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Abstract 
The Noise Power Spectrum (NPS) is a standard measure for 

image capture system noise. It is derived traditionally from captured 
uniform luminance patches that are unrepresentative of pictorial 
scene signals. Many contemporary capture systems apply non-
linear content-aware signal processing, which renders their noise 
scene-dependent. For scene-dependent systems, measuring the NPS 
with respect to uniform patch signals fails to characterize with 
accuracy: i) system noise concerning a given input scene, ii) the 
average system noise power in real-world applications. The scene-
and-process-dependent NPS (SPD-NPS) framework addresses these 
limitations by measuring temporally varying system noise with 
respect to any given input signal. In this paper, we examine the 
scene-dependency of simulated camera pipelines in-depth by 
deriving SPD-NPSs from fifty test scenes. The pipelines apply either 
linear or non-linear denoising and sharpening, tuned to optimize 
output image quality at various opacity levels and exposures. 
Further, we present the integrated area under the mean of SPD-NPS 
curves over a representative scene set as an objective system noise 
metric, and their relative standard deviation area (RSDA) as a 
metric for system noise scene-dependency. We close by discussing 
how these metrics can also be computed using scene-and-process-
dependent Modulation Transfer Functions (SPD-MTF). 

Introduction 
Spatial luminance contrast signals are core to subjective 

impressions of image quality and its attributes of resolution, noise, 
sharpness and contrast. The Noise Power Spectrum (NPS) 
characterizes luminance (or color) noise with respect to spatial 
frequency. It is used routinely in the design and optimization of 
capture systems. It is a fundamental component of spatial image 
quality metrics (IQM) that aim to correlate with the perceived image 
quality [1]. 

The NPS is based upon the Fourier theory of image formation 
and applies linear system theory [2]. However, it is increasingly 
being used to measure systems that apply non-linear content-aware 
spatial image signal processes (ISP), such as denoising and 
sharpening. These adaptive processes are dependent on local spatial 
signal content, thus rendering system noise power scene-dependent. 

The aim of measuring the NPS of capture systems is to 
characterize the system (average) real-world noise power, i.e. their 
general noise power when capturing real scenes. The NPS is 
normally derived from captured uniform luminance patches in one-
dimension (1D) using the discrete Fourier transform (DFT). 
Artmann [3], and Fry et al. [1], [4] have discussed the limitations of 
applying this measurement method to scene-dependent capture 
systems that apply non-linear ISPs. These limitations, which are 
outlined below, are because uniform patches are unrepresentative of 
“average scene” signals. 

The majority of non-linear denoising algorithms reduce their 
intensity in the presence of local image structure to mitigate 
perceived signal loss [4–6]. Removal of noise by such algorithms is 

highly content-dependent and impeded by structural signals. 
Uniform luminance patches provide optimal conditions for these 
algorithms to operate. Thus, the resultant uniform patch NPS is 
generally biased; it underestimates the average real-world NPS of 
non-linear systems.  

Non-linear content-aware sharpening filters enhance local 
contrast selectively to minimize the perceived amplification of noise 
[7–11]. They amplify noise to a greater extent in regions containing 
edges, detail and other structural signals than in uniform luminance 
areas. This introduces content-dependency and scene-dependency to 
the system noise power, rendering the uniform patch NPS 
unrepresentative of the NPS of the “average sharpened scene” 
signal. 

More recently, Artmann [3] has proposed two noise measures 
that are derived using the more suitable dead leaves test chart [5]. 
This test chart replicates the power spectrum of the “average natural 
scene” among other natural scene statistics (NSS). Artmann’s noise 
measures represent a step toward measuring system noise with 
respect to pictorial scenes. Both measures are derived indirectly by 
comparing Modulation Transfer Functions (MTF) computed using 
different texture MTF implementations [5], [6].  

However, in non-linear systems, deriving the NPS from 
uniform patches, or in fact any single test chart, cannot characterize 
[4]:  

1) the system noise power with respect to a given input scene;  
2) the average real-world system noise power, while accounting 

for the system’s scene-dependency;  
3) the level of scene-dependency in the noise power of the system.  

