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Abstract

The enormous number of complex systems resultseimecessity of high-level and cost-efficient
modelling structures for the operators and systesigders. Model-based approaches offer a very
challenging way to integrate a priori knowledgeitite procedure. Soft computing based models
in particular, can successfully be applied in caxfdsighly nonlinear problems. A further reason
for dealing with so called soft computational moldaked techniques is that in real-world cases,
many times only partial, uncertain and/or inacaiddta is available.

Wavelet-Based soft computing techniques are coreigeas one of the latest trends in system
identification/modelling. This thesis provides amqrehensive synopsis of the main wavelet-based
approaches to model the non-linear dynamical systameal world problems in conjunction with
possible twists and novelties aiming for more aataiand less complex modelling structure.
Initially, an on-line structure and parameter desids been considered in an adaptive Neuro-
Fuzzy (NF) scheme. The problem of redundant meshiiigrfunctions and consequently fuzzy
rules is circumvented by applying an adaptive stmec The growth of a special type Bfingus
(Monascus ruber van Tieghem) examined against several other approaches for efurth
justification of the proposed methodology.

By extending the line of research, twiorlet Wavelet Neural Network (WNN) structures have
been introduced. Increasing the accuracy and dagogedhe computational cost are both the
primary targets of proposed novelties. Modifying tsynoptic weights by replacing them with
Linear Combination Weights (LCW) and also imposedHybrid Learning Algorithm (HLA)
comprising of Gradient Descent (GD) and Recursigadt Square (RLS), are the tools utilised for
the above challenges. These two models differ fitwerpoint of view of structure while they share
the same HLA scheme. The second approach contaiadgditional Multiplication layer, plus its
hidden layer contains several sub-WNNs for eachitimfdmension. The practical superiority of
these extensions is demonstrated by simulation exmkrimental results on real non-linear
dynamic systemiListeria Monocytogenesurvival curves in Ultra-High Temperatuf@HT)
whole milk, and consolidated with comprehensive parison with other suggested schemes.

At the next stage, the extended clustering-basezyfuersion of the proposed WNN schemes, is
presented as the ultimate structure in this thdsige. proposed Fuzzy Wavelet Neural network
(FWNN) benefitted from Gaussian Mixture Models (GMMclustering feature, updated by a

modified Expectation-Maximization (EM) algorithmOne of the main aims of this thesis is to



illustrate how the GMM-EM scheme could be usedardy for detecting useful knowledge from

the data by building accurate regression, butfalsthe identification of complex systems.

The structure of FWNN is based on the basis ofyfuzites including wavelet functions in the

consequent parts of rules. In order to improveftimetion approximation accuracy and general
capability of the FWNN system, an efficient hybidigarning approach is used to adjust the
parameters of dilation, translation, weights, aneimbership. Extended Kalman Filter (EKF) is
employed for wavelet parameters adjustment togetfiter Weighted Least Square (WLS) which

is dedicated for the Linear Combination Weightsefinning. The results of a real-world

application of Short Time Load Forecasting (STLEjtlier re-enforced the plausibility of the

above technique.
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Chapter 1

Introduction

1.1 Understanding of Soft Computing and IntelligentSystems

When we interact with a system, we need some comfdmw its variables relate to each other,
with a broad definition such an assumed relatignstalled model of the system. Model is
normally known as simplified representation of ateyn, in time or space intended to promote
understanding of the real system. On the list dfdanalysis tasks frequently occurring in
applications, modelling occupies very high, if nbe highest rank. As a consequence a large
variety of methods to tackle these tasks have lesmloped ranging from different sorts of
mathematical modelling to more advanced soft comgutchniques. Among all these methods,
soft computing approaches draw intense interestata analysis. This interest is mainly due to
extremely rapid growth of complex plants/systemscivihas rendered mathematical modelling
virtually impossible. When attempting to solve realrld problems, we realize that there are
typically ill-defined systems to analyze and diffiicto model. In these cases, precise models are
impractical, too expensive, or non-existent. Furtiare, the relevant available information are
mainly in form of empirical prior knowledge and utpoutput data representing instances of the
systems’ behaviour. Therefore, we need an apprdgimeasoning system capable of handling
such imperfect information. Soft Computing techmigjuoriginated from emulating intelligent
phenomenon in nature, their main scope is on thdysbf adaptive mechanism to enable or
facilitate intelligent behaviour in complex and ngang environment. It includes paradigms like

neural networks, evolutionary computation, swarteliigence, fuzzy system and so forth.



Traditional quantitative models in modelling haveotmain disadvantages. First, conventional
mathematical and statistical models usually reqoimaplicated formulae, and hence they may be
considered as “grey-box” type models for their aseven if they are familiar with advanced
mathematics. Since these models require advancéigematical skills and notations, they are
often laborious with respect to calculations anthgotations. Second, models based on bivalent
logic already seem outdated because they ofted gietessively coarse or otherwise problematic
outcomes (even paradoxes). Hence, the research waitgrmequires the development of more
user-friendly and powerful theories and models.sehdifficulties lead to a number of challenging
problems, i.e., “incorporate” the human intelligerinto a machine, because there is a huge gap
between the human intelligence and the machindig@rce. In order to cope with the difficulties
mentioned above, an emerging framework - soft camgu has been developed recently, which
has the following properties:

e Soft computingis pointed towards the analysis and design oflligemt systems. It
consists of fuzzy logic, artificial neural networksid probabilistic reasoning including
evolutionary algorithms, and parts of machine lesynand has the attributes of
approximation.

» Soft computings aiming at a formalisation of the human abitilymake rational decision
in uncertain and imprecise environment;

* The constituents ofoft computingare complementary rather than competitive. The
experiments gained over the past decade have taditizat it can be more effective to use
them in a hybrid manner, rather than solely;

e Soft computingis an open framework. This means its framework ehmays be
incremented by newly created techniques come freninbitating of the human/natural.

Applications of hybrid soft computing systems aterently used in such diverse industrial and
commercial fields. In these areas, some combimatadrnybrid soft computing systems, such as
fuzzy logic controller tuned by neural networks awblutionary computing, neural network tuned
by evolutionary computing or fuzzy logic systemdasvolutionary computing tuned by fuzzy

logic systems have been considered. Applicationdiagnostic systems, control, and prediction
were received greater attention in past years.



1.2 Rationale of present research

Modelling and identification of nonlinear dynamigstems is a chanllenging task because
nonlinear processes are unique in the sense tatdih not share many properties. A major goal
for any nonlinear system modelling and identifieatischeme is universalness: that is the
capability of decribing a wide class of structwalifferent systems. In this context, a great effor
is being made within the area of system identificgt towards the development of nonlinear
models of real processes. In addition to more idak&lentification methods such as NARMAX
modelling, a new set of methods has been developeently which apply artificial neural
networks and fuzzy systems to the tasks of ideatifon of dynamic systems. These works are
supported by two of the most important capabilitésieural networks, i.e. their ability to learn
(based on the optimization of an appropriate efwuaction) and their good performance for the
approximation of nonlinear functions, as well as thain characteristic of fuzz systems, i.e. fuzzy
rules / defuzzification schemes. Fuzzy systems mcoemeric inputs and convert theses into
linguistic values (represented by fuzzy numbera} tan be manipulated with linguistic IF-THEN
rules and with fuzzy logic operations, such as yumplication and composition rules of inference.
However, at present there is no systematic proesfiturthe design of a fuzzy system. Usually the
fuzzy rules are generated by converting human épefaexperience into fuzzy linguistic form
directly and by summarizing the system behavioamfded input-output pairs) of the operators.
But designers find it difficult to obtain adequdtezy rules and membership functions because
these are most likely to be influenced by the titeness of the operators and the designers.
Neural network models basically use the sigmoidvatibn function in neurons. However, the
sigmoid function normally appeared in neural netsois not orthogonal, and the energy of the
sigmoid function is limitless, and this leads tovglconvergence. Wavelet function is a waveform
that has limited duration and an average value eb.zThe integration of the localisation
properties of wavelets and the learning abilities@ural networks shows advantages of wavelet
neural networks over neural networks in complexlinear system modelling in terms of learning
efficiency and structure transparency.

Neurofuzzy hybrid modelling approaches have betoduced as an ideal technique for utilising
such knowledge and empirical data. Based on thdasities between fuzzy systems and some
neural networks, neurofuzzy approaches combin@dseed attributes of both the fuzzy and the
neural paradigms hence producing flexible modelghvban learn from empirical data and can be



represented linguistically by fuzzy rules. For mbdg of dynamic processes, neurofuzzy systems
incorporating a Takagi-Sugeno-Kang (TSK) schemeess a very good interpretation, which is
superior to most, if not all, alternative defuzzifiion approaches. However, in the case of
modelling of complex nonlinear processes, TSK-tfgzzy systems may require a high number of
rules in order to achieve the desired accuracyefsing the number of the rules leads to an
increase in the number of parameters needed talbelated.

This thesis investigates the ability of waveletdshsoft computing approaches to learn how to
identify adequately complex nonlinear systems. Arity soft computing framework has been
constructed and applied to the identification ofnlim®ar dynamic modelling. The major
motivation for this research is that current hyhrgplementations of soft computing techniques
suffer from the lack of efficient constructive medls, both in determining the parameters and in
choosing network structure. To remedy the weakradstraditional computational intelligent
systems, in this thesis some novel wavelet-basedatie have been proposed in order to improve
the performance of existing modelling schemes.

Encouraged by the potential strengths of the idezbmbining both wavelet decompositions and
the feed-forward neural networks, a Wavelet Neuetiwork scheme has been proposed [1].
Inspired by theory of multi-resolution analysis(MR&f wavelet transforms and fuzzy concepts,
the Fuzzy Wavelet Networks(FWNNSs) concept was thioed in [2]. The combination of fuzzy
logic and WNNSs in FWNNSs not only reserves the mrdolution capability of WNNSs, but also
enjoy the advantages of high approximation accuracg good generalization performance.
However, existing WNN/FWNN methods for dynamic systidentification suffer from i) lack of
an efficient constructive model, ii) slow convergerrate when high dimensional data exist, iii)
low identification accuracy when imprecision in tmeasured data exists and iv) the need to find
the model structure by trial and error, a probléat is has been addressed with the proposed in
this thesis novel FWNN concept.

In this research, through innovative applicationd adroit integration of emerging information
technologies, a signal processing method (wavelats) two soft computing methods (fuzzy logic
and neural network), novel WNNs and Fuzzy Waveleundl network models have been
developed for modelling and identification purposes

A step-by-step constructive approach has been edoipt the presentation of the developed
methodologies. Initially, a study on one populaunoduzzy system scheme has been performed in

order to investigate its strength over alternativen-hybrid schemes as well as its major



weaknesses. The specific neurofuzzy scheme wageatidpe to its TSK defuzzification scheme
which has influenced the design of the proposethim thesis FWNN. This neurofuzzy scheme
was evaluated using real food data, acquired framc@ltural University of Athens. The specific
experiment was performed in order to verify schenperformance to the static identification of a
nonlinear process. Nevertheless, as the main fofctiss thesis is the modelling of dynamic rather
static nonlinear processes, in the next stage, nowel wavelet neural networks have been
developed. Their design has been influenced bycldmssic TSK neurofuzzy systems. The static
weights scheme appeared in classic wavelet neatalonks, have been replaced here by a linear
TSK-combination weight scheme.

The efficiency of the new WNN structures has beaduated through the dynamic identification
of a complex nonlinear case study related to foodlysis and acquired from Agricultural
University of Athens.

Emphasis in this particular case study has beendivthe performance (accuracy / training speed)
of the developed WNN schemes, through the compariagainst existing regression and
intelligent methodologies. The challenge with tpedfic dataset was the rather limited number of
samples/patterns and thus methods how to handldl smmmber of samples with dynamic
behaviour had to be developed.

The ultimate goal of this thesis is the developrnana prototype FWNN. However in order to
develop such efficient and novel scheme, a numbsulmcomponents related to FWNN had to be
developed. The developed WNNs have replaced thesicldinear TSK defuzzification part.
However, in a hybrid fuzzy-based system, accuracgat the only issue of consideration. The
computational cost, associated with the numbeuny rules, is of equally importance. It is well
known that efficient performance in hybrid systeliss closely related to the number of
samples/patterns. But in traditional hybrid scheniks results in to an increased number of
required fuzzy rules and subsequently to a largebau if parameters to be calculated. In this
thesis a new type of clustering technique has b&terduced as an essential part of the proposed
FWNN. The proposed FWNN concept has been evaluatdda large dataset related to load
forecasting of the power system of the island oft€r Greece. The embedded in the FWNN
clustering sub-systems managed to provide accypegeictions, and such result was also
associated with an efficient relatively small stuwe (i.e. fuzzy rules).

In general wavelet-based hybrid methods and thppliGations are comparatively new and

research is being carried out continuously in mamiyersities and research institutions worldwide



1.3 Outline of the Thesis

The thesis is organised into seven chapters. Filtpthis introductory chapter the next chapter,
Chapter 2, gives an overview of modelling focusimy some traditional linear systems and
fundamental concept of some of classic techniquarstioned above. It also introduces the various
types of hybrid architectures highlighting somettadir weaknesses and advantages, followed by
explaining the necessity of such merging. This trafinalised by explaining the problems this
thesis trying to tackle and the criteria going t® donsidered when proposing new schemes in
following chapters.

Chapter 3 delves further beyond and presents détdiscussions and mathematical formulation
of some selected computational intelligence archites. It starts with dynamics of neural
networks and its training algorithms and analyss@me other variants of it according to
connections layout and activation functions. Fugggtems and its concept, together with three
hybrid neuro-fuzzy structures are the other mapicoutlined in this chapter. Finally, a Neuro-
Fuzzy scheme equipped with adaptive structure ilegurwas developed, and tested on a Food
Microbiology dataset.

Chapter 4 attempts to give a detailed introductidnwavelet transform. This chapter then
addressed some existing WNNs through some litexrataview. Two proposed new WNN
structures with a hybrid learning scheme are thepgsed. Each of proposed schemes have been
examined with a real dynamic biological system. #&n provide comprehensive result analysis,
and performances evaluated against many otheritpem

Chapter 5 is a background introductory chaptehéodoncept of clustering and mainly focuses on
various fuzzy clustering techniques with objectiumction and its applications. This chapter
reviews the potential of clustering algorithms &veal the underlying structures, not only for
classification and pattern recognition, but alsptfe reduction of complexity in modelling and
optimization. More specifically, the Expectation-¥aization (EM) and Gaussian Mixture
Models (GMM) as a probabilistic framework discussethis chapter. The latter will be utilised in
the following chapter. This chapter's aims focuspoaviding sufficient background theory to be
able to study and develop a novel scheme in thewoig chapter.

Chapter 6 elaborates on the fusion of the two forof@pters in order to determine the most
extensive of this research. A novel clustering-dads@/NN suggested and explained. The flows of
the signal from input to output and the dynamicthefstructure are elaborated. The EM clustering



method and two training algorithms, i.e. Extendealnkan Filter and Weighted Least Square
which are used in conjunction with each other tpustdnon-linear and linear parameters of the
networks, are deployed. The mentioned section wisithe core part of the research, applied to a
dynamic application known as Short Term Load Fastieg (STLF).

Chapter 7 draws conclusions and possible directimnsfuture work. Four recommended

enhancements, which were out of the scope of thjeqt, are presented here.

1.4 Contributions of thesis

Over the period of this research project, certaimtiibutions to the field of hybrid soft computing
techniques have been offered, by exploring a nuraberodifications and innovations. They are
mainly around the wavelet-based neural networks Bnzzy -neural networks. This area is
relatively new and has growing importance. Below Ist of these innovations. A full description

of each point can be found latter in this document.

1. Initially, the general practicability of conventi@nNeuro-Fuzzy modelling has been

enhanced by applying an Adaptive Neuro Fuzzy sirednto a Biological application.

2. Wavelet Neural Network conventional structure wasiewed and revised. Two
distinguished new fully tuneable schemes of WNNsewmtroduced. They are
different in number of layers, activation functiend mainly the connection
configuration between the layers. They have legEtovelty both in the structure and

in the learning algorithm.

e Local Linear Combination weights applied in conjie with a hybrid
learning algorithm.

» One-Step-Ahead prediction bysteria Monocytogene Bactria Survivalrves

The new structures contributed significantly totbatcuracy and computational cost

when facing a real world dataset.

3. A novel FWNN scheme proposed and functionality aped through comprehensive

comparisons on a real world dynamic dataset, amdrakerror criteria. The novel



4.

FWNN scheme is considered as an evolutionary versib previously proposed

FWNN and addressed several drawbacks existingbrichynethods.

Clustering for the first time embedded into a watddased structure.
Significant reduction in fuzzy rule and overcomimigh problems occur as the
result of increasing number of features and dinwssi Curse of
dimensionality are the main outcomes. The clustering conduatethput-
output space.

New hybrid of learning method i.e. Extended Kalnfitier together with
Weighted Least Square, alleviate the convergeneedsp

Also a modified version of Expectation-Maximizatioresponsible for
partitioning the data as well as finding the clugiarameters. The modified
version enabled with a feedback link from outpubeiinto the clustering
process.

Probabilistic interpretation of fuzzy clusters (Gsian Mixture Model) which
assists in extracting the fuzzy membership withmajecting them onto the

input axis.

Automated number of clusters and initialisatiorclofster parameters. This performed

via Subtractive Clustering.



Chapter 2
State-of-the-Art in System Identification

How to better understand and replicate the realdramound us is a long-established issue. Models
of the real world have provided a vital means afating a link between theory and proof. In
information processing, the objective is generadlygain an understanding of the phenomena
involved, and to evaluate relevant parameters gagwely. This is usually accomplished trough
‘modelling’ or ‘identification’ of the system, either experimentally or analytical

System modelling is a technique to express, visealinalyse and transform the architecture of a
system. In loose terms, a system is an objecthichwvariables of different kinds interact and
produce observable signals. The observable sighatsare of interest to us are usually called
outputs. The system can be affected by exterimaubtas well. External signals that can be
manipulated by the observer are called the infthte. activities and tasks that turn the inputs into
products and services are called Processes

A system may consist of software components, hamlvemmponents, or both and also the
connections between these components. In this sergstem model is then considered as a
skeletal model of the system. System modelling ubese elements: inputs, processes, and

outcomes.

2.1 Mathematical Modelling

In mathematical modelling, we translate those bighas into the language of mathematics. This

has many advantages;

1. Mathematics is a very precise language. Thigshas$ to formulate ideas and identify underlying
assumptions.

2. Mathematics is a concise language, with wellrgef rules for manipulations.

3. All the results that mathematicians have prawest hundreds of years are at our disposal.

4. Computers can be used to perform numerical lzalons.



The primary concern of a system modeller is to inbhamathematical representation of system'’s
behaviour under study in terms of physically sigaifit variables. Any system modelling consists
of two steps, model design and performance evalualihere is a large element of compromise in
mathematical modelling. The majority of interactisgstems in the real world are far too
complicated to model in their entirety. Hence tinst ievel of compromise is to identify the most
important parts of the system. These will be inetlith the model, the rest will be excluded. The
second level of compromise concerns the amount athematical manipulation which is
worthwhile. Although mathematics has the poteritigbrove general results, these results depend
critically on the form of equations used. Small mip@s in the structure of equations may require
enormous changes in the mathematical methods. Wsinguters to handle the model equations
may never lead to elegant results, but it is mudientobust against alterations. Mathematical
models in terms of their nature can be in varioagsy

Dynamic vs. Static ModelBynamic systems may be complex industrial plartsre the dynamic
relationship between the inputs and the plant bebhavnust be modelled. The inputs to the
dynamic system often represent the system state @evious time step and the mapping is
between the current system state and the one aefttidime step. The output from such a system
is often a continuous value or series of valuesciwhinay vary independently unlike the
classification systems where they are normallydihkApplications of this type include attempts to
identify the underlying processes in financial éssengineering and control applications, food
microbiology and load forecasting. In contrastthe dynamic systems that are described by
differential or difference equations, the statisteyns are described by algebraic equations.
Typical examples of identification of static systémlude problems where input variables are not
time-dependent or pattern recognition problems.

