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Ensemble Risk Model of Emergency Admissions (ERMER)

Mohsen Mesgarpour1,∗, Thierry Chaussalet1,∗, Salma Chahed1,∗

HSCMG, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, W1W 6UW
London, UK

Abstract

Introduction: About half of hospital readmissions can be avoided with preventive interventions.

Developing decision support tools for identification of patients’ emergency readmission risk is an

important area of research. Because, it remains unclear how to design features and develop pre-

dictive models that can adjust continuously to a fast-changing healthcare system and population

characteristics. The objective of this study was to develop a generic ensemble Bayesian risk model

of emergency readmission.

Methods: We produced a decision support tool that predicts risk of emergency readmission using

England’s Hospital Episode Statistics inpatient database. Firstly, we used a framework to develop

an optimal set of features. Then, a combination of Bayes Point Machine (BPM) models for different

cohorts was considered to create an optimised ensemble model, which is stronger than the individ-

ual generative and non-linear classifications. The developed Ensemble Risk Model of Emergency

Admissions (ERMER) was trained and tested using three time-frames: 1999-2004, 2000-05 and

2004-09, each of which includes about 20% of patients in England during the trigger year.

Results: Comparisons are made for different time-frames, sub-populations, risk cut-offs, risk bands

and top risk segments. The precision was 71.6% to 73.9%, the specificity was 88.3% to 91.7% and

the sensitivity was 42.1% to 49.2% across different time-frames. Moreover, the Area Under the

Curve was 75.9% to 77.1%.

Conclusions: The decision support tool performed considerably better than the previous modelling
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approaches, and it was robust and stable with high precision. Moreover, the framework and the

Bayesian model allow the model to continuously adjust it to new significant features, different

population characteristics and changes in the system.

Keywords: Hospital Episode Statistics, Readmission, Ensemble, Bayesian, Framework,

Inpatient

1. Introduction

The cost of care is increasing at a rate that is unaffordable in the current economy. This is mainly

due to the impact of ageing population, population growth, deprivations, the increase in emergency

admissions, increased expectations, and the cost of treatment and technology (NHS, 2013; DH,

2013; Lewis et al., 2011). The current system is unsustainable and unfair, and the current financial

options available to support people in meeting care costs are limited.

The National Health Service (NHS) spends an estimated £11 billion per year on emergency admis-

sions in England (Lewis et al., 2011). According to the Nuffield Trust report in 2012 (Nuffield Trust,

2012), about 8% of discharged patients are readmitted within 30 days, costing an estimated £2.2

billion a year. Based on a retrospective study by Clarke et al. (2012) (Clarke et al., 2012), about half

of the 30-day emergency readmissions were potentially preventable between 2004 and 2010.

Four major risks have contributed to the increase in emergency (or unplanned) readmissions to

hospitals (HSCIC, 2013; Lewis et al., 2011): ageing population (Caley and Sidhu, 2011), patients

with long-term conditions (DH, 2012), premature discharge and unpredictable accidents and emer-

gency (Clarke et al., 2012). While discharging patients provides a way of freeing beds in healthcare

systems, premature discharge could still increase the risk of emergency readmissions. Often hospital

admission or readmission can be avoided by providing adequate care (Bardsley et al., 2012).

Therefore, developing and implementing a robust decision support tool for admitted patients is

critical. Predictive risk models can help patients and carers obtain appropriate support services in

clinical decision-making. In addition, such models can improve care quality and reduce the costs of

inappropriate admissions to hospital and accident and emergency (A&E).

In 2005, the UK Department of Health (DoH) commissioned the Patients at Risk of Re-hospitalisation

(PARR) (Lewis, 2011; Billings et al., 2006) algorithm and the PARR++ software for Primary Care

2
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Trusts (PCTs) (Lewis et al., 2011; The King’s Fund, 2016). The aim of the PARR model was to

identify individuals at high risk of emergency readmission to a hospital within a year based on

the inpatient data from the Hospital Episode Statistics (HES) database. Thereafter, in 2006, to

address the need for identifying the patient risk along a continuum, the DoH released the Com-

bined Predictive Model (CPM) which was based on General Practice (GP) and the HES data (DH,

2006).

In 2011, the DoH commissioned an upgrade to the PARR and the CPM models (Nuffield Trust,

2012; DH, 2011). The Patients at Risk of Readmission within 30 days (PARR-30) model was

developed as an upgrade to be run by acute hospitals. The PARR-30 model was based on a broad

range of measures used in the PARR (Billings et al., 2012).

After the controversies of the 2012 Heath and Social Care Act (Timmins, 2013), the care system

moved towards developing new models of integrated care. The NHS’s strategic five-year forward

view (NHS, 2014) outlines that commissioners, the NHS and other providers will co-design the

services based on a model of integrated care that targets specific cohorts, with their own exemplars,

potential benefits, risks and transition cost.

In the NHS, patients’ interactions with hospital services are recorded on statutorily defined datasets,

known as the Secondary Uses Service (SUS). The SUS data are cleaned and combined on a national

basis to create HES data. The HES contains administrative hospital data for all inpatient, outpa-

tient and accident and emergency (A&E) admissions in England. And, they hold admission, clinical,

utilisation and demographics details in format of episodes and spells (HSCIC, 2016a).

In this research, performances of the PARR, the CPM and the CPM update were used as the

benchmark, since these tools use the HES data and are still being used by commissioners across

England. These decision support tools help to rank and group patients based on anticipated in-

tervention level, including case management, disease management, supported care, prevention and

wellness promotion.

Most existing decision support tools based on hospital administrative data use logistic regression

or Coxian Phase-type Distribution models (Paton et al., 2014; Kansagara et al., 2011; Lewis et al.,

2011; DH, 2011; ACI, 2014; Bardsley, 2012; Bottle et al., 2014; Mesgarpour et al., 2016b; Adeyemi

et al., 2013). Although these models are simple and popular, they have limited power, because of
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algorithm shortfalls, restricted assumptions and weak variable selection strategies. In the area of

healthcare risk modelling research, there have been many successful implementations of machine

learning methods (Green et al., 2006; Nilsson et al., 2006; Song et al., 2004; Peelen et al., 2010;

Lee et al., 2012). However, few studies used a Bayesian approach to address emergency hospital

readmission problems (Álvaro-Meca et al., 2012; Demir and Chaussalet, 2011; Cui et al., 2015; Helm

et al., 2015; Gupta et al., 2014; Huws et al., 2008).

This study develops an ensemble generative risk model of emergency readmission within a year to

hospitals in England. The machine learning ensemble method is a powerful technique, which uses

a finite set of weaker models and an algorithm to combine and optimise the performance of the

ensemble model. The HES inpatient data was extracted from English hospitals and maintained by

the Health and Social Care Information Centre (HSCIC) (HSCIC, 2016c). Based on a preprocess-

ing framework (Mesgarpour et al., 2016a), features were cleaned, generated, filtered and ranked.

Thereafter, a number of sub-models based on population characteristics were trained using a Bayes

Point Machine (BPM) approach. Afterwards, an optimised ensemble model of these sub-models was

generated. The proposed model, the Ensemble Risk Model of Emergency Admissions (ERMER),

was trained, tested and validated using three different time-frames.

The paper is structured as follows. Firstly, we describe the data and then the process of selecting

a minimal number of features. Thereafter, the applied BPM algorithm is defined and the ensemble

model is presented. Finally, we discuss the results of training, testing and benchmarking the

ERMER, against the CPM (DH, 2006), the PARR (Billings et al., 2006) and the CPM update by

Billings et al. (2013) (Billings et al., 2013) models.

2. Methods

2.1. Data

Administrative databases are used to monitor healthcare systems in the UK, the USA and other

countries. Furthermore, healthcare data, such as inpatient, A&E, outpatient and GP records are

used in predictive modelling problems (Jensen et al., 2012; Mullins et al., 2006). In addition, clinical

databases compliment administrative databases, but they are expensive and not usually open to

4
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the public. According to a study (Raftery et al., 2005), the cost per record for clinical data can

range from £10 to £60, compared to £1 per record for the HES database.

In this research, only the HES inpatient data was used. The available snapshot of the database

includes records from April 1995 to April 2010. The inpatient table consists of 206,528,432 episodes.

