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A B S T R A C T

This paper introduces new upper bounds for tail risk measures, such as value-at-risk and expected 
shortfall, based on Bhattacharyya (1987) inequality. These enhanced bounds for losses consider 
higher-order moments like skewness and kurtosis, which sets them apart from the conventional 
one-sided Vysochanskii and Petunin (1980) and Cantelli (1928) inequalities. While the simplicity 
and reliance on estimating only the first two moments can make the latter bounds attractive, the 
practicality and effectiveness of the new bounds position them as a compelling alternative for risk 
measurement. We empirically analyze S&P 100 index stocks to illustrate our findings. Our results 
suggest tighter Basel multipliers and reduced minimum capital requirements.

1. Introduction

Probability bounds provide a conservative approach to estimating tail risk in financial returns, particularly when there is limited 
information on the first moments and no precise knowledge of probability distributions. Research, such as that by Barrieu and 
Scandolo (2015), has utilized these bounds to establish upper limits for tail risk measures (TRM) like value-at-risk (VaR) and expected 
shortfall (ES).

Some studies have also linked regulatory multipliers from Basel II and III to probability bounds for worst-case VaR scenarios. 
Barrieu and Scandolo (2015) and Kinateder (2016) noted that upper boundaries for VaR and ES can be derived using the one-sided 
Chebyshev (1867) or Cantelli (1928) inequality, with Basel multipliers falling in the [3,4] range, which has faced criticism for being 
too stringent during stable market periods; see Kinateder (2016).

Mercadier and Strobel (2021) introduced the one-sided Vysochanskii–Petunin (OSVP) inequality for unimodal return distributions, 
yielding tighter multiplier bounds for VaR in the [2,3] range. We apply the one-sided Bhattacharyya (Bhat) inequality to derive TRM 
upper bounds, incorporating higher-order moments like skewness and kurtosis. Our findings indicate that Bhat inequality results in 
more realistic TRM upper bounds and a tighter Basel regulatory multiplier than OSVP. Empirical results from modeling S&P 100 
constituent losses support this. Moreover, Proposition 1 confirms the existence of VaR derived from Bhat inequality (Bhat-VaR), which 
can be calculated by solving a quartic equation, with one root relevant for identifying VaR for losses. Overall, while Cantelli (Cant) and 
OSVP bounds are simpler and rely only on the first two moments, Bhat bounds provide a more relevant approach for practitioners.

2. TRM bounds for losses

An implicit definition of VaR for the random variable (r.v.) of losses X at confidence level α is given by P(X ≥ VaRX(α)) = α where 
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P(A) denotes the probability of an event A. If the time horizon is short, we assume that E(X) = 0, then VaRX(α) = σ ⋅ VaRZ(α), where σ2 

= E
(
X2) is the variance of X, and Z = X/σ is the standardized r.v. with distribution D, i.e., Z ~ D(0, 1). The corresponding ES is obtained 

as ESX(α) = 1
α

∫α

0

VaRX(u) du = σ
α

∫α

0

VaRZ(u) du = σ ⋅ ESZ(α).

In this section, we examine several (VaR and ES) TRM bounds. The first subsection revisits two upper bounds commonly used in 
recent literature, focusing only on the first two moments of X. The second subsection examines a new TRM bound based on the first four 
moments of X. Notably, the upper tail probability bound under the (two-sided) Chebyshev’s (1867) inequality is P(X ≥ σξ) ≤
P(|X| ≥ σξ) ≤ ξ− 2 for ξ > 0. Hence, the implicit VaR upper bound is VaRX(α) ≤ σ̅ ̅

α
√ ≡ VaRCh

X (α). Integrating the previous inequality, the 

ES upper bound is ESX(α) ≤ 2σ̅̅
α

√ ≡ ESCh
X (α).

