
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Development of stochastic delay cost functions

Evler, J., Schultz, M., Fricke, H. and Cook, A.J.

A paper to be presented at the 10th SESAR Innovation Days, Virtual, 07 - 10 Dec 2020.

The WestminsterResearch online digital archive at the University of Westminster aims to 

make the research output of the University available to a wider audience. Copyright and 

Moral Rights remain with the authors and/or copyright owners.



Development of Stochastic Delay Cost Functions
Prediction of delay propagation under uncertainty for tactical airline schedule recovery

Jan Evler, Michael Schultz, Hartmut Fricke
Institute of Logistics and Aviation

Technische Universität Dresden, Dresden, Germany
jan.evler@tu-dresden.de

Andrew Cook
College of Design, Creative and Digital Industries

University of Westminster, London, United Kingdom
cookaj@westminster.ac.uk

Abstract—When a disturbance cannot be absorbed by schedule
buffer, the tactical schedule recovery process of an airline
prioritises between flights. This considers the cost of delay and
may result in a reallocation of scarce airport resources during
turnaround. Delay cost reference values do not differentiate
between specific flights but rather aircraft types. This article
presents a method to develop flight-specific delay cost functions,
which consider inherent absorption capacities and downstream
uncertainties. Delay propagation trees are used to model airline
resource interdependencies and derives the associated cost of
downstream delay cost-drivers from dependent probabilities
using operational data. In a case study setting, the resulting
stochastic cost functions are compared against reference values
per aircraft type and deterministic step-cost functions per flight.
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I. INTRODUCTION

Airlines derive different business utilities (e.g., revenue
generation) from individual flights in their network. This utility
depends on network structure, flight schedules, airport per-
formance, resource assignments and sold origin and destina-
tion (O&D) itineraries (with or without transfer connections).
Given that the latter two are changing on a daily basis,
notwithstanding a fair degree of commonality, flight utility
cannot be regarded as fixed.

Airlines which operate hub-and-spoke networks typically
have more heterogeneous flight utilities than carriers in point-
to-point networks, given that, for example, regional and feeder
traffic is brought to the hub with smaller aircraft, with passen-
gers transferring onto long-haul flights operated by widebody
aircraft, and, indeed, with transfers from the long-haul flights
onto onward connections beyond the hub. This requires a
mixed fleet and results in a variety of passenger types per
flight. Another reason for this heterogeneity are economies of
scope in a hubbed network. Customers from many markets
and with multiple flight legs may fly together on the same
flight, which often implies higher fares and potentially higher
compensation and reimbursement to be paid by the airline in
case of schedule disruptions (cf. EU Regulation 261/2004 [1]).

The utility of a flight is an important factor for airlines
when dealing with deviations to the original flight plan on the
day of operations, commonly referred to as tactical sched-
ule recovery. It allows airlines to prioritise among various

affected aircraft, especially with regard to their ground time,
given that they are all subject to the limited availability of
airport / ground handling resources. While for some airlines
this prioritisation is defined at the strategic or pre-tactical
level (i.e., before the day of operations), many airlines have
dedicated schedule recovery units (i.e., Airline Operations
Control Centres - AOCCs) which decide upon the assignment
of resources and recovery options on a day-by-day basis.
Others may operate variants of this approach. Cited in high-
level documents such as SESAR’s ATM Master Plan in 2015
[2], European researchers and policy makers have identified
that such AOCCs need to contribute their flight priorities
in order to collaboratively achieve improved ATM network
performance. Due to data sensitivity, costs are usually absent
from implemented airport collaborative decision-making (A-
CDM; [3]) solutions, such that a common valuation framework
for individual flight utilities is still lacking.

A. Status Quo

Recovery decisions within an AOCC are usually elaborated
manually and are often fragmented, since various agents
conduct department-specific assessments of how a schedule
deviation may impact their area of operations (e.g., passenger
connections). If a deviation occurs to the original schedule,
department-specific solutions are calculated with, for example,
the help of database query-systems and collected at the desk
of the manager on duty [4]. It is up to the experience of the
respective operator to assemble a feasible recovery decision,
which satisfies the constraints of all involved departments and
stakeholders. Given the setting at major hub airports, where
during so-called hub-banks, or waves, up to 100 aircraft of
the same airline are turned around within a time frame of
about three hours, this can be a highly iterative and lengthy
procedure and is unlikely to result in cost-minimal solutions.
Consequently, many research projects aim at an integration
and partial automation of the decision-making process in an
AOCC. Therein, different approaches can be identified, so
that: (i) some scholars attribute more recovery potential to
the tactical tail and crew assignments, i.e. swapping resources
between flights or cancelling flight cycles in order to mitigate
schedule disturbances [4]–[10], (ii) few explore the possibility
of purposely delaying aircraft at-gate to ensure passenger
transfer in comparison to speeding up flight segments with



