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Abstract 

Prime goal of this research is to propose and test novel algorithms for GNSS multipath environment 

classification on the receiver Digital Signal Processing (DSP) stage, but at an earlier processing point 

than it is used usually; at the generation of the digitized samples of the RF signal. Towards this direction, 

a detailed study behind the theory and modelling of multipath has been conducted.  

Multipath interference is the result of a signal’s reception via two or more paths due to reflection or 

diffraction of the transmitted signal. Physically, the path distance travelled by non-line-of-sight (NLoS) 

signals is larger than the line-of-sight (LoS) one, therefore all multipath components incident to the 

antenna arrive with a delay with respect to the corresponding LoS signal. Essentially, the composite 

signal is a superposition of the LoS and NLoS components which sum constructively and destructively; 

consequently, segments of the composite waveform are either amplified or attenuated.  

Different feature extraction methods were studied and assessed according to their suitability to 

characterize multipath-contaminated waveforms. Namely, the methods of Generalized Hurst Exponent, 

Detrended Fluctuation Analysis, Correlation Dimension, Fuzzy Entropy and Recurrence Period Density 

Entropy were proposed and tested in numerical simulations implemented in MATLAB. 

For testing and simulation purposes, the GPS L1 C/A signal structure was selected, as it represents the 

most fundamental GNSS signal, being the simplest in structure, and potentially allows for further 

extensions considering more complex-structured signals. The test data are numerically generated by 

custom MATLAB scripts representing different multipath-afflicted signals.  The validity of the selection 

of feature extraction algorithms was performed by further simulations using off-the-shelf classifier 

estimators such as LDA and SVM. Finally, a combination of different features is tested to specify the 

optimal solution to the classification problem. 
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1 Introduction 

The purpose of this research is to propose an alternative to the existing approaches for classifying the 

multipath propagation environment of an independent receiver, based on the use of the RF samples 

available at the end of the RF-frontend. The proposed approach uses these samples as inputs into one or 

several feature extraction algorithms, and then the extracted feature vector is passed on to an off-the-

self classifier. The main difference with respect to conventional/traditional GNSS receiver processing 

is the addition of a feature extraction module instead of the common matched filter (usually combined 

with a discriminator scheme). A classifier can be added in both schemes at the end of each processing 

chain. The proposed approach offers the advantage that it is capable of classifying very challenging 

environments where there are very few (or none) and weak direct satellite signals available, and 

correlators receivers fail to produce a correlation result. The main attribute is that there is no dependency 

on post-correlation observables. Based on [1], another advantage of adopting such an approach is that 

interference information is maintained since it avoids the de-spreading operation which inevitably 

causes losses and decreases the precision of interference detection. 

Based on extensive research survey, works on pre-correlation digital signal processing (DSP) stage for 

multipath detection and characterization are highly limited and currently, they are implemented only in 

experimental software-defined-radio (SDR) receivers. In addition, a thorough research on components 

provided by commercial GNSS-receiver manufacturers also indicates that GNSS sampler components 

are very few, and the corresponding outputs are not used for multipath detection. Therefore, the topic 

aims to investigate a new approach exploiting observables from a stage of the receiver processing chain 

that is not yet studied in detail. 

It is speculated that this lack of relevant hardware is due to the high-end requirements of such 

components which translates to increased manufacturing cost, an area where the SDR technology can 

provide a solution. Powerful processors and large memory units are nowadays available in many every-

day-life devices suggesting that the technology under study might be already possible to be implemented 

in some applications such as transportation in cities where the urban multipath channel could be 

compromised by various interferences.  

Another aim of this research is to propose alternative approaches that are capable of capturing the 

multipath and radio frequency interference (RFI) patterns in feature space. For this purpose, a research 

in the suitability of candidate metrics in other technical and scientific fields was conducted. Since the 

problem of adaptive channel characterization and context awareness is not specific to GNSS 

applications, works on other RF applications such as radar or Multiple-Input Multiple-Output (MIMO) 

where reviewed, as well as from the field of biomedical and speech signal processing, among several 

others.  

The review of the state-of-the-art, analysis and results of this research work are presented in the next 

five chapters. In Chapter 2 the description of the basic physics, and the different types of GNSS 

multipath phenomenon is described, presenting the necessary mathematical background to model its 

behaviour. Chapter 3 provides a review of the current state-of-the-art techniques used in detection, 

characterization, mitigation and estimation of generic GNSS interference, and further assessing their 

applicability to GNSS multipath. In Chapter 4, the feature-based classification approach in introduced 

along with a review of candidate feature extraction techniques. Then, according to the theoretical criteria 

that indicate the suitability of the techniques, five feature extraction are presented and analytically 

described. Numerical simulations assess the capability to detect different multipath propagation 

environments for each of the five feature extraction methods. Chapter 5 demonstrates the performance 

of multipath environment classification by employing the feature extraction results from the previous 
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chapter, and by using off-the-shelf classifiers such as Linear Discriminant Analysis (LDA) and Support 

Vector Machine (SVM). Finally, Chapter 6 includes conclusions and for future work recommendations. 
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1.1 Global Navigation Satellite Systems and main characteristics 
 

Global Navigation Satellite Systems (GNSSs) constitute constellations of satellites providing radio-

frequency signals from space, that disseminate positioning and timing data to user receivers on a global 

scale. All GNSSs provide signals on at least two different frequencies to cancel out the effect of 

ionosphere in their measurements, in the range of 1.2 - 1.6 GHz (L-band) corresponding to wavelengths 

of 19−25 cm. The user receiver can distinguish between satellites that transmit on the same frequency 

by a unique pseudo-random noise sequence modulated on the corresponding carrier wave of each 

satellite. Each satellite signal carries also information on the orbital position and its offset to system 

time, to facilitate time (or distance) measurements on signal propagation from a satellite to the receiver. 

By considering the system time, the local receiver time, and the signal propagation time, the receiver 

can estimate the distance from receiver to satellite. For positioning, it essentially requires at least four 

distances (four satellites) to solve for the four unknown quantities: the three spatial coordinates and the 

time offset from GNSS time. 

There are four GNSSs available at the time of writing of this Thesis: GPS, GLONASS, Galileo and 

Beidou. The Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System 

(IRNSS)/NavIC are excluded as they are considered regional navigation satellite systems. A summary 

of the main features of each GNSS is given in the table below: 

Table 1 - Main GNSS characteristics [1] 

System GPS GLONASS BeiDou Galileo 

Orbit MEO MEO MEO, IGSO, 

GEO 

MEO 

Number of Satellites 24 24 27,3,5 30 

Constellation 6 planes 

56o inclination 

Walker (24/3/1) 

64.8o 

inclination 

Walker (24/3/1) 

55o inclination 

Walker 

(24/3/1) 

56o inclination 

Nominal orbital 

altitude (Km) 

20180 19100 MEOs 21530 

IGSOs 36000 

GEOs 36000 

29600.318 

Frequencies (MHz) L1 1575.42 

L2 1227.60 

L5 1176.45 

L1 1602.00 

L2 1246.00 

L3 1202.025 

B1 1561.098 

B2 1207.14 

B3 1268.52 

E1 1575.42 

E5a 1176.45 

E5b 1207.14 

E6 1278.75 

 

The Global Positioning System (GPS) is the first GNSS achieving Full Operational Capability in June 

1995 while the launch of the first Navstar satellite dates back to 1978. GPS is operated by the US 

government and initially provided two services: Precise Positioning Service (PPS) on the GPS L1 

(1575.42 MHz) and L2 (1227.6 MHz) frequencies and the Standard Positioning Service (SPS) on the 

GPS L1 frequency containing a coarse/acquisition (C/A) code. PPS L1 and L2 also include an encrypted 

precision (P) code ranging signal (also known as the Y-code) with a navigation data message for 

authorized users. Later three new signals were added L2C and L5 (1176.45MHz) for civilian users, and 

M-code at L1 & L2 for military/restricted use.  

GLONASS stands for Global’naya Navigatsionnaya Sputnikovaya Sistema, it is developed and operated 

by Russia achieving a fully operational constellation of 24 satellites in orbit by 1996. However, shortly 

after that date, the number of operational satellites started to drop due to financial problems and the next 

time it achieved full operational capability was by the end of 2011. GLONASS signals are designed 

based on the frequency division multiple access (FDMA) scheme, and in the original design, the system 

transmitted the signals within bands Ll (1602−1615.5 MHz) and L2 (1246−1256.5 MHz), at frequencies 

spaced by 0.5625 MHz at L1 and by 0.4375 MHz at L2. The first block of satellites that deploys code 
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division multiple access (CDMA) is GLONASS-K satellites (also transmitting FDMA signals). Finally, 

GLONASS-K1 as well as GLONASS-M satellites transmit a CDMA signal on a new L3 frequency 

(1202.025 MHz). 

The Galileo programme is owned by the EU, with the European Commission bearing the overall 

responsibility of managing and overseeing the implementation of all activities on behalf of the EU. The 

first two satellites were launched on October 2011, and for its Full Operational Capability (FOC) 

consists of 24 operational satellites. Galileo offers several types of services including Open Service 

(OS), Public Regulated Service (PRS), Navigation Message Authentication, and High Accuracy Service. 

The Open Service (OS) and the Public Regulated Service (PRS) are transmitted in the E1 frequency 

band centered on 1575.46MHz, the same as the GPS L1 frequency. The PRN ranging codes are 

modulated onto the carrier using binary offset carrier (BOC) techniques. The Commercial Service (CS) 

signal and the PRS are transmitted in the E6 frequency band centered on 1278.75 MHz using binary 

phase-shift keying (BPSK) and BOC modulation, respectively. Data and data-less (pilot) signals are 

transmitted in the E5 frequency band centered on 1191.795 MHz, again using BOC modulation. Data 

and pilot signals are also available on E1 and E6. The signals are separated into an E5a and an E5b 

component and either can be tracked separately or together.  

Finally, China begun the development of a satellite-based navigation system known as BeiDou (Chinese 

for the Big Dipper asterism) in 1980. The initial constellation of three geosynchronous equatorial orbit 

(GEO) satellites was completed in 2003. A fourth GEO satellite was launched in 2007. The initial 

regional BeiDou system (BeiDou-1) has been replaced by a global system known as BeiDou-2 (or 

simply BeiDou and formerly known as Compass). The BeiDou Navigation Satellite System (BDS) as it 

is officially now known will eventually include five GEO satellites, 27 MEO satellites, and five Inclined 

Geosynchronous Orbit (IGSO) satellites. BeiDou-2 provides global coverage since 2020. The BeiDou-

3 satellites have been launched since March 2015, which transmit two levels of service, an open service 

and an authorized service primarily for the Chinese government and military using three frequency 

bands. The bands and the central frequencies for the satellites now in use, the BeiDou-2 satellites, are 

B1 at 1561.098 MHz, B2 at 1207.14 MHz, and B3 at 1268.52MHz. BeiDou-3 transmits signals in L1/E1 

and L5/E5 bands as well as the BeiDou B3 band. 
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2 Multipath interference in GNSS receivers 

2.1 Introduction 

This chapter aims at reviewing the fundamental physics and mathematical tools that describe 

analytically the multipath (MP) interference phenomenon in GNSS receivers. 

In radio frequency (RF) systems such as GNSSs (L-band), the transmitter sends a signal to a receiver 

using a physical channel which - in almost all realistic scenarios - alters its physical properties. As a 

result, a modified waveform is incident to the receiver antenna compared to the one originally 

transmitted from the corresponding satellite.  Multipath interference (experienced on the receiver side), 

is the result of electromagnetic interaction of the emitted signal with its reflected, diffracted or refracted 

copies due to the propagation-channel properties. The path distance travelled by the multipath echoes is 

expected to be larger than that of the corresponding direct line-of-sight (LoS) signal, and naturally, the 

echoes arrive to the receiver with a delay relative to the LoS signal. The multipath components are 

usually referred in literature as non-line-of-sight (NLoS) signals. 

 

Figure 1 - MP propagation in GNSS systems 

In the GNSS context, most user-receivers are located near the surface of the earth and the signals are 

transmitted from satellites orbiting at a distance of over 20,000 Km. A schematic of generic multipath 

propagation is shown in Figure 1, where all the above-mentioned physical phenomena are depicted. 

Causes of multipath propagation include atmospheric phenomena such as tropospheric refraction, 

ionospheric reflection and refraction, as well as reflections from terrestrial objects located in the vicinity 

of the receiver. Scattering can also be considered as another physical phenomenon that leads to 

multipath, as GNSS signals can propagate through street signs, foliage, or walls, causing the reflected 

energy to spread out (scatter) in all directions.  

The result of reception of a variety of these signals from a GNSS receiver is the formation of a composite 

signal including both LoS and NLoS components. Specifically, the NLoS signals can either sum up 

constructively or destructively with the LoS one (but also between them), causing amplification or 

attenuation of the composite signal. From the user perspective, the communication might be affected 

when destructive interference occurs causing the signal power to fade or, in severe cases, complete loss 

of communication. Scattering of the LoS signal could also take place especially in indoor propagation 
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environment where no LoS component is present. This extreme scattering environment generally 

characterized in literature as NLoS conditions.   

In general, the physical model for GNSS multipath propagation is built by considering the properties of 

physical channel that the RF signal propagates. Channel properties are determined by the number, 

geometry and material properties of different media included in the signal propagation environment and 

the relative transmitter-receiver geometry. Mathematically, the multipath interference phenomenon is 

due to the superposition of signals arriving at the same location (antenna) at one specific time(-instance).  

Aside from the shift in time with respect to the LoS signal due to the delay introduced from the longer 

propagation path, each of these signals will have altered signal properties, such as different phase-shifts, 

after passing over transmission paths of different lengths [2], and/or different frequencies due to the 

interaction of the radio waves with the objects of different material properties.  

A key assumption used for modelling the resulting time-domain superposition of the different signal 

amplitudes is that RF waves are planar, which has proved to be an accurate approximation. At 

transmission from a single-point satellite source, the signal propagates outwards in all directions, and a 

reasonable choice to mathematically describe it would suggest to adopt the spherical waves model. 

However, for travelling distances of (approx.) 20,000 Km where satellite transmitters fly above the 

Earth’s surface, the received signal wave-front (surfaces of constant phase) will appear as having the 

same amplitude everywhere on the plane perpendicular to its direction of travel in the (near) vicinity of 

the receiver. The plane wave simplification does not imply that the wave is traveling in a single direction 

and, as shown in Figure 1, due to the fact that the signal is spreading out in all directions, signals in red 

and yellow are present (on top of the blue ones, i.e. LoS signals) and contribute to the composite signal 

received. A simplistic model to mathematically describe an E/M wave is by considering an unmodulated 

carrier wave - that corresponds to a sinusoidal function of constant period/frequency - that oscillates 

around zero at the maximal amplitude and minimal amplitude 𝐴 [3]: 

𝐸(𝑟, 𝑡) =
𝐴

𝑟
𝑒𝑗𝜔𝑡−𝑗𝑘⃗⃗∙𝑟           (1) 

with 𝐸 the electric filed of the signal, 𝑘⃗⃗ the wave-vector in 3 dimensions, 𝑟 the position vector (usually 

including Cartesian coordinates 𝑋, 𝑌, 𝑍), and 𝜔 = 2𝜋𝑓 the angular frequency (𝑓 stands for the 

frequency). In GNSS systems a geocentric reference system is used, and if the source of the wave is 

located at distance −𝑋0 from the receiver, under the assumption that 𝑋0 ≫ 𝑋, 𝑌, 𝑍 , the in-between 

(Euclidean) distance |𝑟| = √(𝑋 + 𝑋0)2 + 𝑌2 + 𝑍2 can be approximated as |𝑟| = 𝑋 + 𝑋0 after a Taylor 

expansion (and neglecting higher order terms for 𝑋, 𝑌, 𝑍). Intuitively, this means that a displacement 

along the 𝑋 dimension causes a proportional change in the radius of the spherical wave, while any 

displacement along the other two dimensions causes a negligible first-order effect. Therefore, the 

previous equation could be replaced by: 

𝐸(𝑟, 𝑡) =
𝐴

𝑋+𝑋0
𝑒𝑗𝜔𝑡−𝑗𝑘(𝑋+𝑋0)            (2) 

Here, the wavenumber 𝑘 is used instead of the wave vector 𝑘⃗⃗, since it represents the magnitude of the 

latter and, quantifies the phase variation for the plane wave 𝑘 = 2𝜋 𝜆⁄ , where 𝜆 stands for the 

wavelength. By factoring out the 𝑋0-dependent term the equation becomes: 

𝐸(𝑋0, 𝑡) =
𝐴

𝑋0
𝑒−𝑗𝑘𝑋0𝑒𝑗𝜔𝑡−𝑗𝑘𝑋            (3) 

with constant amplitude 𝐴0 = 𝐴 𝑋0⁄  and phase shift 𝜙 = 𝑒−𝑖𝑘𝑋0. Here, the influence of 𝑋 is neglected 

as 𝑋0 ≫ 𝑋. This result is consistent with the direct derivation of the planar wave solutions from the 

Helmhotz equations [4]. Assuming that the antenna/receiver measures the signal at fixed position or at 
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time-intervals where the radial distance can be considered approximately constant, the 𝑋-related term 

can be omitted, yielding the model for the received unmodulated signal: 

𝐸(𝑡) = 𝐴0𝑒𝑗𝜔𝑡              (4) 

The plane wave approximation result of (4), which is  a simplified mathematical formulation of signals 

propagating under the underlying electromagnetic filed, can serve as the basis of a (more 

straightforward) multipath interference model. 

A starting point to mathematically describe the resulting superposition of with the generated copies of 

the LoS signal is through the superposition principle. The superposition principle holds only if a linear 

response is assumed on the propagation channel. Thus implying that only reflective phenomena take 

place (also implying that the frequency of all signals remains the same) due to the objects in the vicinity 

of the antenna/receiver, or “mild” atmospheric conditions. In this case, the amplitude of the received 

wave in each time-instant shall be equal to the sum of the wave amplitudes of the individual waves. A 

common approach to express the multipath superposition of the received signal is by employing the 

formulation of impulse responses on linear systems, and, as a starting point, introducing an ideal Dirac 

pulse of electromagnetic power transmitted at time 0 (represented by 𝛿(𝑡)). Replacing the angular 

frequency 𝜔 in (4) with the phase term 𝜙 yields the impulse response: 

ℎ(𝑡) = ∑  𝐴𝑛 𝑒𝑗𝜙𝑛 𝛿(𝑡 − 𝜏𝑛)𝑁
𝑛=0            (5) 

where 𝑁 is the number of received impulses (or number of electromagnetic paths), 𝜏𝑛 is the excess delay 

due to multipath propagation of the generic nth impulse, 𝐴𝑛 is the signal amplitude and 𝜙𝑛 the phase of 

the nth received pulse respectively. The analytical expression for the phase is 𝜙𝑛 = 2𝜋𝑓 + 𝜑𝑛, with 𝑓 

the frequency (assumed to remain intact for all components) of the signal and 𝜑𝑛 the phase offset of 

each NLoS signal.  It is noted that the LoS signal represented by index with 𝑛 = 0 and 𝜏0 = 0 and it is 

assumed that the channel has infinite bandwidth. Essentially, 𝑡 is the time of observation from the 

receiver, and 𝑡 − 𝜏𝑛 the time the impulse was introduced to the channel, i.e. 𝜏𝑛 in the past. By 𝑠(𝑡) we 

denote the signal displacement which is equal to the Channel Impulse Response (CIR) function ℎ(𝑡) of 

the equivalent multipath model.  

