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SUMMARY 

Background and purpose: Melanocortin receptors, MC1 and MC3, mediate the anti-

inflammatory effects of melanocortin peptides. Targeting these receptors could therefore lead 

to development of novel anti-inflammatory therapeutics. We investigated the expression of 

MC1 and MC3 on chondrocytes and the role of alpha-melanocyte-stimulating hormone (-

MSH) and the selective MC3 agonist, [DTRP8]--MSH, in modulating the production of 

inflammatory cytokines, tissue-destructive proteins and induction of apoptotic pathway(s) in 

the human chondrocytic cell-line, C-20/A4. 

Experimental Approach: The effects of -MSH, [DTRP8]--MSH alone, or in the presence 

of the MC3/4 receptor antagonist, SHU9119, on TNF- induced release of pro-inflammatory 

cytokines, matrix metalloproteinases (MMPs), apoptotic pathway(s) and cell death in C-

20/A4 chondrocytes were investigated, as well as their effect at inducing the release of the 

anti-inflammatory cytokine IL-10. 

Key Results: C-20/A4 chondrocytes expressed functionally active MC1,3 receptors. -MSH 

and [DTRP8]--MSH treatment for 30 min prior to TNF- stimulation resulted in a time and 

bell-shaped concentration dependent decrease in pro-inflammatory cytokines (IL-1, IL-6 

and IL-8) release and increased release of the chondroproctective/anti-inflammatory cytokine, 

IL-10, while decreasing expression of matrix metallo-proteinases MMP1, MMP3, MMP13 

genes. -MSH and [DTRP8]--MSH treatment also inhibited TNF--induced caspases 3/7 

activation and chondrocyte death. The effects of [DTRP8]--MSH, but not -MSH, were 

abrogated by the MC3/4 receptor antagonist, SHU9119. 

Conclusion and implications:  Activation of MC1/MC3 receptors in C-20/A4 chondrocytes 

down-regulates the production of pro-inflammatory cytokines and cartilage destructive 

proteinases, inhibits initiation of apoptotic pathways and promotes release of 

chondroprotective/anti-inflammatory cytokines. Developing small molecule agonists to MC1/ 
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MC3 receptors could be a viable approach for developing anti-

inflammatory/chondroprotective therapies in rheumatoid and osteoarthritis. 

 

Abbreviations: ACTH, adrenocorticotropin; DMEM, Dulbecco’s Modified Eagle’s Medium; 

ECM, extracellular matrix; FCS, Foetal Calf Serum; GPCR, G-protein coupled receptor; 

IBMX, isobutylmethylxantine; IL, interleukin; MC, melanocortin receptor; MMP, matrix 

metalloproteinases; OA, osteoarthritis; PGE2, prostaglandin E2; RA, rheumatoid arthritis; RT-

PCR, reverse transcriptase polymerase chain reaction; -MSH, alpha-melanocyte-stimulating 

hormone. 

 

Key words: anti-inflammatory; apoptosis; caspases, chemokines, chondrocyte, 

chondroprotective, cytokines; GPCR; melanocortins; matrix metalloproteinases  
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INTRODUCTION 

Rheumatoid arthritis (RA) is a chronic inflammatory systemic disorder (Getting et al., 2009)   

whilst osteroarthritis (OA) is typically associated with obesity, age and abnormal joint 

loading (Recnik et al., 2009) and was historically considered to be primarily a non-

inflammatory arthropathy. However recent studies in both OA and RA patients and in animal 

models show a marked elevation in inflammation and pro-inflammatory cytokine levels, 

including TNF-, IL-1 IL-6 and IL-8, in the cartilage  which subsequently leads to 

progressive joint destruction  (Fernandes et al., 2002; Rai et al., 2008, Koenders et al., 2011).  

Chondrocyte activation can lead to increased expression and secretion of cartilage-degrading 

matrix metalloproteinases (MMP) (Shlopov et al., 2000)), such as MMP1 and MMP13, 

which are highly elevated in OA cartilage (Reboul et al., 1996) leading to degradation of the 

cartilage extracellular matrix (ECM). In addition to an increase in pro-inflammatory 

mediators, TNF- also down-regulates the production of pro-resolving, anti-inflammatory 

proteins such as IL-10 (Iannone et al., 2001) which may also contribute to an increased 

proportion of apoptotic cells in OA cartilage compared to healthy cartilage, resulting in 

further cartilage damage (Aigner et al., 2001, John et al., 2007).  

Melanocortin peptides, including -melanocyte stimulating hormone (-MSH), are 

endogenous anti-inflammatory peptides (Gonzalez-Rey et al., 2007) that exert their effects 

via activation of melanocortin receptors (MC) of which five have so far been identified (MC1-

5) (Getting et al., 2009). Over the last three decades, melanocortin peptides and their receptors 

(MC1 and MC3) have been shown to be particularly important as modulators of innate 

immunity and therefore synthetic peptides such as [DTRP8]--MSH have been designed to 

evaluate these receptors’ potential as targets for therapeutic intervention (Getting et al., 2009, 

Holloway et al., 2011). For example, melanocortin peptides display efficacy in pre-clinical 

models of arthritis (Patel et al., 2010) and models of gout (Getting et al., 2002) where 
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monosodium urate crystal–induced neutrophil migration and pro-inflammatory cytokines and 

chemokine release are significantly reduced. MC1 and MC3 receptors have been proposed to 

mediate these anti-inflammatory effects (Getting et al., 2009, Holloway et al., 2011) with the 

selective MC1 agonist, BMS-470539, inhibiting leukocyte migration in the inflamed 

vasculature of mice (Leoni et al., 2010), while pharmacological approaches have also 

highlighted a role for the MC3 receptor as a possible anti-inflammatory target in models of 

gouty peritonitis (Getting et al., 2006a), ischaemia-reperfusion injury (Leoni et al., 2008) and 

RA (Patel et al., 2010). In addition, deletion of the MC3 gene in mice exacerbates the host 

inflammatory response in a model of ischaemia-reperfusion injury (Leoni et al., 2008), whilst 

an increase of inflammatory arthritis is also seen in MC3 null mice compared to wild type 

mice (Patel et al., 2010), again confirming the importance of MC3 receptor as a therapeutic 

target.  