This excludes 39,403 episodes with invalid admidate (admission date) and 11,212,871 episodes with

invalid hesid (patient ID). In addition, similarly to the PARR model, each sample covers about

20% of unique patients within the trigger year of the selected time-frame (Table 1).

Table 1
Selected samples from the HES Inpatient database.

Samples Timeframe
Population size Sample size Filtered patients
Episodes Patients Episodes Patients Total No prior

spell
No post
spell

Sample-1 1999/04 - 2004/03 18,885,777 7,206,133 6,347,067 1,441,227 1,157,873 492,458 148,950
Sample-2 2004/04 - 2009/03 31,731,488 8,104,748 11,394,152 1,615,347 1,410,923 395,522 110,961
Sample-3 2000/04 - 2005/03 32,217,541 7,370,830 6,449,169 1,474,166 1,324,712 671,919 194,097

Before the modelling stage, four stages of data preprocessing were carried out (Mesgarpour et al.,

2016a). Firstly, the extracted data was sorted by patients and the order of episodes. Then, invalid

records were excluded. Thereafter, several corrections and imputations were carried out on dates,

Healthcare Resource Groups (HRG) and demographics. Finally, some of the continuous features

were converted into discrete to better capture non-linear interactions with other features. And,

some of the discrete features were categorised into bigger groups to reduce sparseness and overfitting

risks.

Similarly to the PARR model, the data was divided into three years of prior history, one year of trig-

ger admission and one year of prediction period (time horizon). Then, half of each sample was used

for training (train sub-sample) and the rest was used for testing (test sub-sample). Furthermore,

spells were grouped into superspells based on the admission dates. A patient superspell is as a unit

of care for the patient, which is the combination of all same-day episodes by any provider.

In this study, different combinations of the train sub-samples and the test sub-samples were used,

but train and test have fixed definitions throughout the analyses (Table 4). The train sub-samples

are used for training, learning-curve and complexity analysis. The test sub-samples are used for

testing, cross-validation and benchmarking. Furthermore, no separate validation sub-sample is

defined, since different modelling methods are not being compared.

5
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2.2. Features

Based on previous studies (Billings et al., 2006, 2013, 2012; NHS, 2011; Mullins et al., 2006; Bard-

sley et al., 2013) and additional exploratory analyses, four main groups of features were initially

generated from the inpatient database: three years cross-sectional, one year cross-sectional, 90 days

cross-sectional and trigger-point features. In total, 738 summary features were generated, which

the main categories are presented in Table 2.

Table 2
Main categories of all the initially defined features.

Category Sub-category

Administrative Admission: patient classification; number of episodes and spells; admission, readmission and discharge times;
source and methods of admission and discharge.
Bed days: duration of spells; preoperative and post-operative durations.
Geographical: provider code; region of treatment.
ID: patient identification, and admission timeframe number.
Speciality: speciality of consultant; palliative cares.
Waiting time: admission waiting time.

Clinical Diagnosis: Charlson comorbidity groups; Elixhauser comorbidity groups; frequent categories of diagnoses; Charlson
comorbidity index version that is developed by Dr Foster unit (Aylin et al., 2010; Bottle et al., 2011) and adapted
by the HSCIC (HSCIC, 2016b); PARR’s HRGs reference conditions, using version 3.5.
Operation: operation groups; number of operations; frequent categories of operations.

Patient Demographic: age; deprivations; ethnicity; gender.

Usually, Kernel classifiers, such as the BPM and the Support Vector Machine (SVM), are resistant

to over-fitting, because of a weight regularisation implementation (Cawley and Talbot, 2007, 2010).

However, since the number of generated features was very high, a feature reduction strategy was

needed. Based on the framework developed in the previous stage of our research (Mesgarpour et al.,

2016a), four steps of feature filtering were carried out, in order to reduce the number of features

and to better capture the underlying structure.

Initially, highly stationary features were removed (constant count ≥ 95%). Then, features that were

highly linearly correlated were excluded (linear correlation coefficient ≥ 80%). Thereafter, based

on the average importance, initially, the three-year cross-sectional features were included, and then

other features were added. Next, the features were sorted based on importance across train sub-

samples using two different methods: a random-forest importance score and an SVM importance

ranking. Finally, a step-wise BPM procedure was developed using a forward-selection approach

(micro average precision ≥ 0.01%).

The applied random-forest algorithm is a non-linear method and is an implementation of Breiman’s

algorithm (Breiman, 2001), which applies significance test criteria (Hothorn et al., 2010). It per-

forms recursive univariate splitting and selects covariates based on the significance test. The sig-

6
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nificance test approach, unlike the maximising information, does not suffer a systematic tendency

towards covariates with many possible splits or many missing values. However, highly similar fea-

tures and linearly correlated features were excluded in the prior step, because the applied algorithm

is sensitive to correlated features.

Moreover, the SVM Recursive Feature Extraction (SVM-RFE) algorithm proposed by Guyon

(Guyon et al., 2002) is applied to rank features recursively using SVM. The SVM-RFE algorithm

ranks the features by training an SVM with a linear kernel and removing the features with the

smallest ranking criterion.

2.3. Modelling Approach

Logistic regression, neural network, decision trees, Bayesian models and kernel methods, such as

SVM and Gaussian processes, are often used in healthcare data mining. In this research, the Bayes

Point Machines (BPM) method was chosen, since it is not prone to overfitting, highly efficient in

approximating the Bayesian average classifier.

BPMs (Herbrich et al., 2001; Minka, 2001a) are a type of nonlinear classification algorithm, that

identify an average classifier known as a Bayes Point in a version space. A version space can be

defined as a set of hypotheses, each of which is an approximation of the main hypothesis class.

Similar to SVMs, BPMs are more geometrically motivated and they try to find a hyperplane with

an optimal margin between classes. In contrast, logistic regression maximises the probability of

data by optimising the distance of each point to the decision boundary.

The soft margin SVM can be thought of as an approximation to BPMs (Herbrich et al., 2001). SVMs

(Vapnik and Vapnik, 1998) use a mapping to indirectly transform data into higher dimensional

space using a kernel function. Then, they use quadratic programming to optimise the classification’s

hyperplanes using support vectors and margins. However, the complexity of SVMs are characterised

by the number of support vectors, and are only efficient for a symmetric version space.

On the other hand, BPMs sample the Bayesian posterior (Eq. 1) for a nonlinear classification in a

kernel space. Then, they approximate the centre of the version space, which is a set of consistent

hypothesis, and the effective size is determined from the training sample. BPMs minimise the

generalisation error over a set of hypotheses according to a prior probability, instead of maximising

7
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the classification boundary margin explicitly, as SVMs do. The predictive distribution can be

thought of as a linear discriminant function, which is assumed to have the following parametric

density:

p(y|x,w) = p(y|s = wTx) (1)

where w is the weight or latent parameter vector, x is the fully observed feature vector, and s

is the score function. BPMs use the kernel trick to find an optimised w, and the centre mass

of the version space is approximated using an average of the weight vectors while minimising the

average generalisation error. The derived scores are subject to additive Gaussian noise to allow for

measurement or labelling errors (Eq. (2)).

p(y|s, ε) = (ys+ ε > 0)1

, with p(ε) = N(ε|0, 1), ∧ 1(α > 0) =

1 if α > 0

0 if α ≤ 0

(2)

In this research, Microsoft’s Infer.Net library (Microsoft Research, 2016) was used to construct the

BPM model. The applied algorithm uses the original version of the BPM, with two main modifi-

cations. Firstly, it uses a mixture of Gamma-Gamma, a heavy-tailed prior probability distribution

for the precision of weights and features. Secondly, it applies the Expectation Propagation (EP)

message passing to infer posterior probabilities, which has been demonstrated (Minka, 2001b,a) in

Gaussian mixture problems to be better than approximation techniques. Therefore, it is invariant to

parameter rescaling or shifting, unlike logistic regression or SVM. Moreover, active Bayesian train-

ing can allow continuous updates of the model and account for changes in the prior probabilities.

Furthermore, the BPM can efficiently handle a relatively larger number of features.

