

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Dynamic non-linear system modelling using wavelet-based
soft computing techniques

Mahdi Amina

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2011.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

I

Dynamic Non-Linear System Modelling Using

Wavelet-Based Soft Computing Techniques

MAHDI AMINA

PhD

September 2011

Thesis submitted in partial fulfilment of the requirements for

The degree of Doctor of Philosophy

I

Abstract

The enormous number of complex systems results in the necessity of high-level and cost-efficient

modelling structures for the operators and system designers. Model-based approaches offer a very

challenging way to integrate a priori knowledge into the procedure. Soft computing based models

in particular, can successfully be applied in cases of highly nonlinear problems. A further reason

for dealing with so called soft computational model based techniques is that in real-world cases,

many times only partial, uncertain and/or inaccurate data is available.

Wavelet-Based soft computing techniques are considered, as one of the latest trends in system

identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based

approaches to model the non-linear dynamical systems in real world problems in conjunction with

possible twists and novelties aiming for more accurate and less complex modelling structure.

Initially, an on-line structure and parameter design has been considered in an adaptive Neuro-

Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy

rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus

(Monascus ruber van Tieghem) is examined against several other approaches for further

justification of the proposed methodology.

By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have

been introduced. Increasing the accuracy and decreasing the computational cost are both the

primary targets of proposed novelties. Modifying the synoptic weights by replacing them with

Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA)

comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for

the above challenges. These two models differ from the point of view of structure while they share

the same HLA scheme. The second approach contains an additional Multiplication layer, plus its

hidden layer contains several sub-WNNs for each input dimension. The practical superiority of

these extensions is demonstrated by simulation and experimental results on real non-linear

dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT)

whole milk, and consolidated with comprehensive comparison with other suggested schemes.

At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is

presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network

(FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a

modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to

II

illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from

the data by building accurate regression, but also for the identification of complex systems.

The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the

consequent parts of rules. In order to improve the function approximation accuracy and general

capability of the FWNN system, an efficient hybrid learning approach is used to adjust the

parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is

employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which

is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world

application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the

above technique.

III

Table of Contents
Contents...X

1- Introduction ...1

 1.1 Understanding of Soft Computing and Intelligent System...............................1

 1.2 Rationale of present research...3

 1.3 Outline of the Thesis...6

 1.4 Contributions of thesis...7

2 - Identification Systems: State of the Art...9

 2.1 Mathematical Modelling………………………………………..……..….…....9

 2.2 Soft Computing Techniques...16

 2.2.1 Neural Networks..17

 2.2.1.1 Structure of Neural Networks...19

 2.2.1.2 Learning Using Neural Networks...21

 2.2.2 Fuzzy Systems..22

 2.2.2.1 Identification with Fuzzy modelling...23

 2.2.3 Hybrid Schemes...24

 2.3 Problem Description and Proposed Methodology...28

3- Computational Intelligence Methodologies..30

 3.1 Artificial Neural Network (ANN) ...30

 3.1.1 Multi Layer Perceptron (MLP)...31

 3.1.2 Backpropagation Algorithm...35

 3.1.3 Momentum Effect..37

 3.2 Elman Neural Network...38

 3.3 Radial Basis Functions (RBF)..40

 3.3.1 Orthogonal Least Squares..41

 3.4 Fuzzy Logic..44

IV

 3.4.1 TSK Fuzzy modelling..48

 3.5 Neuro-Fuzzy Systems...50

 3.5.1 Adaptive Neuro-Fuzzy Inference System(ANFIS)..................................50

 3.5.2 FALCON..52

 3.5.3 NEFCON..53

 3.6 Adaptive Neuro-Fuzzy Network...54

 3.7 Case Study: Fungus Growth Modelling By

 Adaptive Neuro-Fuzzy Network...59

 3.7.1 Fungus Growth Modelling By MLP..65

 3.7.2 Fungus Growth Modeling By OLS-RBF………………………....…….66

4 - Wavelet Neural Networks...69

 4.1 Time - Frequency Analysis...69

 4.2 Principles of Wavelet Transform...70

4.3 Wavelet Neural Network..74

 4.4 Proposed Structure Scheme (WNN-LCW)...78

 4.4.1 The Hybrid parameter learning scheme..81

 4.4.2 Case Analysis - Prediction of pressure inactivation of Listeria

 monocytogenes in whole milk..85

 4.4.3 Initialisation of the network parameters..86

 4.4.4 Dynamic System Identification...87

 4.4.5 Model Development..90

 4.4.5.1 Primary Modelling..90

4.4.5.2 Non-Parametric Modelling..90

 4.4.6 Model Validation..91

4.5 Proposed Structure Scheme II (MWNN-LCW)...105

 4.5.1 The parameter learning scheme..107

 4.5.2 Case Analysis and Simulation Results..109

V

5- Data Clustering Techniques...118

 5.1 Fuzzy Partitions...119

 5.2 Distance Norms..120

 5.3 Fuzz C-Mean Clustering..121

 5.4 Gustafson – Kessel Clustering...123

 5.5 Gath-Gava Clustering..125

 5.6 Subtractive Clustering...126

 5.7 Gaussian Mixture Models and Expectation Maximization........................128

 5.7.1 Gaussian Mixture Model..128

 5.7.2 Maximum Likelihood Estimation (MLE)..130

 5.7.3 Jensen’s Inequality...131

 5.7.4 Expectation – Maximization for GMMs..132

5.8 Identification with Fuzzy Clustering..135

6 - Fuzzy Wavelet Neural Networks..136

 6.1 Clustering Based -FWNN structure and Construction................................137

 6.2 CB-FWNN Antecedent Parameters update...141

 6.3 Estimation of local linear models..143

 6.3.1 Extended Kalman Filter...144

 6.3.2 Estimating Wavelet Neural Network (WNN) parameters using EKF....146

 6.4 TSK Clustering Based –Fuzzy Neural Networks..147

 6.4.1 Consequence Parameter Updating...150

 6.5 Case Study – Short Term Load Forecasting in Power System....................150

 6.5.1 Cluster Analysis for Case Study...154

 6.5.2 CB-FWNN Short Term Load Forecasting Results..................................155

7 - Conclusion and Future Enhancements..163

Bibliography ..167

Appendix I : Statistical Error Criteria ...177

Appendix II: List of Publications ..179

VI

Table of Abbreviations

ANN Artificial Neural Networks

AFNN Adaptive Fuzzy Neural Network

AR Auto Regressive

ARMA Auto Regressive Moving Average

ARMAX Auto Regressive Moving Average

BP Back Propagation

CB Clustering Based

CI Computational Intelligence

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

EC Evolutionary Computing

EKF Extended Kalman Filter

EM Expectation Maximization

FL Fuzzy Logic

FWNN Fuzzy Wavelet Neural Network

GA Genetic Algorithm

GD Gradient Descent

GMM Gaussian Mixture Model

HLA Hybrid Learning Algorithm

LCW Linear Combination Weight

LS Least Square

MA Moving Average

MF Membership Function

MLP Multi Layer Perceptron

MRA Multi Resolution Analysis

NARMAX Non-Linear Auto-Regressive Moving Average with Exogeneous Input

NF Neuro Fuzzy

NN Neural Network

OLS Orthogonal Least Square

VII

PLS Partial Least Square

RBF Radial Basis Functions

RLS Recursive Least Square

SC Soft Computing

STLF Short Term Load Forecasting

WLS Weighted Least Square

WNN Wavelet Neural Network

MWNN Wavelet Neural Network with Multiplication Layer

ipωωωω
 p’th component of of i’th linear combination weight

ŷ Estimated Output

E Error

jpv
 Synoptic weight between j’th neuron and p’th input dimension

C Total number of rules/clusters

µµµµ Centre of a univariate/multivariate Gaussian

ΣΣΣΣ Spread/width of a multivariate Gaussian in Matrix form

σσσσ Spread/width of a univariate Gaussian

iγγγγ Firing Strength of i’th rule/cluster

µµµµɶ Membership degree of p’th input on j’th membership function

ηηηη Learning rate

ζζζζ Momentum

jI ℓ Input to neuron j from layer ℓ
p
im Wavelet dilation of i’th neuron of p’th sub-wavelet network

p
in Wavelet shift of i’th neuron of p’th sub-wavelet network

jOℓ Output of neuron j from layer ℓ

P Dimension of input patterns

iW Linear Combination Weight between the i’th rule/cluster to output

VIII

List of Figures
Fig 2.1 AR Model...12

Fig 2.2 MA Model..13

Fig 2.3 ARMA Model..13

Fig 2.4 ARX Model..14

Fig 2.5 ARMAX Model...14

Fig 2.6 Box-Jenkins Model..15

Fig 2.7 Some of possible hybrid Soft Computing techniques..17

Fig 2.8 Neural Network identification structure...18

Fig 2.9 a) NN with time-delayed direct inputs and time-delayed recurrent outputs from
 the modelled system..20
 b) NN with time-delayed direct inputs and time-delayed recurrent outputs from
 the Actual Plant...20

Fig 3.1 A single perceptron..31

Fig 3.2 MLP Structure..32

Fig 3.3 Tangent Hyperbolic..34

Fig 3.4 Sigmoid Function...34

Fig 3.5 Effect of various learning rates on convergence of the weights....................................37

Fig 3.6 Elman Network structure...39

Fig 3.7 RBF network with Gaussian activation...41

Fig 3.8 Fuzzy logic system ..45

Fig 3.9 Three types of membership functions..46

Fig 3.10 The structure of ANFIS (type III) with two inputs and one output...............................51

Fig 3.11 Falcon Neuro-Fuzzy architecture..53

Fig 3.12 NEFCON architecture...54

IX

Fig 3.13 Three input and one output Adaptive Neuro-Fuzzy scheme..55

Fig 3.14 Training samples simulation results for Adaptive Fuzzy Neural Network...................61

Fig 3.15 (a) Initial membership functions for each normalized input.(b)-Memberships after
 structure learning process for each normalized input (c)- Final membership function
 together with parameter learning ..63

Fig 3.16 a) Temperature and Water Activity vs. estimated output curve for normalized training

 data and the actual output curve b) Predicted Temperature and PH output surface
 and actual output surface c) PH and Water Activity predicted and desired output
 surface..64

Fig 3.17 Number of epochs and the related sum square error..65

Fig 3.18 MLP training results for each input pattern of Fungus Growth.....................................65

Fig 3.19 a) OLS-RBF regressors index and their contribution to error reduction67
 b) OLS-RBF training results for each input pattern of Fungus growth data.................67

Fig 4.1 Haar Wavelet functions..71

Fig 4.2 DWT using Haar Wavelet..74

Fig 4.3 Structure of wavelet neural network..76

Fig 4.4 Morlet Wavelet basis function...77

Fig 4.5 Linear Combination Weight Wavelet Neural Network Structure..................................80

Fig 4.6 a) Series Parallel dynamic system b) One step ahead prediction c)Parallel mode.....89

Fig 4.7 Survival Curves of Lysteria in various pressures...92

Fig 4.8 Survival curves of Listeria monocytogenes in UHT whole milk during high pressure
 processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated
 by the re-parameterised Gompertz model (a), the modified Weibull model (b), the
 Geeraerd model (c), and the wavelet neural network(d). Data points are mean values
 of two independent experiments with two replications each.......................................94

Fig 4.9 Observed values and predicted survival curves of Listeria monocytogenes in UHT whole
 milk during high pressure treatment at 400 MPa, generated by the reparameterized
 Gompertz model (a), the modified Weibull model (b), and the wavelet neural network
 (c). Data points are mean values of two independent experiments with two replications
 each..96

Fig 4.10 Observed values and predicted survival curves of Listeria monocytogenes in UHT
 whole milk during high pressure treatment at 500 MPa, generated by the

X

 reparameterized Gompertz model (a), the modified Weibull model (b), and the wavelet
 neural network (c). Data points are mean values of two independent experiments with
 two replications each..96

Fig 4.11 Continuous Survival curves of Lysteria monocytogenes..98

Fig 4.12 PLS regression model on a two-input case...99

Fig 4.13 Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa
 fitted with different modelling schemes...101

Fig 4.14 Survival curves of Listeria monocytogenes during high pressure treatment at 500
 fitted with different modelling schemes...101

Fig 4.15 Convergence speed comparison by number of epochs using pure GD........................105

Fig 4.16 Convergence speed using Hybrid Learning method ..105

Fig 4.17 Architecture of WNN with multiplication layer and Linear Weights..........................107

Fig 4.18 Survival curves of Listeria monocytogenes in UHT whole milk during high pressure
 processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated
 by the re-parameterised Gompertz model (a), the modified Weibull model (b), the
 Geeraerd model (c), and the wavelet neural network (d). Data points are mean values
 of two independent experiments with two replications each......................................110

Fig 4.19 Observed values and predicted survival curves of Listeria monocytogenes in UHT
 whole milk during high pressure treatment at 400 MPa, generated by the re-
 parameterised Gompertz model (a), the modified Weibull model (b), the Geeraerd
 model (c), and the wavelet neural...111

Fig 4.20 Observed values and predicted survival curves of Listeria monocytogenes in UHT whole
 milk during high pressure treatment at 500 MPa, generated by the re-parameterised
 Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and the
 wavelet neural network (d). Data points are mean values of two independent
 experiments with two replications each..112

Fig 4.21 Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa
 fitted with different modelling schemes...114

Fig 4.22 Survival curves of Listeria monocytogenes during high pressure treatment at 500MPa
 fitted with different modelling schemes...114

Fig 4.23 Epochs using Hybrid Method. For MWNN structure..116

Fig 4.24 Epochs using only Gradient Descent for WNN-M structure.......................................116

Fig 5.1 Gaussian Mixture Model...129

XI

Fig 6.1 Proposed CB-FWNN..139

Fig 6.2 TSK Clustering-Based Fuzzy Neural Network..148

Fig 6.3 Proposed modular architecture for the STLF problem...153

Fig 6.4 Eigenvectors of a 3-dimension hyper-ellipsoidal cluster...154

Fig 6.5 Projection of normalized Multivariate (4-dimesnion) clusters on their eigenvectors.155

Fig 6.6 Training performance for max load..157

Fig 6.7 Training performance for min load...157

Fig 6.8 Testing performance for max load..159

Fig 6.9 Testing performance for min load...159

XII

List of Tables

 TABLE 3.1 Normalised means and deviations of all Membership Functions with and without
 parameter learning ...62

TABLE 3.2 Adaptive Neuro-Fuzzy Error Coefficients for Training and Testing dataset...........62

TABLE 3.3 MLP Error coefficients for training and testing …………………………………....66

TABLE 3.4 OLS-RBF Error coefficients for training and testing………………………………68

TABLE 4.1 Parameters and statistics of secondary models for the effect of high pressure on the
 kinetic parameters of Listeria monocytogenes in UHT whole milk...........................93

TABLE 4.2 Parameter estimation and statistical indices of the different models used for
 fitting the survival of L. monocytogenes in whole UHT milk during high
 pressure treatment. ...95

TABLE 4.3 Performance indices of various methods for Lysteria Monocytogen data...............102

TABLE 4.4 Convergence comparison of existing models on prediction problem.......................104

TABLE 4.5 MWNN-LCW and other methods Statistical index comparison..............................115

TABLE 4.6 Performance comparison of existing models on prediction problem.......................115

TABLE 4.7 Wavelet Parameters of MWNN-LCW after Optimisation.......................................117

TABLE 6.1 Performance indices of proposed CB-FWNN for Short Term Load Forecasting....156

TABLE 6.2 Comparison of performance indices of 2hr STLF for various methods...................160

TABLE 6.3 Comparison of performance indices of 14hr STLF for various methods.................161

XIII

Acknowledgment

Many people have aided the production of this project and I greatly indebted to them. This thesis

could not have been documented without the support of them.

First and foremost, I would like to express my profound gratitude to my Director of studies,

Dr. Vassilis Kodogiannis. His inspiring ideas and insightful guidance have been always a massive

motivation. I am very grateful to him for letting me join his creative research group of

Computational Intelligence. He has been a driving force behind my research by providing me with

critical advice and always having an open ear for problems. Having the opportunity to work with

him has been a great pleasure indeed.

I also deeply appreciate the support of Dr. Andrzej Tarczynski during the first steps of my research.

His critical and detailed questions and stimulating discussions directed my scientific

methodologies.

I also owe thanks to academic staff of Agricultural University of Athens, Department of Food

Science and Technology- Greece, for their cooperation and providing the Ascomycetous Fungus

and Listeria monocytogenes data sets.

In particular, I am most grateful to my lovely parents Hamid and Nasrin and beloved sisters

Setareh and Taraneh who provided never-ending spiritual support, encouragement and love

throughout my PhD study. I sincerely thank my sister, Taraneh, for making suggestions for last-

minute improvements.

XIV

“I declare that all the material contained in this thesis

is my own work”

 Mahdi Amina

1

Chapter 1

Introduction

1.1 Understanding of Soft Computing and Intelligent Systems

When we interact with a system, we need some concept of how its variables relate to each other,

with a broad definition such an assumed relationship called model of the system. Model is

normally known as simplified representation of a system, in time or space intended to promote

understanding of the real system. On the list of data analysis tasks frequently occurring in

applications, modelling occupies very high, if not the highest rank. As a consequence a large

variety of methods to tackle these tasks have been developed ranging from different sorts of

mathematical modelling to more advanced soft computing techniques. Among all these methods,

soft computing approaches draw intense interest in data analysis. This interest is mainly due to

extremely rapid growth of complex plants/systems which has rendered mathematical modelling

virtually impossible. When attempting to solve real-world problems, we realize that there are

typically ill-defined systems to analyze and difficult to model. In these cases, precise models are

impractical, too expensive, or non-existent. Furthermore, the relevant available information are

mainly in form of empirical prior knowledge and input-output data representing instances of the

systems’ behaviour. Therefore, we need an approximate reasoning system capable of handling

such imperfect information. Soft Computing techniques originated from emulating intelligent

phenomenon in nature, their main scope is on the study of adaptive mechanism to enable or

facilitate intelligent behaviour in complex and changing environment. It includes paradigms like

neural networks, evolutionary computation, swarm intelligence, fuzzy system and so forth.

2

Traditional quantitative models in modelling have two main disadvantages. First, conventional

mathematical and statistical models usually require complicated formulae, and hence they may be

considered as “grey-box” type models for their users even if they are familiar with advanced

mathematics. Since these models require advanced mathematical skills and notations, they are

often laborious with respect to calculations and computations. Second, models based on bivalent

logic already seem outdated because they often yield excessively coarse or otherwise problematic

outcomes (even paradoxes). Hence, the research community requires the development of more

user-friendly and powerful theories and models. These difficulties lead to a number of challenging

problems, i.e., “incorporate” the human intelligence into a machine, because there is a huge gap

between the human intelligence and the machine intelligence. In order to cope with the difficulties

mentioned above, an emerging framework - soft computing - has been developed recently, which

has the following properties:

• Soft computing is pointed towards the analysis and design of intelligent systems. It

consists of fuzzy logic, artificial neural networks and probabilistic reasoning including

evolutionary algorithms, and parts of machine learning and has the attributes of

approximation.

• Soft computing is aiming at a formalisation of the human ability to make rational decision

in uncertain and imprecise environment;

• The constituents of soft computing are complementary rather than competitive. The

experiments gained over the past decade have indicated that it can be more effective to use

them in a hybrid manner, rather than solely;

• Soft computing is an open framework. This means its framework can always be

incremented by newly created techniques come from the imitating of the human/natural.

Applications of hybrid soft computing systems are currently used in such diverse industrial and

commercial fields. In these areas, some combinations of hybrid soft computing systems, such as

fuzzy logic controller tuned by neural networks and evolutionary computing, neural network tuned

by evolutionary computing or fuzzy logic system, and evolutionary computing tuned by fuzzy

logic systems have been considered. Applications in diagnostic systems, control, and prediction

were received greater attention in past years.

3

1.2 Rationale of present research

Modelling and identification of nonlinear dynamic systems is a chanllenging task because

nonlinear processes are unique in the sense that they do not share many properties. A major goal

for any nonlinear system modelling and identification scheme is universalness: that is the

capability of decribing a wide class of structurally different systems. In this context, a great effort

is being made within the area of system identification, towards the development of nonlinear

models of real processes. In addition to more classical identification methods such as NARMAX

modelling, a new set of methods has been developed recently which apply artificial neural

networks and fuzzy systems to the tasks of identification of dynamic systems. These works are

supported by two of the most important capabilities of neural networks, i.e. their ability to learn

(based on the optimization of an appropriate error function) and their good performance for the

approximation of nonlinear functions, as well as the main characteristic of fuzz systems, i.e. fuzzy

rules / defuzzification schemes. Fuzzy systems accept numeric inputs and convert theses into

linguistic values (represented by fuzzy numbers) that can be manipulated with linguistic IF-THEN

rules and with fuzzy logic operations, such as fuzzy implication and composition rules of inference.

However, at present there is no systematic procedure for the design of a fuzzy system. Usually the

fuzzy rules are generated by converting human operators’ experience into fuzzy linguistic form

directly and by summarizing the system behaviour (sampled input-output pairs) of the operators.

But designers find it difficult to obtain adequate fuzzy rules and membership functions because

these are most likely to be influenced by the intuitiveness of the operators and the designers.

Neural network models basically use the sigmoid activation function in neurons. However, the

sigmoid function normally appeared in neural networks is not orthogonal, and the energy of the

sigmoid function is limitless, and this leads to slow convergence. Wavelet function is a waveform

that has limited duration and an average value of zero. The integration of the localisation

properties of wavelets and the learning abilities of neural networks shows advantages of wavelet

neural networks over neural networks in complex nonlinear system modelling in terms of learning

efficiency and structure transparency.

Neurofuzzy hybrid modelling approaches have been introduced as an ideal technique for utilising

such knowledge and empirical data. Based on the similarities between fuzzy systems and some

neural networks, neurofuzzy approaches combine the desired attributes of both the fuzzy and the

neural paradigms hence producing flexible models which can learn from empirical data and can be

4

represented linguistically by fuzzy rules. For modelling of dynamic processes, neurofuzzy systems

incorporating a Takagi-Sugeno-Kang (TSK) scheme possess a very good interpretation, which is

superior to most, if not all, alternative defuzzification approaches. However, in the case of

modelling of complex nonlinear processes, TSK-type fuzzy systems may require a high number of

rules in order to achieve the desired accuracy. Increasing the number of the rules leads to an

increase in the number of parameters needed to be calculated.

This thesis investigates the ability of wavelet-based soft computing approaches to learn how to

identify adequately complex nonlinear systems. A hybrid soft computing framework has been

constructed and applied to the identification of nonlinear dynamic modelling. The major

motivation for this research is that current hybrid implementations of soft computing techniques

suffer from the lack of efficient constructive methods, both in determining the parameters and in

choosing network structure. To remedy the weakness of traditional computational intelligent

systems, in this thesis some novel wavelet-based methods have been proposed in order to improve

the performance of existing modelling schemes.

Encouraged by the potential strengths of the idea of combining both wavelet decompositions and

the feed-forward neural networks, a Wavelet Neural network scheme has been proposed [1].

Inspired by theory of multi-resolution analysis(MRA) of wavelet transforms and fuzzy concepts,

the Fuzzy Wavelet Networks(FWNNs) concept was introduced in [2]. The combination of fuzzy

logic and WNNs in FWNNs not only reserves the multi-resolution capability of WNNs, but also

enjoy the advantages of high approximation accuracy and good generalization performance.

However, existing WNN/FWNN methods for dynamic system identification suffer from i) lack of

an efficient constructive model, ii) slow convergence rate when high dimensional data exist, iii)

low identification accuracy when imprecision in the measured data exists and iv) the need to find

the model structure by trial and error, a problem that is has been addressed with the proposed in

this thesis novel FWNN concept.

In this research, through innovative applications and adroit integration of emerging information

technologies, a signal processing method (wavelets), and two soft computing methods (fuzzy logic

and neural network), novel WNNs and Fuzzy Wavelet Neural network models have been

developed for modelling and identification purposes.

A step-by-step constructive approach has been adopted in the presentation of the developed

methodologies. Initially, a study on one popular neurofuzzy system scheme has been performed in

order to investigate its strength over alternative non-hybrid schemes as well as its major

5

weaknesses. The specific neurofuzzy scheme was adopted due to its TSK defuzzification scheme

which has influenced the design of the proposed in this thesis FWNN. This neurofuzzy scheme

was evaluated using real food data, acquired from Agricultural University of Athens. The specific

experiment was performed in order to verify scheme’s performance to the static identification of a

nonlinear process. Nevertheless, as the main focus of this thesis is the modelling of dynamic rather

static nonlinear processes, in the next stage, two novel wavelet neural networks have been

developed. Their design has been influenced by the classic TSK neurofuzzy systems. The static

weights scheme appeared in classic wavelet neural networks, have been replaced here by a linear

TSK-combination weight scheme.

The efficiency of the new WNN structures has been evaluated through the dynamic identification

of a complex nonlinear case study related to food analysis and acquired from Agricultural

University of Athens.

Emphasis in this particular case study has been given to the performance (accuracy / training speed)

of the developed WNN schemes, through the comparison against existing regression and

intelligent methodologies. The challenge with the specific dataset was the rather limited number of

samples/patterns and thus methods how to handle small number of samples with dynamic

behaviour had to be developed.

The ultimate goal of this thesis is the development of a prototype FWNN. However in order to

develop such efficient and novel scheme, a number of sub-components related to FWNN had to be

developed. The developed WNNs have replaced the classic linear TSK defuzzification part.

However, in a hybrid fuzzy-based system, accuracy is not the only issue of consideration. The

computational cost, associated with the number of fuzzy rules, is of equally importance. It is well

known that efficient performance in hybrid systems is closely related to the number of

samples/patterns. But in traditional hybrid schemes, this results in to an increased number of

required fuzzy rules and subsequently to a large number if parameters to be calculated. In this

thesis a new type of clustering technique has been introduced as an essential part of the proposed

FWNN. The proposed FWNN concept has been evaluated with a large dataset related to load

forecasting of the power system of the island of Crete, Greece. The embedded in the FWNN

clustering sub-systems managed to provide accurate predictions, and such result was also

associated with an efficient relatively small structure (i.e. fuzzy rules).

In general wavelet-based hybrid methods and their applications are comparatively new and

research is being carried out continuously in many universities and research institutions worldwide.

6

1.3 Outline of the Thesis

The thesis is organised into seven chapters. Following this introductory chapter the next chapter,

Chapter 2, gives an overview of modelling focusing on some traditional linear systems and

fundamental concept of some of classic techniques mentioned above. It also introduces the various

types of hybrid architectures highlighting some of their weaknesses and advantages, followed by

explaining the necessity of such merging. This chapter finalised by explaining the problems this

thesis trying to tackle and the criteria going to be considered when proposing new schemes in

following chapters.

Chapter 3 delves further beyond and presents detailed discussions and mathematical formulation

of some selected computational intelligence architectures. It starts with dynamics of neural

networks and its training algorithms and analysing some other variants of it according to

connections layout and activation functions. Fuzzy systems and its concept, together with three

hybrid neuro-fuzzy structures are the other main topics outlined in this chapter. Finally, a Neuro-

Fuzzy scheme equipped with adaptive structure learning was developed, and tested on a Food

Microbiology dataset.

Chapter 4 attempts to give a detailed introduction of wavelet transform. This chapter then

addressed some existing WNNs through some literature review. Two proposed new WNN

structures with a hybrid learning scheme are then proposed. Each of proposed schemes have been

examined with a real dynamic biological system. We then provide comprehensive result analysis,

and performances evaluated against many other techniques.

Chapter 5 is a background introductory chapter to the concept of clustering and mainly focuses on

various fuzzy clustering techniques with objective function and its applications. This chapter

reviews the potential of clustering algorithms to reveal the underlying structures, not only for

classification and pattern recognition, but also for the reduction of complexity in modelling and

optimization. More specifically, the Expectation-Maximization (EM) and Gaussian Mixture

Models (GMM) as a probabilistic framework discussed in this chapter. The latter will be utilised in

the following chapter. This chapter’s aims focus on providing sufficient background theory to be

able to study and develop a novel scheme in the following chapter.

Chapter 6 elaborates on the fusion of the two former chapters in order to determine the most

extensive of this research. A novel clustering-based FWNN suggested and explained. The flows of

the signal from input to output and the dynamics of the structure are elaborated. The EM clustering

7

method and two training algorithms, i.e. Extended Kalman Filter and Weighted Least Square

which are used in conjunction with each other to adjust non-linear and linear parameters of the

networks, are deployed. The mentioned section which is the core part of the research, applied to a

dynamic application known as Short Term Load Forecasting (STLF).

Chapter 7 draws conclusions and possible directions for future work. Four recommended

enhancements, which were out of the scope of this project, are presented here.

1.4 Contributions of thesis

Over the period of this research project, certain contributions to the field of hybrid soft computing

techniques have been offered, by exploring a number of modifications and innovations. They are

mainly around the wavelet-based neural networks and Fuzzy -neural networks. This area is

relatively new and has growing importance. Below is a list of these innovations. A full description

of each point can be found latter in this document.

1. Initially, the general practicability of conventional Neuro-Fuzzy modelling has been

enhanced by applying an Adaptive Neuro Fuzzy structure into a Biological application.

2. Wavelet Neural Network conventional structure was reviewed and revised. Two

distinguished new fully tuneable schemes of WNNs were introduced. They are

different in number of layers, activation function and mainly the connection

configuration between the layers. They have levels of novelty both in the structure and

in the learning algorithm.

• Local Linear Combination weights applied in conjunction with a hybrid

learning algorithm.

• One-Step-Ahead prediction of Lysteria Monocytogene Bactria Survival curves

The new structures contributed significantly to both accuracy and computational cost

when facing a real world dataset.

3. A novel FWNN scheme proposed and functionality approved through comprehensive

comparisons on a real world dynamic dataset, and several error criteria. The novel

8

FWNN scheme is considered as an evolutionary version of previously proposed

FWNN and addressed several drawbacks existing in hybrid methods.

• Clustering for the first time embedded into a wavelet-based structure.

Significant reduction in fuzzy rule and overcoming with problems occur as the

result of increasing number of features and dimensions (curse of

dimensionality) are the main outcomes. The clustering conducted in input-

output space.

• New hybrid of learning method i.e. Extended Kalman Filter together with

Weighted Least Square, alleviate the convergence speed.

• Also a modified version of Expectation-Maximization responsible for

partitioning the data as well as finding the cluster parameters. The modified

version enabled with a feedback link from output error into the clustering

process.

• Probabilistic interpretation of fuzzy clusters (Gaussian Mixture Model) which

assists in extracting the fuzzy membership without projecting them onto the

input axis.

4. Automated number of clusters and initialisation of cluster parameters. This performed

via Subtractive Clustering.

9

Chapter 2

State-of-the-Art in System Identification

How to better understand and replicate the real world around us is a long-established issue. Models

of the real world have provided a vital means of creating a link between theory and proof. In

information processing, the objective is generally to gain an understanding of the phenomena

involved, and to evaluate relevant parameters quantitatively. This is usually accomplished trough

‘modelling’ or ‘identification’ of the system, either experimentally or analytically.

System modelling is a technique to express, visualise, analyse and transform the architecture of a

system. In loose terms, a system is an object in which variables of different kinds interact and

produce observable signals. The observable signals that are of interest to us are usually called

outputs. The system can be affected by external stimuli as well. External signals that can be

manipulated by the observer are called the inputs. The activities and tasks that turn the inputs into

products and services are called Processes.

A system may consist of software components, hardware components, or both and also the

connections between these components. In this sense a system model is then considered as a

skeletal model of the system. System modelling uses three elements: inputs, processes, and

outcomes.

2.1 Mathematical Modelling

In mathematical modelling, we translate those behaviours into the language of mathematics. This

has many advantages;

1. Mathematics is a very precise language. This helps us to formulate ideas and identify underlying

 assumptions.

2. Mathematics is a concise language, with well-defined rules for manipulations.

3. All the results that mathematicians have proved over hundreds of years are at our disposal.

4. Computers can be used to perform numerical calculations.

10

The primary concern of a system modeller is to obtain a mathematical representation of system’s

behaviour under study in terms of physically significant variables. Any system modelling consists

of two steps, model design and performance evaluation. There is a large element of compromise in

mathematical modelling. The majority of interacting systems in the real world are far too

complicated to model in their entirety. Hence the first level of compromise is to identify the most

important parts of the system. These will be included in the model, the rest will be excluded. The

second level of compromise concerns the amount of mathematical manipulation which is

worthwhile. Although mathematics has the potential to prove general results, these results depend

critically on the form of equations used. Small changes in the structure of equations may require

enormous changes in the mathematical methods. Using computers to handle the model equations

may never lead to elegant results, but it is much more robust against alterations. Mathematical

models in terms of their nature can be in various ways:

Dynamic vs. Static Models: Dynamic systems may be complex industrial plants where the dynamic

relationship between the inputs and the plant behaviour must be modelled. The inputs to the

dynamic system often represent the system state at a previous time step and the mapping is

between the current system state and the one at the next time step. The output from such a system

is often a continuous value or series of values which may vary independently unlike the

classification systems where they are normally linked. Applications of this type include attempts to

identify the underlying processes in financial assets, engineering and control applications, food

microbiology and load forecasting. In contrast to the dynamic systems that are described by

differential or difference equations, the static systems are described by algebraic equations.

Typical examples of identification of static system include problems where input variables are not

time-dependent or pattern recognition problems.

Linear vs. Nonlinear Models : Dynamic system models are either linear or nonlinear. A linear

model obeys the principle of superposition and homogeneity[3]. The following equations are true

for linear models.

11

()
()

() () ()
() ()

1 1

2 2

1 2 1 2 1 2

1 1 1

y f x

y f x

f x x = f x f x y y

f ax af x ay

=

=

+ + = +

= =
 (2.1)

Where x1 and x2 are the system inputs, y1 and y2 are the system outputs, and ‘a’ is a constant.

Conversely, nonlinear models do not obey the principles of superposition or homogeneity. Many

real-world systems are nonlinear, though we can many times linearize them to simplify a design or

analysis procedure. Linear modelling techniques are capable of modelling nonlinear processes if

the nonlinear characteristics are weak. Their strengths come from the fact that they contain a small

number of parameters and so long, there are few noisy measurements they perform adequately.

This means that often it is possible to calculate a linear model for a data set that is too sparse for

more complex nonlinear models. A linear model is simply a weighted sum of a set of inputs that

describe a hyper-plane across the input space. The parameters can be estimated simply using a

least squares technique, with online optimisation realized using a recursive least squares technique.

Generally linear models can be divided into parametric and non-parametric models.

• Parametric models assume that the process can be modelled with a finite number of

parameters. These parameters often have a direct relationship to the physical qualities of

the process. Examples of these types of models can be found in differential equation

models. Linear regression techniques can be used to identify the parameter. These models

in turn may be used for the approximation of non-parametric techniques where the number

of parameters has been reduced to a finite number.

• Non-parametric models often require an infinite number of parameters to describe the

process exactly. They are used when less structure is to be imposed on the model.

Although in theory these methods have no fixed parameters, in the end they require a

finite number of parameters to be imposed during implementation.

This section is concerned with parametric models based around the time domain, as these are the

methods most commonly used in process and control engineering.

The general linear model structure process is presumed to consist of a series of inputs u(t) and an

output process y(t). If the system is purely deterministic, i.e. the noise process is negligible, then

the system output y(t) can be computed by passing a set of input parameters or a state vector

12

through a linear filter called the Input Transfer Function. Variable q here denotes the forward shift

operator. A stochastic white noise model can be added to this by filtering the white noise process,

v(k), through a second linear filter called the Noise Transfer Function. Each of these can be

assumed to possess a numerator and a denominator, often with an assumed shared denominator

factor. As a result the general linear model can be given by [4].

 () ()
() () () ()

() () ()B q C q
y k u k v k

F q A q D q A q
= + (2.2)

Not all of the numerators and denominators in the general linear model are used in each modelling

scheme. For some applications the input variables are unknown or too numerous to identify

properly. In these applications such as these the stochastic series represented by the previous

system outputs are generally used. In terms of the general linear model this leads to the u(k) term

being discarded. The presence or absence of the terms numerators and denominators of the v(k)

and u(k) parts of eq (2.2) further classifies these systems. The simplest form of these is the

stochastic model with just the denominator D(q) present. These are called autoregressive (AR)

models as shown below.

Fig 2.1- AR Model

So the transfer equation is as follows.

 () () ()1
y k v k

D q
= (2.3)

The parameters can be calculated using a simple Least Squares (LS) technique making them easy

to identify. However they are capable of modelling only series with AR characteristics. They also

suffer from model order selection problems when the data sets are too small. This leads to the

model containing spurious peaks [5].

When just the numerator is present then it is called a moving average (MA) model. These are

generally far less applied in engineering applications as the parameter identification process is

13

nonlinear. Again there are real problems with finding the minimum order for the MA model and

although solutions have been proposed they are often computationally intensive requiring

frequency analysis [6].

Fig 2.2- MA Model

So the transfer equation corresponding with figure 2.2 is

 () () ()y k C q v k= (2.4)

As can be seen the noise parameters at each stage must be estimated. This leads to the need for

another model to estimate the parameters. Joining both these schemes together give the

autoregressive moving average (ARMA) model.

