of a metabolic 

Figure 4. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on venous thromboembolism, deep vein thrombosis, pulmonary embolism 
and abdominal aneurysm. The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in 
genetically determined BMI, body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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effect of higher adiposity with colorectal and ovarian cancer, with the MR of FA indicating lower odds 
of colorectal (0.67 [0.52, 0.85]) and ovarian (0.35 [0.18, 0.70]) cancers, but MR of UFA was consistent 
with the null (p>0.05). For colorectal and ovarian cancer, our results were consistent when using sub- 
types of the conditions (Figure 10—figure supplement 1, Figure 11—figure supplements 1 and 2, 
Supplementary file 1g).

Figure 5. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on gout, osteoarthritis, osteoporosis and rheumatoid arthritis. The error bars 
represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat 
percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on sub- types of osteoarthritis.

https://doi.org/10.7554/eLife.72452
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Sensitivity analyses
Out of 82 disease outcomes (including subtypes), weighted median MR results were directionally 
consistent with IVW analysis for 75 diseases for BMI and 73 for body fat percentage, with 33 and 47 of 
these having p<0.05, respectively. For FA and UFA, where sub- type colorectal cancer data was avail-
able, the total number of diseases was 87, and 76 were directionally consistent for both exposures, 
with 22 and 39 having p<0.05, respectively.

MR- Egger results were broadly consistent with the primary IVW MR results, indicating that plei-
otropy (variants acting on the outcomes through more than one mechanism) appears to have had 
limited effect on our results. MR- Egger results were directionally consistent with IVW for 71 diseases 

Figure 6. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on gallstones and gastro- oesophageal reflux disease. The error bars represent the 
95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and 
UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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for BMI and 70 for body fat percentage, with 25 and 38 of these having p<0.05, respectively. For FA 
and UFA, MR- Egger was directionally consistent for 60 and 67 diseases, with 6 and 15 having p<0.05, 
respectively (Supplementary file 1g). Of the 31 diseases available in the UK Biobank, the IVW analysis 
of these was directionally consistent with the FinnGen and/or published GWAS analysis for 28, 27, 24, 
and 27 traits for BMI, body fat percentage, FA, and UFA, respectively (Supplementary file 1h). Of 
these, 18, 21, 9, and 16 had p<0.05, respectively.

Figure 7. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on Alzheimer’s disease, depression, multiple sclerosis and Parkinson’s disease. 
The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, 
body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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Discussion
We used a genetic approach to understand the role of higher adiposity uncoupled from its adverse 
metabolic effects in mechanisms linking obesity to higher risk of disease. We first used MR to provide 
evidence that higher BMI was causally associated with 21 diseases, broadly consistent with those from 
previous studies. For the majority (17) of these diseases, our results indicated that the BMI effect was 
predominantly due to excess adiposity rather than a non- fat mass component to BMI. We then used 
a more specific approach to test the separate roles of higher adiposity with and without its adverse 
metabolic effects. We provided genetic evidence that the adverse metabolic consequences of higher 
BMI lead to coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, 

Figure 8. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on psoriasis. The error bars represent the 95% confidence intervals of the 
IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best 
interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and 
gout, and the adverse non- metabolic consequences of higher BMI likely contribute to osteoarthritis, 
rheumatoid arthritis, osteoporosis, gastro- oesophageal reflux disease, gallstones, adult- onset asthma, 
psoriasis, deep vein thrombosis, and venous thromboembolism.

Understanding the reasons why obesity leads to disease is important in order to better advise 
health professionals and patients of health risks linked to obesity, whether or not they show metabolic 

Figure 9. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on adult- onset asthma. The error bars represent the 95% confidence intervals of 
the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and UFA. Italics give our best 
interpretation of the data using the FDR 0.1 results.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on sub- types of asthma.

https://doi.org/10.7554/eLife.72452
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derangements. Many previous studies have used an MR approach to support a causal role of higher 
BMI in disease, but here we attempted to systematically test many conditions and the role of separate 
components of higher BMI. We discuss some of the more notable, and potentially clinically important, 
results below.