2.4. Ensemble Model

Firstly, one main model (cond main) and four conditional sub-models were specified with signifi-

cantly diverse populations which represent unique clinical and behavioural categories (Fig. 1). The

conditional sub-models includes: prior 12-month acute spells (Cond Prior-Acute-12-month), prior

8
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Fig. 1. The Ensemble model.

12-month operation (Cond Prior-Oper-12-month), prior spells (Cond Prior-Spells) and age 65+

(Cond Age-65p).

Afterwards, they were trained and tested across the sub-sample combinations (Table 4). Considering

that the filtered features are more relevant for the main model, the sub-models have very different

performances but with stable weights.

Then, to improve the performance of the decision support system, we decided to use an ensemble

model (Algorithm 1). Three main challenges in ensemble modelling were: method of constructing

sub-classifiers, weighting the classifier and optimisation. Based on background research and multiple

trials, a weighted average ranking method was constructed, in addition to a heuristic method to

optimise the weights of sub-classifiers (Sewell, 2008; Rokach, 2010; Sammut and Webb, 2011; Zhou,

2012; Murphy, 2012).

In another word, the ERMER partitions the data instance space, based on some populations simi-

larities (sub-models). Then, it uses data envelop analysis methodology (Charnes and Cooper, 1984)

to assign weights to different classifiers (Rokach, 2005). In this research, we refer to this weight

function as the cost function, because we applied a search technique to optimise the weights that

are assigned to each sub-model.

The cost function for the optimisation was defined as a normalised combination of four performance

metrics: ACC (Accuracy), AUC, RMSE (Root Mean Square Error) and SAR (Squared error,

Accuracy and ROC area) (Brown, 2011; Alvarez, 2011; Fukunaga, 2013). The applied ensemble

algorithm (Algorithm 1) uses a bidirectional hill-climbing algorithm with a greedy initial solution

set (modelsensemble) to generate an optimised ensemble model from the sub-models.
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Firstly, it generates an initial solution based on the main model and one other sub-model with the

highest Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC). Then, a bidirec-

tional hill-climbing (Russell and Norvig, 2002) heuristic was applied to optimise the average of the

four performance metrics, through iterations, trials (trials) and across samples (samples).

The hill-climbing method is a greedy sequential search with forward and backward passes, where

the learning rate for each performance metric can be tuned manually prior to the execution. The

learning rate in the algorithm (Algorithm 1) defined using alphaensemblemin for the performance

indicators (Fukunaga, 2013; Caruana et al., 2004; Opitz and Maclin, 1999).

The sub-models in the ensemble heuristic are selected using a bagging ensemble (selection with

replacement). Then, the sub-models are combined using a mean combiner, which is the approximate

posterior probability based on the weighted average of the risk scores, without any additional

training. When the first run of the algorithm, with the defined iterations, trails and train sub-

samples, is finished; then, the second run, with less sensitive limits and thresholds, is executed

using the best solutions of the first round.

modelensemble =Mean{Cond Main+ Cond Age-65p0+

9 Cond Age-65p1 + 4 Cond Prior-Oper-12-month0+

2 Cond Prior-Oper-12-month1}.

(3)

Finally, the best performing ensemble model, with the minimum number of unique sub-models is

selected. The optimised Ensemble Risk Models of Emergency Admissions (ERMER) based on our

data sets is defined in Eq. (3). In this equation, a sub-model subscript represents the conditional

state, and the coefficients represent the weights in the ensemble mean combiner.

3. Results

3.1. Goodness of fit

Four stages of performance checks were performed across test sub-samples to access the goodness

of fit. Firstly, a learning-curve plot of training micro-average errors versus the number of training

10
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points for sub-models was generated. The learning-curve is a function of the number of training

points and the prediction accuracy rate, and it allows investigating the effect of sample sizes on the

performance of models (Nordhausen, 2009; Murphy, 2012). Fig. 2a demonstrates that the train sub-

sample size greater than 40,000 patients contributes very little to sub-models performances.

Table 3
The top significant features in the sub-models.

Feature Calculation a

Sum of number of operations within 90 days and at the trigger. Countspell(Uniquespell(opertn nnepisode))

Count of recoded main speciality of state ’Maternity’ in the past and at the
trigger.

mainspefspell ∈ {501, 560, 610}

Count of recoded main speciality of state ’Gynaecology’ in the past and at
the trigger.

mainspefspell ∈ {502}

Count of recoded main speciality of state ’General’ in the past and at the
trigger.

mainspefspell ∈ {300, 600, 620}

Having recoded gender of state ’Female’. sexpatient == 2

Age of patient at the trigger. startagespell
Average of post-operative durations at the trigger. posopdurspell
Count of the acute admission method between 12 to 36 months, and within
90 days.

Countspell(admimethspell ∈ {21, 22, 23, 24, 25,
2A, 2B, 2C, 2D, 28, 31, 32, 81, 82, 83, 84, 89, 98})

Average of spells durations in the past and at the trigger. Meanspell(Maxepisode(epidur))

Average of gaps between admissions in the past. admidatespelli
− dismethspelli−1

Having recoded ethnicity of state ’NA’. ethnospatient ∈ {S, 8, L,G}
Average value of the Charlson Index in the past. Mean(CharlsonIndexDr Foster CCI (diag nnspell))

a Refer the the HES dictionary for the definitions of the variables (HSCIC, 2010).

Moreover, the effects of complexity levels were investigated for the main model (Cond Main) using

F-score versus the number of features. The plot of the effects of complexity levels shows how the

step-wise addition of top features changes the prediction performance of a model. Fig. 2b shows

that adding up to 18 features (Table 3) from the sorted selected features improves the model’s

performance significantly; however, the gains then become very small (on average 0.005 change in

AUC percentage). The presented learning-curve plot and complexity plot are for Sample-1 train

sub-sample, although the results are consistent across all other time-frames.

Thereafter, the convergences of the sub-models were tested using an iterative fitting, using train

sub-samples, in order to assess over-fitting and variations in convergence. Fig. 3a shows that

after the first few iterations, all sub-models converge quickly and after 40 iterations, the weights

differences become very small.

Furthermore, a k-fold cross-validation (Murphy, 2012) algorithm was implemented for all the three

test sub-samples (Table 4). Each test sub-sample was split into five equal-sized random samples.

Then, K − 1 folds was used for training and the K-th fold was used for validation. The final

performance was generated after the cross-validation cycled through all the K combinations of

splits. Fig. 3b exhibits very small standard deviations in the accuracy, the mean of negative

log-probability and the AUC for the sub-models’ cross-validations.
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(a) Learning-curve of sub-models, micro-average error

versus number of training points.

(b) Complexity analysis of sub-models, the F-score

versus number of features.

Fig. 2. Learning-curve and complexity analysis plots of sub-models (train sub-sample from Sample-1).

Finally, the profiling was done using the three test sub-samples, based on population characteristics

and performance indicators (Table A.1 and Table A.2). Table A.3 demonstrates the weights of the

features for each sub-model, as well as the features definitions, encoded categories and temporal

states. In the following section the benchmark is discussed.

3.2. Benchmark

Admission risk models are limited by the characteristics of the selected subpopulation and data qual-

ity issues, such as missing diagnoses for outpatients and A&E patients (Billings et al., 2013), delayed

death registration (ONS, 2014) and the number of registered or consented patients. Moreover, mod-

els developed by researchers usually have different settings and assumptions; hence, comparisons

become more subjective.

The developed ERMER model is benchmarked against the CPM (DH, 2006; Paton et al., 2014),

the PARR (Billings et al., 2006) and Billings et al. (2013) (Billings et al., 2013) models using the

reported performance statistics.
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(a) Average and range of convergence (b) Distribution of standard deviation of

cross-validation’s performance indicators

Fig. 3. Summary statistics of convergence and cross-validation tests for all sub-models (test sub-samples).

For the testing, validation and benchmarking phase, three data settings were considered: Sample-

1 ’s train and test sub-samples, Sample-2 ’s train and test sub-samples, and finally a rolling window

setting with Sample-1 ’s train sub-sample and Sample-3 ’s test sub-sample (Table 4). The rolling

window is configured as the one-year gap in admission trigger year, to better assess the stability

of the model over time. In addition, for better comparison against the benchmark models, three

different subpopulations were selected from the outputted test results (Sub PARR-2-Settings, Sub

IPAEOPGP and Sub Any-Acute).

