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Abstract: This paper provides an empirical analysis of the US swap rate curve using 
principal components analysis (PCA) to identify the factors which explain the variation in 
the data. We also investigate the forecasting performance of different econometric 
models for individual maturities across the curve using daily data over the period 1998 to 
2011. The PCA analysis indicates that the first two factors explain approximately 99.76% 
of the cumulative variation in the sample. We also find that a continuous time modelling 
approach has a satisfactory performance across the curve based on the RMSE. 
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I. Introduction 
 

The application of stochastic differential equation models in economics and finance has a 
number of advantages compared to discrete time models and are outlined in Bergstrom and 
Nowman (2007) recently. In this paper we investigate the principal component analysis of 
the US swap rate curve over the period 1998 to 2011 to identify the factors which explain 
the curve. We also compare the forecasting performance of discrete time econometric 
models with a model formulated in continuous time for the different maturities across the 
curve. We find that the continuous time model has a superior forecasting performance 
across the curve. The rest of the paper is organized as follows: Section 2 outlines the 
modelling of the swap curve. Section 3 presents the data and empirical results are given in 
Section 4. Conclusions are presented in Section 5. 
 

2. Modelling the Swap Curve 
 

The model we use for the dynamics of the different swap rate maturities was developed by 
Chan, Karolyi, Longstaff and Sanders (1992, CKLS). 
                                                           
* Corresponding author. Email: nowmank@wmin.ac.uk  
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( ) ( ){ } ( )ζσβα γ trdttrtdr ++=  ( )( )0≥tdt    (1) 
 

where ( ){ }0, >ttr  is a swap rate maturity, α and β  are the unknown drift and mean 
reversion structural parameters; σ  is the volatility of the rate; γ  is the proportional 
volatility exponent and ( )dtζ   is a white noise error term. The parameters are estimated 
using a discrete model in Nowman (1997). We also estimate well known ARMA, ARIMA 
and Autoregressive Fractionally Integrated Moving Average (ARFIMA) models. We begin 
with the ARMA(p, q), where this model will have p autoregressive and q moving average 
terms. The ARMA model is therefore specified as follows: 
 

( ) ( ) tt LL εθεµφ −+=       (2) 
 

where ( )Lφ  and ( )Lθ  denote the polynomials in the lag operator; hence 

( ) p
p LLLL φφφφ −−−−= ...1 2

21   and ( ) q
q LLLL θϑθθ −−−−= ...1 2

21 . One of the 

underlying assumptions for the ARMA models is that the underlying data series follows a 
stationary, i.e., I(0), process; therefore, should one apply the ARMA model to a non-
stationary data series, the results would be spurious.  
 

The discrete time analysis continues with the ARFIMA(p,d,q model, developed by Box and 
Jenkins (1976), which provides a contrast to the ARMA model by assuming that the 
underlying data series follows a non-stationary process. Once again this has p 
autoregressive and q moving average terms, as was the case of the ARMA model; 
however, this model extends the ARMA model in that it also has a d component, where 
this measures the number of times that the underlying data series has to be differenced in 
order to make the process stationary, where 1≥d  and an integer. The ARIMA model is 
therefore specified as: 
 

( ) ( )[ ] ( ) tt
d LyLL εθµφ +=−1      (3) 

 

where ( )Lφ  and ( )Lθ  denote the polynomials in the lag operator,  and ( ) t
dd yL ∆=−1  is 

the dth difference of  yt. The final alternative model is the ARFIMA(p,d,q), first introduced 
by Granger and Joyuex (1980), Granger (1980, 1981) and Hosking (1981), where the 
assumption is made that the underlying data series follow a mean reverting process, 
however, the Wold decomposition and the autocorrelation coefficients for this process will 
exhibit a very slow hyperbolic rate of decay, where, the higher the value of d, the slower 
the rate  of decay. Like the ARIMA model, it also has a d component, however, in this 
case 0<d<1. The ARFIMA model parameterises the conditional mean of the series 
generating process as an  ARFIMA (p ,d, q) process, which is specified as follows: 
 

 ( )( ) ( ) ( )1 d
t tL L y Lφ µ θ ε− − =      (4) 
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where ( )Lφ  and ( )Lθ  denote the polynomials in the lag operator, where all the roots of 
( )Lφ  and ( )Lθ  lie outside the unit root circle; d denotes the fractional differencing 

parameter; and tε  is white noise. This model is estimated using the Maximum Likelihood 

Estimation (MLE) method outlined in Sowell (1986, 1992).  
 