Linear vs. Nonlinear Models Dynamic system models are either linear or nonfindalinear
model obeys the principle of superposition and hgeneity[3]. The following equations are true

for linear models.
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y,=f(xy)

Y= (Xz)

f(x,+%,) =f(x,) +f(x,) =y, +y,

f(ax,) =af(x) =ay 2.1)

Where x and % are the system inputs, &nd y are the system outputs, and ‘a’ is a constant.
Conversely, nonlinear models do not obey the pplasi of superposition or homogeneity. Many
real-world systems are nonlinear, though we canyrtiares linearize them to simplify a design or
analysis procedurd.inear modelling techniques are capable of modgltionlinear processes if
the nonlinear characteristics are weak. Their gttencome from the fact that they contain a small
number of parameters and so long, there are fegymaeasurements they perform adequately.
This means that often it is possible to calculateear model for a data set that is too sparse for
more complex nonlinear models. A linear model m@y a weighted sum of a set of inputs that
describe a hyper-plane across the input space.p@temeters can be estimated simply using a
least squares technique, with online optimisatealized using a recursive least squares technique.
Generally linear models can be divided into paraimand non-parametric models.

e Parametric models assume that the process can Helletb with a finite number of
parameters. These parameters often have a ditatibnship to the physical qualities of
the process. Examples of these types of modelsbeafound in differential equation
models. Linear regression techniques can be usigidmtify the parameter. These models
in turn may be used for the approximation of norapwetric techniques where the number
of parameters has been reduced to a finite number.

* Non-parametric models often require an infinite bemof parameters to describe the
process exactly. They are used when less struétute be imposed on the model.
Although in theory these methods have no fixed mpatars, in the end they require a
finite number of parameters to be imposed duringiémentation.

This section is concerned with parametric modetetaround the time domain, as these are the
methods most commonly used in process and contgiheering.

The general linear model structure process is preduo consist of a series of inputs u(t) and an
output process y(t). If the system is purely dateistic, i.e. the noise process is negligiblenthe

the system output y(t) can be computed by passiegtaf input parameters or a state vector
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through a linear filter called the Input TransfemEtion. Variable g here denotes the forward shift
operator. A stochastic white noise model can beaddd this by filtering the white noise process,

v(k), through a second linear filter called the $oiTransfer Function. Each of these can be
assumed to possess a numerator and a denominfidor,with an assumed shared denominator

factor. As a result the general linear model cagiben by [4].
B C
y(k):iu(kﬁ&v(k) (2.2)

Not all of the numerators and denominators in thieegal linear model are used in each modelling
scheme. For some applications the input variablesuaknown or too numerous to identify
properly. In these applications such as these thehastic series represented by the previous
system outputs are generally used. In terms ofémeral linear model this leads to the u(k) term
being discarded. The presence or absence of tins teumerators and denominators of the v(k)
and u(k) parts of eq (2.2) further classifies ¢haegstems. The simplest form of these is the
stochastic model with just the denominator D(q)spré¢. These are called autoregressive (AR)
models as shown below.

vik) 1 yik)
— —_—
Dig)
Fig 2.1-AR Modd
So the transfer equation is as follows.
y(K) = —~v(K) 2.3)
D(a)

The parameters can be calculated using a simplst ISzpiares (LS) technique making them easy
to identify. However they are capable of modellordy series with AR characteristics. They also

suffer from model order selection problems when dh&a sets are too small. This leads to the
model containing spurious peaks [5].

When just the numerator is present then it is dalemoving average (MA) model. These are

generally far less applied in engineering applaradi as the parameter identification process is
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nonlinear. Again there are real problems with figdthe minimum order for the MA model and
although solutions have been proposed they aren oftamputationally intensive requiring

frequency analysis [6].

vik) Cra) k)

Fig 2.2-MA Model
So the transfer equation corresponding with figugeis

y(k)=C(a) v(k) (2.4)
As can be seen the noise parameters at each stajebenestimated. This leads to the need for
another model to estimate the parameters. Joiniolp hese schemes together give the

autoregressive moving average (ARMA) model.

vk} Crg) »(k)
D)
Fig 2.3-ARMA Model
Here, the transfer equation is as follows:
Clq
y(k):ﬁv(k) (2.5)

D(q)

This resolves the problem of needing to estimatevitk) parameters in the MA model. A two-
stage optimisation can be used. First the AR palemhare estimated as normal using technique
such as LS. The resulting AR model is then usqatdgide v values for each reading and a simple
linear optimisation technique can then be usedHerMA model. There are a number of other
optimisation techniques can be used to identifyghemmeters to the ARMA such as correlation
based techniques and maximum likelihood (ML) methidtese integrated techniques are capable

of modelling both AR and MA series as well as owbgch integrate both types of patterns [7].

Adding in extra inputs or exogenous inputs may rextall of these methods. These turn the purely

stochastic models described here into stochastarmistic hybrids. The inclusion of exogenous
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inputs to an AR model is called an autoregressigdehwith eXogenous inputs or ARX model. It
retains the output feedback of the AR model butsadthis a number of parameters that are

known to affect the system state.

vik)
zefkc) 7 >k
— Big) —_— e
Afq)
Fig 2.4- ARX Model
So the transfer equation is as follows.
B(q 1
y(k):ﬁu(k)+ v(K) (2.6)

A(a)

The ARX model is widely used because the parameatansbe computed simply with linear
techniques such as LS. The technique runs intadlify when it is modelling data that deviate
systematically from the mean. Also the assumpfian the system is capable of being modelled in
a purely deterministic fashion is also often inaateL The inclusion of a more complete stochastic
noise model leads to the ARMAX model. This modeumses that there is a shared denominator

for the noise transfer function and the input tfangunction.

l k)

Cirep)
il Biq) —l AI!:;?J B
Fig 2.5-ARMAX Model
So the transfer equation is as follows.
10 =m0+ () @
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Each of the previous models incorporates diffepnts of the general linear model. For all of
these linear techniques with exogenous inputs mod#ér selection can be a problem often
requiring a heuristic approach. For a full impletation of it the Box-Jenkins model may be used.

l WAk

g
L)
zaf i) Bea) i)
- Fe) + =
Fig 2.6-Box-Jenkins Model
So the transfer equation is as follows.
B(d C(q
y(k)= ( )u(k)+ﬁv(k) (2.8)

This model does suffer from the fact that it hatame number of parameters that must be
estimated. If the data is sparse or noisy thenbibé®mes difficult and is highly unlikely to yiedd
valid model. The parameter estimation processsis @herently nonlinear and is usually tackled
by estimating an ARX model and then using thisdtineate the parameters for the MA part [8].
There are nonlinear extensions of the ARMAX and AR¥dels called, unsurprisingly Nonlinear
ARMAX (NARMAX) and Nonlinear ARX (NARX). Here theimple linear function used in
ARMA and ARMAX is replaced with a nonlinear mappifgction. Often it is the NARX form
that is most generally applicable to the widesgeaaf nonlinear dynamic systems. In practice the
form of the nonlinearity is unknown and as a reallt forms of the polynomial must be
considered. This generally means that a prohithtitarge number of coefficients must be

evaluated [9].

In general,there are several limitations on modgllbased on mathematical analysis. First, it
always relies on the accuracy of the mathematiaalet) which is never a prefect representation
of the plant. And second, there is a need for theelbpment of analysis techniques for even more

sophisticated non-linear systems.
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2.2 Soft Computing Techniques

Following our overview of conventional mathematicabdelling, problems exist in traditional
techniques. We can easily conclude that the cuyramtgoing complicated plants cannot be
accurately described by traditional rigorous matatral models. Especially non-linear dynamic
systems can exhibit extremely complex dynamic bielav As discussed earlier, the traditional
approaches for predicting the behaviour of suchtesys based on analytical conventional
techniques in many cases can prove to be insuificign addition, there is need for the
development of highly precise models and autonorbebswviour in system identification, control,
and artificial life communities. However in real pgations, precision has a cost
(computational/financial), therefore in order tdvgothe problem with an acceptable cost, we need
to aim at a decision with only the necessary degsEeprecision and not exceeding the
requirements. These deficiencies lead to a fund@heamedy, which is the core part of soft
computing concept i.e. embedding the human intllbg into a machine. So, it is of great
importance to change the direction toward intefiigeomputational tools that will enable the
identification of the best model by a series oliRputput pairs.

Soft Computing(SC) techniques refers to a collectid computational tools which have their
origins in biological or behavioural phenomena tedato humans. Unlike traditional Hard
computing techniques, SC can tolerate imprecisimtertainty and partial truth without loss of
performance and effectiveness. The term SC in ribadest sense, encompasses a number of
technologies that include, but not limited to, exmnary computation (EC) realizes intelligence
through the simulated evolution artificial neurakworks (ANNS) realize intelligence through the
simulated behaviour of neurons in brain, fuzzy dogFL) realizes intelligence through the
simulated behaviour of human reasoning process[10].

It was at the beginning of 1990s when researcheadised that theHybrid use of the
methodologies mentioned, would lead to tools thatewcertainly more powerful than if the
techniques were employed individually. Combinatidrsoft computing techniques is considered

to be the new frontier dirtificial Intelligence
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Fig 27 Some of possible hybrid Soft Computing techniques

The modern techniques of artificial soft computiraye found applications in almost all the fields,
however the great emphasis is given to enginearieg[11].

There are some common problems to be solved irceafputing identification, independently of
the data type and description method. As a prelinddis chapter, we provide a brief overview of
two of the most common artificial intelligence mbiutg approaches Atrtificial Neural Networks

(ANN) and Fuzzy Logic (FL) systems together witkeithhybrid Neuro-Fuzzy (NF) systems.

These two classic approaches, ANN and FL, are exadin some depth.

2.2.1 Neural Networks

Neural networks are composed of simple elementgatipg in parallel. These elements are
inspired by biological nervous systems. As in nattine network function is determined largely
by the connections between elements. Neural Nesvapiproach the modelling by using precise
inputs and outputs which are used to ‘train’ a genmodel which has sufficient degrees of
freedom for a good approximation between inputs@rtputs. A neural network can be trained to
perform a particular function by adjusting the esuwof the connections (weights) between the
elements. One of the most common processes fohwiiiNs are used in system modelling is the

one involves : placing the NN in parallel with gigal system, applying the system input to the
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input of the network, using system output as thsirdd output for the neural network, and train
the neural network until the error between the eystoutput and the network reaches and
acceptable level[12]. Here, the network is adjusbaded on the comparison between the output
and the target. The Schematic diagram of such emtifitation of a time-invariant, causal system

is shown in figure 2.8

F(u)

— .

Actual System

A

Neurgf Net

F(u)

/ Update P

Algorithm

Fig 2.8— Neural Network identification structure

In general, by a function F, compact input sets[] 0P are mapped into elemenysfor j=1,..,N
in the output space. Whereas, in the case of angignsystem, we have input-output pairs of time

u(t),y(t). The main objective in both type is taefenine F such that, the input and output of the

plant is given by u and F(u) respectively. The eeds the difference between the observed

system output and the output generatedA:by
ly -9 :HF(u)— f:(ui‘< € (2.9)

The main characteristic of the neural networkshis tact that these structures can learn with
examples (training vectors, input and output sampfethe system). The neural network modifies
its internal structure and the weights of the catioas between its artificial neurons to make the

mapping of the relation input/output that represbatbehaviour of the modelled system.
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2.2.1.1 Structure of Neural Networks

Two classes of neural networks which have reces@tbsiderable attention in the area of Al in

recent years are

Feed forward Multilayer Perceptron; A feed-forward MLP is one whose topology has
no closed paths. Its input nodes are the onesnuthrcs to them, and its output nodes
have no arcs away from them[13]. When the stateslldhe input nodes are set, all the
other nodes in the network can also set their state values propagate through the
network. The operation of a feedforward networksists of calculating outputs given a
set of inputs in this manner. It represents statinlinear maps. It is proved extremely
successful in pattern recognition problems. Frosystematic point of view, multilayer
perceptron can be a versatile non-linear strudamr&entification problems.

Recurrent Network ; Sometimes it is necessary to introduce a timeydAlmto the
structure in order to model the finite time thatrégjuired for an input series to move
through a physical process[14]. Indeed the lendtiie delay can be a parameter that is
adjusted to minimize the residual error in the akumetwork model. Also, since most
dynamic systems have temporal behaviour, time ddlagrsions of the output signal are
needed to properly model the system. The feedlmagslcan be both local and external.
The local loops redirect the output of each neuwitself or to a lower layer neuron
within the network. The external feedback normathpnects the output of the structure to
input of the network

This external feedback can be implemented in tfferdint ways. In the first approact,
comes from neural network output (figure 2.9a). &nfnately, this recurrent network
can easily become unstable due to the feedbackbebpeen its output and input, and
there is no guarantee that the output that the ubutpill converge to a stable
configuration[14]. This can be solved in the secapgroach, in which, the feedback is

sourced from the actual plant, not the NN outpsifjlastrated in figure 2.9b.
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Fig 2.9- a) NN with time-delayed direct inputs and time-delayedurrent outputs from
the modelled system.

bNN with time-delayed direct inputs and time-delayedurrent outputs from
the Actual Plant.

The advantages of the neural networks are:
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« learning capacity;
* generalization capacity;

* robustness in relation to disturbances.

There are, however critics who point out the disadiages of using neural networks.

« First, the design of the neural network is a vanyplex procedure that still relies mostly
on trial and error. In addition, because the newgtwork can only produce accurate
results if provided with a large volumes of exarsplethe training phase.

« Impossible interpretation of the functionality; theost often disadvantage of the neural
network is the inherent “black-box” nature of itpepations. Neural Network although
able to generate solution to many problems, butuaeble to explain how they arrive at

their results.

2.2.1.2 Learning Using Neural Networks

Artificial neural nets have been successfully u$ed recognizing objects from their feature
patterns. The neural networks should be trainéat po the phase of recognition process. The
process of training a neural net can be broadlssdiad into two typical categories,

namely;Supervised learning and Unsupervised legrnin

e Supervised Learning: The supervised learning process requires a trahegrsubmits
both the input and the target patterns for theatbjo get recognized. Given such input
and output patterns for a number of objects, tlsi& t@f supervised learning calls for
adjustment of network parameters (such as weighitd &on-linearities), which
consistently can satisfy the input-output requiretder the entire object class. Among the

supervised learning algorithms, most common ard#uk-propagation training
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e Unsupervised Learning: The process of unsupervised learning is requirednany
recognition problems, where the target patternnknown. The unsupervised learning
process attempts to generate a unique set of vgeifigihtone particular pattern. The
objective of unsupervised learning process is jostdhe weights autonomously, until an
equilibrium condition is reached when the weightsndt change further. The process of
unsupervised learning, thus, maps a class of abjech class of weights. Generally, the
weight adaptation process is described by a re@ufsinctional relationship. Depending
on the topology of neural nets and their applicetjothese recursive relations are
constructed intuitively. Among the typical classuofsupervised learning Hopfield nets are

the most popular ones.

2.2.2 Fuzzy Systems

The fuzzy sets theory was conceived by Lofti Zad&h in 1965 to represent and manipulate data
and information that possess non-statistical uab®st. Fuzzy systems propose a mathematic
calculus to translate the subjective human knovdedfjthe real processes. This is a way to
manipulate practical knowledge with some level ofertainty. The behaviour of such systems is

described through a set of fuzzy rules, like:

IF <premise> THEN <consequent> (2.10)

that uses linguistics variables with symbolic terniach term represents a fuzzy set. The terms of
the input space (typically 5-7 for each linguistariable) compose the fuzzy partition[11]. Fuzzy
modelling is the most important issue in fuzzy tlyed he fuzzy modelling is a system description
with fuzzy quantities. Fuzzy quantities are expegsin terms of fuzzy numbers or fuzzy sets
associated with linguistic labels. Therefore, blation between input and output variables can be
viewed as a set of fuzzy logical rules or fuzzy-associations. Since functional variables are
stored in a distributed rule-based fashion, theevaif the function at any point in the input space
is derived by aggregating the consequences of flogigal rules. It has been shown that fuzzy
systems are capable of approximating any real mootis function to any desired degree of

accuracy [25-26].
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The fuzzy inference mechanism consists of thregestain the first stage, the values of the
numerical inputs are mapped by a function accgrdm a degree of compatibility of the
respective fuzzy sets; this operation can be ddliezification. In the second stage, the fuzzy
system processes the rules in accordance withirthg §trengths of the inputs. In the third stage,
the resultant fuzzy values are transformed agamrinmerical values; this operation can be called
defuzzification.

2.2.2.1 Identification with Fuzzy modelling

The two usual aspects of identification are: Stireetidentification and Parameter identification.

For a given pre-assigned input candidates, thetstiidentification of a fuzzy system divide into

two parts. Initially, it starts with finding the mber of fuzzy rules in a fuzzy model. By structure
identification in a ordinary systems theory, what mean is to find the relations between the
inputs and outputs[15]. On the contrary, in a furaydel, the structure identification is stated in
different way. The number of fuzzy rules in a fuzmpdel corresponds to the order in a
conventional mode.

Second, identification implies determining how thput space should be partitioned. There are
two parts of IF-then rules. The premise part anisequent part. This part of identification deals
with premise structure. The premise space of thatimariables of fuzzy model is partitioned into

several fuzzy subspaces (Fuzzy sets); where théeof rules corresponds to the number of
subspaces. These two parts of structure ideniiicadre linked together. Therefore, we need a
heuristic method to optimized partitioning with seariterion, i.e. output error.

The parameter identification in a fuzzy model imgs those in fuzzy sets. The parameter
identification and the structure identification nah be performed separately. However in some
approaches, the parameter identification can beratggy done subsequent of the structure
identification.

The advantages of the fuzzy systems are:

« Capacity to represent inherent uncertainties of hhhenan knowledge with linguistic

variables; everything is imprecise if you look @bsenough, but more than that, most
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things are imprecise even on careful inspectioazifueasoning builds this understanding
into the process rather than tackling it on toehd.

« Simple interaction of the expert of the domain hvitie engineer designer of the system;
In direct contrast to neural networks, which us@ntng data and generate opaque,
impenetrable models, fuzzy-logic lets you rely de experience of people who already
understand the system

« Easy interpretation of the results, because ofrthural rules representation; The basis of
fuzzy logic is human communication. This observatinderpins many of the other
statements about fuzzy logic. Because fuzzy Iaghwilt on the structures of qualitative
description used in everyday language, fuzzy lagi&asy to interpret.

« Easy extension of the base of knowledge througladdiion of new rules; with any given
system, it is easy to add on more functionalityhaitt starting again from scratch.

* Robustness in relation of the possible disturbairctse system.

And its disadvantages are :

« One of the foremost problems of these systemsaisttiey are unable to learn. Suppose
that the problem we have has a bulk of instaneesuth a context, it would be good to
have a system that adapts itself to this datadet. basic approach is to build a system
using the available information and test it agaihstavailable datasets. This calls for a lot
of work over and over again by the designer to adhp system to give a decent

performance in the scenario given.

e The other problem of these systems is a fixed tchire. The number and type of MFs,
their parameters, rules, etc have to be spedifigdrehand. This needs to be judiciously
designed by the designer of the system. This a&ffina performance as the designer may

make a sub-optimal design of the complete system.