In spite of the substantial evidence suggesting a role of melanocortin peptides in numerous 

inflammatory pathologies, only a very limited number of studies have evaluated the 

therapeutic potential of melanocortin peptides in OA. For example,  -MSH down-regulates 

TNF- induced expression of MMPs, by decreasing p38 MAPK phosphorylation and 

subsequent activation of NF-B, in a human chondrosarcoma (HTB-94) cell line (Yoon et al., 

2008), whilst recent studies, using human articular chondrocytes, showed an -MSH 

dependent decreases in IL-1 and TNF- mRNA levels, mediated via the MC1 receptor 

(Grassel et al., 2009), whilst in rodent chondrocytes, adrenocorticotrophin (ACTH) treatment 

mediated via the MC1 receptor promotes the development of the chondrocyte phenotype 

(Evans et al., 2004). 

In this present study, we have demonstrated the expression and functionality of MC1 and 

MC3 receptors on human C-20/A4 chondrocytes and the role of melanocortins in modulating 
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TNF- induced pro-inflammatory cytokine production, MMPs release, caspase-driven 

chondrocyte apoptosis and chondro-protection.  

 

MATERIALS & METHODS 

The C-20/A4 human chondrocyte cell-line was a kind gift of Dr M.B. Goldring, (Hospital for 

Special Surgery, New York, USA) (Goldring et al., 1994) and is derived from juvenile costal 

chondrocytes by immortalization via transfection with origin-defective simian virus 40 large 

T antigen (SV40-Tag) (Finger et al., 2004). Briefly, C-20/A4 cells were cultured in 

monolayers in complete media (Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% (v/v) heat-inactivated Foetal Calf Serum (FCS), Penicillin (100.0 U/ml) and 

Streptomycin (100.0 µg/ml)), in a humidified atmosphere supplied with 5% CO2 and 95% air, 

until 80% confluent, as previously described (Goldring et al., 1994). Prior to 

experimentation, FCS concentration was reduced to 1% (v/v) for 24 h and all subsequent 

experiments were performed under these conditions. 

 

In vitro chondrocyte stimulation. 

C-20/A4 chondrocytes were treated for 30 mins with either PBS (control), -MSH (1.0 – 

30.0 g/ml; Sigma-Aldrich, Poole, Dorset, UK) or the selective MC3 receptor agonist, 

[DTRP8]--MSH  (1.0 – 30.0 µg/ml) (synthesised by Dr. P. Grieco, University of Naples, 

Italy, (Grieco et al., 2000, Getting et al., 2006b)) and stimulated with human recombinant 

TNF- (0.0 – 80.0 pg/ml) (Kaneva et al., 2010) and cell-free supernatants collected and 

stored at  –20°C. In some experiments (as indicated), cells were also pre-treated for 1 h with 

the MC3/4 receptor antagonist, SHU9119 (10.0 g/ml) (Getting et al., 2006a), prior to 

addition of -MSH or [DTRP8]--MSH. 
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cAMP accumulation in C-20/A4 chondrocytes 

To assess receptor functionality, a cAMP accumulation assay (RPN225, GE Healthcare, 

Amersham, UK) was used as previously described (Getting et al., 2006a, 2008). Briefly, C-

20/A4 chondrocytes (2.0 x 105 cells/well) were seeded in 96-well-plates in 100 l complete 

media and incubated for 2 h to allow cell adhesion. Cells were then incubated for 30 mins in 

serum-free medium in a 37C humidified atmosphere of 5% CO2 and 95% air, in the presence 

of the direct adenylate activator, forskolin (3.0 M, positive control), -MSH (1.0 – 30.0 

g/ml) or [DTRP8]--MSH  (1.0 – 30.0 g/ml) alone or in the presence of the MC3/4 

antagonist, SHU9119 (10.0 g/ml), all in the presence of 1.0 mM isobutylmethylxantine 

(IBMX).  A negative control (cells incubated alone) was incubated under identical conditions. 

Cell supernatants were removed and adhered cells lysed as per the manufacturer’s instructions 

and intracellular cAMP concentration determined (Getting et al., 2006a, 2008).   

 

Molecular Analysis 

RT-PCR analysis 

C-20/A4 chondrocyte RNA was extracted and isolated using the NucleoSpin® RNA II Kit 

(Macherey-Nagel, Duren, Germany) and  RNA concentrations were determined using a 

NanoDrop® ND-1000 UV-Vis Spectrophotometer (A260nm/280nm: 1.9-2.1). cDNA was 

synthesized by taking 1.0 µg of DNase-treated total RNA, PolyT, Random Primers and 

RNase inhibitor in a total volume of 20.0 µl using the Improm II Reverse Transcription 

System (Promega, UK). 2.0 µl aliquots of the cDNA (in a final volume of 25 l) were used as 

a template for PCR amplification using specific primer pairs (see below) for MMP1, MMP3, 

MMP13 using the GoTaq® Green Mastermix system (Promega, UK). The oligonucleotide 

primer sequences were as follows:  

MMP1_FWD: 5′-CGACTCTAGAAACAGAAGAGCAAGA-3’ and  
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MMP1_REV: 5′-AAGGTTAGCTTACTGTCACACACGCTT-3’;  

MMP3_FWD: 5′-GGAAATCAGTTCTGGGCTATACGAGG-3’ and  

MMP3_REV: 5′-CCAACTGCGAAGATCCACTGAAGAAG-3’;  

MMP13_FWD: 5′-GTGGTGTGGGAAGTATCATCA-3’ and  

MMP13_REV: 5′-GCATCTGGAGTAACCGTATTG-3’.  