Fig 2.3- ARMA Model

Here, the transfer equation is as follows:

 () ()
() ()C q

y k v k
D q

= (2.5)

This resolves the problem of needing to estimate the v(k) parameters in the MA model. A two-

stage optimisation can be used. First the AR parameters are estimated as normal using technique

such as LS. The resulting AR model is then used to provide v values for each reading and a simple

linear optimisation technique can then be used for the MA model. There are a number of other

optimisation techniques can be used to identify the parameters to the ARMA such as correlation

based techniques and maximum likelihood (ML) method. These integrated techniques are capable

of modelling both AR and MA series as well as ones which integrate both types of patterns [7].

Adding in extra inputs or exogenous inputs may extend all of these methods. These turn the purely

stochastic models described here into stochastic-deterministic hybrids. The inclusion of exogenous

14

inputs to an AR model is called an autoregressive model with eXogenous inputs or ARX model. It

retains the output feedback of the AR model but adds to this a number of parameters that are

known to affect the system state.

Fig 2.4- ARX Model

So the transfer equation is as follows.

 () ()
() () () ()B q 1

y k u k v k
A q A q

= + (2.6)

The ARX model is widely used because the parameters can be computed simply with linear

techniques such as LS. The technique runs into difficulty when it is modelling data that deviate

systematically from the mean. Also the assumption that the system is capable of being modelled in

a purely deterministic fashion is also often inaccurate. The inclusion of a more complete stochastic

noise model leads to the ARMAX model. This model assumes that there is a shared denominator

for the noise transfer function and the input transfer function.

Fig 2.5- ARMAX Model

So the transfer equation is as follows.

 () ()
() () ()

() ()B q C q
y k u k v k

A q A q
= + (2.7)

15

Each of the previous models incorporates different parts of the general linear model. For all of

these linear techniques with exogenous inputs model order selection can be a problem often

requiring a heuristic approach. For a full implementation of it the Box-Jenkins model may be used.

Fig 2.6- Box-Jenkins Model

So the transfer equation is as follows.

 () ()
() () ()

() ()B q C q
y k u k v k

F q D q
= + (2.8)

This model does suffer from the fact that it has a large number of parameters that must be

estimated. If the data is sparse or noisy then this becomes difficult and is highly unlikely to yield a

valid model. The parameter estimation process is also inherently nonlinear and is usually tackled

by estimating an ARX model and then using this to estimate the parameters for the MA part [8].

There are nonlinear extensions of the ARMAX and ARX models called, unsurprisingly Nonlinear

ARMAX (NARMAX) and Nonlinear ARX (NARX). Here the simple linear function used in

ARMA and ARMAX is replaced with a nonlinear mapping function. Often it is the NARX form

that is most generally applicable to the widest range of nonlinear dynamic systems. In practice the

form of the nonlinearity is unknown and as a result all forms of the polynomial must be

considered. This generally means that a prohibitively large number of coefficients must be

evaluated [9].

In general,there are several limitations on modelling based on mathematical analysis. First, it

always relies on the accuracy of the mathematical model, which is never a prefect representation

of the plant. And second, there is a need for the development of analysis techniques for even more

sophisticated non-linear systems.

+

16

2.2 Soft Computing Techniques

Following our overview of conventional mathematical modelling, problems exist in traditional

techniques. We can easily conclude that the currently ongoing complicated plants cannot be

accurately described by traditional rigorous mathematical models. Especially non-linear dynamic

systems can exhibit extremely complex dynamic behaviour. As discussed earlier, the traditional

approaches for predicting the behaviour of such systems based on analytical conventional

techniques in many cases can prove to be insufficient. In addition, there is need for the

development of highly precise models and autonomous behaviour in system identification, control,

and artificial life communities. However in real applications, precision has a cost

(computational/financial), therefore in order to solve the problem with an acceptable cost, we need

to aim at a decision with only the necessary degree of precision and not exceeding the

requirements. These deficiencies lead to a fundamental remedy, which is the core part of soft

computing concept i.e. embedding the human intelligence into a machine. So, it is of great

importance to change the direction toward intelligent computational tools that will enable the

identification of the best model by a series of input-output pairs.

Soft Computing(SC) techniques refers to a collection of computational tools which have their

origins in biological or behavioural phenomena related to humans. Unlike traditional Hard

computing techniques, SC can tolerate imprecision, uncertainty and partial truth without loss of

performance and effectiveness. The term SC in its broadest sense, encompasses a number of

technologies that include, but not limited to, evolutionary computation (EC) realizes intelligence

through the simulated evolution artificial neural networks (ANNs) realize intelligence through the

simulated behaviour of neurons in brain, fuzzy logic (FL) realizes intelligence through the

simulated behaviour of human reasoning process[10].

 It was at the beginning of 1990s when researchers realised that the Hybrid use of the

methodologies mentioned, would lead to tools that were certainly more powerful than if the

techniques were employed individually. Combination of soft computing techniques is considered

to be the new frontier of Artificial Intelligence.

17

 Fig 2.7 – Some of possible hybrid Soft Computing techniques

The modern techniques of artificial soft computing have found applications in almost all the fields,

however the great emphasis is given to engineering area[11].

There are some common problems to be solved in soft computing identification, independently of

the data type and description method. As a prelude, in this chapter, we provide a brief overview of

two of the most common artificial intelligence modelling approaches Artificial Neural Networks

(ANN) and Fuzzy Logic (FL) systems together with their hybrid Neuro-Fuzzy (NF) systems.

These two classic approaches, ANN and FL, are examined in some depth.

2.2.1 Neural Networks

Neural networks are composed of simple elements operating in parallel. These elements are

inspired by biological nervous systems. As in nature, the network function is determined largely

by the connections between elements. Neural Networks approach the modelling by using precise

inputs and outputs which are used to ‘train’ a generic model which has sufficient degrees of

freedom for a good approximation between inputs and outputs. A neural network can be trained to

perform a particular function by adjusting the values of the connections (weights) between the

elements. One of the most common processes for which NNs are used in system modelling is the

one involves : placing the NN in parallel with physical system, applying the system input to the

18

input of the network, using system output as the desired output for the neural network, and train

the neural network until the error between the system output and the network reaches and

acceptable level[12]. Here, the network is adjusted, based on the comparison between the output

and the target. The Schematic diagram of such an identification of a time-invariant, causal system

is shown in figure 2.8

 Fig 2.8 – Neural Network identification structure

In general, by a function F, compact input sets p
jU ⊂ ℜ are mapped into elements jy for j=1,..,N

in the output space. Whereas, in the case of a dynamic system, we have input-output pairs of time

u(t),y(t). The main objective in both type is to determine F̂ such that, the input and output of the

plant is given by u and F(u) respectively. The error e is the difference between the observed

system output and the output generated by F̂ .

 ˆˆy y F(u) F(u) e− = − < (2.9)

The main characteristic of the neural networks is the fact that these structures can learn with

examples (training vectors, input and output samples of the system). The neural network modifies

its internal structure and the weights of the connections between its artificial neurons to make the

mapping of the relation input/output that represent the behaviour of the modelled system.

+

−

F̂(u)

F(u)
Actual System

 Neural Net

 Update
Algorithm

e

Σu

19

2.2.1.1 Structure of Neural Networks

Two classes of neural networks which have received considerable attention in the area of AI in

recent years are

• Feed forward Multilayer Perceptron; A feed-forward MLP is one whose topology has

no closed paths. Its input nodes are the ones with no arcs to them, and its output nodes

have no arcs away from them[13]. When the states of all the input nodes are set, all the

other nodes in the network can also set their states as values propagate through the

network. The operation of a feedforward network consists of calculating outputs given a

set of inputs in this manner. It represents static nonlinear maps. It is proved extremely

successful in pattern recognition problems. From a systematic point of view, multilayer

perceptron can be a versatile non-linear structure for identification problems.

• Recurrent Network ; Sometimes it is necessary to introduce a time delay ∆ into the

structure in order to model the finite time that is required for an input series to move

through a physical process[14]. Indeed the length of this delay can be a parameter that is

adjusted to minimize the residual error in the neural network model. Also, since most

dynamic systems have temporal behaviour, time delayed versions of the output signal are

needed to properly model the system. The feedback loops can be both local and external.
The local loops redirect the output of each neuron to itself or to a lower layer neuron

within the network. The external feedback normally connects the output of the structure to

input of the network.

This external feedback can be implemented in two different ways. In the first approach, it

comes from neural network output (figure 2.9a). Unfortunately, this recurrent network

can easily become unstable due to the feedback loop between its output and input, and

there is no guarantee that the output that the output will converge to a stable

configuration[14]. This can be solved in the second approach, in which, the feedback is

sourced from the actual plant, not the NN output, as illustrated in figure 2.9b.

20

 a)

 b)

 Fig 2.9– a) NN with time-delayed direct inputs and time-delayed recurrent outputs from
 the modelled system.
 b) NN with time-delayed direct inputs and time-delayed recurrent outputs from
 the Actual Plant.

 The advantages of the neural networks are:

21

• learning capacity;

• generalization capacity;

• robustness in relation to disturbances.

There are, however critics who point out the disadvantages of using neural networks.

• First, the design of the neural network is a very complex procedure that still relies mostly

on trial and error. In addition, because the neural network can only produce accurate

results if provided with a large volumes of examples in the training phase.

• Impossible interpretation of the functionality; the most often disadvantage of the neural

network is the inherent “black-box” nature of its operations. Neural Network although

able to generate solution to many problems, but are unable to explain how they arrive at

their results.

2.2.1.2 Learning Using Neural Networks

Artificial neural nets have been successfully used for recognizing objects from their feature

patterns. The neural networks should be trained prior to the phase of recognition process. The

process of training a neural net can be broadly classified into two typical categories,

namely;Supervised learning and Unsupervised learning.

• Supervised Learning: The supervised learning process requires a trainer that submits

both the input and the target patterns for the objects to get recognized. Given such input

and output patterns for a number of objects, the task of supervised learning calls for

adjustment of network parameters (such as weights and non-linearities), which

consistently can satisfy the input-output requirement for the entire object class. Among the

supervised learning algorithms, most common are the back-propagation training

22

• Unsupervised Learning: The process of unsupervised learning is required in many

recognition problems, where the target pattern is unknown. The unsupervised learning

process attempts to generate a unique set of weights for one particular pattern. The

objective of unsupervised learning process is to adjust the weights autonomously, until an

equilibrium condition is reached when the weights do not change further. The process of

unsupervised learning, thus, maps a class of objects to a class of weights. Generally, the

weight adaptation process is described by a recursive functional relationship. Depending

on the topology of neural nets and their applications, these recursive relations are

constructed intuitively. Among the typical class of unsupervised learning Hopfield nets are

the most popular ones.

2.2.2 Fuzzy Systems

The fuzzy sets theory was conceived by Lofti Zadeh [16] in 1965 to represent and manipulate data

and information that possess non-statistical uncertainty. Fuzzy systems propose a mathematic

calculus to translate the subjective human knowledge of the real processes. This is a way to

manipulate practical knowledge with some level of uncertainty. The behaviour of such systems is

described through a set of fuzzy rules, like:

 IF <premise> THEN <consequent> (2.10)

that uses linguistics variables with symbolic terms. Each term represents a fuzzy set. The terms of

the input space (typically 5-7 for each linguistic variable) compose the fuzzy partition[11]. Fuzzy

modelling is the most important issue in fuzzy theory. The fuzzy modelling is a system description

with fuzzy quantities. Fuzzy quantities are expressed in terms of fuzzy numbers or fuzzy sets

associated with linguistic labels. Therefore, the relation between input and output variables can be

viewed as a set of fuzzy logical rules or fuzzy-set associations. Since functional variables are

stored in a distributed rule-based fashion, the value of the function at any point in the input space

is derived by aggregating the consequences of fuzzy logical rules. It has been shown that fuzzy

systems are capable of approximating any real continuous function to any desired degree of

accuracy [25-26].

23

The fuzzy inference mechanism consists of three stages: in the first stage, the values of the

numerical inputs are mapped by a function according to a degree of compatibility of the

respective fuzzy sets; this operation can be called fuzzification. In the second stage, the fuzzy

system processes the rules in accordance with the firing strengths of the inputs. In the third stage,

the resultant fuzzy values are transformed again into numerical values; this operation can be called

defuzzification.

2.2.2.1 Identification with Fuzzy modelling

The two usual aspects of identification are: Structure identification and Parameter identification.

For a given pre-assigned input candidates, the structure identification of a fuzzy system divide into

two parts. Initially, it starts with finding the number of fuzzy rules in a fuzzy model. By structure

identification in a ordinary systems theory, what we mean is to find the relations between the

inputs and outputs[15]. On the contrary, in a fuzzy model, the structure identification is stated in

different way. The number of fuzzy rules in a fuzzy model corresponds to the order in a

conventional mode.

Second, identification implies determining how the input space should be partitioned. There are

two parts of IF-then rules. The premise part and consequent part. This part of identification deals

with premise structure. The premise space of the input variables of fuzzy model is partitioned into

several fuzzy subspaces (Fuzzy sets); where the number of rules corresponds to the number of

subspaces. These two parts of structure identification are linked together. Therefore, we need a

heuristic method to optimized partitioning with some criterion, i.e. output error.

The parameter identification in a fuzzy model includes those in fuzzy sets. The parameter

identification and the structure identification cannot be performed separately. However in some

approaches, the parameter identification can be separately done subsequent of the structure

identification.

The advantages of the fuzzy systems are:

• Capacity to represent inherent uncertainties of the human knowledge with linguistic

variables; everything is imprecise if you look closely enough, but more than that, most

24

things are imprecise even on careful inspection. Fuzzy reasoning builds this understanding

into the process rather than tackling it on to the end.

• Simple interaction of the expert of the domain with the engineer designer of the system;

In direct contrast to neural networks, which use training data and generate opaque,

impenetrable models, fuzzy-logic lets you rely on the experience of people who already

understand the system.

• Easy interpretation of the results, because of the natural rules representation; The basis of

fuzzy logic is human communication. This observation underpins many of the other

statements about fuzzy logic. Because fuzzy logic is built on the structures of qualitative

description used in everyday language, fuzzy logic is easy to interpret.

• Easy extension of the base of knowledge through the addition of new rules; with any given

system, it is easy to add on more functionality without starting again from scratch.

• Robustness in relation of the possible disturbances in the system.

And its disadvantages are :

• One of the foremost problems of these systems is that they are unable to learn. Suppose

that the problem we have has a bulk of instances. In such a context, it would be good to

have a system that adapts itself to this dataset. The basic approach is to build a system

using the available information and test it against the available datasets. This calls for a lot

of work over and over again by the designer to adapt the system to give a decent

performance in the scenario given.

• The other problem of these systems is a fixed architecture. The number and type of MFs,

their parameters, rules, etc have to be specified beforehand. This needs to be judiciously

designed by the designer of the system. This affects the performance as the designer may

make a sub-optimal design of the complete system.

2.2.3 Hybrid Schemes

Hybridization of intelligent systems using soft computing techniques has been identified as a

promising research field of computational intelligence. The main premise behind combining two

25

or more soft computing algorithms is to develop a hybrid technique that exploits the synergy

between them, leveraging their benefits and overcoming their respective limitations[16]. This has

indeed proven quite powerful for a variety of applications, such as: pattern recognition, intelligent

control, data mining [6], and classification. Examples of promising hybridization techniques

include:

• Neuro-Fuzzy: While neural networks and fuzzy logic have added a new dimension to many

engineering fields of study, their weaknesses have not been overlooked. Prompted by the

weaknesses inherent in the two technologies and their complementary strengths, researchers have

looked at ways of combining neural networks and fuzzy logic. The NF model is a hybrid

framework that is obtained by combining the concepts of fuzzy logic and neural networking into a

unified platform. A hybrid neuro-fuzzy system is a fuzzy system that uses a learning algorithm

based on gradients or inspired by the neural networks theory (heuristical learning strategies) to

determine its parameters (fuzzy sets and fuzzy rules) through the patterns processing (input and

output)[17]. Hybrid techniques in this category combine ANN and FL in novel ways for modelling,

control or for classification applications. This system can be totally created from input output data

or initialised with the à prior knowledge in the same way of fuzzy rules. The resultant system by

fusing fuzzy systems and neural networks has as advantages of learning through patterns and the

easy interpretation of its functionality. However, there remain some problems to be solved, for

instance, how to automatically partition the input space for each variables, how many fuzzy rules

are really needed for properly approximating the unknown nonlinear systems. Also, as is well

known, the curse-of-dimensionality is an unsolved problem in the field.

• Neural Genetic algorithm: Genetic algorithms are a family of computational models inspired by

the way living organisms adapt to the harsh realities of life in a hostile world, i.e., by evolution and

inheritance. The algorithm imitates the process of evolution of populations by selecting only fit

individuals for reproduction. Therefore, a genetic algorithm is an optimum search-technique based

on the concepts of natural selection and survival of the “fittest” [18]. It works with a fixed-size

population of possible solutions of a problem, called individuals, which are evolving in time. An

evolutionary algorithm (EA) maintains a population of candidate solutions for the problem at hand,

and makes it evolve by iteratively applying a (usually quite small) set of stochastic operators,

known as mutation, recombination, and selection. Evolutionary artificial neural networks

26

(EANN’s) refer to a special class of artificial neural networks (ANN’s) in which evolution is

another fundamental form of adaptation in addition to learning[19]. GAs have been used in

synthesizing and tuning ANNs in many ways. One way is to use the GAs to evolve the network

topology before Back Propagation is used to tune the network. GAs have also replaced Back

Propagation as a technique for finding the optimal weight. Another application of GAs in ANNs

has been making the reward function adaptive by using GAs to evolve the reward function. Many

combinations of ANNs with GAs can be considered a continuation of the earlier discussions of the

hybrid methods to exploit the advantages and overcome the disadvantages of GAs and ANNs. For

example, ANNs using Back Propagation are able to exploit their local knowledge. Hence, they are

faster to converge than GAs, but this is at the expense of risking the ANN getting stuck in the local

search, which happens frequently and causes the whole ANN to get stuck in local minima. On the

other hand, even though GAs are not exposed to this problem, but they are slower due to their

global search characteristic. In the neuro-genetic algorithm only a specific subset of NN

architectures, named MLP, is considered for neural encoding[20]. While the great advantage of

GAs is the fact that they find a solution without utilizing derivatives, but the following drawbacks

are undeniable :

• Need much more function evaluation comparing to linearized models.

• No guarantee to convergence even to local minimum

• Fuzzy Genetic algorithms: Genetic Algorithms (GAs) and FL have also been combined to

generate the hybrid field of Fuzzy-Genetic Algorithms (FGAs). Similar to the case of Fuzzy

Neural Networks, the fusion has gone also two ways. GAs controlled by FL as well as FL

controllers tuned by GAs. FL has been used to manage the tools of GAs such as population size

and selection pressure during the transition between these two phases [21, 22]. GAs resource

managed by FL resulted in adaptive algorithms, which significantly improved its efficiency and

speed of convergence[23]. Also, research has been active on the use of GAs to tune FL controllers.

An exhaustive survey of the research in this area was indicated in[24] . In the latter case, a GA-

Fuzzy system is basically a fuzzy system augmented by a learning process based on a genetic

algorithm(GA) [25]. Recent results of the hybridization of FL and GA have been reported in

variety of applications such as fuzzy logic based controllers. From the optimisation point of view,

the task of finding an appropriate fuzzy knowledge base (KB) for particular problem, is equivalent

27

to parameterise the fuzzy KB (rules and membership functions), and to find those parameter

values that are optimal with respect to the design criteria. The KB parameters constitute the

optimisation space, which is transformed into a suitable genetic representation on which the search

process operates. Based on mentioned fact, the general algorithm consists of three steps: First,

they defined the initial rule base using intuitive heuristics. Second, they used GAs to generate a

better rule base. Finally they use GAs to tune membership functions[26].

• Wavelet Neural Networks : Mixing the wavelet transform theory with the basic concept of

neural networks, a new mapping network called wavelet neural network or wavenets (WNN) is

proposed as an alternative to feedforward neural networks for approximating arbitrary nonlinear

functions[27]. Kreinovich proves in [28] that if we use a special type of neurons (wavelet

neurons), then the resulting neural networks are optimal approximators. The network structures

applied for representation are determined by using wavelet analysis. The parameter of the

initialized network is updated using the well-known steepest gradient-descent method of

optimization. Each hidden unit has a square window in the time-frequency plane. The optimization

rule is only applied to the hidden units where the selected point falls into their windows. Therefore,

the learning cost can be reduced. Literature reveals that there are two major approaches to design

wavelet neural networks i.e.

• In the first approach, the wavelet and neural network processing parts are preformed

individually. In this format, the wavelet decomposition is a pre-processing step before

feeding the input into Neural Network. The input signal first decomposed using some

wavelet basis.

• The second approach combines the two theories; which means that the wavelet is

implemented inside the neurons. In this case the, two possible structures can be assumed

I) The one with fixed wavelet bases, where the dilation and translation parameters of

wavelet basis are fixed, and only the output layer weights are adjustable. For

WNNs with fixed wavelets, the main problem is the selection of wavelet

bases/frames. The wavelet bases have to be selected appropriately since the choice

of the wavelet basis can be critical to approximation performance. It is well

known that by using regularly truncated wavelet frames, the number of wavelet

28

candidates would drastically increase with the dimension. Therefore, constructing

and storing wavelet bases/frames for large dimension problems are of prohibitive

cost.

II) The other, is the type which Translations and Dilations of the wavelons along with

weights are optimized during the training.

The scope of this research is focussed on the latter type and, hereafter, by WNN will refer to the

second one.

• FWNN : By utilizing two important properties, viz., multi-resolution and compression of

wavelets along with Fuzzy Logic and neural networks FWNNs are proposed[29]. The local details

of non-stationary signals can be analyzed by wavelet transforms whereas Fuzzy logic allows us to

reducing the complexity of the data and to deal with uncertainty. The approximation accuracy of

the plant can be improved by the self-learning capabilities of neural networks. Their combination

allows us to develop a system with fast learning capability that can describe nonlinear systems that

a characterized with uncertainties. In FWNN, each fuzzy rule corresponds to a sub-WNN

consisting of wavelets with a specified dilation value and the rule which determines the effect of

each sub-WNN on the output. Due to the relative youth of this field of study, a consensus on the

best way to utilize their individual strengths and compensate for their individual shortcomings has

not yet been established. Consequently, research into Fuzzy-Wavelet systems is targeting many

directions.

2.3 Problem Description and Proposed Methodology

Traditional mathematical system modelling relies heavily on accuracy of the mathematical model

and this accuracy needs as many as parameters to be involved. Treating in this way either is

impossible for complicated systems or even if is viable, it brings us with a very sophisticated

mathematical expression.

The soft computing techniques so far introduced, alleviate the problem to a higher degree.

However, there were some intrinsic problems in each of them. Hybrid schemes by pure SC

techniques as described were the tools to overcome some of the short comings, but as mentioned

29

still there were plenty rooms for improvement. Despite the fact that embedding a signal

processing technique such as wavelet was a way to generalize soft computing techniques to a

wider spectrum of problems, but the drawbacks such as slow learning algorithms for NNs and

curse of dimensionality for fuzzy systems are still remained untouched.

The aim of this research is proposing new versions of WNNs and ultimately FWNN, enabled with

some clustering techniques and also hybrid learning algorithms combination of Expectation

Maximization, Recursive Least Square and Extended Kalman Filter to target the aforementioned

problems.

30

Chapter 3

Computational Intelligence Methodologies

3.1 Artificial Neural Network (ANN)

Neural Networks originated in an attempt to replicate the processing patterns of the human brain.

Humans are capable of dealing with vast quantities of information very quickly yet the structure of

the brains individual components is very simple. A single biological neuron is not in itself

intelligent. Yet the hundred billion or so of interconnected neurons coupled with their supporting

cells in each of our heads are capable of representing not just the knowledge each of us posses, but

the personalities and unique problem solving capabilities that make humans individual. An NN is

an information processing paradigm that is inspired by the way biological nervous systems, such

as the brain, process information. The key element of this paradigm is the novel structure of the

information processing system.

Initial work by McCulloch and Pitts in 1943 presented simplified artificial neurons that were

shown to have basic logical properties. In 1957 Frank Rossenblatt put forward the concept of the

Perceptron [30, 31] and B. Widrow (Adaline) developed the first training algorithm .

Neural Networks(NN) have been widely used in a broad range of applications. These applications

include pattern recognition, function approximation optimization, simulation and estimation

among many other application areas. Nowadays, NNs have been trained to solve complex

problems that are difficult by conventional approaches [32]. NNs overcome the limitations of the

conventional approaches by extracting the desired information by using the input data. A NN does

not need such a specific equation form. Instead, it needs sufficient input–output data. Also, it can

continuously be re-trained, so that it can conveniently adapt to new data.

31

In its simple form, each single perceptron (neuron) is connected to other neurons of a previous

layer through adaptable synaptic weights. This model is based on the concept of the perceptron

originated by Frank Rosenblatt in 1957 [33, 34]. Figure 3.1 presents how information is processed

through a single node. The node receives weighted activation from other nodes through its

incoming connections. First, these are added up (summation). The result is then passed through an

activation function; the outcome is the activation of the node. For each of the outgoing connections,

this activation value is multiplied by the specific weight and transferred to the next node.

 Fig 3.1 –A single perceptron

Knowledge is usually stored as a set of connection weights (presumably corresponding to synapse

efficacy in biological neural systems).

3.1.1 Multi Layer Perceptron (MLP)

This is probably the most widely known and used Artificial Neural Network (ANN) structure.

MLP networks consist of layers of perceptrons with each layer connected to each of the layers in

the previous layer. The weights connecting each of the perceptrons are considered the parameters

of the network. The network usually consists of an input layer, some hidden layers and an output

layer. Its structure is illustrated with one Hidden Layer in figure 3.2.

Pw

2w

1w 1x

2x

px

1+ Summation Activation

f(.)Σ

bias

32

 Fig 3.2- MLP Structure

The complexity and the representational capabilities of the MLPs are defined by the number of

neurons in each layer. The model information is contained in the weights connecting the neurons

in each layer. The optimisation of these weights represents the learning or training process and it's

a non-linear optimisation process working from initial parameter values to a set which can model

the function in question.

An MLP is characterised by:

• Its pattern of connections between the neurons called structure (architecture). The

architecture of a network refers to the number of neurons, their arrangement and

connectivity. It also covers the arrangement of the neurons into layers. Many neural nets

have an input layer, in which, the function within a unit is equal to an external input signal.

The net depicted in figure 3.2 consists of input units, output units and one hidden(middle)

layer. Typically there is layer of weighs between two adjacent levels of units.

1x 2x Px
�����������

 f
Σ

 f
Σ

 f
Σ

 f
Σ

 f
Σ

 f
Σ

X

Output
Layer

Hidden
Layer

Input
Layer

33

• The method of determining the weights on the connections and other transfer function

parameters (if any) called the training (learning) algorithm. In addition to architecture, the

method of setting the values of the weights (training) is an important issue. The procedure

used to carry out the learning process . The training algorithm is applied to the network to

in order to obtain a desired performance. The type of training is determined by the way in

which the adjustment of the free parameters in the neural network takes place. Supervised

and Unsupervised training are the most common methods of training. In supervised one,

the training is accomplished by pre-setting a sequence of training inputs with a

corresponding target output vector, whereas in Unsupervised, no target(output) vector

specified and the MLP modifies the weights so that the most similar vectors are assigned

to the same cluster unit.

• The activation function. The basic operation of an artificial neuron involves summing its

weighted input signal and applies them on an activation function. The perceptron neuron

model receives information in the form of a set of numerical input signals. This

information is then integrated with a set of free parameters to produce a message in the

form of a single numerical output signal.

In following lines, we adopt a compact matrix–vector notation of the network[35] description in

order to express the dynamics of Neural Network. Let P and N stand for the number of input nodes

and the number of hidden layer neurons, respectively.

Denote by X, W and V for the inputs, the gains of output and the weights from input layer to

hidden layer neurons, the following

T P
1 2 p

T N
1 2 N

11 12 1P 1

21 22 2P 1 N (P 1)

N1 N2 NP 1

X [x x x]

W [w w w]

v v v

v v v
V

v v v

+

+ × +

+

= ∈

= ∈

 = ∈

… ℝ

⋯ ℝ

⋯

⋯
ℝ

⋮ ⋮ ⋮ ⋮

⋯

 (3.1)

The activation function for hidden neurons is normally a symmetric ‘S’ shape function with well-

defined first derivative such as the hyperbolic tangent or the binary sigmoid defined as :

As can it be seen from figure

and 0 or -1 and 1. This allows smooth interpolation between data points.

One single neuron makes the simple operation of a weighted sum of the incoming signals and a

bias term (b), fed through an activation

network with one hidden layer is described in element

 t t ty f (v x b)w f (net)wɶ

 () 1

1 x
f x

e−=
+

from figure 3.3, the shapes of the function provide a graded output between 1

. This allows smooth interpolation between data points.

 Fig 3.3 –Tangent Hyperbolic

 Fig 3.4 - Sigmoid Function

One single neuron makes the simple operation of a weighted sum of the incoming signals and a

through an activation function (f) and resulting the output value of the neuron. A

network with one hidden layer is described in element-wise notation as

N P N
t t t

jp p j j j j
j 1 p 1 j 1

y f (v x b)w f (net)w
= = =

= + =∑ ∑ ∑ɶ

34

 (3.2)

a graded output between 1

One single neuron makes the simple operation of a weighted sum of the incoming signals and a

and resulting the output value of the neuron. A

 (3.3)

35

Here x is the input with dimension P and y the output of the network and N is the number of

hidden layer neurons. The interconnection matrices are W and V for output layer and hidden

layer respectively. This network is applied in a variety of problem domains. It does however suffer

from a number of well-established problems. The massive interdependency of the structure means

that the model is global in nature. The result of this is that it is often hard to establish exactly what

information the network has learnt as the model is not readily interpreted due to the massive

interdependency between each of the artificial neurons. The sequential nature of the training

methods such as Back-Propagation (BP) means that information can be unlearned as patterns early

in the training data can be overwritten by patterns latter in the series. It can also be difficult to

establish the number of artificial neurons needed to accurately represent the training data and can

often only be done through trial and error which is very time-consuming. There are a number of

algorithms available for the learning of the parameters with perhaps the most well known being

the Back-Propagation (BP) algorithm. This method uses the partial derivative of the mean squared

error between the system output and the desired output of a given training sample to improve the

fit of the parameters to the data. This is a gradient descent method and as such is susceptible to

problems of identifying a local optimum parameter set rather than a global optimum. In addition to

this the training is often slow requiring the training set to be presented to the network a large

amount of times in order to find a minimum value. Techniques such as using momentum terms

help to overcome the problems of local minima and there are a number of advanced BP algorithms

including factors such as the second derivative of the error function in order to speed training.

Other learning algorithms include those related to the calculation of the second derivative such as

conjugate gradient and quasi Newton schemes. These concepts are computationally expensive [36].

3.1.2 Backpropagation Algorithm

Given a training set of input/output data, the original rule for training MLP is the backpropagation

(BP) algorithm [37]. It is an iterative process based on an error signal obtained from measuring the

output signal from each neuron in the output layer. The weightings to a particular neuron are

modified using new data from training. It employs the quadratic or sum of squared errors metric

given by

Q

d T d
t t,pp t,pp t,pp t,pp

pp 1

1
E (y y) (y y)

2 =

= − −∑ ɶ ɶ (3.4)

36

In which d
t ,ppy is the desired value of ppth output and t ,ppyɶ is the observed output for the tth

training sample, the error indicates how far the desired output is far from its observed value. Let θ

be a vector formed by all the network weights (V and w) and ∂θ be the gradient of E at θ = θ (t),

with t = 1; 2; 3; … ; M ,. Where t is the pattern counter, The BP algorithm is illustrated through the

following steps:

For each input-output pattern do begin

1. Apply the input vector X

2. Compute the output at the last layer through forward calculation.

Each output unit receives a target pattern corresponding to input training pattern

We define the instantaneous value of the error energy for t’th pattern is given by eq (3.4).

3. Compute δs at the last layer and propagate it to the previous layer by using eq (3.7).

4. Adjust weights of each neuron by using expression (3.6).

 5. Repeat from step 1 until the error at the last layer is within a desired margin.

End For

The adaptation of the weights for all training instances, following the above steps, is called a

learning epoch. A number of learning epochs are required for the training of the network.

Generally a performance criterion is used to terminate the algorithm. For instance, suppose we

compute the square norm of the output error vector for each pattern and want to minimize the sum.

So, the algorithm will be continued until the sum is below a given margin.

The error of a given output node, which is used for propagation to the previous layer, is designated

by δ , which is given by the following expression

d

t t(y y)f (.)′δ = − ɶ (3.5)

The weight adaptation is described by the following expressions

q,q , q q

q,q , q,q , q,q ,

w . .o

w (t 1) w w (t)

′ ′ ′

′ ′ ′

∆ = η δ

+ = ∆ +
ℓ ℓ ℓ

ℓ ℓ ℓ

 (3.6)

q,q ,w (t 1)′ +ℓ is the weight from neuron q to neuron q′ , at t’th step, where q′ lies in the layer ℓ

and neuron q in (ℓ −1)’th layer counted from the input layer.

37

q′δ ℓ is the error generated at neuron q′ , laying in layer ℓ .

qo ′ℓ is the output of neuron q, positioned at layer ′ℓ

For generating error at neuron q, lying in layer′ℓ , we use the following expression

 q, q, q, q , q,q ,
q

O (1 O)(w)′ ′ ′ ′ ′
′

δ = − δ∑ℓ ℓ ℓ ℓ ℓ

 (3.7)

η in eq (3.6) is the Learning Rate and δ is the error signal for unit j.

This is a very simple means of updating the parameters but suffers from a number of problems. If

the learning rate is large then the network will train initially very quickly. However it will be prone

to overshooting the optimum parameter measures and zigzag about the desired values. If the

learning rate is too small then the network will take a long time to train as it is taking very small

steps at each stage.

3.1.3 Momentum Effect

The problems with the fixed learning rate forms of BP lead to further modifications of the original

BP algorithm. Figure 3.5 shows the effects that different learning rates have on the convergence of

parameters

 Fig 3.5 – Effect of various learning rates on convergence of the weights

The problem lies around the fact that, although the calculated gradient identifies the direction in

which the parameter optimisation must be carried out, it does not identify amount by which each

parameter needs to be changed. Moreover, if the error function contains many local minima, the

Small Learning Rule
Slow Convergence

Large Learning Rule
Divergence

38

network might get trapped in some local minimum or get stuck in a very flat plateau[38]. As a

result a number of techniques were proposed, attempting to modify the learning rate at each

parameter update, so that to reduce the chances of over shoot and to increase the speed of

convergence. The simplest method of doing this is to include a momentum term. Applied to

backpropagation, the concept of momentum ζ is that previous changes in the weights should

influence the current direction of movement in weight space. This concept is implemented by the

revised weight-update rule:

 ij ij ij ijw (t 1) . .o w (t)∆ + = η δ + ζ∆ (3.7)

Once the weights start moving in a particular direction in weight space, they tend to continue

moving in that direction. Imagine a ball rolling down a hill that gets stuck in a depression half way

down the hill. If the ball has enough momentum, it will be able to roll through the depression and

continue down the hill. Similarly, If the gradient has changed direction, then the momentum has

the effect of dampening the change to the parameters. In this way the zigzagging effect is reduced.

3.2 Elman Neural Network

The recurrent networks have state variables for the delays and incorporate temporal aspects better

than Feed-forward neural networks[39]. The Elman Network proposed in 1990 by J.L. Elman is

one of the simplest among the available recurrent networks.

In contrast to the feed-forward loop, the Elman Networks are a form of recurrent Neural Networks

which the back-forward loop employs copy layer which is sensitive to the history of input data. At

each time step, the values of the hidden layer units are copied to the state layer and this

information can be stored for future use. This means that the function learnt by the network can be

based on the current inputs plus a record of the previous state(s) and outputs of the network. The

feedback idea is a convenient way to accumulate previous knowledge as “experiences” and

perform future predictions based on these “experiences”.

However, although the Elman neural network has found various applications in speech recognition

and time series prediction, its training and converge speed are usually very slow and not suitable

for some critical applications. Correlative study shows that The dynamic memory property

developed by Elman has been proved to be effective for modelling linear systems not higher than

39

the first order[40] with standard back-propagation learning algorithm and more suitable for time

series.