2.2.3 Hybrid Schemes

Hybridization of intelligent systems using soft qmuing techniques has been identified as a
promising research field of computational inteltige. The main premise behind combining two
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or more soft computing algorithms is to developyarid technique that exploits the synergy
between them, leveraging their benefits and owaig their respective limitations[16]. This has
indeed proven quite powerful for a variety of apations, such as: pattern recognition, intelligent
control, data mining [6], and classification. Exdesp of promising hybridization techniques

include:

* Neuro-Fuzzy. While neural networks and fuzzy logic have addede®w dimension to many
engineering fields of study, their weaknesses hawt been overlooked. Prompted by the
weaknesses inherent in the two technologies ariddbmplementary strengths, researchers have
looked at ways of combining neural networks andzyuiogic. The NF model is a hybrid
framework that is obtained by combining the conseffitfuzzy logic and neural networking into a
unified platform. A hybrid neuro-fuzzy system iduzzy system that uses a learning algorithm
based on gradients or inspired by the neural nésvaheory (heuristical learning strategies) to
determine its parameters (fuzzy sets and fuzzysyulrough the patterns processing (input and
output)[17]. Hybrid techniques in this category d¢mne ANN and FL in novel ways for modelling,
control or for classification applications. Thissssm can be totally created from input output data
or initialised with the a prior knowledge in thex@away of fuzzy rules. The resultant system by
fusing fuzzy systems and neural networks has aarddges of learning through patterns and the
easy interpretation of its functionality. Howevénere remain some problems to be solved, for
instance, how to automatically partition the inppaice for each variables, how many fuzzy rules
are really needed for properly approximating th&nawn nonlinear systems. Also, as is well

known, the curse-of-dimensionality is an unsolveabfem in the field.

* Neural Genetic algorithm: Genetic algorithms are a family of computatiomaidels inspired by
the way living organisms adapt to the harsh resalitif life in a hostile world, i.e., by evolutionch
inheritance. The algorithm imitates the procesewdlution of populations by selecting only fit
individuals for reproduction. Therefore, a genafigorithm is an optimum search-technique based
on the concepts of natural selection and survi¥ahe “fittest” [18]. It works with a fixed-size
population of possible solutions of a problem, edlindividuals, which are evolving in time. An
evolutionary algorithm (EA) maintains a populataincandidate solutions for the problem at hand,
and makes it evolve by iteratively applying a (dguguite small) set of stochastic operators,

known as mutation, recombination, and selectionollionary artificial neural networks
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(EANN's) refer to a special class of artificial malinetworks (ANN’s) in which evolution is
another fundamental form of adaptation in additionlearning[19]. GAs have been used in
synthesizing and tuning ANNs in many ways. One ¥gato use the GAs to evolve the network
topology before Back Propagation is used to turee rtetwork. GAs have also replaced Back
Propagation as a technique for finding the optimeight. Another application of GAs in ANNs
has been making the reward function adaptive hygu§As to evolve the reward function. Many
combinations of ANNs with GAs can be consideredtiauation of the earlier discussions of the
hybrid methods to exploit the advantages and oveecthe disadvantages of GAs and ANNs. For
example, ANNs using Back Propagation are able pbogxtheir local knowledge. Hence, they are
faster to converge than GAs, but this is at theeagp of risking the ANN getting stuck in the local
search, which happens frequently and causes thie NN to get stuck in local minima. On the
other hand, even though GAs are not exposed toptioislem, but they are slower due to their
global search characteristic. In the neuro-genatgorithm only a specific subset of NN
architectures, named MLP, is considered for neenaloding[20]. While the great advantage of
GAs is the fact that they find a solution withotitizing derivatives, but the following drawbacks

are undeniable :

* Need much more function evaluation comparing tediized models.

* No guarantee to convergence even to local minimum

» Fuzzy Genetic algorithms Genetic Algorithms (GAs) and FL have also beemlgined to
generate the hybrid field of Fuzzy-Genetic Algamth (FGAs). Similar to the case of Fuzzy
Neural Networks, the fusion has gone also two way8s controlled by FL as well as FL
controllers tuned by GAs. FL has been used to natiag tools of GAs such as population size
and selection pressure during the transition beiwbese two phases [21, 22]. GAs resource
managed by FL resulted in adaptive algorithms, Wwisignificantly improved its efficiency and
speed of convergence[23]. Also, research has betime @n the use of GAs to tune FL controllers.
An exhaustive survey of the research in this araa iwdicated in[24] . In the latter case, a GA-
Fuzzy system is basically a fuzzy system augmehted learning process based on a genetic
algorithm(GA) [25]. Recent results of the hybridization of FL and ®Ave been reported in
variety of applications such as fuzzy logic basedtllers.From the optimisation point of view,
the task of finding an appropriate fuzzy knowletigse (KB) for particular problem, is equivalent
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to parameterise the fuzzy KB (rules and memberéiigtions), and to find those parameter
values that are optimal with respect to the desigteria. The KB parameters constitute the
optimisation space, which is transformed into #adlé genetic representation on which the search
process operates. Based on mentioned fact, theajealgorithm consists of three stepsrst,
they defined the initial rule base using intuitiveuristics. Second, they used GAs to generate a

better rule base. Finally they use GAs to tune negsitip functions[26].

* Wavelet Neural Networks: Mixing the wavelet transform theory with the basic conadpt
neural networks, a new mapping network called ‘eaveeural network or wavenets (WNN) is
proposed as an alternative to feedforward neuravorks for approximating arbitrary nonlinear
functions[27]. Kreinovich proves in [28] that ifewuse a special type of neurons (wavelet
neurons), then the resulting neural networks cgrgmal approximators. The networstructures
applied for representation are determined by usi@yelet analysis. The parameter of the
initialized network is updated using the well-knovateepest gradient-descent method of
optimization. Each hidden unit has a square winttothie time-frequency plane. The optimization
rule is only applied to the hidden units whereghkected point falls into their windows. Therefore,
the learning cost can be reduced. Literature revibalt there are two major approaches to design

wavelet neural networks i.e.

* In the first approach, the wavelet and neural ngtwarocessing parts are preformed
individually. In this format, the wavelet decomp@si is a pre-processing step before
feeding the input into Neural Network. The inpugrsil first decomposed using some

wavelet basis.

« The second approach combines the two theories;hhwhieans that the wavelet is

implemented inside the neurons. In this case W pbssible structures can be assumed

)] The one with fixed wavelet bases, where the difasiod translation parameters of
wavelet basis are fixed, and only the output layeights are adjustable. For
WNNs with fixed wavelets, the main problem is the selectionwafvelet
bases/frames. The wavelet bases have to be selmmenpriately since the choice
of the wavelet basis can be critical to approxioratperformance. It is well
known that by using regularly truncated waveletfes, the number of wavelet
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candidates would drastically increase with the disi@n. Therefore, constructing
and storing wavelet bases/frames for large dimengioblems are of prohibitive
cost.

1)) The other, is the type which Translations and iifet of thewavelonsalong with

weights are optimized during the training.

The scope of this research is focussed on the ke and, hereafter, by WNN will refer to the
second one.

« FWNN : By utilizing two important properties, viz., mulisolution and compression of
wavelets along with Fuzzy Logic and neural netwdf¢NNs are proposed[29]. The local details
of non-stationary signals can be analyzed by wavedasforms whereas Fuzzy logic allows us to
reducing the complexity of the data and to dd#i wncertainty. The approximation accuracy of
the plant can be improved by the self-learning biiti@s of neural networks. Their combination
allows us to develop a system with fast learningabiity that can describe nonlinear systems that
a characterized with uncertainties. In FWNN, edighzy rule corresponds to a sub-WNN
consisting of wavelets with a specified dilatiodueaand the rule which determines the effect of
each sub-WNN on the output. Due to the relativettyaf this field of study, a consensus on the
best way to utilize their individual strengths astinpensate for their individual shortcomings has
not yet been established. Consequently, reseatohFimzzy-Wavelet systems is targeting many

directions.

2.3 Problem Description and Proposed Methodology

Traditional mathematical system modelling relieauily on accuracy of the mathematical model
and this accuracy needs as many as parameters itovddeed. Treating in this way either is
impossible for complicated systems or even if @blg, it brings us with a very sophisticated
mathematical expression.

The soft computing techniques so far introducetkvidte the problem to a higher degree.
However, there were some intrinsic problems in eathhem. Hybrid schemes by pure SC

techniques as described were the tools to overcmme of the short comings, but as mentioned
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still there were plenty rooms for improvement. pies the fact that embedding a signal
processing technique such as wavelet was a warerglize soft computing techniques to a
wider spectrum of problems, but the drawbacks aglslow learning algorithms for NNs and
curse of dimensionality for fuzzy systems are stithained untouched.

The aim of this research is proposing new versadn&/NNs and ultimately FWNN, enabled with

some clustering techniques and also hybrid learrlgprithms combination of Expectation

Maximization, Recursive Least Square and Extendakinkn Filter to target the aforementioned
problems.
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Chapter 3
Computational Intelligence Methodologies

3.1 Artificial Neural Network (ANN)

Neural Networks originated in an attempt to repicthe processing patterns of the human brain.
Humans are capable of dealing with vast quantitfésformation very quickly yet the structure of
the brains individual components is very simple.sidgle biological neuron is not in itself
intelligent. Yet the hundred billion or so of intennected neurons coupled with their supporting
cells in each of our heads are capable of repriegenot just the knowledge each of us posses, but
the personalities and unique problem solving cdjiai that make humans individual. An NN is
an information processing paradigm that is inspbgdhe way biological nervous systems, such
as the brain, process information. The key eleroéihis paradigm is the novel structure of the
information processing system.

Initial work by McCulloch and Pitts in 1943 presedtsimplified artificial neurons that were
shown to have basic logical properties. In 195hkfdossenblatt put forward the concept of the
Perceptron [30, 31] and B. Widrow (Adaline) devedphe first training algorithm .

Neural Networks(NN) have been widely used in a 8n@nge of applications. These applications
include pattern recognition, function approximatioptimization, simulation and estimation
among many other application areas. Nowadays, Nals theen trained to solve complex
problems that are difficult by conventional apptues [32]. NNs overcome the limitations of the
conventional approaches by extracting the desitimirhation by using the input data. A NN does
not need such a specific equation form. Insteadedds sufficient input—output data. Also, it can

continuously be re-trained, so that it can convathjeadapt to new data.
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In its simple form, each single perceptron (neuriendonnected to other neurons of a previous
layer through adaptable synaptic weights. This rhaxlbased on the concept of the perceptron
originated by Frank Rosenblatt in 1957 [33, 34yjure 3.1 presents how information is processed
through a single node. The node receives weightg#ivaéion from other nodes through its
incoming connections. First, these are added uprfgation). The result is then passed through an
activation function; the outcome is the activatafrihe node. For each of the outgoing connections,
this activation value is multiplied by the specifieight and transferred to the next node.

v

Xo—> W, Z f()

+1—blas Summation Activation

Fig 3.1-A single perceptron

Knowledge is usually stored as a set of conneatieights (presumably corresponding to synapse

efficacy in biological neural systems).

3.1.1 Multi Layer Perceptron (MLP)

This is probably the most widely known and usedifisial Neural Network (ANN) structure.
MLP networks consist of layers of perceptrons wvegith layer connected to each of the layers in
the previous layer. The weights connecting eacth@fperceptrons are considered the parameters
of the network. The network usually consists ofirgout layer, some hidden layers and an output
layer. Its structure is illustrated with one Hiddeayer in figure 3.2.
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Fig 3.2 MLP Structure

The complexity and the representational capalslitiethe MLPs are defined by the number of
neurons in each layer. The model information id@ioied in the weights connecting the neurons
in each layer. The optimisation of these weighgsasents the learning or training process and it's
a non-linear optimisation process working fromialiparameter values to a set which can model

the function in question.

An MLP is characterised by:

e Its pattern of connections between the neuronsedatafitructure (architecture). The
architecture of a network refers to the number efirons, their arrangement and
connectivity. It also covers the arrangement ofribarons into layers. Many neural nets
have an input layer, in which, the function witkirunit is equal to an external input signal.
The net depicted in figure 3.2 consists of inputsjroutput units and one hidden(middle)

layer. Typically there is layer of weighs betweemw tadjacent levels of units.
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The method of determining the weights on the cotimes and other transfer function
parameters (if any) called the training (learnialgjorithm. In addition to architecture, the
method of setting the values of the weights (traghiis an important issue. The procedure
used to carry out the learning process . The trgimigorithm is applied to the network to
in order to obtain a desired performance. The bfpeaining is determined by the way in
which the adjustment of the free parameters imtheal network takes place. Supervised
and Unsupervised training are the most common rdstlod training. In supervised one,
the training is accomplished by pre-setting a segeeof training inputs with a
corresponding target output vector, whereas in upesrised, no target(output) vector
specified and the MLP modifies the weights so thatmost similar vectors are assigned
to the same cluster unit.

The activation function. The basic operation ofaatificial neuron involves summing its
weighted input signal and applies them on an atingunction. The perceptron neuron
model receives information in the form of a set mfmerical input signals. This
information is then integrated with a set of fre@gmeters to produce a message in the

form of a single numerical output signal.

In following lines, we adopt a compact matrix—vectotation of the network[35] description in

order to express the dynamics of Neural Network.H.andN stand for the number of input nodes

and the number of hidden layer neurons, respegtivel

Denote by X, W and V for the inputs, the gains afpoat and the weights from input layer to

hidden layer neurons, the following

X =[x, X,.x] OR"

W=[w, w,---w,]"OR" (3.2)
Vg Vi ot Vipg
V = V.21 V.22 Vzlnl R NVPD

Ve Ve 0 Ve

The activation function for hidden neurons is ndiyna symmetric S shape function with well-

defined first derivative such as the hyperboligemt or the binary sigmoid defined as :
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f(x)=—

1+e™ (3.2)
As can it be seefrom figure 3.3, the shapes of the function provalgraded output betweer

and 0 or -1 and.IThis allows smooth interpolation between datan{so

tanhir] 4

-6 -4 2 o z a &

Fig 3.4- Sigmoid Function
One single neuron makes the simple operation oéighted sum of the incoming signals an

bias term (b), fedhrough an activatiofunction (f)and resulting the output value of the neurot

network with one hidden layer is described in elet-wise notation as

=

N P N
' =D O vipxp +bpw; =D f(net )w (3.3)
p=1 F1
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Herex is the input with dimension P andthe output of the network an is the number of

hidden layer neurons. The interconnection matraes\W and V for output layer and hidden
layer respectively. This network is applied in @iety of problem domains. It does however suffer
from a number of well-established problems. Thesgivasinterdependency of the structure means
that the model is global in nature. The resulthig ts that it is often hard to establish exacthatv
information the network has learnt as the modehads readily interpreted due to the massive
interdependency between each of the artificial mesir The sequential nature of the training
methods such as Back-Propagation (BP) means tlaaination can be unlearned as patterns early
in the training data can be overwritten by pattdatter in the series. It can also be difficult to
establish the number of artificial neurons neededccurately represent the training data and can
often only be done through trial and error whiclvésy time-consuming. There are a number of
algorithms available for the learning of the partereewith perhaps the most well known being
the Back-Propagation (BP) algorithm. This methoglsube partial derivative of the mean squared
error between the system output and the desirgaibof a given training sample to improve the
fit of the parameters to the data. This is a gradikescent method and as such is susceptible to
problems of identifying a local optimum parametetr rather than a global optimum. In addition to
this the training is often slow requiring the tiam set to be presented to the network a large
amount of times in order to find a minimum valuechnigues such as using momentum terms
help to overcome the problems of local minima dredteé are a number of advanced BP algorithms
including factors such as the second derivativéheferror function in order to speed training.
Other learning algorithms include those relatethtocalculation of the second derivative such as

conjugate gradient and quasi Newton schemes. Tduesepts are computationally expensive [36].
3.1.2 Backpropagation Algorithm

Given a training set of input/output data, the ioddjrule for training MLP is the backpropagation
(BP) algorithm [37]. It is an iterative process &da®n an error signal obtained from measuring the
output signal from each neuron in the output layidre weightings to a particular neuron are
modified using new data from training. It emploj® tquadratic or sum of squared errors metric
given by

E =23 0 o) O V) (3.4

pp=1
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In which y"t’pp is the desired value of Bpoutput andy, ,, is the observed output for th8 t

training sample, the error indicates how far thsirdel output is far from its observed value. Bet
be a vector formed by all the network weights (nd &) and 00 be the gradient of E &= 6 (t),
witht=1;2; 3; ... ; M,. Where t is the pattermuater, The BP algorithm is illustrated through the

following steps:

For each input-output pattern do begin

1. Apply the input vectorX

2. Compute the output at the last layer through fodweaiculation.
Each output unit receives a target pattern corredipg to input training pattern
We define the instantaneous value of the errorggrfer t'th pattern is given by eq (3.4).
Computeds at the last layer and propagate it to the presiayer by using eq (3.7).

4. Adjust weights of each neuron by using expressod) (

5. Repeat from step 1 until the error atlgst layer is within a desired margin.

End For

The adaptation of the weights for all training arstes, following the above steps, is called a
learning epoch. A number of learning epochs araiired for the training of the network.
Generally a performance criterion is used to teateirthe algorithm. For instance, suppose we
compute the square norm of the output error vdotoeach pattern and want to minimize the sum.
So, the algorithm will be continued until the swisYbelow a given margin.

The error of a given output node, which is usedofmpagation to the previous layer, is designated

by &, which is given by the following expression

=y -9)f'() (3.5)

The weight adaptation is described by the followéxgressions

Aw, ., = r].édz.od, 3.6)
Wq,w(t +1) = AWq,d( tw a4/ (t)

W, 4, (t+1) is the weight from neuron g to neurgh, at t'th step, whereq' lies in the layer/

and neuron g in{-1)'th layer counted from the input layer.
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Bq,z is the error generated at neur@n, laying in layer/ .
0, is the output of neuron g, positioned at layer

For generating error at neuron ¢, lying in la§/erwe use the following expression

Oy =0, 1= 0, )(Zéq (Wqe:)
q 3.7

nin eq (3.6) is the Learning Rate adds the error signal for unit j.

This is a very simple means of updating the pararadiut suffers from a number of problems. If
the learning rate is large then the network walrrinitially very quickly. However it will be pran

to overshooting the optimum parameter measureszaygag about the desired values. If the
learning rate is too small then the network wikeaa long time to train as it is taking very small

steps at each stage.

3.1.3 Momentum Effect

The problems with the fixed learning rate form®&f lead to further modifications of the original
BP algorithm. Figure 3.5 shows the effects thdkdint learning rates have on the convergence of

parameters
'] ' R TS
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/ |
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Fig 3.5 Effect of various learning rates on convergesfdie weights

The problem lies around the fact that, althoughdhleulated gradient identifies the direction in
which the parameter optimisation must be carriet] ibaloes not identify amount by which each

parameter needs to be changed. Moreover, if tloe &rnction contains many local minima, the
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network might get trapped in some local minimumget stuck in a very flat plateau[38]. As a
result a number of techniques were proposed, atiegnpo modify the learning rate at each
parameter update, so that to reduce the chancewesf shoot and to increagbe speed of

convergence. The simplest method of doing thioisntlude a momentum term. Applied to

backpropagation, the concept of momentgris that previous changes in the weights should

influence the current direction of movement in virtigpace. This concept is implemented by the

revised weight-update rule:
Aw;(t+1)=ng, .q +lAw (1) (3.7)

Once the weights start moving in a particular dioecin weight space, they tend to continue
moving in that direction. Imagine a ball rollingwo a hill that gets stuck in a depression half way
down the hill. If the ball has enough momentunwiit be able to roll through the depression and
continue down the hill. Similarly, If the gradiehés changed direction, then the momentum has

the effect of dampening the change to the paramdtethis way the zigzagging effect is reduced.

3.2 Elman Neural Network

The recurrent networks have state variables fodtiays and incorporate temporal aspects better
than Feed-forward neural networks[39]. The Elmaiwdrk proposed in 1990 by J.L. Elman is
one of the simplest among the available recurretwaorks.