2.1. Two-moment TRM bounds

We examine both Cant and OSVP TRM bounds. Cant inequality is defined as P(X ≥ σξ) ≤
(
1 + ξ2)− 1. Barrieu and Scandolo (2015)

obtain the TRM upper bounds from the previous inequality as VaRX(α) ≤ σ
̅̅̅̅̅̅̅
1− α

α

√

≡ VaRCant
X (α). The ES upper bound is ESX(α) ≤ σ

α

∫α

0 
̅̅̅̅̅̅̅̅̅̅̅̅
1 − u

u

√

du = σ
α
[
arcsin(

̅̅̅
α

√
) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α(1 − α)

√ ]
≡ ESCant

X (α).1 It holds that the Cant TRM bounds improve the Chebyshev (1867) TRM 

bounds.
As a refinement, Mercadier and Strobel (2021) proposed a one-sided version of two-sided VP inequality by assuming unimodality 

for the financial returns’ distribution. The OSVP inequality is defined as P(X ≥ σξ) ≤ 4
9
(
1 + ξ2)− 1 for ξ ≥

̅̅̅̅̅̅̅̅
5/3

√
, and the implicit VaR 

upper bound is obtained as follows: 

VaRX(α) ≤ σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4
9α − 1

√

≡ VaROSVP
X (α) for α ≤ 1

/

6. (1) 

We obtain the ES upper bound by integrating the inequality (1), as follows: 

ESX(α) ≤
σ
α

∫α

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4
9u

− 1
√

du 

=
σ
3α

[
4
3

arcsin
(

3
̅̅̅
α

√

2

)

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α(4 − 9α)

√
]

≡ ESOSVP
X (α) (2) 

We refine VaROSVP
X (α) over VaRCant

X (α) through the following VaR ratio (VaRR): VaRROSVP
Cant (α) =

VaROSVP
X (α)

VaRCant
X (α) =

̅̅̅̅̅̅̅̅
4− 9α
9− 9α

√
. Hence, 

VaRROSVP
Cant (α) is a decreasing function of α that is less than one. The refinement of ESOSVP

X (α) over ESCant
X (α) is the ES ratio (ESR): 

ESROSVP
Cant (α) =

ESOSVP
X (α)

ESCant
X (α) . We also verify that ESR is a decreasing function of α that is less than one.

2.2. Four-moment TRM bounds

In what follows, we assume that E
(
|X|4

)
< ∞, implying that E

(
X k) < ∞ for 0 < k ≤ 4. In addition, we denote the respective 

skewness and kurtosis of X by γ3 = E
(
X3)/σ3 and γ4 = E

(
X4)/σ4. We propose an upper tail bound for Bhat-VaR given by the following 

one-sided tail probability bound: 

P(X ≥ σξ) ≤ ψ(γ3, γ4, ξ), (3) 

where 

ψ(γ3, γ4, ξ) =
h(γ3, γ4)

h(γ3, γ4)
(
1 + ξ2)+ g(γ3, ξ)2, (4) 

such that 

h(γ3, γ4) = γ4 − γ2
3 − 1 > 0 (5) 

1 It is observed that this expression does not align with equation (8) in Barrieu and Scandolo (2015).
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is the positive definiteness condition of moment matrices,2 with ξ > 0 satisfying the following: 

g(γ3, ξ) = ξ2 − γ3ξ − 1 > 0. (6) 

This condition is verified for ξ > ξg with g(γ3,ξg) = 0. Therefore, ξg is a positive root, depending on the skewness, which is obtained as 
follows: 

ξg(γ3) = (γ3 /2) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(γ3/2)2
+ 1

√

. (7) 

where ∂ψ(γ3,γ4,ξ)/∂γ4 > 0 and ∂ψ(γ3,γ4,ξ)/∂ξ < 0 regardless the sign of γ3. Nevertheless, ∂ψ(γ3,γ4,ξ)/∂γ3 > 0 when γ3 > 0 for ξ > ξg.

Remark 1. Given equations (5) and (6), the Bhat probability bound of ψ(γ3,γ4,ξ) in (4) can be written as 
[
(
1 + ξ2)+

(
g(γ3 ,ξ)

2

h(γ3 ,γ4)

)]− 1

. 
Since h(γ3,γ4) > 0, then ψ(γ3,γ4,ξ) < (1 + ξ2)− 1 ∀ξ. Therefore, the Bhat probability bound is lower than the Cant bound.