The summation of amplitudes 𝐴𝑛, or the CIR magnitude ℎ(𝑡), as described by (5) results in constructive 

and destructive interference of the LoS signal, and causes its phase to change. This phase shift is due to 

the combination of out-of-phase signals. For the scenario where the antenna is moving, the frequencies 

of the different replicas might slightly differ, and apart from the amplitude modulation phenomenon 

described, phase modulation is also expected to occur [5]. Assuming that all signals have the same 

frequency and the phase difference between them is constant i.e. they are coherent, a fixed (stationary) 

interference pattern is expected to emerge manifesting the result of linear superposition. However, linear 

superposition almost never occurs in real conditions but there are certain static scenarios that coherence 

approximately holds such as in specular multipath propagation which is described in the next paragraph.  

An alternative way to formulate the received signal 𝑠(𝑡) in (5) that is very common in literature is by 

showing explicitly the multipath relative amplitude 𝑎𝑛: 

𝑠(𝑡) = Re{𝐴0 𝑒𝑗𝜙𝛿(𝑡) + 𝐴0  ∑  𝑎𝑛 𝑒𝑗𝜙𝑛𝛿(𝑡 − 𝜏𝑛)𝑁
𝑛=1 }           (6) 

Here the first term represents the LoS signal which is separated from the multipath components showing 

the difference of the emitted (LoS) signal from the received signal 𝑠(𝑡). Also, 𝐴0 is complex amplitude 

and in realistic conditions, 𝑎𝑛 is the product of the free space loss, the signal attenuation due to reflection, 

the depolarization loss and the signal attenuation due to the antenna gain pattern. Possible attenuation 

due to shadowing can also be present. 



18 

 

In general, geometrical reflection conditions might be dynamic, and parameters 𝐴𝑛, 𝜙𝑛, and 𝜏𝑛 shall be 

considered as time-varying. Respectively, at each time 𝑡 each replica 𝑛 ≠ 0 arrives to the 

antenna/receiver system with a different delay 𝜏𝑛(𝑡), a different amplitude 𝐴𝑛(𝑡, 𝜏𝑛(𝑡)), and goes 

through a different phase shift 𝜙𝑛(𝑡, 𝜏𝑛(𝑡)). In the CIR given next, the LoS signal and the time-

dependence of the excess delay in the arguments of relative amplitude and phase is omitted: 

ℎ(𝑡, 𝜏) = ∑  𝑎𝑛(𝑡, 𝜏) 𝑒𝑗𝜙𝑛(𝑡,𝜏)𝛿(𝜏 − 𝜏𝑛(𝑡))𝑁
𝑛=1           (7) 

In the next figure, 𝜏 is split into delay bins 𝜏𝑖, with 𝑖 ∈ [1, 𝑁] each representing a multipath component, 

while also demonstrating the different excess delay profiles in discrete times 𝑡0, 𝑡1, 𝑡2, 𝑡3. Here, the 

multipath delay 𝜏(𝑡) denotes the parameter that takes excess delay 𝜏𝑖. 

 

Figure 2 - CIR and delay bins 

In noisy channels, where increased multipath and shadowing are present, such as urban canyons, signal 

amplitude fluctuations in time are pronounced due to the highly dynamic nature of the channel 

parameters. 
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2.2 Multipath interference characteristics of GNSS channels 

In this paragraph, the metrics that quantify the most fundamental properties that characterize multipath 

interference are briefly described. In formulas (5) − (7) it is assumed that 𝑁 resolvable multipath 

components exist. Two multipath components with excess delays 𝜏1 and 𝜏2 are resolvable when their 

delay difference is very large compared to the inverse signal bandwidth 𝜏1 − 𝜏2 ≫ 1 𝐵𝑠𝑖𝑔𝑛𝑎𝑙⁄  and non-

resolvable when 𝜏1 ≈ 𝜏2 which, as a consequence, are observed as a single multipath component. 

Therefore, given that this assumption is valid, a first fundamental concept related to the excess delay 

parameter 𝜏, is the multipath time 𝑇𝑀, which corresponds to the difference between the first and last 

received (resolvable) impulses: 

𝑇𝑀 = 𝜏𝑁 − 𝜏1              (8) 

In real conditions the multipath time is computed by considering as last impulse the first one which 

allows to receive a determined amount of the total transmitted power (scaled by the atmospheric and 

propagation losses), for instance 99%. The coherence bandwidth can therefore be defined as: 

𝐵𝐶 ≈
1

𝑇𝑀
              (9) 

Keeping the assumption of a linear time invariant channel, another metric that characterizes multipath 

is the channel transfer function ℎ𝑇𝐹, which is the continuous-time Fourier transform of the impulse 

response ℎ(𝑡) given in (5): 

ℎ𝑇𝐹 = 𝐹[ℎ(𝑡)] = ∫ ℎ(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
= ∑ 𝜌𝑛𝑒𝑗𝜙𝑛𝑒−𝑗2𝜋𝑓𝑡𝑁−1

𝑛=0       (10) 

For this result the property of Fourier-transforming a Dirac-delta to a complex exponential function was 

used, and the resulting function represents an eigen-function of every linear system. A practical rule 

derived from the obtained channel transfer measure states that the distance (in frequency) between two 

consecutive local maxima or minima is approximately inversely proportional to the multipath time. 

Another useful analysis tool used to analyse multipath interference is the squared CIR of (7) which 

generates the power delay profile 𝑃(𝜏). It is described by the power spectral density as function of delay, 

quantifying how the channel power is distributed along the different excess delays. An alternative way 

to describe it is its correspondence to the Fourier transform of the auto-correlation function of the CIR 

(7). A more practical quantity however, is the mean (excess) delay which is computed as the first 

moment of the power delay profile: 

𝜏 =
∑ 𝑃(𝜏𝑖)𝜏𝑖

𝑁
𝑛=1

𝑃𝑇
            (11) 

The denominator is corresponding to the total power in the channel 𝑃𝑇 = ∑ 𝑃(𝜏𝑖)𝑁
𝑛=1  . A more detailed 

indicator of multipath system performance is the second moment of the power delay profile, usually 

referred to as root mean square (RMS) delay spread [6]. The latter takes into account the relative powers 

of the multipath components as well as their delays, and it is described mathematically as: 

𝜏𝑅𝑀𝑆 = √
∑ 𝑃(𝜏𝑖)𝜏𝑖

2−𝜏
2𝑁

𝑛=1

𝑃𝑇
         (12) 

The reciprocal of the RMS delay spread 𝐵𝑐 ≈ 1 𝜏𝑅𝑀𝑆⁄ , is the coherence bandwidth, which was also 

defined in an alternative definition in (9). It is used as a measure of the range of frequencies over which 

the channel is “flat”, i.e. specific spectral components (corresponding to a power delay profile) that have 

approximately equal gain and linear phase. The implication of a variable carrier frequency is that the 
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magnitude of the change in amplitude will also vary and therefore 𝐵𝑐 quantifies the minimum separation 

in frequency after which two signals will experience uncorrelated fading. Specifically, in flat fading 

conditions the coherence bandwidth of the channel is larger than the bandwidth of the signal and all 

frequency components of the signal will experience the same magnitude of fading. On the other hand, 

in frequency-selective fading the coherence bandwidth of the channel is smaller than the bandwidth of 

the signal and different frequency components of the signal experience de-correlated fading. 

Aside from time dispersion caused on the LoS signal, multipath propagation in time-varying channels 

also introduces frequency dispersion caused by Doppler frequency 𝑓𝐷. When the receiver - or the 

reflector objects in its local environment are moving - a shift in the frequency of the signal transmitted 

along each signal path is introduced, known as the Doppler shift. Signals travelling along different paths 

can have different Doppler shifts corresponding to different rates of change in phase. In fact, in GNSS 

systems the movement of the satellites always introduces Doppler shifts approximately +/-5kHz per 

satellite [51], [52], in a static antenna/receiver scenario. 

The spectral broadening due to Doppler effect can be quantified using the Doppler spread 𝐷𝑠, which is 

essentially the bandwidth of the corresponding Doppler spectrum. Channels with a large Doppler spread 

have signal components that are each changing independently in phase over time. The reciprocal of the 

Doppler spread is a very useful measure of characterizing the time variability of the channel in the time 

domain. The coherence time is defined as: 

𝑇𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
ℓ

𝐷𝑠
           (13) 

where ℓ is a constant taking on values in the range of 0.25 to 0.5.  It is a measure of the minimum time 

required for the magnitude change of the channel to become de-correlated from its previous value. The 

coherence time of the channel is practically used to determine if the channel is fading at a slow rate, 

where the effects of the Doppler spread are negligible, or at a fast rate otherwise. Since fading depends 

on whether signal components add constructively or destructively such channels are expected to have a 

very short coherence time.  

One of the benefits of a frequency-selective channel is that it is rarely possible for all frequency 

components to be simultaneously affected by a deep fade. The frequency diversity introduced by the 

channel causes independent fading conditions between the different frequency components of the signal. 

This robustness against fading is one of the key features of the Code Division Multiple Access (CDMA) 

modulation [7], under which the majority of the GNSS signals are designed. However, frequency-

selective fading channels are also energy-dispersive, causing the signal energy associated with each 

symbol to spread out in time and therefore resulting in interference between adjacent symbols. Inter-

symbol interference (ISI) can be avoided by introducing a guard interval between the symbols, while 

for CDMA, the Rake receiver was designed to mitigate these effects by employing several correlators, 

each assigned to a different multipath component [8]. 

In conclusion, common measures that quantify MP interference are time dispersion and delay spread 

[9], Doppler Power Spectral Densities [10], but other statistical measures have also been used such as 

the channel capacity and mutual information [11].  
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2.3 Types of RF multipath interference 

Multipath interference can appear as periodic signal variations to the received signal, characterized 

mainly from their frequency, which in its turn depends on the satellite-antenna-reflector geometry. A 

distinction between two types of multipath interference is usually found in the literature: the low-

frequency (slow) or high-frequency (fast) multipath depending on the rate of change of the magnitude 

and phase introduced by the channel, given that the channel is not time-varying (static surrounding 

objects and antenna). Another terminology that essentially leads to the same separation is related to the 

refection surface that generates the observed multipath interference: the diffuse (or dense) multipath 

caused by rough surfaces which is manifested by fast variations in the received signal, and the specular 

multipath caused by smooth surfaces which appear as slow variations [12] (Figure 3). The roughness of 

a surface depends on the incident angle 𝜃𝑖, and it is characterized by the Rayleigh criterion [13]: 

Δℎ <
𝜆

8 cos 𝜃𝑖
            (14) 

Here, Δℎ represents the height difference of two points on the incident surface, and 𝜆 corresponds to the 

E/M wave wavelength [6]. 

 

Figure 3 - Specular and diffuse multipath 

In RF systems mirror-like smooth surfaces can be manifested as a single point source due to the fact that 

several coherent and directional propagation paths are added over a surface area, which introduce a 

dominant pattern in the signal. For a stationary transmitter-receiver-reflecting surface geometry the 

specular reflection is expected to show a constant phase difference with respect to the LoS signal. On 

the other hand, the randomness of the phase of the diffuse propagation paths (non-coherent) and the 

scattering of signal power in various directions make this type of multipath appear weaker than the 

specular case. The diffuse reflection then consists of a collection of signals of varying amplitudes and 

phases [14]. In addition, diffuse multipath might appear to originate from a sizable region and it is spread 

in path delay. Although in some cases the maximum absolute amplitude of the diffuse multipath may be 

relatively weak, the total strength of the diffuse multipath can become significant when it is non-

coherently combined after reflecting from a large area surface [14]. 

According to this separation, the statistical nature of specular paths could be characterized as 

deterministic and in reality each path (excluding the LoS) is usually a cluster of paths with similar angles 

and delays. Diffuse multipath tends towards a stochastic behaviour and might appear as increased 

random noise in the time-domain. In this study, the generic case of a combination between diffuse and 

specular components is considered, where the assumption that multipath propagation in wireless 

propagation channels can be modelled merely by deterministic paths is considered inadequate.  
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The channel’s coherence time (13) constitutes the definitive measure for slow or fast multipath.  For 

slow fading, the coherence time of the channel is large relative to the symbol period of the system. In 

this regime, the amplitude and phase variation introduced by the channel can be considered 

approximately constant. Slow fading is usually caused by shadowing where a large obstruction such as 

a large building diffracts the LoS signal or the signal is scattered by tree foliage. Therefore, specular 

components and shadowing could individually generate similarly structured waveforms at signal 

reception. In fast fading channels the opposite is expected where the coherence time of the channel is 

small relative to the symbol period of the system. It is noted that under deep fading circumstances the 

time-diversity of a fast-fading channel can prove as an advantage to recover parts of the information of 

the signal within the transmission time, while for a slow-fading channel it is not the case, and the signal 

information will be unrecoverable. 

Finally, in GNSS, multipath caused by either diffuse or specular reflections can manifest in both carrier 

phase and code measurements [15]. The distinction between carrier phase and code multipath is useful 

mostly due to the difference in error magnitude. Maximum carrier phase error is frequency dependent 

and can reach 4.8 and 6.1 cm for GPS L1 and L2 respectively [16]. Code multipath on the other hand is 

in the order of magnitude of several meters. Moreover, the ionospheric channels are characterized by 

multiple propagation paths, resulting in echoes for pulse transmission and in selective fading for 

narrowband waveforms [2]. 
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2.4 Multipath modelling in DS-CDMA systems 

Typically, all wireless systems experience signal fading due to the propagation media and the induced 

multipath phenomena. Most communication receivers assume that they track accurately the time-

varying channel parameters, and according to the derived relevant information they proceed to perform 

the decoding of the transmitted signal. Channel parameter estimates are afterwards updated in the 

receiver given the transmitted and received signal pair. If the receiver considers the channel 

characteristics known in the inherent signal processing it also assumes an additional white Gaussian 

noise. Then the estimation of the transmitted signal is also based on the white Gaussian noise model. 

The problem with this approach is that channel characteristics might not be reliably estimated given 

these input signals. Another questionable aspect is, if an accurate channel estimation is necessary to 

reliable communication [11]. In particular, wideband Code Division Multiple Access (CDMA) systems, 

might be prone to such problems due to their large bandwidth feature where information is spread across 

a “large” range of frequencies. 

In digital radio communications multipath propagation introduces time dispersion, which can cause 

errors due to inter-symbol interference (ISI). ISI is defined as the interference between adjacent bits of 

the same transmitter, and in a full description of the Direct Sequence CDMA (DS-CDMA) model, 

multiple access interference (MAI) shall also be considered. MAI regards the interference between bits 

of different transmitters [17], [18] and it is usually minimal under system design. Next, the mathematical 

representation of the transmitted signal 𝜘𝑠𝑎𝑡 for a generic transmitter 𝑠𝑎𝑡 is given [17]: 

𝜘𝑠𝑎𝑡(𝑡) = 𝐴𝑠𝑎𝑡𝑑𝑠𝑎𝑡𝑐𝑠̀𝑎𝑡(𝑡 − 𝜖𝑇 − 𝜁𝑠𝑎𝑡)         (15) 

 𝐴𝑠𝑎𝑡 is the signal power of satellite transmitter 𝑠𝑎𝑡 

 𝑑𝑠𝑎𝑡(𝑛𝑏𝑖𝑡) is the nth bit of the data transmitted from satellite 𝑠𝑎𝑡 

 𝜁𝑠𝑎𝑡 is a constant hardware delay 

Note: 0 ≤  𝑡 − (𝑛𝑏𝑖𝑡 − 1)𝑁𝑐 − 𝜏𝑠𝑎𝑡 − 𝑙𝑠𝑎𝑡  ≤ (𝑇𝑐 − 1) 

 𝑐𝑠̀𝑎𝑡 is the spreading-code sequence (PRN code) transmitted from satellite 𝑠𝑎𝑡 with number of 

chips 𝑁𝑐 per bit. In detail, 𝑐𝑠̀𝑎𝑡(𝑡) = 𝑐𝑠𝑎𝑡𝜓(𝑡 − 𝜖𝑇𝑐), with 𝑐𝑠𝑎𝑡 the chip value, 𝜖 represents an 

integer number, and 𝜓 is a spreading code waveform with duration 𝑇𝑐. 

o Timing variables are all multiples of the chip period: 

 𝜏𝑠𝑎𝑡 is the arbitrary delay of the signal 𝑠𝑎𝑡 which represents the bit-

asynchronous nature of the system and it takes integer values {0, … , 𝑁𝑐 − 1} , 

assuming the transmission is chip synchronous 

 𝑙𝑠𝑎𝑡 is the path delay expressed as chip multiples {0, … , 𝐿𝑠𝑎𝑡} 

Time variables usually correspond to chip rate sampling, although extension to arbitrary 

sampling can be straightforward to derive. 

Received signal sampled at chip rate [19]: 

𝑟(𝜉) = ∑ ∑ 𝐴𝑠𝑎𝑡ℊ𝑠𝑎𝑡𝑙𝑠𝑎𝑡
𝑑𝑠𝑎𝑡(𝑛𝑏𝑖𝑡)𝑐𝑠̀𝑎𝑡(𝜉 − (𝑛𝑏𝑖𝑡 − 1)𝑁𝑐 − 𝜏𝑠𝑎𝑡 − 𝑙𝑠𝑎𝑡) 

𝐿𝑠𝑎𝑡
𝑙𝑠𝑎𝑡=0

𝑁𝑠𝑎𝑡
𝑖    (16) 

 ℊ𝑠𝑎𝑡𝑙𝑠𝑎𝑡
 are the 𝐿𝑠𝑎𝑡 + 1 path coefficients for the channel 𝑠𝑎𝑡 (+1 for the LoS signal) 

 𝜉 is an integer number 
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2.5 GNSS pre-correlation signal model 

By design, GNSS signals have complicated waveforms since they reflect spreading code and data bit 

modulations embedded in their structure (and in some cases, sub-carriers are also used). The useful 

component for the user is the one that carries system-related information and it is encoded through the 

data bits whereas the spreading code modulation serves for channel access utilization where in the 

majority of GNSS systems the DS-CDMA is adopted.  