higher cost indices [11]–[13], while (iii) others consider the
turnaround to be the major recovery option, given the possi-
bility to shorten or omit entire sub-processes, or assign extra
resources to speed up standard operating procedures [14]–
[19]. Further differentiation can be made for the incorporated
objectives. Some studies aim at minimising delay as the
departure time offset from the schedule [17], [19], [20], while
others set out to optimise the associated cost of delay [4]–
[6], [8]–[11], [18]. A balanced approach of delay management
by coupling turnaround and trajectory optimisation based on
delay costs has also been developed [21]. In this context, the
possibility to incorporate both different flight utilities and the
progressive increase of costs associated with the magnitude of
departure delay is a requirement [22], [23].

Established reference values for airline delay costs in Eu-
rope are available [23], with the next update due in 2021.
These published values, although cited for ‘low’, ‘base’ and
‘high’ cost scenarios, are averaged for fifteen aircraft types
and designed, for example for high-level cost benefit analyses,
e.g. at the network level. These reference values demonstrate
monotonic, increasing delay cost functions. Underlying cost
steps, largely driven by Regulation 261 [1], are smoothed
by statistical fits and the effects of delay recovery through
schedule buffer [23]. In operational practice, for individual
flights, these functions have sudden rises in cost due to missed
transfer connections, night curfews, maintenance events, and
crew duty time regulations. The report (ibid.) indeed flags that
caution should be used in using high-level averages for explicit
case trade-offs, e.g. specific prioritisations between particular
flights. Despite the need of accurate step-cost functions for the
validation of the user-driven prioritisation process (UDPP) as
part of the SESAR programme, for example, such functions
can only be statistically estimated, mostly due to data confi-
dentiality reasons [24]. Furthermore, associated uncertainties
have been neglected in most previous research.

B. Focus and Structure

We herein demonstrate flight-specific delay cost functions,
which incorporate the uncertainties related to downstream
events (aircraft, crew and passenger-related). A case study
applies stochastic cost functions and compares the result-
ing recovery decisions with those calculated using reference
(statistical) and step-linear delay cost functions. Associated
benefits for airline schedule recovery are discussed.

Our contribution is structured as follows: Sec. II summarises
the state of the art in modelling network delay propagation.
Sec. III describes the methodology for building stochastic
delay cost functions. Sec. IV implements flight-specific cost
functions in a tactical schedule recovery model. In Sec. V,
stochastic delay cost functions are applied in a case study
setting, comparing them with reference and step-linear cost
functions. Sec. VI presents the results of the analysis. Sec.VII
draws conclusions and discusses potential future research.

II. MODELLING DELAY PROPAGATION

Delay propagation describes the chain effects following
a deviation, greater than the inherent absorption capacities
(such as schedule buffer), carried downstream, e.g. onto further
nodes in the transport system. In the case of airline networks,
delay can be propagated by aircraft rotations (i.e., rotational
reactionary delay) or by different aircraft due to passenger
or crew transfer interdependencies (i.e., non-rotational reac-
tionary delay) [23]. At about 45%, reactionary delay represents
the largest cause of departure delay in Europe [25], displaying
this same approximate ratio for many years. A common metric
to determine the impact of a disruption in a given airline
network is the ‘delay multiplier’. This describes the ratio
of reactionary to primary delay. Larger values obtain for
larger disruptions (e.g., more buffers are exceeded) which
occur in morning hours (resources have more remaining tasks
scheduled downstream) [26].

A. Delay Propagation Trees

Delay propagation has been studied mainly retrospectively
by building delay propagation trees with recorded timestamps
from actual operations. Along with the delay multiplier as a
measure of magnitude, further metrics have been introduced
to characterise the impact of deviations on a flight-by-flight
basis, such as severity (i.e., number of additionally affected
flights) and depth (i.e., highest number of downstream legs
impacted by propagated delay) [27]. Thereby, initial models,
which considered a limited scope of resource dependencies,
bounded the depth horizon to the immediate next (two) flight
leg(s) (rotations) and assumed block times to be static (see
Fig. 1 and supporting caption) as well as independent and
identically distributed (IID). This was refined later: recent
models apply, for example, stochastic, non-IID block times
and delay propagation trees with Bayesian networks, which
enables the calculation of conditional probabilities for specific
resources to contribute to the delay of a given flight [28].