Remark 2. To obtain the Bhat-VaR, consider the equation q(γ3,γ4,α, ξ) = 0 with q(γ3,γ4,α, ξ) = ψ(γ3,γ4,ξ) − α, such that the following 
holds: 

q(γ3, γ4,α, ξ) = ξ4 − 2γ3ξ3 + (γ4 − 3)ξ2 + 2γ3ξ + θ(γ3, γ4,α), (8) 

and 

θ(γ3, γ4,α) = 1 − α− 1(1 − α)h(γ3, γ4). (9) 

Let q(ξ) denote the shortening of q( ⋅ ) in equation (8), indicating a polynomial of order four with respect to ξ. Let Δq denote the 
discriminant of the equation q(ξ) = 0.

Proposition 1. Consider the condition in equation (5), γ4 > (1 − α)− 1 and q(ξ) = 0 with q(ξ) in equation (8). If the coefficient of θ(γ3,γ4,α) 
in equation (9) is negative and Δq < 0, then the equation has only one positive root ξψ, which depends on (γ3,γ4,α), i.e., ξψ = ξψ(γ3,γ4,α). 
Therefore, the Bhat-VaR upper bound of X at confidence level α is as follows: 

VaRX(α) ≤ σ ⋅ ξψ(γ3, γ4, α) ≡ VaRBhat
X (α). (10) 

Remark 3. In Proposition 1, we do not consider the case θ(γ3,γ4,α) > 0 in order to simplify the results, especially since it cor-
responds to extremely small kurtosis values (i.e., 1 < γ4 < (1 − α)− 1 for α ≤ 0.05). Note also that we use losses from daily stock returns, 
which are generally leptokurtic.

Corollary 1. The closed-form expression for VaRBhat
Z (α) in Proposition 1 with γ3 = 0 is obtained as follows: 

ξψ (0, γ4, α) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
(γ4 − 3)

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(γ4 − 3)2

4
− α− 1(1 − (1 − α)γ4)

√√
√
√
√

. (11) 

The subsequent result demonstrates that Bhat-VaR is tighter than OSVP-VaR in most cases under unimodal and symmetric dis-
tributions for losses, leading to the following corollary:

Corollary 2. Equations (1) and (11) verify that VaRRBhat
OSVP(α) =

ξψ (0,γ4 ,α)̅̅̅̅̅̅̅̅
4
9α− 1

√ ≤ 1, if and only if ω(α) ≤ γ4 ≤ ω(α) for α ≤ 0.1580 where ω(α)

= 1
5

(

− 11+36α+16
9 α− 1

)

and ω(α) = (1 − α)− 1.

Next, considering equation (10), the Bhat-ES upper bound is obtained as follows: 

ESX(α) ≤
σ
α

∫α

0

ξψ(γ3, γ4, u) du ≡ ESBhat
X (α), (12) 

Similar to Kratz et al. (2018), it is obtained using the following approximation: 

ESBhat
X (α) ≈ 1

n
∑n

j=1
VaRBhat

X

(
jα
n

)

=
σ
n
∑n

j=1
ξψ

(

γ3, γ4,
jα
n

)

. (13) 

2 See Widder (1946), noting that this condition implies that γ4 > 1.
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At this time, we set n = 1, 000.3 The following VaR and ES ratios measure tightness between OSVP-VaR (ES) and Bhat-VaR (ES) 
upper bounds: 

VaRRBhat
OSVP(α) =

VaRBhat
X (α)

VaROSVP
X (α); ESRBhat

OSVP(α) =
ESBhat

X (α)
ESOSVP

X (α). (14) 

Fig. 1 presents four panels, denoted as A, B, C, and D. Panel A exhibits the plot of the ratio ESOSVP
X (α)/VaROSVP

X (α) as a function of α ∈
(0, 0.05]. This ratio increases with α such that ESOSVP

X (α) ≈ 2 ⋅ VaROSVP
X (α). Panel B presents three plots of ESBhat

X (α)/VaRBhat
X (α) being 

increasing with α, where each exhibits a different kurtosis level, γ4 = 5, 10, 20, but the same skewness level γ3 = 0.25. Note that a 
higher γ4 indicates a higher ratio. The range of these ratios is (1.32, 1.46). Panels C and D respectively exhibit the plots of VaRRBhat