The scene-and-process-dependent NPS (SPD-NPS) [4]  
measures employed in this paper characterize system noise power 
with respect to either 1), 2) or 3). They were developed for the 
characterization of non-linear, scene-dependent systems. Three 
corresponding scene-and-process-dependent MTF (SPD-MTF) 
measures have also been introduced and validated in [4]. Further, 
they have been applied in existing and novel spatial IQMs [1], [7]. 
Their use has improved metric correlations with perceived image 
quality. The next sub-section summarizes each SPD-NPS measure. 
Details on their calculation are provided in [4].  

Despite the importance of noise to overall capture system 
image quality, the authors are unaware of any prior art that simulates 
and characterizes capture system noise scene-dependency. This 
paper aims to express the utility of the various SPD-NPS measures 
by analyzing in detail the scene-dependency of the noise power of 
four image capture simulation pipelines. The pipelines apply linear 
and non-linear ISPs, tuned at different signal-to-noise ratios (SNR) 
and levels of opacity. We also validate two novel objective metrics 
for system noise power and its level of scene-dependency. We close 
the paper by drawing conclusions on the scene-dependent behavior 
of each pipeline and the relevancy of each measure and metric.  

Scene-and-Process-Dependent NPSs (SPD-NPS) 
The SPD-NPS measures characterize the power of temporally 

varying system noise directly, with respect to relevant input signals; 



 

 

they account for system scene-dependency. Fixed pattern noise 
(FPN) is unaccounted for but is less significant than temporally 
varying noise in contemporary capture systems under most capture 
conditions. It can be measured separately following ISO 15739 [8]. 

The pictorial image SPD-NPS and dead leaves SPD-NPS [4] 
are measured from a single scene, or the dead leaves test chart, 
respectively. Both are derived as the 1D NPS of a scene-and-
process-dependent noise image. The latter is obtained by subtracting 
the mean image of ten or more replicate captures of the same signal 
from the captured scene (or dead leaves chart). The pictorial image 
SPD-NPS describes the system’s noise power with respect to a given 
input scene, accounting for system scene-dependency. The dead 
leaves SPD-NPS approximates the average real-world system noise 
power. It accounts for system scene-dependency to a limited extent 
only, but is more appropriate than the uniform patch NPS [4].  

The mean pictorial image SPD-NPS and pictorial image SPD-
NPS standard deviation [4] are computed as the mean and standard 
deviation of a number of pictorial images’ SPD-NPSs from a set of 
𝑛 images. It is unorthodox to average NPSs in this way. However, 
the mean pictorial image SPD-NPS and pictorial image SPD-NPS 
standard deviation tend toward the system’s general performance 
(accounting for its scene-dependency) and the level of system scene-
dependency, respectively, as 𝑛 increases [4]. This requires that the 
image set is representative of commonly captured scenes, and the 
individual pictorial image SPD-NPSs are accurately measured. 

Novel Objective System Performance Metrics 
Mean Pictorial Image SPD-NPS Area Metric 

The mean pictorial image SPD-NPS area metric, 𝐴#$%&, 
describes the objective level of temporally varying system noise as 
a single figure (Equation 1). 𝑁(𝑢) is the mean pictorial image SPD-
NPS, 𝑢 is spatial frequency, and 𝑢+,-./01 is the Nyquist frequency. 
It is the only objective metric for system noise that accounts for 
system scene-dependency. We suggest it is used as an optimization 
parameter for capture system design and benchmarking.  

𝐴#$%& = ∫ 𝑁(𝑢). 𝑑𝑢.6789:;<
=  (1) 

This metric should not be confused with IQMs that model 
subjective image quality, since it does not account for display 
(image output) or human vision. However, it does relate directly to 
the output scores of various scene-and-process dependent IQMs [7]. 
These include variants of the log Noise Equivalent Quanta (log 
NEQ) and Visual log NEQ [7], as well as revised versions of 
Barten’s [9] Square Root Integral with Noise (SQRIn) and Topfer 
and Jacobson’s [10] Pictorial Information Capacity (PIC). These 
metrics weight the SPD-NPS with a Contrast Sensitivity Function 
(CSF) and add neural noise [11] before integration to model the 
perceived noise level. 