Airlines continuously optimise their flight schedules by
redistributing buffer capacities and synchronising aircraft and
crew schedules to compensate for frequent delays and limit
non-rotational delay propagation [29], [30]. Furthermore, ro-
bust fleet assignment strategies have been developed which
aim at reducing the severity of a disturbance by assigning
aircraft to fly short cycles from the hub (i.e., only two legs,
towards an out-station and directly back), thus limiting the
geographical scope in which a fleet is operating [31].

B. Back- and Network-Propagation

Back-propagation describes the effect when a flight is
suffering from reactionary delay that was initially caused
or propagated at the departure airport earlier in the day.
It is driven by short cycles from a central hub, given that
aircraft tend to have reduced ground times at out-stations and
limited in-flight recovery potential on regional routes. Given
that many hub airlines have implemented short cycles into
their schedules in recent years, back-propagation is mostly
experienced at major hub airports. However, individual chain
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Figure 1. Framework of stochastic delay cost as a complement to the ground operations recovery model. For better trade-off decisions between ground recovery
and OB delay, downstream uncertainties are considered regarding how OB delay will propagate along aircraft rotations. Dependencies from muted boxes are
derived from field data.

effects to and from individual airports appear to be volatile
on a daily basis, considering different resource schedules and
passenger itineraries [32]. Another major determinant is the
number of transfer connections originating from a disrupted
flight (i.e., the connectivity index). The more outbound flights
an inbound flight is feeding with transfer passengers, the
higher the potential propagation effect and a disturbance can
quickly spill from one (hub) airport to others in the respective
airline/alliance network [31].

C. Stochastic Delay Propagation

Given the stochastic nature of the air transport system, it is
difficult to estimate the full extent of delay propagation during
tactical operations. Thereby, the uncertainty to be considered
increases with the depth of the potential propagation (i.e., the
look-ahead time horizon). Post-operational analysis frequently
update delay multipliers or deploy delay cost reference values.
The latter, as stated, have been modelled for different aircraft
types, including, fuel, crew, maintenance and passenger ‘hard’
(e.g., care, rebooking, compensation) and ‘soft’ (market share
attributable to punctuality) costs [23], but are not intended for
flight-specific models. Consequently, existing stochastic delay
propagation models have been adopted and extended in this
research.

III. STOCHASTIC DELAY COST MODEL

A. Methodology

The stochastic delay cost model built complements the
already developed ground operations recovery model (see

Fig. 1), which is briefly introduced in Sec. IV. The extended
model incorporates stochastic block times for the first and
second rotation of a short cycle, which depend on outbound
(OB) delay, inherent block-time buffers, air traffic flow and
capacity management (ATFCM) regulations and in-flight re-
covery potential.

The conjoint impact of all four independent variables is
derived from block-time data of the summer season, 2019.
Ground-time buffers and ground operations performance at the
out-station, as well as maintenance constraints, night curfews
and duty time regulations, are considered in the estimation
of how a given outbound delay at the hub propagates into
inbound delay at the OS, hence to outbound delay at the OS
and, finally, back propagates to the initial hub.

Based on these four milestones, potential delay costs in-
curred by the airline are derived. Delay cost values per pas-
senger are deduced from the reference source [33], considering
that not all passengers decide to wait for alternative flights or
claim their entitled compensation. The potential loss of future
business from a given delay (i.e., the passenger soft cost)
is retrieved from the same report, considering the respective
aircraft types. Similarly, crew wage rates are retrieved from
[34] and adjusted for inflation. Whilst fuel burn is currently not
included in these cost models, this important issue is discussed
at the end of paper, in the conclusions and future work of
Sec.VII.



B. Stochastic Delay Cost Functions

For the calculation of a stochastic delay cost function,
deterministic cost functions are estimated for each inbound
milestone of an upcoming cycle. These cost functions have
linear segments and event-related cost drivers. Linear segments
are influenced by aircraft type, crew overtime, maintenance
expenses and passenger soft costs, while abrupt cost steps
obtain due to missed transfer connections at the destination
airport, overrun crew duty times or interference with night
curfew or scheduled maintenance events. Note that although
some of the linear cost-drivers may show polynomial shapes
(e.g., soft costs [33]), they are herein linearised within 5-
minute intervals, in which they are estimated with steady
slopes. For the prediction of how much outbound delay is
propagated to the next airport during the block time, multiple
stochastic block- and cycle-time distributions are fitted from
field data, which are categorised according to the respective
outbound delay (tOB) at the flight origin airport. Fig. 2 shows
three exemplary inbound delay distributions which are likely
to occur after outbound delays of 20, 25 and 30 minutes and
each result into one cost estimate per delay category.
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Figure 2. Integration of inbound delay cost with stochastic block times.