Table 4

Combinations of test and train sub-samples.

Samples Train Sub-Sample Test Sub-Sample

Sample-1 sample-1 training set sample-1 testing set

Sample-2 sample-2 training set sample-2 testing set

Sample-1-train-half-3-test-half sample-1 training set sample-3 testing set

For comparison, numerical summaries beyond the ROC and abstract statistical summaries must

be used to avoid misinterpretation (Steyerberg et al., 2010; Pencina et al., 2008; Cook, 2007). In

addition to the ROC (Fig. 4), the profiling is presented using three forms of presentations: summary

13
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Fig. 4. ROC of the PARR model (reported figure) against the ERMER model (test sub-samples).

statistics for three risk cut-off points (Table 6) against the previous models (Table 5), summary

statistics for 20 risk bands (Table A.1) and the profile of top risk segments (Table A.2).

The ERMER model made considerable improvement to the previous models. For instance, accord-

ing to Table 6, the ERMER model with subpopulation Sub Any-Acute has precision 0.719 and AUC

of 0.771 with Sample-1 as the test set, compared to 0.529, 0.73 for the Billings et al. (2013) model

with inpatient (IP) data.

4. Discussion

In this study, a set of significant features was initially developed using a framework. Then, several

predictive models were trained based on different subpopulations. The defined sub-models were

fitted using a BPM algorithm, with Gamma priors, and EP message passing for the inference of

the posterior. Furthermore, an optimised ensemble of five sub-models was produced based on the

age group sub-models, the 1-year prior operation sub-models and the general model.
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Table 5
The benchmark of the previous emergency readmission models (reported statistics)

Statistic PARR CPM Billings-13 (IP) Billings-13 (IPAEOPGP)a

Thresholdb 0.50 0.60 0.70 0.50 0.50 0.50

The reported performance of the benchmarked models
True & False Positive (TP+FP) 17,455 4,810 2,011 NR 8,743 10,545
True Positive (TP) NRc NR NR NR 4,627 5,669
Sensitivity (True Positive Rate) 0.543 0.178 0.081 NR 0.049 0.060
Specificity (True Negative Rate) 0.722 0.950 0.986 NR NR NR
Precision (Positive Predictive Value) 0.653 0.774 0.843 0.538 0.529 0.538

Emer. admi. post 12 m. per TPd 1.47 2.23 3.0 NR NR NR
Emer. admi. prior 12 m. per TP 2.22 3.43 4.59 NR NR NR
Emer. admi. prior 13-24 m. per TP 0.93 1.84 2.80 NR NR NR
Emer. admi. prior 25-36 m. per TP 0.73 1.48 2.25 NR NR NR
AUC of ROC 0.69 0.780 0.73 0.78
Total number of patients 42,778 281,617 1,836,099 1,836,099

a The Billings et. al. (2013) model with inpatient (IP), A&E (AE), outpatient (OP) and GP data.
b The threshold on the predicted risk.
c Not reported (NR).
d Average number of emergency readmission of the truly positively predicted patients.

Table 6
The benchmark of the ERMER model for different sub-populations using test sub-samples.

Statistic Sub PARR-2-Settings a Sub IPAEOPGP b Sub Any-Acute c

Threshold 0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1
True & False Positive (TP+FP) 19,646 7,946 2,991 51,422 30,361 14,719 52,842 31,260 15,231
True Positive (TP) 11,962 5,512 2,291 36,966 24,051 12,432 37,979 24,759 12,878
Sensitivity (True Positive Rate) 0.390 0.180 0.075 0.478 0.311 0.161 0.461 0.300 0.156
Specificity (True Negative Rate) 0.805 0.938 0.982 0.887 0.950 0.982 0.900 0.956 0.984
Precision (Positive Predictive Value) 0.609 0.694 0.766 0.719 0.792 0.845 0.719 0.792 0.846
Emer. admi. post 12 m. per TP 1.242 1.600 2.105 1.581 1.857 2.146 1.586 1.863 2.158
Emer. admi. prior 12 m. per TP 0.462 0.607 0.740 0.351 0.365 0.368 0.351 0.364 0.367
Emer. admi. prior 13-24 m. per TP 0.401 0.532 0.646 0.319 0.336 0.327 0.318 0.335 0.326
Emer. admi. prior 25-36 m. per TP 0.006 0.007 0.009 0.004 0.004 0.005 0.004 0.004 0.005
AUC of ROC 0.661 0.767 0.771
Total number of patients 70,147 204,672 231,755

Train: train sub-sample of Sample-2 ; Test: test sub-sample of Sample-2
True & False Positive (TP+FP) 25,972 11,121 4,212 61,229 34,292 15,745 62,910 35,230 16,177
True Positive (TP) 15,916 7,577 3,169 43,858 26,920 13,180 45,032 27,611 13,539
Sensitivity (True Positive Rate) 0.470 0.224 0.094 0.503 0.309 0.151 0.492 0.302 0.148
Specificity (True Negative Rate) 0.745 0.910 0.974 0.873 0.946 0.981 0.883 0.950 0.983
Precision (Positive Predictive Value) 0.613 0.681 0.752 0.716 0.785 0.837 0.716 0.784 0.837
Emer. admi. post 12 m. per TP 1.296 1.604 2.051 1.623 1.925 2.272 1.624 1.922 2.270
Emer. admi. prior 12 m. per TP 0.452 0.591 0.723 0.365 0.403 0.441 0.365 0.402 0.440
Emer. admi. prior 13-24 m. per TP 0.388 0.507 0.635 0.327 0.361 0.395 0.327 0.360 0.393
Emer. admi. prior 25-36 m. per TP 0.007 0.009 0.010 0.005 0.006 0.007 0.005 0.006 0.007
AUC of ROC 0.663 0.756 0.759
Total number of patients 73,315 224,001 243,712

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-3
True & False Positive (TP+FP) 22,351 8,351 2,896 60,515 35,642 18,487 62,213 36,753 19,117
True Positive (TP) 14,003 5,942 2,337 44,730 28,783 16,114 45,950 29,654 16,678
Sensitivity (True Positive Rate) 0.340 0.144 0.057 0.438 0.282 0.158 0.421 0.272 0.153
Specificity (True Negative Rate) 0.834 0.952 0.989 0.905 0.959 0.986 0.917 0.964 0.988
Precision (Positive Predictive Value) 0.627 0.712 0.807 0.739 0.808 0.872 0.739 0.807 0.872
Emer. admi. post 12 m. per TP 1.311 1.730 2.361 1.646 1.913 2.163 1.655 1.926 2.186
Emer. admi. prior 12 m. per TP 0.522 0.684 0.805 0.364 0.348 0.304 0.364 0.347 0.304
Emer. admi. prior 13-24 m. per TP 0.435 0.565 0.667 0.322 0.306 0.260 0.321 0.305 0.259
Emer. admi. prior 25-36 m. per TP 0.005 0.006 0.010 0.004 0.004 0.004 0.004 0.004 0.004
AUC of ROC 0.658 0.767 0.771
Total number of patients 91,369 268,575 304,888

a Population setting for the PARR-2 model: age: 65+; Trigger admission: Emergency.
b Population setting for the Billings et al. (2013) model: Age: 18-95; Trigger admission: Emergency.
c All the population for the selected sample: Trigger admission: Emergency admission.

Thereafter, the developed decision support tool, Ensemble Risk Model of Emergency Admissions

(ERMER), was benchmarked against the PARR, the CPM and Billings et al. (2013) models, with

very similar settings. The proposed model outperforms other models for any-emergency readmis-

sions and the subpopulation of 18 to 95-year-old patients. The ROC of any-emergency readmission
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is between 0.759 and 0.771, compared with the PARR, which is 0.69 with an age restriction (65+)

and an HRG restriction (reference conditions). In addition, the performance is very close to the

CPM and Billings et al. (2013) models, which predict any-emergency admissions using inpatient,

outpatient, A&E and GP data.