3. Data 
 

The dataset used in the empirical work consists of daily US swap rates obtained from 
Datastream for the 1, 2, 4, 10, 15, 20, 25 and 30 years rates. The rates are sampled from 
June 1998 to December 2011. There is a total of 3566 observation dates and at each date 
there are N-interest rates (N=8). Table 1 reports the summary statistics and Figure 1 
displays the swap curve evolutions over the period. The mean of the data varies from 
3.2719 percent for the 1-year rate to 5.2982 percent for the 30-year rate with standard 
deviations of 2.1036 percent and 1.0972 percent. The ADF statistics do not reject the null 
hypothesis of a unit root in the level series. 
 

Table 1: Descriptive Statistics 
 

 1-Year 2-Year 4-Year 10-Year 15-Year 20-Year 25-Year 30-Year 
( )tr          

Mean 3.2719 3.5687 4.0976 4.8739 5.1419 5.2498 5.2834 5.2982 
SD 2.1036 1.9488 1.6647 1.2599 1.1603 1.1284 1.1090 1.0972 
ADF -0.8962 -1.2305 -1.7430 -2.6281 -2.9100 -2.9882 -2.9833 -2.9777 

( )tr∆          

Mean -0.0015 -0.0015 -0.0014 -0.0012 -0.0011 -0.0011 -0.0010 -0.0010 
SD 0.0446 0.0581 0.0654 0.0663 0.0637 0.0619 0.0608 0.0601 
ADF -54.925 -58.012 -59.102 -59.709 -59.931 -59.916 -59.979 -59.651 

 

Note: Mean, standard deviations of daily swap rates. The variable ( )tr  is the level and ( )tr∆  is the 
daily change.  ADF denotes the Augmented Dickey-Fuller unit root statistic. 
 

Using the swap rate data described above, we also perform a principal components 
analysis (PCA) on the sample covariance matrix to identify the factors which explain 
variation in the data. This transforms original dataset into variables that maximize the 
explained variance of the group and are as uncorrelated as possible (i.e. each variable is 
orthogonal to one another). Since the variables are orthogonal, each factor is uniquely 
determined, up to a sign change. 
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Figure 1: US Swap Rate Curves  
 

PCA starts from the assumption that the covariance matrix for the data, Σ, can be 
decomposed into ΤΓΛΓ , where Γ  is an  NN ×  orthogonal matrix containing factor 
loadings and Λ  is an NN ×  diagonal matrix containing N eigenvalues, N being the 
number of swap rates. Denoting our original dataset by X, each subsequent variable is 
defined to be XΓ′ . As the variance of each factor is given by its corresponding 
eigenvalue, each variable is ordered based upon the size of its eigenvalue (Flury (1988) for 
more details).1 The variable with the largest eigenvalue is the first principal component, 
while the variable with the second largest eigenvalue is the second principal component, 
and so on. As they are mathematical constructs, principal component factors are latent or 
unobservable in nature. The simplest way to interpret factors is to examine the effects of a 
shock to the factor on swap rates. To accomplish this task, we plot the factor loading 
coefficients and provide a description of their shape. 

                                                           
1 To see this we denote each variable or factor as, V. Since XV Λ′= , var(V) = 
var( ( ) ( )ΓΓ′=Γ′ XX var . Since var(X)=Σ, var( ( )XΓ′ = Λ=ΣΓΓ′  owing to the orthogonality of 
the Γ  matrix. Here, Λ is an NxN matrix containing the eigenvalues of the sample covariance 
matrix of the group. 
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We use principal components analysis to estimate factor loadings, which are displayed in 
Table 2, and plot the coefficients for the first three factors in Figure 2. Factor loadings also 
correspond to ordinary least squares (OLS) regression coefficients which would result 
from an OLS regression of swap rates on factors. Each principal component coefficient 
measures the relative change in the swap rate to a shock in the corresponding factor. 
 