In full detail, for a given flight f , the deterministic function
of inbound delay cost Cdet

f (tIB) and the dependent probability
density function pf (tIB | tOB) of an inbound delay (tIB)
occurring after an outbound delay (tOB), are multiplied, so
that the integral defines the stochastic cost estimation Csto

f

for the respective outbound delay category (1).

Csto
f (tOB) =

∫
pf (tIB | tOB) · Cdet

f (tIB) dtIB (1)

Note that at this step we assume normal distributions with
constant variance for the inbound delay at flight destination to
describe the general concept of our approach. This is indepen-
dent of the true stochastic nature of a particular flight, where
we typically find best fits with beta or Weibull distributions. In
any case, smaller standard deviations result in stochastic delay
cost functions that closely fit the shape of the deterministic cost
curves, whereas large standard deviations smooth the curve
along the x-axis (see Fig. 3a). If the scheduled block time
comprises buffer times, the stochastic cost curve is shifted

towards the right on the x-axis, whereas actual block times that
exceed the scheduled period cause a dislocation towards the
left (see Fig. 3b). Depending on the block-time characteristics
of a specific flight, multiple parameters can interfere with
another and distort the stochastic function in the directions
described. To consider cost drivers at multiple downstream
milestones (see Fig. 1), cost functions for each milestone can
be stacked to create the stochastic delay cost function of a full
flight cycle from the hub.
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Figure 3. Stochastic impact of block time parameters on step-cost function.

IV. IMPLEMENTATION INTO AIRLINE SCHEDULE
RECOVERY

As described, stochastic delay cost functions may support
tactical airline schedule recovery, so that scarce resources,
especially during turnaround, can be assigned preferably to
those aircraft from whose subsequent flights the airline is
likely to incur higher costs of delay. Thus, stochastic functions
described in the previous section are implemented into a
scheduling model for tactical airline ground operations recov-
ery, described in full detail in [35].



A. Airline Ground Operations Recovery

The applied tactical airline ground operations recovery
model is based on an extension of the resource constraint
project scheduling problem (RCPSP) such that it aims at as-
signing a limited set of airport resources to a set of aircraft A.
Thus, the turnaround sub-processes TP for each related air-
craft (RAi = a) are scheduled in a way that the total costs
from a given disruption are minimised. Thereby, ”in-block”
as the first process of each turnaround (i ∈ IB ⊂ P ) can
only be scheduled after the estimated in-block time EIBTa.
Further sub-processes can only start (si) once all preceding
processes are (scheduled to be) completed. Predecessor and
successor relationships are defined in the precedence matrix
PM ⊆ P × P .
Selected airport resources enable schedule recovery options ωi,
which accelerate the duration Di of specific turnaround sub-
processes i ∈ P (e.g., quick de-boarding via two doors is
enabled once an aircraft is allocated to a remote position).
Further recovery options include stand reallocation, quick
turnaround (e.g., accelerated cabin cleaning, catering and load-
ing due to additional staff), arrival prioritisation (i.e., aircraft
receive priority during approach or taxi-in from air traffic
control), expedited passenger transfer (e.g., transfer passenger
groups are transported with dedicated buses to their departure
gate), deploying stand-by crew (e.g., substitution of a delayed
transfer crew with a stand-by), and rebooking of passengers
onto alternative flights. The latter two can be described as the
elimination of process dependencies, rather than as process
acceleration. In any case, for most recovery options, a recovery
cost Crec

i is incurred by every application, which relate to
additional ground handling fees or costs of rebooking, etc.
(The various forms of resilience (absorptive, adaptive, and
restorative) are discussed in the ATM context, with quantified
cost examples, in [36].)
As also explored in [32], aircraft can be held on position
in order to maintain passenger transfer connections which
induce departure delay va once the scheduled off-block time
SOBTa is overrun. In the deterministic delay cost model,
the respective cost of delay is incurred as linear segments S,
with constant marginal delay costs Clin

as for durations of five
delay minutes ras each, and step costs Cstp

as once the delay
exceeds a certain threshold, which is activated by yas ∈ 0, 1.
In the stochastic delay cost model, no step costs need to be
considered, and polynomial cost functions are linearised for
five-minute segments S, also with constant marginal delay
costs Clin

as . Missed ATFM slots are discussed in Sec.VII.