By employing different Direct-Sequence Spread Spectrum (DSSS) sequences (Figure 4) GNSS systems 

utilize multiple satellites to transmit signals at the same frequency at the same time. The user receiver is 

capable of separating these signals by exploiting the known copies for these DSSS PRN-modulated 

codes (with chip duration 𝑇𝑐). The method of several DSSS signals sharing a common carrier frequency, 

is referred to as Code Division Multiple Access (CDMA). 

 

Figure 4 - DSSS signal modulation [20] 

The signal carrier is a sinusoid generated by an oscillator and serves as the basis where all the above 

modulations are embedded. These signals are modulated in the time-domain to form an individual GNSS 

signal. A straightforward way to visualize the underlying frequencies is transforming the time-domain 

signal into the Fourier spectrum, i.e. the power spectral density (PSD) function, as shown in Figure 5.  



25 

 

 

Figure 5 - Example PSD of an L1 C/A signal incident to a GNSS antenna from 7 different satellites sampled at 20 Mhz 

The PSD shown in Figure 5 corresponds to a GPS L1 C/A simulated composite (RF) signal that includes 

PRNs 2, 4, 9, 11, 23, 27, and 31, sampled at 20 MHz (assuming IF of 4.13 MHz) 

Moreover, the user antenna usually receives multiple GNSS signals simultaneously from different 

satellite transmitters, and the receiver requires a matched filter approach (cross correlation at spreading 

code level) in order to separate between them and proceed to the data decoding per satellite transmitter. 

Before getting to the latter stage of processing, the composite signal (of the different transmitted signals) 

is passing through the RF-frontend where filtering, amplification and down-conversion is applied 

(Figure 6). The down-conversion is not a necessary operation but it is included in most commercial 

GNSS receivers and it is usually implemented by heterodyne mixers. Heterodyning is a two-stage 

approach performing consecutive down-conversions. 

A generic design and data flow of a GNSS antenna-receiver system is shown in Figure 6 where the 

antenna (ATX), Low-noise Amplifier (LNA), and down converter are still based on analog technology 

(RF chain). After the down-conversion step the digitization via the Analog-to-Digital Converter (ADC) 

takes place, and in some receiver designs an Automatic Gain Control (AGC) module is preceding the 

latter. In most receivers the addition of an AGC can benefit the processing of the ADC as it ensures that 

the signal-plus-noise magnitude is maintained within the required limits of the ADC detector. After the 

digitization of the signal from the ADC a bank of digital channels is built up performing acquisition and 

tracking. 



26 

 

 

Figure 6 - GNSS receiver data flow showing the data-point of collection for the studied algorithms 

As denoted in Figure 6 the data point of collection of the algorithms studied is essentially affected by 

the RF chain and ADC specifications. In particular, the RF chain presenting the relevant electronic 

analog components of a typical heterodyne GNSS frontend is shown in Figure 7. 

 

Figure 7 – A typical heterodyne RF frontend architecture of GNSS receivers [1] 

The pre-filter after the signal reception from the antenna facilitates as a protection from possible spurious 

emissions and prepares a “cleaner” signal to be input to the LNA. The conditioning imposed by the pre-

filter but also the amount of noise introduced by the LNA determine the quality of the observables in a 

definitive manner. After amplification the signal is usually filtered from image response and it is down-

converted into hundreds of MHz. This intermediate frequency (IF) output is filtered by the following 

narrow-band filter to reject potential nuisance spectral components and another down-conversion takes 

place next. The IF signal then, is in the frequency range of a few MHz. As shown in Figure 7, the down 

conversion (mixing and amplification) process depends on the quality of the underlying oscillator which, 

for a generic frontend, a Temperature Compensated Crystal Oscillator (TCXO) might be used in 

combination with the corresponding Phase-Locked Loops (PLLs) in each down-conversion stage. 

Mathematically, the model of the signal at the end of the receiver antenna is given as [1]: 

𝑥𝑎𝑛𝑡𝑒𝑛𝑛𝑎(𝑡) = ∑ 𝑎𝑖𝑒𝑗𝜑𝑖𝑟𝑖(𝑡 − 𝜏𝑖)𝑁𝑠𝑎𝑡
𝑖=1 + 𝜐(𝑡)        (17) 
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with 𝑎𝑖 being the signal power attenuation factor for satellite 𝑖 from 𝑁𝑠𝑎𝑡 visible satellites, 𝜙𝑖 is the 

phase delay and 𝜏𝑖 the signal propagation time from each satellite 𝑖 to the  receiver. Also, 𝑟𝑖(𝑡) represents 

the signal from satellite 𝑖 and 𝜐(𝑡) is a generic noise component. Without considering any effects, the 

signal 𝑠𝑖(𝑡) is expected to follow the signal-in-space design for each GNSS system. After down 

conversion and then digitization by the ADC, a signal component of the digitized intermediate frequency 

(IF) received signal at the end of the RF-frontend can be rewritten in the discrete time domain as: 

𝑟𝐼𝐹,𝑖[𝑡] = 𝐴𝑖𝑑̃𝑖[𝑡 − 𝜏𝑖]𝑐̃𝑖[𝑡 − 𝜏𝑖]cos[2𝜋(𝑓𝐼𝐹 + 𝑓𝐷𝑖
)𝑡 + 𝜑𝑖]      (18) 

Here, 𝑑̃[𝑡] represents the data sequence, 𝑐̃𝑖[𝑡] the spreading code sequence, 𝑓𝐷𝑖
 the carrier Doppler 

frequency shift due to the relative movement between receiver and satellite 𝑖, and 𝐴𝑖 is the amplitude 

received and modified by the RF-frontend. The tilde above the data and spreading code parameters 

represents possible modifications introduced from the RF-frontend electronics.  

In a more realistic scenario the reception of multiple reflected signals (also diffracted and deflected ones) 

from one GNSS transmitter are also included in this superposed signal due to the channel’s geometry 

and material properties. In GNSS literature these effects are referred to as multipath propagation effects. 

It is noted that a wide variety of other influences might affect this waveform including hardware effects 

and interference from artificial sources, among others. The composite signal in discrete time-domain 

can be written as: 

𝑥[𝑡] = 𝑠[𝑡] + 𝑣[𝑡]           (19) 

with 

𝑠[𝑡] = ∑ 𝑟̆𝐼𝐹,𝑖[𝑡]𝑁𝑠𝑎𝑡
𝑖=1            (20) 

and 𝑟̆𝐼𝐹,𝑖[𝑡] being the multipath-afflicted version of the digitized IF received signal: 

𝑟̆𝐼𝐹,𝑖[𝑡] = 𝑟𝐼𝐹,𝑖[𝑡] + 𝑀𝑃𝑖          (21) 

Here the LoS signal 𝑟𝐼𝐹,𝑖[𝑡] shall have an associated multipath contribution that can be mathematically 

described from: 

𝑀𝑃𝑖 = 𝐴𝑖 ∑ 𝑎𝑖𝑗
[𝑡]𝑑̃𝑖[𝑡 − 𝜏𝑖 − 𝜏𝑗]𝑐̃𝑖[𝑡 − 𝜏𝑖 − 𝜏𝑗] × cos(2𝜋𝑓𝐼𝐹𝑡 + 𝜑𝑖 + Δ𝜑𝑖,𝑗 +

𝑁𝑒𝑐ℎ𝑜𝑒𝑠,𝑖

𝑛=1

(Δ𝜔𝑗 − Δ𝜔𝐼𝐹)𝑡)            (22) 

Therefore, the signal without the random noise is given next, and a schematic of the system models 

follows. 

𝑠[𝑡] = ∑ 𝑟𝐼𝐹,𝑖[𝑡]𝑁𝑠𝑎𝑡
𝑖=1 + ∑ 𝑀𝑃𝑖

𝑁𝑠𝑎𝑡
𝑖=1          (23) 
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Figure 8 - Combination of signals upon reception in simulations 

Therefore, the pre-correlation composite signal can be described from (Figure 8): 

𝑥[𝑡] = ∑ 𝑟𝐼𝐹,𝑖[𝑡]𝑁𝑠𝑎𝑡
𝑖=1 + ∑ 𝑀𝑃𝑖

𝑁𝑠𝑎𝑡
𝑖=1 + 𝑣[𝑡]        (24) 

with the random noise process 𝑣 representing the thermal noise of the receiver. 

An example of how the first (summation) term is given next. Here we simulate a waveform for 7 GPS 

L1 signals (PRNs 3,8,10,12,20,22,29) where the carrier amplitudes have been selected to be equal and 

having value 1 for simplicity. However, each carrier has different phase offsets as well as different 

Doppler frequency shifts to each other from the intermediate frequency. The intermediate frequency is 

selected as 4.1304 MHz and the sampling frequency is 20 MHz. Also, waveform duration is chosen to 

be 1 ms which is equal to the spreading code duration while the codephase of these spreading codes is 

randomly defined. 

 

Figure 9 - An example of a GNSS signal waveform for 1ms duration received from an antenna/receiver system 
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Simulating one multipath echo for each transmitter and adding them on top of the previous term, the 

total signal 𝑠[𝑡] will look like the orange graph: 

 

Figure 10 - An example of GNSS signal waveform for 1 ms duration  both for the case of considering only SIS structure (no 

MP) and the same signal including multipath components 

Then,  

∑ 𝑀𝑃𝑖
𝑁𝑠𝑎𝑡
𝑖=1 = 𝑠[𝑡] − ∑ 𝑟𝐼𝐹,𝑖[𝑡]𝑁𝑠𝑎𝑡

𝑖=1          (25) 

The “residual” MP signal would be: 

 

Figure 11 - The signal that is produced by considering only the MP contributions of Figure 6 
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The main goal is to exploit this “residual” MP signal from 𝑠[𝑡] to infer the multipath propagation 

environment that generated the final signal. 
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2.6 Empirical/Statistical models representing GNSS multipath 

Fading channel models are used to describe the statistical behaviour of electromagnetic transmission of 

signals in wireless communication. Mathematically, fading is modelled as a time-varying random 

change in the amplitude 𝐴𝑛(𝑡, 𝜏𝑛(𝑡)) and phase 𝜙𝑛(𝑡, 𝜏𝑛(𝑡)) of the transmitted signal, given the delay 

𝜏𝑛(𝑡), therefore, these parameters can be represented by stochastic processes. Depending on the signal 

propagation conditions a variety of models have been developed over the past years. Next, the most 

widely used statistical models are briefly reviewed, each sufficiently describing many possible scenarios 

under specific conditions. 

Multipath propagation causes Rayleigh fading [21] and the standard statistical model of this gives a 

distribution known as the Rayleigh distribution. Usually, Rayleigh fading occurs in dispersive 

environments with several echoes each exposed to different delay, gain, and phase shift, and often 

constant. If a high amplitude (usually LoS) component is included in the mixture, the resulting 

distribution becomes Rician corresponding to so-called Rician fading conditions [22], [23], [24]. In fact, 

Rayleigh fading is a special case of Rician fading. Both Rayleigh and Rician distributions describe the 

statistical behaviour of the signal gains when propagating through dense environments that include 

numerous reflectors. Usually, either type of fading implies a frequency selective channel and the 

presence of inter-symbol interference.  The random process of flat Rayleigh fading with a number of 

multipaths can be simulated with the sum-of-sinusoid method resulting in to Clarke‘s reference model 

[25], which in turn gives rise to the Jakes PSD (see [26]). 

Although Rayleigh and Rice distributions are the most commonly applicable into indoors and urban 

telecommunication channels, several other statistical models exist (specific to the mobile satellite 

channel) such as the Norton [27], Nakagami [28], Loo [29],  Lutz [30] and κ − μ [31] model. It is worth 

mentioning that a spoofing or meaconing attack can in principle cause multipath interference as well. 

A thorough study covering all the related work on the statistical model for the indoor channel (NLoS 

conditions) is found in [32]. The current state-of-the-art of the indoor model was pioneered by Saleh 

and Valenzuela (S-V) [33] which showed some similarities to earlier work conducted to describe the 

urban canyon multipath behaviour [34]. In the latter reference authors showed that rays arrive at the 

receiver as Poisson-distributed events with independent Rayleigh-distributed amplitudes and uniform 

distributed phases. In the S-V model the major finding was that rays arrive at the receiver grouped in 

clusters and a second Poisson process was introduced to describe clusters’ times of arrival. Up to present, 

the S-V model remains the fundamental indoor channel model and it is generic to RF propagation not 

just for the GNSS bands.  

One restriction of the S-V model is it describes a simple path for the multipath rays, meaning that the 

signal is not assumed to penetrate a number of walls [32]. Authors also mention an idea taken from the 

Lutz model (originally developed for outdoor multipath) where a classification of direct path, near 

echoes, and far echoes comes with a statistical characterization given for each part. Most work related 

to indoor channel characterization is pioneered mostly by the joint groups of IEEE 802 which have 

established several standards. The formulation of these standards is found on a comprehensive 

consideration of all the relevant physical aspects comprising the propagation channel. It appears that 

according to their studies, a model similar to the one propose by Lutz [30] covers most practical 

scenarios. Finally, the S-V model is still considered the baseline for all indoor related environments, and 

modifications could be used to improve accuracy.  In particular, the physics of the indoor propagation 

channel are discussed in [35] where authors provide a detailed study that could aid in the development 

of more accurate models.  
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Depending on the surrounding environment of the receiver, models that accurately represent each 

(generalized) scenario have been proposed in the literature. For open sky conditions, the Weibull 

distribution [36] has been proposed to describe corresponding amplitude fading [37], [38]. For 

environments that shadowing takes place, amplitude change is often modelled using a log-normal 

distribution with a standard deviation according to the Log Distance Path Loss Model. Experimental 

results have been collected and characterized in [39] for no reflectors, giving rise to Log-Normal and 

Gamma distributions. The best models to represent fast multipath-fading are the Rician, Nakagami-m 

or Rayleigh, and in [39] an experimental verification and comparison according to corresponding 

detailed scenarios is included. The Nakagami-m distribution has also been proven to fit ionosphecic 

scintillation induced fading, a phenomenon causing the alteration of the signal amplitude and the 

velocity when the ionospheric refractive index changes. Parameters that affect scintillations include the 

strength, scale and location of the ionospheric irregularities, but also the signal frequency or the 

transmitter and receiver relative geometries.  An excellent review on ionospheric scintillation models 

can be found in [40] with the most “preferred” ones being a bivariate distribution that would reduce to 

the product of a Nakagami-m distribution for the intensity [41], and a normal distribution for the phase 

in the limit of zero correlation between the two variates [42]. Performance results on employing these 

distributions can also be found in [43]. 

The suitability of each model has been assessed in [44] where a comparison of the ‘goodness-of-fit’ of 

Rayleigh, Nakagami, Weibull, Rician and Beta distributions based on the Kullback-Leibler (KL) 

divergence criteria. Another view on stochastic process modelling is provided by [45] which showed 

that the dynamics of the instantaneous power associated with each path can be modelled using mean-

reverting Ornstein-Uhlenbeck processes, and higher order models. The authors introduce the concept of 

the state of the channel which corresponds to the solution of stochastic differential equations driven by 

white-noise (Brownian motion).  

 All models mentioned so far regard a single source signal. Considering the case of the RF GNSS signal 

where several signals from different transmitters might be superposed along with their corresponding 

echoes, the statistical modeling becomes more complex. An excellent introduction to parametric models 

that describe the sum of multiple fading signal components is given in [46]. Essentially, the resulting 

model is a combination of several random variables following Rice, Nakagami or Rayleigh stochastic 

models with deterministic parameters. An even more complete treatment on the subject that incorporates 

the Gaussian noise is discussed in [47]. In general, notable research has been performed in this area [48], 

[49], [50], [51], [52], [53], but the main drawbacks of estimating a parametric model such as the ones 

described in the references is the complexity and the lack of closed form solution. 
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3 State-of-the-art in detection, characterization and mitigation of 

GNSS interference 

3.1 Introduction 

An up-to-date and complete study of the vulnerabilities of GNSS systems is presented in [54], and a 

recent review of the relevant literature is compiled in [55]. Given these surveys a few receiver-

autonomous architectures have been presented that combine detectors and countermeasures for most 

prominent GNSS threats, as for instance [56] and [57]. The two latter studies follow two different paths 

to address “multi-threat” detection and mitigation. In [56] several receiver architecture stages of a vector 

tracking loop (and the corresponding outputs) are adapted by a dedicated threat detection-mitigation 

algorithm each mitigating multipath, RFI and scintillation events. In [57] the algorithm exploit outputs 

from two stages: the post-correlation signal monitoring quality metrics and signal power measurements 

demonstrating high performance in distinguishing low-power spoofing from nominal multipath. It is 

also capable of providing information on the presence of any other type of RFI source. 

Another interesting direction (and the one followed in this study) for detecting GNSS threats can be 

viewed from a context detection perspective [58]. For instance, in [59]⁠ authors presented a machine 

learning algorithm that classifies different types of multipath environments using direct correlator 

outputs (thus employing post-correlation observables). An almost exhaustive survey of the methods used 

to detect and characterize GNSS channel threats is [60]⁠. As pre-correlation detectors are the focus of 

this research, several pre-despreading detection methods can be found in [61] and [62] and the references 

therein. The latter two references include algorithms that address mostly RFI-related threats and it is 

worth mentioning that pre-correlation multipath detectors (and/or classifiers) are rare in literature. A 

few notable references on multipath detectors are [63], [64] and [65], [66] for multipath channel 

estimation (but not restricted to GNSS applications). 

RFI is one of the most feared events compromising the functionalities of a GNSS receiver and the 

corresponding user-level applications dependent on it [67]⁠, [68]⁠. RFI can be coarsely categorized to 

unintentional and intentional with the latter further separated to jamming and spoofing. A study on 

different types of interference characteristics can be found [69]. Jammer signal characteristics have been 

studied in detail in [70], [71] and [72]. Different approaches to jammer’s detection have been 

investigated such as the detection of the start of jamming event/ transient signal characteristics [38],  

Carrier-to-Noise Density Ratio [69] tests and Structural Power Content Analysis in [62]. Also, a review 

on specific types of GNSS  jammers and their impact on low-cost GNSS receivers is presented in [73]. 

These types of interference show remote similarity to the auto-correlation behaviour produced my 

multipath and therefore these approaches are not studied further. However, there is a particular type of 

RFI that resembles the characteristics of multipath interference, that is a spoofing attack. 