OSVP(α)
and ESRBhat

OSVP(α) in equation (14) as functions of α for the same values of γ3 and γ4 in panel B. The finding reveals that VaRRBhat
OSVP(α)

increases as γ4 or α increases, indicating that; for instance, the Bhat-VaR is tighter than the OSVP-VaR when α is slightly lower than 
0.015 with a high kurtosis of 20 since the graph of this ratio is below the horizontal line of value one. Note that for regulatory VaR (α =
0.01),4 VaRRBhat

OSVP(0.01) is lower than one for all previous levels of kurtosis. Furthermore (but not reported), VaRRBhat
OSVP(α) also increases 

with higher skewness levels. Finally, ESRBhat
OSVP(α) increases as γ4 or α increases, and it is always lower than one; hence, ES-Bhat is tighter 

than ES-OSVP for reasonable kurtosis values of daily financial returns series.
The Basel multiplier, which is crucial for setting the upper bounds for VaR scenarios, is a VaR ratio defined as mi(α) ≡ VaRRi

N(α)
=

VaRi
X(α)

VaRN
X (α)

where i = OSVP, Bhat, and VaRN
X (α) = σ ⋅ Φ− 1(1 − α), with Φ( ⋅ ) as the standard Normal (N) cdf. For example, if α = 0.01 the 

denominator becomes Φ− 1(0.99) = 2.3263. Then, mOSVP(0.01) = 2.8333 as Mercadier and Strobel (2021) proposed, in contrast to a 
tighter multiplier mBhat(0.01) = 1.6104, indicating lesser capital requirements.

3. Performance of TRM bounds

In this section, we examine the performance of OSVP- and Bhat-TRM bounds for daily losses, which are represented as Xt. First, we 
assume that daily losses Xt follow Hansen’s (1994) skewed-t (SKT) distribution. Next, we employ Glosten et al.’s (1993) GJR model for 
daily stock returns.

3.1. Assuming a skewed-t distribution

Suppose that daily losses are given by Xt = Z ~ D(0, 1), with a cumulative distribution function (cdf) denoted as FD(z; θ), where θ is 
the parameter set. Assume that Z follows the SKT distribution with parameters λ ∈ ( − 1, 1) and υ > 2, i.e., Z ∼ SKT(υ,λ). Both γSKT

3 =

E
(
Z3) and γSKT

4 = E
(
Z4) depend on the parameter set (υ,λ), i.e., γSKT

j = γSKT
j (υ, λ) with j = 3, 4, with expressions that mirror Eqs. (2) and 

(3) in Jondeau and Rockinger (2003). We next compare VaRBhat
Z (α) and VaROSVP

Z (α) performance concerning the true (upper tail) VaR, 
or VaR under the SKT distribution (SKT-VaR hereafter), which is obtained from the inverse of the SKT cdf, i.e., VaRSKT

Z (α) = F− 1
SKT(1 −

α; υ,λ), for the particular case of α = 0.01 and different values of (υ,λ).5 We rerun the same previous analysis considering the respective 
ES measures. In short, this study is based on the following VaR and ES ratios: 

VaRRi
SKT(0.01) =

VaRi
Z(0.01)

VaRSKT
Z (0.01)

; ESRi
SKT(0.01) =

ESi
Z(0.01)

ESSKT
Z (0.01)

, (15) 

where i = OSVP, Bhat. Note that VaRBhat
Z (0.01) = ξψ

(
γSKT

3 , γSKT
4 ,0.01

)
is computed according to Proposition 1, and ESBhat

Z (0.01) is ob-

tained given equation (13), VaROSVP
Z (0.01) = 6.59, ESOSVP

Z (0.01) = 13.28 and ESSKT
Z (0.01) ≈ 1

n
∑n

j=1 VaRSKT
Z

(
0.01 j

n

)

with n = 1, 000.