B. Mathematical Formulation

min
∑
a∈A

∑
s∈S

(
Clin

as ras + Cstp
as yas

)
+
∑
i∈P

Crec
i ωi (2)

s.t. si ≥ EIBTa ∀ i ∈ IB,RAi = a (3)

si ≤ SOBTa + va ∀ i ∈ OB,RAi = a (4)

sj ≥ si +Di − ωiM ∀ i, j ∈ P | PMi,j = 1 (5)

va =
∑
s∈S

ras ∀ a ∈ A (6)

ras ≥ (Uas − Las) yas ∀ a ∈ A; ∀ s ∈ S (7)

ras ≤ (Uas − Las) ya(s−1) ∀ a ∈ A; ∀ s ∈ S (8)

The objective function (2) is to minimise the total cost related
to a deviation to the original schedule, which corresponds
to the sum of delay costs across all linear segments and all
overrun step-cost thresholds. The final term in the objective
function comprises all costs incurred by applied schedule
recovery options. The start of each turnaround can only be
scheduled after the respective EIBT (3). If the calculated
off-block time overruns the SOBT, the delay is induced as
described in (4). Scheduling constraints (5) ensure that each
sub-process can only start once all preceding processes have
been finished, apart from when a recovery option was applied
for this process. Constraints (6-8) distribute the off-block delay
across the pre-defined segments, whereby the delay in each
segment is bounded and delay can only be induced in later
segments, when the step cost for the respective segment is also
accounted for. For a more detailed description of the model,
please refer to [18], [35].

V. SCENARIO AND APPLICATION

The tactical airline ground operations recovery model is
applied in three different versions to a case study comprising
15 turnarounds during a morning peak at Frankfurt airport
(FRA). Model version 1 incorporates delay cost reference
values per aircraft type as determined from [23]. Model
version 2 applies deterministic, step-linear cost functions,
which consider cost drivers of the subsequent flight cycle.
Model version 3 adopts the stochastic delay cost functions
as described in Sec. III. All three models are used to solve
arrival delay deviations for all 15 aircraft, as they appeared on
a selected scenario day during the summer season of 2019.

A. Case Study Setting

Flight plan data are adapted from the summer schedule
of 2019, of a local hub carrier. Passenger connections are
simulated to resemble potential itineraries that adhere to the
average connection ratio (55% transfer passengers) and mini-
mum connecting time at FRA (45 minutes), typical airline load
factors (85%) and avoiding extreme detours (e.g., passengers
from MAD are unlikely to connect via FRA to BCN).
Crew connections and stand allocations are built with sep-
arate optimisation algorithms, such that they comply with
official operational constraints. Contact stands in Terminal 1A
(Stands A1, A2, A3 and A5 in Fig. 4) are reserved for flights
to and from Schengen countries only. Contact stands with
special security and customs areas (Stands A3, A6, B1 and C1)
can also operate flights to and from non-Schengen countries.



Stands A3 and A6 are predominantly used for intercontinental
flights with widebody aircraft. Stands R1 and R2 are remote,
whereby passengers need to be transferred with apron buses
via the central bus station (marked with a bus icon in Fig. 4).

Three aircraft, including two widebodies, are fixed at their
initial stands due to operational constraints, whereas the re-
maining twelve aircraft can be re-allocated to any other stand
complying with the required O&D security procedures. In
total, one arrival prioritisation request (CRec = 0; currently
without a fuel burn assessment), one quick turnaround unit
(CRec = 500 per turnaround), two quick transfer buses
(CRec = 100 per passenger group transfer fee) and one
standby crew (CRec = 1000; two additional hours) enable
the respective schedule recovery options.

Master Use Case – OPsTIMAL Projekt
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Figure 4. Case study setting at Frankfurt airport (FRA).

B. Flight-Specific Delay Costs

In each version of the model, an individual delay cost
function is incorporated for all outbound flights. In model
1, functions are only differentiated according to aircraft type,
such that flights with similar aircraft are associated with equal
reference delay cost curves. The function is thus interpolated
with linear segments between the reference cost values de-
scribed in [23] (see green lines in Fig. 5).

For model 2, separate deterministic cost functions are built
with respect to the first and second legs of the next flight
cycle. Linear and event-related cost drivers are identified for
the corresponding aircraft, crew and passenger itineraries, such
that, for each event, the associated buffer time is calculated
until it would impact the schedule, which is then translated
into the respective linear costs and cost steps (see Fig. 6).
Light grey lines in Fig. 5a and 5b show the resulting cost
functions after the first leg. Note that the cost function of the
flight to Stockholm (ARN) contains more cost steps, given
that passengers can miss onward connections there, operated as
part of the partner airline hub network (see Fig. 6). No transfer
connections have been sold via London Heathrow (LHR), so
that no potential rebooking and/or compensation costs need to
be considered there. Dark grey lines in Fig. 5a and 5b show
back-propagation costs, which are incurred after the second
leg of the flight cycle. Here, both functions contain cost steps,
given that all inbound flights to FRA carry transfer passenger.
Furthermore, Fig. 5a includes the special case where the
aircraft operating to ARN has a maintenance event scheduled
after the cycle, which under no conditions can be missed. Thus,
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Figure 5. Stochastic impact of downstream block-time parameters on step-
linear cost function in comparison to reference delay cost.