The PCR parameters were as follows: initial denaturing for 5 min at 95°C, followed by 25 

cycles of denaturation (95°C for 60 s), annealing (55-59°C- depending on the primers used 

for 90 s) and extension (72°C for 90 s), with a single final extension of 72°C for 10 min. 

Oligonucleotide primers for human -actin (FWD: 5′-GTCCCGGCATGTGCAA-3’; REV: 

5′- AGGATGTTCATGAGGTAGT-3’) were used as a control. Amplification products were 

separated by agarose gel electrophoresis and stained with ethidium bromide. Densitometry 

analysis was performed using Image J software (NIH, Bethesda, Maryland, USA). 

 

Western blotting 

C-20/A4 chondrocyte expression of MC1 and MC3 receptors was determined as previously 

described (Getting et al., 2008). Following electrophoresis in a 10% SDS-polyacrylamide gel, 

proteins were transferred onto nylon membrane by electroblotting, blocked overnight in 5% 

non-fat milk solution in Tris-HCl buffered saline, pH 7.5 (TBS) containing 0.1% (v/v) 

Tween-20 and then incubated with either specific anti-MC1 or anti-MC3 (1:2000 dilution 

M9193 and M4937, Sigma-Aldrich, Dorset, UK) rabbit antibodies in blocking solution. Blots 

were washed in TBS prior to the addition of a secondary goat anti-rabbit HRP-conjugated 

antibody (1:2000 dilution) and specific antibody binding was detected by enhanced 

chemiluminescence (Pierce Biotechnology, Rockford, IL, USA). Following detection, bound 

antibodies were removed by incubating the membranes in 100 mM Glycine-HCl, pH 2.5 for 

30 mins and the blot re-probed to detect of -tubulin as described previously (Getting et al., 
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2008). Densitometry analysis was performed using Image J software (NIH, Bethesda, 

Maryland, USA). 

 

Biochemical and cell viability analyses 

MTT cytotoxicity assay 

Cell viability was determined using an MTT assay (Lam et al., 2006). Briefly, C-20/A4 cells 

plated at 2.0 x 105 cells/well in 96-well plates (in 200µl of complete medium) and allowed to 

adhere, prior to treatment as described above (see In vitro chondrocyte stimulation section). 

Following stimulation, cell culture medium was aspirated and a 1:10 dilution of MTT (3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium) solution added for 2 h at 37°C in a 

humidified chamber with 5% CO2 and 95% air at 37C. Following incubation, the 

supernatant was replaced with DMSO (100 l/well), incubated for 15 min and the absorbance 

determined at 570 nm.  

 

Cytokine quantification by ELISA 

Human IL-1, IL6, IL-8 and IL-10 concentrations in cell-free supernatants were determined 

using commercially available ELISA kits (R&D Systems Europe Ltd, Oxford, UK). These 

ELISAs showed negligible (<1%) cross-reactivity with other cytokines and chemokines (data 

furnished by manufacturer). 

 

Caspase-Glo 3/7 apoptosis assay 

Apoptosis was determined by measuring Caspase 3 and 7 activity following cell stimulation 

as detailed above (see In vitro chondrocyte stimulation section).  Briefly, C-20/A4 

chondrocytes were plated at 2.0x105 cells/well in 96-well plates and 100l of Caspase-Glo 

3/7 Reagent (Promega, Southampton, UK) was added to each well and incubated at room 
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temperature for 1 h after which luminescence was measured as per the manufacturer’s 

instructions.  

 

Statistics 

All data are reported as mean ± SEM of n observations, using at least 3 experiments with 4 

determinations per group. Statistical evaluation was performed using analysis of variance 

ANOVA (Prism GraphPad Software) incorporating either Dunnets’ or Bonferroni’s Multiple 

Comparison tests to allow for post-hoc analyses with a probability *p≤ 0.05; **p≤ 0.01; 

***p≤ 0.001 taken as significant. Receptor nomenclature for melanocortin receptors was used 

in accordance with the “Guide to receptors and Channels (GRAC)” (Alexander et al., 2009) 

 

RESULTS 

TNF- up-regulates pro-inflammatory cytokine release from C-20/A4 chondrocytes 

C-20/A4 chondrocytes were stimulated with different concentrations of TNF-� (0.0 – 80.0 

pg/ml) to evaluate its ability to promote the release of IL-1, IL-6 and IL-8 over a time 

course. TNF- stimulation at all concentrations led to a significant release of IL-1, IL-6 and 

IL-8 over basal levels at all time points evaluated (Figure 1A-C). IL-1 synthesis increased in 

a concentration dependent manner with a maximal release at 6 h, with a plateau observed 

between 60.0 pg/ml (27.4 ± 5.7 pg/ml) and 80.0 pg/ml TNF- (28.6 ± 3.3 pg/ml), while IL-6 

and IL-8 increased in a concentration-dependent manner peaking at 24 h, with 60.0 pg/ml 

TNF- causing maximal stimulation (154.3 ± 10.3 pg/ml IL-6 and 482.8 ± 21.5 pg/ml IL-8) 

(Figure 1A-C).     
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C-20/A4 chondrocytes express functionally active MC1 and MC3 receptors.  