Table 2: Factor Loadings 
 

 Factor 1 Factor 2 Factor 3  Factor 1 Factor 2 Factor 3 
1-Year 0.493 -0.570 0.513 15-Year 0.275 0.324 -0.004 
2-Year 0.471 -0.323 -0.193 20-Year 0.263 0.360 0.176 
4-Year 0.410 -0.034 -0.658 25-Year 0.257 0.369 0.267 

10-Year 0.305 0.243 -0.271 30-Year 0.253 0.372 0.303 
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Figure 2: Factor Loadings
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Based upon the patterns of the factor loadings for the first principal component, a shock to 
the first factor affects swap rates corresponding to each maturity in the same direction. A 
shock to the second factor affects swap wates corresponding to relatively shorter term 
maturities (i.e., 1 year Swap Rate, 2 year swap rate, and  4 year Swap Rate) in the opposite 
direction to returns corresponding to the longer term maturities (i.e., the 10 year swap rate 
out through the 30 year swap rate). Although it explains approximately 0.2% of the total 
variation in the group, we provide an interpretation for the third factor since it has a clear 
interpretation. Factor 3, presented in Figure 1, is a curvature factor; it shifts swap rates 
with relatively shorter term maturities and relatively longer-term maturities in the opposite 
direction (i.e., 1 year, 20 year, 25 year, and 30 year) from relatively middle-term maturities 
(i.e., 2 year, 4 year, 10 year, and 15 year).  
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With regards to our sample, the first two factors explain approximately 99.76% of the 
cumulative variation in the sample; with the first factor explaining approximately 93.16% 
of the variation in the sample and the second factor explaining about 6.60% of the 
variation in the swap rate sample. The remaining six factors would be regarded as noise. 
This highlights that PCA is a powerful tool that enables us to summarize the data with a 
smaller number of factors or variables. 
 

4. Empirical Results 
 

Estimates of the continuous time model are presented in Table 3. Turning to the one year 
rate the results imply a CKLS estimate of γ = 0.2471 indicating a low volatility-level effect 
for this rate which is significant. There is no evidence of mean reversion in the rate. For 
the two year rate the results imply a estimate of γ = 0.1559 which is significant and is no 
evidence of mean reversion in the rate. For the remaining rates the level-effects are of 
same magnitude as the two year rate.   
 

Table 3: Gaussian Estimates of Continuous Time Swap Model 
 

CKLS Model α β σ2 γ Log-likelihood 
1 Year      

 0.0000 
(0.0000) 

-0.0004 
(0.0003) 

0.0000 
(0.0000) 

0.2471 
(0.0180) 

25816.8 

2 Year      
 0.0000 

(0.0000) 
-0.0005 
(0.0004) 

0.0000 
(0.0000) 

0.1559 
(0.0032) 

24791.5 

4 Year      
 0.0000 

(0.0000) 
-0.0005 
(0.0007) 

0.0000 
(0.0000) 

0.1226 
(0.0035) 

24335.1 

10 Year      
 0.0000 

(0.0000) 
-0.0009 
(0.0009) 

0.0000 
(0.0000) 

0.1264 
(0.0038) 

24278.9 

15 Year      
 0.0000 

(0.0000) 
-0.0009 
(0.0009) 

0.0000 
(0.0000) 

0.1427 
(0.0039) 

24422.9 

20 Year      
 0.0000 

(0.0000) 
-0.0009 
(0.0009) 

0.0000 
(0.0000) 

0.1522 
(0.0039) 

24518.7 

 

Note: The parameter estimates with standard errors are presented for each model.  0.0000 denotes 
numbers less than 10-4. 
 