if outbound delay before the cycle exceeds the schedule buffer
between the cycle end and the maintenance event, the cycle
would need to be cancelled (aircraft swaps are not considered
in this example). Hence, the very large cost step after 40
minutes of outbound delay results from passenger delays of
3-8 hours downstream (depending on the alternative flight
connection), resulting in numerous Regulation 261 obligations,
including rebookings and compensation payments.
Model 3 adopts the deterministic cost functions for both cycle
legs from the second model and integrates them with the
respective block-time distributions as described in 1. Blue lines
in Fig. 5 show the resulting stochastic cost functions. Note
in Fig. 5a that due to block-time buffer, the sharp increase
related to the maintenance event is shifted towards a later
time (cf. 3b), such that the first flight could be assigned
with additional outbound delay. In this specific instance, the
stochastic function considers that in five out of six cases,
at least ten minutes of delay can be absorbed during the
block time (83%-quantile), such that only one sixth of the
total costs of not operating these flights (i.e., the cancellation
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Figure 6. Cost driving events considered (and their inferred buffer times) for building the deterministic delay cost function for flight cycles to ARN.

costs) are taken into account. Note in Fig. 5b that block times
to LHR are very tight, which means that outbound delay
is likely to induce additional inbound delay after the cycle,
instead of mitigating it. The stochastic function captures this
by consistently overestimating the deterministic curves (cf.
Fig. 3b).

VI. RESULTS

A sensitivity analysis was performed for a scenario day with
average inbound delay of 19.5 minutes (St.Dev. = 33, Min. =
-12, Max. = 108) across all 15 aircraft. Within this already
stressed operational setting, the inbound delay for aircraft 13
(flying to Stockholm (ARN)) is increased from no outbound
delay to 70 minutes, respecting that a critical maintenance
event is scheduled with 40 minutes buffer time after the flight
cycle (see Fig. 5a). Thus, the output of the ground operations
recovery model is analysed ceteris paribus for each level of
inbound delay of the respective aircraft, in order to see how
the system behaves with different delay cost functions when
a (very) large cost impact is expected downstream.
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Figure 7. Total cost output of tactical airline schedule recovery model.

A. Total Cost
For up to 60 minutes of inbound delay, the highest total

costs obtain with the reference cost functions. With the step-

cost model, costs increase suddenly once the inbound delay
of aircraft 13 exceeds 60 minutes, which results in a flight
cancellation to ARN (due to the incompatibility with the
critical maintenance event, even when specific turnaround
processes are accelerated). The total costs calculated with the
stochastic delay cost model are roughly half of those of the
reference delay model. Once inbound delays of aircraft 13
exceed 60 minutes, they rise progressively due to the increased
probability that the delay cannot be recovered and the flight
has to be cancelled (cf. Fig. 7).

B. Stability of Decision Variables

Fig. 8 shows the outbound delay of all aircraft when inbound
delays of up to 70 minutes are introduced for aircraft 13 on
the selected scenario day. Comparable outputs with all three
versions of the delay cost models are shown, highlighting
divergent behaviour at critical events, such as the scheduled
maintenance check of aircraft 13, which has 40 minutes of
buffer time after the rotation to ARN (see Fig. 5a). Given the
average cost basis, the reference delay cost model does not
consider the (explicit) maintenance event, such that inbound
delay of aircraft 13 is propagated almost directly propor-
tionally, resulting in a linear increase of outbound delay,
which was only reduced by 8 minutes of ground buffer time.
The model with step-linear delay costs considers the critical
40-minute threshold of outbound delay, such that it assigns
recovery resources to aircraft 13 for inbound delays of up to
60 minutes. Due to the required minimum turnaround time,
even higher inbound delays cannot be recovered so that the
flight is considered as cancelled, which produces significant
disruptions for other aircraft. In contrast, the stochastic delay
cost model allows outbound delays higher than 40 minutes,
by considering the block time buffers and historic flight time
variances within the rotation to ARN. The optimal level of
outbound delay for the other aircraft is thus more variable,
as are the decisions regarding which passenger connections
should be maintained (see Fig. 9).



0

20

40

60

O
ut

bo
un

d 
D

el
ay

Aircraft = 1 (ORD) Aircraft = 2 (IST) Aircraft = 3 (LYS) Aircraft = 4 (LHR) Aircraft = 5 (TLV) Aircraft = 6 (LED) Aircraft = 7 (SEA) Aircraft = 8 (ZRH)

0 20 40 60
Inbound Delay Aircraft 13

0

20

40

60

O
ut

bo
un

d 
D

el
ay

Aircraft = 9 (BCN)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 10 (DUB)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 11 (HAM)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 12 (RIX)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 13 (ARN)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 14 (SCQ)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = 15 (TXL)

0 20 40 60
Inbound Delay Aircraft 13

Aircraft = Average Delay

Delay Cost Type
Reference
Step Linear
Stochastic
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Figure 9. Optimal number of applied recovery options.