Western blotting showed the presence of both MC1 and MC3 proteins on C-20/A4 human 

chondrocytes with product sizes of 35 and 40 kDa being observed (Figure 2A),  -MSH and 

[DTRP8]--MSH were used to test for functional receptors on these cells by measuring cAMP 

production. Addition of the pan-melanocortin receptor agonist, -MSH (1.0 – 30.0 g/ml), 

and the selective MC3 receptor agonist, [DTRP8]--MSH (1.0 – 30.0 g/ml), both provoked a 

significant accumulation of intracellular cAMP. The direct adenylate cyclase stimulator, 

forskolin (FSK, 3.0 M), caused a 9-fold increase in cAMP (2230.0 ± 74.0 fmol/well) over 

control (249.0 ± 10.6 fmol/well), with -MSH treatment causing a significant increase in 

cAMP accumulation at all concentrations tested, with a maximal increase being observed at 

10.0 g/ml (639.0 ± 41.6 fmol/well, p≤ 0.001) (Figure 2B). The selective MC3 agonist, 

[DTRP8]--MSH, also caused a marked increase in cAMP accumulation with a maximal 

effect observed at 3.0 g/ml (801.0 ± 30.0 fmol/well; p≤ 0.001) (Figure 2C). Higher 

concentrations of both -MSH and [DTRP8]--MSH caused a less pronounced cAMP 

accumulation. (Figure 2 B and C). 

The selectivity of responses to -MSH and [DTRP8]--MSH on cAMP production was also 

evaluated by co-stimulating the chondrocytes with the peptides alone or in the presence of the 

MC3/4 receptor antagonist SHU9119 (10.0 g/ml). SHU9119 treatment caused no significant 

inhibition of -MSH-induced cAMP production (Figure 2B) but in contrast caused a ~84 % 

reduction in cAMP accumulation, as elicited by [DTRP8]--MSH, at all concentrations tested 

(p≤ 0.01; Figure 2C).    


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-MSH and D[TRP8]--MSH inhibit TNF- induced cytokine but not PGE2 release from 

C-20/A4 chondrocytes 

Since C-20/A4 chondrocytes express functionally active MC1 and MC3 receptors and TNF- 

(60.0 pg/ml) stimulation caused significant release of the pro-inflammatory mediators IL-1, 

IL-6 and IL-8, we tested the effects of -MSH and [DTRP8]--MSH (0.1 – 30.0 g/ml) on 

the release of these cytokines and PGE2.  

-MSH and [DTRP8]--MSH inhibited IL-1 release in a bell-shaped manner, with a 

maximal reduction of 84.8% and 72.7%, respectively observed at 3.0 g/ml (Figure 3A and 

B), whilst higher concentrations did not sustain this level of inhibition.  IL-6 release was 

inhibited by -MSH with 3.0 g/ml being the most effective concentration causing a 72.1% 

reduction (Figure 3C), whilst [DTRP8]--MSH (1.0 and 3.0 µg/ml) caused a similar maximal 

degree of inhibition of approximately 60.0% (Figure 3D), with higher concentrations not 

sustaining this level of inhibition. IL-8 levels were reduced in a bell-shaped fashion for -

MSH, with a maximal inhibition of 60.2% observed at 3.0 µg/ml (Figure 3E), whilst 

[DTRP8]--MSH caused a similar reduction in IL-8 release with a maximal inhibition of 

75.9% detected at 10.0 g/ml [DTRP8]--MSH, higher concentrations of either peptides did 

not sustain this level of inhibition (Figure 3F). In order to further elucidate the effects of the 

melanocortin peptides, -MSH and [DTRP8]--MSH, on TNF- stimulated cytokine 

production, the specific MC3/4 receptor antagonist, SHU9119, was used to selectively block 

the function of the MC3 receptor. As expected, SHU9119 did not significantly block -MSH 

(3.0 g/ml) mediated inhibition of IL-1, IL-6 and IL-8 release (Figure 4A-C), did abrogate 

the effect of [DTRP8]--MSH (3.0 g/ml) (Figure 4A-C). Following identification that -

MSH and [DTRP8]--MSH inhibited cytokine release, their effect on TNF- (60.0 pg/ml) 

induced PGE2 release was determined, since PGE2 has been shown to inhibit MMP 1 and 13 
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expression in chondrocytes (Nishitani et al., 2010). TNF- (60.0 pg/ml), led to a significant 

increase in PGE2 release, compared to control cells. However, in contrast to their effects on 

pro-inflammatory cytokine release, neither -MSH or [DTRP8]--MSH (3.0 g/ml) 

significantly altered TNF- stimulated PGE2 levels with only a ~20% and ~14% reduction 

respectively (Table 1).  

 

-MSH and D[TRP8]--MSH inhibit MMP1, MMP3 and MMP13 gene expression in 

TNF- activated chondrocytes 

Given the role matrix metalloproteinases MMP1, MMP3 and MMP13 play in the 

pathogenesis of OA (Lawyer et al., 2011), we determined the effects of -MSH and 

D[TRP8]--MSH on MMP1, MMP3 and MMP13 gene expression. TNF- treatment caused 

significant increases in MMP1, MMP3 and MMP13 gene expression 6 h post-challenge, 

while pre-treatment with -MSH (3.0 g/ml) led to a significant 5-fold reduction in mRNA 

levels for MMP1 as well as a1.9-fold reduction in MMP3 and a 3-fold reduction in MMP13 

gene expression compared to control (Figure 5A-D). Similarly, [DTRP8]--MSH (3.0 g/ml) 

treatment also dramatically reduced MMP1, MMP3 and MMP13 gene expression by 9-, 4.2- 

and12.5-fold, respectively compared to control (Figure 5A-D). Treatment of cells with the 

MC3/4 receptor antagonist, SHU9119, (10.0 g/ml) synergistically enhanced the effect of -

MSH (3.0 g/ml) in down-regulating MMP13 gene expression (Figure 5A and D) with an 

8.3-fold decrease compared to control (p≤ 0.001).  In contrast, it had no significant effect on 

-MSH’s ability to reduce MMP1 and MMP3 gene expression, whilst SHU9119 completely 

abrogated the inhibitory effects of [DTRP8]--MSH on MMP1, MMP3 and MMP13 gene 

expression (Figure 5A-D). 
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-MSH and [DTRP8]--MSH induce IL-10 release from chondrocytes 

Following identification that -MSH and [DTRP8]--MSH inhibited the release of both pro-

inflammatory cytokines and metalloproteinases, we evaluated their ability to promote release 

of the anti-inflammatory cytokine IL-10.  