 Fig 3.6 – Elman Network structure

The basic structure of Elam network is illustrated in figure 3.6. It comprises four layers namely

input layer, hidden layer, output layer and copy layer. Tuneable weights exist between two

neighbouring layers. For hidden and copy layer the number of nodes is an adjustable parameter,

and the optimal number is acquired through simulations[41]. The inputs of the network are

P P Nx(t) R ,u(t) R , (t) R′∈ ∈ ϕ ∈ , and then the outputs in each layer can be given by

N

j j
j 1

P N

j pj p p j p
p 1 p 1

p j

y(t) w * (t)

(t) f (v (t) * x (t) v (t) * u (t))

u (t) (t 1)

=

′ ′
′= =

′

= ϕ

′ϕ = +

= ϕ −

∑

∑ ∑

ɶ

 (3.8)

Where,

 N : The total number of hidden layer nodes

pjv : The weight connection input node to hidden layer

 p jv ′′ : The weight connect copy node to hidden node

jw : The weight connects hidden node to output node

 Hidden
Layer

Input
Layer

Output
Layer

1z− 1z−

Σ

y(k)

Nu (t) 1x (t) px (t) 1u (t)

Copy Layer

40

f(.) : The non-linear function of hidden layer

3.3 Radial Basis Functions (RBF)

Radial basis functions, emerged as a variant of Neural Networks, were first introduced by

Powell[42] in 1980’s to solve the real multivariate interpolation problem. The MLP neuron

bisects the information space along a single linear line. As a result each neuron covers the entire

information space within its layer. As opposed to an ‘S’ shaped function the RBF neuron uses a

bell shaped activation function as shown in figure 3.7. One major difference from MLP is that

RBFs utilise a local learning strategy vs. MLP’s global learning, thus resulting a higher rate of

accuracy and faster training times. Such a system consists of three layers (input, hidden, output)

In the RBF neuron the parameters define the centre point of the neuron and the size and shape of

the area covered by the activation function. In RBF there is a built-in distance criterion with

respect to a centre. This means a graded output is given from 0 at the edges of the area covered by

the function to 1 at the functions centre.

Learning is equivalent to finding a multidimensional function that provides a best fit to the training

data, with the criterion for “best fit” being evaluated by means of a cost function usually assumed

to be mean squared error as depicted . RBFs are embedded in a two layer neural network where

each hidden unit implements a radial activated function. The non-linearity within an RBF network

can be chosen from a few typical non-linear functions. Gaussian function is the most typical one

 2(x) exp(x /)ϕ = − σ (3.9)

The parameter σ is called unit width and is determined using the heuristic rule “global first

nearest-neighbour”[43] . All the widths in the network are fixed to the same value σ and this

result in a simpler training strategy. The activation of a neuron in the output layer is determined by

a linear combination of the fixed nonlinear basis functions, i.e

C

i i
i 1

Y(x) w (x)
=

= ϕ∑ (3.10)

where i i(x) (x c)ϕ = ϕ − and wi are the adjustable weights that link the output nodes with the

appropriate hidden neurons. These weights in the output layer can then be learnt using the least-

41

squares method. This research study adopts a systematic approach to the problem of centre

selection. Because a fixed centre corresponds to a given regressor in a linear regression model, the

selection of RBF centres can be regarded as a problem of subset selection. The orthogonal least

squares (OLS) method can be employed as a forward selection procedure that constructs RBF

networks in a rational way.

The output units implement a weighted sum of hidden unit outputs.

 Fig 3.7– RBF network with Gaussian activation

The use of radial activation functions provides a nonlinear method of interpolating between

numbers of different regions in the information space. RBF networks train rapidly, usually orders

of magnitude faster than MLP, while exhibiting none of its training pathologies such as local

minima problems[44]. In practice the centres are normally chosen from the data points. The key

question is that how to select centres appropriately from dataset.

3.3.1 Orthogonal Least Squares

The most popular RBF training algorithm is the Orthogonal Least Squares (OLS). This method

treats the RBF network as a special case of the linear regression model. It creates a series of

regression vectors from the input data and then uses the Gram-Schmidt algorithm to build an

orthogonal set of basis vectors from this which spans the same space[45]. Utilising each of the

input vectors as the mean parameter of a RBF activation function provides a perfect mapping

between x and y. OLS is an iterative technique that selects the new centres so that the increase in

42

variance of the output is maximised. The algorithm allows the selection of the centres one by one

in a rational procedure, each selected centre maximises the increment to the explained variance of

the desired output. Thus the algorithm manages to reduce the size of the network without

significantly degrading its performance.

It views the RBF network as a form of the linear regression model with each column vector ϕ

being a regression vector or regressor.

() ()

() ()

1 1 1 1 1 1

1

 = +

⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

N

N C C N C C

y x x w

y x x w

ϕ ϕ ε

ϕ ϕ ε

C

t i t i t
i 1

y (x)w
=

= ϕ + ε∑ (3.11)

where ty is the desired output and is also called the dependent variable, the iw are the

parameters, and i (x)ϕ known as the regressors which are some fixed functions of tx :

 i t t i(x) (x c)ϕ = ϕ − (3.12)

the error signal tε is assumed to be uncorrelated with the regressors i t(x)ϕ . The problem of how

to select a suitable set of RBF centers from the data set can be regarded as an example of how to

select a subset of significant regressors from a given candidate set. An efficient learning procedure

for selecting a subset model can readily be derived based on the OLS method. Rewrite eq (3.11)

into the matrix form as

 Y W E= Φ + (3.13)

Where

T

1 NY [yy]= (3.14)

 [],Φ = ϕ ϕ1 C.... T
i i 1 i N[(x).... (x)]ϕ = ϕ ϕ , 1 i C≤ ≤

T

1 CW [ww]= (3.15)

43

 T
1 NE [....]= ε ε (3.16)

Note that number of centers equals to C, since all C data samples are employed as centers to

initialize the model. Vectors iϕ form a set of basis vectors, and the linear squares solution Ŵ

satisfies the condition that the square of the projection ŴΦ is part of the desired output energy

that can be counted by the regressors. Because different regressors are generally correlated, it is

not clear how an individual regressor contributes to this output energy. The OLS method involves

the transformation of the set of ϕi into a set of orthogonal basis vectors, and thus makes it possible

to calculate the individual contribution to the desired output energy from each basis vector. The

regression matrix Φ can be decomposed into

 RAΦ = (3.17)

Where A is a C C× triangular matrix with 1’s on the diagonal and 0’s below the diagonal, that is,

12 1C

C 1C

1 ...

0 1
A

...

0 ... 0 1
−

α α

 =
 α

 (3.18)

and R is an N C× matrix with orthogonal columns ir such that

TR R H= (3.19)

Where H is diagonal matrix with elementsih :

N
T t t

i i i i i
t 1

h r r r r
=

= = ×∑ 1 i C≤ ≤ (3.20)

And eq(3.11) can be re-written as

 y Rg E= + (3.21)

the OLS solution ̂g is given by

1 Tĝ G R Y−=

or

44

T T

i i i iĝ r y / (r r)= 1 i C≤ ≤ (3.22)

the quantities ̂g and Ŵ satisfy

ˆ ˆAW g= (3.23)

The OLS method is to use for subset selection of the candidate RBF centres. In practice, the

number of data is often very large and centres are to be chosen as a subset of data set. Due to its

linear computational procedure at the output layer, the RBF is shorter in training time algorithm.

This method ensures that each new neuron added reduces the overall error of the system by the

maximum amount. Training thereby continues until a predefined accuracy is reached. The main

drawback with this method is that it uses a single predefined value for the width of each of the

neurons. This is defined before the training process starts and although there are a number of

heuristics for this such as nearest neighbour it is often necessary to manually modify it through

trial and error which is not guaranteed to find an optimal result [46]. This use of a single width

parameter for the entire network introduces severe problems. The assumption that the regions with

different properties in the input domain can be accurately identified using identically sized local

area functions is often erroneous.

3.4 Fuzzy Logic

Fuzzy Logic, is a generalization of Boolean logic[47]. It is seen as a technique based on the key

elements that the activity of human brain are not numbers but rather indicators of fuzzy sets of

which are a generalization of Crisp sets in classical set theory, in which the transition membership

and non-membership is gradual between 0 and 1. Having this main characteristic of fuzzy logic, it

is easier to deal with imprecise concepts in a well-defined way.

In general, NNs provide a means of learning data through very low level numerical analysis.

However the heavily interconnected structure of NN often makes analysis of the information

contained within it difficult. Fuzzy Logic (FL) provides a framework by which nonlinear models

can be learnt and readily understood by humans. FL incorporates a simple, rule-based IF X AND

Y THEN Z approach to a solving modelling problem rather than attempting to model a system

mathematically. FL is capable of mimicking this type of behaviour but at very high rate.

45

Each of the parameters of the model is divided into a number of regions which can be given a

linguistic label. Each label is associated with a membership function which produces a

membership value for each region between 1 and 0.

 Fig 3.8 - Fuzzy logic system

The typical architecture of a fuzzy system, illustrated in figure 3.8, is comprised of four principal

components:-

Fuzzification : Transforms crisp measured data into suitable fuzzy sets. Crisp inputs are exact

inputs measured by sensors and passed into the control system for processing.

A fuzzy set is defined in terms of a membership function which is a mapping from the universal

set U to the interval [0,1]. Larger values denote higher degrees of set membership. The shape of

the membership function should be representative of the variable. However this shape is also

restricted by the computing resources available. Complicated shapes require more complex

descriptive equations or large lookup tables. These shapes can be diverse but we will usually work

with triangles, trapezoidal and Gaussian (see figure 3.9). For this reason we need at least three (for

triangles), four (for trapezoids) and two parameters (for Gaussian) to define one MF of one

variable.

46

 Fig 3.9 – Three types of membership functions with corresponding
 mathematical expressions a) Triangular b) Trapezoidal c) Gaussian

Fuzzy Rule Base : Stores the observed knowledge of the operation of the process [48]. Fuzzy

rules are linguistic IF-THEN- constructions that have the general form "IF A THEN B" where A

and B are (collections of) propositions containing linguistic variables. A is called the premise and

B is the consequence of the rule. In effect, the use of linguistic variables and fuzzy IF-THEN-

rules exploits the tolerance for imprecision and uncertainty. There are several kinds of fuzzy rules

used to construct fuzzy models. These fuzzy rules can be classified into the following three types

according to their consequent form.

47

 Type I : Fuzzy rules with constant consequent

 IF 1 i,1x is A AND 2 i,2x is A AND…. P i,Px is A THEN i if = ω

 Type II : Fuzzy rules with linear combination consequent (Takagi Sugeno Kang Model)

 IF 1 i,1x is A AND 2 i,2x is A AND…. P i,Px is A THEN

 i i0 i1 1 i0 pf x ... x= + + +ω ω ω

 Type III: Fuzzy rules with fuzzy set consequent (Mamdani Model)

 IF 1 i,1x is A AND 2 i,2x is A AND…. P i,Px is A THEN i if B=

 In the rules X and f denote input and output variables, respectively. The antecedent

linguistic terms ipA the consequent linguistic term iB are parameterized fuzzy sets whose

shape can be any of the described above. In type I and II fuzzy rules iω denotes a

constant value and i0 i1 1 i0 px ... xω ω ω+ + + denotes a linear combination of input variables

where are constant coefficients.

Fuzzy rule equations are “AND” rule, which means all the conditions of the IF part must

be met simultaneously in order for the result of the THEN part to occur.

• Inference Engine: The Inference Engine is the heart of a FL and it has the capability of

simulating human decision making by performing approximate reasoning[49]. During the

process, it derives a reasonable action with respect to a specific situation based on the

given rule base. The membership values measured in Fuzzification step, are aggregated to

obtain a single degree of membership or firing value. The most common of which are t-

norms such as MIN connective, denoted with ∧ . Thus, the degree of fire of rule i for the

new input vector, X , is calculated as follows

P

i i p
p 1

*
i i i

(X) AND (x) i 1,..,C

y (X) f i 1,..,C

=
γ = µ =

= γ × =

ɶ

48

• Defuzzification : Lastly, the Defuzzifier converts the fuzzy action to the non-fuzzy action

that can be accepted by the real world. This step depends on consequent structure of the

rule base, In TSK fuzzy rule base structures, the model output of each rule is aggregated

by taking weighted average of the scalar output of each rule

C
*
i

i 1
C

i
i 1

y
y

(x)

=

=

=
γ

∑

∑
ɶ

 (3.24)

The training of a fuzzy system is the process by which the positions and sizes of the fuzzy regions

are set and a valid form of consequent is identified. In the simplest form where the consequent is

simply a singleton fuzzy variable this can be achieved by means of a table lookup system. This

involves creating a set of partitions that cover the whole range of the model data. A rule is then

generated for each input-output pair in the model data. Following this the most likely set of rules

from the complete set are selected so that there are no conflicts in the rule base. An interesting

feature in fuzzy logic is the concept of Adaptive fuzzy logic systems. Because of the arbitrary

positioning of the partitions by the developer, it is often necessary to fine-tune the parameters of

the rule base. The Back-Propagation (BP) method can also be used for this. Since it works by

taking the partial derivative of a mean squared error function with respect to the parameters of a

model it can be used to derive update equations gradient descent learning as is done in the

Adaptive Fuzzy Logic System (AFLS) [50]. Despite this it is generally accepted that FL is better

applied to domains in which it is possible to incorporate expert knowledge and NN are better

applied to domains where little is known of the interdependencies of the model requiring low-level

numerical analysis to discover them. FL systems also suffer from the so called curse of

dimensionality. This term refers to the problem that every possible combination of possible rules

must be considered. As a result the number of possible rules increases exponentially with the

number of model parameters and the number of partitions in each.

3.4.1 TSK Fuzzy modelling

TSK fuzzy model is one of the most outstanding fuzzy models in the literature which are suitable

to model a large class of non-linear systems. It consists of number of local linear models;

possessing excellent ability to describe uncertain system and to approximate a nonlinear model

49

with any given accuracy. The basic idea of this method is to decompose the input space into

“fuzzy partitions” and to approximate the system in every region by a simple pricewise linear

model. The overall fuzzy model is thus considered as a combination of interconnected subsystems

with simpler models. Typically, in a TSK model, the employed IF–THEN rules can be viewed as

the expansion of pricewise linear partition and they are presented as

 iR : IF 1 i,1x is A AND 2 i,2x is A AND…. P i,Px is A (3.25)

 THEN i i0 i1 1 ip pf x ... x= + + +ω ω ω

The
iR represents the i’th fuzzy inference rule, px and ipA are the premise fuzzy variables and

fuzzy sets with Gaussian membership functions. The rule consequent indicates linear equations

which are linear in the parameters i,pω belonging to i’th rule and p’th input variable. The working

region of any fuzzy rule is defined by the membership functions of antecedent part. The output of

the TSK fuzzy system with C rules is aggregated as weighted sum of fuzzy rule outputs known

also as defuzzification.

C

i0 i1 1 ip p i
i 1

y (x ... x) (X)ω ω ω γ
=

= + + +∑ɶ (3.26)

Where i (X)γ is the normalized firing strengths of the rule i and obtained as :

P

i p
p 1 i

i P CC

ii p
i 1i 1 p 1

(x)
(X)

(X)
(X)(x)

=

== =

= =
∏

∑∑∏

ɶ

ɶ

µ
αγ

αµ
 (3.27)

With the i p(x)ɶµ is the membership of
i,pA with , Gaussian membership.

Where the jpµ denote the centres and jpσ depicts the standard deviation for membership functions

associated with rule i. The parameters are obtained by fitting the eq(3.26) to the set of data points

by numerical optimization.

50

 3.5 Neuro-Fuzzy Systems

The two soft computing or “intelligent” computing techniques described above are both inherently

mathematical but possess strengths and weaknesses. A striking example of particularly effective

combination is what has come to known as “Neuro-Fuzzy”. NF systems attempt to incorporate the

low-level numerical analysis of the NN with the model transparency of FL [51]. For example,

while neural networks are good at recognizing patterns, they are not good at explaining how they

reach their decisions. Fuzzy logic systems, which can reason with imprecise information, are good

at explaining their decisions but they cannot automatically acquire the rules they use to make those

decisions. These limitations have been a central driving force behind the creation of intelligent

hybrid systems where two or more techniques are combined in a manner that overcomes the

limitations of each other techniques. In theory, neural networks, and fuzzy systems are equivalent

in that they are convertible, yet in practice each has its own advantages and disadvantages. As it

was noted above, in case of dynamic work environment, the automatic knowledgebase correction

is necessary. On the other hand artificial neural networks are successfully used in problems

connected to knowledge acquisition using learning by examples with required degree of precision.

There are many different algorithms falling under the banner NF systems. All of them range in

complexity and fall to somewhere along the line joining FL systems and NN.

3.5.1 Adaptive Neuro Fuzzy Inference System(ANFIS)

ANFIS is a Neuro-Fuzzy model proposed by Jang[52]. ANFIS is an example of a NF system that

directly implements the TSK rule system. ANFIS model has a fuzzy inference system in the form

of an adaptive network for system identification and a predictive tool that maps a given input

space to its corresponding output space based on a representative training data set.

The structure of ANFIS with five layers is shown in figure 3.9. Xs are the inputs for ANFIS. The

ANFIS is composed of two parts. The first part is the antecedent part and the second part is the

conclusion(consequent) part. These are connected to each other by the fuzzy rules in form of a

network. It can be described as a multi-layered neural network .The first layer executes a

fuzzification process, the second layer executes the fuzzy AND of the antecedent part of the fuzzy

51

rules, the third layer normalizes the MFs, the fourth layer executes the conclusion part of the fuzzy

rules, and the last layer computes the output of the fuzzy system by summing up the outputs of the

fourth layer which is the defuzzification process.

 1X

 2X

 Fig 3.10 -The structure of ANFIS (type III) with two inputs and one output

The feed-forward equations of the ANFIS structure and all the parameters depicted in figure.3.10

are the same as eq(3.25-3.27) for p=1,2 and i=1,2 with two inputs and two membership functions.

They are shown as

i ii A 1 B 2

i
i

1 2

1 1 2 2
1 1 2 2

1 2

(x) (x) i 1,2

i 1,2

f f
y f f

α = µ × µ =

αγ = =
α + α
α + α= = γ + γ

α + α

ɶ ɶ

ɶ

The ANFIS uses fuzzy MFs in antecedent part for splitting each input dimension; the input space

is covered by the overlapped MFs, that is, several local regions can be activated simultaneously by

a single input.

2γ

1X

2X

1α

2α 2 2f γ

1 1f γ

2X

Σ
N

N

Π

1A

Π

2A

1B

2B
1X

1γ
yɶ

M
em

b
ersh

ip
 F

un
ctio

n
s

M
F

 d
eg

ree m
u

ltip
licatio

n

R
atio

 o
f firing

 streng
th

 to
 su

m
 o

f ru
le

’s firing
 streng

th

R
u

le w
eig

h
t assign

m
en

t

D
efu

zzificatio
n

n

52

Subsequent to the development of ANFIS approach, a number of methods have been proposed for

learning rules and for obtaining an optimal set of rules[53]. For instance, Mascioli et al.[53, 54]

have proposed to use a combination of Min–Max and ANFIS model to determine neuro-fuzzy

network and create optimal set of fuzzy rules. Jang and Mizutani[55] have introduced application

of Levenberg–Marquardt algorithm, which is essentially a nonlinear least-squares technique, for

learning the ANFIS network structure. In another paper, Jang has proposed a scheme for input

selection and Kumar and Garg[56] have used Kohonen’s map for training. Jang introduced four

methods to update the parameters of the ANFIS structure, as listed below according to their

computation complexities:

• Gradient Decent only: all parameters are updated by the GD.

• Gradient Decent only and one pass of least square estimation: the least square estimation

is applied only once at the very beginning to get the initial values of the conclusion

parameters and then the gradient decent takes over to update all parameters.

• Gradient Decent only and least square estimation: this is the Jang’s proposed hybrid

learning method.

• Sequential least square estimation: using EKF to update all parameters

The performance of the network is indeed very good. Nevertheless, the network suffers general

faults identified with all fuzzy systems in terms of the curse of dimensionality; the number of input

fuzzy partitions is large and hence the required number of rules and consequence parameters will

be very large. The least-squares estimation algorithm cannot be implemented easily because the

calculation of very large matrices is required. Thus, the application of the network is limited to

some low-dimensional systems.

3.5.2 FALCON

Fuzzy Adaptive Learning Control Network (FALCON) is another general modelling structure that

integrates the basic elements of the fuzzy structure into a connectionist model. The input and

output nodes represent the system input and outputs in the same manner as general NN structures.

The hidden nodes represent the fuzzy basis functions and the rules as can be seen in figure 3.11.

53

Fig 3.11- Falcon Neuro-Fuzzy architecture

The difference between traditional FL and FALCON is that the connectionist structure permits the

use of NN learning techniques. This means that the proper basis functions and parameters can be

determined within the connectionist structure and then the rule base extracted from this structure.

In theory, this means that the normally black-box trait of the traditional NN architectures can be

bypassed. Expert knowledge can be readily incorporated into the network structure as each of the

hidden nodes has a transparent action. The training of these networks is often done in a two-phase

approach. The first phase is to use statistical clustering techniques to identify initial Fuzzy basis

functions. Competitive learning is then used to identify which of the combinations of fuzzy basis

neurons represent valid rules. Rule nodes are then merged if they satisfy certain conditions relating

similarities between consequents and preconditions. Often a second phase of learning is required

to fine-tune the network using a gradient descent technique [31].

3.5.3 NEFCON

NEFCON is a model for neural fuzzy controllers developed by Nauck [57], and it is based on the

architecture of the fuzzy perceptron. The learning algorithm for NEFCON is based on a mixture of

reinforcement learning with back propagation algorithm. Figure 3.12 shows a NEFCON system

with two input variables, one output variable and five rules. The connections in this architecture

are weighted with fuzzy sets and rules using the same antecedents (called shared weights), which

are represented by the drawn ellipses.

54

 Fig 3.12 – NEFCON architecture

The feed-forward connections between the layers are weighted with fuzzy sets. Each of the layers

contains a number of units, where the hidden “rule units’’ use a t-norm as activation function, and

the output unit combines fuzzy sets and applies a defuzzification procedure. The input units just

contain the input values and are doing no further computation. The input variables 1x and 2x are

state variables of a technical system which has to be controlled. NEFCON’s output y is the

control action applied to S. The units of the hidden layer represent fuzzy rules[58].

3.6 Adaptive Neuro-Fuzzy Network

An alternative adaptive fuzzy neural network (AFNN) proposed by J.Theocharis [59] has been

implemented and validated in the framework of this research study. Its main characteristics are the

self-construction ability, parameter learning ability and rule extraction ability. An outline is shown

in figure 3.13. In contrary to ordinary ANFIS, the adaptive FNN has a structure-learning

mechanism which creates/adjusts the structure of its premise part as training proceeds[60].

In conventional ANFIS structure the number of membership functions and therefore the number of

rules is fixed, and increases significantly by increasing the number of membership functions (MFs)

and input dimensionality

55

 Fig 3.13- Three input and one output Adaptive Neuro-Fuzzy scheme

The fuzzy inference system considered in this network follows Takagi Sugeno’s IF-THEN rules in

the form of eq(3.25) where as mentioned, p is the dimension of input components, i depicts the

counter of rules and
ipω are the polynomial coefficients, linearly connecting the input variables to

the rules’ outputs
if . Finally, j

pA denote the labels of fuzzy sets outputs. Each linguistic label j
pA ,

is associated with a membership function. The membership functions considered here are of

Gaussian type as appears in figure 3.8. The degree of fulfilment represents the degree to which

each rule participates in the output defined by a

t-norm(*) operator is defined as follows:

 i i
1 p

i 1 PA A
(x)* * (x)γ = µ µɶ ɶ… (3.28)

The algebraic product of the membership functions of each premise axis is chosen as the t-norm

operator. For each input membership term the below equation is considered

 p

max
p A pmax{ (x) }

p 1,...,P.

µ = µ

=

ɶ ɶ
 (3.29)

The term max
pµɶ represents the max value of the membership belonging to the term set p for px .

1x

2x

3x

1
2

i

C

Rule No.

∑

1x

2x

3x

∑
 ∑

∑

11w

12w

1Nw

21w
22w

2Nw

3Nw

32w

31w

1 1 2 3(, ,)f x x x

2 1 2 3(, ,)f x x x

1 2 3(, ,)Cf x x x

∏

∏

∏

∏

∑

/
ŷ

56

The structure of proposed FNN comprises of three major modules:

• Premise Part: It calculates not only the rule coordinates through the MFs, but also firing

strengths for each rule. The structure of the fuzzy inference system is determined by adjusting

this part. Both structure learning and parameter influence premise part.

• Consequent Part: It deals with consequent functions
if as in eq(3.25) which is linear

polynomials of input vector components.

• Defuzzification Part: It involves the defuzzification process. This is performed by combining

the outputs of the premise and consequent part and provides the final output of the fuzzy

system. The Weighted-Average scheme has been used to produce a fuzzy outputŷ , for each

input vector

The training of AFNN is performed by the following three phases:

• Initial membership functions and corresponding rules creation by using a subset of the training

data set. This step is conducted off-line, which is referred to as respective premise/consequent

parameter setting .

• Selection of input patterns by computing node outputs in all network layers and the max-

membership terms,max
pµɶ , for each premise axis. By observing the maximum stimulating level

of the term nodes max
pµɶ it can be verified whether they are greater or smaller than the

prescribed lower membership thresholdδ̂ . For those where the degree of fulfilment by

current MFs is less than a predefined threshold, or in other words the input vector is not

adequately spanned by current MFs (max
p

ˆµ < δɶ), network inserts a new membership function

in the respective term set and calculates its parameters (mean and deviation) according to eq

(3.30)(3.31). Let p,new p,new p,newA (,)µ σ denote the new MF

p,new p

p,new

p,new p,nearest

p,nearest

x (t 1)

x
.

x

+

+

µ = +

µ −
σ = σ

− µ

 (3.30)

57

Where

i,nearest i,nearest i,new i,nearest

i,nearest i,nearest i,new i,nearest

x h . if

x h . if

1
h [2Ln()]

+ +

+ +

+

=µ + σ µ >µ

=µ − σ µ <µ

=
Ω

 (3.31)

AndΩ exhibits the degree of overlapping between membership functions. In this case when at

least one new membership is created, then a new fuzzy rule is created by combining the new

memberships and an appropriate set of already existing memberships. The consequent

parameters (polynomial weights) of the new rule are initially defined by:

 d
0i iy (t 1) i 1,...,C= + =ω (3.32)

Where d
iy (t) is the desired output for the t’th input training instance. The remaining weight

parameter are set to zero (1i 2i Pi 0ω =ω = =ω =⋯).

In the case when max
i

ˆµ > δɶ meaning that the input vector is sufficiently covered by the existing

fuzzy membership functions, the term set remains unchanged.

In an alternative scenario where the degree of fulfilment by the membership functions is large

enough but the respective fuzzy rule is missing, a fuzzy rule is created by proper permutation of

term node coordinates.

Parameter fine tuning performed using the classic back-propagation algorithm. The back-

propagation (BP) method is a gradient based algorithm which is usually used to perform parameter

learning of both neural networks and fuzzy neural systems. BP is a simple, well established and

easily applicable optimization method for this scheme; the learning task is accomplished by

minimizing a single objective function, as shown in eq(3.33).

 T
t d d

1
e (y(t) y (t)) (y(t) y (t))

2
= − −ɶ ɶ (3.33)

 As training proceeds, parameter learning is simultaneously conducted to adjust the network

 parameters. The final updated equations are:

58

t t 1
jp jp

jp jp

p p jpdt
p C 2

jp jpp
i

i 1

e e
(t 1) (t)

(x (t))e
ˆ ˆ[y(t) y (t)] (f y(t))

−
µ µ

=

 ∂ ∂
µ + = µ − η + ζ ∂µ ∂µ
 µ − µ∂ = − × − × × ∂µ σ µ

∑
∑

 (3.34)

k
jp jp

jp

p p pjdk
p C 3

pj pjp
i

i 1

e
(t 1) (t) (t)

(x (k))e
[y(k) y (k)] (f y(k))

σ

=

 ∂
 σ + = σ − η

∂σ

 µ − µ∂ = − × − × ×∂σ σ

µ

∑
∑

ɶ ɶ

(3.35)

k
j p j p w

p j

jdk
pC

j p
i

i 1

jdk
C

0 j
i

i 1

e
(t 1) w (t)

e
[y (k) y (k)] . x (k)

e
[y (k) y (k)]

=

=

∂ ω + = − η ∂ ω

 µ∂ = − ×
 ∂ ω µ

 µ∂
 = − ×

∂ ω µ

∑

∑

ɶ

ɶ

 (3.36)

µη , ση and wη representing the mean, deviation and polynomial-weights learning rates

respectively and µζ is momentum which is used for updating means. Training is carried out on-

line on the basis of real-time data.

The predictive capability of above adaptive neuro-fuzzy system was tested on fungus growth in

comparison to conventional neural networks approaches. More specifically, the purpose of the

present work is (i) to develop an intelligent methodology based on neuro-fuzzy networks to predict

the combined effect of temperature, water activity and pH on the maximum specific growth rate of

Monascus ruber van Tieghem, and (ii) to compare the prediction accuracy of the proposed

intelligent scheme and classic neural networks

59

3.7 Case Study: Fungus Growth Modelling

Growth-predictive models are currently accepted as informative tools that assist rapid and cost-

effective assessment of microbial growth for product development, risk assessment, and education

purposes [61]. More recently, predictive microbiology has been used to forecast the growth of

spoilage micro-organisms in order to study the shelf life of a food product. Fungal spoilage of food

commodities causes significant economic losses. Although industrial standards have been greatly

improved in the last years, food spoilage by fungi is still a major concern for both food producers

and regulatory agencies. Today, there is a need for understanding fungal growth in foods,

particularly those factors associated with new manufacturing processing and packaging techniques

[62]. Fungal presence in food may adversely affect not only the organoleptic value of the

commodity but most importantly its nutritional value by producing toxic metabolites, thus a public

health risk is inevitable [63]. Improvement of food quality and safety, demands the development of

appropriate tools allowing prediction of fungal growth.

Polynomial models have been widely used in predictive microbiology for the quantitative

assessment of the effects of various environmental factors on fungal growth[64]. However, a

major disadvantage of these models is that they are developed from linear and quadratic

combinations of variables; use of such simplified models may not be justified. Neural networks

(NNs) have been deployed in recent years as an alternative to conventional statistical models, due

to their ability to describe highly complex and non-linear problems in many fields of science. The

NN-based methodologies have been applied in predictive food microbiology[65]. The main

characteristics of NNs, such as (i) non-linearity, allowing better fit to the data, (ii) noise-

insensitivity, providing more accurate predictions in the presence of uncertain data and

measurement errors, enabling application of the model to unknown data make them an interesting

tool in an area which is dominated by statistical analysis tools[66]. Several published works

indicate that neural network-based models produce better estimation of kinetic parameters of

micro-organisms than response surface models. In a recent study, NNs have been compared with

response surface models in modelling the growth rate of L. plantarum and E. coli. It was reported

that the NN approach outperformed the statistical models based on its lower standard error of

prediction (SEP) term, despite the fact that NN models had higher degree of complexity[67].

Monascus is an ascomycetous fungus traditionally used for the production of food colouring,

fermented foods and beverages in southern China, Taiwan, Japan, Thailand, Indonesia and the

60

Philippines[44]. Members of the genus can commonly survive heat treatments and grow under

reduced oxygen levels, resulting in food spoilage. Monascus ruber is a widespread ascomycetous

fungus in Europe, as it is common in silage and deteriorating grain. One characteristic of the genus

is the production of ascospores capable of surviving heat treatment. Subsequently they can grow

under reduced- oxygen environment and cause food spoilage. Spoilage may result from the

development of a mycelia mat on the surface of the olives, and from a softening of the fruits and

changes in the pH of the final product. Temperature, pH and water activity (aw) are generally

regarded as the principal controlling factors during fermentation and subsequent storage of table

olives. A combination of these factors could effectively control the growth of the fungus during

storage. Predictive modeling has been extensively used mainly to predict bacterial growth as a

function of environmental factors such as temperature, pH and Water Activity. However, model

development of filamentous fungal growth has not received the same level of attention as that of

bacterial growth. A few studies concerning fungal growth have dealt with the predictive modelling

approach[60].

This section illustrates the ability of the AFNN to perform combined structure and parameter

learning of a non-linear three input and one output system. The predictive capability of an adaptive

neuro-fuzzy system was tested to predict the combined effect of temperature, water activity and

pH on the maximum specific growth rate of Monascus ruber van Tieghem in comparison to

conventional neural networks approaches.

The three dimension input data is normalised in such a way that the maximum of each input

column is equal to 0.9 and minimum equal to 0.1. However the error evaluation is based on de-

normalised data. The fixed parameters of the system are defined in the form of a vector

w
ˆParam [, , , , ,] [0.001,0.0001,0.01,0.05,0.5,0.6]µ σ µ= η η η ζ Ω δ = . The rule base is automatically generated

along a model formed by the FNN input-output components. As can be seen from fig. 3.14, the

trained FN approximates the desired function quite accurately such that the observed output almost

completely overlaps the desired output.

61

 Fig 3.14– Training samples simulation results for Adaptive Fuzzy Neural Network

The training procedure starts with just one single rule and only one membership for each premise

axis as depicted in figure 3.15 (a). The total MFs inserted as a result of structure learning is shown

in figure 3.15 (b) and the final position of the MFs after imposing parameter learning and fine

tunings illustrated in figure 3.15(c), five MFs for temperature axis, four MFs for water –activity

and four

dedicated to pH axis. The exact centre positions and also deviation with and without parameter

learning are mentioned in table 3.1. Figure 3.16a, 3.16b and 3.16c depict each input pair and

output of AFNN, for this particular training case we attempted 63 pairs, the error measure is

decreasing until a MSE of 3.1623e-005 is finally achieved on training dataset.

At the end, the structure finalised with 16 epochs and 35 fuzzy rules. Observing the curves (figure

3.16) reveals that the maximum growth occurs in case of lower Water-Activity, mid-high

temperatures and in almost any pH depends on temperature and water activity, which of course

shows that pH does not play a significant role in growth comparing to other two. The error criteria

are as in table 3.2, the detailed definition of each error criterion can be found in appendix.

Training Samples

62

 TABLE 3.1 - Normalised means and deviations of all Membership Functions with and without

 parameter learning .

TABLE 3.2 - Adaptive Neuro-Fuzzy Error Coefficients for Training and Testing dataset

Without Parameter Learning With Parameter Learning

Temp.
Axis

Mean 0.1 0.3 0.5 0.7 0.9 0.0531 0.2530 0.4530 0.6529 0.8529

Dev. 0.08 0.08 0.08 0.08 0.08 0.0397 0.0396 0.0395 0.0395 0.0394

W.A.
Axis

Mean 0.1 0.45 0.77 0.9 ----- 0.0585 0.4089 0.7307 0.8558 ---------

Dev. 0.07 0.07 0.07 0.07 ----- 0.0323 0.0296 0.0269 0.0243 ---------

pH
Axis

Mean 0.1 0.36 0.63 0.9 ----- 0.1152 0.3818 0.6484 0.9150 ---------

Dev. 0.06 0.06 0.06 0.06 ----- 0.0808 0.0807 0.0806 0.0805 ---------

Error Coefficients

Training Testing

Mean Square Error 3.1623e-005 0.0818

Root Mean Square Error 0.0056 0.2860

Mean Absolute Error 0.0041 0.2215

Mean Absolute Relative Error 0.3095 3.5379

Coeff. of Determination 0.9999 0.8984

63

Fig 3.15 - (a) Initial membership functions for each normalized input.(b)-Memberships after
 structure learning process for each normalized input (c)- Final membership function
 together with parameter learning

64

Fig 3.16 – a) Temperature and Water Activity vs. estimated output curve for normalized training

 data and the actual output curve b) Predicted Temperature and PH output surface and
 actual output surface c) PH and Water Activity predicted and desired output surface.

A
ctu

al F
u

ng
u

s G
ro

w
th

Water-Activity Temperature

M
od

el o
u

tp
u

t F
u

ngu
s G

ro
w

th

Water-Activity Temperature

A
ctu

al F
u

n
gu

s G
ro

w
th

M
od

el ou
tp

u
t F

u
ng

u
s G

ro
w

th

A
ctu

al F
u

ng
u

s G
ro

w
th

M
o

d
el ou

tp
u

t F
u

ngu
s G

ro
w

th

pH Temperature
pH Temperature

pH Water-Activity pH Water-Activity

65

3.7.1 Fungus Growth Modelling By MLP

A three-input one-output Multi Layer Perceptron (MLP) has been designed to estimate the output.

MLP has a simple structure but as it shown in figure 3.17 it requires more than 17000 epochs to

achieve the desired output. The suggested network contains a single hidden layer (3 layer MLP)

comprises of 30 neurons with sigmoid as an activation function and Back propagation (BP)

training algorithm. The learning rate used here is 0.15=η and momentum is 0.45=ζ .

 Fig 3.17– Number of epochs and the related sum square error

 The training results demonstrated in figure 3.18 show the difference between the desired output

and observed output.

 Fig 3.18 -MLP training results for each input pattern

The final statistical error coefficients are logged in table 3.3.

Training Samples

O
utpu

t
T

raining B
lue

 –
 G

oa
l B

la
ck

66

 TABLE 3.3 – MLP Error coefficients for training and testing

3.7.2 Fungus Growth Modelling By OLS-RBF

In this section, we use OLS-RBF to model the fungus growth in accordance to three inputs

(temperature, water activity and pH). OLS-RBF networks approximate an unknown function by

locally constructing receptive fields around a set of centres, while these centres chosen by

Orthogonal Least Square (OLS) algorithm. The RBF network and the OLS algorithm have the

following fixed constants: The RBF is a Gaussian with width 0.8σ = and desired Error Reduction

Ratio set as 0.001ρ = .