On average, the stochastic delay cost function model allows
additional flexibility to wait for delayed transfer passengers.
This induces more outbound delay, given that absorptive
capacities in downstream operations are incorporated, but can
save, on average, the loss of at least one passenger transfer
connection (see Fig. 9). Similar trade-offs in a stochastic
model were observed in [32]. The step-linear delay cost
model produces higher outbound delays than the reference cost
model, as it assigns more delay to flights that incur the lowest
cost. A prominent example for this case is aircraft 7, flying
to Seattle-Tacoma (a route with few alternative flights for
transfer passengers and high cycle buffers), which is delayed
by 52 minutes in the step-linear and stochastic cost models,
such that it can await delay transfer passengers. In contrast,
the reference cost model solely respects the average, higher
costs of delay for the operating widebody aircraft, such that
it assigns a quick turnaround to aircraft 7 and releases it with
just 12 minutes of outbound delay.

The results for aircraft 10, flying to Dublin, highlight some
of the downsides of the step-linear cost model. Due to tight
transfer dependencies, two large step costs occur after only
5- and 10-minute buffer times, such that the aircraft departs
with only 5 minutes of delay. In reality, there seems to be
sufficient buffer time within the flight cycle to recover higher
outbound delays, such that the stochastic delay model waits for
transfer passengers and assigns 27 minutes of delay. In general,
marginal linear costs per delay minute are smaller within step-
linear cost functions (considering that event-related costs are
incurred as one fixed delay value), such that a quick turnaround
is not an optimal option for some delayed aircraft, given that
the additional resources incur more costs than can be saved
by reducing the outbound delay (cf. reduced number of quick

turnarounds in Fig. 9). In the case of more than 60 minutes
of inbound delay to ARN, and thus a flight cancellation, the
number of cancelled passenger transfers doubles in this model.

Mindful of recently introduced mechanisms for ATFM-
airline cooperation, such as UDPP, which require flight-
specific priority/ranking values, the calculated outbound se-
quence is analysed. As shown in Fig. 10, the results of the
model with reference delay costs lack selectivity between
ranks 9-14, which can be attributed to similar SOBTs and
delay cost values of the respective aircraft. In contrast, the
outbound sequence with step-linear delay costs is very stable,
such that only the causal aircraft 13 is shifting positions
towards later times, until it is cancelled. However, considering
the calculated sequence with the stochastic cost model, it
becomes clear that there is much more uncertainty in the
system than in the step-linear model, once the inbound delay
of aircraft 13 exceeds 60 minutes.
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Figure 10. Rank of outbound flights.

VII. CONCLUSIONS AND FUTURE WORK

This article presented the development of stochastic delay
cost functions to predict delay propagation under uncertainty.
The sensitivity analysis has shown that optimal recovery deci-
sions based on stochastic delay costs are less robust in compar-
ison to those calculated with step-linear delay costs (especially
with regard to outbound delay and passenger transfer manage-
ment), such that they require accurate supporting forecast data.
However, the higher stability of optimal recovery decisions
calculated with (deterministic) step-linear delay cost functions
is misleading, given that such a model does not incorporate
downstream uncertainties or buffer capacities. Consequently,
in the step-linear model, results are prone to deliver excessive
total cost estimations once critical cost-driving events are



determined as inevitable. In contrast, stochastic delay costs
increase the flexibility for schedule recovery by using buffer
capacities downstream, which creates the need to coordinate
potentially higher outbound delay values for some aircraft with
ATFM slots in subsequent research.
Further challenges remain regarding the determination of
actual buffers deployed by airlines. Nevertheless, the approach
adopted here is not dissimilar to substantial operational prac-
tice. Additionally, the cost of such buffers (available in [23])
may be used to evaluate resilience metrics such as those
introduced in [36]. Complementarily, evaluating the cost of
uncertainty would make a valuable contribution to the SESAR
Performance Framework.
Changes recently made to Regulation 261 regarding connec-
tions at outstations beyond Europe, and proposed changes
regarding intra-European connections, are important elements
to consider to capture the changing regulatory landscape and
can be easily incorporated into the proposed model. Further
research should also analyse the general behaviour of the
model around major cost steps, especially in the context of
UDPP, whereby airlines can only provide normalised, discrete
priority values. A transfer of the optimal turnaround recovery
into such priority values is yet to be made. This work will be
complemented with the addition of full fuel burn assessments,
including dynamic cost indexing [37], as demonstrated in [12],
and currently being explored, for example, within the Clean
Sky programme.
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Delay Recovery based on Cost Optimisation,” in SESAR Innovation
Days, Delft, 2016.