In contrast to the feed-forward loop, the EImanwéeks are a form of recurrent Neural Networks
which the back-forward loop employs copy layer whig sensitive to the history of input data. At
each time step, the values of the hidden layersuaie copied to the state layer and this
information can be stored for future use. This nsehat the function learnt by the network can be
based on the current inputs plus a record of tegipus state(s) and outputs of the network. The
feedback idea is a convenient way to accumulateique knowledge as “experiences” and
perform future predictions based on these “expegsh

However, although the Elman neural network has doarious applications in speech recognition
and time series prediction, its training and cogeespeed are usually very slow and not suitable
for some critical applications. Correlative studyows that The dynamic memory property

developed by Elman has been proved to be effefiivenodelling linear systems not higher than
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the first order[40] with standard back-propagatiearning algorithm and more suitable for time

series.
y(k)

Output

Hidden

- -1

Copy Layer
Input

Xy (t) X,() u, (t) uy (1)

Fig 3.6— Elman Network structure

The basic structure of Elam network is illustratedigure 3.6. It comprises four layers namely
input layer, hidden layer, output layer and copyela Tuneable weights exist between two
neighbouring layers. For hidden and copy layerrntmber of nodes is an adjustable parameter,

and the optimal number is acquired through simotesidl]. The inputs of the network are

Xt OR,uOR $ (O R', and then the outputs in each layer can be giyen b
N
(1) =2, w,* (1)
j=1

8,(0) = 1(X V(07X (1) + v (0*u (D) 39)
Uy (6= 6, (t-1)
Where,

N : The total number of hidden layer nodes
v,; : The weight connection input node to hidden layer

v,;: The weight connect copy node to hidden node

w1 The weight connects hidden node to output node
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f(.) : The non-linear function of hidden layer

3.3 Radial Basis Functions (RBF)

Radial basis functions, emerged as a variant ofréleNMetworks, were first introduced by
Powell[42] in 1980’s to solve the real multivariatgerpolation problem. The MLP neuron
bisects the information space along a single liliear As a result each neuron covers the entire
information space within its layer. As opposed ‘&’ shaped function the RBF neuron uses a
bell shaped activation function as shown in fig8ré. One major difference from MLP is that
RBFs utilise a local learning strategy vs. MLP’slgl learning, thus resulting a higher rate of
accuracy and faster training times. Such a systamists of three layers (input, hidden, output)

In the RBF neuron the parameters define the cqmtire of the neuron and the size and shape of
the area covered by the activation function. In RBEre is a built-in distance criterion with
respect to a centre. This means a graded outgitéa from 0 at the edges of the area covered by
the function to 1 at the functions centre.

Learning is equivalent to finding a multidimensibfunction that provides a best fit to the training
data, with the criterion for “best fit” being evalied by means of a cost function usually assumed
to be mean squared error as depicteBFs are embedded in a two layer neural networkevhe
each hidden unit implements a radial activatedtfanc The non-linearity within an RBF network

can be chosen from a few typical non-linear funidgGaussian function is the most typical one

0(x) = exp(- ¥ /) 3.9

The parameteois called unit width and is determined using theirtetic rule ‘global first
nearest-neighbotf43] . All the widths in the network are fixed to the sawalueo and this
result in a simpler training strategy. The actiwatof a neuron in the output layer is determined by

a linear combination of the fixed nonlinear basisdtions,i.e
C
Y(x) =D wib(x) (3.10)
i=1

where ¢, (X) =¢(||X—q||) andw; are the adjustable weights that link the outputesodith the

appropriate hidden neurons. These weights in tleublayer can then be learnt using the least-
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squares method. This research study adopts a stiteapproach to the problem of centre
selection. Because a fixed centre correspondgteea regressor in a linear regression model, the
selection of RBF centres can be regarded as agmobf subset selection. The orthogonal least
squares (OLS) method can be employed as a forwaedt®n procedure that constructs RBF
networks in a rational way

The output units implement a weighted sum of hidgieib outputs.

Imput layer . Hidden layer Ouitput layer

Fig 3.7 RBF network with Gaussian activation

The use of radial activation functions provides anlmear method of interpolating between
numbers of different regions in the information gpaRBF networks train rapidly, usually orders
of magnitude faster than MLP, while exhibiting nookits training pathologies such as local
minima problems[44]. In practice the centres aramably chosen from the data points. The key
guestion is that how to select centres appropyidteim dataset.

3.3.1 Orthogonal Least Squares

The most popular RBF training algorithm is the ©gbnal Least Squares (OLS). This method
treats the RBF network as a special case of theadimegression model. It creates a series of
regression vectors from the input data and thers tise Gram-Schmidt algorithm to build an
orthogonal set of basis vectors from this whichnspthe same space[45]. Utilising each of the
input vectors as the mean parameter of a RBF aicivdunction provides a perfect mapping

betweenx andy. OLS is an iterative technique that selects the& oentres so that the increase in
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variance of the output is maximised. The algoritdiows the selection of the centres one by one
in a rational procedure, each selected centre msgfthe increment to the explained variance of
the desired output. Thus the algorithm managesetiuae the size of the network without
significantly degrading its performance.

It views the RBF network as a form of the lineagression model with each column vector

being a regression vector or regressor.

% g(x) - (%) ][ W £1

] T | I

vl 18e(x) - do(x) e |ee

Y= i¢| (X)W, +¢, (3.11)

where y, is the desired output and is also called the ddgenvariable, thew; are the

parameters, and, (X) known as the regressors which are some fixed fonstof X, :

¢i (Xt) = ¢(||Xt -G ”) (3.12)

the error signak, is assumed to be uncorrelated with the regresgo(x, ) . The problem of how

to select a suitable set of RBF centers from tha det can be regarded as an example of how to
select a subset of significant regressors fronvargcandidate set. An efficient learning procedure
for selecting a subset model can readily be derbaskd on the OLS method. Rewrite eq (3.11)
into the matrix form as

Y =W +E (3.13)

Where
Y =y Yl (3.14)
O =[0,.. 0], ¢ =[,(x)..- (%), 1i<C

W =[w,...w.]" (3.15)
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E=[e,...&, ] (3.16)

Note that number of centers equalsGpsince all C data samples are employed as cetuters
initialize the model. Vectorg, form a set of basis vectors, and the linear squsoégion W
satisfies the condition that the square of thegutign PW is part of the desired output energy

that can be counted by the regressors. Becaussadiiffregressors are generally correlated, it is

not clear how an individual regressor contributethis output energy. The OLS method involves

the transformation of the set ¢f into a set of orthogonal basis vectors, and thueemé possible

to calculate the individual contribution to the ided output energy from each basis vector. The

regression matrixP can be decomposed into
®=RA (3.17)

Where A is aCx Ctriangular matrix with 1's on the diagonal and b&low the diagonal, that is,

1 a, ... o
o 1 .. ..
A= (3.18)
R o P
o .. 0 1

and Ris an N xCmatrix with orthogonal columng such that

R'R=H (3.19)

WhereH is diagonal matrix with elemerits:

N

h=rr=>rx" 1<isC (3.20)

t=1

And eq( 3.11) can be re-written as
y=Rg+E (3.21)
the OLS solutiong is given by
g=G'R'Y

or
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g, =r'y/(t'r) 1<i<C (3.22)
the quantitiesgy andW satisfy

AW =§ (3.23)

The OLS method is to use for subset selection efdandidate RBF centres. In practice, the
number of data is often very large and centred@im chosen as a subset of data set. Due to its
linear computational procedure at the output latyer RBF is shorter in training time algorithm.

This method ensures that each new neuron addeda®die overall error of the system by the
maximum amount. Training thereby continues untiredefined accuracy is reached. The main
drawback with this method is that it uses a simgledefined value for the width of each of the
neurons. This is defined before the training precesirts and although there are a number of
heuristics for this such as nearest neighbour dftisn necessary to manually modify it through
trial and error which is not guaranteed to findogtimal result [46]. This use of a single width
parameter for the entire network introduces sepesblems. The assumption that the regions with
different properties in the input domain can beusately identified using identically sized local

area functions is often erroneous.
3.4 Fuzzy Logic

Fuzzy Logic, is a generalization of Boolean logifjj4it is seen as a technique based on the key
elements that the activity of human brain are nohibers but rather indicators fifzzy setof
which are a generalization of Crisp sets in cladset theory, in which the transition membership
and non-membership is gradual between 0 and 1.nigakis main characteristic of fuzzy logic, it
is easier to deal with imprecise concepts in a-defined way.

In general, NNs provide a means of learning datautjh very low level numerical analysis.
However the heavily interconnected structure of Nfien makes analysis of the information
contained within it difficult. Fuzzy Logic (FL) pwides a framework by which nonlinear models
can be learnt and readily understood by humangné&trporates a simple, rule-based IF X AND
Y THEN Z approach to a solving modelling problenthea than attempting to model a system

mathematically. FL is capable of mimicking thiseéypf behaviour but at very high rate.
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Each of the parameters of the model is divided amtoumber of regions which can be given a
linguistic label. Each label is associated with @mmbership function which produces a

membership value for each region between 1 and 0.

Crisp input values

[ Fuzzification |
Fuzzy Inference Engine

v

[ Defuzzification

-

Fuzzy Rule Base

Crisp output values

Fig 3.8- Fuzzy logic system

The typical architecture of a fuzzy system, illagdd in figure 3.8, is comprised of four principal

components:-

Fuzzification : Transforms crisp measured data into suitableyfigets. Crisp inputs are exact
inputs measured by sensors and passed into theksydtem for processing.

A fuzzy set is defined in terms of a membershipcfiom which is a mapping from the universal
set U to the interval [0,1]. Larger values dendtghlér degrees of set membership. The shape of
the membership function should be representativéhefvariable. However this shape is also
restricted by the computing resources availablemg@izated shapes require more complex
descriptive equations or large lookup tables. Thssges can be diverse but we will usually work
with triangles, trapezoidal and Gaussian (see é@.®). For this reason we need at least three (for
triangles), four (for trapezoids) and two paranmet@or Gaussian) to define one MF of one

variable.
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Fig 3.9 Three types of membership functions with corresiig
mathematical expressions a) Triangular b) Tzapglal c¢) Gaussian

Fuzzy Rule Base :Stores the observed knowledge of the operatiothefprocess [48JFuzzy
rules are linguistic IF-THEN- constructions that have tieneral form "IF A THEN B" where A
and B are (collections of) propositions containiimguistic variables. A is called thaemiseand

B is theconsequencef the rule. In effect, the use of linguistic \aries and fuzzy IF-THEN-
rules exploits the tolerance for imprecision andartainty. There are several kinds of fuzzy rules
used to construct fuzzy models. These fuzzy rudesbe classified into the following three types

according to their consequent form.
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Type | :Fuzzy rules with constant consequent
IF x, is A;; AND x, is A ,AND....x, is A, THEN f=q
Type Il : Fuzzy rules with linear combination consequenak@igi Sugeno Kang Model )

Ik, is A,;AND x, is A,,AND....x, is A,,THEN
fi = o +agx; +...+ X,
Type llI: Fuzzy rules with fuzzy set consequent ( Mamdaod®f)

IFx, is A,, AND x, is A ,AND....x, is A,, THEN f =B,

In the rules X and f denote input and output J@es, respectively. The antecedent

linguistic termsAip the consequent linguistic terB; are parameterized fuzzy sets whose
shape can be any of the described above. In Ity®d Il fuzzy rulesw denotes a
constant value andy, + @, X, +...+ @, X denotes a linear combination of input variables

where are constant coefficients.
Fuzzy rule equations are “AND” rule, which mearnistlaé conditions of the IF part must

be met simultaneously in order for the result & THEN part to occur.

Inference Engine: The Inference Engine is the heart of a FL anda# the capability of
simulating human decision making by performing agpnate reasoning[49]. During the
process, it derives a reasonable action with reésjpea specific situation based on the
given rule base. The membership values measuredzrification step, are aggregated to
obtain a single degree of membership or firing @alhe most common of which are t-
norms such as MIN connective, denoted with Thus, the degree of fire of rule i for the

new input vector, X, is calculated as follows

P

¥i(X) =AND fi(x,) i =1,...C
p:

Y =V, (X) xf, i =1,..,C
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« Defuzzification : Lastly, the Defuzzifier converts the fuzzy actiorthe non-fuzzy action
that can be accepted by the real world. This stgedds on consequent structure of the
rule base, In TSK fuzzy rule base structures, theehoutput of each rule is aggregated
by taking weighted average of the scalar outpwaah rule

C *
zyi
y —__i=l

C

D Vi)
i (3.24)

The training of a fuzzy system is the process bicwkhe positions and sizes of the fuzzy regions
are set and a valid form of consequent is idewtifla the simplest form where the consequent is
simply a singleton fuzzy variable this can be aebieby means of a table lookup system. This
involves creating a set of partitions that cover whole range of the model data. A rule is then
generated for each input-output pair in the moa¢h dFollowing this the most likely set of rules
from the complete set are selected so that therenarconflicts in the rule base. An interesting
feature in fuzzy logic is the concept of Adaptivedy logic systems. Because of the arbitrary
positioning of the partitions by the developerisibften necessary to fine-tune the parameters of
the rule base. The Back-Propagation (BP) methodatsm be used for this. Since it works by
taking the partial derivative of a mean squaredrefunction with respect to the parameters of a
model it can be used to derive update equationdiggra descent learning as is done in the
Adaptive Fuzzy Logic System (AFLS) [50]. Despitéstit is generally accepted that FL is better
applied to domains in which it is possible to irmunate expert knowledge and NN are better
applied to domains where little is known of theendiependencies of the model requiring low-level
numerical analysis to discover them. FL system® aaffer from the so called curse of
dimensionality. This term refers to the problemt tbeery possible combination of possible rules
must be considered. As a result the number of plessules increases exponentially with the

number of model parameters and the number of jpadiin each.

3.4.1 TSK Fuzzy modelling

TSK fuzzy model is one of the most outstanding yuzmodels in the literature which are suitable
to model a large class of non-linear systems. hsits of number of local linear models;

possessing excellent ability to describe uncersgstem and to approximate a nonlinear model
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with any given accuracy The basic idea of this method is to decomposeirtpet space into
“fuzzy partitions” and to approximate the systemewery region by a simple pricewise linear
model. The overall fuzzy model is thus considered @ombination of interconnected subsystems
with simpler models. Typically, in a TSK model, tbmployed IF-THEN rules can be viewed as

the expansion of pricewise linear partition and/thee presented as

R, 1 IFx, is A, AND x, is A ,AND...x, is A, (3.25)
THEN = @), + @ x; +...+ @, X,
The R, represents the i'th fuzzy inference rule, and A, are the premise fuzzy variables and

fuzzy sets with Gaussian membership functions. fie consequent indicates linear equations

which are linear in the parameteis belonging to i'th rule and p'th input variable. Therking

region of any fuzzy rule is defined by the membigrgtinctions of antecedent part. The output of
the TSK fuzzy system with C rules is aggregateavaighted sum of fuzzy rule outputs known

also as defuzzification.

y:i(a)lo+a)llxl+__,+a) X )y, (X) (3.26)

PP
i=1

Where y; (X) is the normalized firing strengths of the ruknid obtained as :

¥i(X) = Cp:PM(Xp) = Ca‘(x) (3.27)
Z 1A ) D a,(X)

With the /Z(x,) is the membership o, = with , Gaussian membership.

Where they/;, denote the centres amtl, depicts the standard deviation for membership fanst

associated with rule i. The parameters are obtdiyefting the eq(3.26) to the set of data points

by numerical optimization.
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3.5 Neuro-Fuzzy Systems

The two soft computing or “intelligent” computingahniques described above are both inherently
mathematical but possess strengths and weaknesstsking example of particularly effective
combination is what has come to known as “NeuroziFuNF systems attempt to incorporate the
low-level numerical analysis of the NN with the rebdransparency of FL [51]. For example,
while neural networks are good at recognizing jpastethey are not good at explaining how they
reach their decisions. Fuzzy logic systems, wharhreason with imprecise information, are good
at explaining their decisions but they cannot aatiically acquire the rules they use to make those
decisions. These limitations have been a centigindr force behind the creation of intelligent
hybrid systems where two or more techniques arebgwed in a manner that overcomes the
limitations of each other techniques. In theoryyménetworks, and fuzzy systems are equivalent
in that they are convertible, yet in practice eheb its own advantages and disadvantafest
was noted above, in case of dynamic work envirorijrtee automatic knowledgebase correction
is necessary. On the other hand artificial neuetivarks are successfully used in problems
connected to knowledge acquisition using learningxamples with required degree of precision
There are many different algorithms falling undee banner NF systems. All of them range in

complexity and fall to somewhere along the linaijog FL systems and NN

3.5.1 Adaptive Neuro Fuzzy Inference System(ANFIS)

ANFIS is a Neuro-Fuzzy model proposed by Jang[BRIFIS is an example of a NF system that
directly implements the TSK rule system. ANFIS mbldas a fuzzy inference system in the form
of an adaptive network for system identificatiord am predictive tool that maps a given input
space to its corresponding output space basedepresentative training data set.

The structure of ANFIS with five layers is shownfigure 3.9. Xs are the inputs for ANFIS. The
ANFIS is composed of two parts. The first part is #mtecedent part and the second part is the
conclusion(consequent) part. These are connecteddb other by the fuzzy rules in form of a
network. It can be described as a multi-layeredralenetwork .The first layer executes a

fuzzification process, the second layer executesutwy AND of the antecedent part of the fuzzy
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rules, the third layer normalizes the MFs, the fiolatyer executes the conclusion part of the fuzzy
rules, and the last layer computes the outputefulkzy system by summing up the outputs of the

fourth layer which is the defuzzification process.
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Fig 3.10-The structure of ANFIS (type III) with two inpugd one output

The feed-forward equations of the ANFIS structund all the parameters depicted in figure.3.10
are the same as eq(3.25-3.27) for p=1,2 and i=itt{2two inputs and two membership functions.
They are shown as

0 = [, (%) X g, (%;) =12
of .
= ! |:1,2
Yi a,+a,
~_a1f1+a2f2_
=—11 Z22=-yf 4
V= va, Mhrvd

The ANFIS uses fuzzy MFs in antecedent part foittspy each input dimension; the input space
is covered by the overlapped MFs, that is, sevecal regions can be activated simultaneously by
a single input.
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Subsequent to the development of ANFIS approadunaber of methods have been proposed for
learning rules and for obtaining an optimal setwés[53]. For instance, Masciddi al[53, 54]
have proposed to use a combination of Min—Max aiFIs model to determine neuro-fuzzy
network and create optimal set of fuzzy rules. Jamg) Mizutani[55] have introduced application
of Levenberg—Marquardt algorithm, which is esséigtia nonlinear least-squares technique, for
learning the ANFIS network structure. In anothepgra Jang has proposed a scheme for input
selection and Kumar and Garg[56] have used Kohanewdp for training. Jang introduced four
methods to update the parameters of the ANFIS tameicas listed below according to their

computation complexities:

« Gradient Decent only: all parameters are updatetthéysD.

e Gradient Decent only and one pass of least squstireation: the least square estimation
is applied only once at the very beginning to thet initial values of the conclusion
parameters and then the gradient decent takesmupdate all parameters.

« Gradient Decent only and least square estimatiois: is the Jang's proposed hybrid
learning method.

* Sequential least square estimation: using EKF tateall parameters

The performance of the network is indeed very gddevertheless, the network suffers general
faults identified with all fuzzy systems in ternistioe curse of dimensionality; the number of input
fuzzy partitions is large and hence the requiredimer of rules and consequence parameters will
be very large. The least-squares estimation alguritannot be implemented easily because the
calculation of very large matrices is required. §hilne application of the network is limited to

some low-dimensional systems.

3.5.2 FALCON

Fuzzy Adaptive Learning Control Network (FALCON)asother general modelling structure that
integrates the basic elements of the fuzzy straciio a connectionist model. The input and
output nodes represent the system input and ouitptiie same manner as general NN structures.
The hidden nodes represent the fuzzy basis fureiad the rules as can be seen in figure 3.11.
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First Secornd Third Fourth Fifth
Layer Layer Layer Layer Laver

Fig 3.11-Falcon Neuro-Fuzzy architecture

The difference between traditional FL and FALCONhiat the connectionist structure permits the
use of NN learning techniques. This means thaptbper basis functions and parameters can be
determined within the connectionist structure dmehtthe rule base extracted from this structure.
In theory, this means that the normally black-bit tof the traditional NN architectures can be
bypassed. Expert knowledge can be readily incotpdranto the network structure as each of the
hidden nodes has a transparent action. The traofitigese networks is often done in a two-phase
approach. The first phase is to use statisticatefing techniques to identify initial Fuzzy basis
functions. Competitive learning is then used tantdg which of the combinations of fuzzy basis
neurons represent valid rules. Rule nodes arerttfezged if they satisfy certain conditions relating
similarities between consequents and preconditidfien a second phase of learning is required

to fine-tune the network using a gradient desaegtirtique [31].