Fig. 2 presents panels A and B for VaRR, while panels C and D for ESR according to equation (15). The curved line in each panel is 
constructed using the skewness and kurtosis levels from the SKT distribution for a range of typical values of υ ∈ [4.4, 7] and λ = 0.02, 
0.06, 0.12, i.e., 

(
γSKT

3 (υ, λ), γSKT
4 (υ, λ)

)
where λ is fixed along each curve. In addition, the values of γ3 and γ4 to compute the VaRBhat

Z (0.01)
are obtained from the same values of υ and λ used to calculate VaRSKT

Z (0.01). The results reveal that the highest values for kurtosis 
(skewness) in each curve are 18.04 (0.11) for λ = 0.02, 18.37(0.33) for λ = 0.06 and 19.44 (0.66) for λ = 0.12.6

Five notable findings emerge from Fig. 2. First, the curves in panel A (related to VaRROSVP
SKT (0.01)) increase since the denominator 

VaRSKT
Z (0.01) decreases when increasing υ or λ while the numerator remains constant. Second, in contrast to panel A, the curves in 

3 The finite sum for computing ES in equation (13) is nested into a broader framework established by Leorato et al. (2012), which is expressed as 
ESX(α) =

∑n
j=1 wjVaRX

(
αj
)

where VaRX(αj) represents the αj-quantile of losses, with αj ≤ α, and wj denotes the corresponding weight, ensuring that 
∑n

j=1 wj = 1. Exploring alternative structures for the wj weights is encouraged for future research.
4 This study focuses on the regulatory VaR since it is recommended by the Basel Committee on Banking Supervision (2019).
5 We use Kevin Shephard’s MATLAB function skewtinv to compute F− 1

SKT(0.99; υ, λ).
6 The range of υ ≥ 4.4 yields kurtosis values that are consistent with empirical evidence for daily returns. The same applies to λ for the skewness. 

Furthermore, other ranges for both parameters have been considered without altering our main conclusions.

M.Á. Carnero et al.                                                                                                                                                                                                    



Finance Research Letters 75 (2025) 106888

5

panel B (related to VaRRBhat
SKT (0.01)) indicate that the numerator of VaRR varies at each point. For λ = 0.02, the VaRRBhat

SKT (0.01) values in 
panel B range from 2.21 to 1.71 for υ = 4.4 to υ = 7, while the VaRROSVP

SKT (0.01) values in panel A range from 2.47 to 2.57 for υ = 4.4 to υ 
= 7. For λ = 0.12, the VaRRBhat

SKT (0.01) values in panel B range from 2.16 to 1.66 for υ = 4.4 to υ = 7, while the VaRROSVP
SKT (0.01) values in 

panel A range from 2.31 to 2.42 for υ = 4.4 to υ = 7. Third, VaRRBhat
SKT is smaller than VaRROSVP

SKT for all values of (υ,λ). To further examine 
this result, we study the behavior of VaRRBhat

OSVP(0.01) using equation (14), which is straightforwardly inferred from previous VaR ratios. 
We verify, but not exhibit here to save space, that the VaRRBhat

OSVP(0.01) values are always lower than one (in line with the findings in 

Fig. 1. ES/VaR, VaRR, and ESR for OSVP and Bhat.
Notes: This figure presents plots of ES versus VaR for OSVP inequality (Panel A), Bhat inequality (Panel B), VaR upper bound ratios (VaRR) for Bhat- 
VaR vs OSVP-VaR (Panel C), and ES ratios (ESR) for Bhat-ES vs OSVP-ES (Panel A). All panels exhibit curved lines for kurtosis values = 5, 10, 20 and 
fixed skewness values = 0.25, as a function of α∈(0,0.05].

Fig. 2. One percent Bhat-VaRR (ESR) and OSVP-VaRR (ESR) for SKT distribution.
Notes: This figure plots one percent VaR ratios (VaRR) and ES ratios (ESR) for upper bound OSVP-VaR over SKT-VaR (Panel A), upper bound Bhat- 
VaR over SKT-VaR (Panel B), upper bound OSVP-ES over SKT-ES (Panel C) and upper bound Bhat-ES over SKT-ES (Panel D). Each curved line in 
each graph has been constructed with a range of typical values of υ ∈[4.4,7] and λ=0.02,0.06,0.12, such that λ is fixed along each curved line.
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panel C in Fig. 1 when α = 0.01). In summary, Bhat-VaR is tighter than OSVP-VaR for the different values of (υ, λ) used in Fig. 2. Fourth, 
the curves in panel A increase whilst those in panel B decrease with υ. Fifth, the behavior of curves in panel C (panel B) for the ES ratios 
closely resemble those in panel A (panel D) for OSVP (Bhat).