-MSH and [DTRP]--MSH (0.1 – 30.0 g/ml) both significantly increased IL-10 release 

compared to untreated chondrocytes, with -MSH at 1.0 g/ml causing a maximal 29-fold 

increase (48.42 pg/ml; Figure 6A) and [DTRP8]--MSH at 3.0 µg/ml causing a maximal 21-

fold release (34.9 ± 2.2 pg/ml; Figure 6B), although higher concentrations of  both peptides 

did not sustain the same levels of increase. These increase in IL-10 release were antagonised 

by the MC3/4 receptor antagonist, SHU9119 for [DTRP8]--MSH but not -MSH (Figure 6C).  

 

-MSH and [D-TRP8]--MSH inhibit caspase-3/7 activation and cell death in TNF--

activated chondrocytes 

Since melanocortin peptides both inhibited production of pro-inflammatory IL-1, IL-6, IL-8 

and induced release of the anti-inflammatory and chondroprotective cytokine IL-10, we 

examined their effects on chondrocyte death and apoptosis. TNF- (60.0 pg/ml) caused a 

25.9% reduction in chondrocyte viability and increased Caspase-3/7 activity 5.7-fold, 

compared to unstimulated (control) cells (Figure 7A). -MSH and [DTRP8]--MSH alone 

had no effect on chondrocyte viability as detected via MTT assay, or caspase-3/7 activity 

(data not shown). However, each peptide inhibited TNF--induced chondrocyte death, with a 

maximal protection of 25% observed at 3.0 µg/ml -MSH (Figure 7A), with a similar 

protective effect observed for 3.0 – 30.0 µg/ml [DTRP8]--MSH (p≤ 0.01; Figure 7B).  TNF-

 stimulation caused a 25.4% (p≤ 0.05) increase in the production of cleaved Caspase-3, with 

-MSH and [DTRP8]--MSH (3.0 g/ml) reducing activated caspase-3 by 50% and 42% 
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respectively (p≤ 0.01; Figure 7C). The MC3/4 receptor antagonist, SHU9119, failed to 

antagonise the anti-apoptotic properties of -MSH but reduced the effectiveness of the 

selective MC3 agonist, [DTRP8]--MSH (Figure 7C). 

DISCUSSION 

In this study we have determined the chondroprotective and anti-inflammatory properties of 

the selective MC3 receptor agonist D[TRP8]--MSH and pan-agonist -MSH on TNF- 

induced pro-inflammatory cytokine release, MMP gene expression, caspase 3/7 activity and 

cell viability in C-20/A4 chondrocytes.  The data produced indicates that -MSH and 

[DTRP8]--MSH reduced pro-inflammatory cytokine release and MMP gene expression 

whilst preventing C-20/A4 chondrocyte death via reduction in caspase-3 and caspase-7 

activity.  

Melanocortin peptides have been shown to possess potent anti-inflammatory, anti-pyretic 

(Getting et al., 2009) and pro-resolving properties (Patel et al., 2010, Montero-Melendez et 

al., 2011) in a  a number of experimental models of inflammation, including cell-lines (Lam 

et al., 2006), primary human cells (Capsoni et al., 2009) and rodent models of both 

rheumatoid (Patel et al., 2010) and gouty (Getting et al., 2002, 2006a) arthritis. These 

peptides down-regulate the host-inflammatory response by inhibiting both leukocyte 

migration and the release of pro-inflammatory cytokines and chemokines, including TNF-, 

IL-1, IL-6, and IL-8 (Getting et al., 2002, Grässel et al., 2009). To date, two melanocortin 

receptors, MC1 and MC3, have been shown to mediate these anti-inflammatory effects via the 

adenylate cyclase-PKA pathway (Lam et al., 2006, Getting et al., 2006a, 2008), leading to a 

reduction in pro-inflammatory cytokine production (Delgrado et al., 1998) as well as an 

induction of anti-inflammatory and pro-resolving proteins IL-10 and heme-oxygenase 1 (Lam 

et al., 2005, 2006) which aid in the resolution of inflammation (Montero-Melendez et al., 
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2011). However, to date only two studies have evaluated the role of melanocortin peptides on 

chondrocytes (Evan et al., 2004, Grässel et al., 2009), which is somewhat surprising given 

the role that chondrocytes play in the development of OA and the anti-inflammatory and pro-

resolving effects of melanocortin peptide treatment in other models of arthritis (Getting et al., 

2002, Patel et al., 2010).  

In this study we have  tested the hypothesis that targeting melanocortin receptors in C-20/A4 

chondrocytes may provide a novel therapeutic approach to inhibit pro-inflammatory cytokine 

production, MMP expression and reduce cell death associated with activation of apoptoic 

pathways. Current development of therapeutic strategies that prevent cartilage matrix 

degradation and allow cartilage repair largely depend on the accessibility of human cell 

culture models. However, primary articular human chondrocytes are difficult to obtain and 

lose chondrocytic phenotype when expanded in monolayer cultures (Shakibaei et al., 1997), 

with upregulation in COL1A1 and decreases in COL2A1expression observed (Benya and 

Shaffer, 1982; Zwicky and Baici, 2000). The C-20/A4 human chondrocyte cell-lines display 

stable expression of the COL2A1 gene similar to human primary chondrocytes (Loeser et al., 

2000). Therefore, for the purposes of this research the stably differentiated chondrocytic cell 

line C-20/A4 was used as a tool for the characterisation and further validation of the role of 

melanocortin peptides in chondrocytes.  