3.5.3 NEFCON

NEFCON is a model for neural fuzzy controllers deped by Nauck [57], and it is based on the
architecture of the fuzzy perceptron. The learrlggprithm for NEFCON is based on a mixture of
reinforcement learning with back propagation aldpon. Figure 3.12 shows a NEFCON system
with two input variables, one output variable ana: frules. The connections in this architecture
are weighted with fuzzy sets andes using the same antecedents (called shareghtsiiwhich

are represented by the draellipses.
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Fig 3.12 -NEFCON architecture

The feed-forward connections between the layersvaighted with fuzzy sets. Each of the layers
contains a number of units, where the hidden “unigs” use a t-normas activation function, and

the output unit combines fuzzy sets and appliesfazdification procedure. The input units just

contain the input values and are doing no furtleenmutation. The input variablex, and x,are
state variables of a technical systemhich has to be controlled. NEFCON'’s outpytis the

control action applied t& The units of the hidden layer represent fuzzgsids].

3.6 Adaptive Neuro-Fuzzy Network

An alternative adaptive fuzzy neural network (AFNptpposed by J.Theocharis [59] has been
implemented and validated in the framework of teisearch study. Its main characteristics are the
self-construction ability, parameter learning dbiind rule extraction ability. An outline is shown
in figure 3.13. In contrary to ordinary ANFIS, thedaptive FNN has a structure-learning
mechanism which creates/adjusts the structures grémise part as training proceeds[60].

In conventional ANFIS structure the number of merabg functions and therefore the number of
rulesis fixed, and increases significantly by increagimg number of membership functions (MFs)
and input dimensionality
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Rule No

Fig 3.13 Three input and one output Adaptive Neuro-Fuzzesuh

The fuzzy inference system considered in this nekvialows Takagi Sugeno’s IF-THEN rules
the form of eq(3.25) where as mentionpds the dimension of input componenisjepicts the

counter of rules and)ip are the polynomial coefficients, linearly connegtthe input variables to
the rules’ outputg . Finally, Al denote the labels of fuzzy sets outputs. Each istiguabela -

is associated with a membership function. The negsibp functions considered here are of
Gaussian type as appears in figure 3.8. The deagjrédfiiment represents the degree to which
each rule participates in the output defined by a

t-norm(*) operator is defined as follows:
Vi =R, (0% (X ) 3.78)

The algebraic product of the membership functidheaeh premise axis is chosen as the t-norm
operator. For each input membership term the belguation is considered

ﬂpmax = max{ﬂAp (Xp) }

N (3.29)

The term{ir**represents the max value of the membership belgrtgithe term set p fox,,.
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The structure of proposed FNN comprises of threpmnmodules:

Premise Partit calculates not only the rule coordinates thitouge MFs, but also firing
strengths for each rule. The structure of the funfgrence system is determined by adjusting
this part. Both structure learning and parametiéuémce premise part.

Consequent Partlt deals with consequent functiorts as in eq(3.25) which is linear

polynomials of input vector components.

Defuzzification Partlt involves the defuzzification process. This &rformed by combining

the outputs of the premise and consequent partpamddes the final output of the fuzzy

system. The Weighted-Average scheme has been aggdduce a fuzzy outpt, for each

input vector
The training of AFNN igperformed by the following three phases:

Initial membership functions and corresponding sweeation by using a subset of the training
data set. This step is conducted off-line, whicheferred to as respective premise/consequent
parameter setting .

Sdection of input patterns bgomputing node outputs in all network layers anel mtimax-

membership termg,**, for each premise axis. By observing the maximtimugating level

of the term nodesﬂg‘ax it can be verified whether they are greater or llenahan the

prescribed lower membership threshSId For thosewhere the degree of fulfilment by

current MFs is less than a predefined thresholdnaother wordsthe input vector is not

adequately spanned by current Mli-fs;(x < 8), network inserts a new membership function

in therespective term set and calculates its parameteear( and deviation) according to eq

(3.30)(3.31). LetA O ,.ned denote the new MF

p,new(l‘1 p,new

up,new =X p(t +1)

+
‘up,new_x

p,nearest

(3.30)
O-p,new =0 +

- up,neares
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Where
+ _ + H
X _lJ'i,nearest+h 'Gi,nearest If IJ‘ i,new>l'l i,near

X+:|J'i,nearest_h+'ci,nearest If p i.ne’ﬁl‘l i,near (3.31)
1
h' =, /[2Ln(=
[2Ln( )]

And Q exhibits the degree of overlapping between memigefsinctions. In this case when at
least one new membership is created, then a nexy fuge is created by combining the new
memberships and an appropriate set of already imxighemberships. The consequent
parameters (polynomial weights) of the new ruleimiteally defined by:

ay =y (t+1) i=1,...,C (3.32)
Whereyid(t) is the desired output for the t'th input traininggtance. The remaining weight

parameter are set to zem@, =y, ==y, =0).

In the case whefi,"™ >3 meaning that the input vector is sufficiently caak by the existing

fuzzy membership functions, the term set remairchanged.
In an alternative scenario where the degree oilidght by the membership functions is large
enough but the respective fuzzy rule is missingzay rule is created by proper permutation of

term node coordinates.

Parameter fine tuning performeglsing the classic back-propagation algorithm. Theekb
propagation (BP) method is a gradient based algorivhich is usually used to perform parameter

learning of both neural networks and fuzzy neuystems. BP is a simple, well established and

easily applicable optimization method for this solee the learning task is accomplished by

minimizing a single objective function, as showre(3.33).

€ = (7)Y, (O (V)= (1) £0

As training proceeds, parameter learning isiiemeously conducted to adjust the network

parameters. The final updated equations are:
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n, . N, andn, representing the mean, deviation and polynomiafte learning rates

respectively and’,, is momentum which is used for updating means.riimgiis carried out on-

line on the basis of real-time data.

The predictive capability of above adaptive newrpzly system was tested on fungus growth in

comparison to conventional neural networks apprescMore specifically, the purpose of the

present work is (i) to develop an intelligent metblmgy based on neuro-fuzzy networks to predict

the combined effect of temperature, water actigitg pH on the maximum specific growth rate of

Monascus ruber van Tieghemand (i) to compare the prediction accuracy o throposed

intelligent scheme and classic neural networks
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3.7 Case Study: Fungus Growth Modelling

Growth-predictive models are currently acceptedn&srmative tools that assist rapid and cost-
effective assessment of microbial growth for pradievelopment, risk assessment, and education
purposes [61]More recently, predictive microbiology has beemdito forecast the growth of
spoilage micro-organisms in order to study thefdtelof a food product. Fungal spoilage of food
commodities causes significant economic lossehofigh industrial standards have been greatly
improved in the last years, food spoilage by fuagtill a major concern for both food producers
and regulatory agencies. Today, there is a needufaerstanding fungal growth in foods,
particularly those factors associated with new nfecturing processing and packaging techniques
[62]. Fungal presence in food may adversely affeot only the organoleptic value of the
commodity but most importantly its nutritional valby producing toxic metabolites, thus a public
health risk is inevitable [63]. Improvement of fogdality and safety, demands the development of
appropriate tools allowing prediction of fungal gtb.

Polynomial models have been widely used in predictimicrobiology for the quantitative
assessment of the effects of various environmdatabrs on fungal growth[64]. However, a
major disadvantage of these models is that they deneloped from linear and quadratic
combinations of variables; use of such simplifieddels may not be justified. Neural networks
(NNs) have been deployed in recent years as amaliee to conventional statistical models, due
to their ability to describe highly complex and Forear problems in many fields of science. The
NN-based methodologies have been applied in piedidbod microbiology[65]. The main
characteristics of NNs, such as (i) non-linearigjlowing better fit to the data, (ii) noise-
insensitivity, providing more accurate predictioms the presence of uncertain data and
measurement errors, enabling application of theehtwdunknown data make them an interesting
tool in an area which is dominated by statisticaalgsis tools[66]. Several published works
indicate that neural network-based models produstteib estimation of kinetic parameters of
micro-organisms than response surface models.récent study, NNs have been compared with
response surface models in modelling the growi oéL.. plantarumandE. coli. It was reported
that the NN approach outperformed the statisticatl®fs based on its lower standard error of
prediction (SEP) term, despite the fact that NN etethad higher degree of complexity[67].
Monascusis an ascomycetous fungus traditionally used far production of food colouring,
fermented foods and beverages in southern Chinigyaha Japan, Thailand, Indonesia and the
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Philippines[44]. Members of the genus can commaulgive heat treatments and grow under
reduced oxygen levels, resulting in food spoildgenascus rubeis a widespread ascomycetous
fungus in Europe, as it is common in silage anérilatating grain. One characteristic of the genus
is the production of ascospores capable of surgivieat treatment. Subsequently they can grow
under reduced- oxygen environment and cause fooilagp. Spoilage may result from the
development of a mycelia mat on the surface ofolhes, and from a softening of the fruits and
changes in the pH of the final product. Temperatpté and water activity (@ are generally
regarded as the principal controlling factors dgrfarmentation and subsequent storage of table
olives. A combination of these factors could efifiegly control the growth of the fungus during
storage. Predictive modeling has been extensivedd unainly to predict bacterial growth as a
function of environmental factors such as tempeeatpH and Water Activity. However, model
development of filamentous fungal growth has noeieed the same level of attention as that of
bacterial growth. A few studies concerning fungaivgh have dealt with the predictive modelling
approach[60].

This section illustrates the ability of the AFNN prform combined structure and parameter
learning of a non-linear three input and one ousystem. The predictive capability of an adaptive
neuro-fuzzy system was tested to predict the coewbiffect of temperature, water activity and
pH on the maximum specific growth rate Monascus ruber van Tieghem comparison to
conventional neural networks approaches.

The three dimension input data is normalised irhsaovay that the maximum of each input
column is equal to 0.9 and minimum equal to 0.1weler the error evaluation is based on de-

normalised data. The fixed parameters of the sysaéeen defined in the form of a vector

Parar® f, 1, 1, {, 23 ¥ [0.001,0.000,0.01,0.0506] . The rule base is automatically generated

along a model formed by the FNN input-output comgrids. As can be seen from fig. 3.14, the
trained FN approximates the desired function caiteurately such that the observed output almost

completely overlaps the desired output.
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Fig 3.14-Training samples simulation results for AdaptiveEBuNeural Network

The training procedure starts with just one single and only one membership for each premise
axis as depicted in figure 3.15 (a). The total NMfiserted as a result of structure learning is shown
in figure 3.15 (b) and the final position of the ME&fter imposing parameter learning and fine
tunings illustrated in figure 3.15(c), five MFs feemperature axis, four MFs for water —activity
and four

dedicated to pH axis. The exact centre positiortsago deviation with and without parameter
learning are mentioned in table 3Rigure 3.16a, 3.16b and 3.16¢ depict each input quad
output of AFNN, for this particular training casee attempted 63airs, the error measure is
decreasing until a MSE of 3.1623e-005 is finalljtiaged on training dataset.

At the end, the structure finalised with 16 epoahd 35 fuzzy rules. Observing the curves (figure
3.16) reveals that the maximum growth occurs ineca$ lower Water-Activity, mid-high
temperatures and in almost any pH depends on tetoperand water activity, which of course
shows that pH does not play a significant rolerimwgh comparing to other twoT he error criteria

are as in table 3.2, the detailed definition ofre@gor criterion can be found in appendix.
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TABLE 3.1 - Normalised means and deviations of all Membershipckons with and without
parameter learning

Without Parameter Learning

With Parameter Learning

Temp. | Mean | 0.1 0.3 0.5 0.7 0.9 0.0531 | 0.2530 | 0.4530 | 0.6529 | 0.8529
Axis

Dev. 0.08 | 0.08 0.08 0.08 0.08 0.0397 | 0.0396 | 0.0395 | 0.0395 | 0.0394
W.A. Mean | 0.1 0.45 0.77 09 | - 0.0585 | 0.4089 | 0.7307 | 0.8558 | ---------
Axis

Dev. 0.07 | 0.07 0.07 0.07 | ----- 0.0323 | 0.0296 | 0.0269 | 0.0243 | ---------
pH Mean | 0.1 0.36 0.63 09 | - 0.1152 | 0.3818 | 0.6484 | 0.9150 | ---------
Axis

Dev. 0.06 | 0.06 0.06 0.06 | ----- 0.0808 | 0.0807 | 0.0806 | 0.0805 | ---------

TABLE 3.2 - Adaptive Neuro-Fuzzy Error Coefficients for Traigiand Testing dataset

Error Coefficients Training Testing
Mean Square Error 3.1623e-005 0.0818
Root Mean Square Error 0.0056 0.2860
Mean Absolute Error 0.0041 0.2215
Mean Absolute Relative Error 0.3095 3.5379
Coeff. of Determination 0.9999 0.8984
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actual output surface c) PH Water Activity predicted and desired output ace.
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3.7.1 Fungus Growth Modelling By MLP

A three-input one-output Multi Layer Perceptron (R)Lhas been designed to estimate the output.
MLP has a simple structure but as it shown in #g8rl7 it requires more than 17000 epochs to
achieve the desired output. The suggested netwartainis a single hidden layer (3 layer MLP)
comprises of 30 neurons with sigmoid as an actmafunction and Back propagation (BP)

training algorithm. The learning rate used herg is0.15 and momentum ig = 0.45.

10"

Pedormance is 0000999993, Soal is 0.001

10 | -

i Q _:

10

oe|g [eoo — anig Bulures |

1 D’ 1 L L 1 1 1 1 1
B 2000 4000 BO00 s000 10000 12000 14000 15000
17063 Epochs

Fig 3.17-Number of epochs and the related sum square error
The training results demonstrated in figure 3.48vs the difference between the desired output

and observed output.
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Fig 3.14LP training results for each input pattern

The final statistical error coefficients are lodde table 3.3.
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TABLE 3.3 —MLP Error coefficients for training and testing

Error Coefficients Training Testing

Mean Square Error 0.0080 0.1071

Root Mean Square Error 0.0895 0.3273
Mean Absolute Error 0.0753 0.3133
Mean Absolute Relative Error 4.4037 17.9191
Coefficient of DeterminationR? 0.982 0.4283

3.7.2 Fungus Growth Modelling By OLS-RBF

In this section, we use OLS-RBF to model the funguswth in accordance to three inputs

(temperature, water activity and pH). OLS-RBF netgoapproximate an unknown function by

locally constructing receptive fields around a sétcentres, while these centres chosen by
Orthogonal Least Square (OLS) algorithm. The RB&voek and the OLS algorithm have the

following fixed constants: The RBF is a Gaussiathwiidtho = 0.8and desired Error Reduction

Ratio set ag = 0.001.
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Fig 3.19-a) OLS-RBF regressors index and their contributooarror reduction
b) OLS-RBF training results for each input pattern

The results are plotted in figure 3.19(a), therésite represent the regressor indices versus the
error ratio reduction, in this network 31 regresduais been chosen in the sequence of ;
{14,60,1,17,45,62,10,33,54,2,22,12,61,48,31,1511,8,21,4,7,56,53,41,3,58,44,25,9,20}.This
sequence shows the data indices which are chosact &s regressors, obviously selecting more
than 31 regressors cannot further improve the mqdality significantly. The accuracy of the
function approximation shown in figure 3.19 (b)islvisible that the greater deviatighis chosen

for the RBFs, the smaller number of regressorsseduhowever this reduction comes of the
expense of increasing MSE. Table 3.4 summarizesdtimated error values.
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TABLE 3.4 — OLS-RBF Error coefficients for training and testing

Error Coefficients Training Testing
Mean Square Error 0.0027 0.0844
Root Mean Square Error 0.0516 0.2906
Mean Absolute Error 0.0442 0.2547
Mean Absolute Relative Error 2.7199 18.8620
Coefficient of DeterminationR? 0.9911 0.8999

According to Table 3.2, 3.3 and 3.4, the simulatresults have shown that AFNN method
generates superior results and outperforms the biloe

Because the initial structure and weights of theralenetwork are set properly, FNN exhibits
faster convergence, it can be seen from the nupflegochs the AFNN is a much faster algorithm
than Back Propagated MLP and RBF. RMSE valueseffENN performed well for the training
and reasonably good for the testing data set basédth graphical plots and statistical indices. In
summary, the applied FNN training algorithm, asestpd, well fitted to any microbiological
system. It serves as a better alternative to miclafical processes predictive modelling scheme
based on some of its interesting properties sucbosaining only necessary number of rules, fast

convergence, simple structure, less training timeaf course adjustable performance.
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Chapter 4
Wavelet Neural Networks

4.1 Time - Frequency Analysis

Many signals are non-stationary or in other woh#sgpectrum of the signal can be time-varying.

Thus, the standard Fourier Transform is not usefuanalysing the signal. It can be spotted in
many applications such as speech processing, ichwir¢ are interested in the frequency content
of a signal locally in time. In this scenario chaemisation of non-stationary signals in the
frequency domain must therefore include the timmedision, which resulting in the time-
frequency analysis. In order to do that, we usuediigulate a spectrum of a signal at sufficiently
short regular intervals of time. Taking an intergétime function is known as windowing which
is equivalent to multiplying the signal by a windémction and taking Fourier Transform (FT) of
each segment, also called Short-Time Fourier Toams{STFT).

)
STFT(f.7)= I x(t)g(t—7)e 127t gy 4.)
-0

It might seem that the time-frequency analysis egfget, but having a closer look reveals the
problem behind the above equation. The problerheasatidth of the window. If we use a window

of infinite length, we return back to FT, which gs/ perfect frequency resolution, but no time
information. Likewise, in order to obtain the stai@rity, a short enough window should be used,
in which the signal is stationary. The narrowermake the window, the better the time resolution,
and better the assumption of stationarity, but eotite frequency resolution. The problem is as a

result of choosing a window function once, and#eseit, and recycling that window throughout
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the entire analysis. A Multi-Resolution Analysis RA) which enables us to process data at
different scales or resolutions can be an ultimatdution to overcome this problem.
Characteristics localization of time series in &ddbr time) and frequency (or scale) domains can
be accomplished efficiently through wavelet decositiim. The power of wavelets for time series
analysis stems from three features : First, wavahetlysis can determine the sharp transitions
simultaneously in both frequency and time domairsis, wavelets can help identify nonlinear,
chaotic or fractal behaviour displayed in any sigr&gecond, wavelet analysis allows for an
effective representation of discontinuities in thaotic time series. The wavelet representation of
information in the time series allows for its higtfsical decomposition. In this way, the
information can be analyzed in components of ddsafearacteristics and at various levels of
details. Third, when the information in time seriedransformed into the wavelet domain less
storage is required for its effective representatr@sulting in computational efficiency for large
time series[68].

4.2 Principles of Wavelet Transform

Wavelets with oscillation of effectively finite dation look like a small wave [69] which means it
grows and decays in a finite time period as oppésesinus and cosines used in FT who are big
waves[70] and they grow and decays repeatedly émn am infinite time period. The fundamental
idea behind wavelets is to analyse according tte smaMulti Resolution Analysis. The Wavelet
Transform, similar to the STFT, also maps a tinecfion into a two-dimensional function of
andr (see eq 4.6). The parametgris called the scale; it scales a function by casging and
stretching it, temporal analysis is performed withcontracted, high-frequency version of the
wavelet, while frequency analysis is performed veitHilated, low-frequency version of the same
wavelet. 7 is the translation of the wavelet function along time axis. Wavelet analysis is

accomplished by first choosing a representativéopype function called the mother wavelgt,
or analyzing wavelet. A functiog(t) , defined over the real axis-e,+) is considered as

wavelet, if fulfils the following criteria

@ The integral of@ is zero
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j p(t)dt=0

(4.2)

It ensures it has ze dc component, or in other worday excursions the wavel

functiomakes above zeros, must be cancelled out by erasrbelow zero.