3.2. GJR-GARCH model

Assume that daily losses are given by Xt = − Rt, where Rt is the r.v. for stock returns. This follows a conditionally heteroskedastic 
process that is described by Rt = μt + εt, with εt = σtZt where μt and σ2

t respectively denote the conditional mean and variance of Xt given 
the information set F t− 1. Additionally, {Zt} is a sequence of independent and identically distributed (iid) r.v. with zero mean and unit 
variance, i.e., E(Zt) = 0 and E

(
Z2

t
)
= 1.

We model the error process {εt} as a conditionally heteroskedastic white noise sequence, σ2
t = E

(
ε2

t |F t− 1
)
, such that σ2

t = α0 +

c(Zt− 1)σ2
t− 1, where α0 > 0, c(Zt) is a well-defined function verifying that σ2

t > 0 for all t. He and Teräsvirta (1999) and Ling and McAleer 
(2002) examined the moment properties of alternative GARCH-family models. We use the GJR model, where c(Zt) = β + α+

(
Z+

t
)2 

+

α−
(
Z−

t
)2, with β ≥ 0, α+ ≥ 0 and α− ≥ 0. In this context, we define Z+

t = max(Zt , 0) and Z−
t = min(Zt ,0).

If E|Z2k
t | < ∞, then the necessary and sufficient condition for the 2k-th moment of εt is ak = E[c(Zt)k] < 1. Assuming μt = 0 for daily 

losses, then Xt = − εt. The GJR unconditional variance, skewness, and kurtosis of Xt are respectively denoted as σ2
GJR ≡ E

(
ε2

t
)
, γGJR

3 ≡ −

E
(
ε3

t
)
/
(
E
(
ε2

t
))3/2, and γGJR

4 ≡ E
(
ε4

t
)
/
(
E
(
ε2

t
))2, which are the expressions: σ2

GJR = E
(
σ2

t
)
= α0(1 − a1)

− 1, γGJR
3 = − E

(
Z3

t
)
E
[(

σ2
t
)3/2

]

/
(
E
(
σ2

t
))3/2, and γGJR

4 = E
(
Z4

t
)
E
(
σ4

t
)
/
(
E
(
σ2

t
))2

= E
(
Z4

t
)(

1 − a2
1
)
(1 − a2)

− 1, such that E
(
σ2k

t
)
< ∞ if ak < 1 for k = 1, 2. It is verified that 

a1 = β + α+ + (α− − α+)E
[(

Z−
t
)2] and a2 = β2 + 2βα+ + (α+)

2E
(
Z4

t
)
+

[
(α− )

2
− (α+)

2]E
[(

Z−
t
)4]

+ 2β(α− − α+)E
[(

Z−
t
)2]; see León and 

Ñíguez (2020). If we assume that Zt follows a symmetric distribution, for instance, Zt ~ N(0, 1) then E
(
Z3

t
)
= 0, E

(
Z4

t
)
= 3, E

[(
Z−

t
)2]

=

1/2 and E
[(

Z−
t
)4]

= 3/2. The unconditional skewness and kurtosis for losses under the GJR model with Normal innovations 
(henceforth, GJR-N) are γGJR− N

3 = 0 and 

γGJR− N
4 = 3

⎛

⎜
⎝

1 − β2 − β(α+ + α− ) − 1
4(α

+ + α− )
2

1 − β2 − β(α+ + α− ) − 3
2 [(α+)

2
+ (α− )

2
]

⎞

⎟
⎠. (16) 

By plugging γGJR− N
4 in equation (16) into equation (11) in Corollary 1, we finally obtain the corresponding VaRBhat

Z (α) ≡ ξψ
(
0, γGJR− N

4 ,

α
)

for the standardized losses. Therefore, VaRBhat
X (α) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

GJR− N

√
⋅ ξψ

(
0, γGJR− N

4 ,α
)

with σ2
GJR− N = α0

[

1 − β − 1
2 (α− + α+)

]− 1

.

