New insights into delay propagation?
Cook, A.J.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
New insights into delay propagation

University of Westminster (London)
Innaxis Foundation & Research Institute (Madrid)

Dr Andrew Cook
Principal Research Fellow
Overview

• Delays and passengers in context

• The POEM model
 – delay costs
 – structure and rules
 – key results

• Where next?
 – with the tool
 – funded opportunities from SESAR
 – challenges for A-CDM
Delays and passengers in context
Delays and passengers in context

• Political motivation re. pax mobility, e.g. Commission:
 – roadmap to a Single European Transport Area for 2050 (2011)
 – ‘Flightpath 2050’, HLG on Aviation Research (2011)
 … 4 hour door-to-door target for 90% of passengers
 – on-going reviews to Regulation 261/2004 (2016?)

• Operational motivation
 – pax direct costs often dominate AO cost of delay (& behaviour)
 – even in pure G2G context, passenger delay > flight delay

• How are we doing now, regarding performance?
Delays and passengers in context
Delays and passengers in context

- 2014 traffic +1.7%, pax 5.4% (regionality; recover 2008 by 2016)
- Average pax arrival delay? Average D2D?
 - no specific metrics – how measure?
- POEM: Passenger-Oriented Enhanced Metrics
 - putting the passenger at the centre of service delivery
 - exploring new prioritisation strategies using new metrics

Ratio of reactionary to primary delay
Each primary minute => ≈0.9 reactionary
(intra-European flights)
The POEM model
- delay costs
Delay costs

- Types of cost (in-house models, except fuel)
 - **Fleet**
 - All fleet costs (depreciation, rentals & leases)
 - Fuel (& CO₂)
 - Lido/Flight, BADA, manufacturers
 - Crew
 - Schemes, flight hours, on-costs, overtime
 - Maintenance
 - Extra wear & tear powerplants/airframe
 - Passenger
 - ‘Hard’ & ‘soft’ (not internalised costs)

- Low/base/high scenarios, non-linear, new values for 2014
- Includes brand new assessment of Regulation 261 costs

B733, B734, B735, B738, B752, B763, B744, A319, A320, A321, AT43, AT72, DH8D, E190, A332
The POEM model
- structure and rules
Structure and rules

• Gate-to-gate aircraft rules; pax connection rules
• Varying levels of fidelity, for example:
 • Rule 23: en-route (some recovery, 5 min residual, wind)
 • Rule 33: passenger reaccommodation
 – trigger: pax late at gate (a/c not wait); cancellation; *(denied boarding)*
 – Regulation 261; IATA (involuntary rerouting & proration rules)
 – aircraft seat configuration data used with routing sub-rules
 – passenger prioritisation sub-rules (alliances, ticket flexibility, ties)
 – passenger hard and soft costs
 – multiple sources, including airline input and airline review
• Based on a nominal day (with optional disturbance)
• First such simulation of its kind
Structure and rules

- aggregated PaxIS (IATA ticket) pax data allocated onto individual flights (PRISME traffic data)
- assignment algorithms respecting aircraft seat configurations and load factor targets
- full pax itineraries built respecting MCTs and published schedules
- 200 + 50 airports
- 30 000 flights
- 2.5 million pax
- 150 000 routings
Structure and rules

- event-driven: event stack, ordered sequence of events, each with a stamp
- dynamic tracking of costs for each a/c & passenger
- pre-computed cost functions: recursive (from end of day backwards along propagation tree); discrete (dly: 0, 5, 10, …)
- single-processor: 25-50 minutes to run one day
- cloud-computing platform: approximately 2 minutes
Structure and rules