(i) Finite energy athe function. Function is leading tapid decay toward zero with tin

[T <w

(4.3)

(i) Admissibility Condition,is a requirement thaghould be fulfilled in order to hay

invertible transforr.

2
a, = I:wdf satisfies 0<a, <o

Where ¢, (f) is the Fourier transform (@ (t) .

(4.4)

One of the oldesand possibly simple wavelet functions is the Haavavelet(see figuré.1),
named after A.Haar who developed it in 1!It is a step function by the definiti

+1 0< x< 0.5
0 (X)=9-1 0.5 x<1
0 else

Fig 4.1— Haar Wavelet function

(4.5)

=
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There are two main types of wavelet transforms:t@aous (CWT) and discrete (DWT). The first
is designed to work with functions defined over #dmire horizontal axis ,whereas, DWT deals
with functions that are defined over a range oégets usuallyt =0,1,..., Twhere T denotes the

number of values in the time series. The Continlaselet Transform (CWT) of a signal x(t) is

as follows:

1 t—-r
%o 7= [xgE_Sdt (4.6)

where thea™?is for energy normalisation across the differemfies, andg(t) are the so-called

Mother Wavelet functions that satisfy certain math#@cal requirements explained earlier. Since it
is continuous, the parameters and @ used for creating the wavelet family both vary

continuously. The idea of transform is, for a giwdifation & and a translatior of the mother

wavelet@(t) to calculate the amplitude coefficient which makges best fit the signal x(t) by

eq(4.6). By integrating with eq(4.6), we can desimte a picture of how wavelet function fits the

signal from one dilation to next one can be shdynshifting T, we can see how the nature of the

signal changes over time. The set of coeffici§rtz, ¢,, >|a >0,-0 <7 <o} is called the

CWT of x(t). CWT keeps all the information from maignal. If the wavelet functiog(t) fulfils

the admissibility condition and the original sigismknergy limited, which means

j sz(t)dt<oo .7)

The signal can be recovered from CWT coefficiegtsiging the inverse transform

K= [ [ T=<x, >0, ()dadr @8)

-0 @20

CWT and its computation is a very redundant predimt and impracticable and also may
consume significant amount of time and resourcepending on the resolution required as

parameters, g are continuous variables. The wavelet transfornsaisulated by continuously
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shifting a continuously scalable function over gnsi and calculating the correlation between the
two. For most practical applications we would ltkeremove this redundancy like as it is always
easier to deal with lower volume amount of datae Thiscrete Wavelet Transform (DWT)
overcomes this problem by a discrete grid of timales plane and is found to yield a fast
computation of Wavelet Transform[71]. We can, ictfaetain the key features of the transform by
only considering subsamples of the CWT. It is e&sybe implemented and reduces the
computation time and resources required and leadiagdiscrete set of continuous basis functions.

Wauvelet function in DWT introduced as below

Pn(1) =859 (8" t= 1T, (4.9)
And therefore the discrete wavelet transform ghal x (t) will be

DWT(m,n)= j x(t),.. (t)dt

(12)a, and 7, are constants that determine the sampling intervak.ga, = 2 andr, =1, for

having standardyadic lattice. The perfect reconstruction achieved by

x(t) =Y. > DWT(m,n)p,,, (t) (4.10)

Figure 4.2 shows the DWT of a signal ushigar wavelet using the MATLAB Wavelet Toolbox.
The diagram shows the transform for dilation m pfta 3. The signal used has the mathematical

definition of

-2.186x- 12.864 - 18 x-
X(t) =< 4.246x -2X x<0 (4.11)
10e€°%*%°5in[(0.03% 0.7)x] & x 1C
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Fig 4.2— DWT using Haar Wavelet

The last level of the transform, eliminates thehhfgequency components of the signal. Prior
transforms remove lower and lower frequency feattmem the signal and we finally left with an
approximation of the signal which is a lot smoothiris approximation indicates any underlying
trends and the overall shape of the signal.

As with the CWT, the original signal can be recamdted fully from its DWT. The sub-sampling
performed at just dyadic scales, as a result af tiwd only it seems to be a significant reduction
analysis but also it does not incur any loss imdat

4.3 Wavelet Neural Network

In the past decades, neural networks have beehlisk&l as a general approximation tool for
fitting nonlinear models from input-output data.n&ural network derives its computing power

through its massively parallel distributed struetuand its ability to learn. However, the

implementation of neural networks suffers from thek of efficient constructive methods, both

for determining the parameters of neurons andhobsing network structures. ANNs have

limited ability to characterize local features oftime series, which are generally critical to

accurately classifying or modelling the series.nc8ithese features are often localized in time
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and/or frequency, employing wavelets enables thadléetwork to take advantage of the multi-
resolution analysis offered by wavelets to focusribtwork on these local features.

Wavelet techniques can offer added insight andopmednce in data analysis situations where
Fourier technigues have previously been used. dé& of using wavelets in neural networks has
been proposed by Zhang and Benveniste [1]. Ztere)[72] described a wavelet-based neural
network for function learning and estimation, ahd structure of this network is similar to that of
the RBF network except that the radial functiorss @placed by orthonormal scaling functions.
From the point of view of function representatitme traditional RBF networks can represent any
function that is in the space spanned by the faofilyasis functions. However, the basis functions
in the family are generally not orthogonal and eedundant. It means that the RBF network
representation for a given function is not uniqond & probably not the mostfiefent. Bakshi and
Stephanopoulos creatively presented an orthogormdNVibr approximation and clagigiation
based on multi-resolution analysis [73].

Wavelets have become a very active subject in nsaigntific and engineering research areas.
Especially, wavelet neural networks (WNN), inspited both the feed-forward neural networks
and wavelet decompositions, have received conditieedtention and have become a popular tool
for function approximation[74]. The main charactéd of WNNSs is that, as opposed to classical
ANNs which use sigmoidal-based activation functjahey typically employ the DWT - which
are drawn from a family of orthonormal waveletss-tle activation function for the hidden layer
neurons instead of the usual sigmoid function. Eaebron in the hidden layer represents a
wavelet coefficient. Since the wavelet transfoesults in a sparse representation, not all of the
wavelet coefficients are necessary for an accueatenstruction of the original signal. In fact, the
inclusion of all of the coefficients would likelyaase over training of the neural network, and
result in poor convergence. For this reason, vealefficients that do not contribute to the loca
features of the signal are identified during therative training of the WNN, and their
corresponding neurons are pruned from the netwdrke. simplest structure of WNN is very
similar to Neural Network as shown in figure 4.3em each neuron is commonly appliedcatb

input variables. Here, the hidden layer consistsenfrons, are usually referred toresselons.
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Input Layer Wavelet Laver Output Layer

Fig 4.3— Structure of wavelet neural network

The WNN consists of three layers: input layer, kiddayer and output layer. The connections
between input units and hidden units, and betwédaheh units and output units are called weights

v,, and W, respectively. In this WNN, the training procedwselescribed as follows:

* Initialising the dilation parametem,, translation parametem; and node connection

weightsv,, , W, to some random values. All those random valueslianiged in the

interval (0, 1).

* Input datax,(t) and the corresponding output valyés where p varies from 1 to P,

representing the number of the input nodes, t sgmits the t'th data sample of training set,
and d represents the desired output state.

« The output value of the sampleit, calculated with the following formula:

P
p_
N Zvipxt m;

V=) Wo| =— ( 4.12)
= n;
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where ¢ is considered as mother wavelet, such as the Muordeglet filter which is

shown in figure 4.4, and is represented by

@ (x) = cos(21B x)expt 0.5% ) (4.13)
|'| I'-I
05 | . [ -
I‘lf / | | I\.I
0] TN l II- \._ Ve =1
. \ | |I N
III | _-"
| / !
-0.5 \ \ I- .
.\--ll-
e = 2 0 » 2 3 p

Fig 4.4- Morlet Wavelet basis function

To reduce the error/;,, W,, m;,nare adjusted usindv,AW,Am,An .In the WNN, the

gradient descend algorithm is employed, througHdhewing equations,

0E
AW (t+1)=- L+ &AW, (t
(t+1) nawj(t) EAW, (1)
Av;, (t+1)=-n % +EAv,, (1)
Vol (4.14)
oE '
Am. (t+1)=- L +E&AM (t
m, (t+1) namj(t) &Am (1)
oE
An (t+1)=- L+ EAN (t
[ (t+1) nanj(t) EAN (1)
Where the error function E taken as:
E =5i(y"—9)2 4.15)
t 21:1 t t :
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M is standing for the data number of training sgtand { being the learning rate and the

momentum term respectively.
* The process continues until E satisfies the giveor eriteria, and the whole training of
the WNN is completed .
Incorporating the time-frequency localisation pnties of wavelets and the learning abilities of
general neural network, WNN has shown its advastager the regular methods such as NN for

complex nonlinear system modelling.

4.4 Proposed Structure Scheme (WNN-LCW)

As it has been already mentioned, two key problendesigning of WNN are how to determine
the WNN architecture and what learning algorithm ba effectively used for training the WNN.
These problems are related to determining an optiiNIN architecture, to arrange the windows
of wavelets, and to find the proper orthogonal @m-orthogonal wavelet basis.

The WNN is a kind of basis function neural networithe sense of that the wavelets consist of the
basis functions. Note that an intrinsic featuretlod basis function networks is the localised
activation of the hidden layer units, so that therection weights associated with the units can be
viewed as locally accurate piecewise constant nsogkbse validity for a given input is indicated
by the activation functions. Compared to the MLUi¥s focal capacity provides some advantages
such as the learning efficiency and the structtmesparency. However, the problem of basis
function networks is also led by it. The aim ofsthgart of research study is to investigate the
feasibility of utilising WNN methodology as an attative to classical neural networks in the area
of food microbiology. The proposed, in this the¥i\IN scheme incorporates some modifications
compared to classic WNNs, in order to enhance éfopmance. A classic WNN employs
nonlinear wavelet basis functions (named wavelettead of using common sigmoid activation
functions. The output of the network is a weighsedh of a number of wavelet functions. In the
proposed linear-weights wavelet neural network (WINDW), the connection weights between

the hidden layer neurons and output neurons atecexp by a local linear model, similar to the
output layer appeared in ANFIS neuro-fuzzy systéne output of the network is a weighted sum
of a number of wavelet functions. The linear-wesgivavelet neural network (WNN-LCW) is an

improvement of wavelet neural network, in which ttwnnection weights between the hidden
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layer neurons and output neurons are replacedltgahlinear model (similar to the TSK — as in
NF systems).

A WNN approximates any desired signal y(t) by galieing a linear combination of a set of

daughter waveletg, . (t) which are generated by step sizes dilation andtatianm andn from

a mother wavelet with either of the forms below :

Bon=p(—
m
¢m,n = ¢(2_mt_ n)

(4.16)

Where m>0. Note that eq (4.16) is similar to ed(4a®d eq(4.9) but without the energy
normalisation. For the n-dimensional input spabe, multivariate wavelet basis function can be

calculated by the tensor product of P single waumsis functions as follows:
P
$(x) =] 8(x,) (4.17)
p=1

Due to the crudeness of the local approximatidarge number of basis function units have to be
employed for system identification a given systéfmo shortcomings of the wavelet neural

network are:

* For higher dimensional problems many hidden laydtsiare needed
» Due to the parameters inside the activation funstion the network more epochs should
be elapsed to achieve a particular accuracy [75-78]
In order to take advantage of the local capacitthefwavelet basis functions while not having too
many hidden units and reasonable number of epacdhaliernative type of wavelet neural network

has been adopted. Its output in the output laygiven by

N

y =2 (@ + @yX; + .ot @, X, )8 (X) (4.18)

j=

WhereX;is the summation of product of weights and inputenfinput layer to neuron j of hidden

layer. It is shown in figure 4.5
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W =Wyt WX T WX,

Xp(t)"> i . N = a‘&IO +%1X1+"'+%pxp

Layer 1 Layer 2 Layer 3

Fig 4.5-Linear Combination Weight Wavelet Neural NetworkuSture

Instead of static weights between hidden layerairtdut layer a linear combination of weights is

providedW ;. The major motivations for introducing the lineegights are mainly i) They showed

good performances in TSK neuro-fuzzy systems italdinear models should provide a more
parsimonious interpolation in high-dimension spaddse scale and translation parameters and
local linear model parameters and first-to-secanekid weights are randomly initialised at the
beginning and are optimized by gradient descenkdrapagation algorithm utilizing partial
derivatives and chain rule. The wavelet functiompmdd in hidden layer nodes is a modified
differentiable version of Morlet wavelet as appéaire eq(4.13). This wavelet is derived from a
function that is proportional to the cosine funotend Gaussian probability density function. It is
non-orthogonal and has infinite support[79]. Substig (4.16) in (4.13) the activation function of
j"wavelet node connected with the input data wilabdollows:
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4.4.1 The Hybrid parameter learning scheme

In the tuning phase, emphasis has been given tceffiment optimisation of the network’s
parameters. A hybrid learning approach has beeptadoAs the proposed architecture consists of
linear and non-linear parts, a two-stage learnitigeme, consisting of a recursive least-squares
(RLS) and the gradient descent (GD) methods has dygglied.

The classical formula of least squares is in bdtoim, meaning that all measurements are

collected first and then processed simultaneousbich a formula poses major computational

problems since the computational complexity ishia order of OQ*) which grows continuously
with the number of data collected[80], whek is the number of parameters to be estimated. To
increase the efficiency of LS algorithms, a recwgsiariant, known as Recursive Least Squares
(RLS), has been derived and is used to incremgritalh a linear regression model.

The parameter learning is based on the training déter one-step-ahead prediction process is
accomplished. Motivated by the fact that many outayers weights of WNN are linear, thus, it
seems reasonable to employ the RLS technique sthenparameters of the output layer during
training, along with Gradient Descent (GD) for atparametersThis class of hybrid learning can
speed up the learning process substantially amdltsineously, enhance its stability[3%Ye have
used a hybrid method of learning comprising theurgee Least Square (RLS) and GD. The
parameters are divided into two categories; lirat non-linear parameters. For updating linear
parameters RLS is utilised and for non-linear d@8salgorithm seems the simplest option. Both
algorithms used such that that E in (4.15) shoeldnmimised. Modifying (4.15) for single output

and a three-layer structure we have
E, :%(yf—of')2 t=1,...M (4.20)

Where Of is the output of thé'th layer for t'th training sample. In a three Ia)&tmctureof is

the final estimated output of the system glfdis the desired output for the same sample and M
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represents total number of inputs. The hybrid-legrnalgorithm of Linear Weight WNN
combines the recursive least-squares (RLS) methddtlze back propagation gradient descent
(BP/GD) to identify the parameters.
1) RLS - In forward pass node outputs go until lagedand the linear weights identified by
RLS, given fixed values of Wavelet parameters, thtte output can be expressed as a
linear combination of the linear parameters. Thereded linear parameters are known to

be globally optimal[81]

2) BP/GD - In backward pass we calculate the erraradggrecursively from the output layer
backward to the hidden and input nodes. Thus thelegaparameters are fine tuned by
GD here.
For updating Linear Connection Weights eIeme(md§J ,...,a)PJ.) between third and second layer
first we need to make eq(4.21) linearized in tewhgarameters and in order to do that the

following steps are taken
N
y =Y W(x)(X)) (4.21)
j=1

W (X) =ty + @y X+ ...+ WpX p
W, (X) = Gy + @ X 1+t Wp X (4.22)

Wi (X) = @y + WXy + ot WX p

Hence, we can re-write and expand equation (4r2ttja form of

N N N
Y =2 @ (X) 4D capad; (%) ++ D a6, (X) (4.21)

=1 = =
If we define
O(x) =[A(X,), BoK ) Eu(K ) X PAX ). X P AX ) X @ (K ) 4.22)
X1 (X)), X (X ).+ X g (X I
And

O =[ahy, g, Doy W13 W oy W Ny W g it O ol (4.23)
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So that,
y(x]0)=0"d(x) (4.24)

To compute an estimate of tié#at each time step we use following equation

If we define anM xP matrix which consists ok' data vectors stacked on top of each other[82]
we have
()’
2\T
X
o(m)=| )

xM)T
Where M is the total number of data vectors ansl the dimension of each data vector. In RLS a

type of Gaussian Newton algorithm is used to uptieeestimated parametef){consists of the

weights and thresholds)

B(T) =68(T =1)+ K(T)(y, —®(T)"6(T -1)) (4.25)
Where y, is the desirable output and K(t) is the data ddpenhKalman Gain or the updating step

size[83], given by :

K(t) = S(T- 10 (T) (4.26)
A+ DT P(T-1P (T)

The Covariance matrix S(t) is updated recursivebpoading to
S(M=A"(I-KMPM)HS(T-1) H2

The initial value of the K(T) matrix, K(0), is s&t zero and the initial value of S(T) matrix, S(®)
set to?l where | is the identity matrix andlis a large positive number typically between 100-
10000. Small values off may cause slow learning and large may cause the estimated
parameters not to converge properly[83]is called the forgetting factor is normally fixed

constant valueO < A <1 which thorough this study we have considered it.as
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Back propagation algorithm mentioned in chaptdre® been used according to relevant updating
expressions appeared in 4.14, for wavelet paraméter, n, ). They are updated by using chain

rule and taking into account subscripts P and Not#ethe dimension of input and number of

hidden layer neurons respectively. The derivatofebe error function obtained by differentiating
the cost function with respect to each free tureephlameter

2
0B 05 00, of 20]
on; 90} I 907 an
0E, _0E QG af 00
om; 90; oI} 007 om

p=1,..P , j=1.N, (4.28)

OE, _ d 3 , of,.

an, OOy (4.29)
OB, _  4_ O x ' xW. x Ofhidden .
_amj ==(y; ) > fout X om

]

I; and Oy are the input and output of layleior the sample at time instance t respectively.

The output layer function - throughout this resharts linear, therefore it's derivative against it

corresponding input from previous laygy, =1.

Where, by considering eq(4.19)

_(ﬂ)z M —(ﬂ)2
afhidden :27713’3i|f1(27ﬂxénj ))e Ti + & )COS(%H )e Ti
o m m v m (4.30)
‘o X-n._ X-n x-n
e D P
Voo = 2PN inorg e o+ (0T ycos(ap =L Je v
om, n’ m v m
{nj(t+1): n (t)+An (4.31)
m;(t+1)=m (t)+Am

Where
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o, =, 25 +Zn(t )
4.32
e (4.32)
Ay =y ——+ &y (t-1)
J

Similarly, the updated law of connection weightsagen input and wavelet layer weights, () is
given as follow

2 2
OE, _O0E 0O’ 9k 00j 0l

p=1,..P ,j=1,..,.N (4.33)
ov, 907 aIF 007 a7 v,
aEt 3 a¢]
__(yt O)xfouthijxXp
ow, ox;'
By getting the first deviation from (18)
-y -y
0. _m m
9 2B o M ye 0 = X osap TN ye o (4.34)
aXJ’ ] m mu m
Vip (t+1) = v;, (1) +Av,, (4.35)
Where
oE
Bvjp =1y~ =+ {Vp(t=1) (4.36)

ip
Then,,,n, andn, represent learning rates for m, n and v respegtiaetl { is the momentum.
As we can see from above discussed equationssthefuLinear Combination Weights proposed

in this thesis, does not complicate the implem@ntatof the tuning procedures significantly,
providing at the same time a higher rate of cormecg and better accuracy.