4.1. Data

Firstly, the feature preparation is the most time-consuming part of many analyses. There are

three main layers of difficulties in the preparation of features: correlations, recategorisations and

selections (Mihaylova et al., 2011; Walpole et al., 2014; Yang et al., 2005). In this study, the

variables were generated and selected based on the previously developed preprocessing framework

(Mesgarpour et al., 2016a). Based on this framework, a large pool of variables was generated and

reduced based on a set of defined criteria. Then, these were ranked and top features were inputted

into the model.

Capturing high-risk patients using diagnoses can be difficult owing to variate coding practices,

under-reporting of diagnostic variables, incomplete coding of transferred patients and comorbidities’

complexity (Bottle et al., 2011; Billings et al., 2013; Reimer et al., 2016). Therefore, only high-level

diagnoses groups were included and the remaining detailed codes were aggregated.

In this study, a recent version of Charlson index was used, which is actively maintained by the

HSCIC and Dr Foster unit (Aylin et al., 2010; Bottle et al., 2011). Comorbidity scoring is usually

used to distinguish the conditions present on admission from complications. But, poor coding

and disregarding the effects of population characteristics can introduce bias (constant risk fallacy)

(Nicholl, 2007; Fischer et al., 2011). Other criticisms of scoring originate from choosing small

cohorts, using additive risk models of different medical conditions, ignoring important factors, such

as the length-of-stay and the presence of different valid principal diagnoses across different cohorts

(Quan et al., 2005; Bottle and Aylin, 2011).

Moreover, left-censored and right-censored observations introduce bias in the features and predicted

risk estimates (Singer and Willett, 2003). According to Table 1, about 8% to 15% of patients do

not have any admissions after the trigger event. In addition, about 28% to 51% of patients do not

have any other prior admissions before the trigger event.
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Finally, it has been speculated that many of the variations in readmission can be due to the delivery

of the care method, which cannot be quantified using an administrative database only (Bottle et al.,

2014; Billings et al., 2013; DH, 2006).

4.2. Model

There is always scepticism about machine learning because of the hypes or failures of inappropriate

modelling approaches. For instance, Bottle et al. (2014) (Bottle et al., 2014) stated that machine

learning methods, particularly Neural Networks (NN) and SVMs, did not offer noticeably better

predictions for readmission risk compared to linear regression, and were relatively harder to im-

plement. But, we believe there were four main possible flaws: missing influencing features in the

Principal Component Analysis (Yang et al., 2005); using highly interdependent features, small train-

ing sets or a weak network design for the NN (Matignon, 2005); ignoring the temporal dimension

and prior probabilities; and linearity and homogeneity assumptions (Congdon, 2010).

In general, accuracy and efficiency of a Bayesian model depend on five main design choices: the

representation of features, fitness algorithm, inference approximation, assignment and update of

prior probabilities, and the framework of system states.

Firstly, the features were carefully generated, selected and ranked before generating the models.

The initial prototype models, without the aforementioned feature selection strategies, have shown

very high sensitivity to intercorrelations, sparsity and noisy features. As a result, these caused

non-convergence, weight decay and performance degradation.

Moreover, in comparison with the SVM, the BPM method is demonstrated (Herbrich et al., 2001)

to provide a better solution for an asymmetric version space, to efficiently handle large datasets

and to provide a smoother decision boundary.

Furthermore, Microsoft’s version of the BPM algorithm (Microsoft Research, 2016) uses EP mes-

sage passing, which in Gaussian mixture problems is demonstrated (Minka, 2001b,a) to be better

than approximation techniques, such as the Markov Chain Monte Carlo, Laplace and Variational

Bayes techniques. The EP does not guarantee convergence, but in practice in many cases, it does,

especially if the features are not highly interdependent to become trapped in a region of local

optima.
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Finally, the choice of prior probability distributions of the weights and features can have a significant

impact on the robustness of the algorithm. The applied algorithm uses a heavy-tailed prior, which

is more robust towards outliers of the weight distributions. Also, the incremental Bayesian training

of the ERMER allows it to incorporate the effects of changes in prior distributions.

4.3. Performance

All the sub-models are stable in the convergence and cross-validation testing. However, the fea-

tures are initially selected based on the main model’s population. The weights are very similar,

proportionally, for all sub-models owing to very similar feature distributions, except for two: the

sub-model with no prior spell (Cond Prior-Spells0) and the sub-model with no prior operation

(Cond Prior-Oper-12-month0).

Furthermore, the applied BPM algorithm can handle a large number of features and a moderately

large number of observations in comparison to logistic regression. On average, it takes about two

to eight minutes 1 to train a sub-model with 100 features.

Also, the models performances are consistently high across all the test sub-samples. The perfor-

mance of the main sub-models improves the ROC (Fig. 4), sensitivity, specificity and precision

percentage by 2.83, 0.50, 1.26, and 2.83, respectively (Table 6).

Furthermore, the populations of readmitted patients are very low; therefore, the samples are signif-

icantly unbalanced in terms of the dependent variable. The main models have 3 to 4.5 times less,

and sub-models have between 1 to 10 times less readmitted patients compared to non-readmissions.

Therefore, based on the sensitivity, precision, and the ROC, models can more confidently identify

low-risk patients, and avoid unnecessary interventions.

In addition, it improves the previous model (Mesgarpour et al., 2016a), which does not use the

ensemble of subpopulations. The ROC and precision percentage of the any-acute model increase

by 2.83 and 7.16, respectively, and sensitivity decreases in consequence.

Moreover, the features were selected based on the main model, which considers all the emergency

admission population. Therefore, the PARR subpopulation under-performs. However, compared

1Windows 10 machine with Intel i7 2 GHz quad-core CPU and 8 GB 1600 MHz RAM.
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to the PARR model, the predicted high-risk patients have less number of prior-admission for all

the subpopulations, which makes it considerably harder to predict.

In addition, based on the population profile of the top 1000 risk segments (Table A.2), the model

(Any-Acute) predicts more patients with chronic obstructive pulmonary disease (COPD), depres-

sion, diabetes, coronary heart disease (CHD), congestive heart failure (CHF) and smaller average

age as high-risk, than the CPM and the PARR models did. On the other hand, cancer that is

highly predictable and manageable has a smaller share among the high-risk patients.

Because sensitivity and precision vary across risk scores, and the costs of interventions or readmis-

sions are not zero, it is better to define a profit function. However, owing to a lack of necessary

variables for mapping costs, this was not considered

Finally, additional work is necessary to improve the comorbidity risk scoring and to dynamically

adjust for temporal patterns.

5. Conclusion

In conclusion, the ERMER provides a generic approach in modelling readmission emphasising on

robustness and feature discovery. Moreover, based on a large number of iterations for performance

assessment across different settings, the ERMER maintained its high discriminatory performance.

Consequently, the ERMER can bring a significant improvement to the current decision support

system in use, improve care quality and reduce the costs.

Future research should aim to better adjust for comorbidity risk and temporal patterns.
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Summary Points

What is already known?

• Avoidable emergency hospital admission can be an indicator of suboptimal care quality.

• Identification of high-risk patients for intervention can substantially improve care quality and reduce

costs.

• Designing features and developing predictive models that can adjust continuously to a fast-changing

health care system and population characteristics are very challenging.

What this paper adds?

• The optimised ensemble model of sub-populations was proved to increasingly improve the risk model.

• The combination of using a nonlinear Bayesian model and applying a preprocessing framework for

feature generation and selection can effectively create a highly adaptable predictive model.