Having completed the analysis of the results from the continuous time model, we now 
examine those for the discrete time models. Beginning with the ARMA model, we find 
that, with the exception of the 1 year swap rates, where the best specification was an 
ARMA (1,1), the best specification for all other frequencies is an ARMA (1,0), as 
illustrated in Table 4.  
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Table 4: ARMA Model Results 
 

  US1YS US2YS US4YS US10YS US15YS US20YS US25YS US30YS 

α -2.254 -0.553 1.125 3.448 3.839 3.896 3.928 3.928 

 (8.548) (6.400) (4.746) (2.067) (1.926) (2.053) (2.071) (2.071) 

ρ (1) 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999 

 (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

θ (1) 0.082 ----- ----- ----- ----- ----- ----- ----- 

 (0.017) (-----) (-----) (-----) (-----) (-----) (-----) (-----) 

Log-Likelihood 6038.788 5084.298 4660.206 4613.227 4758.697 4862.897 4922.960 4922.960 

AIC -6.225 -5.690 -5.452 -5.425 -5.507 -5.565 -5.599 -5.599 

SBIC -6.218 -5.685 -5.447 -5.421 -5.502 -5.561 -5.595 -5.595 
 

The result for the 1-year swap rates indicates that there is a significant moving average 
component in the prevailing swap rate today. One should further note that for all 
frequencies, there is a significant first-order autoregressive component in the 
determination of the current swap rate.  
 

Table 5: ARIMA Model Results 
 

  US1YS US2YS US4YS US10YS US15YS US20YS US25YS US30YS 

α -0.001 -0.001 -0.001 -0.001 0.001 -0.001 -0.001 -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

ρ (1) ----- ----- ----- 0.750 ----- 0.734 ----- 0.738 

 (-----) (-----) (-----) (0.397) (-----) (0.275) (-----) (0.322) 

θ (1) 0.082 0.028 0.010 -0.761 -0.004 -0.752 -0.005 -0.753 

 (0.017) (0.017) (0.017) (0.389) (0.017) (0.267) (0.017) (0.314) 

Log-Likelihood 6038.549 5085.447 4660.117 4611.578 4758.318 4861.995 4922.645 4964.769 

AIC -6.225 -5.690 -5.452 -5.425 -5.507 -5.565 -5.599 -5.623 

SBIC -6.220 -5.686 -5.447 -5.418 -5.502 -5.559 -5.594 -5.616 
 
Given the fact that the unit root tests presented in Section 3 provided a strong indication 
that US swap rates were non-stationary, ARIMA models were estimated, where these 
results of the best models can be found in Table 5. The results here differ from those from 
the ARMA models in that for the 1 year, 2 year, 4 year, 15 year and 25 year swap rates, the 
best specification is found to be an ARIMA (0, 1, 1), with the best specification for all 
other frequencies being an ARIMA (1, 1, 1), although one should show some caution 
when interpreting the results for the 4 year, 15 year and 25 year swap rate results due to 
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the lack of significance. This implies that for the 10 year, 20 year and 30 year swap rates 
there is a once again a significant first-order autoregressive component in the current swap 
rate determination, as opposed to the other frequencies. One should further note that there 
is a significant first-order moving average term for all data frequencies. 
 

As stated previously, the underlying assumption of the ARMA and ARIMA models is that 
the underlying data series follows either a stationary or non-stationary process, 
respectively. An interesting approach would be to extend this by arguing the swap rates are 
fractionally integrated. In order to investigate this alternate hypothesis, ARFIMA models 
are estimated across all data series. The results from these models are presented in Table 6. 
 

Table 6:  ARFIMA Model Results 
 

  US1YS US2YS US4YS US10YS US15YS US20YS US25YS US30YS 

α -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

ρ (1) ----- -0.688 0.008 0.010 -0.949 0.014 0.012 0.013 

 (-----) (0.313) (0.009) (0.009) (0.051) (0.008) (0.008) (0.008) 

ρ (2) ----- ----- ----- ----- 0.014 ----- ----- ----- 

 (-----) (-----) (-----) (-----) (0.003) (-----) (-----) (-----) 

θ (1) 0.054 0.708 ----- ----- 0.969 ----- ----- ----- 

 (0.017) (0.313) (-----) (-----) (0.048) (-----) (-----) (-----) 

θ (2) ----- 0.034 ----- ----- ----- ----- ----- ----- 

 (-----) (0.017) (-----) (-----) (-----) (-----) (-----) (-----) 

Log-Likelihood 6042.867 5085.060 4660.191 4612.881 4757.230 4862.564 4922.576 4965.870 