4.4.2 Case Analysis - Prediction of pressure inacation of Listeria monocytogenes
whole milk

Listeria monocytogeness a ubiquitous food-borne pathogen associatedh wiitbreaks of
listeriosis from consumption of various food comiiied such as vegetables, dairy products,
seafood and meat[84]. The pathogen is of greattheahcern for the food industry because it is
characterised by high mortality rates, especiaflypregnant women, neonates, elderly and

immune-compromised[85]. The pathogen can grow faigezation temperatures and survive in
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foods for prolonged periods of time under adversediions[86]. It is a very hardy micro-
organism that can grow over a wide range of pHaali4.3 to 9.1) and temperature range from 0
to 45 °C. In addition, it is relatively resistantdesiccation and can grow at aw values as low as
0.90 [87]. There has been continued interest @ fdod industry in using high hydrostatic
pressure processing as a non-thermal preservaobmitjue. Its primary advantage is that it can
inactivate microorganisms and certain detrimentelymes at ambient temperatures, and thus
avoid the effects of cooking temperatures on varifmod quality attributes, such as nutritional
qualities, flavour and taste. Although the inadiima kinetics of microorganisms using heat has
been extensively studied, information on the inatibn kinetics of microorganisms under high
pressure, especially under simultaneous applicafigmessure and other processing techniques, is
still limited. Accurate prediction of the effectivess of high pressure processing against
foodborne pathogens based on inactivation kingdcessential to permit production of safe
products. The overall objective of this study isd@sign one-step ahead predictive schemes to
model the survival of L. monocytogenes in ultrathtgmperature (UHT) whole milk during high
pressure treatment using the proposed WNN-LCW strec Its performance will be judged
against a MLP and a linear PLS regression modeb f@nlinear conventional statistical models
(Weibull, Gompertz) used in predictive food micrabgy will be also considered and an
evaluation will be made to compare the goodned#-of-these models. L. monocytogenes NCTC
10527 from the collection of the Laboratory of Mibiology and Biotechnology of Foods were
used throughout this study. The data for diffemressures, (300, 350, 400, 450, 500, 550 and 600

MPa) were provided by Agricultural University of#gns, Greece.

4.4.3 Initialisation of the network parameters

Initialising the wavelet network parameters is mportant issue. Similar to Radial Basis Function
networks (and in contrast to neural networks usigghoidal functions), a random initialisation of
all the parameters to small values (as usually datieneural networks) is not desirable since this
may make some wavelets too local (small dilatiarg) make the components of the gradient of
the cost function very small in areas of interéstgeneral, one wants to take advantage of the
input space domains where the wavelets are not zero

86



We denote b)Eap,prthe domain containing the values of th&component of the input vectors

of the examples. We initialise the vectarof wavelet | at the centre of the parallelepiped defined

by intervals{[ap,bp}} ‘m, :%(ap+ q)). The dilation parameters are initialised to théuea

O.2(bp - ap) in order to guarantee that the wavelets exteniliyitover the whole input domain.

Throughout this research we have ySexD.5 and v =1as the optimal choice for our dataset.

The remaining parameters are initialised to snaaitiom values.
4.4.4 Dynamic System ldentification

In nonlinear systems prediction, the purpose ofelimd) is different for different applications. In
many cases the data are ill-conditioned and thpastipf delayed versions of outputs and inputs
are needed to achieve the desired accuracy, whagle ons to switch from static system modelling
to dynamic system modelling.

In general, dynamic systems are complex and nanliren important step in nonlinear systems
identification is the development of a nonlineardso In recent years, computational-intelligence
techniques, such as neural networks, fuzzy logit @mbined hybrid systems algorithms have
become very effective tools of identification ofntinear plants. The problem of identification
consists of choosing an identification model anflistthg the parameters, such that the response
of the model approximates the response of thesgesiém to the same input. In the framework of
this research study, the proposed WNN-LCW striectuill be utilised as a nonlinear model.
Different methods have been developed in the fileeafor nonlinear system identification. These
methods use a parameterised model. The parametersupmated to minimise an output
identification error. A wide class of nonlinear @ynic systems with an inputand an output can
be described by the models mentioned in Chaptgerg&rally defined as

Y (K) =F(9(x,), ©)
Where,y,. (K) is the output of the mode§(x,) is the regressor vector afdlincludes all the

weights and other wavelet parameters in the netwebending on the choice of the regressors in

¢(x, ), different models can be derived [8]

* NARX(non-linear Autoregressive with eXogenous irg)uhich is series parallel model.
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As figure 4.6a illustrates, it means the outpdtthe actual plant are used as input to the
model. Only one step ahead prediction is possiglefféb). The model said to have

external dynamics.
¢(k):(u(k),u(k— D,u(k= 2),...,u(k p ), y(k 1),y(k 2...,y(k- r\/)) (4.37)

*  NOE(Non-linear Output Error) which is parallel mbdé means the model output itself
create time-lagged inputs, as depicted in fig 4T6ds model can be considered as fully

recurrent model. The parallel model is able to gikedictions over a short period of time.

The model is said to have internal dynamics.

(k) =(u(k),u(k=1),uk= 2),...u(ke p )y (& Dy (k ..y, (k-n,) (4.38)

In both cases the prediction error of the modehgared with the true plant outputs are used as a
measure to optimise the model parameters. For dgnsyatems, the model must have some way
to implement time lags. In other words, some menfiongtion must be present in the model. In
modelling using computational intelligence schemssch as neural networks, neuro-fuzzy
systems, WNNSs, this can be done in two ways: eitfeayed inputs and outputs are used as extra
external inputs, or some memory is included initigévidual neurons.

Models with external dynamics can be seen as aeadiead predictors. Models with internal
dynamics are best used for simulation purposetheamodel doesn’t need the true plant outputs.
The latter case has a higher potential for outputre in the long term. the prediction error can
accumulate during iteration and larger error cacud88]. This is certainly the case for nonlinear
systems, where the internal nonlinearities canedtie system into an unstable state. Since for
nonlinear problems the complexity usually increagesngly with the input space dimensionality
(curse of dimensionality) the application of lowgimensional NARX or NOE models is more
widespread. One drawback of these models is tleathibice of the dynamic order,, is crucial for
the performance and really efficient methods fedittermination are not available. Often the user

is left with a trial-and-error approach.
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4.4.5 Model Development
4.4.5.1 Primary Modelling

The survival curves of. monocytogeneduring high pressure inactivation were fitted witto
primary models to determine the kinetic parametéts monocytogenes UHT whole milk. The
first model applied was the re-parameterized GotapEguation[89], determined by the following

equation

10915 Npaino(t) = 109 16N 5,§0)+ AEEXD{— ex%kT@[q - )+ }} (4.39)

wheret, [min] is the duration of the shouldér[min™] is the maximum specific inactivation rate,
Np..o(0) [log CFU ml'] is the initial population density of the pathogandA [log CFU mi'] is

the difference between the initial and residualyaiion.

The second model was based on the modified Wedluihtion[90] which can be defined as:

10010 Npnd®) = 10g 1 (N pon0)~ N rgsmug_[éj J N | (4.40)

r

where 6 [min] is a scale parameter denoting the time fog first decimal reduction, ank

[dimensionless unit] is the shape factor of theveurforh > 1, convex curves are obtained

whereas foh < 1 concave curves are described. FinaMy,,, (0) and Nes[log CFU mI'] are the

initial and residual population of the pathogespestively.

4.4.5.2 Non-Parametric Modelling

Partial least squares (PLS) regression, a multitarcalibration technique, projects the initial

input-output data down into a latent space, extiga number of principal factors (also known as
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latent variables) with an orthogonal structure,l@/lcapturing most of the variance in the original

data. In brief, it can be expressed as a bilineaoohposition of botiX and Y as:

X=TWT+E, (4.41)

and

Y =UQT +E, (4.42)
such that the scores in tkematrix and the scores of the yet unexplained fartttave maximum
covariance. Herél, andW, U andQ are the vectors of andY PLS scores and loadings (weights),
respectively, whileEy, Ey are theX andY residuals[91]. The decomposition models of X and Y
and the expression relating these models througiession constitute the linear PLS regression
model. In case of one Y-variabl, the model can be expressed as a regression @guati

y=bX+E (4.43)
whereb is the regression coefficient. The PLS model isettgyed in two stages; the initial dataset
is divided into training and testing subsets. Toerker dataset is used to build the models and
compute a set of regression coefficierts 4, which are subsequently used to make a prediction
of the dependent variable in the test subset.
Multilayer Perceptron structure is probably the tvaslely used neural network paradigm and has
long proven nonlinear modelling capabilities/penfiance. The knowledge of the network is stored
in the weights connecting the artificial neuronfieTmassively interconnected structure of the
MLP provides a great number of these weights ansuak a great capacity for storing complex
information. The generalised delta rule is applied adjusting the weights of the feedforward
networks in order to minimise a predetermined eosir function.

45.6 Model Validation

The Wavelet network, and PLS and MLP schemes a$ amlthe statistical models were
comparatively evaluated to determine whether tlmydcsuccessfully predict the responses of the
pathogenat pressure levels other than those initially gekbdor model development. For this
reason, two different high pressure levels, withi& range employed to develop the models, were
selected namely 400 and 500 MPa. At predeterminagl intervals the surviving population lof
monocytogenesas enumerated and compared with the survival sypvedicted by the developed

in this study models. The accuracy of the predicti@as estimated by the calculation of the bias
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(By) and accuracyA) factors [92], the regression coefficieRf), the standard error of prediction
(SEP), the mean absolute percentage error (MAPE&Ejranroot mean square error (RMSE) .

The shapes of the survival curves that follow thes@erimental data change considerably
depending on the treatment pressure levels. Howeneall pressure levels assayed, a clear
inactivation pattern was observed including a lagse (or shoulder), a log-linear and a tailing
phase. As expected, the duration of shoulder wesspre dependent, so higher pressures resulted
in lower shoulder time. At different pressure leyeburvival curves showed a pronounced
curvature and tailing indicating that a small p@pigin of the pathogen could resist pressurization

and eventually survive in milk.
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Fig 4.7—Survival Curves oLysteriain various pressures

The estimated kinetic parameters of inactivatiorseldaon the models of re-parameterized
Gompertz and modified Weibull are presented in &ahll. All models fitted the experimental
data well as can be inferred by the high valueggfession coefficien® > 0.97) and low values
of root mean square error (RMSE < 0.45). Figur® 4al& b) illustrates the models’ performance

on the training data.

The prediction capability of those models was abeid by adopting a two-step standard
procedure commonly applied in predictive microbipld56]. Initially, the primary models (i.e.,

Gompertz, Weibull) were fitted to high pressurecination data and the respective kinetic
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parameters were calculated (Table 4.1). Subseguémdl derived kinetic parameters were related
to high pressure levels through the developmerfirsif or second order secondary polynomial
models (Table 4.2) and their new estimates wererehited at 400 and 500 MPa, which have
been pre-selected for model validation. For thestiinparameters which did not present a clear

trend with pressure, their respective values ataf@D500 MPa were determined by interpolation.

TABLE 4.1 - Parametefsand statistics of secondary models for the effébigh pressure on the
kinetic parametersLagteria monocytogenes UHT whole milk.

Model type Parameter Equation Estimated value h 2R

a =4.43010°+ 0 7010 0.009

Gompert?  kmax k. =a [P+alP+ g a,=-0.034+ Q007 0.005 0.981
a, =6.908+ 1 674 0.002

Weibull® J In(3) =a, (T +a, a, =-0.009+ Q 00: 0.006 0.977
a, =6.175+ 0517 0.011

®Data are values + standard deviation.
®The parametems,, A andts of the Gompertz model at 400 and 500 MPa wereméted

by interpolation.
“The parameter,, N,.s and the shape factdn)(of the Weibull model at 400 and 500 MPa were uahaireed
by interpolation.

Finally, based on the new values of the kineti@paaters at the selected pressures for validation,
equations 4.39 and 4.40 were refitted and compaitbdsurvival data of the pathogen at the same
pressures, in order to determine the potentiahefrhodels for generalisation, i.e., their abiliy t

foresee survival curves at pressures for whichethgas no previous training. The performance

against the unknown 400MPa and 500MPa curvesugtiifited in figure 4.9 and 4.10, respectively.
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Fig 4.8 -Survival curves oListeria monocytogenas UHT whole milk during high pressure
processing at 350 MPa)( 450 MPa @& ), 550 MPa #), and 600 MPax(), generated by the re-
parameterised Gompertz model (a), the modified Wkihodel (b), the Geeraerd model (c), and
the wavelet neural network . Data points are medues of two independent experiments with

two replications each
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TABLE 4.2 -Parameter estimatiband statistical indices of the different modelsduor fitting the survival of..
monocytogeni@swhole UHT milk during high pressure treatment.

Model type 10G10 No l0gy0 A° 10010 Nres Kmax ts 5 h RMSE R?
[CFUmIY] [CFUmIY] [CFUmM [min] [min] [min] []
Gompert
350 MP« 6.90+£0.11 4.08 +£0.5! 0.41+£0.0. 10.07 +2.51 0.307 0.96¢
450 MP: 6.99+0.4. 4.15%0.6 0.39 £ 0.0. 2.25+0.1 0.31< 0.971
550 MP« 7.36 £0.3. 6.21 +0.1 1.68 + 0.1 -¢ 0.43: 0.987
600 MP¢ 6.51+0.5/ 6.30+0.9 2.26 £ 0.1 - 0.311 0.99:
Weibull
350 MP« 7.00 £0.1! 3.2740.2¢ 1453+1.8 1.88 +0.4l 0.26¢ 0.971
450 MP« 6.94 £ 0.2 3.09 £ 0.2 7.71+2.1 1.13+0.2! 0.31¢ 0.97C
550 MP« 6.74 £ 0.3 0.61 £ 0.4 2.05+0.7 1.24 +0.3- 0.413¢ 0.98¢
600 MP« 6.41 £ 0.1 0.65 + 0.1 1.46 + 0.1 1.11 £+ 0.0 0.10: 0.99¢
Wavele
350 MP« 0.16¢ 0.99¢
450 MP: 0.24¢ 0.98¢
550 MP« 0.20(¢ 0.99¢
600 MP: 0.11¢ 0.99¢

®Data are values + standard deviation.
® A is the difference between the initial populatipf) and the residual population ).

“No shoulder was observed.
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Fig 4.9- Observed values and predicted survival curvesisiéria monocytogends UHT whole
milk during high pressure treatment at 400 MPa,egated by the reparameterized Gompertz
model (a), the modified Weibull model (b), and thavelet neural network (c). Data points are
mean values of two independent experiments withreptications each.
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Fig 4.10-Observed values and predicted survival curvdsstéria monocytogendga UHT whole
milk during high pressure treatment at 500 MPa,egated by the reparameterized Gompertz
model (a), the modified Weibull model (b), and thavelet neural network (c). Data points are
mean values of two independent experiments withregtications each.
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It must be pointed out that despite the plethorgroposed inactivation models in the literature
none is flexible enough to account for all changeshapes with the intensity of stress[93]. The
selected models were able to describe the sureflle pathogen at 350, 450, 550, and 600 MPa
quite accurately. However, the prediction at 400 &0 MPa was not very accurate as the
experimental values of the pathogen showed a pattieich possibly indicated the presence of

two subpopulations, one sensitive to high prestwakewas inactivated within the first 10 min of
the process (figure. 4.9 and 4.10) and a seconce mesistant to the applied stress. The
discrepancy observed in the prediction at thessspre levels could be attributed to the fact that
both models did not account for the presence ofix@ednpopulation of the pathogen with a
variable resistant to high pressure.

Small data set conditions exist in many fields,hsas food analysis, disease diagnosis, fault
diagnosis or deficiency detection in mechanicsatinh and navigation, etc. The main reason that
small data sets cannot provide enough informat®mhat of large ones is that there exist gaps
between samples; even the domain of samples caerensured[94]. It is hard to catch the pattern
of high order non-linear functions by a standaedféorward neural network-like scheme, with a
small sample set, since they have shown weakngas®wding sufficient information for forming
population patterns. Lacking the whole picture dfiaction means the network cannot precisely
identify which sections of the function are ascagdand which sections are descending. Hence,
for learning systems that lack sufficient data, khewledge learned is often unacceptably rough
or unreliable.

How to fill up the gaps is the primary problem ®dblved. Inspired by the way the RBF network
approximates a nonlinear function through Gauskiaal-basis functions, we employed such a
network to each “survival curve” defined from theperimental data. The aim was to associate
each local-basis-function to each sample, and fivereasy then to generate new data that satisfy
each “survival curve”. An RBF network using the ukegised orthogonal least squares learning
algorithm has been employed for this task [44].

The inputs included the type of pressure level taedsampling time-step, while the output was
related to the bacteria counts. Each “continuowgivgl curve” has been verified against the real
experimental samples.

For each pressure level case, an RBF network reas dmsociated. As the real number of samples

for each pressure level is very limited, we assedi@ach RBF centre with the real samples. Then
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with a constant time-step 0.5 min, through a 2-fsmetwork, continuous survival curve” has

been obtained for each pressure level, as shoviguire 4.11.

—e— 350MPa
—B— 400MPa
450MPa
500MPa
—¥— 550MPa
—e— 600MPa

L. counts
O =2 N W b OO N 0 ©

o
o

10 15 20 25 30 35 40 45
time (min)

Fig 4.11 —Continuous Survival curves bf/steria monocytogenes

Based on these continuous datasets, the capabditigroposed WNN-LCW architecture has been
verified as a one-step-ahead prediction system.pgaaative studies have been conducted with the
utilisation of a PLS regression model and an MLBrakenetwork. Pressure levels of 400 MPa and
500 MPa have been used as testing datasets, Whilernaining levels as training ones.

The PLS model was initially constructed using tkertinuous survival curve” dataset which is
comprised of two inputs and one output. Two latemtiables were selected and the resulting

equation has the following form
Y, =12.868424F 00150321224 - .010964178%: (4.44)
Figure 4.12 illustrates the performance of the poed linear model on the testing data curves.

Obviously, the dynamic behaviour of thisteria survival curve cannot be adequately modelled by

a static linear system.
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Fig 4.12 —PLS regression model on a two-input case

Following the principles of nonlinear identificatipNARX models using the WNN-LCW, the
MLP and the PLS schemes have been developed. diheng dataset, consisting of 204 data from
350, 450, 550, and 600 MPa “continuous survivakesit, was employed, while 81 data from
400MPa and 51 data from 500MPa curves were kepidiidation.

The following structure has been adopted as a NAkRXel:
Count(t)= f(Count(t— 1), Count(t 2), MPa,Sarrple_ Time@yPle_ Time(t 1), Sample_ Timeft )2 (4.45)

During trials, it has been found that the modesésmsitive to the previous number of bacteria
counts, proving thus its dynamic behaviour.
In the proposed WNN-LCW, 25 wavelet Morlet functiohave been used, while the network’s

learning parameter vector was=[7.,7../7,,{]=[0.001,0.17,0.17,0... The hybrid parameter

learning algorithm has been utilised, which regllehigh speed training process, i.e. less than 10
epochs. Figure 4.18d shows the performance of tiNWhodel, especially against the real
experimental points from the training survival @sv The fitting performance of the developed
WNN was comparable with the statistical models bawe the comparison of the same indices
(Table 4.1), as the root mean square error indeget from 0.110 to 0.249, while the value&Rbf
were also high (0.986-0.988). The high fitting penfiance of the WNN approach was expected as
the network has been trained on these particuleasdes.WNN and MLP schemes have been
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implemented using MATLAB (ver. R2009, Mathworks)esrilts showed that the WNN was more
effective in predicting the response of the patimogempared with statistical models as illustrated
by graphical plots (figure 4.13 and 4.14) implyitigat although the WNN has been trained on
different survival curves, it has managed to lehmunderlying process with high accuracy.

In a similar way, an MLP neural network using thassic backpropagation learning algorithm
was constructed with the same input structure asN\WNrough trial and error, eventually two
hidden layers with 12 and 8 nodes respectively tmen employed. The learning algorithm was
responsible for the network’s slow convergence,ctvitbok approximately 5000 epochs. Figure
4.11& 4.12 illustrate the MLP performance for btahting survival curves.