• The ensemble of generative models is a new effective way to predicts patients with harder predictabil-

ity, such as patients with chronic conditions and patients with fewer prior hospitalisation records.
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Algorithm 1 The ensemble modelling algorithm
Require: . Set samples, modelling groups and sub-models
1: samples ← {”sample-1”, ”sample-2”, ”sample-3”, ”sample-1-train-2-test”, ”sample-1-train-3-test”}
2: groups ← {”Pop Any-Acute”, ”Pop Any-Acute-NO-Mental”}
3: models ← {”Cond Main”, ”Cond Spells”, ”Cond Acute 12 month”, ”Cond Oper 12 month”, ”Cond Age 65p”}
4: weightensemblesummin

← 20 . Second iteration of the algorithm: 300

5: weightensemblemax
← 15 . Second iteration of the algorithm: 150

6: searchtrialsmax
← 40 . Second iteration of the algorithm: 20

7: searchiterationsmax
← 150 . Second iteration of the algorithm: 150

8: alphaensemblemin
← 0.0005 . Second iteration of the algorithm: 0.0001

9: alphamodelmin
← 0.50

10: TPx : True positive of model x with cut-off point alphamodelmin
11: FPx : False positive of model x with cut-off point alphamodelmin
12: FNx : False negative of model x with cut-off point alphamodelmin
13: TPRx : True positive rate of model x with cut-off point alphamodelmin
14: FPRx : False positive rate of model x with cut-off point alphamodelmin

15: procedure EnsembleModels(models) . The ensemble modelling algorithm
16: modelsensemble ← InitialSolution(models) . Set the initial greedy solution
17: selectedmodel ← MainSearch(modelsensemble) . Run the main heuristic search

18: procedure InitialSolution(models) . The initial solution of the heuristic
19: model ∈ models
20: modelensemble ∈ models
21: modelmaxAUC

← MAXmodelAUC
(models), WHERE model 6= ”Cond Main”

22: return {”Cond Main”} ∪modelmaxAUC

23: procedure ACC(x) return
TPx+TNx

TPx+TNx+FPx+FNx
. ACC (Accuracy)

24: procedure AUC(x) return
∫+∞
−∞ TPRxFPR′xdx . AUC of ROC

25: procedure RMSE(x) return

√∑n
i=1

(̂Yx−Yx)

n
. RMSE (Root Mean Square Error)

26: procedure SAR(x) return
ACCx+ROCx+(1−RMSEx)

3
. SAR (Squared error, Accuracy, & ROC area)

27: procedure MainSearch(modelsensemble) . the main heuristic search
28: modelsselected = {}
29: for all s ∈ samples do . Run for each sample
30: for all g ∈ groups do . Run for each modelling group
31: for t ← 1, searchtrialsmax

do . Run trials

32: for all modelensemble ∈ modelsensemble do . Run for each initial solution
33: acc0 ← auc0 ← rmse0 ← sar0 ← 1
34: for i ← 1, searchiterationsmax

do . Run iterations

35: acci ← ACC(modelensemble)
36: auci ← AUC(modelensemble)
37: rmsei ← RMSE(modelensemble)
38: sari ← SAR(modelensemble)
39: improvement ← (acci − acci−1 >= alphaensemblemin

) + (auci − auci−1 >= alphaensemblemin
)

+(rmsei − rmsei−1 >= alphaensemblemin
) + (sari − sari−1 >= alphaensemblemin

)

40: degradation ← (acci − acci−1 < −alphaensemblemin
) + (auci − auci−1 < −alphaensemblemin

)

+(rmsei − rmsei−1 < −alphaensemblemin
) + (sari − sari−1 < −alphaensemblemin

)

41: if i == 1 then backwardStep ← True . Select a step
42: else
43: if backwardStep == True then
44: if degradation < 0.5 then modelensemble ← modelensemble ∪ selectedmodel . Forward
45: else . Switch
46: backwardStep ← False and switchStep ← True

47: else
48: if backwardStep == False then
49: if improvement ≥ 0.5 then . Switch
50: switchStep ← True and backwardStep ← True

51: if backwardStep == True then . Backward selection
52: if switchStep == True then counter ← 0

53: modelensemble ← modelensemble \modelensemblecounter+1

54: if backwardStep == False then . Forward selection
55: model ∈ models
56: modelensemble ← modelensemble ∪model

57: modelsselected ← modelsselected ∪modelensemble . Add selected model

58: return modelsselected
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A. Additional Analyses Settings and Outputs

Table A.1

The risk bands statistics of the ERMER for different test sub-samples.

PARR-2-Settingsa IPAEOPGPb Any-Acutec

Band TP+FP TP Preci. Sens. Avg.d C.I.e TP+FP TP Preci. Sens. Avg. C.I. TP+FP TP Preci. Sens. Avg. C.I.

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1

1 14 0 0.000 0.000 0.00 0.00, 0.00 2,101 140 0.067 1.000 6.66 0.06, 0.08 3,797 240 0.063 1.000 6.30 0.06, 0.07

2 103 5 0.049 1.000 4.85 0.00, 0.10 8,065 945 0.117 0.871 11.68 0.11, 0.12 12,435 1,411 0.113 0.855 11.36 0.11, 0.12

3 522 48 0.092 0.906 9.19 0.07, 0.12 14,916 2,046 0.137 0.653 13.70 0.13, 0.14 20,067 2,675 0.133 0.618 13.33 0.13, 0.14

4 2,329 369 0.158 0.874 15.8 0.14, 0.17 15,054 2,643 0.176 0.458 17.55 0.17, 0.18 20,237 3,457 0.171 0.444 17.08 0.17, 0.18

5 3,404 742 0.218 0.637 21.79 0.20, 0.23 20,850 3,979 0.191 0.408 19.09 0.19, 0.20 24,368 4,613 0.189 0.372 18.92 0.18, 0.19

6 6,356 1,832 0.288 0.611 28.80 0.28, 0.30 20,969 4,585 0.219 0.320 21.87 0.21, 0.22 23,313 5,075 0.218 0.290 21.77 0.21, 0.22

7 7,681 2,618 0.341 0.466 34.09 0.33, 0.35 21,445 5,593 0.261 0.281 26.09 0.25, 0.27 23,063 5,968 0.259 0.255 25.87 0.25, 0.26

8 9,604 3,705 0.386 0.398 38.57 0.38, 0.40 18,623 6,271 0.337 0.239 33.64 0.33, 0.34 19,461 6,523 0.335 0.218 33.49 0.33, 0.34

9 11,501 5,080 0.442 0.353 44.18 0.43, 0.45 17,265 7,216 0.418 0.216 41.77 0.41, 0.43 17,827 7,425 0.417 0.199 41.66 0.41, 0.42

10 8,987 4,310 0.480 0.230 47.95 0.47, 0.49 13,962 6,896 0.494 0.171 49.38 0.49, 0.50 14,345 7,068 0.493 0.159 49.27 0.48, 0.50

11 6,913 3,713 0.537 0.166 53.66 0.53, 0.55 10,921 6,160 0.564 0.133 56.38 0.55, 0.57 11,191 6,313 0.564 0.124 56.38 0.55, 0.57

12 4,787 2,737 0.572 0.109 57.21 0.56, 0.59 10,140 6,755 0.666 0.127 66.57 0.66, 0.67 10,391 6,907 0.665 0.120 66.50 0.66, 0.67

13 3,076 1,948 0.633 0.072 63.32 0.62, 0.65 10,109 7,426 0.735 0.122 73.43 0.73, 0.74 10,357 7,585 0.732 0.116 73.21 0.72, 0.74

14 1,879 1,273 0.677 0.045 67.80 0.66, 0.70 5,533 4,193 0.758 0.065 75.81 0.75, 0.77 5,672 4,296 0.757 0.062 75.74 0.75, 0.77

15 1,116 800 0.717 0.027 71.68 0.69, 0.74 4,301 3,423 0.796 0.050 79.58 0.78, 0.81 4,424 3,517 0.795 0.048 79.49 0.78, 0.81

16 721 547 0.759 0.018 75.86 0.73, 0.79 2,975 2,447 0.823 0.035 82.31 0.81, 0.84 3,089 2,549 0.825 0.034 82.55 0.81, 0.84

17 460 364 0.791 0.012 79.13 0.75, 0.83 4,595 4,076 0.887 0.054 88.72 0.88, 0.90 4,757 4,223 0.888 0.053 88.77 0.88, 0.90

18 306 240 0.784 0.008 78.43 0.74, 0.83 1,697 1,475 0.869 0.019 86.91 0.85, 0.89 1,769 1,542 0.872 0.019 87.22 0.86, 0.89

19 199 167 0.839 0.005 83.92 0.79, 0.89 597 509 0.853 0.007 85.26 0.82, 0.88 619 527 0.851 0.006 85.13 0.82, 0.88

20 189 173 0.915 0.006 91.53 0.87, 0.95 554 502 0.906 0.006 90.61 0.88, 0.93 573 520 0.908 0.006 90.75 0.88, 0.93

N 70,147 30,671 0.609 0.390 43.72 0.43, 0.44 204,672 77,280 0.719 0.478 37.75 0.38, 0.38 231,755 82,434 0.719 0.461 35.56 0.35, 0.36

a The performance of the model for the sub-population Sub PARR-2-Settings.

b The performance of the model for the sub-population Sub IPAEOPGP.

c The performance of the model for the sub-population Sub Any-Acute.

d The average of number of readmitted patients.

e The confidence interval for the average of number of readmitted patients using the bootstrapped central estimate with 95% CI.
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Table A.2

The top risk segments profile of the predicted high-risk patients across test sub-samples.