If we assume that Zt ∼ SKT(υ,λ), then E
(
Z3

t
)
= γSKT

3 (υ, λ) and E
(
Z4

t
)
= γSKT

4 (υ, λ) respectively represent Eqs. (2) and (3) in Jondeau 

and Rockinger (2003). Concerning E
[(

Z−
t
)2] and E

[(
Z−

t
)4], which we compute numerically to calculate a1 and a2 under the SKT 

distribution. Then, the GJR unconditional variance and kurtosis under SKT distributed innovations (henceforth, GJR-SKT), denoted as 
σ2

GJR− SKT and γGJR− SKT
4 , are easily obtained. Nevertheless, the unconditional skewness γGJR− SKT

3 is calculated by an approximation of the 

numerator, E
[(

σ2
t
)3/2

]
, using a second-order Taylor series expansion, E

[(
σ2

t
)3/2

]
≈ 5

8
(
E
(
σ2

t
))3/2

+ 3
8 E

(
σ4

t
)(

E
(
σ2

t
))− 1/2; see Alexander 

et al. (2021). Finally, we obtain VaRBhat
X (α) under the GJR-SKT model according to Proposition 1.

4. Empirical results

We present our theoretical results on OSVP and Bhat-VaR bounds for losses through an empirical exercise using daily log returns 
calculated as rt = ln(pt/pt − 1) from daily closing prices pt for S&P100 constituents, sampled from June 8, 2017, to March 8, 2023, with a 
total of T = 1, 500 observations from DataStream. Daily losses are defined as xt = − rt.

We calculate VaR upper bounds at the 1 % level with a rolling window of 1, 000 days, starting from an in-sample period of T-N 
observations followed by a N = 500 days out-of-sample (OOS) period from April 8, 2021, to March 8, 2023. The rolling-window 
procedure involves computing VaR for the initial 1, 000-day window, then shifting the window forward by one day and recalculat-
ing until the entire OOS period is covered.

The ranges of all daily sample standard deviation, kurtosis, and skewness series across all stock losses are [0.0117, 0.0426], [5.54, 
60.5], and [ − 1.10, 3.52], respectively. The sample means for all previous daily series of standard deviation, kurtosis, and skewness 
are 0.0205, 15.1327 and 0.371, respectively.

We initially consider VaR upper bound estimates obtained by plugging the sample standard deviation, skewness, and kurtosis into 
equations (1) and (10),7 obtaining daily series for VaRRBhat

OSVP(0.01) estimates given in equation (14) for each stock over the OOS period. 
We find that VaRRBhat

OSVP(0.01) < 1 for 90 out of 100 stocks. Among the other 10 stocks, VaRRBhat
OSVP(0.01) > 1 every day for 4 of them but 

not for the remaining 6 stocks. These results provide evidence that Bhat-VaR is sharper than OSVP-VaR.

7 Since the sample means of daily losses are approximately zero, they are excluded from the calculation of the VaR upper bounds.
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We next examine the number of hits (i.e., the number of times losses are higher than the actual VaR upper bound). Let wi
k,t(α)

= I

(
xk,t > VaRi

Xk ,t(α)
)

denote the violation or hit variable, where i = OSVP, Bhat, and xk,t is an observation of the loss r.v. Xk,t for stock 

k = 1,…, 100 on day t of the OOS period. Also, let ŵi
k,t(α) = I

(
xk,t > V̂aR

i
Xk ,t(α)

)
be the estimate of wi

k,t(α). For the Bhat-VaR: ŵBhat
k,t (α)

= I

(
xk,t > V̂aR

Bhat
Xk ,t (α)

)
where V̂aR

Bhat
Xk ,t (α) = σ̂(k)

t|t− 1 ⋅ ξψ

(
γ̂(k)3,t|t− 1, γ̂ (k)4,t|t− 1, α

)
represents the Bhat-VaR forecast for losses obtained by 

plugging into (10) the sample standard deviation, σ̂(k)
t|t− 1, skewness, γ̂ (k)3,t|t− 1, and kurtosis, γ̂ (k)4,t|t− 1 given the information set at day t − 1 

determined by the rolling-window procedure for the one-day-ahead forecast of σ(k), γ(k)3 , and γ(k)4 , respectively. Let Ŵ
i
k(α) =

∑500
t=1 ŵi

k,t(α) be the estimate of the total number of daily violations of stock k through the OOS period (500 days), then Ŵ
i
(α) =