[12] L. Delgado, G. Gurtner, S. Zaoli, P. Mazzarisi, D. Valput, A. Cook, and
F. Lillo, “Domino D5.3 - Final tool and model description, and case
studies results,” Tech. Rep., 2019.

[13] L. Marla, B. Vaaben, and C. Barnhart, “Integrated Disruption Man-
agement and Flight Planning to Trade Off Delays and Fuel Burn,”
Transportation Science, vol. 51, no. 1, pp. 88–111, 2017.

[14] J. Kuster, D. Jannach, and G. Friedrich, “Extending the RCPSP for
modeling and solving disruption management problems,” Applied Intel-
ligence, vol. 31, no. 3, pp. 234–253, 2009.

[15] B. Oreschko, T. Kunze, M. Schultz, H. Fricke, V. Kumar, and L. Sherry,
“Turnaround Prediction with Stochastic Process Times and Airport
Specific Delay Pattern,” ser. ICRAT, Jun. 2012.

[16] M. Schultz, B. Oreschko, H. Fricke, and T. Kunze, “Microscopic
Process Modelling for Efficient Aircraft Turnaround Management,” in
Proceedings of ATOS Symposium, Delft, 2013.

[17] M. Abd Allah Makhloof, M. Elsayed Waheed, and U. A. El-
Raouf Badawi, “Real-time aircraft turnaround operations manager,”
Production Planning & Control, vol. 25, no. 1, pp. 2–25, 2014.

[18] J. Evler, E. Asadi, H. Preis, and H. Fricke, “Stochastic Control of
Turnarounds at HUB-Airports,” in SESAR Innovation Days, Salzburg,
2018, p. 9.

[19] M. Tomasella, A. Clare, Y. S. Gök, D. Guimarans, and C. Ozturk, “Sttar:
A Simheuristics-Enabled Scheme for Multi-Stakeholder Coordination Of
Aircraft Turnaround Operations,” in WSC, 2019, pp. 488–499.

[20] H. Fricke and M. Schultz, “Delay Impacts onto Turnaround Perfor-
mance,” ser. ATM, 2009, p. 10.

[21] J. Rosenow and M. Schultz, “Coupling of turnaround and trajectory
optimization based on delay cost,” in Proceedings of the 2018 Winter
Simulation Conference. IEEE Press, 2018, p. 2273–2284.

[22] A. Montlaur and L. Delgado, “Flight and passenger delay assignment
optimization strategies,” Transportation Research Part C: Emerging
Technologies, vol. 81, pp. 99–117, 2017.

[23] A. Cook and G. Tanner, “European airline delay cost reference values
- updated and extended values,” UoW, London, Tech. Rep. 4.1, 2015.

[24] S. Ruiz, “Optimal Delay Allocation under High Flexibility Conditions
during Demand-Capacity Imbalance,” in SESAR Innovation Days, Bel-
grade, 2017.

[25] EUROCONTROL, “PRR 2019 - Performance Review Report,” EURO-
CONTROL, Brussels, Tech. Rep., 2020.

[26] R. Beatty, R. Hsu, L. Berry, and J. Rome, “Preliminary Evaluation
of Flight Delay Propagation through an Airline Schedule,” Air Traffic
Control Quarterly, vol. 7, no. 4, pp. 259–270, 1999.

[27] S. AhmadBeygi, A. Cohn, Y. Guan, and P. Belobaba, “Analysis of the
potential for delay propagation in passenger airline networks,” Journal
of Air Transport Management, vol. 14, no. 5, pp. 221–236, 2008.

[28] C.-L. Wu and K. Law, “Modelling the delay propagation effects of
multiple resource connections in an airline network using a Bayesian
network model,” Transp. Res. E, vol. 122, pp. 62–77, 2019.

[29] S. AhmadBeygi, A. Cohn, and M. Lapp, “Decreasing airline delay
propagation by re-allocating scheduled slack,” IIE Transactions, vol. 42,
no. 7, pp. 478–489, 2010.

[30] C.-L. Wu, Airline Operations and Delay Management. Routledge, 2016.
[31] J. M. Rosenberger, E. L. Johnson, and G. L. Nemhauser, “A Robust

Fleet-Assignment Model with Hub Isolation and Short Cycles,” Trans-
portation Science, vol. 38, no. 3, pp. 357–368, 2004.
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