Risk

Seg.a

Model Sub-population Min

Riskb

Asthma

c

COPD

d

Depres.

e

Diab.

f

Hyper.

g

Cancer

h

CHD i CHF j Avg.

Agek

Avg.

LoSl

5-9

Medsm

10+

Medsn

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1

10,000

ERMER

PARR-2-Settings 0.576 16.69 35.68 41.94 23.49 53.20 19.65 50.93 39.82 80.80 11.06 NA NA

IPAEOPGP 0.759 11.54 12.19 12.24 8.25 20.71 6.51 14.88 10.34 39.68 4.49 NA NA

Any-Acute 0.766 11.25 11.52 11.57 7.93 19.74 6.24 14.01 9.72 38.61 4.39 NA NA

5,000

PARR-2-Settings 0.647 20.84 44.14 45.10 26.00 56.28 21.24 57.00 45.10 80.33 11.32 NA NA

IPAEOPGP 0.817 15.80 15.78 15.28 10.14 25.20 7.52 18.58 12.96 42.36 4.91 NA NA

Any-Acute 0.818 15.84 15.72 15.32 10.38 25.12 7.60 18.48 12.92 41.99 4.93 NA NA

1,000

PARR-2-Settings 0.815 31.40 59.10 50.70 26.90 61.70 22.90 66.40 53.30 78.95 10.04 NA NA

IPAEOPGP 0.910 33.40 35.70 30.50 21.90 39.70 14.30 38.60 26.30 53.38 6.98 NA NA

Any-Acute 0.912 33.20 34.80 29.90 21.80 39.00 14.40 37.50 25.40 52.21 6.85 NA NA

500

PARR-2-Settings 0.881 37.40 67.60 52.00 26.40 63.20 25.20 69.60 55.20 77.98 9.35 NA NA

IPAEOPGP 0.957 38.20 38.60 34.80 25.20 42.80 14.20 43.20 27.40 54.49 7.43 NA NA

Any-Acute 0.958 37.80 37.60 33.80 25.00 41.20 14.00 41.80 26.80 52.95 7.37 NA NA

250

PARR-2-Settings 0.933 36.40 70.00 53.60 27.60 63.20 25.60 69.60 53.60 77.34 9.57 NA NA

IPAEOPGP 0.985 40.80 39.20 36.40 27.20 42.80 11.60 42.00 29.60 53.88 7.99 NA NA

Any-Acute 0.986 40.40 38.80 36.40 27.60 42.40 11.60 41.20 28.80 52.76 7.89 NA NA

a The top predicted risk segment.

b The minimum predicted risk in the segment.

c The percentage of patients with a history of Asthma diagnosis (ICD-10: J45-J46).

d The percentage of patients with a history of Chronic Obstructive Pulmonary Disease (COPD) diagnosis (ICD-10: J20, J41-J44, J47).

e The percentage of patients with a history of Depression diagnosis (ICD-10: I10-I15).

f The percentage of patients with a history of Diabetes diagnosis (ICD-10: E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, E12.6, E12.8, E12.9,

E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, E14.9, E10.2-E10.5, E10.7, E11.2-E11.5, E11.7, E12.2-E12.5, E12.7, E13.2-E13.5, E13.7, E14.2-E14.5, E14.7).

g The percentage of patients with a history of Hypertension diagnosis (ICD-10: I10-I15, I27, I6, I87.0, I87, I97, K76.6, H35.0, R03, O13, O14, O16, O10, G93.2, H40.0, P292, P293).

h The percentage of patients with a history of Cancer diagnosis (ICD-10: C00-D49).

i The percentage of patients with a history of Coronary Heart Disease (CHD) diagnosis (ICD-10: I20-I25).

j The percentage of patients with a history of Congestive Heart Failure (CHF) diagnosis (ICD-10: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0).

k The average age of patients at the trigger event.

l The average length of stay of patient at the trigger event.

m The percentage of patients with 5-9 medication prescription.

n The percentage of patients with 10+ medication prescription.
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Table A.3

The average importance of features and average weights of features in sub-models.