<table>
<thead>
<tr>
<th>Type, and level</th>
<th>Designator</th>
<th>Summary description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-scenario, 0</td>
<td>S₀</td>
<td>No-scenario baselines (reproduces historical operations for baseline traffic day)</td>
</tr>
<tr>
<td>ANSP, 1</td>
<td>N₁</td>
<td>Prioritisation of inbound flights based on simple passenger numbers</td>
</tr>
<tr>
<td>ANSP, 2</td>
<td>N₂</td>
<td>Inbound flights arriving more than 15 minutes late are prioritised based on the number of onward flights delayed by inbound connecting passengers</td>
</tr>
<tr>
<td>AO, 1</td>
<td>A₁</td>
<td>Wait times and associated departure slots are estimated on a cost minimisation basis, with longer wait times potentially forced during periods of heavy ATFM delay</td>
</tr>
<tr>
<td>AO, 2</td>
<td>A₂</td>
<td>Departure times and arrival sequences based on delay costs – A₁ is implemented and flights are independently arrival-managed based on delay cost</td>
</tr>
<tr>
<td>Policy, 1</td>
<td>P₁</td>
<td>Passengers are reaccommodated based on prioritisation by final arrival delay, instead of by ticket type, but preserving interlining hierarchies</td>
</tr>
<tr>
<td>Policy, 2</td>
<td>P₂</td>
<td>Passengers are reaccommodated based on prioritisation by final arrival delay, regardless of ticket type, and also relaxing all interlining hierarchies</td>
</tr>
</tbody>
</table>
The POEM model
- key results
Key results

<table>
<thead>
<tr>
<th>Type, and level</th>
<th>Designator</th>
<th>Summary description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-scenario, 0</td>
<td>S_0</td>
<td>No-scenario baselines (reproduces historical operations for baseline traffic day)</td>
</tr>
<tr>
<td>ANSP, 1</td>
<td>N_1</td>
<td>Prioritisation of inbound flights based on simple passenger numbers</td>
</tr>
<tr>
<td>ANSP, 2</td>
<td>N_2</td>
<td>Inbound flights arriving more than 15 minutes late are prioritised based on the number of onward flights delayed by inbound connecting passengers</td>
</tr>
<tr>
<td>AO, 1</td>
<td>A_1</td>
<td>Wait times and associated departure slots are estimated on a cost minimisation basis, with longer wait times potentially forced during periods of heavy ATFM delay</td>
</tr>
<tr>
<td>AO, 2</td>
<td>A_2</td>
<td>Departure times and arrival sequences based on delay costs – A_1 is implemented and flights are independently arrival-managed based on delay cost</td>
</tr>
<tr>
<td>Policy, 1</td>
<td>P_1</td>
<td>Passengers are reaccommodated based on prioritisation by final arrival delay, instead of by ticket type, but preserving interlining hierarchies</td>
</tr>
<tr>
<td>Policy, 2</td>
<td>P_2</td>
<td>Passengers are reaccommodated based on prioritisation by final arrival delay, regardless of ticket type, and also relaxing all interlining hierarchies</td>
</tr>
</tbody>
</table>
Key results

• Cost-minimising aircraft wait rules (A_1)
 ↓ €39 avg. cost / flight
 ↓ 9.8 mins avg. arr. / delayed pax
 ↑ 2% reactionary (focus)
 All scenarios: no statistically significant changes in current flight-centric metrics!

• Smaller airports implicated in delay propagation
 – more than hitherto commonly recognised
 – expedited turnaround; spare crew (& a/c); connectivity & capacity

• Back-propagation important in persistence of network delay
 – CDG, MAD, FRA, LHR, ZRH, MUC: all > 100 hours (baseline day)
 – most delay distributed between a relatively limited no. of airports
Where next?
- with the tool
Where next?

- Live model, on-going developments such as:
 - fidelity of various rules (flexible, event-driven; + CO₂?)
 - 2014 traffic with new costs; GDS integration; D2D context
- Exploring further use of valuable new metrics
 - passenger-centric; in context SES RP3 (2020 – 2024)?
 - increased focus on cost resilience
- Policy evaluation
 - e.g. Regulation 261; ‘exploratory’ policies
- Increased AO-level focus and software integration
 - strategic planning, trending context (e.g. a/c sizes & LFs)
- Parallel SESAR ConOps developments
 - e.g. UDPP (costs) and A-CDM (pax connectivities)
Where next?
- funded opportunities from SESAR
Funded opportunities from SESAR

• Horizon 2020 (EC) call, by 25 June 2015, 11 topics open:
 - 01: Automation
 - 02: Data science
 - 03: Information management
 - 04: Environment and meteorology
 - 05: Economics and legal change
 - 06: High performing airport operations
 - 07: Separation management
 - 08: CNS
 - 09: TBO
 - 10: ATM architecture
 - 11: ATM performance