 Error Coefficients Training

Testing

Mean Square Error
0.0080 0.1071

Root Mean Square Error
0.0895 0.3273

Mean Absolute Error
0.0753 0.3133

Mean Absolute Relative Error
4.4037 17.9191

Coefficient of Determination 2R 0.982 0.4283

67

 Fig 3.19- a) OLS-RBF regressors index and their contribution to error reduction
 b) OLS-RBF training results for each input pattern

The results are plotted in figure 3.19(a), the asterisks represent the regressor indices versus the

error ratio reduction, in this network 31 regressors has been chosen in the sequence of ;

{14,60,1,17,45,62,10,33,54,2,22,12,61,48,31,15,13,11,6,21,4,7,56,53,41,3,58,44,25,9,20}.This

sequence shows the data indices which are chosen to act as regressors, obviously selecting more

than 31 regressors cannot further improve the model quality significantly. The accuracy of the

function approximation shown in figure 3.19 (b). It is visible that the greater deviationσ is chosen

for the RBFs, the smaller number of regressors is used, however this reduction comes of the

expense of increasing MSE. Table 3.4 summarizes the estimated error values.

Training
O

utpu
t

Index of the regressors which contribute most to achieve minimum error

E
rror reduction ratio

b)

a)

68

 TABLE 3.4 – OLS-RBF Error coefficients for training and testing

According to Table 3.2, 3.3 and 3.4, the simulation results have shown that AFNN method

generates superior results and outperforms the other two.

Because the initial structure and weights of the neural network are set properly, FNN exhibits

faster convergence, it can be seen from the number of epochs the AFNN is a much faster algorithm

than Back Propagated MLP and RBF. RMSE values of the AFNN performed well for the training

and reasonably good for the testing data set based on both graphical plots and statistical indices. In

summary, the applied FNN training algorithm, as expected, well fitted to any microbiological

system. It serves as a better alternative to microbiological processes predictive modelling scheme

based on some of its interesting properties such as: containing only necessary number of rules, fast

convergence, simple structure, less training time and of course adjustable performance.

Error Coefficients Training

Testing

Mean Square Error 0.0027 0.0844

Root Mean Square Error 0.0516 0.2906

Mean Absolute Error 0.0442 0.2547

Mean Absolute Relative Error 2.7199 18.8620

Coefficient of Determination 2R
 0.9911 0.8999

69

Chapter 4

Wavelet Neural Networks

4.1 Time - Frequency Analysis

Many signals are non-stationary or in other words the spectrum of the signal can be time-varying.

Thus, the standard Fourier Transform is not useful for analysing the signal. It can be spotted in

many applications such as speech processing, in which we are interested in the frequency content

of a signal locally in time. In this scenario characterisation of non-stationary signals in the

frequency domain must therefore include the time dimension, which resulting in the time-

frequency analysis. In order to do that, we usually calculate a spectrum of a signal at sufficiently

short regular intervals of time. Taking an interval of time function is known as windowing which

is equivalent to multiplying the signal by a window function and taking Fourier Transform (FT) of

each segment, also called Short-Time Fourier Transform (STFT).

j2 ftSTFT (f ,) x (t)g (t)e dtπτ τ

∞
−= −

−∞
∫ (4.1)

It might seem that the time-frequency analysis is perfect, but having a closer look reveals the

problem behind the above equation. The problem is the width of the window. If we use a window

of infinite length, we return back to FT, which gives perfect frequency resolution, but no time

information. Likewise, in order to obtain the stationarity, a short enough window should be used,

in which the signal is stationary. The narrower we make the window, the better the time resolution,

and better the assumption of stationarity, but poorer the frequency resolution. The problem is as a

result of choosing a window function once, and freezes it, and recycling that window throughout

70

the entire analysis. A Multi-Resolution Analysis (MRA) which enables us to process data at

different scales or resolutions can be an ultimate solution to overcome this problem.

Characteristics localization of time series in spatial (or time) and frequency (or scale) domains can

be accomplished efficiently through wavelet decomposition. The power of wavelets for time series

analysis stems from three features : First, wavelet analysis can determine the sharp transitions

simultaneously in both frequency and time domains. Thus, wavelets can help identify nonlinear,

chaotic or fractal behaviour displayed in any signal. Second, wavelet analysis allows for an

effective representation of discontinuities in the chaotic time series. The wavelet representation of

information in the time series allows for its hierarchical decomposition. In this way, the

information can be analyzed in components of desired characteristics and at various levels of

details. Third, when the information in time series is transformed into the wavelet domain less

storage is required for its effective representation, resulting in computational efficiency for large

time series[68].

4.2 Principles of Wavelet Transform

Wavelets with oscillation of effectively finite duration look like a small wave [69] which means it

grows and decays in a finite time period as opposed to sinus and cosines used in FT who are big

waves[70] and they grow and decays repeatedly in over an infinite time period. The fundamental

idea behind wavelets is to analyse according to scale or Multi Resolution Analysis. The Wavelet

Transform, similar to the STFT, also maps a time function into a two-dimensional function of α

andτ (see eq 4.6). The parameter α is called the scale; it scales a function by compressing and

stretching it, temporal analysis is performed with a contracted, high-frequency version of the

wavelet, while frequency analysis is performed with a dilated, low-frequency version of the same

wavelet. τ is the translation of the wavelet function along the time axis. Wavelet analysis is

accomplished by first choosing a representative prototype function called the mother wavelet ϕ ,

or analyzing wavelet. A function (t)ϕ , defined over the real axis (,)−∞ +∞ is considered as

wavelet, if fulfils the following criteria

(i) The integral of ϕ is zero

 It ensures it has zero

 function makes above zeros, must be cancelled out by excursions below zero.

(ii) Finite energy of

(iii) Admissibility Condition,

invertible transform

Where f (f)ϕ is the Fourier transform of

One of the oldest and possibly simplest

named after A.Haar who developed it in 1910.

 (t)dt 0ϕ =∫

It ensures it has zero dc component, or in other words any excursions the wavelet

makes above zeros, must be cancelled out by excursions below zero.

Finite energy of the function. Function is leading to rapid decay toward zero with time.

 2(t)ϕ
+∞

−∞
< ∞∫

Admissibility Condition, is a requirement that should be fulfilled in order to have

invertible transform.

2

f

0

(f)
a df

fϕ

ϕ∞
≡ ∫ satisfies 0 aϕ< < ∞

is the Fourier transform of (t)ϕ .

and possibly simplest wavelet functions is the Haar wavelet(see figure

named after A.Haar who developed it in 1910. It is a step function by the definition

 Haar

1 0 x 0.5

(x) 1 0.5 x 1

0 else

+ ≤ ≤
ϕ ≡ − ≤ <

 Fig 4.1 – Haar Wavelet function

71

 (4.2)

any excursions the wavelet

makes above zeros, must be cancelled out by excursions below zero.

rapid decay toward zero with time.

 (4.3)

should be fulfilled in order to have

 (4.4)

wavelet(see figure 4.1),

It is a step function by the definition

 (4.5)

72

There are two main types of wavelet transforms: Continuous (CWT) and discrete (DWT). The first

is designed to work with functions defined over the entire horizontal axis ,whereas, DWT deals

with functions that are defined over a range of integers usually 0,1,...,Tτ = where T denotes the

number of values in the time series. The Continuous Wavelet Transform (CWT) of a signal x(t) is

as follows:

 ,

1 t
x, x(t) ()dt

−< >= ∫α τ
τϕ ϕ

αα
 (4.6)

where the 1/2−α is for energy normalisation across the different scales, and (t)ϕ are the so-called

Mother Wavelet functions that satisfy certain mathematical requirements explained earlier. Since it

is continuous, the parameters τ and α used for creating the wavelet family both vary

continuously. The idea of transform is, for a given dilation α and a translation τ of the mother

wavelet (t)ϕ to calculate the amplitude coefficient which makes ,α τϕ best fit the signal x(t) by

eq(4.6). By integrating with eq(4.6), we can demonstrate a picture of how wavelet function fits the

signal from one dilation to next one can be shown. By shifting τ , we can see how the nature of the

signal changes over time. The set of coefficients ,{ x, | 0, }< > > −∞ < < ∞α τϕ α τ is called the

CWT of x(t). CWT keeps all the information from main signal. If the wavelet function (t)ϕ fulfils

the admissibility condition and the original signal is energy limited, which means

2x (t)dt

∞

−∞
< ∞∫ (4.7)

The signal can be recovered from CWT coefficients by using the inverse transform

 , ,

0

1
x(t) x, (t)d d

∞ ∞

−∞ ≥

= < >∫ ∫ α τ τ α
α

ϕ ϕ α τ
α

 (4.8)

CWT and its computation is a very redundant presentation and impracticable and also may

consume significant amount of time and resources, depending on the resolution required as

parameters ,τ α are continuous variables. The wavelet transform is calculated by continuously

73

shifting a continuously scalable function over a signal and calculating the correlation between the

two. For most practical applications we would like to remove this redundancy like as it is always

easier to deal with lower volume amount of data. The Discrete Wavelet Transform (DWT)

overcomes this problem by a discrete grid of time-scale plane and is found to yield a fast

computation of Wavelet Transform[71]. We can, in fact, retain the key features of the transform by

only considering subsamples of the CWT. It is easy to be implemented and reduces the

computation time and resources required and leading to a discrete set of continuous basis functions.

Wavelet function in DWT introduced as below

 m/2 m
mn 0 0 0(t) a (a t n)ϕ ϕ τ− −= − (4.9)

 And therefore the discrete wavelet transform of signal x (t) will be

 mnDWT(m, n) x(t) (t)dtϕ= ∫

(12) 0a and 0τ are constants that determine the sampling intervals , e.g 0a 2= and 0 1τ = , for

having standard dyadic lattice. The perfect reconstruction achieved by

 mn
m n

x(t) DWT(m,n) (t)ϕ=∑∑ (4.10)

Figure 4.2 shows the DWT of a signal using Haar wavelet using the MATLAB Wavelet Toolbox.

The diagram shows the transform for dilation m of up to 3. The signal used has the mathematical

definition of

0.05x 0.5

2.186x 12.864 10 x 2

x(t) 4.246x 2 x 0

10e sin[(0.03x 0.7)x] 0 x 10− −

− − − ≤ < −

= − ≤ <
 + ≤ ≤

 (4.11)

74

 Fig 4.2 – DWT using Haar Wavelet

The last level of the transform, eliminates the high frequency components of the signal. Prior

transforms remove lower and lower frequency features from the signal and we finally left with an

approximation of the signal which is a lot smoother. This approximation indicates any underlying

trends and the overall shape of the signal.

As with the CWT, the original signal can be reconstructed fully from its DWT. The sub-sampling

performed at just dyadic scales, as a result of that, not only it seems to be a significant reduction in

analysis but also it does not incur any loss in data.

4.3 Wavelet Neural Network

In the past decades, neural networks have been established as a general approximation tool for

fitting nonlinear models from input-output data. A neural network derives its computing power

through its massively parallel distributed structure and its ability to learn. However, the

implementation of neural networks suffers from the lack of efficient constructive methods, both

for determining the parameters of neurons and for choosing network structures. ANNs have

limited ability to characterize local features of a time series, which are generally critical to

accurately classifying or modelling the series. Since these features are often localized in time

75

and/or frequency, employing wavelets enables the Neural Network to take advantage of the multi-

resolution analysis offered by wavelets to focus the network on these local features.

Wavelet techniques can offer added insight and performance in data analysis situations where

Fourier techniques have previously been used. The idea of using wavelets in neural networks has

been proposed by Zhang and Benveniste [1]. Zhang et al.[72] described a wavelet-based neural

network for function learning and estimation, and the structure of this network is similar to that of

the RBF network except that the radial functions are replaced by orthonormal scaling functions.

From the point of view of function representation, the traditional RBF networks can represent any

function that is in the space spanned by the family of basis functions. However, the basis functions

in the family are generally not orthogonal and are redundant. It means that the RBF network

representation for a given function is not unique and is probably not the most efficient. Bakshi and

Stephanopoulos creatively presented an orthogonal WNN for approximation and classification

based on multi-resolution analysis [73].

Wavelets have become a very active subject in many scientific and engineering research areas.

Especially, wavelet neural networks (WNN), inspired by both the feed-forward neural networks

and wavelet decompositions, have received considerable attention and have become a popular tool

for function approximation[74]. The main characteristic of WNNs is that, as opposed to classical

ANNs which use sigmoidal-based activation functions, they typically employ the DWT - which

are drawn from a family of orthonormal wavelets - as the activation function for the hidden layer

neurons instead of the usual sigmoid function. Each neuron in the hidden layer represents a

wavelet coefficient. Since the wavelet transform results in a sparse representation, not all of the

wavelet coefficients are necessary for an accurate reconstruction of the original signal. In fact, the

inclusion of all of the coefficients would likely cause over training of the neural network, and

result in poor convergence. For this reason, wavelet coefficients that do not contribute to the local

features of the signal are identified during the iterative training of the WNN, and their

corresponding neurons are pruned from the network . The simplest structure of WNN is very

similar to Neural Network as shown in figure 4.3 where each neuron is commonly applied to all

input variables. Here, the hidden layer consists of neurons, are usually referred to as wavelons.

76

 Fig 4.3 – Structure of wavelet neural network

The WNN consists of three layers: input layer, hidden layer and output layer. The connections

between input units and hidden units, and between hidden units and output units are called weights

jpv and jW respectively. In this WNN, the training procedure is described as follows:

• Initialising the dilation parameter jm , translation parameter jn and node connection

weights jpv , jW to some random values. All those random values are limited in the

interval (0, 1).

• Input data px (t) and the corresponding output valuesd
ty , where p varies from 1 to P,

representing the number of the input nodes, t represents the t’th data sample of training set,

and d represents the desired output state.

• The output value of the sample t, tŷ calculated with the following formula:

P
p

jp t jN
p 1

t j
j 1 j

v x m

ŷ W
n

=

=

 −
 = ϕ

∑
∑ (4.12)

ŷ

ϕ

ϕ

ϕ

ϕ

77

where ϕ is considered as mother wavelet, such as the Morlet wavelet filter which is

shown in figure 4.4, and is represented by

 2(x) cos(2 x) exp(0.5x)= −ϕ πβ (4.13)

 Fig 4.4 - Morlet Wavelet basis function

To reduce the error, jp j j jv , W , m , n are adjusted using v, W, m, n∆ ∆ ∆ ∆ .In the WNN, the

gradient descend algorithm is employed, through the following equations,

t
j j

j

t
jp jp

jp

t
j j

j

t
j j

j

E
W (t 1) W (t)

W (t)

E
v (t 1) v (t)

v (t)

E
m (t 1) m (t)

m (t)

E
n (t 1) n (t)

n (t)

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

 (4.14)

Where the error function E taken as:

M

d 2
t t t

t 1

1
ˆE (y y)

2 =

= −∑ (4.15)

78

M is standing for the data number of training set. η and ζ being the learning rate and the

momentum term respectively.

• The process continues until E satisfies the given error criteria, and the whole training of

the WNN is completed .

Incorporating the time-frequency localisation properties of wavelets and the learning abilities of

general neural network, WNN has shown its advantages over the regular methods such as NN for

complex nonlinear system modelling.

4.4 Proposed Structure Scheme (WNN-LCW)

As it has been already mentioned, two key problems in designing of WNN are how to determine

the WNN architecture and what learning algorithm can be effectively used for training the WNN.

These problems are related to determining an optimal WNN architecture, to arrange the windows

of wavelets, and to find the proper orthogonal or non-orthogonal wavelet basis.

The WNN is a kind of basis function neural network in the sense of that the wavelets consist of the

basis functions. Note that an intrinsic feature of the basis function networks is the localised

activation of the hidden layer units, so that the connection weights associated with the units can be

viewed as locally accurate piecewise constant models whose validity for a given input is indicated

by the activation functions. Compared to the MLP, this local capacity provides some advantages

such as the learning efficiency and the structure transparency. However, the problem of basis

function networks is also led by it. The aim of this part of research study is to investigate the

feasibility of utilising WNN methodology as an alternative to classical neural networks in the area

of food microbiology. The proposed, in this thesis, WNN scheme incorporates some modifications

compared to classic WNNs, in order to enhance its performance. A classic WNN employs

nonlinear wavelet basis functions (named wavelets) instead of using common sigmoid activation

functions. The output of the network is a weighted sum of a number of wavelet functions. In the

proposed linear-weights wavelet neural network (WNN-LCW), the connection weights between

the hidden layer neurons and output neurons are replaced by a local linear model, similar to the

output layer appeared in ANFIS neuro-fuzzy system. The output of the network is a weighted sum

of a number of wavelet functions. The linear-weights wavelet neural network (WNN-LCW) is an

improvement of wavelet neural network, in which the connection weights between the hidden

79

layer neurons and output neurons are replaced by a local linear model (similar to the TSK – as in

NF systems).

A WNN approximates any desired signal y(t) by generalizing a linear combination of a set of

daughter wavelets m,n(t)ϕ which are generated by step sizes dilation and translation m and n from

a mother wavelet with either of the forms below :

 m,n

m
m,n

t n
()

m

(2 t n)

ϕ ϕ

ϕ ϕ −

−=

= −
 (4.16)

Where m>0. Note that eq (4.16) is similar to eq(4.6) and eq(4.9) but without the energy

normalisation. For the n-dimensional input space, the multivariate wavelet basis function can be

calculated by the tensor product of P single wavelet basis functions as follows:

P

p
p 1

(x) (x)
=

= ∏ϕ ϕ (4.17)

Due to the crudeness of the local approximation, a large number of basis function units have to be

employed for system identification a given system. Two shortcomings of the wavelet neural

network are:

• For higher dimensional problems many hidden layer units are needed

• Due to the parameters inside the activation functions in the network more epochs should

be elapsed to achieve a particular accuracy [75-78].

In order to take advantage of the local capacity of the wavelet basis functions while not having too

many hidden units and reasonable number of epochs, an alternative type of wavelet neural network

has been adopted. Its output in the output layer is given by

N

j0 j1 1 jp p j
j 1

y (x ... x) (x)ω ω ω ϕ
=

= + + +∑ (4.18)

Where jx is the summation of product of weights and inputs from input layer to neuron j of hidden

layer. It is shown in figure 4.5

80

 Fig 4.5 – Linear Combination Weight Wavelet Neural Network Structure

Instead of static weights between hidden layer and output layer a linear combination of weights is

provided jW . The major motivations for introducing the linear weights are mainly i) They showed

good performances in TSK neuro-fuzzy systems ii) local linear models should provide a more

parsimonious interpolation in high-dimension spaces. The scale and translation parameters and

local linear model parameters and first-to-second layer weights are randomly initialised at the

beginning and are optimized by gradient descent backpropagation algorithm utilizing partial

derivatives and chain rule. The wavelet function adopted in hidden layer nodes is a modified

differentiable version of Morlet wavelet as appeared in eq(4.13). This wavelet is derived from a

function that is proportional to the cosine function and Gaussian probability density function. It is

non-orthogonal and has infinite support[79]. Substituting (4.16) in (4.13) the activation function of

j th wavelet node connected with the input data will be as follows:

2 2
2

2

x (t) n
()

m
ϕ −

N N
N

N

x (t) n
()

m
ϕ −

∑

1 10 11 1 1p pW x ... xω ω ω= + + +

2 20 21 1 2p pW x ... xω ω ω= + + +

N N0 N1 1 Np pW x ... xω ω ω= + + +

ŷ(t)
3x (t)

px (t)

2x (t)

1x (t)

1
1V

2
1V

p
NV

1
1V

p
2V

p
1V

1
kV

Layer 1 Layer 2 Layer 3

Bias

1 1
1

1

x (t) n
()

m
ϕ −

81

j 2

j

j j

x m
()

n
j j

m ,n j
j

x m
(x) cos(2 ())e

n

−

−−
= υϕ πβ (4.19)

.

4.4.1 The Hybrid parameter learning scheme

In the tuning phase, emphasis has been given to the efficient optimisation of the network’s

parameters. A hybrid learning approach has been adopted. As the proposed architecture consists of

linear and non-linear parts, a two-stage learning scheme, consisting of a recursive least-squares

(RLS) and the gradient descent (GD) methods has been applied.

The classical formula of least squares is in batch form, meaning that all measurements are

collected first and then processed simultaneously. Such a formula poses major computational

problems since the computational complexity is in the order of O(3Ω) which grows continuously

with the number of data collected[80], where Ω is the number of parameters to be estimated. To

increase the efficiency of LS algorithms, a recursive variant, known as Recursive Least Squares

(RLS), has been derived and is used to incrementally train a linear regression model.

The parameter learning is based on the training data after one-step-ahead prediction process is

accomplished. Motivated by the fact that many output layers weights of WNN are linear, thus, it

seems reasonable to employ the RLS technique to tune the parameters of the output layer during

training, along with Gradient Descent (GD) for other parameters. This class of hybrid learning can

speed up the learning process substantially and, simultaneously, enhance its stability[35]. We have

used a hybrid method of learning comprising the Recursive Least Square (RLS) and GD. The

parameters are divided into two categories; linear and non-linear parameters. For updating linear

parameters RLS is utilised and for non-linear ones GD algorithm seems the simplest option. Both

algorithms used such that that E in (4.15) should be minimised. Modifying (4.15) for single output

and a three-layer structure we have

 d 3 2
t t t

1
E (y O)

2
= −

t=1,…,M (4.20)

Where tOℓ is the output of the l’ th layer for t’th training sample. In a three layer structure 3
tO is

the final estimated output of the system and d
ty is the desired output for the same sample and M

82

represents total number of inputs. The hybrid-learning algorithm of Linear Weight WNN

combines the recursive least-squares (RLS) method and the back propagation gradient descent

(BP/GD) to identify the parameters.

1) RLS – In forward pass node outputs go until last layer and the linear weights identified by

RLS, given fixed values of Wavelet parameters, which the output can be expressed as a

linear combination of the linear parameters. The estimated linear parameters are known to

be globally optimal[81].

2) BP/GD – In backward pass we calculate the error signals recursively from the output layer

backward to the hidden and input nodes. Thus the wavelet parameters are fine tuned by

GD here.

For updating Linear Connection Weights elements 0(, ,)…j Pjω ω between third and second layer

first we need to make eq(4.21) linearized in terms of parameters and in order to do that the

following steps are taken

N

j j j
j 1

y W (x) (x)
=

=∑ ϕ (4.21)

1 01 11 1 P1 P

2 02 12 1 P2 P

N 0N 1N 1 PN P

W (x) x ... x

W (x) x ... x

W (x) x ... x

= + + +
 = + + +

 = + + +

⋮

ω ω ω
ω ω ω

ω ω ω

 (4.22)

Hence, we can re-write and expand equation (4.21) in the form of

N N N

0 j j j 1j 1 j j pj p j j
j 1 j 1 j 1

y (x) x (x) x (x)
= = =

= + + +∑ ∑ ∑⋯ω ϕ ω ϕ ω ϕ (4.21)

If we define

1 1 2 2 N N 1 1 1 1 2 2 1 N N

T
p 1 1 p 2 2 p N N

(x) [(x), (x), , (x), x (x), x (x), x (x),

x (x), x (x), x (x)]

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

Φ = ⋯ ⋯ ⋯

⋯
 (4.22)

And

 01 20 N0 11 21 N1 p1 p2 pN[, , , , , , , , , , , ,]θ ω ω ω ω ω ω ω ω ω= ⋯ ⋯ ⋯ ⋯ (4.23)

83

So that,

 Ty(x |) (x)θ = θ Φ (4.24)

To compute an estimate of the θ at each time step we use following equation

If we define an M P× matrix which consists of tx data vectors stacked on top of each other[82]

we have

1

2

()

()
()

()

T

T

M T

x

x
M

x

 Φ =

⋮

Where M is the total number of data vectors and P is the dimension of each data vector. In RLS a

type of Gaussian Newton algorithm is used to update the estimated parameters θ (consists of the

weights and thresholds)

 T
t(T) (T 1) K(T)(y (T) (T 1))θ = θ − + − Φ θ − (4.25)

Where ty is the desirable output and K(t) is the data dependent Kalman Gain or the updating step

size[83], given by :

T

S(T 1) (T)
K(t)

(T) P(T 1) (T)

− Φ=
λ + Φ − Φ

 (4.26)

The Covariance matrix S(t) is updated recursively according to

 1 TS(T) (I K(T) (T))S(T 1)−= λ − Φ − (4.27)

The initial value of the K(T) matrix, K(0), is set to zero and the initial value of S(T) matrix, S(0) is

set to Iϑ where I is the identity matrix and ϑ is a large positive number typically between 100-

10000. Small values of ϑ may cause slow learning and large ϑ may cause the estimated

parameters not to converge properly[83]. λ is called the forgetting factor is normally fixed to

constant value 0 1λ< ≤ which thorough this study we have considered it as 1.

84

Back propagation algorithm mentioned in chapter 3, has been used according to relevant updating

expressions appeared in 4.14, for wavelet parameters (j jm ,n). They are updated by using chain

rule and taking into account subscripts P and N denote the dimension of input and number of

hidden layer neurons respectively. The derivatives of the error function obtained by differentiating

the cost function with respect to each free tuneable parameter

23 3
jt t t t

3 3 2
j jt t j

23 3
jt t t t

3 3 2
j jt t j

OE E O I

n nO I O

OE E O I

m mO I O

 ∂∂ ∂ ∂ ∂
= × × ×

∂ ∂∂ ∂ ∂

∂∂ ∂ ∂ ∂ = × × ×∂ ∂∂ ∂ ∂

 p=1,..,P , j=1,..,N (4.28)

d 3t hidden
t t out j

j j

d 3t hidden
t t out j

j j

E f
(y O) f W

n n

E f
(y O) f W

m m

∂ ∂ ′= − − × × × ∂ ∂
 ∂ ∂ ′= − − × × ×
∂ ∂

 (4.29)

tI
ℓ and tOℓ are the input and output of layer l for the sample at time instance t respectively.

The output layer function - throughout this research - is linear, therefore it’s derivative against its

corresponding input from previous layer,outf ′ =1.

Where, by considering eq(4.19)

j j2 2

j j

j j2 2

j j

x n x nj
() ()

m m2
j j jhidden

j j j j

x n x nj j
() ()

m m2
j j j jhidden

2
j j j

2(x n)

x n m x nf 2
sin(2 ())e ()cos(2)e

n m m m

x n x n
()()

x n m m x nf 2 (x n)
sin(2 ())e ()cos(2)e

m m m m

− −
− −

− −
− −

−
 − −∂ = +
 ∂
 − −
 − −∂ −= +

∂

υ υ

υ υ

πβ πβ πβ
υ

πβ πβ πβ
υ

 (4.30)

j j j

j j j

n (t 1) n (t) n

m (t 1) m (t) m

+ = + ∆
 + = + ∆

 (4.31)

 Where

85

j n j

j

j m j
j

E
n n (t 1)

n

E
m m (t 1)

m

∂∆ = + − ∂
 ∂∆ = + −
 ∂

η ζ

η ζ
 (4.32)

Similarly, the updated law of connection weights between input and wavelet layer weights (ijv) is

given as follow

2 23 3
j jt t t t

3 3 2 2
jp t t j j jp

O IE E O I

v O I O I v

∂ ∂∂ ∂ ∂ ∂
= × × × ×

∂ ∂ ∂ ∂ ∂ ∂
 p=1,..,P ,j=1,..,N (4.33)

 jd 3t
t t out j pt

jp j

E
(y O) f W x

x

∂∂ ′= − − × × × ×
∂ ∂

ϕ
ω

By getting the first deviation from (18)

j j2 2

j j

x n x n
() ()

m m
j j j

j j j j j

x n x n2 2x
sin(2)e cos(2)e

x m m m m

− −
− −

∂ − −
= − −

∂
υ υ

ϕ πβ πβ πβ
υ

 (4.34)

 jp jp jpv (t 1) v (t) v+ = + ∆ (4.35)

Where

 jp v jp
jp

E
v v (t 1)

v

∂∆ = + −
∂

η ζ (4.36)

The mη , nη and vη represent learning rates for m, n and v respectively and ζ is the momentum.

As we can see from above discussed equations, the use of Linear Combination Weights proposed

in this thesis, does not complicate the implementation of the tuning procedures significantly,

providing at the same time a higher rate of convergence and better accuracy.

4.4.2 Case Analysis - Prediction of pressure inactivation of Listeria monocytogenes in
 whole milk

Listeria monocytogenes is a ubiquitous food-borne pathogen associated with outbreaks of

listeriosis from consumption of various food commodities such as vegetables, dairy products,

seafood and meat[84]. The pathogen is of great health concern for the food industry because it is

characterised by high mortality rates, especially in pregnant women, neonates, elderly and

immune-compromised[85]. The pathogen can grow at refrigeration temperatures and survive in

86

foods for prolonged periods of time under adverse conditions[86]. It is a very hardy micro-

organism that can grow over a wide range of pH values (4.3 to 9.1) and temperature range from 0

to 45 °C. In addition, it is relatively resistant to desiccation and can grow at aw values as low as

0.90 [87]. There has been continued interest in the food industry in using high hydrostatic

pressure processing as a non-thermal preservation technique. Its primary advantage is that it can

inactivate microorganisms and certain detrimental enzymes at ambient temperatures, and thus

avoid the effects of cooking temperatures on various food quality attributes, such as nutritional

qualities, flavour and taste. Although the inactivation kinetics of microorganisms using heat has

been extensively studied, information on the inactivation kinetics of microorganisms under high

pressure, especially under simultaneous application of pressure and other processing techniques, is

still limited. Accurate prediction of the effectiveness of high pressure processing against

foodborne pathogens based on inactivation kinetics is essential to permit production of safe

products. The overall objective of this study is to design one-step ahead predictive schemes to

model the survival of L. monocytogenes in ultra high temperature (UHT) whole milk during high

pressure treatment using the proposed WNN-LCW structure. Its performance will be judged

against a MLP and a linear PLS regression model. Two nonlinear conventional statistical models

(Weibull, Gompertz) used in predictive food microbiology will be also considered and an

evaluation will be made to compare the goodness-of-fit of these models. L. monocytogenes NCTC

10527 from the collection of the Laboratory of Microbiology and Biotechnology of Foods were

used throughout this study. The data for different pressures, (300, 350, 400, 450, 500, 550 and 600

MPa) were provided by Agricultural University of Athens, Greece.

4.4.3 Initialisation of the network parameters

Initialising the wavelet network parameters is an important issue. Similar to Radial Basis Function

networks (and in contrast to neural networks using sigmoidal functions), a random initialisation of

all the parameters to small values (as usually done with neural networks) is not desirable since this

may make some wavelets too local (small dilations) and make the components of the gradient of

the cost function very small in areas of interest. In general, one wants to take advantage of the

input space domains where the wavelets are not zero.

87

We denote by p pa ,b the domain containing the values of the thp component of the input vectors

of the examples. We initialise the vector m of wavelet j at the centre of the parallelepiped defined

by intervals{ } ()1
, :

2
 = + p p jp p pa b m a b . The dilation parameters are initialised to the value

()0.2 −p pb a in order to guarantee that the wavelets extend initially over the whole input domain.

Throughout this research we have used0.5 β = and 1=υ as the optimal choice for our dataset.

The remaining parameters are initialised to small random values.

4.4.4 Dynamic System Identification

In nonlinear systems prediction, the purpose of modelling is different for different applications. In

many cases the data are ill-conditioned and the support of delayed versions of outputs and inputs

are needed to achieve the desired accuracy, which make us to switch from static system modelling

to dynamic system modelling.

In general, dynamic systems are complex and nonlinear. An important step in nonlinear systems

identification is the development of a nonlinear model. In recent years, computational-intelligence

techniques, such as neural networks, fuzzy logic and combined hybrid systems algorithms have

become very effective tools of identification of nonlinear plants. The problem of identification

consists of choosing an identification model and adjusting the parameters, such that the response

of the model approximates the response of the real system to the same input. In the framework of

this research study, the proposed WNN-LCW structure will be utilised as a nonlinear model.

Different methods have been developed in the literature for nonlinear system identification. These

methods use a parameterised model. The parameters are updated to minimise an output

identification error. A wide class of nonlinear dynamic systems with an input u and an output can

be described by the models mentioned in Chapter 2, generally defined as

 m ky (k) f ((x),)ϕϕϕϕ= Θ

Where, my (k) is the output of the model, k(x)ϕϕϕϕ is the regressor vector and Θ includes all the

weights and other wavelet parameters in the network. Depending on the choice of the regressors in

k(x)ϕϕϕϕ , different models can be derived [8]

• NARX(non-linear Autoregressive with eXogenous inputs) which is series parallel model.

88

As figure 4.6a illustrates, it means the outputs of the actual plant are used as input to the

model. Only one step ahead prediction is possible(fig 4.6b). The model said to have

external dynamics.

 ()u y(k) u(k), u(k 1), u(k 2),..., u(k n), y(k 1), y(k 2),..., y(k n)ϕ = − − − − − − (4.37)

• NOE(Non-linear Output Error) which is parallel model. It means the model output itself

create time-lagged inputs, as depicted in fig 4.6c. This model can be considered as fully

recurrent model. The parallel model is able to give predictions over a short period of time.

The model is said to have internal dynamics.

 ()u m m m y(k) u(k),u(k 1),u(k 2),...,u(k n), y (k 1), y (k 2),..., y (k n)ϕ = − − − − − − (4.38)

In both cases the prediction error of the model, compared with the true plant outputs are used as a

measure to optimise the model parameters. For dynamic systems, the model must have some way

to implement time lags. In other words, some memory function must be present in the model. In

modelling using computational intelligence schemes, such as neural networks, neuro-fuzzy

systems, WNNs, this can be done in two ways: either, delayed inputs and outputs are used as extra

external inputs, or some memory is included in the individual neurons.

Models with external dynamics can be seen as one-step-ahead predictors. Models with internal

dynamics are best used for simulation purposes, as the model doesn’t need the true plant outputs.

The latter case has a higher potential for output errors in the long term. the prediction error can

accumulate during iteration and larger error can occur[88]. This is certainly the case for nonlinear

systems, where the internal nonlinearities can drive the system into an unstable state. Since for

nonlinear problems the complexity usually increases strongly with the input space dimensionality

(curse of dimensionality) the application of lower dimensional NARX or NOE models is more

widespread. One drawback of these models is that the choice of the dynamic order,, is crucial for

the performance and really efficient methods for its determination are not available. Often the user

is left with a trial-and-error approach.

89

 Fig 4.6 – a) Series Parallel dynamic system b) One step a head prediction c)Parallel mode

1z−

One-step-
A h e a d
prediction
a t t ime t

y(t)

y(t-u+1)

x(t-d)

1z−

One-step-
A h e a d
prediction
at time t+1

1z−

y(t-u+2)
x(t-d+1)

1z−

One-step-
A h e a d
prediction
a t t i m e
t + k + 1

1z−

1z−

()my t 1+ ()my t 2+ y(t+k-1)

x(t-d+k-1)

x(t-d+k+ u′)

y(t+k-u) ()my t k+

y(t+1)

90

4.4.5 Model Development

4.4.5.1 Primary Modelling

The survival curves of L. monocytogenes during high pressure inactivation were fitted with two

primary models to determine the kinetic parameters of L. monocytogenes in UHT whole milk. The

first model applied was the re-parameterized Gompertz equation[89], determined by the following

equation

()10 Patho 10 Patho s

k e
log N (t) log N (0) A exp exp t t 1

A

 ⋅ = + ⋅ − ⋅ − +
 (4.39)

where ts [min] is the duration of the shoulder, k [min-1] is the maximum specific inactivation rate,

PathoN (0) [log CFU ml-1] is the initial population density of the pathogen, and A [log CFU ml-1] is

the difference between the initial and residual population.

The second model was based on the modified Weibull equation[90] which can be defined as:

()
ht

10 Patho 10 Patho res reslog N (t) log N (0) N 10

 − δ

 = − ⋅ + Ν

 (4.40)

where δ [min] is a scale parameter denoting the time for the first decimal reduction, and h

[dimensionless unit] is the shape factor of the curve. For h > 1, convex curves are obtained

whereas for h < 1 concave curves are described. Finally, PathoN (0) and Nres [log CFU ml-1] are the

initial and residual population of the pathogen, respectively.

4.4.5.2 Non-Parametric Modelling

Partial least squares (PLS) regression, a multivariate calibration technique, projects the initial

input-output data down into a latent space, extracting a number of principal factors (also known as

91

latent variables) with an orthogonal structure, while capturing most of the variance in the original

data. In brief, it can be expressed as a bilinear decomposition of both X and Y as:

 T
XX E= +TW (4.41)

 and

T

YY E= +UQ (4.42)

such that the scores in the X-matrix and the scores of the yet unexplained part of Y have maximum

covariance. Here, T and W, U and Q are the vectors of X and Y PLS scores and loadings (weights),

respectively, while EX, EY are the X and Y residuals[91]. The decomposition models of X and Y

and the expression relating these models through regression constitute the linear PLS regression

model. In case of one Y-variable,y , the model can be expressed as a regression equation

 y bX E= + (4.43)

where b is the regression coefficient. The PLS model is developed in two stages; the initial dataset

is divided into training and testing subsets. The former dataset is used to build the models and

compute a set of regression coefficients (bPLS), which are subsequently used to make a prediction

of the dependent variable in the test subset.