# Feature Sub-models: Main Age0 Age1 Oper0 Oper1

1 Sum of number of operations (trigger) -0.744 <-1 -0.049 <-1 -0.666

2 Count of recoded main speciality of state ’Maternity’ (trigger) 0.885 >1 -0.608 >1 0.289

3 Count of recoded main speciality of state ’Maternity’ (3 years) -0.021 -0.024 0.138 0.033 0.019

4 Count of recoded main speciality of state ’Gynaecology’ (trigger) 0.742 0.910 -0.514 >1 0.311

5 Having recoded gender of state ’Female’ 0.005 0.020 -0.032 0.059 -0.056

6 Count of recoded main speciality of state ’Gynaecology’ (3 years) -0.005 -0.004 -0.017 0.093 0.026

7 Age of patient (trigger) 0.023 0.003 0.004 0.015 0.024

8 Average of post-operative durations (trigger) 0.008 0.007 0.001 <-1 0.007

9 Count of the acute admission method (90 days) 0.054 0.053 0.043 0.044 0.049

10 Average of spells durations (3 years) 0.041 0.032 0.056 0.047 0.063

11 Sum of number of operations (90 days) -0.011 -0.008 -0.002 >1 -0.004

12 Count of the acute admission method between (1-2 years) -0.043 -0.031 0.075 -0.138 0.061

13 Count of recoded main speciality of state ’General’ (trigger) -0.077 -0.037 0.025 0.006 -0.183

14 Average of gaps between admissions (3 years) 0.236 0.189 0.180 0.375 0.154

15 Average of spells durations (trigger) -0.002 -0.002 -0.002 -0.002 -0.001

16 Having recoded ethnicity of state ’others’ -0.363 -0.391 -0.368 -0.429 -0.320

17 Average of the Charlson Index (3 years) 0.018 0.040 0.009 0.011 0.018

18 Count of recoded main speciality of state ’General’ (3 years) 0.015 0.021 0.003 0.013 0.012

19 Average of post-operative durations (3 years) 0.000 0.003 -0.001 >1 -0.002

20 Count of recoded main speciality of state ’General Surgery’ (trigger) -0.046 0.049 -0.064 -0.068 -0.145

21 Count of the acute admission method between 90 days to 12 months -0.153 -0.152 -0.047 -0.314 -0.030

22 Average of pre-operative durations (trigger) 0.017 0.021 0.001 <-1 0.013

23 Count of recoded main speciality of state ’Plastic’ (trigger) 0.025 0.161 -0.110 -0.164 -0.109

24 Having recoded ethnicity of state ’White’ 0.010 -0.013 0.021 -0.003 0.015

25 Count of PARR’s ’reference’ conditions (90 days, trigger) 0.014 0.036 0.025 0.058 0.008

26 Count of recoded main speciality of state ’Geriatric’ (3 years) 0.007 0.045 0.003 -0.011 0.006

27 Recoded Index of Multiple Deprivation Overall Rank (10 equal ranges) -0.002 -0.006 0.002 0.013 -0.008

28 Maximum value of the Charlson Index (1 year) -0.001 -0.009 0.002 -0.007 -0.003

29 Average of pre-operative durations (3 years) -0.002 0.001 0.002 0.126 -0.004

30 Count of recoded main speciality of state ’General Surgery’ (3 years) 0.018 0.024 0.002 -0.012 0.006

31 Count of recoded main speciality of state ’Plastic’ (3 years) 0.002 0.013 -0.010 -0.001 -0.016

32 Count of external causes or complications (3 years) 0.007 0.003 0.003 0.020 -0.005

33 Count of recoded main speciality of state ’Geriatric’ (trigger) -0.017 -0.053 0.056 0.145 -0.136

34 Count of recoded main speciality of state ’A&E’ (trigger) -0.204 -0.182 0.013 -0.065 -0.335

35 Count of ischemic heart conditions (90 days, trigger) -0.008 -0.012 0.002 0.003 -0.005

36 Count of unique main speciality seen (trigger) 0.119 0.150 0.029 -0.007 0.090

37 Average of post-operative durations (1 year) -0.001 -0.002 -0.001 <-1 0.000

38 Count of other heart conditions (90 days, trigger) 0.016 0.011 0.009 0.013 0.007

39 Count of the elective admission method (90 days) 0.009 0.004 0.008 0.000 0.002

40 Count of thrombocytopenia, thrombocytosis & high WBC (90 days, trigger) 0.004 0.004 -0.002 -0.004 0.000

41 Count of recoded intended admission of states ’others’ or ’Maternity’ (90 days) -0.016 -0.014 -0.006 -0.016 -0.008

42 Count of recoded main speciality of state ’A&E’ (3 years) 0.032 0.037 0.034 0.074 0.037

43 Count of ACS respiratory conditions (90 days, trigger) 0.014 0.019 0.014 0.026 0.011

44 Count of ACS neurological disorders (90 days, trigger) -0.014 0.001 -0.005 -0.019 -0.012

45 Count of mental conditions (90 days, trigger) -0.001 0.052 -0.023 -0.003 0.003

46 Count of recoded main speciality of state ’Psychiatry’ (3 years) 0.004 0.007 -0.013 0.019 -0.002

47 Count of recoded main speciality of state ’Psychiatry’ (trigger) -0.078 -0.029 0.058 0.035 -0.181

48 Count of the admission sources from ’others’ or ’Maternity’ 0.001 0.021 -0.012 -0.033 0.000

49 Count of chronic pulmonary conditions (trigger) 0.013 -0.039 0.027 0.034 0.018

50 Count of recoded main speciality of state ’Cardiothoracic’ (3 years) 0.003 0.014 -0.013 0.047 -0.008

51 Count of ACS diabetes conditions (90 days, trigger) 0.013 0.022 0.010 0.012 0.013

52 Count of blood loss anemia conditions (90 days) 0.022 -0.019 0.008 0.032 0.019

53 Average of pre-operative durations (1 year) 0.003 0.001 -0.001 0.516 0.003

54 Count of recoded main speciality of state ’ENT’ (trigger) -0.080 -0.053 -0.127 -0.199 -0.144

55 Count of recoded region of state ’Eastern’ (trigger) 0.455 0.534 0.583 0.593 0.220

56 Sum of number of operations between 90 days to 12 months -0.020 -0.026 0.040 >1 -0.019

Continued on next page
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# Feature Sub-models: Main Age0 Age1 Oper0 Oper1

57 Count of organisation cluster of state ’Acute teaching trust’ (trigger) -0.029 -0.022 -0.030 -0.055 -0.020

58 Count of cardiac arrhythmias conditions (90 days, trigger) 0.002 -0.018 0.005 0.009 0.007

59 Count of congestive heart failure conditions (90 days) -0.036 -0.046 -0.025 -0.030 -0.027

60 Count of recoded main speciality of state ’Ophthalmology’ (3 years) 0.057 0.025 0.048 -0.084 0.033

61 Count of recoded main speciality of state ’Gastroenterology ’ (3 years) 0.032 0.045 0.009 0.049 0.017

62 Count of ACS respiratory conditions (90 days, trigger) -0.009 -0.015 -0.008 -0.005 -0.008

63 Count of recoded main speciality of state ’Cardiothoracic’ (trigger) 0.084 0.174 0.081 0.081 -0.007

64 Count of organisation cluster of state ’Large acute trust’ (trigger) -0.058 -0.048 -0.035 -0.034 -0.052

65 Count of recoded main speciality of state ’ENT’ (3 years) 0.033 0.038 0.043 -0.060 0.016

66 Count of recoded region of state ’Trent’ (trigger) 0.506 0.592 0.602 0.654 0.284

67 Count of other neurological disorders (90 days) 0.007 -0.005 -0.002 0.018 0.008

68 Count of recoded region of state ’West Midlands’ (trigger) 0.510 0.619 0.549 0.660 0.270

69 Count of recoded region of state ’London’ (trigger) 0.511 0.604 0.616 0.627 0.291

70 Count of neoplasm conditions (90 days) 0.021 0.096 0.013 -0.039 0.026

71 Average of spells durations (1 year) 0.000 0.000 0.000 0.000 0.000

72 Count of recoded region of state ’North West’ (trigger) 0.471 0.577 0.560 0.586 0.245

73 Count of the elective admission method between (1-2 years) 0.011 0.012 0.051 0.064 0.007

74 Count of heart operations (90 days) -0.005 -0.008 -0.015 >1 -0.015

75 Count of recoded main speciality of state ’Urology’ (3 years) 0.023 0.018 0.025 0.062 0.014

76 Count of organisation cluster of state ’Medium acute trust’ (trigger) -0.040 -0.053 -0.019 -0.027 -0.049

77 Count of recoded region of state ’Northern and Yorkshire’ (trigger) 0.503 0.604 0.572 0.634 0.279

78 Count of provider type of state ’Trust’ (trigger) -0.107 -0.148 -0.124 0.014 -0.073

79 Count of malignancy conditions, except malignant neoplasm of skin (90 days) -0.019 -0.096 -0.003 0.016 -0.023

80 Count of recoded main speciality of state ’Respiratory’ (3 years) 0.026 0.049 -0.001 0.042 0.013

81 Count of depression conditions (90 days) -0.007 -0.010 0.004 -0.016 0.004

82 Count of recoded main speciality of state ’Urology’ (trigger) 0.069 0.080 0.012 -0.134 -0.013

83 Count of provider type of state ’Trust’ (3 years) 0.085 0.137 0.126 -0.004 0.076

84 Count of recoded main speciality of state ’Gastroenterology’ (trigger) -0.012 0.064 0.029 0.011 -0.079

85 Count of recoded region of state ’others’ (trigger) 0.519 0.620 0.599 0.679 0.284

86 Count of zero waiting time for elective admissions (3 years) 0.002 0.005 -0.010 -0.008 0.001

87 Count of organisation cluster of state ’Small acute trust’ (trigger) -0.054 -0.066 -0.017 -0.017 -0.050

88 Count of recoded region of state ’South East’ (trigger) 0.540 0.643 0.614 0.617 0.326

89 Count of recoded main speciality of state ’Respiratory’ (trigger) -0.052 0.001 0.051 -0.028 -0.110

90 Count of liver conditions (90 days) -0.003 -0.004 0.010 -0.009 0.001

91 Count of urinary operations (90 days) -0.005 0.018 -0.022 >1 -0.008

92 Count of exposure to tobacco smoke conditions (trigger) 0.008 0.009 0.024 0.020 0.010

93 Count of external causes of morbidity conditions (90 days) -0.014 -0.007 -0.008 0.037 -0.009

94 Count of cerebrovascular (stroke) conditions (90 days) -0.022 -0.027 -0.012 0.008 -0.020

95 Count of disorders of lipidemias conditions (90 days) -0.035 -0.043 -0.036 0.005 -0.033

96 Count of influenza a pneumonia conditions (90 days) 0.024 -0.003 0.012 -0.004 0.019

97 Count of recoded main speciality of state ’Ophthalmology’ (trigger) -0.076 0.008 -0.363 0.013 -0.250

98 Count of other veins, lymphatics and lymph nodes conditions (90 days) -0.010 -0.005 -0.019 -0.002 -0.007

99 Count of days gap from the previous spell (trigger) -0.727 -0.695 -0.662 -0.840 -0.521
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Highlights: 

 Using a Bayes Point Machine method, which has no hyper-parameter and 

is adaptive to changes in prior distributions of features, to predict the risk 

of emergency readmission to hospitals in the English National Health 

Service. 

 Using an ensemble model to improve the performance of risk prediction 

and allow sensitivity and precision to be adjusted based on a cost function.  

 Using a framework to collect a pool of features. 

 Using a minimal amount of administrative data to capture the underlying 

structure better. 

*Highlights (for review)
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