Relative Standard Deviation Area (RSDA) Metric 
The relative standard deviation area (RSDA) of the pictorial 

image SPD-NPS, 𝐴>?@A, presented in Equation 2, is the only metric 
for the relative level of scene-dependency in the temporally varying 
noise power of a system. 𝑆(𝑢) is the pictorial image SPD-NPS 
standard deviation, 𝐴#$%& is the mean pictorial image SPD-NPS 
area (Equation 1), 𝑢 is spatial frequency, and 𝑢+,-./01 is the Nyquist 
frequency. It can be assumed that, systems with higher RSDAs 
apply greater levels of non-linear ISP, making their spatial 
performance less predictable.  
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∫ ?(.).C.
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E
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Simulation Pipelines and Test Images  
The simulation pipelines and relevant ISP algorithms are 

described in detail in [4]. All four pipelines modelled the following 
processes identically: i) Lens blur by convolution with a Gaussian 
model for a diffraction-limited lens’ airy disk. ii) Shot noise as two-
dimensional (2D) Poisson noise with linear SNRs of 40 and 5 at 
saturation, representing very good and very poor capture conditions, 
respectively. iii) Read noise and dark noise as Gaussian noise. iv) 
Sensor quantum efficiency variation by scaling Poisson noise in the 
R, G and B channels by factors of 2, 1 and 3.3, respectively. v) Gain 
adjustment, noise floor removal and highlight recovery. vi) ‘grbg’ 
Bayer color filter array (CFA) sampling.  

Further, the two linear pipelines’ ISPs employed: i) 
demosaicing by Malvar et al. [12], ii) denoising by Gaussian 
filtering, iii) sharpening by the MATLABTM imsharpen unsharp 
mask (USM) [13].  

The two non-linear pipelines’ ISPs employed: i) demosaicing 
by One Step Alternating Projections (OSAP) [14], ii) denoising by 
Block Matching and 3D Filtering (BM3D) [15], iii) sharpening of 
each channel by the Guided Image Filter (GIF) [16].  

The input parameters for denoising and sharpening ISPs were 
tuned, at each SNR, to optimize subjective output image quality on 
a calibrated 15-inch MacBook Pro Retina (2016) display at 60cm 
viewing distance (Nyquist frequency of 46 cycles/degree).  

For one linear and one non-linear pipeline, the filter opacity 
(defined in Equation 3) of the denoising and sharpening filters was 
adjusted according to values presented in Table 1, to optimize output 
image quality on a calibrated Eizo ColorEdge CG-245W display at 
60cm viewing distance (Nyquist frequency of 20 cycles/degree). 
Lowering the percentage opacity	(𝑃) below 100% reduced the 
filter’s intensity in the output image, 𝑜(𝑥, 𝑦), by blending a 
proportion of the filtered image, 𝑑(𝑥, 𝑦), and unfiltered image 
𝑔(𝑥, 𝑦). It was necessary to lower the intensity of certain ISPs to 
fully optimize subjective image quality at higher SNRs. Lowering 
the opacity of the ISPs also tested the robustness of the various SPD-
NPS measures, as well as the metrics presented in this paper.  

𝑜(𝑥, 𝑦) = Q
R==

. 𝑑(𝑥, 𝑦) +	R==TQ
R==

. 𝑔(𝑥, 𝑦) (3) 

Table 1. ISP Filter Opacity (if Tuned at Reduced Opacity) 

 
 
The input of the pipelines was 50 high-quality imaged scenes, 

representing typical images captured by contemporary consumer 
camera systems. They were selected from [17]–[20], resized using 
bicubic interpolation, cropped to 512-by-512 pixels and windowed 
to mitigate periodic replication artefacts originating from DFT 
processing  [4]. 

Analyzing Pipeline Scene-Dependency 
Figures 1 and 2 examine in-depth the scene-dependency of 

temporally varying noise in the full-opacity pipelines. This includes 
the distribution of the pictorial image SPD-NPSs, for all 50 input 



 

scenes, and changes in their integrated areas. Comparable trends 
were noted in the corresponding pictorial SPD-NPSs of the reduced-
opacity pipelines.  