Figure 10. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on Barrett’s oesophagus, breast cancer, cancer myeloma and colorectal cancer. 
The error bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, 
body fat percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on sub- types of colorectal cancer.

https://doi.org/10.7554/eLife.72452
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Cardiometabolic diseases
Previous studies, including those using MR, have shown that higher BMI leads to many cardiomet-
abolic diseases (Larsson et al., 2020; Riaz et al., 2018; Xu et al., 2020), but our results provide 
additional insight into the likely mechanisms. In addition to the previously established opposing 

Figure 11. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on endometrial and lung cancer, meningioma and ovarian cancer. The error 
bars represent the 95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat 
percentage, FA and UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on 5 sub- types of ovarian cancer.

Figure supplement 2. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat 
percentage (BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on 4 sub- types of ovarian cancer.

https://doi.org/10.7554/eLife.72452
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effects of metabolically FA and UFA for coronary artery disease, stroke, hypertension, and type 2 
diabetes (Martin et al., 2021), our results confirmed similarly strong metabolic components to periph-
eral artery disease and chronic kidney disease. These results are consistent with the well- established 
adverse metabolic effects of higher BMI on these diseases (contributing to atherosclerotic effects or 
linked to specific haemodynamic impacts) (Sattar and McGuire, 2018). For two further cardiovascular 
conditions, heart failure and atrial fibrillation, the results were less certain. For these two conditions, 
the evidence of a predominantly metabolic effect of higher BMI was very clear – with the MR of UFA 
consistent with effects at least as strong as those for coronary artery disease. However, in contrast 
to the results for coronary artery disease, the MR of FA was consistent with no effect. This compar-
ison between the effects of FA and UFA may indicate that there is a partial mechanical, or other 

Figure 12. The inverse- variance weighted (IVW) two- sample MR analysis/meta- analysis of the effects of body mass index (BMI), body fat percentage 
(BFP), “favourable adiposity” (FA) and “unfavourable adiposity” (UFA) on pancreatic, prostate, renal and thyroid cancer. The error bars represent the 
95% confidence intervals of the IVW estimates in odds ratio per standard deviation change in genetically determined BMI, body fat percentage, FA and 
UFA. Italics give our best interpretation of the data using the FDR 0.1 results.

https://doi.org/10.7554/eLife.72452
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non- metabolic component, as well as metabolic effect, perhaps mediated by excess weight of any 
type placing extra strain on the heart.

In contrast to the results for most of the cardiometabolic diseases, our MR analyses provided 
evidence for a likely non- metabolic component mediating the effect of higher BMI on venous throm-
boembolism and deep vein thrombosis (two closely related conditions). This finding is clinically 
important as it suggests that treating metabolic risk factors associated with obesity without changing 
weight may not reduce the risk of deep vein thrombosis in individuals with obesity. Possible mecha-
nisms could include higher intra‐abdominal pressure (due to excess fat) and slower blood circulation 
in the lower limbs (due to a more sedentary lifestyle secondary to obesity, or mechanical occlusion of 
veins) promoting clot initiation and formation (Lorenzet et al., 2012).