Multilayer Perceptron structure is probably the most widely used neural network paradigm and has

long proven nonlinear modelling capabilities/performance. The knowledge of the network is stored

in the weights connecting the artificial neurons. The massively interconnected structure of the

MLP provides a great number of these weights and as such a great capacity for storing complex

information. The generalised delta rule is applied for adjusting the weights of the feedforward

networks in order to minimise a predetermined cost error function.

4.5.6 Model Validation

The Wavelet network, and PLS and MLP schemes as well as the statistical models were

comparatively evaluated to determine whether they could successfully predict the responses of the

pathogen at pressure levels other than those initially selected for model development. For this

reason, two different high pressure levels, within the range employed to develop the models, were

selected namely 400 and 500 MPa. At predetermined time intervals the surviving population of L.

monocytogenes was enumerated and compared with the survival curves predicted by the developed

in this study models. The accuracy of the prediction was estimated by the calculation of the bias

92

(Bf) and accuracy (Af) factors [92], the regression coefficient (R2), the standard error of prediction

(SEP), the mean absolute percentage error (MAPE) and the root mean square error (RMSE) .

The shapes of the survival curves that follow those experimental data change considerably

depending on the treatment pressure levels. However, in all pressure levels assayed, a clear

inactivation pattern was observed including a lag phase (or shoulder), a log-linear and a tailing

phase. As expected, the duration of shoulder was pressure dependent, so higher pressures resulted

in lower shoulder time. At different pressure levels, survival curves showed a pronounced

curvature and tailing indicating that a small population of the pathogen could resist pressurization

and eventually survive in milk.

 Fig 4.7 – Survival Curves of Lysteria in various pressures

The estimated kinetic parameters of inactivation based on the models of re-parameterized

Gompertz and modified Weibull are presented in Table 4.1. All models fitted the experimental

data well as can be inferred by the high values of regression coefficient (R2 > 0.97) and low values

of root mean square error (RMSE < 0.45). Figure 4.18 (a & b) illustrates the models’ performance

on the training data.

The prediction capability of those models was considered by adopting a two-step standard

procedure commonly applied in predictive microbiology [56]. Initially, the primary models (i.e.,

Gompertz, Weibull) were fitted to high pressure inactivation data and the respective kinetic

93

parameters were calculated (Table 4.1). Subsequently, the derived kinetic parameters were related

to high pressure levels through the development of first or second order secondary polynomial

models (Table 4.2) and their new estimates were determined at 400 and 500 MPa, which have

been pre-selected for model validation. For the kinetic parameters which did not present a clear

trend with pressure, their respective values at 400 and 500 MPa were determined by interpolation.

TABLE 4.1 - Parametersa and statistics of secondary models for the effect of high pressure on the
 kinetic parameters of Listeria monocytogenes in UHT whole milk.

Model type Parameter Equation Estimated value h R2

Gompertz b

kmax

2

1 2 3k a P a P a= ⋅ + ⋅ +max

5 5
1

2

3

4 43 10 0 71 10

0 034 0 007

6 908 1 674

a

a

a

− −= ⋅ ± ⋅
= − ±
= ±

. .

. .

. .

0.009

0.005

0.002

0.981

Weibull c
δ

1 2a T aδ = ⋅ +ln() 1

2

0 009 0 001

6 175 0 517

a

a

= − ±
= ±

. .

. .

0.006

0.011

0.977

a Data are values ± standard deviation.
b The parameters N0, A and ts of the Gompertz model at 400 and 500 MPa were determined
 by interpolation.
c The parameters N0, Nres and the shape factor (h) of the Weibull model at 400 and 500 MPa were determined
by interpolation.

Finally, based on the new values of the kinetic parameters at the selected pressures for validation,

equations 4.39 and 4.40 were refitted and compared with survival data of the pathogen at the same

pressures, in order to determine the potential of the models for generalisation, i.e., their ability to

foresee survival curves at pressures for which there was no previous training. The performance

against the unknown 400MPa and 500MPa curves is illustrated in figure 4.9 and 4.10, respectively.

4

5

6

7

8

4

5

6

7

8

(a) (b)

94

Fig 4.8 - Survival curves of Listeria monocytogenes in UHT whole milk during high pressure
processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated by the re-
parameterised Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and
the wavelet neural network . Data points are mean values of two independent experiments with
two replications each

lo
g

N
 (

C
F

U
 m

l-1
)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

(c)

lo
g

N
 (

C
F

U
 m

l-1
)

95

TABLE 4.2 -Parameter estimationa and statistical indices of the different models used for fitting the survival of L.
 monocytogenes in whole UHT milk during high pressure treatment.

Model type log10 N0
[CFU ml-1]

log10 A
b

[CFU ml-1]
log10 Nres

[CFU ml-1]
kmax

[min-1]
ts

[min]
δ

[min]
h
[-]

RMSE R2

Gompertz
 350 MPa 6.90 ± 0.16 4.08 ± 0.59 0.41 ± 0.03 10.07 ± 2.51 0.307 0.969
450 MPa 6.99 ± 0.42 4.15 ± 0.69 0.39 ± 0.04 2.25 ± 0.16 0.313 0.971
550 MPa 7.36 ± 0.32 6.21 ± 0.18 1.68 ± 0.17 - c 0.432 0.987
600 MPa 6.51 ± 0.58 6.30 ± 0.96 2.26 ± 0.16 - 0.311 0.993

Weibull
 350 MPa 7.00 ± 0.15 3.27 ± 0.25 14.53 ± 1.88 1.88 ±0.40 0.266 0.977

 450 MPa 6.94 ± 0.24 3.09 ± 0.25 7.71 ± 2.14 1.13 ± 0.28 0.318 0.970
550 MPa 6.74 ± 0.37 0.61 ± 0.48 2.05 ± 0.74 1.24 ± 0.34 0.4136 0.988
600 MPa 6.41 ± 0.10 0.65 ± 0.10 1.46 ± 0.14 1.11 ± 0.07 0.102 0.999

Wavelet
 350 MPa 0.168 0.994
450 MPa 0.249 0.986
550 MPa 0.200 0.995
600 MPa 0.110 0.998

a Data are values ± standard deviation.
b A is the difference between the initial population (N0) and the residual population (Nres).
c No shoulder was observed.

96

Fig 4.9- Observed values and predicted survival curves of Listeria monocytogenes in UHT whole
milk during high pressure treatment at 400 MPa, generated by the reparameterized Gompertz
model (a), the modified Weibull model (b), and the wavelet neural network (c). Data points are
mean values of two independent experiments with two replications each.

Fig 4.10- Observed values and predicted survival curves of Listeria monocytogenes in UHT whole
milk during high pressure treatment at 500 MPa, generated by the reparameterized Gompertz
model (a), the modified Weibull model (b), and the wavelet neural network (c). Data points are
mean values of two independent experiments with two replications each.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

Wavelet

Weibull

Gompertz

Hold time at pressure (min)

lo
g

N

-1

(a) (b) (c)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Wavelet

Weibull

Gompertz

Hold time at pressure (min)

Lo
g

N

-1

(a) (b)

(c)

97

It must be pointed out that despite the plethora of proposed inactivation models in the literature

none is flexible enough to account for all changes of shapes with the intensity of stress[93]. The

selected models were able to describe the survival of the pathogen at 350, 450, 550, and 600 MPa

quite accurately. However, the prediction at 400 and 500 MPa was not very accurate as the

experimental values of the pathogen showed a pattern which possibly indicated the presence of

two subpopulations, one sensitive to high pressure that was inactivated within the first 10 min of

the process (figure. 4.9 and 4.10) and a second more resistant to the applied stress. The

discrepancy observed in the prediction at these pressure levels could be attributed to the fact that

both models did not account for the presence of a mixed population of the pathogen with a

variable resistant to high pressure.

Small data set conditions exist in many fields, such as food analysis, disease diagnosis, fault

diagnosis or deficiency detection in mechanics, aviation and navigation, etc. The main reason that

small data sets cannot provide enough information as that of large ones is that there exist gaps

between samples; even the domain of samples cannot be ensured[94]. It is hard to catch the pattern

of high order non-linear functions by a standard feed-forward neural network-like scheme, with a

small sample set, since they have shown weakness in providing sufficient information for forming

population patterns. Lacking the whole picture of a function means the network cannot precisely

identify which sections of the function are ascending and which sections are descending. Hence,

for learning systems that lack sufficient data, the knowledge learned is often unacceptably rough

or unreliable.

How to fill up the gaps is the primary problem to be solved. Inspired by the way the RBF network

approximates a nonlinear function through Gaussian local-basis functions, we employed such a

network to each “survival curve” defined from the experimental data. The aim was to associate

each local-basis-function to each sample, and therefore easy then to generate new data that satisfy

each “survival curve”. An RBF network using the regularised orthogonal least squares learning

algorithm has been employed for this task [44].

The inputs included the type of pressure level and the sampling time-step, while the output was

related to the bacteria counts. Each “continuous survival curve” has been verified against the real

experimental samples.

For each pressure level case, an RBF network has been associated. As the real number of samples

for each pressure level is very limited, we associated each RBF centre with the real samples. Then

98

with a constant time-step 0.5 min, through a 2-inputs network, continuous survival curve” has

been obtained for each pressure level, as shown in figure 4.11.

 Fig 4.11 – Continuous Survival curves of Lysteria monocytogenes

Based on these continuous datasets, the capabilities of proposed WNN-LCW architecture has been

verified as a one-step-ahead prediction system. Comparative studies have been conducted with the

utilisation of a PLS regression model and an MLP neural network. Pressure levels of 400 MPa and

500 MPa have been used as testing datasets, while the remaining levels as training ones.

The PLS model was initially constructed using the “continuous survival curve” dataset which is

comprised of two inputs and one output. Two latent variables were selected and the resulting

equation has the following form

 1 1 212 8684247 0 0150321224 0 1096417853Y . . X . X= − − (4.44)

Figure 4.12 illustrates the performance of the produced linear model on the testing data curves.

Obviously, the dynamic behaviour of the Listeria survival curve cannot be adequately modelled by

a static linear system.

99

 Fig 4.12 – PLS regression model on a two-input case

Following the principles of nonlinear identification, NARX models using the WNN-LCW, the

MLP and the PLS schemes have been developed. The training dataset, consisting of 204 data from

350, 450, 550, and 600 MPa “continuous survival curves”, was employed, while 81 data from

400MPa and 51 data from 500MPa curves were kept for validation.

The following structure has been adopted as a NARX model:

()Count(t 1),Count(t 2),MPa,Sample_Time(t),Sample_Time(t 1),Sample_Time(t 2)Count(t) f − − − −=
 (4.45)

During trials, it has been found that the model is sensitive to the previous number of bacteria

counts, proving thus its dynamic behaviour.

In the proposed WNN-LCW, 25 wavelet Morlet functions have been used, while the network’s

learning parameter vector was m n v[, , ,] [0.001,0.17,0.17,0.2]= =λ η η η ζ . The hybrid parameter

learning algorithm has been utilised, which resulted a high speed training process, i.e. less than 10

epochs. Figure 4.18d shows the performance of the WNN model, especially against the real

experimental points from the training survival curves. The fitting performance of the developed

WNN was comparable with the statistical models based on the comparison of the same indices

(Table 4.1), as the root mean square error index ranged from 0.110 to 0.249, while the values of R2

were also high (0.986-0.988). The high fitting performance of the WNN approach was expected as

the network has been trained on these particular datasets. WNN and MLP schemes have been

100

implemented using MATLAB (ver. R2009, Mathworks). Results showed that the WNN was more

effective in predicting the response of the pathogen compared with statistical models as illustrated

by graphical plots (figure 4.13 and 4.14) implying that although the WNN has been trained on

different survival curves, it has managed to learn the underlying process with high accuracy.

In a similar way, an MLP neural network using the classic backpropagation learning algorithm

was constructed with the same input structure as WNN. Through trial and error, eventually two

hidden layers with 12 and 8 nodes respectively have been employed. The learning algorithm was

responsible for the network’s slow convergence, which took approximately 5000 epochs. Figure

4.11& 4.12 illustrate the MLP performance for both testing survival curves.

The PLS-NARX scheme was certainly much more accurate from the previous simple PLS case.

Like WNN and MLP, the PLS regression model was constructed to anticipate the dynamic nature

of the specific problem, by including past values of the Listeria counts as inputs. The calculated by

XLSTAT software, equation has the following form

1 1 2 3 4 5 60 1646857 0 000172 0 0055 0 0055 0 0055 0 955 1 9412Y . . X . X . X . X . X . X= − − − − − + (4.46)

Figure 4.13 & 4.14 illustrate the PLS performance for both testing survival curves. With regard to

the assessment of the quality of the overall model predictions various statistical criteria were

calculated at all the tested validation experiments.

101

Fig 4.13- Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa
 fitted with different modelling schemes

Fig 4.14- Survival curves of Listeria monocytogenes during high pressure treatment at 500
 fitted with different modelling schemes

102

The regression coefficient (2R) is often used as an overall measure of the prediction attained. It

measures the fraction of the variation about the mean that is explained by a model. The higher the

value (20 1R≤ ≤), the better is the prediction by the model[95]. The wavelet neural network

developed herein was found to yield better agreement with experimental observations for the test

data set compared to data predicted by the MLP and the PLS model. The values of the coefficient

of determination (2R), as shown in Table 4.3, indicate a very good fit of the experimental data

from the WNN-based approach.

 TABLE 4.3- Performance indices of various methods for Lysteria Monocytogen data

Statistical index Model Testing Data sets

400MPa 500MPa
Coefficient of determination (R2) MLP 0.9526 0.9933

WNN 0.9935 0.9996
PLS 0.9796 0.9966

Root mean square error (RMSE) MLP 0.3830 0.1733

WNN 0.1627 0.1128
PLS 0.5532 0.2246

Mean absolute percentage error
(MAPE) (%)

MLP 23.2939 2.7674
WNN 5.3072 2.0750
PLS 32.8082 5.3354

Mean Square Error MLP 0.1467 0.0300

WNN 0.0265 0.0127
PLS 0.3061 0.0504

Standard error of prediction
(SEP) (%)

MLP 15.9921 3.9301
WNN 6.7934 2.5569
PLS 23.1004 5.0930

Bias factor (Bf)

MLP 1.0177 0.9751
WNN 0.9750 0.9792
PLS 1.2960 1.0491

Accuracy factor (Af)

MLP 1.2182 1.0288
WNN 1.0551 1.0212
PLS 1.2983 1.0525

103

However, 2R is a suitable criterion for model comparison on the assumption that the error is

normally distributed and not dependent on the mean value; In fact, the distribution of the error is

not clearly known in the case of microbial/bacteria growth, so this term must be used with caution,

particularly in non-linear regression models[96] and hence additional indices must be employed

for model comparison.

The RMSE values of the WNN were also significantly better for the two “test” survival curves, i.e.

400MPa and 500MPa. This index is calculated between the desired and output values and then

averaged across all data and it can be used as an estimation of the goodness of fit of the models. It

can also provide information about how consistent the model would be in the long run . The

RMSE values for both networks (WNN and MLP) were lower those from the linear PLS model,

indicating the ability of non-linear networks to make better predictions on data for which there was

no previous training.

The MAPE term provides information about the average deviation from the observed value. The

relevant figures from Table 4.3 indicate again better performance for WNN. Especially, the high-

nonlinear features of 400MPA curve proved to be difficult to be modelled from the PLS and MLP

models. The SEP index is determined as the relative deviation of the mean prediction values and it

has the advantage of being independent on the magnitude of the measurements [96]. Based on this

index, the WNN scheme was superior from both MLP and PLS models for the two test curves.

The benefits of mathematical models to predict pathogen growth, survival and inactivation in

foods include the ability to account for changes in microbial load in food as a result of

environment and handling; the use of predictive microbiology in management of foodborne

hazards. The usual measures of goodness-of-fit for model comparison in food microbiology is

performed by calculating in addition to squared correlation coefficient (2R) the bias (fB) and

accuracy (fA) indices as proposed by Ross[92]. Bias factor is a multiplicative factor that

compares model predictions and is used to determine whether the model over- or under-predicts

the response time of bacterial growth. A fB greater than 1.0 indicates that a growth model is fail-

dangerous. Conversely, a fB less than 1.0 generally indicates that a growth model is fail-safe.

Perfect agreement between predictions and observations would lead to fB of 1. The accuracy

104

factor (fA), is a simple multiplicative factor indicates the spread of results about the prediction. A

value of one indicates that there is perfect agreement between all the predicted and measured

values. Table 4.3 also shows the bias and accuracy factor values obtained for the two testing

survival curves. The fB parameters for both WNN and MLP were superior to those of the PLS,

however the WNN was just under the optimal 1.0, providing thus a fail-safe condition. The

relevant figures for fA indicate again better performances for the WNN scheme, which is more

evident at the 400MPa survival curve. In order to further justify the plausibility of embedding

Local Linear weights along with Hybrid learning algorithm, a comparison has been performed to

verify the proposed scheme’s performance over traditional WNNs. Table 4.4 and figure 4.15 &

4.16 illustrate the related results.

 TABLE 4.4 – Convergence comparison of existing models on prediction problem

 Epochs

(Ave.)

Independent

Parameters.

 Target Training

 MSE

WNN-LCW by GD

only

721 375 0.00005

WNN-LCW Using

Hybrid

7 375 0.00005

WNN-Static weights 1620 225 0.00005

105

 Fig 4.15- Convergence speed comparison by number of epochs using pure GD

 Fig 4.16 - Convergence speed using Hybrid Learning method

4.5 Proposed Structure Scheme II (MWNN-LCW)

For modelling the non-linear systems an alternative four-layered wavelet network structure is

proposed herby, which is comprised of an input layer, hidden (wavelet) layer, product layer and

106

finally output layer. Referring to figure 4.17, Layer 1 accepts the input variables which are in form

of T
1 2 px [x ,x ,..., x]= , while Layer 2 is used to calculate the wavelet “membership” values. In this

layer, each node performs a membership function and acts as an element for membership degree

calculation, where a wavelet function is adopted as the membership function. Generally, a WNN

approximates any desired signal y(t) by generalising a linear combination of a set of daughter

wavelets m,nϕ which are generated by step sizes dilation and translation and from a mother wavelet.

We adopt the wavelet function as its node function in MWNN-LCW in form of

m
m,n (2 t n)−= −ϕ ϕ . A modified differentiable version of Morlet wavelet deployed for j’th

wavelet node connection to the p’th input data, expressed as

jmp j 2
p

j
p

j j
pp

(2 x n)
m j

pm ,n
(x) cos(2 (2 x n))e

−− −
−= − υϕ πβ (4.52)

This wavelet is derived from a function that is proportional to the cosine function and Gaussian

probability density function. Its non-orthogonal, infinite support and maximum energy lies around

origin with the narrow band [97]. The nodes of Layer 3 are regarded as the “wavelet” rules in

association to the fuzzy rules in a neuro-fuzzy architecture. The number of the “wavelet”

membership functions for each input variable is equal to the number of “wavelet” inference rules.

These units are fixed, meaning that no modifiable parameter is associated with them. The

multiplicative inference (Larsen product operator) has been used [14], thus the output of this

inference layer is given by

j j
p p

P

j p pm ,n
p 1

(x) (x)
=

= ∏φ ϕ

 (4.53)

The proposed approach differs from the conventional fuzzy rule table approaches. In those models,

an input space is divided into 1 2 nK K K× × ×⋯ fuzzy subspaces, where, iK ,i 1,2, ,n= ⋯ is the

number of fuzzy subsets for the input variable. There is a fuzzy rule for each of these subspaces.

The main drawback of that approach is that the number of fuzzy rules increases exponentially with

respect to the number of inputs n. The fourth layer is connected to third layer via Linear

Combination Weights. The difference of this proposed scheme compared to the previous one,

includes the adoption of one extra layer, the multiplication layer. The proposed scheme has

107

similarities with the AFLS [16], in terms that this “multiplication” layer represents the fuzzy rules.

The scheme has some interest, as it is desirable to minimise the number of “wavelet” function

nodes, and this can be achieved by “clustering” them similarly as in the AFLS case.

 Fig 4.17 – Architecture of WNN with multiplication layer and Linear Weights

4.5.1 The parameter learning scheme

After the initial WNN is constructed, the parameters of the network are obtained via minimisation

of the cost function E after a number of training epochs according to desired MSE. The linear

parameters which are Linear Combination Weights have been updated exactly the same as the way

described in structure 1. However the only minor difference is that the Φ matrix is generated

1
Nm 1

1 N(2 x n)ϕ − −

∏

∑

∏

∏

1 10 11 1 1p pW x ... xω ω ω= + + +

2 20 21 1 2p pW x ... xω ω ω= + + +

N N0 N1 1 Np pW x ... xω ω ω= + + +

p
1m p

p 1(2 x n)ϕ − −

p
Nm p

p N(2 x n)ϕ − −

p
2m p

p 2(2 x n)ϕ − −

1
2m 1

1 2(2 x n)ϕ − −

1x

px

Layer 1 Layer 2 Layer 3 Layer 4

1
1m 1

1 1(2 x n)ϕ − −

108

according to output of Multiplication layer. For non-linear parameters, in this case it is also used

the steepest descending gradient method, hence, it is necessary to calculate the gradient vector
E

p

∂
∂

for all the trainable non-linear parameters. pjm and p
jn are the parameters that determine the

location of the centre (translation) and the width (dilation) of the wavelets. Using the Gradient-

based procedure we obtain the incremental updating algorithm of each parameter. Without any

major change, just in this case we have one layer more, so the observed output for sample t is4
tO .

Therefore the updating equations derived from proposed structure 1 can be modified accordingly.

The updating expressions are in accordance to following rules

3 3 24 4
j j pj

4 4 3 3 2
pj pjj j pj

3 3 24 4
j j pj

4 4 3 3 2
pj pjj j pj

O I OE E O I

m mO I O I O

O I OE E O I

n nO I O I O

 ∂ ∂ ∂∂ ∂ ∂ ∂= × × × × ×
∂ ∂∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂= × × × × ×∂ ∂∂ ∂ ∂ ∂ ∂

 (4.54)

p

pj p
pjd 4 i 1

t t out j
pj pj p pj

p

pj i
pjd 4 i 1

t t out j
pj pj p pj

(x)
E

(y O) f W
m (x) m

(x)
E

(y O) f W
n (x) n

p 1,.., P j 1,..., N

=

=

 ∂∂
 ′= − − × × × ×

∂ ∂

 ∂∂ ′= − − × × × ×∂ ∂

= =

∏

∏

ϕ ϕ
ϕ

ϕ ϕ
ϕ

 (4.55)

Where

m m2 2pj pj
pj pjpj pj

pj pj pj

m m2pj pj
pjpj

pj pj

m m(2 x n) (2 x n)
m m mpj pj

pj pj
pj

m(2 x n) (2 x
m mpj pj

pj pj
pj

x2 log(2)(2 x n)
x2 log(2)sin(2 (2 x n))e 2cos(2 (2 x n)) e

m

2(2 x n)
2 sin(2 (2 x n))e cos(2 (2 x n))e

n

− − − −
υ υ

− − −
υ

∂ϕ −
= πβ − − πβ −

∂ υ

∂ϕ −
= πβ πβ − + πβ −

∂ υ

2
pjn)−

υ

(4.56)

109

Following the same procedure mentioned for updating pjm and pjn , here also we can use

expressions (4.31) and (4.32).

4.5.2 Case Analysis and Simulation Results

In this section, the proposed model was applied to the same Milk-Listeria dataset, of course after

imposing the one-step-ahead-prediction defined earlier. The inputs included the type of pressure

level and the sampling time-step, while the output was related to the bacteria counts. Each

“continuous survival curve” has been verified against the real experimental samples. Based on

these continuous datasets, the capabilities of the proposed MWNN-LCW architecture has been

verified as a one-step-ahead prediction system. Pressure levels of 400 MPa and 500 MPa have

been used as testing datasets, while the remaining levels as training ones.

Following the principles of nonlinear identification, NARX models using the MWNN-LCW, the

MLP, the RBF and the Elman recurrent networks have been developed and comparative studies

have been conducted. The training dataset, consisting of 204 data from 350, 450, 550, and 600

MPa “continuous survival curves”, was employed, while 81 data from 400MPa and 51 data from

500MPa curves were kept for validation.

During trials, it has been found that the model is sensitive to the previous number of bacteria

counts, thus proving its dynamic behaviour. In the proposed MWNN-LCW, 6 Morlet wavelet

functions have been used, while the network’s learning parameter vector was

[]m n[, ,] 0.1,0.1,0.2λ = η η ζ = . The hybrid parameter learning algorithm has been utilised, which

resulted a quick training of 5 epochs. Figure 4.18d shows the performance of the WNN model,

especially against the real experimental points from the training survival curves. Following the

principles of nonlinear identification, NARX models using the MWNN-LCW, the MLP, the RBF

and the Elman recurrent networks have been developed. The training dataset, consisting of 204

data from 350, 450, 550, and 600 MPa “continuous survival curves”, was employed, while 81 data

from 400MPa and 51 data from 500MPa curves were kept for validation. The following structure

has been adopted as a NARX model:

 ()Count(t 1),Count(t 2), MPaCount(t) f − −=

110

Fig 4.18 - Survival curves of Listeria monocytogenes in UHT whole milk during high pressure
processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated by the re-
parameterised Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and
the wavelet neural network (d). Data points are mean values of two independent experiments with
two replications each

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

111

The fitting performance of the developed WNN was comparable with the statistical models based

on the comparison of the same indices (Table 1), as the root mean square error index ranged from

0.054 to 0.124, while the values of 2R were also high (> 0.989). The high fitting performance of

the WNN approach was expected as the network has been trained on these particular datasets.

Results showed that the WNN was more effective in predicting the response of the pathogen

compared with statistical models as illustrated by graphical plots (figure 4.19, 4.20), implying that

although the WNN has been trained on different survival curves, it has managed to learn the

underlying process with high accuracy.

Fig 4.19: Observed values and predicted survival curves of Listeria monocytogenes in UHT whole
milk during high pressure treatment at 400 MPa, generated by the re-parameterised Gompertz
model (a), the modified Weibull model (b), the Geeraerd model (c), and the wavelet neural
network (d). Data points are mean values of two independent experiments with two replications
each.

lo
g

N
 (

C
F

U
 m

l-1
)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40

(a)
(b) (c)

(d)

Hold time at pressure (min)

112

 Fig 4.20 - Observed values and predicted survival curves of Listeria monocytogenes in UHT
whole milk during high pressure treatment at 500 MPa, generated by the re-parameterised
Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and the wavelet
neural network (d). Data points are mean values of two independent experiments with two
replications each.

Two other approaches, based on neural network technology, the RBF and MLP schemes were

constructed with the same input structure as the WNN. These two well-established networks are

known for their generalisation capabilities despite the fact they have different learning strategies

(global vs. local). An RBF network tends to converge rapidly compared with the MLP one. The

RBF network based on the OLS algorithm contained 30 Gaussian nodes in the hidden layer and

one spread parameter σ for all input variables(0.25)σ = . In contrast to RBF, the MLP network

structure consisted of two hidden layers (12 and 6 nodes for each hidden layer) and a single

sigmoidal output node. The learning algorithm was responsible for the MLP’s slow convergence,

which took approximately more than 5000 epochs. Figure 4.21 & 4.22 illustrate the MLP and RBF

performances for both testing survival curves.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

(c)

(b)
(a)

(d)

lo
g

N
 (

C
F

U
 m

l-1
)

Hold time at pressure (min)

113

The use of dynamic neural networks presents an alternative solution to the specific problem. Here,

the focus was to use one dynamic network (Elman) that was given some kind of memory to

encode past history, with the additional requirements of short training time. The improved,

compared to the standard MLP structures, results reveal the advantages of using memory neuron

structures. The inclusion of memories and the related recurrence in the first hidden layer, enable

the network to carry out accurate predictions. Although this method is dependent on the number of

“memories” in the “recurrent” nodes and therefore it can be considered as a partially recurrent

network, it proved to be one faster in training time than the MLP scheme. In this specific Elman

network, 8 and 4 nodes have been used for the two hidden layers. Figure 4.21 & 4.22 illustrate the

Elman network’s performance for both testing survival curves.

The relevant figures from Table 4.5 indicate again an improved performance for WNN. Especially,

the high-nonlinear features of 400MPA curve proved to be difficult to be modelled from the other

models.

114

Fig 4.21 - Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa
 fitted with different modelling schemes

Fig 4.22 - Survival curves of Listeria monocytogenes during high pressure treatment at 500MPa
 fitted with different modelling schemes

115

 TABLE 4.5 – MWNN-LCW and other methods Statistical index comparison.

 Model Testing Data sets
400MPa 500MPa

Coefficient of determination (R2) MLP 0.9937 0.9963
MWNN 0.9985 0.9999

RBF 0.9975 0.9992
Elmann

NN
0.9926 0.9983

Root mean square error (RMSE) MLP 0.2126 0.1151
MWNN 0.0670 0.0198

RBF 0.1014 0.0494
Elmann

NN
0.1800 0.0761

Mean absolute percentage error (MAPE) (%) MLP 17.8272 2.4127
MWNN 2.0035 0.3659

RBF 5.3391 0.8871
Elmann

NN
8.9175 1.4507

Mean Square Error MLP 0.0452 0.0132
MWNN 0.0045 0.0003912

RBF 0.0103 0.0024
Elmann

NN
0.0324 0.0058

Standard error of prediction (SEP) (%) MLP 8.8778 2.6101
MWNN 2.7967 0.4485

RBF 4.2339 1.1209
Elmann

NN
7.5142 1.7250

Bias factor (Bf) MLP 1.1186 1.0084
MWNN 1.0137 0.9982

RBF 1.0469 0.9973
Elmann

NN
1.0614 0.9911

Accuracy factor (Af) MLP 1.1336 1.0244
MWNN 1.0198 1.0037

RBF 1.0512 1.0089
Elmann

NN
1.0733 1.0147

116

 Fig 4.23 - Epochs using Hybrid Method for MWNN structure

 Fig 4.24- Epochs using only Gradient Descent for MWNN structure

117

 TABLE 4.6 –Convergence comparison of existing models on prediction problem

 Epochs
(Ave.)

Independent
Parameters

Target
Training MSE

MWNN-LCW using GD only 721 375 0.00005

WNN-LCW
Using Hybrid method 7 375 0.00005

MWNN-LCW
With Multiplication Layer

using Hybrid Method
4 114 0.00005

MWNN-LCW
With

using GD only
736 475 0.00005

MWNN-Static Weights 1620 225 0.00005

The wavelet specifications are listed in Table 4.7. As we know three inputs, out of six inputs, are

simply delayed version of the other inputs so it can be easily justified that why the corresponding

wavelets in input 1,2 and 3- after parameter learning- end up with almost similar scales and

translations. The scales input 5 and 6 (of course input 5 and input 6 are both delayed versions of

output) remain the same throughout the nodes which may imply the fact that there is only one

dominant frequency in them.

 TABLE 4.7– Wavelet Parameters of MWNN-LCW after Optimisation

_______________Dilation_________________ _________Translation_______________

Node Input1 Input2 Input3 Input4 Input5 Input6 Input1 Input2 Input3 Input4 Input5 Inpu6

1 -0.8307 0.28677 0. 0.28677 -3.01 -3.0379 0.43937 0.80117 0.80117 0.80117 1.546 1.5645

2 -1.5168 -0.0041 -0.0041 -0.0041 -3.01

-3.0378 0.43815 0.49301 0.49301 0.49301 1.546 1.5648

3 -1.5166 -0.009369 -0.0093 -0.0093 -3.01

-3.0379 0.44046 0.78455 0.78455 0.78455 1.546 1.5644

4 -0.8302 0.26699 0.26699 0.26699 -3.01

-3.0379 0.43888 0.48505 0.48505 0.48505 1.546 1.5644

5 -1.5186 0.27192 0.27192 0.27192 -3.01

-3.0379 0.44015 0.794 0.794 0.794 1.546 1.5644

6 -0.8290 0.05435 0.05435 0.05435 -3.01

-3.0378 0.72172 0.48495 0.48495 0.48495 1.546 1.5647

118

Chapter 5

Data Clustering Techniques

The world we are living is saturated with overwhelming amount of data. On daily basis, people

encounter a large amount of information to store or for further analysis and management. One of

the vital means in dealing with these data is to classify or group them into a set of categories or

clusters[98]. Clustering is an effective approach to identification of complex non-linear systems by

partitioning the available data into subsets and approximate each subset by a simple model.

Clustering techniques are among the unsupervised (learning) methods, since they do not use prior

class identifiers. Most clustering algorithms also do not rely on assumptions common to

conventional statistical methods, such as the underlying statistical distribution of data, and

therefore they are useful in situations where little prior knowledge exists.

The aim of clustering is furnished by gathering the objects are more similar to each other in one

cluster. The term “similarity” in many cases considered as a distance norm from a data vector to a

prototype object called as centre[99, 100]. The concept of dissimilarity (or distance) is the

essential component of any form of clustering that helps us navigate through the data space and

form clusters. By computing dissimilarity, we can sense and articulate how close together two

patterns are and, based on this closeness, allocate them to the same cluster[101].

While most classical clustering algorithms assign each datum to exactly one cluster, thus forming

a crisp partition of the given data, fuzzy clustering allows for degrees of membership, to which the

transitions of the subsets are gradual rather than abrupt (soft membership). In fuzzy clustering,

instead of determining whether or not an event occurs, as is the case with probability, fuzziness

measures the degree to which an event occurs. Thus the membership degree shared among various

119

clusters. This creates the concept of fuzzy boundaries which differs from the traditional concept of

well-defined boundaries[102].

5.1 Fuzzy Partitions

The objective of clustering is to partition the data set X into C clusters. For the time being, let us

assume that C is known, based on prior knowledge. In every fuzzy clustering method there is a

fuzzy partition matrix ni N C[]γ γ ×= which demonstrates the degree of membership of each sample

to cluster c. niγ are the values of the membership function of the i-th fuzzy subset of nX we

assume that niγ are constrained labels satisfying

j i

C

j i
i 1

N

j i
j 1

0 1

1

0 N

γ

γ

γ

=

=

≤ ≤

=

< <

∑

∑
 (5.1)

Where the latter, means no existence of empty clusters [100].

Most fuzzy clustering algorithms are objective function based: they determine an optimal (fuzzy)

partition of a given data set X = { jx | j = 1, . . . , N} into c clusters by minimizing an objective

function.

C N

s
ji ji

i 1 j 1

J(X, ,C) d
= =

ϒ =∑∑γ (5.2)

where j id is the distance between datum jx and cluster i. The parameter s, s > 1, is called the

fuzzifier or weighting exponent. It determines the “fuzziness” of the classification: with higher

values for s the boundaries between the clusters become softer, with lower values they get

harder[103]. The value of the cost function (eq 5.2) is a measure of the total weighted within-

group squared error incurred by the presentation of the C clusters normally defined by their

prototype iµ . Statistically, eq (5.2) can be considered as a measure of the total variance of each

data vector x from iµ .

120

This approach is usually called probabilistic fuzzy clustering, because the membership degrees for

a datum formally resemble the probabilities of its being a member of the corresponding clusters.

The minimization of the eq(5.2) represents a non-linear optimization problem that can be solved

using a variety of available methods. Some of the most popular methods presented in this chapter.

5.2 Distance Norms

The distance measure D in 5.2 has the general format of

 T 1
i id (x) (x)−= − µ Σ − µ (5.3)

The shape of the clusters is determined by the certain Σ in distance measure (eq 5.3). A common

choice is IΣ = , which induces the standard Euclidean norm:

 T
i id (x) (x)= − µ − µ (5.4)

The Euclidean norm induces hyperspherical clusters, i.e., clusters whose surface of constant

membership are hyperspheres. Σ can be selected as a P P× diagonal matrix that accounts for

different variances in the orientations of the coordinate axes of X. In this case, Matrix induces a

Diagonal norm on Pℝ .

2
1

2
2

D

2
P

0 0

0 0

0 0

 σ
 σ Σ =

σ

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋮

 (5.5)

Finally, Σ can be realized as the inverse of a P P× Covariance Matrix of X

N

T
M j j

j 1

1
(X X)(X X)

N =

Σ = − −∑ (5.6)

The X shows the sample mean of data. In this caseΣ is the Mahalanobis norm on Pℝ .

121

Both the diagonal and the Mahalanobis norm generate hyperellipsoidal clusters, the difference is

that with the diagonal norm, the axes of the hyperellipsoids are parallel to the coordinate axes

while with the Mahalanobis norm the orientation of the hyperellipsoids is arbitrary.

5.3 Fuzzy C-Mean Clustering

Fuzzy c-means is one of the most commonly used fuzzy clustering techniques for different degree

estimation problems. FCM determines each cluster location using maximum membership

defuzzification and neighbourhood smoothing techniques. FCM employs two simple and

straightforward statistical features, namely mean and standard deviation. This method developed

by Dunn in 1973[104] and improved by Bezdek in 1981 [105], proposes a generalisation by means

of a family of objective function and is frequently used in pattern recognition. It is based on the

minimisation of the following objective function:

C N

s
ji i j

i 1 j 1

J(X, ,C) x
= =

ϒ = −∑∑γ µ (5.7)

As denoted, Fuzzy C-Mean Clustering uses Euclidian distance in its cost function. All parameters

are all described earlier and || . || is any norm expressing the similarity between any measured data

and the centre. The centroid of a cluster is the mean of all points, weighted by their degree of

belonging to the cluster:

N
s
ij j

j 1
i N

s
ij

j 1

.x
=

=

γ
µ =

γ

∑

∑
 (5.8)

This iteration will stop when 1{| |} , where k k
ij ijγ γ ε ε+ − < is a termination criterion between 0 and

1, whereas k are the iteration steps. The degree of belonging is related to the inverse of the

distance to the cluster, then the coefficients are normalised and fuzzified with a real parameter

1s> so that their sum is 1.