 WA1
 ‘outreach’
 ≤ €0.6m each
 TRL 1 (/2 OK)
 (basic principles)

 WA2
 ‘applications-oriented’
 ≤ €1.0m each
 TRL 1-2
 (technology concept formulated)
Funded opportunities from SESAR

- Budget for this call: €20.6m (30-50 projects); 1 stage
- Outcome: 25NOV15; start: 25FEB16; duration ≤ 24 months
- Airline/industry funding = 100% (full salary) + 25% (o/h)
- n person days per month => n man-months overall
 - or could participate on an advisory/design Board

- Examples of some topics we’re exploring:
 - (1) Optimising city-pair trajectories
 - (2) Enhanced ash cloud forecasting
 - (3) Improved cost resilience for schedules
 - … and A-CDM?
Funded opportunities from SESAR

(1) Optimising city-pair trajectories

- defining optimal European trajectories (fuel burn, cost of time, emissions costs) as driven by airline business models
- taking account of traffic and sector loads, disruptions,
- weather (LVP, holding, etc.) and time of day
- using ‘flown’ data (ALL_FT+, > 1GB/day), BADA + AO data

- Added value
 - big data architectures and specialist mining
 - data expertise: ALL_FT+, METAR, NEST, SWIM; BADA emissions
 - benchmarking across airlines, routes, airspaces; for whole year
Funded opportunities from SESAR

(2) Enhanced ash cloud forecasting

- enhanced post-processing and visualisation of forecasts
- for periods of 30/60 minutes (c.f. current 6 hours)
- includes forecast impacts on selected airports

• Added value
 - visualisation tool integrates forecast with flight plans (in any format) and with engine ingestion impacts
 - takes account of individual Safety Risk Assessment strategies (vary widely across airlines)
 - integrated with engine maintenance cycles; strategic preparedness
Funded opportunities from SESAR

(3) Improved cost resilience for schedules

- conflicting market forces: AO business models and regulatory change
 - e.g. pax Regulation 261 (extended scope and enforcement)
 - SES mandates, direct and indirect (e.g. route charges) effects
- fully monetised (e.g. pax *arrival* delay & compensation)
- decision support, e.g. cancellation or long delay?

- Added value
 - better alignment (cost resilience) between schedule and operations
 - considers multiple dependencies: pax, ANSPs, airports, emissions
 - reduces risk of unforeseen change: better business reactivity
Where next?
- challenges for A-CDM
Challenges for A-CDM

• SESAR 2015 Work Programme focuses on PCP alignment, targets re. Operational Focus Area ‘Airports Operations Mgt’:
 – connect TOBT with pax wait / no-wait decisions; better connect landside info with Airport Operations Plan
 – integrate MET data in management of adverse weather & DCB
 – validate interfaces between airport ops centres & stakeholder operational units; validate requirements re. decision support
 – validate use of a de-icing management tool within A-CDM context

• SESAR ER Call: “High performing airport operations” (#6)
 – new technologies for improved situational awareness for (remote) tower controllers (e.g. cameras and sensors)

• Inbound airport flows currently FPFS only

• Downstream (network) effects of DCB / A-CDM
Thank you

airspace-research@westminster.ac.uk
Stand-bys
SESAR 2020

• 2015: first SESAR 2020 projects launch (2016: some SESAR 1 overlap)
 – Step 1: Time-based operations
 – (focus on flight efficiency, predictability and environment)
 – Step 2: Trajectory-based operations
 – (capacity, 4D trajectory optimisation, SWIM)
 – Step 3: Performance-based operations
 – (high-performance, integrated, network-centric, collaborative,
 seamless air/ground system)

• Runs to 2024, funded under Horizon 2020
 – Exploratory Research (builds on WP-E; EUR 85m; purely EU funds)
 – Applied Research & Pre-Industrial Development (EUR 1200m)
 – Large Scale Demonstrations (EUR 300m)
TRL 1 and 2

• TRL 1: Basic principles observed and reported
 – Exploring the transition from scientific research to applied research by bringing together a wide range of stakeholders to investigate the essential characteristics and behaviours of applications, systems and architectures. Descriptive tools are mathematical formulations or algorithms.