The main similarity between spoofing and multipath interference is that the received spoofing 

interference is statistically correlated with the authentic signal. However, multipath-induced structured 

interference is not intentional while spoofing usually involves an attacker who can adjust signal 

parameters such as signal power, code phase, carrier phase, and signal structure for deceiving the signal 

processing of the user receiver. 

Detailed surveys on spoofing attack characteristics can be found in [74] and [75], as well as in [76] but 

also in [77] where authors are focusing more on GNSS vulnerabilities specific to spoofing. The impact 

of spoofing on various applications is discussed in [78].  A relatively recent study on spoofing impact 

on smartphones [79] showed that a simplistic spoofing attack is not fully successful in open-sky 
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conditions. All these works can prove a valuable resource in defining signature features for specific 

threat detection. A survey on spoofing detection SDR solutions [80] but also the proposal and test of an 

SVM-based detector can be found in [81] and [82]. 

From the available literature on pre-correlation threat detection and characterization it is evident that 

relevant research is limited. Most threat detectors involve binary characterization on whether the threat 

is present or not, for instance for an RFI source or an ionospheric scintillation event. On the other hand, 

the vast majority of excessive multipath detectors use as inputs post-correlation observables, i.e. 

sequences per satellite signal. The main reason for avoiding to use the superposition of GNSS signals in 

pre-correlation level (RF signal) is feasibility on real-time applications and the reliability of the result. 

This is because the estimation of the channel parameters such as amplitudes and code delays of multipath 

or non-line-of-sight signals requires very high sampling rates (increased memory requirement) and in 

consequence, a powerful processor to provide a fast solution; but also a very complicated model. 
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3.2 Multipath detection methods 

DSP methods are usually distinguished in GNSS literature according to the applicable processing stage 

in the receiver. As described previously, the great majority of GNSS transmitter signals are modulated 

according to the DSSS technique and follow the CDMA property where multiple transmitters share the 

same channel. The receiver employing its saved copy of the spreading sequence can then distinguish 

each transmitter signal through the cross-correlation operation (and specify if the signal is received). 

Observations available before or after correlation give rise to pre-correlation or post-correlation DSP 

algorithms respectively. Here, we are interested in studying methods that operate to the former category. 

In the GNSS-RFI literature detection techniques are usually separated into time-domain, frequency 

domain, and statistical-domain. The spectrogram method can also be considered as another distinct class, 

providing a representation of the frequency spectrum of a signal as it varies with time (a time-frequency 

method of analysis). A big percentage of pre-correlation GNSS threat signal detection methods involve 

statistical hypothesis testing and require the construction of a test statistic that employs specific 

observables [39]. In time domain the observable is usually the power content, in the frequency domain 

the power spectral density, and in the statistical domain the observed time-series distribution. Binary or 

multiple hypothesis testing is a powerful tool that enables detection and classification of signals in two 

or several classes, respectively. Prime requirement in most cases is the prior knowledge of the functional 

form of the distribution of the data, free from other influences.  

One of the very few tools available - not tested on pre-correlation GNSS data - and specifically designed 

to analyse periodic structures in frequency spectra is referred to as Cepstrum. Its name is an anagram of 

the spectrum and it is computed as the inverse Fourier transform of the logarithm of the estimated signal 

spectrum (Fourier transform) [83]. It is a time domain representation and it is the result of three steps:  

1. Transformation of a signal from the time domain to the Fourier domain,  

2. Computation of the logarithm of the spectral amplitude, 

3. Transformation to “quefrency” domain, where the final independent variable, the quefrency 

has a time scale.  

Depending on whether the initial signal is in complex form or it is a power time-series it computes the 

complex or power cepstrum, respectively. 

Frequency domain techniques are generally based on spectral estimation [84], [85], [86] of the incoming 

signal and their performance relies on time-frequency resolution which is essential in processing time-

varying signals. For instance in [87] it is shown that long observation windows enables detection of low 

power RFI (structured interference). Frequency domain techniques typically compare the spectrum 

(PSD) of the received signal with a theoretical threshold which is usually determined according to a 

statistical model representing the received signal. Possibly the lack of related works using the frequency 

domain techniques for the multipath is that it does not demonstrated a clear pattern according to a strong 

frequency component present (in the spectral density it would be expected as a spike). 

Statistical techniques monitor the input signal statistical distribution. The main assumption in these 

techniques is that in the absence of any interference the incoming signal is approximately Gaussian 

because both the thermal noise and the set of received signals are well described by Gaussian 

distributions. In the presence of sufficiently strong interference the distribution of the received signal is 

often non-Gaussian. Gaussianity tests in time-series collected by the receiver can be applied both in the 

time-domain and frequency-domain [88]. Although these goodness-of-fit tests are frequently used, they 

were developed for independent and identically distributed time-series and have been shown to perform 
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poorly for dependent variables. This is mainly the reason that these detection methods are not suitable 

for multipath interference. 

One of the first references of statistical methods dealing with correlated/colored data can be found in 

[89] and later in [90]. The main drawback of such Gaussianity test methods is that they require a 

sufficient period where interference is present to reliably estimate the Probability Density Function 

(PDF). It has been shown that for highly dynamic RFI sources as well as for wideband interferers such 

as spoofers, such methods are likely to fail [60]. An example of statistical techniques in GNSS 

interference context is [91] where information from second order statistics is deployed to perform a 

goodness-of-fit test. Higher order statistics have also been used to detect non/Gaussianities such as the 

kurtosis method using fourth-order cumulants in [92], as well as references [93], [94] which are not 

restrictive to GNSS. 

In cases where the a priori probability distribution function is not known - for instance for the reception 

of a weak signal - further statistical concepts must be introduced such as locally optimal tests [95]. 

GNSS signal changes greatly from time to time but it is also uncertain, which means it is difficult to 

build exact models or prescribe an exact threshold. Numerous pre-correlation interference detection 

methods relying on hypothesis testing and/or setting decision threshold that do not require non-

interference GNSS signal model have been proposed, for instance [96], [97], [98], [99], [100], [101], 

[102], [103], [104]. These methods are strongly linked to the non-parametric measures of the Receiver 

Operating Characteristic (ROC) curve. The ROC curve is a graphical plot that illustrates the diagnostic 

ability of a binary classifier system as its discrimination threshold is varied.  

An evaluation of the detection performance of several commercial pre-correlation interference detectors 

can be found in [105]. The evaluations are based on actual measurements of GPS signals and different 

types of jamming signals. In this survey a method of detection on automatic gain control (AGC) level is 

also included.  In the presence of spoofing, received signals show an increase on their power content, 

leading to changes in the AGC level. However, the AGC gain can be disrupted by various interfering 

signals without necessarily distinguishing between them [62].  

Furthermore, in [106] the performance of four algorithms was  compared (pulse, peak-picking, single 

channel kurtosis, and spectral kurtosis methods) for detecting sinusoidal pulsed interference in 

microwave radiometer systems. Another work related to pre-correlation interference detection is 

presented in [107] where authors built an algorithm based on four distinct steps: 1) Setting Short-time 

Fourier-transform parameters to obtain the spectrograms of the radiometer output signal; 2) Insert the 

spectrograms of the radiometer output signal into a power-law detection algorithm [108]; 3) Determine 

the detection threshold given by the false alarm rate; 4) Obtain the detection result by comparing the 

power-law detector output with the threshold. Again, unless there is a very fine-tuning of detection 

thresholds, involved multipath effects might be too subtle to be detected. Other examples include the 

more sophisticated Bayesian M-ary hypothesis testing [95] where the major drawback - as analysed by 

[109] - regards the fact that as the number of tests increases the number of ‘false findings’ tends to 

increase as well. Another alternative of detections’ fusion approach is presented in [110] which is based 

on Dempster-Shafer theory of belief functions [111].  

Finally, there are very few published works that make use of statistical methods in pre-correlator GNSS 

signal processing for filtering purposes. A direct application of singular value decomposition (SVD) on 

a data observation matrix composed of a number of realizations of the signal vector is presented in [112]. 

As the authors state this type of SVD-based signal detection is widely used in cognitive radio networks, 

but here, it is employed for RFI signal detection. Also, in [113] a PCA-based interference detection 

scheme (Karhunen–Loeve Transform) is presented where the statistical representation of the signals 

makes the discrimination of unwanted RFI easier.  
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3.3 Multipath mitigation and filtering techniques overview 

In real conditions and depending on the signal path there is a significant probability that the channel will 

experience a deep fade. Multipath propagation is the main cause of signal fading and poor performance 

in traditional communication systems, therefore its mitigation is of great importance to any wireless 

receiver (GNSS or not). There have been several different approaches toward multipath reduction and/or 

filtering by introducing a different type of domain-diversity. For instance, multipath effects can be 

mitigated by using diversity: transmitting the signal over multiple channels (composite channel). This 

way each channel experiences independent fading and signals are coherently combined at the receiver, 

yielding a low probability of fading since it is proportional to the probability of a simultaneous fade of 

all component channels. Diversity can be achieved in time, frequency, or space domains and most 

common techniques include diversity reception and transmission, the use of orthogonal frequency-

division multiplexing (OFDM) in transmission, the use of so-called Rake receivers (i.e. multiple 

correlators and analysis per visible signal), the standard matched filtering [2] technique, but also the use 

of space–time codes, and multiple-input and multiple-output (MIMO) method. 

Specifically for GNSS, Betz [114] designed the binary offset carrier (BOC) modulation to enhance 

robustness to multipath interference with respect to the binary phase-shift keying (BPSK), which was 

widespread in GNSS systems. The main idea behind BOC modulation is to reduce the interference with 

BPSK-modulated signal, which has a sinc function shaped spectrum. Variations to this approach exist, 

see for instance [115]. Near-far interference in multiple-access communications can also be reduced by 

multiuser detection methods [116]. However, implementation of such a detection scheme requires that 

the amplitudes and delays of the incoming waveforms to be known a priori, or jointly estimated [117]. 

Finally, a comprehensive survey of the dense/diffuse multipath filtering methods is given in [118].  

Before closing this paragraph, an alternative case [119] is included that has been applied on narrowband 

interference suppression for GPS navigation using a neural-network-based filter. This is an example of 

work that relies on machine learning algorithms to perform interference detection and shows a potential 

for improved detection sensitivity that could potentially be applicable to multipath as well. Machine 

learning algorithms have been increasingly showing their capacity to perform more accurate detection 

tasks and they could prove very useful tools in mitigating the complex effect of multipath propagation. 
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3.4 Multipath estimation techniques overview 

This paragraph is focused on established techniques used to perform multipath channel estimation. 

Channel estimation and channel characterization are two very closely related terms, since the estimation 

of the parameters could in principle also lead to a characterization when compared with templates. The 

overview is performed in spite of the fact that in a GNSS receiver the multipath features of the 

propagation channel might be very subtle or could possibly disappear in the noise floor [120]. This is 

the reason that “mapping of the local environment” or “context awareness” or channel characterization, 

is a very demanding task, and ways to exploit the maximum information available are the main goal of 

this research. 

Multipath parameters such as the direction of arrival (DOA) are considered out of scope as the focus 

here is on time-diversity for a single antenna application. The latter restriction also implies that spatial-

diversity techniques are also excluded from this review as well. In particular, the estimation methods 

used for the (complex) amplitude and delay multipath channel parameters would only be considered, 

and there have been few research publications considered relevant to the objectives of the thesis. 

Notwithstanding this general direction followed, it is worth referring briefly to the SAGE (Space 

Alternating Generalized Expectation Maximization) algorithm that has been applied for channel 

estimation in DS-CDMA communication systems. SAGE has been used in estimating the propagation 

time-delay of the LoS signal in a GNSS receiver under the presence of severe multipath (SMR = 5dB) 

[121] but also tested under a Kalman filter approach through simulations with 2 GPS C/A signals [120]. 

It assumes the use of a sensor array and the estimation parameters comprise of complex amplitude, 

delay, Doppler frequency, incident azimuth and incident elevation of all multipath signals. The power 

of SAGE lies in estimating the parameters of each multipath component sequentially, in contrast to 

typical Expectation Maximization that computes those in parallel in one iteration step. 

An example of estimating the complex amplitude and delay by using OFDM signals is described in 

[122] where authors propose the exploitation a large number of known pilot symbols. The possibility to 

adapt this concept to GNSS signals could theoretically be feasible by taking into account the trade-off 

between the data rate and the multipath channel estimation performance, but it would involve re-

designing system parameters. A parametric multipath estimation method in the frequency domain is 

found in [123] but only for BOC signals. A different example of deploying the multipath for mapping 

purposes regards 5G communication signals and mmWave propagation [124]. 

A different approach to signal cross-correlation performed by all GNSS receivers could be regarded as 

a pre-correlation method from the perspective that it does not require a cross-correlation operation. A 

data-driven method is presented in [125] where the standard correlator scheme is replaced with a deep 

neural network architecture, aimed to provide enhanced robustness to the receiver in challenging 

environments. The method shows that it can learn the complex characteristics of the GNSS satellite-to-

land channel, however, it is observed that the investigated Neural Network model requires a multi-

correlation scheme thus involving an increased computational cost.  

A potential route to perform channel estimation for each different satellite signal visible from the user 

antenna on the same time could be given by Blind Source Separation (BSS) techniques. Exploiting the 

orthogonality feature of the signals originating from different transmitters due to the spreading code 

sequence, CDMA signals can be theoretically separated when the sampling rate of the signal is equal to 

the chipping rate. The study of the use of BSS approaches to maximize output signal-to-interference 

ratio (SIR) for recovering source signals from observed signals (without prior knowledge of a mixing 

matrix or the source signals, i.e. unsupervised), is investigated. In the simplest case, received signals in 

a CDMA receiver can be considered as signals generated by the linear convolutive model of statistically 
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independent components of independent users [126]. However, there are several challenges before any 

BSS algorithm can be used for the GNSS RF signal.  

First challenge in the pre-correlator stage of the receiver is that the number of satellite signals visible is 

unknown, and the great majority of BSS methods rely on the a-priori knowledge of the number of source 

signals in order to perform the separation. Second problem is that they expect a number of synchronous 

signals, not a single stream of data. One of rare examples in literature of direct decomposition of the 

single channel data to independent components is studied in [127] where Non-negative Matrix 

Factorization (NMF) methods are used. Another difficulty regards the fact that they work with 

statistically independent source signals, and although the satellite signals are quasi-orthogonal, each one 

(or a subset) of them in “accompanied” by one or many delayed replica, therefore the performance of 

the algorithms might be sub-optimal. Also, since BSS algorithms rely on a known number of source 

signals they are distinguished in overdetermined (if the number of sensors exceeds the number of signals 

source) or underdetermined optimization which limits their capacity to be adaptive. 

Solutions to each of the above-mentioned challenges have been proposed. The determination of the 

number of source signals can be resolved by using a blind multiuser detector [128]. Another approach 

is to initialize the Independent Component Analysis (ICA) algorithm by first performing a clustering 

step to derive an initial number of sources estimate [129]. Alternative methods for estimating the number  

of  sources  in  instantaneous  and  anechoic mixing  systems  without  the  knowledge  of  the  system  

parameters is proposed in [130] and [131]. The term ‘anechoic mixing’ is often used in acoustics’ 

literature and it refers to observations of different sources made from different sensors with but with no 

multipath echoes, only direct signals. 

The problem of separating a mixture of signals from a single sensor/channel is rather common 

in many different fields such as in communication and biomedical signal processing applications [132], 

[133], [134], [135], [136], [137], [135][138], [139], [140] as well as speech and audio processing [141], 

[127], [142], [143], [144], [145], bioinformatics-chemometrics-environmetrics-image processing (see 

[127] and references therein), and telecommunications [146]. The common practice in all these works 

is the use of a signal decomposition step which results to a multi-dimensional expansion of the single-

channel data, and then the derivative mode functions are used to feed a standard BSS algorithm. A 

superior performance in detecting and filtering RFI threats in the GNSS context has also been reported 

[60] by using this approach. Another advantage of employing decomposition methods is that it could 

resolve the problem of over- or under-determined optimization, given that the decomposition result 

always provides more mode functions than the source/satellite signals. 

Finally, as highlighted in [145], most ICA algorithms are proven to be consistent even when considering 

statistically dependent data. In fact, blind separation of convolved mixtures [147](Ch.19.2) is 

particularly challenging considering that observations are the mixtures of latent components as well as 

their delayed versions, thus the unknown parameters increase significantly. However, there are research 

works which propose algorithms for convolutive BSS such as [148], [149], [150], [151], [152], [153], 

[154]. Other methods include Principal Components Combining for dense correlated multipath fading 

environments [155], [156], and the use of a deep Recurrent Neural Network [157], [158]. 
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3.5 Summary and discussion 

In this chapter an overview of the techniques used to analyse and mitigate the multipath effect in GNSS 

signals is presented. Most methods appear to avoid operating on the raw data directly, but as a first step 

they transform the data into feature space to isolate multipath effects from the useful data. In the pattern 

recognition terminology, this step is usually referred to as feature extraction, and it commonly takes 

place before the detection/filtering/estimation algorithm. The different methods performing feature 

extraction is GNSS signals per domain are summarized: 

 Statistical-domain methods; for instance, based on optimization criteria of mutual information, 

entropy and kurtosis. 

 Frequency-domain methods; based on spectral transformations such as Fourier, Wavelet, or 

adaptive basis transformations and the corresponding spectral representation. 

 Time-Domain methods 

 A combination of time and frequency-domain methods named time-frequency representations 

such as 3D representations (power-time-frequency). This family of approaches could be seen as 

an image of contours (2D) but since there is a grid (defined number of points with certain time-

frequency coordinates), the resolution plays an important role. 

In conclusion, the main objective of the feature extraction step is the transformation of the data to a 

domain that the properties of underlying processes are manifested as distinctly as possible. An accurate 

and reliable feature vector can significantly improve the performance of the estimator that follows. In 

the next chapter several feature extraction methods with the potential to capture the essential properties 

of the multipath effect in the time domain GNSS signals are presented. The goal of these algorithms is 

to provide the input to the multipath environment classifier. 
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4 Feature extraction techniques for GNSS multipath 

4.1 Introduction 

This chapter includes the theoretical investigation and numerical simulations on existing feature 

extraction methods and/or analysis tools. A selection of methods suitable for capturing essential 

properties of multipath patterns in the pre-correlation waveform of a GNSS receiver was performed 

according to numerical simulation tests relying on GPS L1 C/A signal characteristics. Feature extraction 

is a critical step in the methodology followed as the algorithmic steps that precede classification depend 

on the quality and the “separability” of the features generated during this stage.  