122

 i j 2

s 1C
j i

k 1 j k

1

x

x

−

=

γ =
 − µ

 − µ

∑

 (5.9)

Several investigations have been made on the best value to choose for the fuzzification exponent, s,

which is chosen a priori. A recent study[106] concludes empirically that m = 2.0 is a “good”

value. For s equals to 2, this is equivalent to normalising the coefficient linearly to make their sum

one. The algorithm determines the following steps:

Step 1. Randomly initialising the membership matrix γ .

 Step 2. Calculating the centroid ic by using eq (5.8).

 Step 3. Compute dissimilarity between centroids and data points using eq(5.4). Stop if

 its improvement over previous iteration is below a threshold.

 Step 4. Compute a new γ using eq(5.9). Go to step 2.

The FCM algorithm has proven to be a very popular method of clustering for many reasons. In

terms of programming implementation, it is relatively straightforward. It employs an objective

function that is intuitive and easy-to-grasp. Because of its fuzzy basis, it performs robustly: it

always converges to a solution, and it provides consistent membership values.

FCM strength over the famous K-Means algorithm[107] is that, given an input point, it yields the

points membership value in each of the classes. On the other hand the weaknesses are:

• It requires the number of clusters to look for to be known as a priori

• Initialisation

• If the iterative algorithm commonly employed for finding solutions of the FCM objective

function is used, it may find more than one solution depending on the initialisation. This

relates to the general problem of local and global optimisation.

• Fuzzy C-Means (FCM) clustering method discovers spherical clusters with equal volumes

and density. However, in a number of real data problems as performance analysis, time-

series data as well as some forecasting and modelling tasks the identified clusters are not

123

spherical as they are presumed to be characterized with a different shape and orientation

in the space.

• Its accuracy is sensitive to noise and outliers.

5.4 Gustafson – Kessel Clustering

The Gustafson-Kessel (GK) algorithm[108] is another powerful clustering technique with a large

number of applications in various domains including image processing, classification and system

identification. FCM algorithm as already mentioned uses point prototypes and an Euclidian norm-

induced distance measure. As a consequence, its performance is acceptable only when the data set

contains clusters that are well-apart or when clusters of approximately the same size and shape,

whereas,

GF extended the standard fuzzy C-mean algorithm by employing and adaptive Mahalonobis

distance norm, in order to detect clusters of different geometrical shape by estimating the cluster

covariance matrix. In addition it is relatively insensitive to the data scaling and initialization of the

partition matrix[109]. The Gustafson–Kessel algorithm is based on iterative optimization of an

objective functional very similar to c-means type:

C N

s T
i ji i j i i j

i 1 j 1

J(X, ,C,{A }) (x) (x)
= =

ϒ = − Σ −∑∑γ µ µ
 (5.10)

In this objective function, the number of clusters has to be fixed in advance. The distance norm

iij{ }d Σ can account for clusters of different topology[110]. This algorithm is capable of detecting

ellipsoidal cloud clusters of dissimilar sizes and orientations. The minimization of the GK

objective functional is obtained by using the optimization method according to the following

popular algorithm

Step 1. Computing the cluster centres (prototypes)

ij

ij

N
k 1 s

j
j 1

i N
k 1 s

j 1

() x

, 1 i C
()

−

=

−

=

γ
µ = ≤ ≤

γ

∑

∑
 (5.11)

124

Step 2. Compute the cluster covariance matrices

N
k 1 s k T k
ij i j i j

j 1
i N

k 1 s
ij

j 1

() (x) (x)

()

−

=

−

=

γ µ − µ −
Σ =

γ

∑

∑
 (5.12)

The matrix iΣ determines the shape and orientation of the selected cluster. Thus, the GK

algorithm employs an adaptive distance norm unique for every cluster as the norm inducing matrix

iΣ is calculated by estimates of the data covariance:

Step 3. Compute the distances

i

1/P

i ik T k
ij{ } j i j i

i

d (x) (x)[]Σ

ρ Σ
= − µ − µ

Σ
 (5.13)

Without any prior knowledge, the cluster volumes iρ are simply fixed at one for each cluster.

Step 4. Update the partition matrix

The GK algorithm like other FCM-based clustering algorithms utilises the Lagrange multiplier

method to minimize the cost function. It iteratively determines the membership degree

i

i

k
ij 2

s 1C
ij{ }

l 1 lj{ }

1

d

d

−
Σ

= Σ

γ =

∑
 (5.14)

The algorithm runs until k k 1−γ − γ < ε .

The GK suffers from a numerical problem mostly occurs in Step 3 of the algorithm, where the

cluster covariance matrix iΣ is inverted. In case of small number of data samples or when the

data inside a cluster are linearly correlated, the covariance matrix may approach to singularity.

Under this scenario, the computed covariance matrix is not a reliable estimate of the underlying

data distribution.

125

5.5 Gath-Gava Clustering

The algorithm by Gath and Geva (GG)[111] is an extension of the Gustafson-Kessel(GK)

algorithm that also takes into account the size and density of the clusters [107]. GG clustering

algorithm are also based on minimization of the aforementioned objective function which its

parameters have been explained in the previous section.

The most important part of objective function J, which is the characteristic of different fuzzy

clustering methods, is the distance function ijD . GG assumes that the i’th Gaussian distribution

with expected value ic and covariance matrix iΣ is chosen for generating a datum, with a priori

probability iP ,hence, in the GG method ijd - distance of the jth data point from the ith cluster - is

defined as follows :

T 1i

ij j i i j i

i

P 1
d exp((x) (x))

2det()
−= −µ Σ −µ

Σ
 (5.15)

where the parameters of each cluster, iµ and iΣ are centre and covariance respectively of i’th

cluster. iP is the priori probability, known also as the coefficient designed for eliminating the

sensitivity of the algorithm to number of data points in different clusters which is computed by the

following formula

N
s
ij

j 1
i C N

s
ij

i j

P =

γ
=

γ

∑

∑∑
 (5.16)

Minimization of the objective function with respect to membership degree by considering the fact

that sum of membership values of a data point to all clusters becomes one, leads to the following

equation for computing ijγ :

1

s 1

ij
ij 1C

s 1

i 1 ij

1
()
d

1
()
d

−

−

=

γ =

∑
 (5.17)

126

In the GG algorithm, centre and covariance matrix of clusters and membership degree of data

points are estimated in the following iterative process[112] :

Step 1.Choose number of clusters, initial values of centre and covariance matrix for each cluster.

Step 2. Calculate distances of data points to all clusters using eq(5.12).

Step 3. Compute degree of membership for all data points using eq(5.14).

Step 4. Estimate centre and covariance matrix for each cluster using the following equations.

N
s
ij j

j 1
i N

s
ij

j 1

N
s T
ij j i j i

j 1
i N

s
ij

j 1

x

(x)(x)

=

=

=

=

γ
µ =

γ

γ − µ − µ
Σ =

γ

∑

∑

∑

∑
 (5.18)

Step 5. Go to the second step until a termination criterion satisfies.

5.6 Subtractive Clustering

Clustering algorithms typically require the user to pre-specify the number of cluster centres and

their initial locations; the locations of the cluster centres are then adapted in a way such that these

can better represent a set of data points covering the range of data behaviour. Fuzzy Subtractive

approach is a fast, one pass algorithm for estimating the number of clusters and clusters centres in

a set of data. The subtractive clustering method assumes each data point is a potential cluster

centre and calculates a measure of the likelihood that each data point would define the cluster

centre, based on the density of surrounding data points[113]. For better results it is recommended

to normalize each point into a unit hyper-box to make each dimension identical[114, 115].The

algorithm starts by finding the first large cluster, and then goes to find the second, and so on[116].

The algorithm is illustrated in the following lines:

127

• Selects the data point with the highest potential to be the first cluster centre. It is done by

introducing a potential measure at data point jx , defined as

2
N

j k

j 2
k 1 a

x x
Pot exp()

(r / 2)=

−
= −∑ j 1,...,N= (5.19)

 Where ar is a positive constant representing a neighbourhood radius and 2

j kx x− is the square

of Euclidean distance between jx and kx . Hence, a data point will have a high density value if it

has many neighbouring data points[117]. After calculating the potential for each vector, the one

with the higher potential is selected as the first cluster centre[105].

• Remove all data points in the vicinity of the first cluster centre (as determined by radii of all data

points to the newly selected cluster centre) in order to determine the next data cluster and its

centre location. The first cluster centre c1x is chosen as the point having the largest density value

c1Pot . Next, the density measure of each data point jx is revised as follows:

2

j c1

j j c1 2
b

x x
Pot Pot Pot exp()

(r / 2)

−
= − (5.20)

Usually the br variable is taken to be as a1.5r .

The process of acquiring new cluster centre is based on potential value in relation to an acceptance

threshold ε , rejection threshold ε , and the relative distance criterion. A data point with the

potential greater than the acceptance threshold is directly accepted as a cluster centre. The

acceptance of a data point with a potential between the upper and the lower thresholds depends on

the relative distance equation, defined as

 min k

a 1

d Pot
1

r Pot
+ ≥ (5.21)

where mind is the shortest distance between the candidate cluster centre and all previously found

cluster centres. If (5.21) is greater than 1, then the associated x will be considered as a new cluster

centre.

128

• Iterates on this process until a sufficient number of clusters is attainted. Since the algorithm is

fixed and does not rely on any randomness, the results are fixed. However, we can test the effect

of the four parameters, namely, acceptance ratio ε , reject ratio ε , cluster radius ar and squash

factor br .These parameters have influence on the number of clusters and error performance

measures. Large values of ε and ε will result in small number of rules. Conversely, small

values of ε and ε will increase the number of clusters. A large value of ar generally results in

fewer clusters that lead to a coarse model[117, 118]. A small value of ar can produce excessive

number of clusters that may result in an over-defined system.

5.7 Gaussian Mixture Models (GMM) and Expectation

 Maximization(EM)

In the probabilistic point of view, data can be assumed to be generated according to several

probability distributions. They can be derived from different types of probability density functions

(e.g., multivariate Gaussian distribution), or the same families, but with different parameters[98].

In such a mixture model the probability density function of the process that generated the data is

assumed to be a mixture of a certain number of probability density functions, each of which is

described by a cluster[119].

A Gaussian Mixture Model (GMM) is a parametric conditional probability density function

represented as a sum of Gaussian component densities in some proportions. These types of models

rely on the assumption that the data comes from a known distribution (usually Gaussian

distribution). In GMMs “similarity” should be understood as the probability that a data belongs to

a specific density. Most databases contain a large amount of categorical data, where the notion of

distance as a clustering metric is not natural and has to be defined according to the case. Gaussian

mixture models not only can be used for conditional density estimation, but due to their

probabilistic nature they also provide means for dealing with the problem of missing data and

active data selection.

129

5.7.1 Gaussian Mixture Model

In a mixture model it is assumed that a given data set X = { jx
P∈ℜ | j = 1, . , N} has been drawn

from a population of C clusters[120]. Each cluster is characterized by a probability distribution,

specified as a prior probability, together with a conditional probability density function

(cpdf)[121]. The data generation process may then be imagined as follows: first a cluster c,

c {1, . . . , C}∈ is chosen for a datum, indicating the cpdf to be used, and then the datum is sampled

from this PDF. The weighted sum (mixture probability) of a given and finite C component

Gaussian densities for an individual member of dataset jx expressed as

 C
p

j i i j j i j
i 1

p (x |) P () p (x | z ,) x
=

Θ = θ θ ∈∑ ℝ
 (5.22)

p(x |)Θ

 Fig 5.1 – Gaussian Mixture Model

Here z is a random variable that has the cluster indices as possible values and associate to each jx

we have jz . i j j ip (x | z ,)θ is the i’th component (cluster) conditional density given the cluster

specified by z.

T x 1
i j j i j i i j iP/2 x

i

1 1
p (x | z ,) exp((x) () (x))

2(2) | |

−θ = − − µ Σ − µ
π Σ

 (5.23)

X

2P()θ
1P()θ

CP()θ

2p Cp1p

Σ

130

Each Gaussian function as in eq (5.23) is integrated to one

P

i j j ip (x | z ,)dx 1
ℜ

θ =∫
 (5.24)

The variable
T

j 1 2 PX [x ,x ,...,x]= is multivariate input random vector in P dimensions,

describing the attribute values of the data points. 1 C{ ,..., }Θ = θ θ representing the unknown set

of parameters for all clusters. In case of Gaussian components, the mixture density contains the

following adjustable

parameters for each iθ :

mean T
i 1 2 p[, , ...,]µ = µ µ µ which is a p 1× dimensional matrix containing corresponding centres

of the one-dimensional Gaussians as components (T denotes the vector transpose) and the other

tuneable parameter is covariance matrix 1i i1 i2 iPdiag(1/ ,1/ ,...,1 /)σ σ σ−Σ = which is the inverse

of p p× covariance matrix created by product of P one-dimensional Gaussians.

iP()θ is the probability of i’th component which also reflects the relative importance of each

cluster and since usually each point is assumed to belong to just one distribution and in eq(5.22)

jp(x |)Θ is a density function, it must be non-negative and integrate to one as well[122]. We have

p P P

C C C

j i i j j i i i j j i i
i 1 i 1 i 1

1 p(x |)dx P()p (x | z ,)dx P() p (x | z ,)dx P()
ℜ ℜ ℜ

= = =

= Θ = θ θ = θ θ = θ∑ ∑ ∑∫ ∫ ∫
 (5.25)

Hence, as eq (5.25) states,

C

i
i 1

P() 1
=

θ =∑ . (5.26)

The goal is to find the parameters Θ and iP()θ that maximizes the likelihood (or minimizes the

minus likelihood).

5.7.2 Maximum Likelihood Estimation (MLE)

Given a set of parameter values, the associated PDF demonstrates that which data are more likely

than others. In reality, however, we have already known/observed the data. Accordingly, we have

to deal with inverse of the problem: Given the observed data and a model of interest, searching for

131

one PDF, among all the probability densities that the model presents, that is most probable to have

generated the data[123]. In order to find solution for this inverse problem, we define the likelihood

function by swapping the roles of the sample vector x and the parameter vector θ in p(x |)θ i.e.

 L(| x) p(x |)θ = θ (5.27)

Hence, L(| x)θ is the likelihood of parameter θ . To alleviate the computational load, the MLE

estimate is obtained by maximizing the log-likelihood function Log(L(| x))θ . Quality of a given

set of parameters Θ is determined by how well the corresponding pdf model fits the data[124].

This is quantified by the log-likelihood of the data. If the random observations are independent of

each other, the probability of generating N observations jx (j=1,...,N) - according to probability

theory - is the product. Given as

N

1 N j
j 1

p({x ,..., x } |) p(x |)
=

Θ = Θ∏ (5.28)

or alternatively, in logarithm form

N

j
j 1

N

j
j 1

L(| X) log(p(x |))

L(| X) log p(x |)

=

=

Θ = Θ

Θ = Θ

∏

∑
 (5.29)

The so-called log-likelihood ,can ease the technical task[99]. Substituting eq(5.22) in eq(5.29) ,

N C

i i i j j i
j 1 i 1

L(| X) log{ P(z ;)p (x | z ,)}
= =

Θ =∑ ∑ θ θ (5.27)

In maximum likelihood estimation the unknown parameter 1 2 C{ , , ..., }Θ = θ θ θ is estimated so

that the log-likelihood function is maximized by using a set of observed sample.

 Log(L(| x)) / 0∂ Θ ∂Θ = (5.30)

Unfortunately, since the solutions of eq(5.30) cannot be obtained analytically in most

circumstances and therefore no closed-form solution for it, iterative routines are required to

approximate MLE estimates. Among these methods, the Expectation-Maximization(EM) is one of

the most popular schemes.

132

5.7.3 Jensens’s Inequality

In order to connect the logarithm of sum to expectation operator later in the section, herby we

explain briefly some useful results of Jensens’s inequality.

Jensen’s inequality is often employed to bound the logarithm of a sum of terms: Given C non-

negative numbers 1 C, ,π π⋯ with the summation equal to one (it can be assumed as discrete

probability distribution) and C arbitrary numbers 1 C,...,α α , as the result of convexity of the

logarithm we can conclude that[122]

C C

i i i i
i 1 i 1

log log()
= =

π α ≥ π α∑ ∑ (5.31)

Considering this inequality, some other useful expressions can be extracted out, such as

C C C

i i
i i i

i 1 i 1 i 1i i

log log log
= = =

π αα = α ≥ π
π π∑ ∑ ∑ (5.32)

 The inequality in eq(5.32) associates the logarithm of a sum with expected value of logarithm.

5.7.4 Expectation – Maximization for GMMs

In this section the iterative computation of maximum-likelihood is discussed when the

observations can be considered as incomplete data. Since each iteration of the algorithm consists

of an expectation step followed by a maximization step we call it the EM algorithm[125]. These

two steps are repeated until convergence.

The general idea underlying the EM algorithm is to describe a value that is missing by a random

variable. The domain of this random variable is the set of values that could be the actual, but

unknown value. As a consequence, the likelihood of the data set becomes a random variable. This,

of course, makes it impossible to maximize the likelihood directly, as it does not have a unique

value anymore. However, since it is a random variable, we can compute its expected value and

choose the parameters in such a way that this expected value is maximized.

In order to apply EM, a standard approach to handle these problems consists in assuming that for

each X, there is a discrete unobserved (hidden) indicator vector jz {1,...,C}∈ . The indicator vector

specifies the mixture component from which the observation X is drawn[126]. Note that the

combination of observations X and the ‘hidden-states’ Z constitute the complete-data[120, 124].

133

t t

t t

z

t t

z

L(| X) log p(X |)

log p(X |) P(Z | X,)

log(P(Z | X,)p(X |))

Θ = Θ

= Θ Θ

= Θ Θ

∑

∑

 (5.33)

Equation above (5.33) maintains, simply because t

z

P(Z | X,) 1Θ =∑ [107]. Considering the

definition of conditional probability, we have

t

t
t

p(Z,X |)
p(X |)

P(Z | X,)

ΘΘ =
Θ

 (5.34)

Using eq5.33 in eq5.34 and also Jensen’s Inequality (eq.5.32) the following results achieved

t
t t

t
z

t
t

t
z

t t t t

z z

p(Z,X |)
L(| X) log(P(Z| X,))

P(Z | X,)

p(Z,X |)
{P(Z | X,) log()}

P(Z | X,)

P(Z | X,) logp(Z,X |) P(Z | X,)logP(Z | X,)

ΘΘ = Θ
Θ
Θ≥ Θ
Θ

= Θ Θ − Θ Θ

∑

∑

∑ ∑

 (5.35)

It might look that there are two random variables in eq (5.33-5.35) but the key issue is that X is

constant and 1 2 C{ , , ..., }Θ = θ θ θ is a normal variable that wish to adjust and z is a random

variable governed by it's the marginal distribution i ip(z | X,)θ and it is dependent on both observed

data X and current estimate of parameters[127]. Also, recalling that
z

E[h(z) | X x] h(z)p(z | x)= =∑ ,

therefore, eq (5.35) can be re-written as

 T T 1 T T 1
z zE [logp(z,X |) | X,] E [logP(z | X,) | X,]θ θ θ θ− −−

 (5.36)

zE [] denotes expectation with respects to z. Thus, denote

 T 1 T T 1
zQ(|) E [logp(z,X |) | X,]− −=θ θ θ θ (5.37)

134

The evaluation of expectation eq(5.37) called the E-Step. It is important to distinguish between the

first and second argument of the Q functions. The second argument T 1X, −θ is regarded as fixed and

known at every E-Step[128].

The second step of the algorithm is to maximize the expected value computed in the first step

N

N

T T 1

T T 1
z

N
t 1

j j
j 1z {1,..,C}

N N
t 1

l l j j
j 1l 1z {1,..,C}

argmaxQ(,)

argmaxE [logp(z,X |) | X,]

argmax P(z | X,) logp(x ,z |)

argmax { P(z | x ,)} logp(x ,z |)

−

Θ

−

Θ

−

Θ =∈

−

Θ ==∈

Θ = Θ Θ

= Θ Θ

= Θ Θ

= Θ Θ

∑ ∑

∑ ∑∏

 (5.38)

In the last step, we need a transformation, which replaces the complex sum over all possible

vectors of cluster indices by a simple sum over the clusters. This transformation justified by

Bilmes [129]. The final result is shown in the following equation

C N

t
i j j j

i 1 j 1

arg max P(| x) log p(x ,z |)
= =

Θ = θ θ∑∑ (5.39)

In eq(5.39), i jP(| X)θ computed by Bayesian rule as

T 1i
j i i j iP / 2

i

i j C
T 1i

j i i j iP / 2
i 1 i

P() 1
exp((x) () (x))

2(2)
P(| x)

P() 1
exp((x) () (x))

2(2)

−

−

=

− − Σ −
Σ

=
− − Σ −

Σ
∑

θ µ µ
π

θ
θ µ µ

π
 (5.40)

Eq (5.40) illustrates the relative probability of the different clusters at the location of each jx X∈

with a given set of cluster parameters[130]. The basic idea behind the EM iterative algorithm is

that we would like to find Θ in order to maximize ilogp(x,z |)θ , however we don’t have/know the

data z. So instead, first we can find the expectation of ilogp(x,z |)θ with the respect to unknown

data z given the data X and our current estimate of Θ . The whole procedure carried out

explicitly declaring a variable representing the expectation of complete data as a function of the

incomplete data X [131].

135

Finding the derivative expressions with respect to every parameter in eq(5.39) and set them to zero,

we obtain three groups of equations for the mean µ , standard deviations Σ and mixing probability

P()θ . Start with some initial guess (tiµ , t
iΣ , t

iP()θ), EM iterates the following computations until

convergence to a local maximum of the likelihood function

N
t
i j j

j 1t 1
i N

t
i j

j 1

N
t t 1 t 1 T
i j j i j i

j 1t 1
i N

t
i j

j 1

N
t 1 t
i i j

j 1

P(| x)X

P(| x)

P(| x)(X)(X)

i 1,...,C j 1,..., N
P(| x)

1
P() P(| x)

N

=+

=

+ +

=+

=

+

=

θ
µ =

θ

θ − µ − µ
Σ = = =

θ

θ = θ

∑

∑

∑

∑

∑

 (5.41)

Note that the updating of eq(5.38) for each cluster and recursively eq(5.39), perform both the

expectation step and maximization step simultaneously.

5.7.5 Identification with Fuzzy Clustering

The main aim of this research is the development of an efficient modelling and identification

scheme. In the system identification, the purpose of clustering is to find relationships between

independent system variables, called the regressors, and future values of dependent variables,

called the regressands [132]. One should however keep it in mind that, the relations defined by

clustering are just associations among the data vectors, and as such do not yet constitute a

prediction model of the given system. To achieve such a model, extra steps need to be taken. In the

next chapter, in order to increase the efficiency of clustering algorithm, a clustering based

algorithm is proposed. The main idea of these algorithms is that when the available input-output

data set is clustered in the product space of the regressors and the model output, the obtained

clusters would approximate the regression surface of the model.

136

Chapter 6

Fuzzy Wavelet Neural Networks

Neuro-fuzzy systems combine the learning ability of NNs and inference properties of fuzzy

systems. In general, these systems derive fuzzy rules from a given input–output dataset. In Fuzzy

Wavelet Neural Network, the aim is to combine Neuro-Fuzzy systems with wavelet functions in

order to increase the performance of Neuro-Fuzzy and WNN systems significantly. Wavelets are

known to have good modelling properties over a range of frequencies, and for this reason they

have been used as activation functions in Neuro-Fuzzy systems, yielding fuzzy wavelet neural

networks (FWNNs).

In the literature, several combination of fuzzy and WNN for solving time-series prediction, system

identification and control problems have been reported [133, 134], [135], [136], [137]. The FWNN

proposed in [131] uses summation of dilated and translated versions of wavelet functions in

consequent part of fuzzy rules for system identification and control purposes. In [132] three types

of FWNN models were developed for prediction and identification of nonlinear dynamic systems.

Each fuzzy rule is associated by a sub-WNN. The resulting network has been used for function

approximation. These models use wavelet functions in the consequent part of fuzzy rules. In all the

models, translation and dilation parameters of wavelet functions, weights, and constant terms are

adjusted by fast learning (second order) gradient-based algorithms.

However, models differ at the consequent parts of the fuzzy rules. In the first model, consequent

parts consist of weighted summation of dilated and translated versions of single-dimensional

wavelet functions. In the second model, consequent parts of the rules consist of radial function of

wavelets and a constant term. In the last model, multiplication of single-dimensional wavelet

functions and a constant term form the THEN part of fuzzy rules. In [135], a dynamic recurrent

fuzzy wavelet network is proposed for identified nonlinear dynamic systems. In [136], the inputs

enter into a discrete wavelet transform block, and then the output of this block is fuzzified and it

137

forms the input to a single NN. This model has been also used for system identification and control

problems. In [137], the proposed model combines discrete wavelet transform with Takagi–

Sugeno–Kang (TSK) fuzzy systems and it consists of a set of IF–THEN rules and THEN parts

which are series expansion of wavelets functions. This model has been also applied to system

modelling. In [79], both sigmoid and wavelet functions are used in the hidden layer of a WNN and

the output of this new WNN is calculated by multiplication and summation of these results. Then,

this WNN is used in consequent parts of the IF–THEN rules in FWNN.

This part of research presents fuzzy wavelet neural network that integrates wavelet functions with

the TSK fuzzy model. The consequent parts of TSK type fuzzy IF–THEN rules are represented by

either a constant or a function. As a function, most of the fuzzy and Neuro-Fuzzy models use

linear functions. Here, the consequent part replaced by sequence of sub-WNNs explained in

Chapter 4. FWNN systems can describe the considered problem by means of combination of sub-

WNNs constructed at consequence part of each rule. In FWNN, fuzzy rules provide the influence

of each WNN to the output of FWNN. The use of WNN with different dilation and translation

values allows capturing different behaviours and essential features of the nonlinear model under

these fuzzy rules. Sometimes these systems need more rules for modelling complex nonlinear

processes in order to obtain the desired accuracy. Increasing the number of the rules leads to

increasing number of neurons in the hidden layer of the wavelet network. To improve the

computational power of the FWNN system, we use clustering technique to avoid the development

of a large and complicated network.

6.1 Clustering Based -FWNN structure and Construction

To improve the computational power of the neuro-fuzzy system, we use wavelets in the

consequent part of each rule. In this study we propose a new structure as in figure 6.1. In

traditional ANFIS, consequent parts of the structure are linear functions and the gradient decent

method is usually used to train the non-linear antecedent parameters. However in the proposed

structure instead of a linear function, a novel Linear Combination Weight Wavelet Neural

Network (LCW-WNN) recently presented by Amina et. al., [138] has been applied. The MWNN-

LCW model integrated two learning schemes; Weighted Least Square (WLS) and Extended

Kalman Filter (EKF). Furthermore a Linear Combination Weight has been developed for further

training speed and accuracy.

138

Since one cluster in the input-output space corresponds to one potential fuzzy logic rule, for

constructing the CB-FWNN, the first step of the structure learning is to determine the number of

fuzzy sets in the universal of discourse of each input variable[139]. Fuzzy clusters, similar to fuzzy

rules, are well suited for presentation of the resulting model to the user. Although the traditional

cluster algorithm works on unsupervised datasets, the extension in this chapter allows cluster

models to be built based output trajectory and then used directly as fuzzy rules, which are then

optimized. The fuzzy wavelet neural network depicted in figure 6.1 has got a modular structure. In

the first step the whole dataset enters the first block for finding the optimum number of clusters.

In this research the number of clusters determined by subtractive clustering based on the training

data as described in previous chapter and remains constant throughout. Once the number of

clusters defined, the layout of the desired CB-FWNN can be sketched. During the training,

candidate models representing possible states of a structure, are clustered using the EM technique

described in previous chapter but with some modifications. The obtained clusters are multivariate

Gaussians each with different size and orientation from the other. The outputs of the clustering

block are the firing strength multiplied by the consequence part of the structure.

At the consequence side, different scales of wavelet-neurons p
p p
i ix

(m , n)ϕ assigned for every

dimension of the input. Although the number of different scales/translation allocated to each

dimension is fixed, each of inputs can hire different scales/translations. By knowing the optimum

number of clusters, the number of different scales which each input dimension going to be

decomposed is then determined. In parallel, on the antecedent side, by knowing the number of

clusters the number of fuzzy rules C and consequently the number of unknown parameters can be

figured out. In the proposed scheme all the clustering processes are done in Cartesian product

space of the inputs X and outputs y with P+1 dimensional data. However, the final obtained

clusters are in P dimension with centres in the domain of input data X. With this scheme the

eq(3.26) can be re-formulated as

p p
i i

p p
j i 2

p
i

C

j i j i j i j
i 1

PC

i j i j jm ,n
i 1 p 1

x n
()

p p mPC
j i

i j i j p
i 1 p 1 i

ŷ (X)W (X) (X)

(X)W (X) (x)

x n
W (X) (X)(cos(2 ())e)

m

=

= =

−
−

υ

= =

= γ φ

= γ ϕ

−
= γ πβ

∑

∑ ∏

∑ ∏
 (6.1)

139

 Fig6.1-Proposed CB-FWNN

CLUSTERING

By

Modified
Expectation

Maximization

PX
1x

1
X

x
C

x
C

Σ

�µ

2

x
2

x

 Σ

�µ

1

x
1

x

 Σ

�µ

Π

Π

Π

Σ ŷ

Subtractive
Clustering

For
Number of
Clusters

1
cm 1(2 x n)1 cϕ − −

∏

p
1m p(2 x n)p 1ϕ − −

p
cm p(2 x n)p cϕ − −

p
2m p(2 x n)p 2ϕ − −

1
2m 1

1 2(2 x n)ϕ − −

1
1m 1(2 x n)1 1ϕ − −

∏

∏
 1X

PX
1

x

CW

2W

1W

1γ

2γ

Cγ

1φφφφ

2φφφφ

Cφφφφ

140

Where the latter in eq(6.1) is obtained by substituting eq(4.52) and eq(4.53) in eq(3.26).

Discussing from nonparametric regression point of view, the main goal of parametric regression is

to estimate a function from the knowledge of a limited number of points j jŷ f (x)= . In many

applications, the data-points are obtained experimentally and may even be corrupted with noise.

Considering from standard non-parametric regression problem: Let (X,y) be a pair of random

variables with values in PX ∈ℝ , y∈ℝ . Assume that j j jy f (x) εεεε= + where jεεεε is independent

N(0,)σσσσ normally distributed variable. A function y=f(x) is the regression function of Y on X if

 f (x) E[y | X x]= = (6.2)

The regression problem can also be rephrased in the probabilistic framework, and as the

conditional density p(y | x)is also a mixture of Gaussians[140], therefore

j j j

j j j

j j j
jy

C C
i i j j i i

i i j i j
i 1 i 1j

ŷ f(x) E[y | x]

y p(x ,y)dy
y p(y | x)dy

p(x)

[W (x)]p(x |)p()
W P(| x)[(x)]

p(x)= =

= =

= =

φ θ θ
= = × θ φ

∫
∫

∑ ∑

 (6.3)

i j(x)φ is the i’th output, out of C outputs of LCW-WNN for the j’th input vector . i j(x)φ determines

the contribution of each wavelet to the output of FWNN. i jW (X) is the linear combination

weight multiplying by i j(x)φ , and i jP(| X)θ is the probability that the i’th Gaussian component is

generated by the input vector jX as depicted in eq(5.40). Merging the eq(6.1) and eq(6.3) gives us

the final output based on dynamic of the proposed structure

p p
j i 2

p
i

x n
()

p p mPC
j i

j i j i j p
i 1 p 1 i

x n
ŷ W(X) P(| X)(cos(2 ())e)

m

−
−

= =

−
= ×∑ ∏ υθ πβ (6.4)

141

6.2 CB-FWNN Antecedent Parameters update

The design of FWNN (figure 6.1) includes determination of the unknown parameters that are the

parameters of the antecedent and the consequent parts of the fuzzy IF–THEN rules. In the

antecedent parts, the input-output space is divided into a set of fuzzy regions, and in the

consequent parts the system behaviour in those regions is described. As mentioned earlier, recently,

a number of different approaches have been used for designing fuzzy IF–THEN rules based on

clustering.

EM could be a sophisticated candidate for training and estimate parameters for Fuzzy Multivariate

membership functions. For each incoming pattern jx rule firing strength can be regarded as the

probability to which the incoming pattern maintained according to the corresponding PDF. The

cluster parameters are estimated by Expectation Maximization knowing that EM approach avoids

the numerical instabilities encountered in Gradient Decent and improved learning convergence,

and the Wavelet Neural Network parameters are trained by Extended Kalman Filter and Weighted

Least Square. If we think of a conditional density function p(V|)θ that is governed by the set of

parameters (θ could be the means µ
 and covariance Σ of Gaussian densities) and we also have a

data set V=(X,y) of size N and P+1 as dimensionality, supposedly drawn from this density.

1

2

P

x

x
X

x

 =

�

�

⋮
�

 ,

1

2

P

y

y
y

y

 =

⋮
 , TV [X y]=

For the V data we have a Mixture of Gaussians that model the p(V |)θ as described in eq(5.23)

C

p 1
j i i j i j

i 1

p(v |) P()p (v |) v +

=

Θ = θ θ ∈∑ ℝ (6.5)

Where,

 v T v 1 v
i j i j i i j i(P 1)/2 v

i

1 1
p (v |) exp((v) () (v))

2(2) | |

−

+
= − − Σ −

Σ
θ µ µ

π (6.6)

Eq(6.5) can be further expanded according to probability theorem as follows:

C

j i i j i j j i
i 1

p(v |) P()p (x |)p(y | x ,)
=

Θ = θ θ θ∑ (6.7)

142

The input distribution i j ip (x |)θ defines the domain of influence of cluster

 x T x 1 x
i j i j i i j i(P)/2 x

i

1 1
p (x |) exp((x) () (x))

2(2) | |

−θ = − − µ Σ − µ
π Σ

 (6.8)

 And the output distribution considered as

T

j i j j i j
j j i 22

yy

(y (X)) (y (X))1 1
p(y | x ,) exp()

22

− φ − φ
θ = −

σπσ
 (6.9)

So, eq(6.7) can be re-written

TC
j i j j i jT x 1i

j j i i j i 2(P)/2 x 2
i 1 yi y

(y (X)) (y (X))P() 1 1 1
p(v |) exp((x) () (x)) exp()

2 2(2) | | 2

−

=

−φ −φθΘ = − −µ Σ −µ × −
σπ Σ πσ

∑ (6.10)

In order to find out the probability of a cluster, of which, a data pair is generated we use eq(5.40)

in form of

T
j i j j i jx T x 1 xi

j i i j i 2(P)/2 x 2
yi y

i j TC
j i j j i jx T x 1 xi

j i i j i 2(P)/2 x 2
i 1 yi y

(y (x)) (y (x))P() 1 1 1
exp((x) () (x)) exp()

2 2(2) | | 2
p(|v)

(y (x)) (y (x))P() 1 1 1
exp((x) () (x)) exp()

2 2(2) | | 2

−

−

=

−φ −φθ − −µ Σ −µ × −
σπ Σ πσ

θ =
−φ −φθ − −µ Σ −µ × −

σπ Σ πσ
∑

 (6.11)

By taking the partial derivatives of eq(6.10) with respect to parameters and set it to zero and also

taking into account eq(6.4) the equations for updating the parameters at each step is calculated as

143

N

i i j j
j 1

N

j i j j
j 1x

i N

i j j
j 1

N
x x T

j i j i i j j
j 1x

i N

i j j
j 1

N
T

j i j j i j i j j
j 1y

i
i

1
p () P (| x , y)

N

x P (| x , y)

P (| x , y)

(x) (x) P (| x , y)

P (| x , y)

(y (x)) ((y (x)) P (| x , y)
1

N P ()

=

=

=

=

=

=

θ = θ

θ
µ =

θ

− µ − µ θ
Σ =

θ

− φ − φ θ
σ =

θ

∑

∑

∑

∑

∑

∑

 (6.12)

6.3 Estimation of local linear models

A common choice for the cost function to estimate ω is the squared error. We assume that every

local linear model is assigned with an equal weight to the error at all times while applying Least

Square method[141]. In our case iW in each model is fired by different rule weights, based on that,

Weighted Least Square (WLS) is applied to estimate the linear model parameters. The number of

parameters in each linear model is equal to (p+1) which P is the dimension of the input data.