∑100
k=1 Ŵ

i
k(α) is the estimate of the number of violations across all stocks. As expected from our theoretical findings, our results 

demonstrate that Bhat-VaR is smaller than OSVP-VaR since Ŵ
OSVP

(0.01) = 17 and Ŵ
Bhat

(0.01) = 27.8

Finally, we estimate GJR-N across all daily loss series using the maximum likelihood model, each of which includes 1, 500 ob-
servations. We find that 87 of the 100 stocks have finite second and fourth moments, i.e., a1 < 1 and a2 < 1. Additionally, the estimated 
kurtosis obtained using equation (16) for these stocks is lower than 20. Moreover, the estimated VaRRBhat

OSVP(0.01) is below 1 for all 87 
stocks, indicating that the Bhat-VaR bounds in the previous model are tighter compared with OSVP estimates.

5. Conclusions

This study establishes upper bounds for TRM, such as VaR and ES, using Bhattacharyya’s inequality to incorporate higher-order 
moments of loss distributions. We demonstrate that the Bhat-VaR (ES) upper bound yields more accurate estimates compared to 
OSVP inequalities, particularly for reasonable kurtosis levels in daily financial returns, validated through empirical analysis of S&P 
100 index stocks.
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Appendix

Proof of Proposition 1. Observe that θ(γ3,γ4,α) < 0 if and only if γ4 − γ2
3 > (1 − α)− 1. Moreover, if γ3 > 0, then according to 

Descartes’ rule of signs (DRS) ,9 the polynomial equation q(ξ) = 0 will have either one or three positive real roots (and one negative 
root). Note that this behavior is satisfied regardless of the sign of the coefficient of ξ2 in q(ξ). If Δq < 0, then we can obtain two complex 
conjugate non-real roots and two distinct real roots.10 Given the previous DRS analysis, two real roots of different signs are obtained. If 
γ3 < 0, then the DRS analysis suggests that there can be one positive root (with one or three negative roots). Since Δq < 0, we also 

8 Tighter Bhat-VaR bounds, which yield more exceptions than OSVP-VaR, can be advantageous in stable market conditions; however, less 
stringent VaR bounds may be more beneficial during financial crises. Ultimately, Bhat-VaR bounds reflect the stylized features of return distributions 
more accurately, resulting in a more appropriate minimum capital requirements.

9 For instance, see Sydsaeter (1981).
10 Given the general quartic equation 

∑ 4
i=0aixi = 0, with real coefficients and a4 ∕= 0, the nature of its roots is determined by the sign of its 

discriminant, Δ =
(
4Δ3

0 − Δ2
1
)
/27, where Δ0 = a2

2 − 3a3a1 + 12a4a0 and Δ1 = 2a2
2 − 9a3a2a1 + 27a2

3a0 + 27a4a2
1 − 72a4a2a0. If Δ > 0, the equation 

has four distinct roots that can all be real or all imaginaries. If Δ < 0, the equation has two distinct real roots and two complex conjugate non-real 
roots. If Δ = 0, the equation has at least two equal roots and requires a deeper analysis. For example, see Rees (1922) for more details.
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obtain a negative and positive root. According to DRS, the case of γ3 = 0 results in two different real roots of different signs. Addi-
tionally, since Δq < 0, we obtain two roots of different signs. In summary, VaRBhat

Z (α) is the positive root for each of the previous cases 
with respect to the sign of γ3. ■

Proof of Corollary 1. The positive root ξψ is easily obtained from q(0, γ4,α, ξ) = 0 with q( ⋅ ) in equation (8).■
Proof of Corollary 2. Let α* = 0.1580 and consider the equation ω(α) = ω(α), which can be rewritten as − 36α3 + 47α2 − 160

9 α +
16
9 = 0. This third-degree polynomial has three positive roots with α* as the only root verifying the OSVP restriction (α ≤ 1/6). It is 

verified that dω(α)
dα < 0 and dω(α)

dα > 0 when α ∈ (0, α*). Thus, VaRRBhat
OSVP ≤ 1 when α ≤ α*, and VaRRBhat

OSVP > 1 for α ∈ (α*, 1/6].■

Data availability

The data used is publicly available from DataStream.
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