In challenging single-channel signal analysis, it is custom to use a multi-dimensional expansion of the 

signal into several time-domain components to create features in multiple scales and/or frequencies by 

using signal decomposition methods. This process is usually characterized as a feature creation step that 

generates features on each component, and could be seen as a pre-processing and/or filtering step before 

the final feature extraction. Examples of multi-dimensional expansions are Wavelet Decompositions, 

Empirical Mode Decomposition (EMD) [159], [160] and its variants [161], and Singular Spectrum 

Analysis (SSA) [162], [163]. Then, feature extraction methods in the statistical and/or time-domain are 

usually applied to each component/mode generated.  

A special mention to the importance of non-linear behaviour of the multipath phenomenon in 

wireless communication channels [164] shall be made at this point as an extra consideration in the 

selection of the appropriate analysis tool/s. Without delving deeper to the detail of each method, time-

frequency representations and signal decomposition methods such as the Windowed Fourier-based 

method and the Wavelet Transform are built on the additive principle, and theoretically, might not be 

suitable to analyse multipath behaviour. Decomposition methods such as EMD and SSA might be more 

appropriate or more advanced tools such as Holo-Hilbert Spectral Analysis [165] that is reported to be 

able to extract not only linear additive information. In conclusion, the selection of the feature extraction 

approach shall not only be able to accommodate for the non-linearities of GNSS multipath but also 

maintain a low algorithmic complexity. Further details on the criteria considered for the methodology 

followed in this research are given in the next paragraph.  
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4.2 Feature extraction methods 

This section reviews and assesses methods potentially suitable to model multipath afflicted power-

fluctuation sequences generated at the end of the ADC in the receiver GNSS RF-frontend. In the simplest 

terms, and only by considering the GNSS signal design and the thermal noise of the receiver, the 

waveform under study (GNSS signal) is a Wide Sense Stationary (WSS) process [102]. However, the 

main assumption made for the rest of this paragraph is that generic pre-correlation data sequences - 

given that multipath interference is present - can be modelled as autoregressive process AR(k) of order 

k and the WSS model does not hold. 

The reason of selecting an AR(k) model is because the signal under study could be described as a 

superposition of self-similar processes due to the repetitive structure of spreading code sequences when 

received from several paths with different delays. A model could be built using a linear combination of 

an arbitrary number of Markov (autoregressive) processes if parametric estimation was the objective. 

More in detail, the RF sequence contains one to several transmitter signals and due to the quasi-

orthogonality of the spreading code sequences, interference signatures (constructive-destructive 

interference) might not be evident since they will “cancel-out” within a spreading code duration. 

However, if at least one multipath echo (delayed copy) is also “added” in the RF sequence for each 

transmitter then some constructive-destructive interference pattern might arise.  

Given the autocorrelated random processes assumption holds, the criteria for adopting feature creation 

methods are (to be): 

 Suitable for capturing the properties of crossover phenomena and in particular to be able to 

distinguish between autocorrelated random processes and (uniform) random noise 

 One-value (scalar) metric describing the characteristics of the total time-series/waveform (for 

instance the PSD is a power-frequency function, not a scalar value) 

A list and the corresponding description of candidate methods for the feature extraction block of the 

feature-based classification approach (Figure 12), is presented.  Candidates presented next include the 

Hurst Exponent, Detrended Fluctuation Analysis, Correlation Dimension, Fuzzy Entropy and 

Recurrence Period Density Entropy. It is noted that multi-scale features could theoretically enhance the 

performance of the feature extraction by adding more feature observables per measurement. 

Representative examples of decompositions in individual bands using one sample in feature-based 

classification but regarding different applications can be found in [166], [167] and [168]. However, this 

direction will not be explored further in this work. 

 

Figure 12 - Feature-based classification building blocks and data flow 
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4.2.1 Hurst Exponent 

The Hurst exponent (HE) was first introduced in statistical hydrology by Harold Edwin Hurst [169], 

[170], and it quantifies the autocorrelations of time series and corresponding scaling properties. 

Originally it was developed as a metric to describe linear combination of (independent) autoregressive 

processes of order one. Mandelbrot [171] established its direct relation to the fractal dimension in fractal 

geometry, usually conceptualized as a measure of the “intensity” of randomness. In fractal geometry a 

fractal is a geometric shape that is self-similar and has fractional dimensions. 

The Hurst method yields an exponent 𝐻, which results in a fractal dimension 𝐷𝐹  =  2 − 𝐻 and it is 

defined as: 

𝐻 =
log(𝑅 𝑆⁄ )

log 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
            (26) 

with 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 the duration of the sample data and 𝑅 𝑆⁄  the rescaled range which quantifies the amount 

of divergence of time series, defined as “the range of the mean-centered values for a given duration 

𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 divided by the standard deviation for that duration”. 

The Hurst exponent 𝐻 =  0.5 corresponds to a completely random system such the Brownian motion 

(i.e. a random walk process), and 𝑅 = 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
1 2⁄

, where 𝑅 is the distance covered by the particle in 

time 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. For 𝐻 =  1 the time series indicate a completely deterministic system where 

autocorrelations dominate.  

The original algorithm [170] to estimate Hurst exponent 𝐻 and the fractal (fractional) dimension of a 

time series was the rescaled range statistical analysis (RSA). RSA is based on differences between the 

maximum and the minimum cumulative values and the standard deviation from the observed values. 

Considering a time-series 𝛽1, … , 𝛽Ζ the steps for RSA are: 

1. Compute the mean 𝛽̂ and the standard deviation 𝑆 of the series  

2. Compute rescaled range time series by subtracting the sample mean from the original series 

𝑆𝑘 = 𝛽𝑘 − 𝛽̂ for 1 ≤ 𝑘 ≤ 𝑍, 𝑆𝑘 is zero-mean. 

3. Compute the cumulative time series 𝛤𝑘 = ∑ 𝑆𝑘
𝑘
𝑖=1  for 1 ≤ 𝑘 ≤ 𝑍 

4. Calculate the adjusted range 𝑅𝑘, i.e. the difference between the maximum value and the 

minimum value of 𝛤𝑘: 𝑅 = 𝑚𝑎𝑥
1 ≤𝑘≤𝑍

𝛤𝑘 − 𝑚𝑖𝑛
1 ≤𝑘≤𝑁

𝛤𝑘 (over all 𝛤𝑘) 

5. Then compute the rescaled range 𝑅 𝑆⁄  

6. Next, split the 𝑍 sample time series into two 𝑍/2 samples, repeat steps 1-5 for each sample and 

compute the average  rescaled range 𝑅 𝑆⁄  

7. Repeat for successively smaller intervals over the data set, dividing each segment obtained in 

each step in two and calculating 𝑅 𝑆⁄  for each segment and finally computing the average 𝑅 𝑆⁄ . 

8. Plot the values of 𝑙𝑜𝑔(𝑅 𝑆⁄ ) against 𝑙𝑜𝑔(𝑍) for all the different sample sizes.  

9. Compute the slope of the best fitting line (for instance using least squares regression) which 

gives the estimate of the Hurst exponent 𝐻. 

Several methods for estimating H exist [172], [173] based on various estimators of variance, Fourier 

Spectra (Whittle, Periodogram), Zero-Level-Crossings of paths, quadratic variations, convex 

rearrangements, and also wavelet-based estimation [174]. 

The Hurst exponent can only take values between 0 and 1, and a value with 𝐻 >  0.5 indicates persistent 

long memory (or long-term positive autocorrelation) in the time series, while 𝐻 <  0.5 is interpreted as 

evidence of anti-correlated time series, and 𝐻 =  0.5 reflects a random white-noise (uncorrelated) time 
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series [175]. For the values 0.5 <  𝐻 <  1 and 0 <  𝐻 <  0.5  long-range correlations typically 

decrease as a power law. 

An application regarding channel estimation in mobile radio communication has been reported [176] 

where the proposed algorithm can completely characterize the channel by estimating solely the Hurst 

exponent. It has also been employed in functional magnetic resonance imaging (fMRI) time series [175], 

[177]. Several alternative approaches/extension of the Hurst exponent have been proposed to address 

some of the drawbacks of the Hurst RSA approach for its poor performance in the presence of short 

memory, heteroskedasticity, and multiple scale behaviours, as well as vulnerability to outliers [178]. 

The Generalized Hurst Exponent (GHE) method was introduced in [179], [178] while applied to 

financial time series data. This method involves the computation of the q-moments of the distribution 

of the increments. The q-moments provide a direct measure for the scaling properties of the time series 

and add robustness when outliers are present compared to the adjusted range 𝑅𝑘 (step 4 of the original 

R/S algorithm) used from the RSA method. The basic element for the computation of the GHE is the 

quantity 𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙): 

𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) =
〈|Β(𝑡−𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)−Β(𝑡)|𝑞〉

〈Β(𝑡)〉
         (27) 

Here Β = 𝛽1, … , 𝛽Ζ, and 𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the time-interval that can vary between the time resolution/sampling 

rate 𝜚 (𝑡 = 𝜚, 2𝜚, … , 𝑘𝜚, … 𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) and a maximum value 𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑚𝑎𝑥. Different exponents 𝑞 

represent the different multi-scale characteristics of the series and, in particular for 𝑞 =  2, the 

𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) is proportional to the autocorrelation function. 

The GHE measure denoted as 𝐻(𝑞) can be defined from the scaling behaviour of 𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) [180], 

as : 

𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)~ (
𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝜚
)

𝑞𝐻(𝑞)

          (28) 

The Hurst exponent (25) is closely related to (27) when 𝑞 =  1, i.e. 𝐻(1) as both metrics quantify the 

scaling of the absolute spread in the increments. The exponent at 𝑞 =  2 is describing the scaling of the 

autocorrelation function 𝑎(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) as 𝐾𝑞(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ∝ 𝑎(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) , 𝑎(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) = 〈Β(𝑡 +

𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)Β(𝑡)〉  ) which is related to the power spectrum [181]. Here, 𝐻(𝑞) = 0 corresponds to 1 𝑓⁄  

pink noise.  
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4.2.2 Detrended Fluctuation Analysis 

Detrended fluctuation analysis (DFA) is technique used to quantify long-range power-law correlations 

in signals and it is considered as a generalization of the Hurst exponent that is more robust. It was 

originally introduced to be applied to signals whose underlying statistics (such as mean and variance) 

or dynamics are non-stationary [182]. Both RSA and DFA constitute analysis tools for estimating the 

scaling of the variance (or energy) of the time series at different time scales and it has been shown [183] 

that they are analytically connected through an integral transform. Among the numerous extensions 

proposed in the past to improve the original RSA method for the computation of the HE, DFA is one of 

the most successful due to capability to mitigate local non-stationarities [182] by employing a 

‘‘detrending’’ operation. The basic algorithm for a time-series 𝛽1, … , 𝛽𝑁 is: 

1. Computation of the mean 𝛽̂ 

2. Compute rescaled range time series by subtracting the sample mean from the original series 

𝑆𝑘 = 𝛽𝑘 − 𝛽̂ for 1 ≤ 𝑘 ≤ 𝑍 (𝑆𝐾 becomes zero-mean) 

3. Compute the cumulative time series 𝛤𝑘 = ∑ 𝑆𝑘
𝑘
𝑖=1  for 1 ≤ 𝑘 ≤ 𝑍 

4. Split the 𝑁 sample time series into windows of various sizes 

For all the different window sizes: 

5. Perform a polynomial fit in each integrated (cumulative) time series (n-th order polynomial 

regression denoted as DFAn) 

6. Compute the mean squared residuals 

7. Plot the values of log mean squared residuals against 𝑙𝑜𝑔(𝑁), also referred to as fluctuation 

plot.  

The above algorithm detects self-similarity (or fractal properties) by quantifying the dispersion of the 

residual of integrated fluctuations from the regression, at different resolutions (or window sizes). The 

power law scaling is derived from the fluctuation plot by performing a least-squares fit. The scaling 

exponent (from the DFA) value provides information about the series self-correlations, and - as with the 

original HE - if the value is <  0.5 it indicates anti-correlated behavior. A value of ≃  0.5 is for 

uncorrelated white noise and for >  1 / 2  it corresponds to correlated time series. Also, if the value is 

≃ 1 then the series shows 1/f-noise (pink noise). 

Trends of higher order can be removed by higher order DFAn (n here stands for the order) where for 

instance, a linear fit can be replaced by a polynomial fit. The Hurst RSA analysis removes constant 

trends in the original sequence and thus in its detrending, it is equivalent to DFA1. Robust Detrended 

Fluctuation Analysis (r-DFA) is an extension of the standard method [184] that is capable to determine 

statistically significant scaling exponents and optimum crossover locations. An example of recent 

application where the DFA is uses regards Electroencephalography (EEG) signals [185], [186]. 

It is noted that this method is computationally more expensive than RSA and according to [177], DFA 

can introduce an uncontrolled bias and might not be as efficient as designed to be when non-stationarities 

are present. 
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4.2.3 Correlation Dimension 

The correlation dimension (CD) measure is used in chaotic dynamical systems to estimate the dimension 

of attractors [187]. An attractor is a set of states that a dynamical system tends to evolve regardless of 

the initial conditions, and when state values get close to attractor values they are sustained close even if 

the system is perturbed. Mathematically the CD is based in the concept of the correlation integral 𝐶, and 

for a set of 𝑍 points {𝛽1, 𝛽2, ⋯ , 𝛽𝑁} it is expressed as [188]: 

𝐶(𝑍, 𝑟𝑠𝑖𝑚) =
2

𝑍(𝑍−1)
∑ 𝐻𝑆(𝑟𝑠𝑖𝑚 − ‖𝛽𝑝 − 𝛽𝑗‖)𝑝,𝑗         (29) 

which is a function of the number of data points 𝑍 and the similarity distance 𝑟𝑠𝑖𝑚, 𝐻𝑆(𝑥) is the 

Heaviside function, and the summation goes over number of pairs for which the between-point distance 

is less than 𝑟𝑠𝑖𝑚. For large 𝑍 and small 𝑟𝑠𝑖𝑚 the correlation integral is expected to scale according to the 

relation [189], [190]: 

𝐶(𝑍, 𝑟𝑠𝑖𝑚) ≈ (
𝑟𝑠𝑖𝑚

𝑅𝑒𝑓𝑓
)

𝜈

           (30) 

with 𝑅𝑒𝑓𝑓 a constant of proportionality (effective radius) and 𝜈 the dimension of the attractor or the 

correlation dimension. There are several algorithms available that can estimate 𝑢 such as the 

construction of a log-log plot of 𝐶(𝑍, 𝑟𝑠𝑖𝑚) against 𝑟𝑠𝑖𝑚, and by computing the slope of the curve at a 

specific range [188], or by computing the logarithm of every distance within the specified range and 

then estimating an average value 𝑎 which then is used to find 𝜈 = − 1 𝑎⁄  [191]. Also, box assisted 

algorithms have been widely used [187].  

The correlation dimension is measure of the dimensionality of the space occupied by a set of points and 

it is a type of the fractal dimension. As Falconer states [192], “many different definitions of ‘fractal 

dimension’ are scattered throughout the mathematical literature”, however in Mandelbrot’s paper [193] 

fractional dimensions where based on self-similarity characteristics. The value of correlation dimension 

is directly proportional to the level of chaos in the system, that is: a higher value of represents a high 

level of chaotic complexity in the system. 
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4.2.4 Fuzzy Entropy 

The Fuzzy Entropy (FE) measure was introduced in 1972 [194], and many modifications on its definition 

were proposed over time, see for instance in [195]. Entropy is a value which increases as the level of 

irregularity (or the chaos degree of a system) increases. FE was designed to measure the 

regularity/complexity of time series, but the work of [196] demonstrated that it measures randomness 

instead. Its superior performance on pattern recognition problems has been demonstrated by a wide 

range of applications. It is capable of capturing the non-linear characteristics of EEG signals by 

quantifying the complexity [167], but also used successfully for an electrocardiography application in 

[197] and motor bearing fault [198].   

The foundations of FE lie in fuzzy set theory, a framework that has been successfully used in modelling 

complex and imprecise systems. Fuzzy sets contain elements with varying membership degrees [199] 

or equivalently, elements are mapped to membership values through a membership function. A 

membership function essentially maps elements of a fuzzy set into a real value within the interval [0,1], 

and it is the counterpart of the indicator function in classical (crisp) sets.  The membership function 

[200] is key to fuzzy logic as it represents the degree of truth, an easily misunderstood concept with 

probabilities. In particular, a fuzzy set is defined as abstract and it is not related to the probability of 

occurrence on an event, therefore the two concepts are clearly distinct. For the formulation of the FE 

metric the probability employed by Shannon entropy is replaced by the membership function. The 

derivation of the mathematical representation is given in [201]: 

𝐻𝐹𝐸 = −𝜂 ∑ [𝜇𝑒 log 𝜇𝑒 + (1 − 𝜇𝑒) log(1 − 𝜇𝑒)]𝑛𝑚𝑒𝑚𝑏𝑒𝑟
𝑒=1        (31) 

where 𝜇𝑒 is the membership function for 𝑒 = 1, … , 𝑛𝑚𝑒𝑚𝑏𝑒𝑟 and 𝜂 = 1 𝑛𝑚𝑒𝑚𝑏𝑒𝑟⁄  is a constant. From 

(31) it is assumed that for the computation of the FE the computation of the memberships is required. 

One of the widely used membership functions is the Gaussian where original values are transformed 

into a point of the normal distribution. The mean of the Gaussian determines the set definition and it is 

assigned a membership value equal to 1. Membership values decrease depending on how close the 

transformed values lie to the mean in both negative and positive directions. 