Associated to each cluster, there is one linear model, so the total number of parameter to estimate

in local linear models is ()C p 1× + .The least square parameter estimating is accomplished by

minimizing the following condition[140]

 d T d
ext i i ext i

1
J min (y X) (y X)

Nω
= − ω ϒ − ω (6.13)

 extX is the input data matrix extended by a unitary column and the iϒ is an N-by-N matrix having

membership degrees multiplied by the output of product layer from wavelet network on its main

diagonal

i i i
1 1 i 1 1

i i i
2 2 i 2 1

i

i i i
N N i N 1

0 00 0p(| v)

0 0p(| v)0 0

p(| v)0 00 0

 γ φ θ φ
 γ φ θ φ ϒ = =

γ φ θ φ

⋯ ⋯

⋯ ⋯

⋮ ⋮⋮ ⋱ ⋮ ⋱⋮ ⋮

⋯ ⋯

 (6.14)

To determine an estimate of the Linear Combination parameters by least squares (LS)

minimization of J,

144

 T 1 T d
i ext i ext ext i(X X) X y−ω = ϒ ϒ (6.15)

iω is a (P+1)– by – 1 vector of coefficients.

Note that the value of N is typically in the hundreds, whereas the value of C is typically 5–15.

Thus the conditioning of the matrix Text i extX Xγ , is generally good and does not pose problems for

the inversion required by eq(6.15).

6.3.1 Extended Kalman Filter

Kalman filter (KF) is widely used in studies of dynamic systems, analysis, estimation, prediction,

processing and control. KF is a set of mathematical equations which provide an efficient

computational solution to sequential systems. The filter is derived by finding the estimator for a

linear system, subject to additive white Gaussian noise. However, the real system is non-linear;

Linearization using the approximation technique has been used to handle the non-linear system.

This extension of the nonlinear system is called the Extended Kalman Filter (EKF)[142].

Consider the following discrete-time nonlinear stochastic system:

k k 1 k 1

k k 1 k

f () W

Y h() V
− −

−

α = α +
 = α +

 (6.16)

Where kX and kY denote the state vector and the measurement vector at the time k, respectively,

f(.) is a non-linear representation and h(.) is a non-linear observation model. If the nonlinearities

in eq (6.16) are sufficiently smooth, we can expand them around the state estimate using Taylor

series

k 1 k 1

k k ,k 1

k k k k k

k k k k k

k 1
ˆk

k 1

k,k 1
ˆk

k

ˆ ˆf () f () () H.O.T.

ˆ ˆ ˆh() h() H () H.O.T.

ˆf ()
|

ˆ

ˆh()
H |

ˆ

− −

−

−
α =α

−

−
α =α

α = α + ϒ × α − α +
α = α + × α − α +

∂ αϒ =
∂α

∂ α
=

∂α

 (6.17)

145

The random variables kW and kV represent the artificial additive process and measurement noises.

They assumed to be independent (of each other), white, and with the following statistic

characteristic[143]

T
k k j k kj

T
k k j k kj

T
k j

E[W] 0 E[W W] Q

E[V] 0 E[V V] R

E[W V] 0

 = = δ

 = = δ
 =

 (6.18)

Where E is the expectation operator and kjδ is the Kronecker delta. kQ denotes the covariance

matrix of process noises, kR is the covariance matrix of the measurement noises. The main idea of

EKF is to expand the nonlinear functions f(.) and h(.) at the point of filtered values α̂ by means

of the Taylor series neglecting higher-order terms in eq(6.17). The Extended Kalman Filter

algorithm includes two groups of equations

The prediction equations:

k,k 1 k

T
k,k 1 k,k 1 k 1 k,k 1 k 1

ˆ ˆf ()

P P Q

−

− − − − −

α = α

= ϒ ϒ +
 (6.19)

In the equation above, let us define by k,k 1
ˆ −α the predicted value of the state vector at time k

based on all information available before time instant k, and k ,k 1P − its associated covariance error

matrix.

The measurement equations:

T 1
k k 1 k k k 1 k k

k k 1 k k k k

k k,k 1 k k

k k k,k 1

L P H (H P H R)

P P L H P Q

ˆ ˆ L e

ˆe Y h()

−
− −

−

−

−

= +
= − +

α = α +
= − α

 (6.20)

kL is the Kalman Gain matrix.

146

6.3.2 Estimating Wavelet Neural Network (WNN) parameters using EKF

In this section we briefly outline how EKF can be applied to WNN network optimization

illustrated in figure 6.1. Let the Transitions and Dilations of the feed-forward WNN be the states

of the extended Kalman filter and the final output of the network be the measurements of the filter.

Let us suppose that there are C centres for each dimension and the dimensionality of data is P, and

associated (C + 1) linear component output weights. The updating of Linear Weights is described

in the previous section so they are excluded from EKF estimation. In order to cast the optimization

problem in a form suitable for Kalman Filtering, we let the elements of the Translation and the

elements of the Dilations constitute the state of a nonlinear system α , and we let the output of the

WNN network constitute the output of the nonlinear system to which the Kalman Filter is applied.

α is considered as an array which all WNN parameters are arranged in there.

 1 2 c 1 2 c 1 c 1 c
1 1 1 p p p 1 1 p pm m m m m m n n n n α = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

The actual output at k’th iteration of the optimization algorithm is given as

T

1 N

T
k 1 N k

y [y y]

ˆ ˆ ˆh() [y y]

=

θ =

⋯

⋯ (6.21)

k
ˆh()θ is the actual output of the WNN network given the WNN parameters at the k’th iteration of

the Kalman recursion. kH is the partial derivative of the WNN output with respect to the WNN

network parameters at the k’th iteration of the Kalman recursion. It is denoted as below

Dilation

k
Trans

H
H

H

=

 (6.22)

Where

147

1 1

C C

1

1 1 1 1
1 N1 1 1 1 1 N 1 N

1 1 1 1 1 1
1 1 1 1 1 N

1 1 1 1
1 NC 1 C 1 C N C N

1 1 1 1 1 1
C C 1 C C N

2 2 2 1
1 N1 1 1 1 1 N

12 2 2
1 1 1

Dilation

(x) (X) (x) (X)
W W

m (x) m (x)

(x) (X) (x) (X)
W W

m (x) m (x)

(x) (X) (x)
W W

m (x)

ŷ
H

m

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ ∂ϕ× × ×
∂ ϕ

∂= =
∂

� �

⋯

⋮ ⋯ ⋮
� �

⋯

�

⋯

C C

1 1

C C

1 N
2 2 1
1 1 N

2 2 2 2
1 NC 1 C 1 C N C N

2 2 2 2 2 2
C C 1 C C N

P P P P
1 N1 1 1 1 1 N 1 N

P P P P P P
1 1 1 1 1 N

P P
1 NC 1 C 1

P P P
C C 1

(X)

m (x)

(x) (X) (x) (X)
W W

m (x) m (x)

(x) (X) (x) (X)
W W

m (x) m (x)

(x) (X)
W W

m (x)

φ×
∂ ϕ

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ× ×
∂ ϕ

�

⋮ ⋯ ⋮
� �

⋯

⋮ ⋯ ⋮
� �

⋯

⋮ ⋯ ⋮
�

⋯

1 1

C

1 1 1 1
1 N1 1 1 1 1 N 1 N

1 1 1 1 1 1
1 1 1 1 1 N

1 1
1 C 1 C 1

1 1 1
C C 1

Trans

P P
C N C N

P P P
C C N

(x) (X) (x) (X)
W W

n (x) n (x)

(x) (X)
W W

n (x)

ŷ
H

n

(x) (X)

m (x)

 ∂ϕ φ ∂ϕ φ× × × × ∂ ϕ ∂ ϕ

∂ϕ φ × × ∂ ϕ

 ∂ = =
 ∂

∂ϕ φ × × ∂ ϕ

� �

⋯

⋮ ⋯ ⋮
�

⋯

�

C

1

C C

1

1 1
N C N C N

1 1 1
C C N

2 2 2 1
1 N1 1 1 1 1 N 1 N

12 2 2 2 2 1
1 1 1 1 1 N

2 2 2 2
1 NC 1 C 1 C N C N

2 2 2 2 2 2
C C 1 C C N

P P
1 1 1 1 1

P P
1 1

(x) (X)

n (x)

(x) (X) (x) (X)
W W

n (x) n (x)

(x) (X) (x) (X)
W W

n (x) n (x)

(x) (X)
W

n

∂ϕ φ× ×
∂ ϕ

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ ∂ϕ φ× × × ×
∂ ϕ ∂ ϕ

∂ϕ φ× ×
∂ ϕ

�

� �

⋯

⋮ ⋯ ⋮
� �

⋯

⋮ ⋯ ⋮
�

1

C C

P P
N 1 N 1 N

P P P P
1 1 1 N

P P P P
1 NC 1 C 1 C N C N

P P P P P P
C C 1 C C N

(x) (X)
W

(x) n (x)

(x) (X) (x) (X)
W W

n (x) n (x)

 ∂ϕ φ× × ∂ ϕ

∂ϕ φ ∂ϕ φ × × × × ∂ ϕ ∂ ϕ

�

⋯

⋮ ⋯ ⋮
� �

⋯

 (6.23)

DilationH and TransH are both [C P] N× × matrix and KH in eq(6.22) is an [2 C P] N× × × . Having the KH

matrix ready, we can now execute recursively the eq(6.20)

6.4 TSK CB-FNN

Some approaches for modelling TSK fuzzy rules have been proposed in the literature and they use

one-dimensional (1-D) (univariate) fuzzy sets, such as triangular or Gaussian ones, and partitioned

multidimensional input spaces by grid Cartesian products of these univariate membership

functions. The advantages of this approach are the simple and transparent representation of the

membership functions and the straightforward application of the model. But, when the model is

obtained by grid-type partitioning of its input space, the number of rules grows exponentially with

the number of input variables, which leads to an unnecessarily complex model (curse of

dimensionality).

The scheme described earlier can be generalized to all sorts of TSK-FNNs to overcome this

problem. In this way, the number of rules can be significantly reduced. Although in the next

148

evaluation section the implementation of the WNN structure is well-justified in the results’ table,

in this sub-section we briefly mention how it could be applied to even simple non-wavelet-based

structures.

 Fig 6.2 –TSK Clustering-Based Fuzzy Neural Network

Layer 1 : The input nodes are located at this layer. P nodes needed for a P-dimensional dataset.

Layer 2: Gaussian Mixture Models play the role of clusters as discussed earlier, and the tuning

method is the modified Expectation-Maximization. However, due to the absence of WNN part, the

output distribution is simplified as

T

j i j j i j
j j i 22

yy

(y W (X)) (y W (X))1 1
p(y | x ,) exp()

22

− −
θ = −

σπσ
 (6.24)

As the tuning of the clusters is imposed on product space of input-output, therefore the distribution

of the P+1 dimensional data (including outputs) is given as

1x

Π

1 01 11 1 P1 PW (x) x ... x= + + +ω ω ω

Σ

1γ

2γ

Cγ

C 0C 1C 1 PC PW (x) x ... x= + + +ω ω ω

Layer 2 Layer 1 Layer 3 Layer 4

Π

Π

2 02 12 1 P2 PW (x) x ... x= + + +ω ω ω
2x

Px

ŷ

149

TC
j i j j i jT x 1i

j j i i j i 2(P)/2 x 2
i 1 yi y

(y W(X)) (y W(X))P() 1 1 1
p(v |) exp((x) () (x)) exp()

2 2(2) | | 2

−

=

− −θΘ = − −µ Σ −µ × −
σπ Σ πσ

∑ (6.25)

The probability of a cluster of which a datum is generated is modified as the output distribution

also takes part in its value.

T
j i j j i jT x 1i i

j i i j i 2(P)/2 x 2
yi y

i j j TC
j i j j i jT x 1i i

j i i j i(P)/2 x 2
i 1 i y

(y W(x)) (y W(x))P(z;) 1 1 1
exp((x) () (x)) exp()

2 2(2) | | 2
p(|x ,y)

(y W(x)) (y W(x))P(z;) 1 1 1
exp((x) () (x)) exp(

2 2(2) | | 2

−

−

=

− −θ − −µ Σ −µ × −
σπ Σ πσ

θ =
− −θ − −µ Σ −µ × −

σπ Σ πσ
∑ 2

y

)

 (6.26)

 The updating formula for P-dimension cluster parameters are

N

i i j j
j 1

N

j i j j
j 1x

i N

i j j
j 1

N
x x T

j i j i i j j
j 1x

i N

i j j
j 1

N
T

j i j j i j i j j
j 1y

i
i

1
p () P (| x , y)

N

x P (| x , y)

P (| x , y)

(x) (x) P (| x , y)

P (| x , y)

(y W (x)) ((y W (x)) P (| x , y)
1

N P ()

=

=

=

=

=

=

θ = θ

θ
µ =

θ

− µ − µ θ
Σ =

θ

− − θ
σ =

θ

∑

∑

∑

∑

∑

∑

 (6.27)

Layer 3 : Multiplication of each cluster’s output take place in layer 3. The TSK local linear models

are activated based on the degree of membership of the datum to their corresponding clusters. The

output of this layer is

 i i iWφ = γ (6.28)

150

Layer 4 : The output of the whole structure comes as jŷ for the input vector jX . jŷ is computed

by aggregating iφ collected from previous layer

C C

j i i j i j i j
i 1 i 1

ŷ W (X) P(| X)W (X)
= =

= γ = θ∑ ∑ (6.29)

6.4.1 Consequence Parameter Updating

Weighted Least Square (WLS) can be applied to update the local linear models. The criterion

which should be minimized is as eq 6.13. Despite the similarity in cost function the iϒ matrix

which has the membership degrees on its main diagonal is different as follow

i
i 11

i
2 i 2

i,FNN

i
N i N

0 00 p(| x) 0

0 00 p(| x)0

p(| x)0 0 00

θ γ
 γ θ ϒ = =

 γ θ

⋯ ⋯

⋯ ⋯

⋮ ⋮⋮ ⋱ ⋮ ⋮ ⋱⋮

⋯ ⋯ (6.30)

 The estimate of the consequent parameters is given by

 T 1 T d
i ext i ,FNN ext ext i ,FNN(X X) X y−ω = ϒ ϒ (6.31)

The definition of T
extX and dy are the same as eq(6.13 - 6.15).

6.5 Case Study – Short Term Load Forecasting in Power System

Short term electric load (STLF) forecasting is the cornerstone of the operation of today’s power

systems. Precise load forecasting helps the electric utility to make unit commitment decisions,

reduce spinning reserve capacity and schedule device maintenance plan properly. The system

operators use the load forecasting result as a basis of off-line network analysis to determine if the

system might be vulnerable. If so, corrective actions should be prepared, such as load shedding,

power purchases and bringing peaking units on line. With the recent trend of deregulation of

electricity markets, STLF has gained more importance and greater challenges[144]. In the market

151

environment, precise forecasting is the basis of electrical energy trade and spot price establishment

for the system to gain the minimum electricity purchasing cost. In the real-time dispatch operation,

forecasting error causes more purchasing electricity cost or breaking-contract penalty cost to keep

the electricity supply and consumption balance.

In recent years two different paradigms of STLF have emerged, namely those that are based on

statistical analysis and those that are based on CI techniques. The former include such traditional

statistical approaches as linear and nonlinear regression analysis[145], time series models[146] and

Kalman Filtering models[147]. Most statistical based methods for STLF are linear models that

make certain assumptions about the characteristics of the load series. However, the relationship

between the variables that affect load demand and actual load demand is complex and nonlinear

making the accuracy of different statistical models system dependent. Fan et al. [148] described an

implementation of ARIMAX (autoregressive integrated moving average with exogenous variables)

models for load forecasting, while Yang and Huang[149] proposed a fuzzy autoregressive moving

average with exogenous input variables (FARMAX) for one day ahead hourly load forecasting.

Most recently, the scientific community has turned to CI for solving the problem of STLF. CI-

based models are able to learn nonlinear dependencies directly from the historical data. These

models can be divided into three subgroups depending on the artificial intelligence paradigm that

they represent, namely neural networks (NN), including the multilayer perceptron (MLP)[150],

radial basis function (RBF)[151] and support vector machine (SVM)[152], fuzzy systems[153] and

hybrid models[154]. Although the NN-based models (particularly the MLP) and the fuzzy systems

have received the most attention in STLF literature, a growing interest exists for the case of hybrid

schemes. Yang[155] presented an integrated method that combines an increment regression tree

and SVM for STLF. Both increment and non-increment tree are built according to the historical

data to provide the data space partition and input variable selection. SVM was employed to the

samples of regression tree nodes for further fine regression. The integration of genetic algorithms

(GA) with SVM has found its application also in STLF cases. A novel GA-based SVM forecasting

model with deterministic annealing clustering has been presented by Sun[156]. The experimental

results demonstrated its superiority over a classic MLP network. Amongst the above neural based

forecasting techniques most of them generally can be classified into two categories in accordance

with techniques they employ. One approach treats the load pattern as a time series signal and

predicts the future load by using the already mentioned techniques. In the second approach the

152

load pattern is considered to be heavily dependent both on weather variables and previous load

patterns.

Many attempts by researchers have been made to improve load-forecasting process in many

worldwide regions. Khan et al.[157] used a hybrid of neural network and fuzzy logic to forecast

the load in Czech Republic. They found that hybrid fuzzy neural network and radial basis function

networks are the best candidates for the analysis of the load in Czech Republic. An Adaptive

Neuro Fuzzy Inference System (ANFIS) has been utilised by Yuill et al.[158] for the development

of a STLF model for South African power networks, by considering temperature and humidity as

the main weather parameters affecting the load. Another study by Kodogiannis et al. [159]

discussed the development of improved neural-network-based forecasting models for the power

system of the Greek island of Crete. The performance was evaluated through a simulation study,

using metered data provided by the Greek Public Power Corporation. Their results indicated that

the load-forecasting models developed provided more accurate forecasts than the conventional

methods.

NN models basically use the sigmoid activation function in neurons. However, the sigmoid

function is not orthogonal, and the energy of the sigmoid function is limitless, and this leads to

slow convergence. Wavelet function is a waveform that has limited duration and an average value

of zero. The integration of the localisation properties of wavelets and the learning abilities of NN

shows advantages of Wavelet neural networks (WNN) over NN in complex nonlinear system

modelling in terms of learning efficiency and structure transparency. A STLF model of wavelet-

based networks was proposed in[160] to model the highly nonlinear, dynamic behaviour of the

system loads and to improve the performance of traditional NNs. To investigate the performance

of the proposed evolving wavelet-based networks on load forecasting, the practical load and

weather data for the Taiwan power systems were employed.

The comparison against an STLF NN version revealed the superiority of WNN forecasting in

terms of more accurate forecasting result and faster training speed. Here, a modular-constructed

forecasting system is proposed, where 24 neural blocks with a single output have to be developed

and trained separately to represent the 24 hourly loads respectively. The outline of the proposed

architecture is illustrated in figure 6.3.

153

 Fig 6.3 - Proposed modular architecture for the STLF problem

The main objective of the proposed system is the development of sufficiently accurate blocks

representing the individual hourly loads. An assumption has been made in the case of black-outs,

which occurred during the whole year. All the zero load values have been removed from both

training and testing sets, and were replaced by the mean value of the preceding and subsequent

load value. In this section the results and the statistics of forecasts obtained from the application of

the developed STLF models on the power system of the island of Crete presented. Only results

that correspond to hours with the maximum (14:00h) and minimum (02:00h) load consumption are

illustrated.

Case studies for the proposed methods were carried out for a 24-hour load forecasting. The

complete results for the STLF problem, for the hours with minimum and maximum load

consumption, are illustrated in Table I. Training has been conducted using power load data for

1994 (365 data points), while testing has been evaluated using data from the 4 first months of 1995.

154

6.5.1 Cluster Analysis for Case Study

Each cluster could be oblique towards the input axis and the covariance matrix is not necessarily

diagonal; therefore projecting the clusters on to the axis won’t give a precise univariate

membership functions. In P-dimensional space each cluster can also be recognized by its

corresponding eigenvectors and eigenvalues.

 Fig 6.4- Eigenvectors of a 3-dimension hyper-ellipsoidal cluster

Projecting each cluster on to its associated eigenvectors makes better estimation of decomposed

univariate elements of each cluster. Let us denote ipββββ and ipk
�

as the eigenvalues and the unitary

eigenvectors of x
iΣ , respectively. However, in this case to find the degree of membership the input

domain transformation is needed

 ip
T

ipx t X=ɶ (6.32)

Based on eq (6.32), the univariate Gaussian membership functions are given by

155

2

ip ip
ip ip 2

ip

(x)1
A (x) exp()

2

−
= −

ɶ ɶ
ɶ

ɶ

µµµµ
σσσσ

 (6.33)

Where

 i

T x
i,p i,p

2 2
i,p i,p

kµ µµ µµ µµ µ

σ βσ βσ βσ β

=

=

�
ɶ

ɶ
 (6.34)

The eigenvector projection of each cluster after variable transformation is illustrated in figure 6.5.

 Fig 6.5– Projection of normalized Multivariate (4-dimesnion) clusters on their eigenvectors

6.5.2 CB-FWNN Short Term Load Forecasting Results

An obvious advantage of the proposed modular architecture is that, since the complete system

consists of 24 neural blocks, each one with a single output, training is easier and faster compared

to traditional neural approaches, which treat the output as a 24x1 vector. After many trials, it has

156

been found that only two previous time load parameters are necessary for the proposed CB-FWNN

to achieve an acceptable performance, whereas the number of cluster/fuzzy rules was determined

with the aid of subtractive clustering to be 10.

Figure 6.6 and 6.7 illustrate the training performances on both minimum and maximum power

consumption cases, while Figure 6.8 and 6.9 illustrate the testing performances for both cases.

Table 6.1summarizes the various performance indices.

 TABLE 6.1 – Performance indices of proposed CB-FWNN for Short Term Load Forecasting

This performance was associated also with a fast training speed, of 280 epochs. The regression

coefficient (2R) is often used as an overall measure of the prediction attained. It is common

practice to use this index to compare different statistical models. It measures the fraction of the

variation about the mean that is explained by a model. The higher the value (20 1R≤ ≤), the better

is the prediction by the model. The CB-FWNN scheme developed herein was found to yield high

level agreement with experimental observations for the test data set. The values of the coefficient

Statistical index Testing Data sets

14:00 02:00
Coefficient of determination (R2) 0.9810 0.9673

Root mean square error (RMSE) 2.6573 1.8986

Mean relative percentage error
(MRPE) (%)

1.9964 1.2826

Mean absolute percentage error
(MAPE) (%)

0.8601 0.4935

Standard error of prediction (SEP) (%) 2.665 2.0018

Bias factor (Bf) 0.9911 0.9949

Accuracy factor (Af) 1.0204 1.0129

157

of determination (2R), as shown in Table 6.1, indicate a very good fit of the experimental data

from the CB-FWNN based approach.

Fig 6.6 - Training performance for max load

Fig 6.7 - Training performance for min load

However, 2R is a suitable criterion for model comparison on the assumption that the error is

normally distributed and not dependent on the mean value; In fact, the distribution of the error is

not clearly known, so this term must be used with caution, particularly in non-linear regression

models and hence additional indices must be employed for model comparison.

158

RMSE index is calculated between the desired and output values and then averaged across all data

and it can be used as an estimation of the goodness of fit of the models. It can also provide

information about how consistent the model would be in the long run. The related RMSE values

for the proposed scheme are very low, as shown in Table 6.1, indicating the ability of CB-FWNN

to make better prediction on data for which there was no previous training.

In order to evaluate the goodness of the current performance of the proposed CB-FWNN scheme,

a comparison against the same models that have been employed for the specific datasets has been

carried out. Tables II and III provide a summary of those statistical performances. More

specifically, the CB-FWNN scheme has been compared against an autoregressive linear model

(AR), a multilayer perceptron utilizing an adaptive learning rate (ABP), a spread encoding

multilayer neural network (SE), a window random activation weight neural network (WRAWN), a

radial basis function (RBF) network and the proposed in this section CB-FNN.

From these four schemes, only SE and RBF managed to provide a “similar” but inferior to CB-

FWNN performance, however with high training time computational cost. Compared to the

proposed CB-FWNN structure, the above mentioned methodologies were also criticized by their

large input dimensionality (i.e. 6-8 input variables) for performances shown in Tables 6.2 and 6.3.

The alternative also CB-FNN structure performed also very satisfactory. The MRPE term provides

information on how close forecasts or predictions are to the eventual outcomes. The MRPE is an

index that provides information about the bias of the model. A value of zero means that there is no

bias in predictions. Positive values indicate under-prediction of the power load, i.e. the predicted

values are lower than the observed, and thus the model is ‘fail-safe’.

159

Fig 6.8 - Testing performance for max load

Fig 6.9 - Testing performance for min load

160

 TABLE 6.2– Comparison of Performance Indices for 2hr STLF for various methods

Negative values indicate over-prediction, i.e. the model over-estimates power load and thus is

‘fail-dangerous’. CB-FWNN achieved a very good performance, by scoring 1.9964% and 1.2826%

for 14h and 2h respectively. Comparing with CB-FWNN, the alternative methods cannot match

the same performance especially in the case of 14h. Tables 6.2 and 6.3 provide a good indication

of their performances.

Statistical index
Testing Dataset
2hour

 CB-FNN
2h

AR
2h

 ABP
2h

SE
2h

WRAWN
2h

 RBF
2h

RMSE 1.9223 5.8020 3.8063 2.0314 4.0633 1.8672

Mean relative percentage
error
(MRPE)(%)

 1.3104 3.8630 2.7346 1.5174 2.7542 1.3512

MAPE (%) 0.4939 0.5715 1.0849 1.0632 0.6675 0.4706

Standard error of prediction
(SEP) (%)

2.0299

5.7642

3.8215

2.0728

4.0916

1.9086

Bias factor (Bf)

1.0048

1.0041

1.0102

1.0105

1.0059

1.0045

Accuracy factor (Af)

1.0132

1.0388

1.0275

1.0152

1.0277

1.0136

161

 TABLE 6.3 – Comparison of Performance Indices for 14hr STLF for various methods

Statistical index
Testing Data set
14hour

 CB-
FNN 14

AR 14 ABP 14 SE 14 WRAWN
14

 RBF
14

Mean relative
percentage error
(MRPE) (%)

 2.3183 11.1837 11.9674 3.4001 10.5902 2.7924

MAPE (%) 0.8731 1.3304 6.4261 1.1397 1.3385 0.8927

Standard error of
prediction (SEP) (%)

3.1998

15.0745

14.3387

4.5409

12.8006

3.4007

Bias factor (Bf)

1.0052

0.9993

1.0525

1.0104

1.0033

1.0073

RMSE

3.3069

17.2049

17.6778

4.6194

15.1935

3.6061

Accuracy factor (Af)

1.0236

1.1173

1.1180

1.0343

1.1071

1.0281

It is clear that the SE network outperformed the ABP, while the RBF network proves its traditional

superiority against MLP-style networks. This statistic is similar to the bias factor (fB) introduced

by Ross [92]. Models describing predictions (fB) within the range of {0.9 1.05}− could be

considered good, in the range of {0.7 0.9} || {1.06 1.15}− − are considered acceptable, while for

{ 0.7 || 1.15}< > are considered unacceptable. Bias factor is a multiplicative factor that compares

model predictions and is used to determine whether the model over- or under-predicts the power

consumption. In this case a fB value greater than 1 indicates that the model over-estimates load

and is thus ‘fail-dangerous’, whereas a value less that 1 indicates under-prediction of load and thus

a ‘fail-safe’ model

The fB parameters of all models were in an acceptable range; however the related parameter for

CB-FWNN was just under the optimal 1.0, providing thus a fail-safe condition.

162

SEP index is determined as the relative deviation of the mean prediction values and it has the

advantage of being independent on the magnitude of the measurements [19]. Based on this index,

the CB-FWNN scheme achieved again a very good performance for both cases. Only for the 2h

case, the RBF network was slightly better than the proposed scheme. For the 14h case, although

RBF and SE were superior to ABP and WRAWN models, they both fall behind to the CB-FWNN.

The accuracy factor (fA), is a simple multiplicative factor that indicates the spread of results

about the prediction. A value of one indicates that there is perfect agreement between all the

predicted and measured values. Table I shows the accuracy factor values obtained for the two

testing datasets. The relevant figures for fA indicate again better performances for the CB-FWNN

scheme, which is more evident at the 14h load case. The MAPE term provides information about

the average deviation from the observed value and it is similar to the accuracy factor (fA). Based

on this index, the average deviation of the predicted power load values for the CB-FWNN case

was 0.86% and 0.49% for 14h and 2h load cases.

The results of MAPE were in good agreement with the values of the accuracy factor (fA)

estimated for both data sets. Some differences between the two indices can be attributed to

different computational methods followed. The above comparison results reveal the superiority of

the proposed CB-FWNN scheme in terms of modelling accuracy and training speed. The CB-FNN

performed also satisfactory however its accuracy was lower to CB-FWNN.

163

Chapter 7

Conclusions and Future Enhancements

Soft computing approaches have been developed and applied to many scientific and engineering

areas in recent years. There have been also many successful researches for the identification and

modelling of nonlinear dynamic systems by using various soft computing techniques with

different computational architecture. In the early stages of this research (chapter 3), inspired by the

method presented by Theocharis et all in the frame of Neuro-Fuzzy schemes, an adaptive

modelling structure created. The adaptive structure evolved and adjusted in an online manner to

reduce as much as possible the network redundancies. Hence, since the models are created

automatically and not pre-designed, the difficulties in determining of the architecture of soft

computing models can be avoided to some extent. Fungus growth modelling, a real food data

analysis problem, was examined in presence of three inputs; temperature, water activity and pH

and relatively better results based on standard various error criteria achieved.

In the literature, an amount of work exploring the hybrid learning algorithms to identify the

structure parameters and also novel structure of wavelet-based neural networks has been reported.

The well established real world problems revealed the fact that a great deal of further research is

still needed. Throughout main parts of this thesis, we have attempted to identify flaws within

existing applications and structures of Wavelet-based variants of neural networks. The first

structure and training algorithm proposed in Chapter 4 approaches a simple by efficient techniques

applicable to all types of NNs with wavelet family. The incorporation of Linear Combination

Weights on hidden-output connection links boosts the output accuracy and also training speed to a

higher level. In the same scheme, a Hybrid Learning Algorithm was implemented to tackle the

main problem associated with the use of GD algorithm, i.e. the problem of low convergence rate.

Based on the first structure, a more advanced structure of WNNs proposed MWNN-LCW which

appeared to be more modular. The alteration on the structure makes not only the structure more

interpretable but also leads to much higher accuracy.

164

Both algorithms were then utilised to process real data provided via ongoing research

collaboration with Agricultural University of Athens-Greece relating to Lysteria Monocytogenes

Bacteria Count prediction. In conjunction with various types of WNNs and also other soft

computing techniques, the proposed technique produces out-performing results according to

accuracy and computational cost.

Despite the excellent performance of the proposed WNNs, research has highlighted some

limitations to the approach. The first was a significant increase in the number of neurons in higher

dimensional data. This yields that, although it was an improvement in convergence speed and

accuracy but the network’s tuneable parameters dramatically “grow” with network size which can

be prohibitive due to memory constraints. The second was that still the appropriate number of

neurons for each input was a matter of randomness and on trial and error basis.

The methodology proposed in Chapter 6, gearing forward a long way toward covering

aforementioned drawbacks. A clustering-based FWNN approach has been presented. Choosing a

clustering algorithm, itself, can be a challenging task. Most structures generally assume some

explicit structure in the dataset. However, usually we have little or no information regarding the

structure, which is, paradoxically, what someone wants to uncover. Two clustering methods have

been utilised in serial form, i.e. Subtractive Clustering and Mixture Densities with Expectation

Maximization. Initially, the subtractive clustering was used as a pre-processing technique to find

out initial set and adequate number of clusters and ultimately number of neurons in each sub-

WNN inside wavelet network, an optimum number of neurons can strongly influence the time

required to obtain a solution and then the GMM-EM was responsible for forming the multi-

dimensional Gaussians, which later used as multidimensional membership functions. The rationale

behind the choice of former one was its ability to detect number of clusters without any prior

knowledge of the data and the latter one selected due to the platform it can creates for feeding back

the desired-predicted output error into the clustering process and also deriving the membership

degree directly from clusters without the need of projecting them on the input’s axis. Two learning

algorithms namely, Weighted Least Square and Extended Kalman Filter were incorporated to

adjust the linear and non-linear parameters respectively.

We demonstrated the usefulness and benefits of the network by applying it to a real database for

dynamic system modelling. The case study was related to the Power Load forecasting for Greek

Island of Crete. Prediction of the maximum load at 14:00 and minimum load at 02:00 was set as a

165

target. Comprehensive comparison conducted against some popular existing methods for both

cases in accordance to several error criteria.

There are several topics that have been left out of the scope in the present dissertation which can

be considered as a future work. Future enhancements of this research’s field can be aligned in

several directions. Points mentioned below, are just some of the possible extensions can be done as

future work.

Linguistic Data/Patterns : The term Computing With Words (CWW), pioneered by Zadeh in the

mid-1990s[161]. In principle, the proposed schemes are only applicable to numerical data (or

linguistic data converted to numerical data) but for the humans the only fully natural means of

articulation and communication is natural language. In coming years the use of words in place of

numbers is destined to be in centre of attention. This is certain to happen, therefore, maybe we

could develop models, tools, techniques, algorithms, etc., that could operate on natural language

(words) and can serve the same (or similar) purpose as their numerical counterparts, i.e., maybe

instead of traditional computing with numbers (from measurements), it would be better to compute

with words (from perceptions). Therefore, we may skip an “artificial’’ interface and try to operate

on what is human-specific: natural language[161, 162]. Perhaps the most direct extension of this

work is by the means modifying the proposed structures to deal with this type of data.

Adaptive structure/parameter learning: Off-line clustering methods - as we did in chapter 4 & 6

- require that data be ready before the modelling. Obviously, it is difficult for human experts to

examine all the input–output data from a real complex system to find a number of proper rules for

the fuzzy system. Hence, an immune way to the above-mentioned deficiency is online

identification methods appeared in the literature and several methods proposed [163]. Generally,

these approaches consist of two learning phases, the structure learning phase and the parameter

learning phase. These two phases are done simultaneously. In terms of structure identification,

there are no rules initially in an online structure. They are created and adapted as on-line learning

proceeds via simultaneous structure and parameter identification. This idea was touched upon at

the end of Chapter 3. However, the goal in this case is to develop an online clustering method

along with an online WNN structure. Extended Kalman Filter as a learning algorithm provides us

with a potential platform for online learning however Weighted Least Square should be replaced

166

by a recursive variant of it. An adaptive type of Expectation Maximization also proposed in [126],

which can be modified accordingly.

Recurrent connections: Most of these problems demand nonlinear adaptive systems which can

learn from observed data. Recurrent wavelet neural networks with arbitrarily connected neurons

have great potential to meet this demand. However, how to train recurrent WNN networks

effectively remains an open problem, which hinders wide applications of recurrent networks in the

aforementioned areas. As a future step of the work presented in this Thesis, we could extend the

work to WNN recurrent networks. Our goal is twofold. First, we would like to develop a

framework for fully recurrent networks based on MWNN-LCW proposed in chapter 4 with

internal and external loops. Related suggestions can be found in [164-166]. Second, we would like

to apply a learning algorithm for training that recurrent wavelet network so that avoid divergence

occurring over tuning such an autonomous system.

Incremental Learning algorithm: The learning algorithm should be able to supply a way that

enables clustering part and consequence WNN part to accommodate new data, including examples

that correspond to previously unseen dataset. It means, the learning algorithm should be in such a

way that does not require access to previously used data during subsequent incremental learning

sessions, while at the same time, preserving the knowledge learnt by the network on previous

learning[167]. There may even be further improvements to be imposed, i.e. agents should not only

acquire new knowledge but also modify or delete old knowledge. However, these modification

and deletion are not always efficient in learning; hence embedding this type algorithm could be a

challenge. Incremental learning has been addressed in a few numbers of published papers and on

very primitive structural platforms [168, 169]. Expanding these types of algorithms over hybrid

methods is one that would certainly merit further investigations.

167

Bibliography

[1] Q. Zhang and A. Benveniste, "Wavelet networks," IEEE Transactions on Neural
Networks, vol. 3, pp. 889-898, 1992.

[2] D. W. C. Ho, P. A. Zhang, and J. Xu, "Fuzzy wavelet networks for function learning," ,
IEEE Transactions on Fuzzy Systems, vol. 9, pp. 200-211, 2001.

[3] I. Nagrath, Control systems engineering: New Age International, 2005.
[4] L. Ljung, System Identification: Theory for the user. Englewood Cliffs: Prentice Hall,

1987.
[5] S. M. Biyiksiz, "ARMA modeling based on partial AR and MA parameter

approximation," in Spectrum Estimation and Modeling, 1988., Fourth Annual ASSP
Workshop on, Minneapolis, MN USA, 1988, pp. 397-401.

[6] A. O. Steinhardt, "The partial realization problem for moving average models," in
Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International
Conference on, New York, NY USA, 1988, pp. 2360 - 2363.

[7] G. P. Zhang, "Time series forecasting using a hybrid ARIMA and neural network "
Neurocomputing, vol. 50, pp. 159-175, 2003.

[8] O. Nelles, Nonlinear system identification, 1 ed. vol. 1. Berlin: Springer - Verlag, 2000.
[9] F. M. Ham and I. Kostanic, Principles of Neurocomputing for science and engineering.