• TRL 2: Technology concept and/or application formulated (applied research)
 – Theory and scientific principles are focused on very specific application area(s) to perform the analysis to define the concept. Characteristics of the application are described. Analytical tools are developed for simulation or analysis of the application.
Pilot Common Project

• Commission's framework supporting MP implementation
• ‘Common projects’ to deploy proven ATM functionalities (AFs)
 – AF1: extended arrival management and PBN in high density TMAs
 – AF2: airport integration and throughput
 – AF3: flexible airspace management and free routes
 – AF4: network collaborative management
 – AF5: initial SWIM
 – AF6: initial trajectory information sharing
• PCP first set technical/operational changes
• To be implemented 2014-2024; details:
 – SJU Annual Work Programme
 – Implementing Regulation (716/2014, 27JUN14) defines mandatory AFs
Pilot Common Project

Deployment Baseline
- Civil/Military Airspace & Aeronautical Data coordination
- A/G Datalink
- CPDLC

PCP
- Freeroute airspace at Network Level

Step 1
- Trajectory & BMT
- System Interop with A/G data sharing
- Free routing

Step 2/3
- Full 4D
- New A/G Datalink
- Free Route TMA exit to TMA entry

Moving from Airspace to 4D Trajectory Management
- 4D + CTM/CTA
- AMAN & E-AMAN
- PBN in high density TMAs

Traffic Synchronization
- Basic AMAN

Network Collaborative Management & Dynamic Capacity Balancing
- Basic Network Operations Planning
- Enhanced ATFM Processes
- Initial Integration AOP/NOP
- Airspace management and AFUA

Airport Integration & Throughput
- Airport CDM
- A-SMGCS L1&L2

Conflict Management & Automation
- Initial Controller assistance tools

SWIM
- Xchange models
- IP based network

Selected Initial SWIM Services

Network Operations Planning using SB/RTB
- 4D Trajectory used in ATFCM
- UDPP

Surface Management Integrated with arrival & departure

Airport Safety Nets

Air Traffic Management and Control System (ATMCS)
- Enhanced DST & PBN

Full SWIM Services
- Advanced controller tools to support SB/RTB
- Enhanced trajectory prediction

3rd INFORM Airline Forum
Lisbon, 20-22 May 2015

University of Westminster
Innaxis Foundation & Research Institute
Simulation & scenarios

<table>
<thead>
<tr>
<th>Designator</th>
<th>Rule 13 Wait for boarding</th>
<th>Rule 26 Airborne arrival management</th>
<th>Rule 33 Passenger reaccommodation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>N_2</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>A_1</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>A_2</td>
<td>= A_1</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>P_1</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Core metric</td>
<td>Units</td>
<td>N1 & N2</td>
<td>P1</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>Flight departure delay</td>
<td>mins / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight arrival delay</td>
<td>mins / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure delay of departure-delayed flights</td>
<td>mins / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrival delay of arrival-delayed flights</td>
<td>mins / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pax departure delay</td>
<td>mins / pax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pax arrival delay</td>
<td>mins / pax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure delay of departure-delayed pax</td>
<td>mins / pax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrival delay of arrival-delayed pax</td>
<td>mins / pax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger value of time</td>
<td>Euros / pax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-passerger costs</td>
<td>Euros / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-flight pax hard cost</td>
<td>Euros / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per-flight pax soft cost</td>
<td>Euros / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total flight cost</td>
<td>Euros / flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total flight cost per minute of departure delay</td>
<td>Euros / min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactionary delay ratio</td>
<td>ratio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | |
| Inbound prioritisation based on simple pax numbers, or on onward flights delayed | Passenger reaccommodated based on delay at final destination... | Departures times based on cost minimisation (& consideration of ATFM delay) |

no significant changes in current flight-centric metrics: stresses need for passenger-centric metrics

no significant changes under simple inbound scenarios driven by passenger numbers, or by numbers of delayed onward flights

revised passenger rebooking rules produce only weak improvements whilst current airline interlining rules are preserved, c.f. →