AIC -6.227 -5.690 -5.452 -5.425 -5.506 -5.565 -5.599 -5.623 

SBIC -6.223 -5.681 -5.447 -5.421 -5.497 -5.561 -5.594 -5.619 
 
One should again proceed with caution when interpreting the results for the 4 year, 10 
year, 25 year and 30 year swap rates due to the lack of significance of the terms in the 
respective models. The results for the 4 year, 10 year, 20 year, 25 year and 30 year swap 
rates are identical to those from the ARMA models, with the results indicating that there is 
a significant first-order autocorrelation component in the prevailing swap rate, while the 
result for the 1 year swap rate is identical to the ARIMA model in exhibiting a significant 
first-order moving average component in the current swap rate. Interestingly, however, the 
results for the 2 year and 15 year swap rates indicate more persistence than exhibited by 
the other models, with the best specification for the 2 year swap rate being an ARFIMA (1, 
d, 2), which suggests that there is significant first-order autocorrelation component and a 
significant second-order moving average component in the prevailing swap rate. This 
implies that not only does the prevailing swap rate in the previous period play a significant 
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role in determining the current swap rate, but any shocks to the swap rate over the 
preceding two periods are found to have a significant impact as well. There is similar 
persistence when examining the results for the 15 year swap rate, where the best model is 
an ARFIMA (2, d, 1), however, the persistence here is in the autocorrelation, as opposed to 
moving average, terms. This means that that both the previous two periods swap rates will 
have an impact on the current swap rate, while only shocks in the previous period will 
have any form of effect. 
 

Forecast Results 
 

Having estimated these models, ex-post dynamic forecasts were performed for each of 
the each of these models and the forecasts from all models were then compared using the 
Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) 
forecast metrics, where these are calculated as follows: 
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where a
ir  denotes the actual observed value at time i, f

ir   denotes the forecasted value at 
time i and M denotes the forecast horizon. 
 

Table 7: Forecast Metrics 
 

Panel A - Forecasting Comparison Using the Mean Absolute Percentage Error 

  US1YS US2YS US4YS US10YS US15YS US20YS US25YS US30YS 

ARMA 1.180% 0.991% 1.731% 7.193% 7.042% 6.178% 5.886% 5.428% 

ARIMA 8.131% 8.198% 7.882% 12.928% 14.786% 15.730% 14.939% 16.051% 

ARFIMA 8.002% 8.109% 7.880% 12.923% 14.781% 15.667% 14.940% 15.992% 

CKLS 18.873% 21.027% 11.247% 3.099% 4.062% 4.665% 4.870% 5.211% 

Panel B - Forecasting Comparison Using the Root Mean Squared Error 

  US1YS US2YS US4YS US10YS US15YS US20YS US25YS US30YS 

ARMA 0.427 0.343 0.372 0.647 0.508 0.426 0.395 0.365 

ARIMA 2.593 2.529 1.470 1.128 1.092 1.089 1.015 1.055 

ARFIMA 2.546 2.477 1.470 1.128 1.090 1.087 1.015 1.052 

CKLS 0.114 0.133 0.115 0.081 0.119 0.141 0.151 0.161 
 
The results for these forecast metrics can be found in Table 7. Based on the RMSE the 
continuous time model have generally a better forecasting performance for the one, two, 
four and ten year rates compared to the discrete time models. At the longer end of the 
curve the CKLS model has a also smaller RMSE than the discrete time models. Based on 
the MAPE at the short end of the curve for the one, two and four year rates generally the 
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discrete time models perform well. At the longer end of the curve the continuous time 
model has a satisfactory performance. 
 

6. Conclusions  
 

This paper has compared continuous and discrete time approaches to modelling and 
forecasting US swap rates for a range of maturities. Using daily data we compared the 
forecast performance of the continuous time CKLS with discrete time ARMA, ARIMA 
and ARFIMA models. We generally find that the continuous time model has a satisfactory 
performance across the curve. The PCA analysis indicates that the first two factors explain 
approximately 99.76% of the cumulative variation in the sample; with the first factor 
explaining approximately 93.16% of the variation in the sample and the second factor 
explaining about 6.60% of the variation in the swap rate sample. 
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