New York: McGraw Hill, 2001.
[10] Y.Chen, "Hybrid softcomputing approach to identification and control of
 nonlinear systems,Ph.D.Thesis,Kumamoto University," 2001.
[11] J. Vieira, F. M. Dias, and A. Mota, "Neuro-Fuzzy Systems: A Survey," 2004.
[12] J. C. Patra, R. N. Pal, B. Chatterji, and G. Panda, "Identification of nonlinear dynamic

systems using functional link artificial neural networks," IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, , vol. 29, pp. 254-262, 2002.

[13] D. J. Montana and L. Davis, "Training feedforward neural networks using genetic
algorithms," 1989, MA Cambridge,Citeseer, Vol.123

[14] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and neural approaches in engineering: John
Wiley & Sons, Inc. New York, NY, USA, 1996.

[15] K. Shahida, Ibraheem, Moinuddin, and M. Farooq, "A table lookup scheme for fuzzy logic
based model identification applied to time series prediction," in Information Fusion, 2003.
Proceedings of the Sixth International Conference of, 2003, pp. 1449-1456.

[16] A. Saad, "An Overview of Hybrid Soft Computing Techniques for Classifier Design and
Feature Selection," in Hybrid Intelligent Systems, 2008. HIS '08. Eighth International
Conference on, 2008, pp. 579-583.

[17] D. Nauck, F. Klawonn, and R. Kruse, Foundations of neuro-fuzzy systems: John Wiley &
Sons, Inc. New York, NY, USA, 1997.

[18] C. da Costa Pereira and A. Tettamanzi, "Fuzzy-Evolutionary Modeling for Single-Position
Day Trading Natural Computing in Computational Finance." vol. 100, A. Brabazon and M.
O’Neill, Eds., ed: Springer Berlin / Heidelberg, 2008, pp. 131-159.

 [19] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, pp. 1423-
1447, 1999.

[20] A. Azzini and A. G. B. Tettamanzi, "A neural evolutionary approach to financial
 modeling," 2006, Proceedings of the 8th annual conference on Genetic and evolutionary
 Computation 1-59593-186-4 Seattle, Washington, USA, pp 1605-1612, 2006
[21] A. Michael and H. Takagi, "Dynamic control of genetic algorithms using fuzzy logic

168

 techniques," Computer Science Department University of California Davis, CA 95616,
 1993, pp. 76-83.
[22] F. Herrera, M. Lozano, and J. L. Verdegay, "Tuning fuzzy logic controllers by genetic

algorithms* 1," International Journal of Approximate Reasoning, vol. 12, pp. 299-315,
1995.

[23] P. P. Bonissone, "Soft computing: the convergence of emerging reasoning technologies,"
Soft Computing-A Fusion of Foundations, Methodologies and Applications, vol. 1, pp. 6-
18, 1997.

[24] O. Cordón and F. Herrera, "A hybrid genetic algorithm-evolution strategy process for
 learning fuzzy logic controller knowledge bases," 1996. in Genetic Algorithms and Soft
 Computing. Berlin, Germany: Physica- Verlag, 1996, pp. 251–278.
[25] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, "Ten years of genetic

fuzzy systems: current framework and new trends," Fuzzy Sets and Systems, vol. 141, pp.
5-31, 2004.

[26] A. S. Moussa, "The Implementation of Intelligent OoS Networking by the Development
and Utilization of Novel Cross-Disciplinary Soft Computing Theories and Techniques,"
Ph.D Dissertation at the Florida State University, 2003.

[27] W. Bellil, C. B. Amar, and A. M. Alimi, "Comparison between beta wavelets neural
networks, RBF neural networks and polynomial approximation for 1D, 2D functions
approximation," Trans. on Eng., Comp. and Tech, vol. 13, pp. 102-107, 2006.

[28] V. Kreinovich, O. Sirisaengtaksin, and S. Cabrera, "Wavelet neural networks are
 asymptotically optimal approximators for functions of one variable," in Proc. IEEE Int.
 Conf. Neural Networks, Orlando, FL, June 1994, vol. 1,pp. 299–304.
[29] M. Singh, S. Srivastava, M. Hanmandlu, and J. R. P. Gupta, "Type-2 fuzzy wavelet

networks (T2FWN) for system identification using fuzzy differential and Lyapunov
stability algorithm," Applied Soft Computing, vol. 9, pp. 977-989, 2009.

[30] L. Fausett, Fundamentals of neural networks, 1 ed. vol. 1. New Jersey: Prentice - Hall,
1994.

[31] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems. New Jersey: Prentice - Hall, 1996.
[32] H. Esen, M. Inalli, A. Sengur, and M. Esen, "Performance prediction of a ground-coupled

heat pump system using artificial neural networks," Expert Systems with Applications, vol.
35, pp. 1940-1948, 2008.

[33] J. A. K. Suykens, J. Vandewalle, and B. L. R. De Moor, Artificial neural networks for
modelling and control of non-linear systems: Springer, 1996.

[34] C. T. Lin and C. S. G. Lee, Neural fuzzy systems: a neuro-fuzzy synergism to intelligent
systems: Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1996.

[35] V. B. Daohang Sha, "An on-line hybrid learning algorithm for multilayer perceptron in
identification problems," Elsevier Computers and Electrical Engineering, 2002.

[36] R. Battiti, "First-and second-order methods for learning: between steepest descent and
Newton's method," Neural computation, vol. 4, pp. 141-166, 1992.

[37] L. Fausett, Fundamentals of neural networks: architectures, algorithms, and applications:
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1994.

[38] K.-B. Kim, D.-J. Yoon, J.-C. Jeong, and S.-S. Lee, "Determining the stress intensity factor
of a material with an artificial neural network from acoustic emission measurements,"
NDT & E International, vol. 37, pp. 423-429, 2004.

[39] S. I. Ao, Applied Time Series Analysis and Innovative Computing vol. 59: Springer Verlag,
2010.

169

[40] V. Kodogiannis and A. Lolis, "Prediction of foreign exchange rates by neural network and
fuzzy system based techniques," in European Symposium on Artificial Neural Networks
Bruges (Belgium),, 2001.

[41] E. Cheng, H. Jin, Z. Han, and J. Sun, "Network-Based Anomaly Detection Using an
Elman Network," in Networking and Mobile Computing. vol. 3619, X. Lu and W. Zhao,
Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 471-480.

[42] M. Powell, "The theory of radial basis function approximation in 1990," DAMTP Report,
no. NA11, Dec. 1990.

[43] J. Moody and C. Darken, Learning with localized receptive fields: Yale Univ., Dept. of
Computer Science, 1988.

[44] E. Z. Panagou, V. Kodogiannis, and G. J. Nychas, "Modelling fungal growth using radial
basis function neural networks: the case of the ascomycetous fungus Monascus ruber van
Tieghem," International journal of food microbiology, vol. 117, pp. 276-86, Jul 15 2007.

[45] S. Chen, C. Cowan, and P. Grant, "Orthogonal least squares learning algorithm for radial
basis function networks," IEEE Transactions on Neural Networks, vol. 2, pp. 302-309,
2002.

[46] S. Chen, P. M. Grant, and C. F. N. Cowan, "Orthogonal least squares algorithm for
training multi-output radial basis function networks," in Artificial Neural Networks,
Second International Conference on, 1991, pp. 336-339.

[47] D. Radojević, A. Perović, Z. Ognjanović, and M. Rašković, "Interpolative Boolean
Logic," in Artificial Intelligence: Methodology, Systems, and Applications. vol. 5253, D.
Dochev, M. Pistore, and P. Traverso, Eds., ed: Springer Berlin / Heidelberg, 2008, pp.
209-219.

[48] K. Tahera, R. N. Ibrahim, and P. B. Lochert, "A fuzzy logic approach for dealing with
qualitative quality characteristics of a process," Expert Systems with Applications, vol. 34,
pp. 2630-2638, 2008.

[49] S. Saraswati, P. K. Agarwal, and S. Chand, "Neural networks and fuzzy logic-based spark
advance control of SI engines," Expert Systems with Applications, vol. 38, pp. 6916-6925,
2011.

[50] V. S. Kodogiannis, M. Boulougoura, E. Wadge, and J. N. Lygouras, "The usage of soft-
computing methodologies in interpreting capsule endoscopy," Engineering Applications of
Artificial Intelligence, vol. 20, pp. 539-553, 2007.

[51] G. R. G. Pe, R. D. Fellow, F. Cardullo, and N. Y. Binghamton, "Application of Neuro-
 Fuzzy Systems to Behavioral Representation in Computer Generated Forces." Proceedings
 of the eighth conference on computer generated forces and behavioural representation
 (May 11–13, Orlando, Florida) , 575–585.
[52] J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE

Transactions on systems, man and cybernetics, vol. 23, pp. 665-685, 1993.
[53] M. A. Shoorehdeli, M. Teshnehlab, A. K. Sedigh, and M. A. Khanesar, "Identification

using ANFIS with intelligent hybrid stable learning algorithm approaches and stability
analysis of training methods," Applied Soft Computing, vol. 9, pp. 833-850, 2009.

[54] F. M. Frattale Mascioli, G. M. Varazi, and G. Martinelli, "Constructive algorithm for
neuro-fuzzy networks," in Fuzzy Systems, 1997., Proceedings of the Sixth IEEE
International Conference on, 1997, vol.1,pp. 459-464.

[55] J. S. R. Jang and E. Mizutani, "Levenberg-Marquardt method for ANFIS learning,"
 in: Proc. Biennial Conf. of the North American Fuzzy Information Processing Society

NAFIPS'96, Berkeley, CA, IEEE, New York, 1996, pp. 87-91, pp. 87-91.
[56] M. Kumar and D. P. Garg, "Intelligent learning of fuzzy logic controllers via neural

170

 network and genetic algorithm," In: Proceeding of 2004 JUSFA, Japan–USA symposium
 on flexible automation. pp. 19-21.
[57] D. Nauck and R. Kruse, "NEFCON-I: an X-Window based simulator for neural fuzzy

controllers," in Neural Networks, 1994. IEEE World Congress on Computational
Intelligence., 1994 IEEE International Conference on, 1994, vol.3,pp. 1638-1643.

[58] A. Nürnberger, D. Nauck, and R. Kruse, "Neuro-fuzzy control based on the NEFCON-
model: recent developments," Soft Computing - A Fusion of Foundations, Methodologies
and Applications, vol. 2, pp. 168-182, 1999.

[59] J. Theocharis and G. Vachtsevanos, "Adaptive Fuzzy Neural Networks as identifiers of
discrete-time nonlinear dynamic systems," Journal of Intelligent and Robotic Systems, vol.
17, pp. 119-168, 1996.

[60] M. Amina, V. Kodogiannis, and A. Tarczynski, "Predictive modeling in food mycology
using adaptive neuro-fuzzy systems," in Computer Systems and Applications, 2009.
AICCSA 2009. IEEE/ACS International Conference on, 2009, pp. 821-828.

[61] T. Ross and T. McMeekin, "Predictive microbiology," International journal of food
microbiology, vol. 23, pp. 241-264, 1994.

[62] A. M. Gibson and A. D. Hocking, "Advances in the predictive modelling of fungal growth
in food," Trends in Food Science & Technology, vol. 8, pp. 353-358, 1997.

[63] P. A. Murphy, S. Hendrich, C. Landgren, and C. M. Bryant, "Food Mycotoxins: An
Update," Journal of Food Science, vol. 71, pp. R51-R65, 2006.

[64] H. Cuppers, S. Oomes, and S. Brul, "A model for the combined effects of temperature and
salt concentration on growth rate of food spoilage molds," Applied and Environmental
Microbiology, vol. 63, p. 3764, 1997.

[65] M. N. Hajmeer, I. A. Basheer, and Y. M. Najjar, "Computational neural networks for
predictive microbiology II. Application to microbial growth," International journal of
food microbiology, vol. 34, pp. 51-66, 1997.

[66] I. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals, computing, design,
and application," Journal of Microbiological Methods, vol. 43, pp. 3-31, 2000.

[67] R. M. Garcíaa-Gimeno, C. Hervás-Martíanez, E. Barco-Alcalá, G. Zurera-Cosano, and E.
Sanz-Tapia, "An Artificial Neural Network Approach to Escherichia Coli O157:H7
Growth Estimation," Journal of Food Science, vol. 68, pp. 639-645, 2003.

[68] X. Jiang, "Dynamic fuzzy wavelet neural network for system identification, damage
detection and active control of highrise buildings," PhD final Thesis. The Ohio State
University, 2005.

[69] L. Cheng-Jian, "Wavelet Neural Networks with a Hybrid Learning Approach," Journal of
Information Science and Engineering, vol. 22, pp. 1367-1387, 2006.

[70] S. Suhartono, "Development of Model Building Procedures in Wavelet Neural Networks
for Forecasting Non-Stationary Time Series," European Journal of Scientific Research,
vol. 34, pp. 416-427, 2009 2009.

[71] G. Lekutai and H. F. vanLandingham, "Self-tuning control of nonlinear systems using
neural network adaptive frame wavelets," in Systems, Man, and Cybernetics, 1997.
'Computational Cybernetics and Simulation'., 1997 IEEE International Conference on,
1997, vol.2,pp. 1017-1022.

[72] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, "Wavelet neural networks for
function learning," IEEE Transactions on Signal Processing, vol. 43, pp. 1485-1497, 2002.

[73] M. Amina, E. Z. Panagou, V. S. Kodogiannis, and G. J. E. Nychas, "Wavelet Neural
Networks for modelling high pressure inactivation kinetics of Listeria monocytogenes in

171

UHT whole milk," Chemometrics and Intelligent Laboratory Systems, vol. In Press,
Accepted Manuscript.

[74] V. Kodogiannis, I. Petrounias, and J. Lygouras, "Adaptive Wavelet Neural Networks for
Non-linear Modelling and Control," NEURAL PARALLEL AND SCIENTIFIC
COMPUTATIIONS, vol. 15, p. 221, 2007.

[75] Y. Chen, "Stock Index Modelling using EDA based local Linear neural Network," in IEEE,
2005.

[76] Y. Chen, "Time-series prediction using a local linear wavelet neural network," Elsevier,
Neurocomputing, vol. 69, pp. 449-465, 2006.

 [77] C. Yuehui, D. Xiaohui, and Z. Yaou, "Stock Index Modeling using EDA based Local
Linear Wavelet Neural Network," in Neural Networks and Brain, 2005. ICNN&B '05.
International Conference on, 2005, pp. 1646-1650.

[78] Y. Chen, B. Yang, and J. Dong, "Time-series prediction using a local linear wavelet neural
network," Neurocomputing, vol. 69, pp. 449-465, 2006.

[79] M. F. A. A Banakar, "Artificial Wavelet Neural Network and its application in Neuro-
fuzzy models," Elsevier Applied Soft Computing, 2008.

[80] Y. Z. Jin Jiang, "A revisit block and recursive least squares for parameter estimation,"
Elsevier Computers and Electrical Engineering, vol. 30, pp. 403-416, 2004.

[81] H. T. Nguyen, N. R. Prasad, and E. A. Walker, A first course in fuzzy and neural control:
CRC Pr I Llc, 2002.

[82] K. M. Passino and S. Yurkovich, Fuzzy control: Citeseer, 1998.
[83] N. A. M. I. Mohammd Subhi Al-batah, "Modified Recursive Leat Squares Algorithm to

train the Hybrid Multilayred Perceptron Network," Elsevier Applied Soft Computing, 2009.
[84] J. Farber and P. Peterkin, "Listeria monocytogenes, a food-borne pathogen," Microbiology

and Molecular Biology Reviews, vol. 55, p. 476, 1991.
[85] J. McLauchlin, R. Mitchell, W. Smerdon, and K. Jewell, "Listeria monocytogenes and

listeriosis: a review of hazard characterisation for use in microbiological risk assessment
of foods," International journal of food microbiology, vol. 92, pp. 15-33, 2004.

[86] C. Little, F. Taylor, S. Sagoo, I. Gillespie, K. Grant, and J. McLauchlin, "Prevalence and
level of Listeria monocytogenes and other Listeria species in retail pre-packaged mixed
vegetable salads in the UK," Food microbiology, vol. 24, pp. 711-717, 2007.

[87] D. A. Nolan, D. C. Chamblin, and J. A. Troller, "Minimal water activity levels for growth
and survival of Listeria monocytogenes and Listeria innocua," International journal of
food microbiology, vol. 16, pp. 323-335, 1992.

[88] Y. Huang, Automation for food engineering: CRC, 1998.
[89] M. Zwietering, I. Jongenburger, F. Rombouts, and K. Van't Riet, "Modeling of the

bacterial growth curve," Applied and Environmental Microbiology, vol. 56, p. 1875, 1990.
[90] I. Albert and P. Mafart, "A modified Weibull model for bacterial inactivation,"

International journal of food microbiology, vol. 100, pp. 197-211, 2005.
[91] K. P. Singh, P. Ojha, A. Malik, and G. Jain, "Partial least squares and artificial neural

networks modeling for predicting chlorophenol removal from aqueous solution,"
Chemometrics and Intelligent Laboratory Systems, vol. 99, pp. 150-160, 2009.

[92] T. Ross, "Indices for performance evaluation of predictive models in food microbiology,"
Journal of Applied Microbiology, vol. 81, pp. 501-508, 1996.

[93] L. Coroller, I. Leguerinel, E. Mettler, N. Savy, and P. Mafart, "General model, based on
two mixed Weibull distributions of bacterial resistance, for describing various shapes of
inactivation curves," Applied and Environmental Microbiology, vol. 72, p. 6493, 2006.

172

[94] Y. Le Marc, C. Pin, and J. Baranyi, "Methods to determine the growth domain in a
multidimensional environmental space," International journal of food microbiology, vol.
100, pp. 3-12, 2005.

[95] M. Te Giffel and M. Zwietering, "Validation of predictive models describing the growth
of Listeria monocytogenes," International journal of food microbiology, vol. 46, pp. 135-
149, 1999.

[96] E. Z. Panagou and V. S. Kodogiannis, "Application of neural networks as a non-linear
modelling technique in food mycology," Expert Systems with Applications, vol. 36, pp.
121-131, 2009.

[97] A. Banakar and M. F. Azeem, "Comparative Study of Different Type of Wavelet in
Artificial Wavelet Neuro-Fuzzy Model," in Adaptive and Learning Systems, 2006 IEEE
Mountain Workshop on, 2006, pp. 165-170.

[98] R. Xu and D. Wunsch, "Survey of clustering algorithms," Neural Networks, IEEE
Transactions on, vol. 16, pp. 645-678, 2005.

[99] S. Miyamoto, H. Ichihashi, and K. Honda, "Algorithms for fuzzy clustering," ed: Springer,
Heidelberg, 2008.

[100] R. Babuska, Fuzzy modeling for control: Kluwer Academic Publishers Norwell, MA, USA,
1998.

[101] W. Pedrycz, Knowledge-based clustering: Wiley Online Library, 2005.
[102] G. Fung, "A comprehensive overview of basic clustering algorithms," Technical report.

http://www.cs.wisc.edu/¡«gfung/ clustering.pdf (accessed October 1, 2009).
[103] C. Borgelt and R. Kruse, "Shape and size regularization in expectation maximization and

fuzzy clustering," Knowledge Discovery in Databases: PKDD 2004, pp. 52-62, 2004.
[104] J. C. Dunn, "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters," Journal of Cybernetics, vol. 3, pp. 32 - 57, 1973.
[105] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms: Kluwer

Academic Publishers Norwell, MA, USA, 1981.
[106] N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy c-means model," Fuzzy

Systems, IEEE Transactions on, vol. 3, pp. 370-379, 1995.
[107] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy cluster analysis: John Wiley &

Sons Chichester, UK, 1999.
[108] E. G. Donald and C. K. William, "Fuzzy clustering with a fuzzy covariance matrix," in

Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE
Conference on, 1978, pp. 761-766.

[109] O. Georgieva and D. Filev, "Gustafson-Kessel algorithm for evolving data stream
clustering," international conference computer systems and technologies for PhD students
in computing 2009, pp. 1-6.

[110] R. Babuška, P. Van der Veen, and U. Kaymak, "Improved covariance estimation for
Gustafson-Kessel clustering," 2002, pp. 1081–1085.

[111] I. Gath and A. B. Geva, "Unsupervised optimal fuzzy clustering," Pattern Analysis and
IEEE Transactions on Machine Intelligence , vol. 11, pp. 773-780, 1989.

[112] H. Soleimani-B, C. Lucas, and B. Araabi, "Recursive Gath–Geva clustering as a basis for
evolving neuro-fuzzy modeling," Evolving Systems, vol. 1, pp. 59-71, 2010.

[113] M. Alata, M. Molhim, and A. Ramini, "Optimizing of fuzzy c-means clustering algorithm
using GA," Proceedings of World Academy of Science, Engineering and Technology, vol.
39, 2008 .

173

[114] A. Priyono, M. Ridwan, A. J. Alias, R. Atiq, K. Rahmat, A. Hassan, M. Ali, and M.
Alauddin, "Generation Of Fuzzy Rules With Subtractive Clustering," Jurnal Teknologi
(D), vol. 43, pp. 143-153, 2005.

[115] X. Sheng-Wu, N. Xiao-Xiao, and L. Hong-Bing, "Support vector machines based on
subtractive clustering," in Machine Learning and Cybernetics, 2005. Proceedings of 2005
International Conference on, 2005, Vol. 7,pp. 4345-4350.

[116] D. Jiamei, R. Stobart, and A. Plianos, "Combined hybrid clustering techniques and neural
fuzzy networks to predict diesel engine emissions," in Systems, Man and Cybernetics,
2007. ISIC. IEEE International Conference on, 2007, pp. 3609-3614.

[117] K. Hammouda and F. Karray, "A comparative study of data clustering techniques," Tools
of intelligent systems design. In Course Project, SYDE, vol. 625.

[118] S. L. Chiu, "Fuzzy model identification based on cluster estimation," Journal of intelligent
and Fuzzy systems, vol. 2, pp. 267-278, 1994.

[119] C. Borgelt, "Prototype-based classification and clustering," PhD Thesis, Otto-von-
Guericke-Universität Magdeburg, Universitätsbibliothek, 2006.

[120] S. Y. Kung, M. W. Mak, and S. H. Lin, "Biometric authentication: a machine learning
approach," Prentice Hall Information And System Sciences Series, p. 496.

[121] C. Borgelt and R. Kruse, "Fuzzy and probabilistic clustering with shape and size
 constraints," In: Proceedings of the 11th International Fuzzy Systems Association World
 Congress, IFSA’05, Beijing, China, pp. 945–950. 2005.
[122] C. Tomasi, "Estimating gaussian mixture densities with EM: A tutorial," Duke University,

2004. http://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf
[123] I. J. Myung, "Tutorial on maximum likelihood estimation," Journal of Mathematical

Psychology, vol. 47, pp. 90-100, 2003.
[124] S. Borman, "The Expectation Maximization Algorithm A short tutorial," Submitted for

publication, 2004.
[125] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete

data via the EM algorithm," Journal of the Royal Statistical Society. Series B
(Methodological), vol. 39, pp. 1-38, 1977.

[126] Z. Zivkovic, "Online (recursive) estimation, unsupervised learning, finite mixtures, model
selection, EM-algorithm, IEEE Transactions on Pattern Analysis and Machine
Intelligence, , vol. 26, pp. 651-656, 2004.

[127] J. A. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter
estimation for Gaussian mixture and hidden Markov models," International Computer
Science Institute, vol. 4, 1998.

[128] T. K. Moon, "The expectation-maximization algorithm," Signal Processing Magazine,
IEEE, vol. 13, pp. 47-60, 2002.

[129] J. A. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter
estimation for Gaussian mixture and hidden Markov models," International Computer
Science Institute, vol. 4, p. 126, 1998.

[130] X. Yang and J. Liu, "Mixture density estimation with group membership functions,"
Pattern Recognition Letters, vol. 23, pp. 501-512, 2002.

[131] V. S. Kodogiannis, J. N. Lygouras, A. Tarczynski, and H. S. Chowdrey, "Artificial Odor
Discrimination System Using Electronic Nose and Neural Networks for the Identification
of Urinary Tract Infection," Information Technology in Biomedicine, IEEE Transactions
on, vol. 12, pp. 707-713, 2008.

[132] J. Abonyi and B. Feil, Cluster analysis for data mining and system identification:
Birkhauser, 2007.

174

[133] R. H. Abiyev, "Fuzzy wavelet neural networks for identification and control of dynamic
plants—a novel structure and a comparative study," Industrial Electronics, IEEE
Transactions on, vol. 55, pp. 3133-3140, 2008.

[134] S. Yilmaz and Y. Oysal, "Fuzzy Wavelet Neural Network Models for Prediction and
Identification of Dynamical Systems," IEEE Transactions on Neural Networks, vol. 21, pp.
1599-1609, 2010.

[135] W. Zhigang, P. Hong, and W. Jun, "Research for a Dynamic Recurrent Fuzzy Wavelet
Network," in Intelligent Systems Design and Applications, 2006. ISDA '06. Sixth
International Conference on, 2006, pp. 914-918.

[136] S. Srivastava, M. Singh, M. Hanmandlu, and A. N. Jha, "New fuzzy wavelet neural
networks for system identification and control," Applied Soft Computing, vol. 6, pp. 1-17,
2005.

[137] E. Karatepe and M. AlcI, "A new approach to fuzzy wavelet system modeling,"
International Journal of Approximate Reasoning, vol. 40, pp. 302-322, 2005.

[138] M. Amina, E. Z. Panagou, V. S. Kodogiannis, and G. J. E. Nychas, "Wavelet neural
networks for modelling high pressure inactivation kinetics of Listeria monocytogenes in
UHT whole milk," Chemometrics and Intelligent Laboratory Systems, vol. 103, pp. 170-
183.2010

[139] C.-J. Lin and C.-H. Chen, "Identification and prediction using recurrent compensatory
neuro-fuzzy systems," Fuzzy Sets and Systems, vol. 150, pp. 307-330, 2005.

[140] J. Abonyi, R. Babuska, and F. Szeifert, "Modified Gath-Geva fuzzy clustering for
identification of Takagi-Sugeno fuzzy models," IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 32, pp. 612-621, 2002.

[141] V. Calhoun, T. Adal, M. Kraut, and G. Pearlson, "A weighted least-squares algorithm for
estimation and visualization of relative latencies in event-related functional MRI,"
Magnetic Resonance in Medicine, vol. 44, pp. 947-954, 2000.

[142] R. Havangi, M. A. Nekoui, and M. Teshnehlab, "Adaptive Neuro-Fuzzy Extended Kalman
Filtering for Robot Localization," Arxiv preprint arXiv:1004.3267.

[143] H. Yang, J. Li, and F. Ding, "A neural network learning algorithm of chemical process
modeling based on the extended Kalman filter," Neurocomputing, vol. 70, pp. 625-632,
2007.

[144] G. Feng, G. Xiaohong, C. Xi-Ren, and A. Papalexopoulos, "Forecasting power market
clearing price and quantity using a neural network method," in Power Engineering Society
Summer Meeting, 2000. IEEE, 2000, vol. 4,pp. 2183-2188.

[145] S. J. Huang and K. R. Shih, "Short-term load forecasting via ARMA model identification
including non-Gaussian process considerations," IEEE Transactions on Power Systems, ,
vol. 18, pp. 673-679, 2003.

[146] N. Amjady, "Short-term hourly load forecasting using time-series modeling with peak
load estimation capability," Power Systems, IEEE Transactions on, vol. 16, pp. 798-805,
2001.

[147] M. Gastaldi, R. Lamedica, A. Nardecchia, and A. Prudenzi, "Short-term forecasting of
municipal load through a Kalman filtering based approach," 2004, vol. 3,pp. 1453-1458.

[148] J. Y. Fan and J. D. McDonald, "A real-time implementation of short-term load forecasting
for distribution power systems," IEEE Transactions on Power Systems, vol. 9, pp. 988-994,
1994.

[149] H. T. Yang and C. M. Huang, "A new short-term load forecasting approach using self-
organizing fuzzy ARMAX models," IEEE Transactions on Power Systems , vol. 13, pp.
217-225, 1998.

175

[150] C. N. Lu, H. T. Wu, and S. Vemuri, "Neural network based short term load forecasting,"
Power Systems, IEEE Transactions on, vol. 8, pp. 336-342, 1993.

[151] C. Zhang and P. Ma, "Short-Term Electricity Price Forecasting Based on PSO Algorithm
and RBF Neural Network Algorithm," 2010, pp. 334-337.

[152] A. Jain and B. Satish, "Clustering based Short Term Load Forecasting using Support
 Vector Machines," in Proceedings of the IEEE PES Power Systems Conference Exposition
 (PSCE), 2009, pp. 1–7, pp. 1-8.
[153] P. Mastorocostas, J. Theocharis, and A. Bakirtzis, "Fuzzy modeling for short term load

forecasting using the orthogonal least squares method," IEEE Transactions on Power
Systems, , vol. 14, pp. 29-36, 1999.

[154] M. Hanmandlu and B. K. Chauhan, "Load Forecasting Using Hybrid Models," IEEE
Transactions on Power Systems, IEEE Transactions on, vol. 26, pp. 20-29, 2011.

[155] J. Yang and J. Stenzel, "Short-term load forecasting with increment regression tree,"
Electric Power Systems Research, vol. 76, pp. 880-888, 2006.

[156] W. Sun, "A Novel Hybrid GA Based SVM Short Term Load Forecasting Model," in
Knowledge Acquisition and Modelling, 2009. KAM '09. Second International Symposium
on, 2009, pp. 227-229.

[157] M. R. Khan and A. Abraham, "Short Term Load Forecasting Models in Czech Republic
Using Soft Computing Paradigms," Arxiv preprint cs/0405051, 2004.

[158] W. Yuill, R. Kgokong, S. Chowdhury, and S. Chowdhury, "Management of short term
load forecasting in South African power networks," in Power System Technology
(POWERCON), 2010 International Conference on, 2010, pp. 1-8.

[159] V. S. Kodogiannis and E. M. Anagnostakis, "A study of advanced learning algorithms for
short-term load forecasting," Engineering Applications of Artificial Intelligence, vol. 12,
pp. 159-173, 1999.

[160] C. M. Huang and H. T. Yang, "Evolving wavelet-based networks for short-term load
forecasting," Generation, Transmission and Distribution, IEE Proceedings-, vol. 148, pp.
222-228, 2001.

[161] L. A. Zadeh, "Fuzzy logic = computing with words," IEEE Transactions on Fuzzy Systems,
vol. 4, pp. 103-111, 1996.

[162] J. Kacprzyk and S. Zadrozny, "Computing with words is an implementable paradigm:
fuzzy queries, linguistic data summaries, and natural-language generation," Fuzzy Systems,
IEEE Transactions on, vol. 18, pp. 461-472, 2010.

[163] W. Yu and X. Li, "Online fuzzy modeling with structure and parameter learning," Expert
Systems with Applications, vol. 36, pp. 7484-7492, 2009.

[164] S. J. Yoo, Y. H. Choi, and J. B. Park, "Generalized predictive control based on self-
recurrent wavelet neural network for stable path tracking of mobile robots: adaptive
learning rates approach," IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 53, pp. 1381-1394, 2006.

[165] X. Jiang and H. Adeli, "Dynamic wavelet neural network model for traffic flow
forecasting," Journal of transportation engineering, vol. 131, p. 771, 2005.

[166] L. Mirea and R. J. Patton, "Recurrent wavelet neural networks applied to fault diagnosis,"
in Control and Automation, 2008 16th Mediterranean Conference on, 2008, pp. 1774-
1779.

[167] R. Polikar, L. Upda, S. Upda, and V. Honavar, "Learn++: An incremental learning
algorithm for supervised neural networks," IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews , vol. 31, pp. 497-508, 2001.

176

[168] L. Bruzzone and D. Fernàndez Prieto, "An incremental-learning neural network for the
classification of remote-sensing images," Pattern Recognition Letters, vol. 20, pp. 1241-
1248, 1999.

[169] T. Seipone and J. A. Bullinaria, "Evolving improved incremental learning schemes for
neural network systems," in Evolutionary Computation, 2005. The 2005 IEEE Congress
on, 2005, Vol. 3, pp. 2002-2009.

177

Appendix I

Statistical Error Criteria

Coefficient of Determination (R2): The coefficient of determination indicates how much of the

total variation in the dependent variable can be accounted for by the model. It is computed as a

value between 0 (0 percent) and 1 (100 percent). The higher the value, the better the fit.

2

estimated desired2
2

desired desired

(Output Output)
Coefficient of Determination(R) 1

(Output Output)

−
= −

−
∑
∑

Root Mean Square Error (RMSE): Expressing the formula in words, the difference between

forecast and corresponding observed values are each squared and then averaged over the sample.

Finally, the square root of the average is taken. Since the errors are squared before they are

averaged, the RMSE gives a relatively high weight to large errors.

N
2

estimated desired
i 1

(Output Output)

Root Mean Square Error(RMSE)
N

=

−
=
∑

Mean Absolute Percentage Error (MAPE) (%): The MAPE measures the average magnitude of

the errors in a set of forecasts, without considering their direction, in percentage.

N

estimated desired
i 1

100
Mean Absolute Percentage Error(MAPE) Output Output

N =

= × −∑

Standard Error of Prediction (SEP) (%): The standard error of prediction is the standard

deviation of the prediction errors. It is computed like any other standard deviation - the square root

of the error sum of squares divided by the number of samples

178

N
2

estimated desired
i 1

(Output Output)
Stan dard Error Of Pr ediction(SEP) 100

N
=

−

 = ×

∑

Mean Relative Percentage Error (MRPE)(%) : Mean Relative Error is a number that compares

how incorrect a quantity is from a number considered to be true. Unlike absolute error, where the

error has the units of what is being measured, relative error is expressed as a percentage, defined

as the absolute error divided by the true value.

N

estimated desired

desiredi 1

Output Output100
Mean Absolute Percentage Error(MRPE)

N Output=

−
= ×∑

Bias factor (Bf): The simplest relative measure is a ratio of the desired and estimated output. The

ratio alone, however, may be misleading because, for example, a ‘factor of 10’ over-prediction

(predicted/observed=10) will have more weight than a ‘factor of 10’ under-prediction of

generation time (predicted/observed = 0.1). Thus, the logarithm of the ratio was chosen so that

over- and under-prediction were given equal weight in determining the average deviation. The

antilogarithm of this value (average relative deviation) may be interpreted as the average ratio of

the predicted and observed values.

desired

estimated

Output
(log()/N)

OutputBias Factor 10
∑

=

Accuracy factor (Af): In order that under- and over-prediction not to ‘cancel out’ each other

(because the logarithm of the ratios will have opposite signs) and consequently have some

indication of the average accuracy of estimates, the average of the absolute values of the

logarithm of the ratio was calculated in Accuracy Factor. The antilogarithm of this value will

always be greater than or equal to one

desired

estimated

Output
(log /N)

OutputAccuracy Factor 10
∑

=

179

Appendix II

List of Publications

Chapters in Book

 1) V.S. Kodogiannis , M. Amina , J.N. Lygouras and G.-J.E. Nychas, “Application of wavelet

 neural networks as a non-linear modelling technique in food microbiology”, accepted in

 Animal Feed: Types, Nutrition, and Safety, Nova Science Publishers, Inc, 2011, (in press).

Journals

1) M. Amina , V.S. Kodogiannis, J.N. Lygouras, “Short-term Load Forecasting in Power System

 Using Clustering-Based Fuzzy Wavelet Neural Networks”, submitted to IEEE Trans on Power

 Systems, 2011.

2) M. Amina , V. S. Kodogiannis, J. N. Lygouras, and G. J. E. Nychas, "Identification of the

 Listeria monocytogenes survival curves in UHT whole milk utilising local linear wavelet neural

 networks," Elsevier, Expert Systems with Applications, vol. 39, pp. 1435-1450, 2012.

3) V.S.Kodogiannis, M.Amina , J.N.Lygouras “Power Load Forecasting using Extended

 Normalised Radial basis Function Networks”, accepted to Journal of Computational Methods

 in Sciences and Engineering (JCMSE), 2011, IOS Press.

4) M.Amina, E.Z. Panagou, V.S. Kodogiannis, G.-J.E.Nychas, “Wavelet Neural Networks for

 modelling high pressure inactivation kinetics of Lysteria Monocytogenes in UHT whole milk”,

 Elsevier Chemometrics and intelligent laboratory systems, Vol.103, No.2, pp.170-183, 2010.

Conference

1) M. Amina and V. S. Kodogiannis, "Load forecasting using fuzzy wavelet neural

networks," in Fuzzy Systems (FUZZIEEE), IEEE International Conference on, Taipei,

Taiwan, June 2011, pp. 1033-1040.

180

2) M.Amina ,V.S.Kodogiannis, E.Z. Panagou and G.E.Nychas, “Modelling Listeria

survival/death monocytogenes survival/death curves using Wavelet Neural Networks”,

The 2010 International Joint Conference on Neural Networks (IJCNN),Barcelona, Spain,

18-23 July 2010, pp. 1-8, ISBN: 978-1-4244-6916-1.

3) M.Amina , V.S.Kodogiannis, A.Tarczynski “ Predictive Modelling in Food Mycology

using Adaptive Neuro-Fuzzy Systems”, 2009 IEEE/ACS International Conference on

Computer Systems and Applications, AICCSA’2009, May 10-13, 2009. Rabat, Morocco,

pp. 821-828, ISBN:978-1-4244-3806-8

181