Several algorithms have been proposed to compute the FE, but for this study the method presented in 

[202] is used. Essentially the FE measure represents a more accurate variant of the Sample Entropy by 

adding a modification on the Heaviside function replaced with a fuzzy membership function. The 

algorithm at first constructs a state-space representation is by forming  𝑍 − 𝑚𝜏𝑡 vectors 𝑏⃗⃗𝑚(𝑝) =

{𝑢𝑝, 𝑢𝑝+𝜏𝑡
, 𝑢𝑝+2𝜏𝑡

, ⋯ , 𝑢𝑝+(𝑚−1)𝜏𝑡
} with 1 ≤ 𝑝 ≤ 𝑍 − 𝑚𝜏𝑡 and denoting with 𝜏𝑡 the time-delay, and 𝑚 

is the embedding dimension. Then distances 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) between 𝑏⃗⃗𝑚(𝑝) and 𝑏⃗⃗𝑚(𝑒) for 𝑒 ≠ 𝑝 are 

calculated, and the determination of Θ𝑒
𝑚+1(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟𝑎𝑑𝑖𝑢𝑠) follows next, a quantity that ranks the 

similarity between vectors with the next point 𝑚 + 1. The two vectors are compared given a 𝑟𝑎𝑑𝑖𝑢𝑠 

threshold. More details especially considering multi-scale analysis can be found in [203] and the time 

delay parameter is provided in [197]. The computation of the 𝐻𝐹𝐸 is [197]: 

𝐻𝐹𝐸(𝑚, 𝜏𝑡 , 𝑟𝑎𝑑𝑖𝑢𝑠) = − ln
∑ Θ𝑖

𝑚+1(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑟𝑎𝑑𝑖𝑢𝑠)
𝑍−𝑚𝜏𝑡
𝑒=1

∑ exp (−ln(2)(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝,𝑒) 𝑟𝑎𝑑𝑖𝑢𝑠⁄ )2)
𝑍−𝑚𝜏𝑡
𝑒=1

     (32) 

with Θ𝑒
𝑚(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑟𝑎𝑑𝑖𝑢𝑠) denoting the average number of vectors 𝑏⃗⃗𝑚(𝑝) within the 𝑟𝑎𝑑𝑖𝑢𝑠 of 𝑏⃗⃗𝑚(𝑒) 

or  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) ≤ 𝑟𝑎𝑑𝑖𝑢𝑠 for all 𝑒 = 1,2, … , 𝑍 − 𝑚𝜏𝑡 and 𝑒 ≠ 𝑝. Also, according to the algorithm 

of [202] the local mean of each vector is removed before the distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑒) calculation. The 

computation formula (32) was used in an electromyography application by [204] to evaluate the 

similarity between vectors based mainly on their shape.  
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The FE can quantify the irregularity of time-series by quantifying how unpredictable are the fluctuation 

patterns. According to [196] values close to 0 suggest a periodic time series, values between 1 and 2 

indicate mixed processes, and values from 2 and above correspond to Gaussian noise. 
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4.2.5 Recurrence Period Density Entropy 

The measure of Recurrence Period Density Entropy (RPDE) is developed from the idea of recurrent 

time between the recurrent points [205], [206] and it constitutes an average entropic measure [207]. It 

is based on the recurrence analysis technique (recurrence plot) which is conceptually simpler than 

spectral analysis tools like Fourier or Wavelet transform, and easier to be implemented as it does not 

require signal decomposition within a basis. It has been successfully used to detect abnormalities in 

biomedical contexts such as speech signal. The RPDE computation is based on the construction of the 

recurrent matrix: 

ℛ𝑝,𝑒 = 𝐻𝐸(𝑟𝑎𝑑𝑖𝑢𝑠 − ‖𝛽𝑝 − 𝛽𝑒‖)         (33) 

for a set of 𝑍 points {𝛽1, 𝛽2, ⋯ , 𝛽𝑍} which correspond to the dynamical state at times 𝑝 and 𝑒, while 

𝐻𝐸(𝛽) represents the Heaviside function. In this context recurrence is used to describe the closeness of 

any two points, which are considered close if their state vectors inside a 𝑟𝑎𝑑𝑖𝑢𝑠. The recurrence matrix 

is essentially a symmetric matrix of ones signifying recurrent points and zeros for non-recurrent points 

in phase space using segments of the signal in repetition [208]. 

RPDE requires the embedding of the time series in phase space, an operation that can be carried out by 

forming time-delayed vectors. A phase space sequence is reconstructed by selecting both a suitable time-

delay 𝜏𝑡 and a proper embedding dimension 𝑚 as {𝑢𝑝, 𝑢𝑝+𝜏𝑡
, 𝑢𝑝+2𝜏𝑡

, ⋯ , 𝑢𝑝+(𝑚−1)𝜏𝑡
} =  {𝛽1, 𝛽2, ⋯ , 𝛽𝑍}. 

Optimal values from delay 𝜏𝑡 and 𝑚 can be estimated. Essentially these parameters are estimated by 

systematic search for the optimal set as practical embedding parameter techniques for stochastic systems 

are not available [209]. For each point 𝛽𝑝 recurrence times (time-difference between one recurrence) 

within the 𝑟𝑎𝑑𝑖𝑢𝑠 are reported in a histogram that is normalized to sum to unity. It is noted that  

dedicated algorithms for optimizing 𝜏𝑡 and 𝑚 with respect to the time series available can be found in 

literature (see [207] and references therein). This normalized histogram corresponds to the estimate of 

the recurrence period density function, and the normalized density of this function gives the 

(normalized) RPDE [206]: 

𝐻𝑛𝑜𝑟𝑚 = −
∑ Pr(𝑝) ln Pr(𝑝)

𝑇𝑚𝑎𝑥𝑅
𝑝=1

ln 𝑇𝑚𝑎𝑥𝑅
          (34) 

𝑇𝑚𝑎𝑥𝑅 is the maximum recurrence time found in the embedded state-space and 𝐻𝑛𝑜𝑟𝑚 is unit-less with 

real values in the range [0,1]. For purely periodic signals the RPDE equals 0 whereas for purely i.i.d. 

uniform white noise it shall equal to 1. The RPDE is designed to distinguish between autocorrelated 

random processes and (at the extreme case of) uniform random noise, and in characterising the extent 

to which a time series repeats the same sequence. Therefore, it is very similar to linear autocorrelation 

or time delayed mutual information, except that it measures repetitiveness in the phase space of the 

system, and that it is a more reliable measure based upon the underlying dynamics that generated the 

signal. The RPDE also offers the advantage that it does not require assumptions on linearity, Gaussianity 

or dynamical determinism. 
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4.3 Numerical simulations 

The verification of the suitability of the selected feature algorithms under study is performed using 

simulated data implemented in MATLAB. The input pre-correlation RF signal sequence is generated 

from a custom GPS L1 C/A simulator which is implemented from scratch, generating signal samples at 

millisecond scales. The RF signal structure is deterministically defined by the time-dependent 

convolution of the spreading codes of all satellites in view. On top of the SIS (LoS) signal structure the 

corresponding multipath echoes are superposed. The simulator also applies the fading channel 

influences and potential interferences to produce different data samples for each scenario. 

The development of the algorithms that generate the synthetic data for the simulation is based on the 

assumptions listed next: 

• Fast fading variations are usually modelled as the sum of a limited number of sinusoids with 

random phases and different frequencies [39]. 

• The above operation leads to an extremely time correlated amplitude profile that can also be 

modelled as a non-white random process [210]. 

• Receiver dynamics are considered; therefore, amplitude variations are also affected from the 

receiver movement (or the movement of the surrounding objects). Indicative values are adopted 

according to [6]. 

• In a single reflector scenario located in the vicinity of the receiver, dominant periodic patterns 

in the carrier power variations might be expected. In any other case, this assumption shall not 

hold and simulations regard only the latter case. 

• Power attenuation and fluctuations due to path loss and shadowing are neglected (considered 

constant for the 1 ms duration). 

• Data bit transitions are not considered in the sampled waveforms. 

• One term representing the total white noise is considered corresponding to a sum of the 

individual white noise contributions per channel. 

The model of the synthetic signals considering (18), (19), (22), is simulated from: 

𝑥𝑅𝐹[𝑡] = ∑ (𝑟𝐼𝐹,𝑖[𝑡] + 𝑀𝑃𝑖[𝑡])
𝑁𝑠𝑎𝑡
𝑖=1 + 𝑣[𝑡]        (35) 

and |𝑥𝑅𝐹[𝑡]|2 corresponds to the power time-series that are used as input to the feature extraction 

algorithms. It is noted that complex signal carriers are employed (and the real part is extracted for 𝑥𝑅𝐹[𝑡]) 

and the entire usable bandwidth of the ADC (0 −  𝑓𝑠/2) is used. The simulation on the different 

environments is based on the Monte Carlo method, and the parameters are drawn randomly per 

execution. The number of executions depends on the runtime of the feature extraction algorithms. In 

particular, the most computationally efficient method is the GHE, then DFA, CD and FE which are more 

demanding, and the most computationally expensive method is RPDE. 

The random parameters, changing per execution are given in the table below: 
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Table 2 - L1 C/A signal/s simulation parameters 

LoS-related: 

• 𝑖 ∈  [1,32] representing the satellite PRN, is randomly chosen (using uniformly distributed 

pseudorandom integer generator from MATLAB) 

• 𝑐̃𝑖 sequence is introduced with a random codephase (uniformly distributed pseudorandom 

integer generator from MATLAB) 

• 𝐴𝑖  ∈  [0.5,  1] is random (uniformly distributed) per LoS signal  

• 𝜑𝑖 ∈ [0,2𝜋) is random (uniformly distributed) 

• 𝛥𝑓𝐷,𝑖 is random (uniformly distributed) in the interval +/-5kHz in the IF carrier freq.  

 

Multipath-related (NLoS): 

• Number of NLoS components 𝐽 is randomly chosen (using uniformly distributed 

pseudorandom integer generator from MATLAB with a predefined  min value 𝐽𝑚𝑖𝑛 and max 

value 𝐽𝑚𝑎𝑥) for each LoS signal 

• Path amplitude 𝐴𝑖𝑎𝑖𝑗
 ∈  [0,  0.85] for 𝑗 ∈  [1,  𝐽] is random (uniformly distributed) for each 

NLoS echo 

• 𝛥𝑓𝑗 is random (uniformly distributed) in the interval +/-300Hz in the IF LoS carrier freq. for 

each NLoS echo 

• 𝜑𝑗 ∈ [0,2𝜋) is random (uniformly distributed) for each NLoS echo 

• 𝑐̃𝑖𝑗
 is introduced with a random codephase (uniformly distributed pseudorandom integer 

generator from MATLAB) for each NLoS echo 

 

In addition, the RF-frontend IF is assumed to be 4.13 MHz and the ADC sampling rate equal to 20 MHz. 

A White-Gaussian-noise process is also added, generated from the “wgn” function of MATLAB 

following the predefined sampling rate. A receiver’s front-end bandwidth determines the SNR that is 

output of the RF-frontend. Typical values for the GPS L1 C/A signal for a receiver frontend bandwidth 

of 4 MHz shall be between -29 dB to -21 dB [211]. However, since the amplitudes of the signals are not 

selected according to real physical conditions rather relying on indicative/placeholder numbers, the 

resulting average SNR ratio in all simulations is ~11 dB. 

Several assumptions were adopted in order to build a simulation environment that is not very complex 

and heavily time-consuming for a typical PC to execute, but in parallel to have some relevance to 

realistic conditions. First consideration is that in the majority of realistic scenarios few LoS signals 

(direct satellite signals) implies that the receiver is located in a relatively cluttered environment with 

obstructions and consequently, the presence of one to several MP components. In open-sky conditions 

it is assumed that 6-11 satellites should be able to provide direct LoS signal to any user on the Earth’s 

surface simultaneously at any time. Therefore, any scenario with less than 6 satellite signals received 

implies that there might be at least one obstruction in the environment of the receiver. On the other hand, 

many LoS signals available would suggest an open-sky, free-from-many obstructions environment.  

Following the same logic, the more numerous obstructions may suggest a larger number of MP echoes 

received, and it is considered here that maximum number of possible MP components increase as the 

number of received satellite signals becomes smaller. The quantification of these simplistic assumptions 

is shown in the table below: 
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Table 3 - Generic simulation parameters 

Number of LoS 𝑱𝒎𝒊𝒏 to 𝑱𝒎𝒂𝒙 

(num NLoS per LoS signal) 

Signal-to-Multipath ratio 

(SMR) [dB] 

0 (1-3 differ. signals) 20-50 NA 

1 20-40 1.2 - 20 

2 10-25 

3 7-15 

4 3-10 2-25 

5 0-5 

6 0-2 

7 0-2 

8 0-1 3-25 

9 0-1 

10 0-1 

11 0-1 

 

A summary of key points regarding simulations: 

• Simulations rely on indicative numerical values that serve as inputs to the models presented, 

rather on synthetic data from a multipath simulator 

• Several assumptions have been made on the correspondence between the values and MP 

conditions and in consequence (see Table 2), on how the resulting waveform structure might be 

caused in a receiver 

• The main scope is to provide evidence on the suitability of use of these techniques for this 

application 

Finally, for verification purposes, feature values are provided for four possible cases:  

1. the multipath- and noise-free signal  

2. the noise-free signal under multipath 

3. the multipath-free signal under (white) noise 

4. and the multipath-contaminated signal in noise. 

Signals 1. correspond to a PRN-modulated carrier from which - in principle - pseudo-randomness 

(“whiteness”) shall be confirmed through the feature extraction method results. In case 2. the signal 

sequence is coloured by correlated multipath effects and their characteristics shall become evident 

through simulations. Signals 3. and 4. take into consideration the white noise which is expected in all 

realistic scenarios. In 3. the uncorrelated noise property is expected to hold since two uncorrelated 

random processes are superposed. On the other hand, 4. is a noisier counterpart of case 2. which is 

considered closer to real conditions. Although measure distributions are treated as unknown, the 

Gaussian mean estimator was used to determine the mode of each distribution. 
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4.3.1 Generalized Hurst Exponent 

The generalized Hurst exponent [178] constitutes a tool for analysis of  q-order moments of the 

distribution of the increments. For 𝑞 = 1 it is equivalent to the original Hurst exponent definition, thus 

quantifying the scaling behaviour (of the absolute values) of the increments. For 𝑞 = 2 the scaling 

behaviour proportional to the autocorrelation function is analysed. The latter is of greater relevance 

given the nature of the signal under analysis, although, both measures where tested. The overall time 

complexity of the algorithm is 𝑂(𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑚𝑎𝑥 × 𝑍)  with 𝜏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑚𝑎𝑥 the maximum value of the 

scaling window and 𝑍 is the length of the data series. 

In the first two figures, the results for 𝐻(1) = 1 are shown for 5000 iterations: 

 

Figure 13 - GHE (q=1) simulation results without additional white noise after 5000  iterations 
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Figure 14 - GHE (q=1)  simulation results with added white noise after 5000 iterations 

Theoretically, for values close to 𝐻(1)  =  1 the time series indicate a strongly deterministic system 

where autocorrelations dominate. While this assumption agrees very well with the MP-afflicted noise-

free case, it appears to hold also for to the superposition of pure PRNs (noise-free case). Moreover, both 

noise-free simulations show monotonically non-increasing characteristics where less number of LoS 

signals shows a higher value (although numerically not significant), a result that is slightly contradictory 

with the theoretical prediction. Overall, it can be said that values are very close to each other in these 

simulations. 

In the signal-in-noise case, both functions appear to be monotonically non-decreasing. Here, there is 

strong evidence of anti-correlation as 𝐻(1)  <  0.5 and the result agrees with the expectation that the 

more PRN codes and/or MP echoes are superposed the closer to the 𝐻(1) =  0.5 (that corresponds to 

Brownian motion) the exponent values should approach. It is however denoted that in the ‘no MP’ case 

the initial point of the function (1 LoS) has 𝐻(1)  ≅  0 that corresponds to 1 ⁄ 𝑓 pink noise, rather than 

white noise according to the expectation for the pseudo-random nature of one spreading code sequence. 

Next, the corresponding results for 𝑞 = 2 are shown: 
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Figure 15 - GHE (q=2) simulation results without additional white noise after 5000  iterations 

 

 

Figure 16 - GHE (q=2)  simulation results with added white noise after 5000 iterations 

A first remark after the inspection of both 𝑞 = 1,2 results, is that functions look very similar. For the 

simulations regarding signal-in-noise, evidence shows that the exponent is a monotonic function of the 

number of LoS signals (considering the indicative MP-parameter values used). Also, the result is 

consistent for low SMR with a Rayleigh random walk where the mean value of the displacement is 

𝑠𝑡𝑑.× √𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠. It is noted that the histograms of GHE estimates after 5000 runs indicate non-

Gaussian structure, therefore the mean estimator might not provide accurate results (see Appendix A). 

Finally, in high-SNR conditions (see Appendix B) the measure tends to become constant as a function 

of LoS signals and GHE exponent values are very close to each other. 
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4.3.2 Detrended Fluctuation Analysis 

The DFA simulations were performed using the standard function from the MATLAB library, while the 

polynomial order for detrending was configured to be equal to 2 (quadratic). The overall time complexity 

of the algorithm is 𝑂(𝑍 + 𝑀) where 𝑍 is the size of the input data and 𝑀 is the number of scales 

generated. Due to computation resource restrictions the iteration number here is 1000. The results for 

the “noiseless” and “noisy” case are presented in Figures 17 & 18: 

 

Figure 17 - DFA simulation results without additional white noise after 2000  iterations 

 

 

Figure 18 - DFA simulation results with added white noise after 2000 iterations 
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A generic remark on all cases is that a strong anti-correlated scaling behaviour is evident according to 

the DFA exponent scale definition (< 0.5). Similar to GHE, randomness appears to increase when the 

number of LoS signals increases. What is notable once again (after the GHE 𝑞 = 1) is that without 

adding WGN the DFA as a function of number of LoS appears constant except for the 1 LoS in the ‘No 

MP’ case. Even by adding MP echoes to the SIS signals, makes no difference. In the “noisy” case DFA 

functions show similar properties to the GHE. However, in contrast to the GHE exponent, the signal-in-

noise simulations show that the exponent function appears to break the monotonic property for the MP-

afflicted case. 
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4.3.3 Correlation Dimension 

For the implementation of the CD algorithm, the corresponding MATLAB function was used, i.e. 

“correlationDimension()” that estimates the correlation dimension of the uniformly sampled time-

domain signal. It has a time complexity of 𝑂(𝑍2) with 𝑍 being the length of data. The function’s runtime 

was rather long and only 200 Monte Carlo runs were performed (lasting approx. 24h). The results are 

given in the following two figures: 

 

Figure 19 - CD simulation results without additional white noise after 200 iterations 

 

 

Figure 20 - CD simulation results with added white noise after 200 iterations 
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According to Figure 19 for one LoS and no added noise the majority of CD values are close to 0. This 

finding confirms that an individual sampled pseudo-random (Gold code) sequence is indeed 

approximating a random noise process. For 2 LoS the majority of CD values are concentrated around 

values 0.9-1 confirming that the combination of two sampled pseudo-random (Gold code) sequences 

shall result into a higher complexity indicator (when compared to 1 LoS). For 3 LoS and above the 

majority of values are between 1 and 1.3, again, suggesting higher complexity of the composite signal 

(from 1 or 2 LoS). However, it seems that the measure is not sensitive to the number of LoS in this 

regime. 

In the MP-afflicted (Figure 20) case with noise, the CD value decreases while the number of LoS 

increases (and consequently the number of NLoS decreases), indicating that the level of chaotic 

complexity in the system decreases. This implies that randomness increases as the superposed PRN 

modulations increase in number and it appears as a plausible justification as one PRN sequence indicates 

a higher level of deterministic chaos than two or more (superposed). However, in the MP case the 

opposite result is produced (closer to the random end). Also, the time-correlated components (i.e. 

waveforms with NLoS signals) seem to produce systematically lower correlation exponent values than 

when these were absent, except for 1 or 2 LoS components in the noise-free runs. Finally, the CD 

function does not appear to be monotonic (MP-afflicted case with noise) in contradiction to the GHE 

exponent. It is noted that results rely only on the 4 % of the runs compared to the latter. 