The pictorial image SPD-NPS curves were expressed on linear 
axes to examine pipeline scene-dependency thoroughly. Each curve 
was colored according to the magnitude of its integrated area, 
derived between zero and the Nyquist frequency before denoising 
was applied. The green and blue curves have higher and lower 
integrated areas, respectively.  

 

 

Figure 1. Pictorial image SPD-NPS measurements for 50 scenes at various 
stages of linear and non-linear ISP, tuned at full opacity at SNR 40. Green 
curves have higher integrated area before denoising. 

Before denoising was applied, we notice a smooth transition 
from the green to the blue curves. The fact that they were slightly 
spread out is a result of minor shot noise scene-dependency, which 
is dependent on the pixel intensity.  

For the linear pipeline, the order of the curves (from high to 
low integrated areas) remained consistent after denoising and after 
denoising and sharpening. This is indicated by the smooth transition 
between the green and blue curves which is unchanged before and 
after these processes. The relative level of spread in these curves is 
also roughly constant. Both these characteristics indicate a lack of 
system scene-dependency, which is what one would expect from a 
linear system. 

Non-linear content-aware denoising and sharpening, however, 
increased the relative level of spread between the curves and re-
arranged their order. Thus, the curves with a higher integrated area 
before denoising often ended up with a lower integrated area after 
denoising and/or sharpening, and vice-versa. This unpredictable 
behavior was particularly clear at SNR 40 and becomes clearer in 

the plots at SNR 5 if they are rescaled at each frequency. This 
behavior is indicative of adaptive processing. 

The analysis indicates the utility of the pictorial image SPD-
NPS measures to imaging systems characterization, and the depth to 
which systems can be analyzed. They demonstrate in detail the 
compounding effect of non-linear ISPs on scene-dependency. 

 

 

Figure 2. Pictorial image SPD-NPSs for 50 scenes at various stages of linear 
and non-linear ISP, tuned at full opacity at SNR 5. Green curves have higher 
integrated area before denoising. 

Characterizing Pipeline Scene-Dependency 
We employ all SPD-NPS measures derived from scenes to 

characterize the average real-world noise power and noise scene-
dependency of pipelines with ISPs tuned at full and reduced opacity. 
The dead leaves SPD-NPS is also computed for comparison. 
Evaluating measurements from the reduced-opacity pipelines 
demonstrated the robustness of the measures. The level of bias in all 
the measures was previously shown to be similar to the uniform 
patch NPS [4]. They are shown in Figures 3 and 4 on logarithmically 
scaled axis as is common in the industry.  

The pictorial image SPD-NPS measures (grey lines) display 
significant scene-dependency after non-linear denoising, regardless 
of the ISPs’ opacity level. Lowering the opacity of denoising did not 
increase considerably the bias in these measurements. But it reduced 
pipeline scene-dependency and introduced a noise floor, particularly 
at low SNRs. This was because the characteristics of unfiltered noise 
(Figures 1(b) and 2(b)) began to dominate, having a higher power 
and a lower relative level of scene-dependency to the filtered noise.  

The following observations from [4] also applied at lower ISP 
opacities, indicating the various SPD-NPSs are robust.  



 

 

The mean pictorial image SPD-NPS (black line) characterized 
suitably the pipelines’ average noise with respect to the 50 scenes.   

The pictorial image SPD-NPS standard deviation (broken 
lines) expressed pipeline scene-dependency effectively, when it was 
added and subtracted from the mean pictorial image SPD-NPS. It 
accounted for the spread of the pictorial image SPD-NPS curves but 
ignored changes in their order that are visible in Figures 1 and 2.  

 

 
Figure 3. Various SPD-NPS measurements for all pipelines at SNR 40. 