Intital experiments showed expression of  MC1 and  MC3 receptors in C-20/A4 chondrocytes 

confirming previous studies highlighting gene expression of MC1 in the human 

chondrosarcoma cell line HTB-94 and primary articular-chondrocytes (Grässel et al., 2009), 

although MC3 receptor expression could not be detected in these cells (Grässel et al., 2009). 

It is conceivable that the differences between our findings and those of the other groups 

might be due to variations in the cell-lines used, differences in experimental conditions or in 

the origin of the cells (primary chondrocytes extracted from healthy or OA articular 
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cartilage). It is also plausible that melanocortin receptor expression may be altered depending 

on resting state or following stimulation as a recent study (Muffley et al., 2011).  has 

demonstrated that MC1 and -MSH protein levels are upregulated in human burn wounds and 

hypertrophic scars compared to uninjured human skin where receptor and ligand were absent 

(Muffley et al., 2011).  

TNF-and IL-1 play a pivotal role in the pathogenesis of OA and RA upregulating MMPs 

gene expression and pro-inflammatory cytokine production (Fernandes et al., 2002, Lawyer 

et al., 2011). In this study, TNF- was selected as it is one of the major cytokines produced 

by chondrocytes and it activates effector caspases driving apoptosis (Stanic et al., 2006).  

TNF- stimulation led to a marked increase in IL-1, IL-6 and IL-8 release in a time-

dependent fashion as well as an upregulation in MMP1, MMP3 and MMP13 gene expression, 

which are established as important mediators involved in catilage degradation in OA (Grässel 

et al., 2009). These data are confirmed by previous findings in primary chondrocytes, 

whereby TNF- triggered a marked upregulation of pro-inflammatory cyokines (Rai et al., 

2008) and cartilage destruction (Kobayashi et al., 2005), thereby validating the choice of C-

20/A4 chondrocytes as a system for evaluating the effects of melanocortin peptides on these 

parameters.  

The pan-agonist -MSH (Getting et al., 2008), selective MC3 receptor agonist [DTRP8]--

MSH (Grieco et al., 2000, Getting et al., 2006a, b) and MC3/4 receptor antagonist SHU9119 

(Getting et al., 1999) were used to confirm receptor functionality. -MSH and [DTRP8]--

MSH both caused an accumulation of intracellular cAMP in C-20/A4 chondrocytes 

confirming previous findings seen with -MSH in human primary chondrocytes (Grässel et 

al., 2009).  The MC3 agonist, [DTRP8]--MSH, previously shown to induce cAMP 

production in murine peritoneal and alveolar macrophages (Getting et al., 2006a, 2008) also 

caused increases in cAMP in C-20/A4 chondrocytes suggesting the presence of functionally 
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active MC3 receptors. These increases by [DTRP8]--MSH in cAMP levels were abrogated by 

the MC3/4 receptor antagonist, SHU9119, in agreement with findings in murine macrophages 

(Getting et al., 2006a), again confirming the presence of MC3 on these C-20/A4 

chondrocytes.   

-MSH and [DTRP8]--MSH inhibited IL-1, IL-6 and IL-8 release from C-20/A4 

chondrocytes, with the anti-inflammatory properties of D[TRP8]--MSH antagonised by 

SHU9119.  This ability of melanocortin peptides to reduce cytokine release has been well 

documented in both in vitro and in vivo murine studies (Getting et al., 2006a, 2008) and 

effect observed here agrees with the previous data obtained using human articular 

chondrocytes (Grassel et al., 2009) in which IL-1 was reduced by -MSH. However, in 

contrast to Grassel and colleagues (Grassel et al., 2009), we also demonstrated that -MSH 

and D[TRP8]--MSH inhibit IL-6 and IL-8 release. Interestingly a recent study using 

zymosan-stimulated macrophages showed that a synthetic -MSH analogue (AP214) caused 

a 40% reduction in IL-6 (Montero-Melendez et al., 2011) supporting the data observed here. 

A potential reason for the differences in IL-6 release between our study and the one of 

Grassel (2009), could be loss of phenotype in human chondrocyte monolayers (Shakibaei et 

al., 1997) or that in this study and that of Montero-Melendez (Montero-Melendez et al., 

2011) the cells were stimulated with an inflammogen rather than freshly isolated.  

Cytokine induced up-regulation of matrix metalloproteinases MMP1, MMP3 and MMP13 

play a pivotal role in the pathogenesis of OA (Lawyer et al., 2011, Goldring et al., 2011) and 

have been shown to be reduced by calcitonin in articular chondrocytes via upregulation of 

cAMP-PKA pathway (Karsdal et al., 2007). Following the inhibition of cytokine release by 

-MSH and [DTRP8]--MSH, their effects on MMP1, MMP3 and MMP13 gene expression 

were determined. Both peptides strongly inhibited MMP1, MMP3, MMP13 gene levels, this 

effect is novel for [DTRP8]--MSH and confirms previous studies with -MSH in the human 
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chondrosarcoma cell line, HTB-94 (Yoon et al., 2008) and in human chondrocytes (Grassel et 

al., 2009) with respect to inhibition of MMP13 expression. The inhibitory effect of [DTRP8]-

-MSH was lost following co-treatment with the MC3/4 antagonistSHU9119, suggesting again 

an involvement of MC3 receptors in regulating MMPs expression.  -MSH inhibited all 

MMP’s evaluated; however co-stimulation with SHU9119 caused a synergistic inhibition of 