Given the above points, conclusions regarding the validity of the use of this metric cannot be made 

according to the current simulations. One possible explanation is that the number of executions (200) 

were not sufficient to provide a reliable result. For this reason, histograms for the correlation dimension 

estimates of the multipath- and noise-free signal where generated (see Appendix A).  
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4.3.4 Fuzzy Entropy 

The FE bears approximately the same computational cost as the CD algorithm. Implementation and 

configuration values were set according to the work of [197], [202] with the time-delay 𝜏𝑡 = 1, 𝑚 = 2, 

and 𝑟𝑎𝑑𝑖𝑢𝑠 = 2 × 𝑠𝑡𝑑. The 𝑠𝑡𝑑. corresponds to the standard deviation of the power time series. The 

approximate time complexity of the implementation is 𝑂(𝑍2/(𝑚2 × 𝜏𝑡
2)), with 𝑍 representing the 

length of the input series. The result is presented in the next two figures: 

 

Figure 21 - FE simulation results without additional white noise after 200 iterations 

 

 

Figure 22 - FE simulation results with added white noise after 200 iterations 
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Given that a Gaussian noise component is added to the series in Figure 22, the FE values are higher than 

the ones for the noiseless case (Figure 21), which is consistent with the theoretical definition of the 

measure scale. It is also evident that MP-afflicted signals (Figure 21) report very low FE values close to 

zero, an indication of structured periodic signals according to the definition of the metric. Same applies 

as the LoS components increase in the case where no MP is present, as several PRN-modulated carriers 

combine.  

In both figures, although the MP case appears to be monotonically non-increasing function, they also 

appear to converge after 4-5 LoS indicating that any number of LoS above this region might be difficult 

to distinguish as values become numerically very close. This is not the case with the corresponding ‘No 

MP’ functions. Another remark is related to the highest value denoted on 1 LoS in the noiseless 

simulation, which, although the FE value is “closer” to the Gaussian noise end, it is still very far from 

the theoretical value of (<)2. Same applies for the rest number-of-LoS FE values that appear very low 

(and close to zero). It is also noted that since values close to 0 suggest a periodic time series in the FE, 

these results suggest that in higher numbers of LoS the composite signals appear as more structured and 

periodic.  
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4.3.5 Recurrence Period Density Entropy 

Due to the very long runtime of the implementation of the RPDE algorithm employed from [212] only 

100 Monte Carlo iterations were performed (lasting more than 24 hours. The time complexity can be 

approximated as 𝑂(𝑍 + 𝑚2), 𝑚 being the embedding dimension and 𝑍 the length of the time series. 

Certainly, the results shown in the Figures 23 & 24 serve as a first indication of performance, as with 

the other simulations. 

 

Figure 23 – RPDE simulation results without additional white noise after 100 iterations 

 

 

Figure 24 - RPDE simulation results with added white noise after 100 iterations 
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For the noisy simulation scenario, it is observed that the differences in the RPDE values between the 

‘No MP’ and ‘MP’ case are subtle. For number of LoS above 2 the multipath-afflicted function shows 

a slightly lower value that the SIS one and it is not monotonic as it shows certain fluctuations. In contrast, 

the noise-free case shows that the ‘No MP’ function is systematically lower than the ‘MP’ one and the 

magnitude of their difference is more pronounced. Numerically the noisy results show a lower value 

than the noise-free case, a fact that suggests that the additional noise influences the results to lower 

values approaching the 0 end of the RDPE scale which corresponds to periodic/structured signals. This 

is contradicting to the expectation as additive Gaussian noise should lead to a value increase approaching 

1 which indicates pure WGN and therefore, appears as counterintuitive. In general, the interpretation of 

RPDE results is not intuitive and straightforward. In any case some valuable information could be 

contained in this measure to determine a classification outcome but its inclusion might come with the 

risk of misclassification and performance degradation. 
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4.4 NLoS conditions 

The non-line of sight scenario is a special case of signal reception which is usually equivalent to a 

receiver located indoors where no direct LoS is available but the antenna receives reflected, scattered 

or/and diffracted signals. In this setting it is common to assume that there is large number of (resolvable) 

echoes of each signal due to a congested environment. The numerical simulation parameters selected 

are presented in the table below: 

Table 4 - Simulation parameters for indoor L1 C/A signal reception 

NLoS conditions (Indoors) simulation parameters: 

• Number of unique (transmitted from a single satellite) received signals present is defined to 

be within [1,  3] 

• Number of (NLoS) echoes 𝐽 per received signal is randomly chosen (using uniformly 

distributed pseudorandom integer generator from MATLAB with a predefined  min 

value 𝐽𝑚𝑖𝑛 and max value 𝐽𝑚𝑎𝑥) per unique signal (see Table 2).  

• Path amplitude 𝐴𝑖𝑎𝑖𝑗
 ∈  [0,  1] for 𝑗 ∈  [1,  𝐽] is random (uniformly distributed) for each 

NLoS echo 

• 𝛥𝑓𝑗 is random (uniformly distributed) in the interval +/-300Hz in the IF LoS carrier freq. for 

each echo 

• 𝜑𝑗 ∈ [0,2𝜋) is random (uniformly distributed) for each NLoS echo 

• 𝑐̃𝑖𝑗
 is introduced with a random codephase (uniformly distributed pseudorandom integer 

generator from MATLAB) for each NLoS echo 

 

For each measure the results on noiseless and signal-in-noise cases are presented next: 

 

Figure 25 - Mean GHE value for simulated NLoS conditions 

For the GHE (𝐻(2)), the signal that is composed only of echoes (no WGN) appears as an approximately 

constant function with respect to the different PRNs included and it is close to 0.5, i.e. “Brownian” 

noise. When noise is added the value appears to be roughly between 0.2-0.3. The latter result is very 

similar to the case where LoS signals are present. 
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Figure 26 - Mean DFA value for simulated NLoS conditions 

DFA values are again, very similar to the scenarios with LoS signals present. Also, the two depicted 

functions (Figure 26) appear to have a similar shape. It is reminded here that values so low close to zero 

indicate a strong anti-correlated behavior. 

 

Figure 27 - Mean CD value for simulated NLoS conditions 

The CD functions in simulated NLoS conditions (Figure 27) have shown results that are in agreement 

to the corresponding LoS conditions, suggesting that subtle differences if any, could distinguish the 

different environments. 
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Figure 28 - Mean FE value for simulated NLoS conditions 

The FE seems to provide a distinctly different result that the corresponding LoS simulations. Here in the 

noisy case, values are higher ranging roughly between 0.53 - 0.72 while in the latter all values where 

below 0.23. Both of these functions are monotonically non-increasing. The function corresponding to 

the noiseless case is approximately constant and values < 0.1 indicate strongly structured periodic 

signals which is consistent to the theory. Accordingly, the “noisy” function regards higher values. 

 

Figure 29 - Mean RPDE  value for simulated NLoS conditions 

Finally, the RPDE functions look very similar to the corresponding LoS simulations, both in numbers 

and in shape.  
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4.5 Remarks and discussion 

Based on the results presented in the previous section: 

 The GHE is favoured over the DFA algorithm to compute the scaling behaviour of the sampled 

waveform as it is more computationally efficient and provides a result that is easily interpretable 

(monotonic function). The latter statement relates to the fact that for every different number of 

LoS signals (and corresponding multipaths) as defined in Table 2 appears to correspond to a 

unique GHE value. 

 CD provides a different type of information, it is a measure of deterministic complexity which 

could add diversity and redundancy in the feature extraction stage. It is denoted however, that 

it is increasing significantly the computational cost compared to GHE and DFA. 

 FE but also RPDE are costly and the resulting functions manifest some difficulties. The major 

problem with the former is that measures are numerically very close after 4-5 LoS signals, while 

the latter is not monotonic. However, the FE has shown the best performance in the NLoS 

simulations. 

 Overall, all metrics may provide valuable feature information and their contribution to a 

classification problem will be assessed in the next chapter. 

 

Regarding the computational complexity, the GHE algorithm seems to be the less demanding while the 

rest methods follow in increasing complexity order: DFA, CD, FE and RPDE. 
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5 Multipath environment classification 

5.1 Introduction 

The purpose of this chapter is to demonstrate and validate that the studied feature extraction methods 

can provide an accurate classification result when used in conjunction to an off-the-self classifier. 

Towards this objective, the techniques of Linear Discriminant Analysis (LDA) and Support Vector 

Machine (SVM) were selected for simulation testing due to their simplicity and high performance when 

applied to supervised problems. The simplest test case would be to distinguish between two extreme 

classes of nominal (SIS) GNSS signal and NLoS/Indoors condition. However, a three-class 

classification simulation is also presented afterwards. 

In the first paragraph the key principles and fundamental mathematics of the two main classification 

techniques are presented while the simulation results are given in the second paragraph of this chapter. 

In order to keep the computational cost of the proposed approach as low as possible no more than two 

features are used as inputs to the classifiers. Essentially this analysis could specify the highest 

performing feature couples and provide a first indication of a configuration that is capable of capturing 

and distinguishing accurately the different multipath-afflicted waveforms. Features combined in triplets 

are also presented next in order to test if the classification performance is improved for the (more 

challenging) three-class problem. 

The methodology for the calculation of the predicted classes of measurement data followed is: 

1. Generation of simulated training and test/measurement (features) datasets: 

 In the two-class classification between ‘Indoors/NLoS’ and ‘No MP’ signals the 

training sets are composed of 300 and 1200 simulated samples, respectively. For testing: 

two sets of 600 data points were generated from a different simulation than the one 

producing the training samples, both for ‘Indoors/NLoS’ and ‘No MP’ labels. 

 In the three-class classification between ‘Indoors/NLoS’, ‘MP-afflicted’ and ‘No MP’ 

signals the same number of training and testing data points were used for the 

‘Indoors/NLoS’ and ‘No MP’ signals as above. For training the ‘MP-afflicted’ class: 

1200 training points and 600 testing points were produced. 

2. Computation of GHE, DFA, CD, FE and RPDE features using the training datasets. These 

features facilitate as inputs to the LDA and SVM classifiers to train the corresponding 

classification models. 

3. Computation of different classification models for LDA and SVM: 

 Using only pairs of features for all possible combinations (10). 

 Using all possible combinations (10) of three features for the three-class problem. 

4. Prediction of labels for all different combinations using the test data sets as inputs to the 

classifiers. 

5. Performance assessment using the confusion matrix graph and the derived accuracy, sensitivity 

and specificity. 
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5.2 Classification Methods 

5.2.1 Linear Discriminant Analysis 

The method of Linear Discriminant Analysis (LDA) is considered one of the most well-used data 

reduction techniques, used in several application such as automatic speech recognition [213]. Gaussian 

linear discriminant analysis allows linear separation by considering joint Gaussian probability densities 

and modelling the data conditional upon each class-label [214]. 

There are two types of LDA technique to deal with classes [215]:  

 class-dependent 

 class-independent 

In the class-dependent LDA, the input data are projected onto one separate lower-dimensional space per 

class, while in the class-independent method each class is considered as separate from others. In this 

study the class-dependent type is applied to the simulations. 

A vector of samples 𝓑 = {𝑏⃗⃗1, … , 𝑏⃗⃗𝑁𝑓𝑒𝑎𝑡
} is considered that consists of 𝑁𝑓𝑒𝑎𝑡  feature-vectors 𝑏⃗⃗𝑖 in a 𝐷-

dimensional space with class labels Ω = {𝜔1, … , 𝜔𝑁𝑐𝑙𝑎𝑠𝑠
} with 𝜔 ∈ {1, … , 𝑁𝑐𝑙𝑎𝑠𝑠} and 𝑁𝑐𝑙𝑎𝑠𝑠 being the 

number of classes. Then the set 𝓑 can be subdivided into ∁ subsets 𝓑1, 𝓑2, … , 𝓑∁ denoted as  𝓑𝑗 ⊂ 𝓑 

which corresponds to class 𝑗. Also, 𝜇 is denoted as the centroid of set 𝓑 and 𝜇𝑗 the centroid of 𝓑𝑗. 

The total scatter matrix 𝑆𝑇𝑜𝑡 ∈ ℝ𝐷×𝐷 is then defined as [216]: 

𝑆𝑇𝑜𝑡 = ∑ (𝑏⃗⃗ − 𝜇)(𝑏⃗⃗ − 𝜇)
𝑇

𝑏⃗⃗∈𝓑           (36) 

The within-class scatter matrix 𝑆𝑊𝐶 ∈ ℝ𝐷×𝐷: 

𝑆𝑊𝐶 = ∑ ∑ (𝑏⃗⃗ − 𝜇𝑗)(𝑏⃗⃗ − 𝜇𝑗)
𝑇

𝑏⃗⃗∈𝓑𝑗

∁
𝑗=1          (37) 

The between-class scatter matrix 𝑆𝐵𝐶 ∈ ℝ𝐷×𝐷: 

𝑆𝐵𝐶 = ∑ 𝑁𝑗
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)
𝑇∁

𝑗=1         (38) 

with 𝑁𝑗
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 representing the number of samples per class 𝑗. The transformation matrix 𝑊 is given 

from [217]: 

𝑆𝐵𝐶𝑤𝑖 = 𝜆𝑖𝑆𝑊𝐶𝑤𝑖           (39) 

with 𝑊 = {𝑤𝑘} for 𝑘 = 1, … , 𝐾 where 𝑤𝑘 are eigenvectors, and the columns of matrix 𝑊 correspond 

to eigenvalues 𝜆𝑘. 

There are two major issues related to the use of the LDA method. First, if the dimensions are much 

higher than the number of samples in the data matrix, it is incapable of finding the lower dimensional 

space resulting to a singular 𝑆𝑊𝐶. This is known as the small sample problem (SSS); a detailed analysis 

is given in [218]. The other drawback is that LDA is a linear discriminator, therefore, if different classes 

are non-linearly separable it cannot discriminate between them. The first problem does not apply here 

while for the second it might prove to be an issue if features are not linearly separated in feature space. 

 



70 

 

5.2.2 Support Vector Machines 

A support vector machine (SVM) is a supervised learning algorithm originally developed to tackle 

binary classification problems. Methods have been proposed to expanded the SVM algorithm to 

multiclass classification problems by reducing the single multiclass problem into multiple binary 

classification problems [219]. 

As a maximum margin classifier [220], the criterion that defines the optimal decision boundary between 

two classes is the hyperplane that offers the largest possible separation between data points. Therefore, 

the SVM algorithm is estimating a hyperplane that is parallel to two (again parallel) support vectors that 

define each class boundary, given no data points are included in-between (Figure 30). The original SVM 

algorithm however was intended to separate linearly separable data points. In the MATLAB 

implementation the algorithm maximizes a soft margin allowing a small number of misclassifications. 

 

Figure 30 – The SVM concept and key parameters of the method [221] 

The SVM algorithm is based on generic linear models of the form [220]: 

𝑦(𝑥⃗) = 𝑤𝑇𝜙(𝑥⃗) + 𝑏           (40) 

Here 𝑥⃗ corresponds to the training data set vector, 𝑤 is an M-dimensional weight vector, 𝜙(𝑥⃗) represents 

a fixed feature-space transformation, and 𝑏 is a bias term.  

The distance of a point 𝑥𝑛 to the decision hyperplane is: 

𝑡𝑛𝑦(𝑥𝑛)

‖𝑤‖
=

𝑡𝑛(𝑤𝑇𝜙(𝑥)+𝑏)

‖𝑤‖
           (41) 

where the training data set vector 𝑥𝑛 gets target value 𝑡𝑛  ∈  {−1, 1}, and new data points x are classified 

according to the sign of 𝑦(𝑥⃗). The perpendicular distance to the closest point 𝑥𝑛 from the data set is 

called the margin, and the goal of the algorithm is to optimize parameters 𝑤 and 𝑏 for the maximum 

distance. The maximum margin optimization is mathematically given by: 

𝑎𝑟𝑔 max
𝑤,𝑏

{
1

‖𝑤‖
min

𝑛
[𝑡𝑛(𝑤𝑇𝜙(𝑥⃗) + 𝑏)]}         (41) 

Further details on the solution of this optimization problem are provided in [220]. 
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5.3 Simulation parameters and assumptions 

In supervised pattern classification methods such as LDA and SVM, the pattern classifier is trained 

using a set of training feature vectors. Its performance is evaluated by classifying the feature vectors 

from the test dataset (which is normally different from the training dataset). First, the assessment of the 

capability of LDA and SVM in separating between two classes is performed in the simplest 

characterization problem between a signal without multipath echoes and an indoors reception. 

Afterwards, a simulation that involves three classes is presented. 

To determine the optimal combination of features all possible combinations of feature pairs (10 in total) 

are produced. Therefore, 10 datasets are “fitted” to generate 10 different models per pair. The most 

accurate classification result should then determine the optimal combination of features. In the multi-

class experimentation triplets of features are also combined and tested for all possible combinations 

(10). 

The ‘No-MP’ – ‘Indoors/NLoS’ classification requires the generation of the corresponding training 

datasets. Again, training datasets were numerically simulated under very simple numerical assumptions 

about the physical conditions in which the antenna receives the signals and the propagation of the signal 

through the RF-frontend components. Starting with the ‘No-MP’ label it is assumed that any user in 

open-sky conditions shall be able to receive 6-11 signals from different satellites, and no MP echoes are 

affecting the composite signal. The signal however includes WGN to better approximate realistic 

conditions, but with average 𝑆𝑁𝑅 ≈ 10 𝑑𝐵. On the other hand, the ‘Indoors/NLoS’ training signals are 

generated with the simulation parameters shown below: 

Table 5 - Training set simulation parameters for indoor/NLoS L1 C/A signal reception 

NLoS conditions (Indoors) simulation parameters: 

• Number of unique (transmitted from a single satellite) received signals present is defined to 

be 1 

• Number of (NLoS) echoes 𝐽 per received signal is randomly chosen using uniformly 

distributed pseudorandom integer generator from MATLAB with min value 𝐽𝑚𝑖𝑛 = 20 and 

max value 𝐽𝑚𝑎𝑥 = 50 per unique signal.  

• Path amplitude 𝐴𝑖𝑎𝑖𝑗
 ∈  [0,  2] for 𝑗 ∈  [1,  𝐽] is random (uniformly distributed) for each 

NLoS echo (Here is it assumed that one signal is generated with path amplitude of 1 and all 

the echoes are added to it). 