-0.4	-1.6				
-2.2	-9.8				
-0.2	-0.7				
+26	-40				
+26	-39				
49%	51%				
Simulation & scenarios

[...](17-Sep-2010 12:25:00) 47 out of 49 of pax (95.92 pct.) of DLH_EDDLEGBB02:15877 were ready, flight over 80 pct. occupancy, no more delay added

(17-Sep-2010 12:25:00) Total cost of flight DLH_EDDLEGBB02:15877 departing at 17-Sep-2010 12:25:00 now estimated at 127.15 euros

(17-Sep-2010 12:25:00) No further pax delay will be introduced, thus flight DLH_EDDLEGBB02:15877 is now pushback ready, reaccommodating connecting pax

(17-Sep-2010 12:25:00) Pax group DLH1815:37550 of 2 inflex pax coming from DLH_EDDHEDDL06:12246 to EGBB did not make it to DLH_EDDLEGBB02:15877 (no more connections afterwards) and need to be reaccommodated

(17-Sep-2010 12:25:00) 2 inflex pax of group DLH1815:37550 of DLH_EDDHEDDL06:12246 that missed DLH_EDDLEGBB02:15877 were successfully reaccommodated in DLH_EDDLEGBB03:23396 same alliance, DLH1815/1:145607 Arrival: 17-Sep-2010 17:50:00 delay: 04:00'00" (airport wait 03:01'51")

(17-Sep-2010 12:25:00) Trying to reaccommodate the 80 pax waiting at EDDL:10 (DUS)

(17-Sep-2010 12:25:00) A total of 2 pax of DLH_EDDLEGBB02:15877 were left behind and all of them were successfully reaccommodated

(17-Sep-2010 12:25:00) Flight SAS_ENKBENGM03:15843 loading 67 pax and all of the 67 pax are not coming from a previous flight. There are NO connecting pax

(17-Sep-2010 12:25:00) There are 29 pax groups in SAS_ENKBENGM03:15843 connecting with another flight afterwards (SAS3310:87574, SAS3311:87575, SAS3312:87576, SAS3313:87577, SAS3314, [...]

(KSU-OSL)
Hierarchy of interlining

<table>
<thead>
<tr>
<th>Carrier type</th>
<th>Ticket type</th>
<th>Rebooking onto next available flight according to departure delay of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>up to 2 hours</td>
</tr>
<tr>
<td>full-service</td>
<td>flexible (first/bus.)</td>
<td>any carrier</td>
</tr>
<tr>
<td>full-service</td>
<td>business inflexible</td>
<td>booked/alliance only</td>
</tr>
<tr>
<td>full-service</td>
<td>all other tickets</td>
<td>booked/alliance only</td>
</tr>
<tr>
<td>all other</td>
<td>all tickets</td>
<td>booked carrier only</td>
</tr>
</tbody>
</table>

- **Rule 33 (sub-rules)**
 - most airlines will try to rebook onto their own flights first
 - if LH wants to rebook onto LH1234, no other AO may claim seat
 - on reaccommodation, fare of remaining legs transferred to new carrier (if applies), according to IATA rules
Introducing the business trajectory

• The ‘Business (4D) Trajectory’
• Negotiated ‘contract’ with time constraints (hence 4D)
• Shared Business Trajectory (SBT)
 – Firstly, a trajectory is negotiated which represents the business intentions of the airline and takes account of Air Navigation Service Provider, ATFM and airport constraints
• Reference Business Trajectory (RBT)
 – Negotiation complete: trajectory which airline agrees to fly and ANSP + airport agree to provide; c.f. current practice, from both providers and users, of pre-tactical and tactical changes: new concept designed to minimise changes to trajectories & achieve ‘best business outcome’ for all users
• A key business outcome is reduction of delay
Complexity science

• Not one theory; system of systems – usually a network
 – multiple components, non-linear dynamics: can’t predict
 – non-analytical models, e.g. agent-based
 – usually need to take uncertainty into account

• Emergent behaviour, e.g. delay propagation

• ATM = complex socio-technical system

• How can complexity science contribute?
 – user-defined nodes in topological networks
 – existing metrics such as centralities (causality)
 – existing methods such as community detection & percolation

• Complementary approach
 – classical and complexity