Musculoskeletal diseases
We observed clear differences for the role of higher BMI in different musculoskeletal diseases. For 
gout, opposing effects of FA and UFA clearly indicated a metabolic effect. Gout is a form of inflam-
matory arthritis caused by the deposition of urate crystals within the joints (Dalbeth et al., 2016). 
Weight loss from bariatric surgery is associated with lower serum uric acid and lower risk of gout 
(Maglio et al., 2017). A previous MR study showed that overall obesity, but not the central location 
of fat, increased the risk of gout (Larsson et al., 2018). The protective effect of FA could be due to 
improved insulin sensitivity leading to less insulin- enhanced reabsorption of organic anions such as 
urate (Choi et al., 2005). In contrast to gout, our MR analysis provided evidence that a non- metabolic 
effect of higher adiposity is a likely cause of osteoarthritis and rheumatoid arthritis – with both FA and 
UFA leading to disease. For osteoarthritis, the effect of UFA was stronger than that of FA, indicating 
both a metabolic and non- metabolic component. This is consistent with a causal association between 
higher adiposity and higher risk of osteoarthritis in non- weight- bearing joints including hands (Reyes 
et al., 2016). For rheumatoid arthritis, the effects of FA and UFA were similar, suggesting the non- 
metabolic effect accentuating, or more readily unmasking, the autoimmune background risk, as the 
key BMI- related factor, although the confidence intervals were wider than those for osteoarthritis. 
The UFA variants may potentially influence these conditions by load- bearing mechanisms, and tissue 
enrichment analysis for the FA and UFA variants previously found that FA and UFA loci are enriched for 
genes expressed in adipocytes and adipose tissue, and mesenchymal stem cells, respectively (Martin 
et  al., 2021). For osteoporosis, we did not replicate the previous finding of a causal association 
between higher BMI and risk of osteoporosis (estimated by bone mineral density; Song et al., 2020); 
however, we observed a causal association between higher body fat percentage and a higher risk 
of osteoporosis with consistent risk increasing effects of both FA and UFA. This finding adds to the 
complex relationship between higher BMI and osteoporosis, where higher BMI at earlier ages may 
increase bone accrual, but in later years results in adverse effects.

Gastrointestinal diseases 

We observed differences in the effects of BMI when comparing the two gastrointestinal diseases, 
although the results are less conclusive than those for the musculoskeletal conditions. Here, our results 
were consistent with a predominantly non- metabolic effect contributing to the association between 
higher BMI and higher risk of gallstones. Higher BMI has been shown to be causally associated with 
higher risk of gallstones (Yuan et al., 2021). There are several possible mechanisms that could explain 
how higher BMI without its adverse metabolic effects could increase the risk of gallstones. These 
could include a sedentary lifestyle and gallbladder hypomotility secondary to increased abdominal fat 
mass (Mathus- Vliegen et al., 2004). Metabolic mechanisms could include hepatic de novo cholesterol 
synthesis (Ståhlberg et al., 1997; Cruz- Monserrate et al., 2016). For gastro- oesophageal reflux, the 
consistent direction and effect sizes of higher FA and UFA indicate a non- metabolic component, an 
effect that may be mechanical and better explained by higher central adiposity rather than overall BMI 
(Green et al., 2020).

Other diseases
For most of the other diseases tested, it was difficult to draw firm conclusions about the role of meta-
bolically FA and UFA. For some diseases, this was in part due to the lack of MR evidence for a role of 
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any form of higher BMI. For example, our MR analyses provided no evidence for the role of higher 
BMI in the neurodegenerative diseases Alzheimer’s disease, multiple sclerosis, and Parkinson’s. These 
results are consistent with some but not all previous studies. For example, higher BMI is listed as a key 
risk factor for Alzheimer’s disease (Livingston et al., 2020), although with little evidence of causality, 
including MR studies that failed to show an effect (Larsson et al., 2017; Nordestgaard et al., 2017). 
In contrast to our results, recent MR studies have indicated that higher BMI is protective of Parkinson’s 
disease (Noyce et al., 2017) and causally associated with higher risk of multiple sclerosis (Mokry 
et al., 2016). For the inflammatory skin disorder psoriasis, our results indicated that both higher BMI 
and higher body fat percentage are causally associated with higher risk, but determining the under-
lying mechanism from the MR of FA and UFA was difficult. Higher BMI is a known cause of psoriasis 
(Budu- Aggrey et  al., 2019; Iskandar et  al., 2015) and weight loss is a recommended treatment 
(Iskandar et al., 2015). It is possible that both metabolic and non- metabolic pathways are driving 
the risk. The non- metabolic pathways could include inflammation which is one of the possible causal 
mechanisms (Sbidian et al., 2017; Dowlatshahi et al., 2013). Further work is required to understand 
if psoriasis could be effectively treated by targeting the metabolic factors alone, or whether only 
weight loss will benefit such patients. For cancers, our results do not provide any clear additional 
insight into the likely mechanisms, with potentially stronger effects for BMI and UFA compared to 
body fat percentage in some analyses hard to explain biologically. The reasons why higher BMI is 
associated with cancers is uncertain, although several MR studies indicate that the association with 
many is causal (Mariosa et al., 2019; Vincent and Yaghootkar, 2020), and that central adiposity may 
play a role (Jarvis et al., 2016). Exposure to higher insulin levels is a plausible mechanism, and some 
studies have used MR to test insulin directly (Nead et al., 2015; Shu et al., 2019; Carreras- Torres 
et al., 2017b; Carreras- Torres et al., 2017a; Johansson et al., 2019). Our MR analysis reproduced 
the previous finding between higher adiposity and higher risk of endometrial cancer (Painter et al., 
2016) and renal cell carcinoma (Johansson et al., 2019), and lower risk of breast cancer (Guo et al., 
2016; Shu et al., 2019). In contrast to previous MR studies showing a causal link between higher BMI 
and higher risk of prostate cancer (Kazmi et al., 2020; Davies et al., 2015), we identified a causal 
association between higher body fat percentage but lower risk of prostate cancer. The relationship 
between higher BMI and risk of breast cancer is complicated, with MR studies indicating that higher 
BMI is protective of postmenopausal breast cancer (Gao et al., 2016). This contrasts with the epide-
miological associations but could be explained by effects of childhood BMI (Richardson et al., 2020).