• 𝛥𝑓𝑗 is random (uniformly distributed) in the interval +/-300Hz in the IF LoS carrier freq. for 

each echo 

• 𝜑𝑗 ∈ [0,2𝜋) is random (uniformly distributed) for each NLoS echo 

• 𝑐̃𝑖𝑗
 is introduced with a random codephase (uniformly distributed pseudorandom integer 

generator from MATLAB) for each NLoS echo 

 

Feature samples are computed for every one of the studied features to train the LDA and SVM 

classification models. The ‘Indoors/NLoS’ training set is composed of 300 samples while for the ‘No 

MP’ class 1200 samples were used (200 per number of LoS). Both training sets (in feature pairs or 

triplets) were pre-processed before being input to classifiers by removing the outliers using the 

“rmoutliers” function of MATLAB and maintaining values that are above the 10th and below the 90th 

percentile. The data flow is shown in the next figure: 
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Figure 31 - Feature-based classification implementation data flow 

As for the measurement samples, 1200 data points were simulated from a different implementation than 

the one for producing the training samples from which 600 samples were generated from the 

‘Indoors/NLoS’ simulation parameters (shown in Table 5) and the 600 for the corresponding ‘No MP’ 

configuration. 

Table 6 - Measurement set simulation parameters for indoor/NLoS L1 C/A signal reception 

NLoS conditions (Indoors) simulation parameters: 

• Number of unique (transmitted from a single satellite) received signals present is defined to 

be within [1,  3] 

• Number of (NLoS) echoes 𝐽 per received signal is randomly chosen using uniformly 

distributed pseudorandom integer generator from MATLAB with min value 𝐽𝑚𝑖𝑛 = 7 and 

max value 𝐽𝑚𝑎𝑥 = 30 per unique signal.  

• Path amplitude 𝐴𝑖𝑎𝑖𝑗
 ∈  [0,  2] for 𝑗 ∈  [1,  𝐽] is random (uniformly distributed) for each 

NLoS echo (Here is it assumed that one signal is generated with path amplitude of 1 and all 

the echoes are added to it). 

• 𝛥𝑓𝑗 is random (uniformly distributed) in the interval +/-300Hz in the IF LoS carrier freq. for 

each echo 

• 𝜑𝑗 ∈ [0,2𝜋) is random (uniformly distributed) for each NLoS echo 

• 𝑐̃𝑖𝑗
 is introduced with a random codephase (uniformly distributed pseudorandom integer 

generator from MATLAB) for each NLoS echo 

 

Each feature is calculated using as input the measurement samples. For every possible sampled feature 

pair, a scatter plot was generated to show the distribution of the two simulated environments in feature 

space: 
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Figure 32 - Measurement samples in 2D feature space 
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5.4 Classification results and discussion 

Performance is assessed through the confusion charts that are produced from MATLAB. The confusion 

matrix (or chart) is a visual tool that assesses the performance of the prediction model in a tabular 

manner. The generic structure of a confusion matrix for a binary classification problem is shown in the 

next table: 

Table 7 - Confusion matrix structure 

 Actual (True/False) 

Predicted 
(Positive/Negative) 

True Positive 

[TP] 

False Positive 

(Type I error) 

[FP] 

False Negative 

(Type II error) 

[FN] 

True Negative 

[TN] 

 

Each entry in a confusion matrix denotes the number of predictions made by the model depending on 

correct or incorrect classification outcome. For the predicted result of a classifier the Positive/Negative 

characterization holds while the True/False refers to the actual class of the data. The False Positive (FP) 

and False Negative (FN) represent the Type I and Type II statistical errors respectively.  

In the multi-class case the confusion matrix is converted into a one against all type matrix and essentially 

reduces to the binary-class confusion matrix, but it requires the construction of one binary confusion 

matrix per class. 
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First, by using the standard LDA method the classification predictions between the options of using all 

possible feature pairs are given next: 
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Figure 33 - Confusion charts for binary classification using the LDA method 

It is evident that all feature pairs that involve the GHE measurement show excellent performance in this 

particular binary classification simulation. It is also noticed that DFA-CD, DFA-RPDE and CD-RPDE 

test cases show a degraded performance.  

Next, the corresponding results using the standard SVM algorithm for binary classification are 

presented: 
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Figure 34 - Confusion charts for binary classification using the SVM method 

The SVM classification showed excellent results for all cases that include the GHE measure, except 

when combined with the FE. Poor performance when using DFA-CD, DFA-RPDE and CD-RPDE 

feature pairs in the SVM classifier is, again, noticeable and even more pronounced. The numerical 

simulations have verified that an accurate classification result is possible using two off-the-shelf 

classifiers for the extreme cases of pure multipath signals and “clean” SIS signals. 

Next, a third class label is added to test the performance of the algorithms in a more challenging setup. 

The third class corresponds to the presence of several MP components on top of the LoS signal. In order 

to simulate such an intermediate state between the ‘No MP’ and ‘NLoS’ class labels the training 

parameters shown in the next table were selected: 

Table 8 - Training set simulation parameters for the "MP" label 

Number of LoS 𝑱𝒎𝒊𝒏 to 𝑱𝒎𝒂𝒙 

(num NLoS per LoS 

signal) 

1 5-30 

2 3-20 

3 2-15 

4 1-10 

5 1-5 
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The ‘MP’ class was added to the training models without modifying any of the training sets 

corresponding to the other two classes. For training the ‘MP’ class 1200 training points and 600 testing 

points were produced. The total samples for the three-class classification test set is 1800, 600 points per 

each class-label generated from three different signal simulation implementations. Specifically, the 

implementation employed to produce the corresponding measurement set for the ‘MP’ class considered 

the following parameters: 

Table 9 - Measurement set simulation parameters for the "MP" label 

Number of LoS 𝑱𝒎𝒊𝒏 to 𝑱𝒎𝒂𝒙 

(num NLoS per LoS 

signal) 

1 1-25 

2 1-15 

3 1-10 

4 1-7 

5 1-5 
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The corresponding scatter plots in 2D feature space are compiled next: 
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Figure 35 - Measurement samples in 2D feature space for 3 classes 

For this three-class classification problem the LDA and SVM methods were not providing a good 

classification performance. This is mainly because the ‘MP’ and ‘No MP’ samples are entangled in 

almost all possible test cases (see Figure 35). 

For this reason, a random forest algorithm was deployed which demonstrated a better performance. In 

particular, the MATLAB function “fitcensemble(_, _, 'Method', 'Bag')” was used as the random forest 

implementation. As with the previous simulations, features were combined in pairs to determine the best 

performing combination. The results are shown next, where class label 1 corresponds to ‘No MP’, label 

2 to ‘MP’, and 3 to ‘Indoors/NLoS’. 
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Figure 36 - Confusion charts for 3-label classification using the Random Forest method 

The results depicted in Figure 36 and Table 12 demonstrate a rather poor overall performance when a 

third class is added to the total sample. In particular, the performance appears to be good in the majority 

of the feature pairs only for the prediction of the simulated NLoS (class 3) signal mixture, but not 

predicting the ‘No MP’ or ‘MP’ class points. For this reason the case where the employment of a third 

feature was tested, again for all possible triplet combinations (i.e. 10 cases): 
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Figure 37 - Confusion charts for 3-label classification and a combination of 3 features using the Random Forest method 

 

Even after adding a third feature the final performance (according to Figure 37 and Table 13) did not 

improve significantly but it is worth noticing that combinations involving the GHE and RPDE metrics 

showed overall a slightly better performance than the rest, especially in predicting classes 1 and 2, while 

also being very efficient in detecting/predicting NLoS measurements. Possible improvements on the 

methodology presented to increase performance are summarized in the next chapter. 
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5.5 Validation of classification methods 
 

In the final section of this chapter, three metrics are deployed to assess further the validity of the 

classification models. These metrics deploy quantities defined in the confusion matrix: 

 Accuracy (all correct) which is computed as (TP + TN) / (TP + TN + FP + FN) 

 Sensitivity (true positives / all actual positives) which is computed as TP / (TP + FN) 

 Specificity (true negatives / all actual negatives) which is computed as TN / (TN + FP) 

 

Figure 33 values of the confusion matrix metrics follow in the next table: 

Table 10 - Confusion matrix metric values for binary LDA classification 

 Accuracy Sensitivity Specificity 

GHE-DFA 100% 100% 100% 

GHE-CD 100% 100% 100% 

GHE-FE 100% 100% 100% 

GHE-RPDE 100% 100% 100% 

DFA-CD 66% 61% 79% 

DFA-FE 93% 88% 100% 

DFA-RPDE 76% 70% 86% 

CD-FE 93% 87% 100% 

CD-RPDE 75% 69% 85% 

FE-RPDE 92% 87% 100% 
 

Next, based on the results depicted in Figure 34, the corresponding values of the confusion matrix 

metrics are given: 

Table 11 - Confusion matrix metric values for binary SVM classification 

 Accuracy Sensitivity Specificity 

GHE-DFA 100% 100% 100% 

GHE-CD 100% 100% 100% 

GHE-FE 96% 93% 100% 

GHE-RPDE 100% 100% 100% 

DFA-CD 50% 50% NA 

DFA-FE 93% 88% 100% 

DFA-RPDE 50% 70% NA 

CD-FE 93% 88% 100% 

CD-RPDE 50% 50% NA 

FE-RPDE 93% 88% 100% 
 

  



88 

 

Figure 36 values for accuracy, sensitivity and specificity follow: 

Table 12 - Confusion matrix metric values for three-class Random Forest classification 

 Class Accuracy Sensitivity Specificity 

GHE-DFA 1 74% 63% 79% 

2 74% 60% 82% 

3 99% 98% 100% 

GHE-CD 1 76% 65% 83% 

2 76% 65% 82% 

3 99% 99% 100% 

GHE-FE 1 76% 64% 82% 

2 72% 59% 81% 

3 96% 98% 95% 

GHE-RPDE 1 77% 66% 83% 

2 77% 66% 82% 

3 99% 98% 100% 

DFA-CD 1 59% 41% 71% 

2 57% 36% 68% 

3 72% 60% 76% 

DFA-FE 1 71% 58% 77% 

2 67% 51% 79% 

3 93% 97% 92% 

DFA-RPDE 1 65% 48% 76% 

2 60% 41% 71% 

3 77% 70% 80% 

CD-FE 1 73% 58% 82% 

2 71% 56% 78% 

3 94% 97% 92% 

CD-RPDE 1 63% 46% 77% 

2 62% 41% 69% 

3 74% 64% 78% 

FE-RPDE 1 75% 62% 82% 

2 72% 58% 81% 

3 93% 97% 92% 
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Figure 37 result table: 

 

Table 13 - Confusion matrix metric values for three-class Random Forest classification (combinations of 3 features) 

 Class Accuracy Sensitivity Specificity 

GHE-DFA-CD 1 74% 62% 79% 

2 73% 60% 81% 

3 99% 99% 100% 

GHE-DFA-FE 1 74% 63% 79% 

2 71% 56% 81% 

3 96% 98% 95% 

GHE-DFA-RPDE 1 76% 67% 82% 

2 77% 64% 84% 

3 99% 98% 100% 

GHE-CD-FE 1 76% 64% 83% 

2 73% 60% 81% 

3 96% 98% 95% 

GHE-CD-RPDE 1 78% 66% 84% 

2 77% 67% 82% 

3 99% 98% 100% 

GHE-FE-RPDE 1 77% 67% 83% 

2 73% 59% 82% 

3 96% 98% 95% 

DFA-CD-FE 1 72% 59% 79% 

2 69% 54% 79% 

3 93% 97% 92% 

DFA-CD-RPDE 1 66% 49% 76% 

2 61% 41% 69% 

3 74% 60% 72% 

DFA-FE-RPDE 1 74% 62% 80% 

2 71% 55% 81% 

3 93% 97% 92% 

CD-FE-RPDE 1 75% 62% 83% 

2 73% 59% 81% 

3 93% 97% 92% 
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6 Conclusions and future work 

The performance of an independent (in standalone mode) GNSS receiver is predominantly driven by 

the signal processing strategy - usually pre-selected by the manufacturer - and its capabilities to mitigate 

unwanted effects that signals experience from transmission to reception. The scope of this study is to 

research signal processing algorithms that detect and characterize the underlying multipath propagation 

environment by studying the classification performance of different multipath-afflicted signal 

waveforms. Context awareness plays a key role in GNSS integrity applications [222] such as in 

intelligent transportation systems (ITS)s [223], and spoofing detection [62] by providing information on 

the reliability of GNSS measurements. Integrity related information could activate further mitigation 

actions in the receiver side such as adaptation of signal processing (tracking bandwidth etc.). A similarly 

designed component could be utilized in snapshot receivers and emerging cloud integrated systems 

[224]. 

Several feature extraction methods were presented and tested through numerical simulations. The 

objective of selecting and studying these methods was based on two factors; their suitability to capture 

multipath patterns on a basic RF GNSS signal (pre-correlator stage) such as the GPS L1 C/A, and their 

combined employment to be utilised in effective classification of the multipath-afflicted waveform 

presumably caused by the corresponding multipath propagation environment. The presented numerical 

simulations showed excellent performance in classifying between a waveform that is composed from 

pure LI C/A spreading codes and a waveform with tens of multipath echoes (and no ‘strong’ LoS 

component present). In particular, all possible feature pairs that include the GHE metric could classify 

the two waveform types with 100% accuracy, sensitivity and specificity (see Figures 33, 34 and Tables 

7 and 8). 

When a third class of generic (intermediate type of) multipath-afflicted signals is added to the problem, 

the classification accuracy between ‘No MP’ or ‘MP’ labels was at best at 77% for the GHE-RPDE 

using a Random Forest classifier (Table 11) as LDA and SVM showed a poor performance. Towards 

the goal of improving performance, all possible combinations of triplets of features were employed as 

inputs to the selected classifiers (Table 12). However, showing no improvement compared to input 

feature-pairs. 

The most accurate and computationally efficient method for feature extraction is shown to be the GHE 

(Hurst exponent). Evidence shows that in certain scenarios GHE could be employed to characterize the 

multipath environment from the RF signal even without requiring an additional classifier. The majority 

of the rest of feature extraction methods are rather computationally expensive so their use might be 

limited in certain applications. 

Given the numerical nature of the simulations the outcome of the research is a preliminary analysis of 

the multipath-afflicted waveforms and the detection performance using the selected feature extraction 

methods. Although iterations (in a Monte Carlo simulation setting) are relatively low to cover for all 

different realistic scenarios, evidence shows that the studied feature techniques could potentially 

accommodate the context awareness capacity under certain SNR conditions. 

To improve classification performance, one proposal is to further investigate the optimal configuration 

of the feature extraction methods for the specific signal. Another case could be the employment of batch 

measurements combining several 1 ms samples. Without a matched-filter (cross-correlation) using local 

PRN replicas and therefore distinguishing one signal per satellite for analysis, it is unavoidable that 

ambiguous and challenging settings are anticipated. Depending on the number and properties of satellite 

signals in comparison to the number and properties of their resolvable echoes multiple physical 
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conditions might cause the same signal waveform. Subtle differences could possibly give extra 

information through the feature algorithms, and quite probably more information might be required. 

One of the most noticeable limiting factors in real conditions is that the central frequencies of different 

GNSSs might coincide such as GPS L1 band and Galileo E1 therefore affecting the results. Also the RF 

processing and quality of the components plays an important role as it defines the SNR factor. Several 

points can be listed on potential improvements: 

 Experimentation using real data for L1/CA which implies a careful selection of the antenna-

frontend pair (and a GNSS sampler/baseband unit). 

 Optimal tuning of feature extraction algorithms to improve performance and reduce 

computational cost/runtime with the prospect of employing it into a real GNSS system. 

 Assessing performance using different sampling rates for the ADC output and/or different 

step/increment lengths. The data-window could also be adapted. 

 The use of signal decompositions as a pre-processing step on one or several bands/signals and 

study potential improvement in feature selection. 

Moreover, the general aims of this work is to establish a framework on the methodology to 

detect/classify MP propagation with potential extensions to: 

 Extension to several classes, according to the different multipath propagation environments 

such as the ones widely used: Open-air, Rural, Urban, Indoors etc. 

 Extension of the considered classes by including Ionospheric Scintillation (which manifests 

itself in a similar manner as a multipath effect) and/or structural interference (RFI). 

 RFI and Scintillation could be accommodated and the classifier shall be designed to perform 

multi-label multiclass classification. 

 Generalization to other systems and signals (modern GNSS signals). 
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Appendix A – Histograms 

The purpose of presenting the histograms corresponding to method is to visualize the underlying 

statistics of the numerical simulations, and not to infer any statistical quantities as density functions 

remain unknown.  
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A.1 Generalized Hurst Exponent 

The GHE implementation is the most computationally efficient from the ones tested in this research, 

thus it allowed for experimentation using 5000 Monte Carlo Iterations. Next, the 𝐻(1) result histograms 

are presented:  
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Figure 38 – GHE (q=1) histograms after 5000 iterations 
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For 𝐻(2) respectively: 
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Figure 39 - GHE (q=2) histograms after 5000 iterations 
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A.2 Detrended fluctuation analysis 

For DFA 2000 iterations were feasible yielding the histograms shown below: 
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Figure 40 - DFA histograms after 2000 iterations 
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A.3 Correlation dimension 

Due to the lengthy runtime of the CD implementation within the numerical simulator the number of 

iterations performed were 200 and the statistics are shown below: 

 

 



120 

 

 

  



121 

 

 

 



122 

 

 

Figure 41 - CD histograms after 200 iterations 

Inspection of histograms generated from the noisy versions show skewed distributions and long tails 

(kurtosis), and the mode appears to be flattened. Same effect was observed to the MP-afflicted results 

and their histogram representation, without the long tails. The combined effects of random noise and 

MP showed a relatively more pronounced mode. 
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A.4 Fuzzy entropy 

The following histograms are generated from 200 iterations/particles for the FE measure simulation: 
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Figure 42 - FE histograms after 200 iterations 
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A.5 Recurrence period density entropy 

The following histograms are generated from 100 iterations/particles:
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Figure 43 - RPDE histograms after 100 iterations 
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Appendix B – Simulation GHE values under different SNRs 

In this Appendix, the results from extended simulations on the GHE computation are presented. 2000 

iterations were configured for four different average SNRs and the GHE was computed for both 𝑞 =

1,2.  

 

Figure 44 - GHE (q=1) simulated functions for different SNRs 

 

Figure 45 - GHE (q=2) simulated functions for different SNRs 

As shown, for either value of 𝑞 the results are very similar, and the higher the SNR, the more “flat” the 

resulting functions they get. This result suggests that the GHE metric might perform better in 

“characterizing” the different signals (simulation scenarios) in lower SNRs or “weaker” signals. 

 