MMP13 gene expression, thus possibly suggesting a compensatory role for the MC1 receptor 

following antagonism at MC3. At present it is not possible in this model to determine whether 

melanocortins have a direct effect on MMP expression or via their ability to inhibit cytokine-

induced MMP expression (Lawyer et al. 2011). Since both [DTRP8]--MSH and -MSH 

inhibited  pro-inflammatory cytokines and MMP 1, 3 and 13 expression, their effect on the 

prostanoid  PGE2 was determined since PGE2 inhibits IL-1 induced MMP1 and MMP13 

expression (Nishitani et al., 2010). A non-significant reduction in PGE2 was observed 

following treatment with both melanocortin peptides. This modulatory effect is interesting 

since increased PGE2 has been proposed to be chondro-destructive (Nah et al., 2008), whilst 

other studies show long-term use of NSAIDs reduces PGE2 leads to accerlerated progression 

of  OA (Reijman et al., 2005). Therfore peptides that modulate PGE2 expression as opposed 

to abrogating it may be beneficial in the long-term managment of this pathology, thus 

suggesting activation of melanocortin receptors may play an important role in maintaining 

cartilage integrity. 

Previous studies have shown a role for IL-10 in mediating the anti-inflammatory effects of -

MSH in murine models of eosinophil migration (Grabbe et al., 1996) and RAW264.7 

macrophage cell-lines (Lam et al., 2006), while studies in both TNF- stimulated OA and 

healthy primary human chonodrocytes show that IL-10 is chondroprotective by reducing 

MMP1 and MMP13 gene expression (Gonzalez-Rey et al., 2007, Muller et al., 2008). We 

therefore addressed the question of whether -MSH and [DTRP8]--MSH could induce IL-10 
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production in C-20/A4 chondrocytes. Our results indicate that both -MSH and [DTRP8]--

MSH significantly increase IL-10 production, with SHU9119 antagonising the effect of 

[DTRP8]--MSH but not that of -MSH. These data propose the exciting idea that 

melanocortin peptides (in part) exert a homeostatic control over chondrocyte physiology, 

with an ability to induce chondro-protective and pro-resolving cytokines, and a possible role 

in resolving chondrocyte-borne inflammation.  

Chondrocyte death has also been shown to play an important role in cartilage degradation and 

progression of diseases such as OA and RA (Aigner and Kim, 2002; Oppenheimer et al., 

2011) with TNF- shown to promote apoptosis (Stanic et al., 2009) via caspase-3 and 

caspase-7 activation (Luthi and Martin, 2007, Lee et al., 2011, Facchini et al., 2011). In this 

study, TNF- significantly increased the production of cleaved caspase-3 and caspase -3 and 

-7 activities by 30%. Treatment of cells with both -MSH and [DTRP8]--MSH led to an 

inhibition of executioner caspases -3 and -7, with their effects largely mediated by MC1 and 

MC3, as co-administration with the MC3/4 antagonist, SHU9119, prevented [DTRP8]--MSH 

but not -MSH from inhibiting activated caspase-3 production. These pro-survival effects of 

melanocortin peptides has also been demonstrated by Chai and colleagues, who showed that 

the non-selective melanocortin peptide, NDP-MSH, inhibited caspase-3 activation in the 

neuronal cell line GT1-I (Chai et al., 2006), while -MSH has also been shown to prevent 

LPS/INF--induced astrocyte apoptosis (Caruso et al., 2007). However, to our knowledge, 

this is the first demonstration that -MSH and [DTRP8]--MSH can prevent the production 

and activation of executioner caspases and initiation of chondrocyte death. 

 

Conclusion 

This study demonstrates that the anti-inflammatory, chondro-protective and anti-apoptotic 

effects of melanocortin peptides in C-20/A4 chondrocytes are largely mediated via the MC1 
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and MC3 receptors. This data provides a rational for the further investigation of these 

peptides as chondro-protective agents in OA and RA.  
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Figure Legends 

Figure 1. TNF- stimulates IL-1, IL-6 and IL-8 release from C-20/A4 chondrocytes.   

C-20/A4 chondrocytes were stimulated with TNF- (0.0 – 80.0 pg/ml) and cell-free 

supernatants collected 0–24 h post-stimulation and analysed for IL-1 (Panel A), IL-6 (Panel 

B) and IL-8 (Panel C) levels by ELISA. Data are presented as mean ± SEM of n=4 

independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01. 

 

Figure 2. Endogenous expression of MC1 and MC3 functionally active receptors in C-

20/A4 chondrocytes.   

Western blotting was used to determine MC1 and MC3 protein levels using rabbit anti-MC1 

and rabbit anti-MC3 mAbs (1:2000). Bands with sizes corresponding to MC1 (35 kDa), MC3 

(40 kDa) and -tubulin (55 kDa) were detected and densitometrically quantified (Panel A). 

C-20/A4 chondrocytes were stimulated with 1.0 -30.0 g/ml -MSH (Panel B) or [DTRP8]-

-MSH (Panel C) alone or in the presence of SHU9119 (10.0 g/ml) for 30 min before 

measuring cAMP concentration by EIA. Dotted lines indicate basal cAMP accumulation in 

PBS-treated cells whilst dashed lines indicate maximal accumulation of cAMP in FSK-

treated C-20/A4 cells. Data are presented as mean ± SEM of 3 independent experiments for 

Western blot analysis and n=6 samples for cAMP accumulation, *p≤ 0.05, ***p≤ 0.01 vs. 

PBS-treated control cells. 

 

Figure 3. [DTRP8]--MSH and -MSH inhibit IL-1, IL-6 and IL-8 release from C-

20/A4 chondrocytes.   