 
For the linear pipelines, the dead leaves SPD-NPS (red line) 

was consistent with the mean pictorial image SPD-NPS (black line). 
This result indicates that, the former measure describes well the 
average real-world noise power, as expected from linear system 
theory. But this is not the case for the non-linear pipelines, for which 
the dead leaves SPD-NPS did not describe processing of noise in the 
“average pictorial scene”. Despite the dead leaves test chart being 
designed to replicate the signal power characteristics of natural 

scenes, it was denoised more effectively than most scenes by the 
non-linear content-aware BM3D filter, particularly at low SNRs. It 
also responded differently to non-linear sharpening than most 
scenes. We thus conclude that, noise measures derived from dead 
leaves signals may be unrepresentative of the average real-world 
noise power of non-linear capture systems. 

 

 
Figure 4. Various SPD-NPS measurements for all pipelines at SNR 5.  

Validation of System Performance Metrics 
We validate the mean pictorial image SPD-NPS area metric for 

temporally varying system noise, as well as the RSDA metric for 
system noise scene-dependency. This was achieved by evaluating 
their conformity with previous observations of pipeline behavior.  

Mean Pictorial Image SPD-NPS Area Metric 
The mean pictorial image SPD-NPS area metric (Figure 5) 

expresses appropriately the following general trends that were 



 

observed in the individual SPD-NPS measures, derived from 
pictorial images:  

1)  that non-linear denoising removed more noise than linear 
denoising;  

2)  that denoising at full opacity reduced noise further than at 
reduced opacity; 

3)  that linear sharpening amplified noise more than non-linear 
sharpening; 

4)  that sharpening at full opacity increased noise more than at 
lower opacity.  

The mean pictorial image SPD-NPS and individual pictorial 
image SPD-NPS measure, which this metric is based upon, were 
found to be particularly relevant to the image quality modelling of 
simulated non-linear capture systems [7]. Therefore, the metric is 
expected to be relevant to the optimization of such systems.  

 

 
Figure 5. Mean pictorial image SPD-NPS area scores, in units of pixels. 

Relative Standard Deviation Area (RSDA) Metric 
The RSDA of the pictorial images’ SPD-NPSs agreed with 

observations of the pictorial image SPD-NPS standard deviation 
measure (Figure 6). For example, it was unaffected by both linear 
denoising and sharpening, as expected. Non-linear denoising raised 
the RSDA significantly, especially at higher SNRs, accounting for 
trends in Figures 3 and 4. Non-linear sharpening did not compound 
the RSDA, despite changing the SPD-NPS curves’ shape and order 
(Figure 1(f)). This was because the RSDA does not account for the 
latter and the relative level of spread in the curves remained similar 
after filtering. 

 

 
Figure 6. Relative Standard Deviation Area (RSDA) of the SPD-NPSs of all 50 
pictorial images, expressed as a percentage of the integrated area under the 
mean pictorial image SPD-NPS, which has units of pixels. 

The RSDA metric is expected to be particularly informative 
when it is quoted alongside the mean pictorial image SPD-NPS area 
metric. For example, it can be inferred that systems with a lower 
mean pictorial image SPD-NPS area, and a higher RSDA, are more 
likely to use significant non-linear ISP to yield high-quality images, 
rather than higher quality hardware. This comparison follows the 
same principle as when the pictorial image SPD-NPS standard 
deviation measure was added and subtracted from the mean pictorial 
image SPD-NPS, as shown in Figures 3 and 4. 

Conclusions 
The utility of several SPD-NPS measures and metrics has been 

demonstrated by characterizing the noise power of four simulated 
camera pipelines that apply linear and non-linear ISPs under various 
exposure conditions. The ISPs were either tuned at full opacity, or 
their opacity was adjusted to optimize output image quality. The 
measures and metrics were computed from a number of replicate 
scene captures (or dead leaves test chart captures). They account for 
temporally varying noise, not FPN. They also account for system 
scene-dependency, caused by interactions between the input signal 
and non-linear ISPs.  