Strengths and limitations
Our study had a number of limitations. First, we do not know all of the potential effects of the FA and 
UFA genetic variants on intermediary mechanisms. For example, the inflammatory profile of the FA 
variants needs further characterisation. However, the consistent association of the FA genetic variants 
with lower risk of a wide range of metabolic conditions – from type 2 diabetes where insulin resistance 
predominates, to stroke where atherosclerotic and blood pressure mechanisms predominate – indi-
cates that these variants collectively represent a profile of higher adiposity and favourable metabolic 
factors. Second, for some diseases, we may have not had sufficient power to detect an effect of BMI 
or to separate the effects, and this could explain some of the null findings, especially for conditions 
where we might have expected an effect, such as pulmonary embolism and aortic aneurysm, but 
there were smaller numbers of cases available. Third, in some situations it was harder to interpret the 
results from the MR FA and UFA analyses, especially when one appeared to show an effect and the 
other did not. One possibility is that some diseases are a combination of both non- metabolic and 
metabolic effects. Osteoarthritis was the best example of this potential scenario because both FA and 
UFA increased the risk of disease, but UFA to a greater extent. However, for other diseases, it could 
be hard to detect a combined effect because the MR with FA could be protective (if metabolic effects 
predominate), increase risk (if non- metabolic effects predominate), or null (if the two have similar 
effects). Finally, we used an FDR of 0.1 as a guide to discussing meaningful results. We observed 21 
out of the 37 outcome diseases reaching an FDR of 0.1 (based on the Benjamini–Hochberg procedure) 
for BMI, and 19, 11, and 20 out of the 21 diseases causally associated with BMI reaching this FDR for 
body fat percentage, FA, and UFA, respectively. Equivalent numbers for an FDR of 0.05 were 21, 17, 
11, and 17. Excluding the five metabolic conditions used in our previous study (which were all causally 
associated with BMI), these results are 16, 14, 7, and 15 for an FDR of 0.1, and 16, 12, 7, and 12 for 
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an FDR of 0.05. In addition to correcting for multiple tests, we noted that 74 of the 37 × 4 MR tests 
reached a p- value of <0.05 when we would only expect 7 by chance, suggesting many of the tests that 
did not reach a strict Bonferroni p<0.05 were meaningful.

In summary, we have used a genetic approach to test the separate roles of higher adiposity with 
and without its adverse metabolic effects. These results emphasize that many people in the commu-
nity who are of higher BMI are at risk of multiple chronic conditions that can severely impair their 
quality of life or cause morbidity or mortality, even if their metabolic parameters appear relatively 
normal.
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