C-20/A4 chondrocytes were pre-treated for 30 min with PBS, -MSH or [DTRP8]--MSH  

(0.1 – 30.0 µg/ml) prior to stimulation with TNF- (60.0 pg/ml) and cell-free supernatants 

collected 6 h post-stimulation and analysed for IL-1 (Panel A and B), IL-6 (Panel C and D) 
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and IL-8 (Panel E and F) concentration by ELISA. Data are presented as mean ± SEM of n=4 

independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001. 

 

Figure 4. SHU9119 antagonises [DTRP8]--MSH but not -MSH inhibition of IL-1, IL-

6 and IL-8 release from TNF- stimulated C-20/A4 chondrocytes.   

C-20/A4 chondrocytes were left untreated or were pre-incubated for 1 h with SHU9119 (10.0 

g/ml) prior to -MSH or [DTRP8]--MSH (3.0 µg/ml) treatment for 30 mins. Cells were 

then stimulated with TNF- (60.0 pg/ml) and cell-free supernatants collected 6 h post-

stimulation and analysed for IL-1 (Panel A), IL-6 (Panel B) and IL-8 (Panel C) levels by 

ELISA. Data are presented as mean ± SEM of n=4 independent experiments repeated in 

triplicate, *p≤ 0.05, **p≤ 0.01. 

 

Figure 5. SHU9119 antagonises the inhibitory effect of [DTRP8]--MSH but not -MSH 

on MMP1, MMP3 and MMP13 mRNA expression in C-20/A4 chondrocytes.  

C-20/A4 chondrocytes were left untreated or pre-treated for 1 h with SHU9119 (10.0 g/ml) 

prior to -MSH or [DTRP8]--MSH (3.0 µg/ml) treatment for 30 mins. Cells were then 

stimulated with TNF- (60.0 pg/ml) and total RNA was extracted at 6 h post-stimulation.  

Oligonucleotide primers specific for MMP1, MMP3 and MMP13 were used to detect and 

quantify gene expression by PCR followed by analysis on 2% agarose gels in triplicates, with 

-actin used as an internal control (Panel A). Comparison of densitometrically quantified 

MMP1, MMP3 and MMP13 gene expression levels for -MSH, [DTRP8]--MSH ± 

SHU9119 (Panel B, C and D) are shown in arbitrary units, each value normalized to the 

respective -actin expression. Data is presented as mean ± SEM of n=4 independent 

experiments *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.  



33 
 

Figure 6. -MSH and [DTRP8]--MSH stimulate IL-10 release from C-20/A4 

chondrocytes.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS, -MSH or [DTRP8]--MSH  

(0.1 – 30.0 µg/ml) prior to stimulation with TNF- (60.0 pg/ml) and cell-free supernatants 

collected 6 h post-stimulation and analysed for IL-10 (Panel A and B) levels by ELISA. In 

separate experiments, C-20/A4 chondrocytes were left alone or pre-treated for 1 h with 

SHU9119 (10.0 g/ml) prior to -MSH or [DTRP8]--MSH (3.0 µg/ml) treatment for 30 

mins. Cells were then stimulated with TNF- (60.0 pg/ml) and cell-free supernatants 

collected 6 h post-stimulation and analysed for IL-10 (Panel C) concentration by ELISA. 

Dotted line indicates control levels and dashed line is TNF- (60.0 pg/ml) treated cells alone. 

Data are presented as mean ± SEM of n=4 independent experiments repeated in triplicate, 

*p≤ 0.05, **p≤ 0.01, ***p≤ 0.001. 

 

Figure 7. -MSH and [DTRP8]--MSH modulate Caspase-3/7 activity and protein levels 

and cell viability in human C-20/A4 chondrocytic cell line.  

C-20/A4 chondrocytes were treated for 6 h with -MSH or [DTRP8]--MSH (0.1 – 30.0 

g/ml) alone or in the presence of SHU9119 (10.0 g/ml) for 30 min prior to TNF- (60.0 

pg/ml) stimulation. Caspase-3/7 activity was determined by Caspase-3/7 Glo Assay and cell 

viability determined by the MTT reduction assay (Panel A and B).  The dashed line 

represents control sample cell viability (i.e. untreated cells as determined by MTT (100%). 

The dotted line shows Caspase 3/7 activity following DMEM treatment (control) (Panel A 

and B). Cleaved caspase-3 (Asp175; 17, 19 kDa) and -tubulin (55 kDa) were detected by 

Western blotting, the image is representative of 4 individual experiments (Panel C). 

Comparison of densitometrically quantified cleaved Caspase-3 (Asp175) expression in 

human C-20/A4 cell-lines is shown in arbitrary units (au, Panel C). Dotted line indicates 
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control levels of caspase 3/7 activity and dashed line is control cell viability. Data are 

presented as mean ± SEM of n=4 experiments, assessed in triplicate.  *p≤ 0.05, **p≤ 0.01, 

vs. TNF--treated controls. 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 7  
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Table 1: Lack of effect of -MSH and D[TRP8]--MSH on TNF- induced PGE2 release 

Pre-Treatment Stimulus PGE2 release (pg/ml) 

None (control) None 93.12 ± 12.58 

None TNF- (60.0 pg/ml) 180.38 ± 6.21* 

-MSH (3.0 µg/ml) TNF-(60.0 pg/ml) 145.38 ± 27.6n/s 

 [DTRP8]--MSH (3.0 µg/ml) TNF-(60.0 pg/ml) 153.89 ± 32.52n/s 

Data are Mean ± SEM of n=4 of three determinations; *p≤ 0.05 compared to control cultures. 

*P<0.05 vs. Control, non-significant (ns) compared to TNF--stimulated cells (One-way 
ANOVA, Dunnet’s multiple comparison test). PGE2, Prostaglandin E2. 
 

 