The level of pipeline scene-dependency and its causes were 
first investigated by analyzing the distribution and integrated areas 
of pictorial image SPD-NPS curves for fifty imaged scenes. This 
measure describes pipeline noise with respect to a given input scene 
and accounts most thoroughly for the scene-dependency of non-
linear denoising and sharpening ISPs. Non-linear ISPs were shown 
to increase the spread of the SPD-NPS curves and re-arranged their 
order after each process. These results, as well as findings from 
previous research [4], [7], suggest that IQMs designed for non-linear 
systems should, ideally, account for such behavior.  

Analysis of the mean pictorial image SPD-NPS, pictorial 
image SPD-NPS standard deviation, and dead leaves SPD-NPS 
measures confirmed that conclusions from their previous validation 
[4] still apply when the pipelines’ ISPs are tuned at reduced 
opacities. This finding demonstrates the robustness of the measures. 
Novel objective metrics for temporally varying system noise, and its 
relative level of scene-dependency, were validated. Conclusions 
from the analysis of each measure/metric are summarized below.  

The pictorial image SPD-NPS standard deviation [4], and the 
related RSDA metric introduced in this paper, described the level of 
scene-dependent noise in the pipelines successfully, regardless of 
the ISPs’ opacities. Certain aspects of system scene-dependency 
were unaccounted for. 

The average real-world noise power of each pipeline was also 
characterized appropriately, regardless of the ISPs’ opacities, by the 
mean pictorial image SPD-NPS. The mean pictorial image SPD-
NPS area metric also expressed the general trends in this measure. 

The dead leaves SPD-NPS estimated conveniently the average 
real-world performance of the linear pipelines. However, it failed to 
describe noise introduced to the “average” input scene for the non-
linear pipelines. A relevant study found also that signal transfer 
measurements from the dead leaves chart differed from signal 
transfer of the “average” scene for this pipeline [4].  

We infer that, the signal and noise contents in the dead leaves 
chart are treated differently to signal and noise contents in complex 
imaged scenes, when these are processed by non-linear ISPs. We 
expect this to be because, the mathematically generated dead leaves 
chart consists of randomly distributed overlaid discs with “perfect”, 
low-contrast edges. In contrast, most natural scenes contain a variety 
of structural signals, which are not randomly distributed and have a 
wide range of edge gradients and contrast levels.  



 

 

No test chart will yield a unique NPS (or MTF) for non-linear 
systems. However, we hypothesize that a more representative test 
chart should yield NPS (or MTF) measurements that describe 
average real-world system noise (or signal transfer) more suitably. 
This could be generated by: i) reducing the dead leaves chart’s 
homogeneity by varying the shape of each overlaid “leaf” element. 
ii) ensuring the edges of the elements are representative of the range 
of natural scene edge gradients. iii) increasing the contrast of these 
elements and distributing them non-randomly. The latter may affect 
the target’s useful scale, rotation and shift-invariant properties.  

Alternatively, we propose that a representative set of images of 
scenes containing common features should be used for capture 
system signal transfer and noise characterization. Each of these 
scenes should provoke non-linear ISP behavior that is typical to a 
particular “type of scene”. Thus, each scene type should yield 
relevant pictorial image SPD-NPS (or SPD-MTF) measurements. 
The mean pictorial image SPD-NPS (or SPD-MTF) of these scenes 
should also be approximately representative of the average real-
world noise (or signal transfer) performance of non-linear systems.  

The mean pictorial image SPD-NPS area metric, and the RSDA 
metric, can be computed with their SPD-NPS measures substituted 
for the corresponding SPD-MTF measures [4] (Equations 1 and 2). 
The resultant metrics describe the average real-world level of signal 
transfer of a given system, and its signal transfer scene-dependency, 
respectively. Currently, bias in the pictorial image SPD-MTF 
measurements limits the accuracy of both metrics. This results from 
signal-to-noise limitations and is discussed in [4]. Investigations of 
methods to further mitigate this bias are ongoing.  

We have also developed new IQMs [1], [7] that use SPD-NPS 
measures presented in this paper, as well as scene-dependent, 
contextual visual models [21]. These IQMs were validated 
successfully with images generated by the reduced-opacity pipelines 
of this paper [7]. The objective metrics relate closely to these SPD-
NPS measures and IQMs and are expected to be valuable for capture 
system design, optimization and benchmarking. 
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