The PLS-NARX scheme was certainly much more aceuram the previous simple PLS case.
Like WNN and MLP, the PLS regression model was trocted to anticipate the dynamic nature
of the specific problem, by including past valuéthe Listeria counts as inputs. The calculated by

XLSTAT software, equation has the following form

Y,=0.1646857 000017% -~ 00055— .00035- .0O00K5 . 0965 . 19% (4.46)

Figure 4.13 & 4.14 illustrate the PLS performanmetfoth testing survival curves. With regard to
the assessment of the quality of the overall mguietictions various statistical criteria were

calculated at all the tested validation experiments
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Fig 4.13 Survival curves of Listeria monocytogenes durirghhpressure treatment at 400MPa
fitted with different modellinglsemes

Survival Curve 500MPa
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Fig 4.14 Survival curves of Listeria monocytogenes duringhhpressure treatment at 500
fitted with different modeii schemes
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The regression coefficientR?) is often used as an overall measure of the piediattained. It

measures the fraction of the variation about thamibat is explained by a model. The higher the

value (0< R?<1), the better is the prediction by the model[95heTwavelet neural network
developed herein was found to yield better agre¢méh experimental observations for the test
data set compared to data predicted by the MLPtten@®LS model. The values of the coefficient

of determination R?), as shown in Table 4.3, indicate a very goodfithe experimental data

from the WNN-based approach.

TABLE 4.3- Performance indices of various methodslfgsteria Monocytogedata

Statistical index Model Testing Data sets

400MPa 500MPa
Coefficient of determinatior) MLP 0.9526 0.9933
WNN 0.9935 0.9996
PLS 0.9796 0.9966

Root mean square error (RMSH) MLP 0.3830 0.1733
WNN 0.1627 0.1128
PLS 0.5532 0.2246
Mean absolute percentage error MLP 23.2939 2.7674
(MAPE) (%) WNN 5.3072 2.0750
PLS 32.8082 5.3354

Mean Square Error MLP 0.1467 0.0300

WNN 0.0265 0.0127
PLS 0.3061 0.0504
Standard error of prediction MLP 15.9921 3.9301
(SEP) (%) WNN 6.7934 2.5569
PLS 23.1004 5.0930
Bias factor By) MLP 1.0177 0.9751
WNN 0.9750 0.9792
PLS 1.2960 1.0491
Accuracy factor A) MLP 1.2182 1.0288
WNN 1.0551 1.0212
PLS 1.2983 1.0525
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However, R?is a suitable criterion for model comparison on #ssumption that the error is
normally distributed and not dependent on the medime; In fact, the distribution of the error is
not clearly known in the case of microbial/bacteniawth, so this term must be used with caution,
particularly in non-linear regression models[96f drence additional indices must be employed
for model comparison.

The RMSE values of the WNN were also significalvdyter for the two “test” survival curves, i.e.
400MPa and 500MPa. This index is calculated betvibendesired and output values and then
averaged across all data and it can be used astiaraton of the goodness of fit of the models. It
can also provide information about how consistéet model would be in the long run . The
RMSE values for both networks (WNN and MLP) werevdo those from the linear PLS model,
indicating the ability of non-linear networks to keabetter predictions on data for which there was
no previous training.

The MAPE term provides information about the averdgviation from the observed value. The
relevant figures from Table 4.3 indicate againdyeperformance for WNN. Especially, the high-
nonlinear features of 400MPA curve proved to bédlilt to be modelled from the PLS and MLP
models. The SEP index is determined as the reldévétion of the mean prediction values and it
has the advantage of being independent on the tndgnbf the measurements [96]. Based on this
index, the WNN scheme was superior from both ML& BhS models for the two test curves.

The benefits of mathematical models to predict @gein growth, survival and inactivation in
foods include the ability to account for changesniicrobial load in food as a result of
environment and handling; the use of predictive raimlogy in management of foodborne
hazards. The usual measures of goodness-of-fimfuitel comparison in food microbiology is

performed by calculating in addition to squaredrelation coefficient R?) the bias B;) and
accuracy (A; ) indices as proposed by Ross[92]. Bias factor imdtiplicative factor that

compares model predictions and is used to determirether the model over- or under-predicts

the response time of bacterial growth.Bj greater than 1.0 indicates that a growth modedils f
dangerous. Conversely, B less than 1.0 generally indicates that a growth ehal fail-safe.

Perfect agreement between predictions and obsengatvould lead td, of 1. The accuracy

103



factor (A; ), is a simple multiplicative factor indicates t@read of results about the prediction. A

value of one indicates that there is perfect ages¢rbetween all the predicted and measured

values. Table 4.3 also shows the bias and accueatyr values obtained for the two testing

survival curves. Thd3, parameters for both WNN and MLP were superior twséhof the PLS,

however the WNN was just under the optimal 1.0,vigiag thus a fail-safe condition. The

relevant figures forA; indicate again better performances for the WNN sehewhich is more

evident at the 400MPa survival curve. In order udlfer justify the plausibility of embedding

Local Linear weights along with Hybrid learning atghm, a comparison has been performed to

verify the proposed scheme’s performance overticadii WNNs. Table 4.4 and figure 4.15 &

4.16 illustrate the related results.

TABLE 4.4 —Convergence comparison of existing models on ptiediproblem

Epoch: Independen Target Training
(Ave.) Parameters. MSE
WNN-LCW by GD 721 37t 0.0000!
only
WNN-LCW Using 7 37¢ 0.0000!
Hybrid
WNN-Static weights 162( 22k 0.0000!
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Fig 4.15Convergence speed comparison by number of epsihg pure GD
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Fig 4.16 -Convergence speed using Hybtig#arning method

4.5 Proposed Structure Scheme Il (MWNN-LCW

For modelling the non-linear systems an alternafoug-layered wavelet network structure is

proposed herby, which is comprised of an inputiafi@den (wavelet) layer, product layer and
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finally output layer. Referring to figure 4.17, leayl accepts the input variables which are in form

of X =[X,,X,,...,Xx,]', while Layer 2 is used to calculate the waveleéfimbership” values. In this

layer, each node performs a membership functionaatel as an element for membership degree
calculation, where a wavelet function is adoptedhesmembership function. Generally, a WNN

approximates any desired signal y(t) by generaisinlinear combination of a set of daughter

wavelets@ which are generated by step sizes dilation andfation and from a mother wavelet.

We adopt the wavelet function as its node function MWNN-LCW in form of

$nn=0(2"t—n). A modified differentiable version of Morlet wae¢l deployed for j'th

wavelet node connection to the p'th input dataresged as

—(27mzj x-n} ¥

B v, (X) = COS(2B @™ x- h)e ¢ (4.52)

This wavelet is derived from a function that is gwdional to the cosine function and Gaussian
probability density function. Its non-orthogonatfinite support and maximum energy lies around
origin with the narrow band [97]. The nodes of Liageare regarded as the “wavelet” rules in
association to the fuzzy rules in a neuro-fuzzyhiéecture. The number of the “wavelet”

membership functions for each input variable isad¢@ the number of “wavelet” inference rules.

These units are fixed, meaning that no modifiabdeameter is associated with them. The
multiplicative inference (Larsen product operathgs been used [14], thus the output of this

inference layer is given by
P
Q(Xp) = |_l ¢m£)’njp (Xp) (4)53
p:

The proposed approach differs from the conventitumly rule table approaches. In those models,
an input space is divided int§, xK , x---xK _fuzzy subspaces, wherk,,i =1,2,---,nis the
number of fuzzy subsets for the input variable.r€hs a fuzzy rule for each of these subspaces.
The main drawback of that approach is that the rurobfuzzy rules increases exponentially with
respect to the number of inputs n. The fourth laigeiconnected to third layer via Linear
Combination Weights. The difference of this progbseheme compared to the previous one,

includes the adoption of one extra layer, the mlitt@tion layer. The proposed scheme has
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similarities with the AFLS [16], in terms that shimultiplication” layer represents the fuzzy rules
The scheme has some interest, as it is desirahteirtonise the number of “wavelet” function

nodes, and this can be achieved by “clusteringhtkenilarly as in the AFLS case.

W, =W+ w X+ +w X,

W, Sw,, +w, X, +...+ W, X,

Wy = Wy +wN1X1+"'+wNpo

P2 x,—rPy)

- N~ S
Layer 1 Layer 2 Layer 3 Layer 4

Fig 4.17— Architecture of WNN with multiplication layer drLinear Weights

4.5.1 The parameter learning scheme

After the initial WNN is constructed, the paramsetef the network are obtained via minimisation
of the cost function E after a number of trainimmpehs according to desired MSE. The linear
parameters which are Linear Combination Weightetmen updated exactly the same as the way

described instructure 1 However the only minor difference is that tiematrix is generated
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according to output of Multiplication layer. Formdinear parameters, in this case it is also used

the steepest descending gradient method, hernised@tessary to calculate the gradient ve%%r
Y

for all the trainable non-linear parameters} and nf are the parameters that determine the
location of the centre (translation) and the wiliilation) of the wavelets. Using the Gradient-
based procedure we obtain the incremental updatigorithm of each parameter. Without any
major change, just in this case we have one layeenso the observed output for sampleQis

Therefore the updating equations derived frinmposed structure tan be modified accordingly.

The updating expressions are in accordance toAwitprules

0E _ 0E ad' oar 90} o oq;
= X
omy 00 aI* 00 Al aopJ ampJ @
OE _ 9E _ad'_or 0O oI} oQ]
= X X X X X
ony 00" al* a0’ a7 907 ony

0E _ D P (%) 09,
a___(yt O) fout j x
mpj ¢pj(x ) ampi
(4.55)
14, (x)
E _ 4 P og,
Wm_ (yt Ot) fout W ¢p](x) anpj
p=1,...P = 1,..N
Where
| adiah X3 22 ey )
%:wmasir@s@xa»e o~ 208@ T2 =, n) Og(zzf ) e
~@Mxn,¥ I ~@Mxn, P (4.56)
?E‘Zrﬁsr(zﬁ(f” cgde * T oy T e
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Following the same procedure mentioned for updatmgandn , , here also we can use

expressions (4.31) and (4.32).

4.5.2 Case Analysis and Simulation Results

In this section, the proposed model was applietthéosame Milk-Listeria dataset, of course after
imposing the one-step-ahead-prediction definedesailhe inputs included the type of pressure
level and the sampling time-step, while the outpais related to the bacteria counts. Each
“continuous survival curve” has been verified aghithe real experimental samples. Based on
these continuous datasets, the capabilities ofptbposed MWNN-LCW architecture has been
verified as a one-step-ahead prediction systenssBre levels of 400 MPa and 500 MPa have
been used as testing datasets, while the remdmiets as training ones.

Following the principles of nonlinear identificatioNARX models using the MWNN-LCW, the
MLP, the RBF and the Elman recurrent networks Haeen developed and comparative studies
have been conducted. The training dataset, camgisti 204 data from 350, 450, 550, and 600
MPa “continuous survival curves”, was employed, leid@l data from 400MPa and 51 data from
500MPa curves were kept for validation.

During trials, it has been found that the modetémsitive to the previous number of bacteria
counts, thus proving its dynamic behaviour. In greposed MWNN-LCW, 6 Morlet wavelet
functions have been used, while the network's learn parameter vector was

A =[N, N,,¢]1=[0.1,0.1,0.3. The hybrid parameter learning algorithm has he#gised, which

resulted a quick training of 5 epochs. Figure 4.8Bdws the performance of the WNN model,
especially against the real experimental pointsnftbe training survival curves. Following the
principles of nonlinear identification, NARX modalsing the MWNN-LCW, the MLP, the RBF
and the Elman recurrent networks have been dewtlofige training dataset, consisting of 204
data from 350, 450, 550, and 600 MPa “continuowsigal curves”, was employed, while 81 data
from 400MPa and 51 data from 500MPa curves were fieepsalidation. The following structure
has been adopted as a NARX model:

Count(t)= f(Count(t— 1), Count(t 2),MP)a
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Fig 4.18 - Survival curves olListeria monocytogeneis UHT whole milk during high pressure
processing at 350 MPa&)( 450 MPa &), 550 MPa #), and 600 MPax(), generated by the re-
parameterised Gompertz model (a), the modified Weibhodel (b), the Geeraerd model (c), and
the wavelet neural network (d). Data points arermedues of two independent experiments with

two replications each
110
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The fitting performance of the developed WNN wamparable with the statistical models based

on the comparison of the same indices (Table lthesoot mean square error index ranged from

0.054 to 0.124, while the values Bf were also high (> 0.989). The high fitting perfamee of

the WNN approach was expected as the network has tvained on these particular datasets.
Results showed that the WNN was more effective rigdipting the response of the pathogen
compared with statistical models as illustratedytaphical plots (figure 4.19, 4.20), implying that
although the WNN has been trained on different igahvcurves, it has managed to learn the

underlying process with high accuracy.

logN (CFU mI™)

0 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Hold time at pressure (min)

Fig 4.19: Observed values and predicted survival curvdsstéria monocytogendéa UHT whole
milk during high pressure treatment at 400 MPa,egeted by the re-parameterised Gompertz
model (a), the modified Weibull model (b), the Gaad model (c), and the wavelet neural
network (d). Data points are mean values of twaepahdent experiments with two replications
each.

111



logN (CFU mI™)

O T T T T 1
0] 5 10 15 20 25

Hold time at pressure (min)

Fig 4.20 - Observed values and predicted survival curvekisteria monocytogenesn UHT
whole milk during high pressure treatment at 500aMBenerated by the re-parameterised
Gompertz model (a), the modified Weibull model (tile Geeraerd model (c), and the wavelet
neural network (d). Data points are mean valueswaf independent experiments with two
replications each.

Two other approaches, based on neural network ¢botpyy the RBF and MLP schemes were
constructed with the same input structure as theN\WRhese two well-established networks are
known for their generalisation capabilities despite fact they have different learning strategies
(global vs. local). An RBF network tends to conwergpidly compared with the MLP one. The
RBF network based on the OLS algorithm containedsa@ssian nodes in the hidden layer and
one spread parameterfor all input variable¢o =0.25). In contrast to RBF, the MLP network
structure consisted of two hidden layers (12 andoées for each hidden layer) and a single
sigmoidal output node. The learning algorithm wesponsible for the MLP'’s slow convergence,
which took approximately more than 5000 epochsurfeigt.21 & 4.22 illustrate the MLP and RBF

performances for both testing survival curves.
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The use of dynamic neural networks presents amatige solution to the specific problem. Here,
the focus was to use one dynamic network (Elmaa) tias given some kind of memory to
encode past history, with the additional requiretsienf short training time. The improved,
compared to the standard MLP structures, reswsatehe advantages of using memory neuron
structures. The inclusion of memories and the edlaecurrence in the first hidden layer, enable
the network to carry out accurate predictions. édh this method is dependent on the number of
“memories” in the “recurrent” nodes and therefdredn be considered as a partially recurrent
network, it proved to be one faster in trainingdithan the MLP scheme. In this specific ElIman
network, 8 and 4 nodes have been used for the itdzh layers. Figure 4.21 & 4.22 illustrate the
Elman network’s performance for both testing sualisurves.

The relevant figures from Table 4.5 indicate againmproved performance for WNN. Especially,
the high-nonlinear features of 400MPA curve protete difficult to be modelled from the other
models.
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Fig 4.21- Survival curves of Listeria monocytogenes duringhhpressure treatment at 400MPa
fitted with different modelling lsemes

Survival Curve 500MPa
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Fig 4.22- Survival curves of Listeria monocytogenes dutiigh pressure treatment at 500MPa
fitted with different modellinglsemes
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TABLE 4.5 - MWNN-LCW and other methods Statistical index coniga.

Model Testing Data sets
400MPa 500MPa
Coefficient of determinatior=t) MLP 0.9937 0.9963
MWNN 0.9985 0.9999
RBF 0.9975 0.9992
Elmann 0.9926 0.9983
NN
Root mean square error (RMSE) MLP 0.2126 0.1151
MWNN 0.0670 0.0198
RBF 0.1014 0.0494
Elmann 0.1800 0.0761
NN
Mean absolute percentage error (MAPE) (%) MLH 8272 2.4127
MWNN 2.0035 0.3659
RBF 5.3391 0.8871
Elmann 8.9175 1.4507
NN
Mean Square Error MLP 0.0452 0.0132
MWNN 0.0045 0.0003912
RBF 0.0103 0.0024
Elmann 0.0324 0.0058
NN
Standard error of prediction (SEP) (%) MLP 8.8778 2.6101
MWNN 2.7967 0.4485
RBF 4.2339 1.1209
Elmann 7.5142 1.7250
NN
Bias factor Br) MLP 1.1186 1.0084
MWNN 1.0137 0.9982
RBF 1.0469 0.9973
Elmann 1.0614 0.9911
NN
Accuracy factor A) MLP 1.1336 1.0244
MWNN 1.0198 1.0037
RBF 1.0512 1.0089
Elmann 1.0733 1.0147
NN
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Fig 4.23- Epochs using Hybrid Method for MWNN structure
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Fig 4.24 Epochs using only Gradient Descéat MWNN structure
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TABLE 4.6 —Convergenceomparison of existing models on prediction problem

Epochs Independent Target
(Ave.) Parameters Training MSE
MWNN-LCW using GD only 721 375 0.00005
WNN-LCW
Using Hybrid method 7 375 0.00005
MWNN-LCW
With Multiplication Layer 4 114 0.00005
using Hybrid Method
MWNN-LCW
With 736 475 0.00005
using GD only
MWNN-Static Weights 1620 225 0.00005

The wavelet specifications are listed in Table AF we know three inputs, out of six inputs, are
simply delayed version of the other inputs so it ba easily justified that why the corresponding
wavelets in input 1,2 and 3- after parameter liegrnend up with almost similar scales and

translations. The scales input 5 and 6 ( of coumget 5 and input 6 are both delayed versions of
output ) remain the same throughout the nodes wimai imply the fact that there is only one

dominant frequency in them.

TABLE 4.7-Wavelet Parameters of MWNN-LCW after Optimisation

Dilation Translation

Node Inputl Input2 Input3 Input4 Input5 Input6 Inputl Input2  Input3 Input4input5 Inpu6

1 -0.8307  0.2867" 0. 0.2867° -3.01 -3.037¢ 0.4393° 0.8011° 0.8011° 0.8011°  1.54¢ 1.564¢
2 -1.5168  -0.0041 -0.0041  -0.0041  -3.01-3.0378 0.43815 0.49301 0.49301 0.49301 1.546 8.564
3 -1.5166  -0.009369 -0.0093  -0.0093  -3.01-3.0379 0.44046  0.78455 0.78455 0.78455 1.546 4.564
4 -0.830:  0.2669¢ 0.2669¢ 0.2669¢ -3.01 -3.037¢ 0.4388t 0.4850¢ 0.4850' 0.4850! 1.54¢ 1.564«
5 -1.518¢  0.2719: 0.2719: 0.2719: -3.01 -3.037¢ 0.4401f  0.79¢ 0.79¢ 0.79¢ 1.54¢ 1.564¢
6 -0.8290  0.05435 0.05435 0.05435 -3.01-3.0378 0.72172  0.48495 0.48495 0.48495 1.546 1.564
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Chapter 5

Data Clustering Techniques

The world we are living is saturated with overwhiglgnamount of data. On daily basis, people
encounter a large amount of information to storéoofurther analysis and management. One of
the vital means in dealing with these data is #ssify or group them into a set of categories or
clusters[98]. Clustering is an effective approacidentification of complex non-linear systems by
partitioning the available data into subsets anpgr@pmate each subset by a simple model.
Clustering techniques are among the unsupervisaginfhg) methods, since they do not use prior
class identifiers. Most clustering algorithms aldo not rely on assumptions common to
conventional statistical methods, such as the Uyidgr statistical distribution of data, and
therefore they are useful in situations whereelipttior knowledge exists.

The aim of clustering is furnished by gathering titgects are more similar to each other in one
cluster. The term “similarity” in many cases comsit as aistance normfrom a data vector to a
prototype object called as centre[99, 100]. Thacept of dissimilarity (or distance) is the
essential component of any form of clustering thelps us navigate through the data space and
form clusters. By computing dissimilarity, we caense and articulate how close together two
patterns are and, based on this closeness, allieateto the same cluster[101].

While most classical clustering algorithms assigohedatum to exactly one cluster, thus forming
a crisp partition of the given data, fuzzy clustigrallows for degrees of membership, to which the
transitions of the subsets are gradual rather #imopt (soft membership). In fuzzy clustering,
instead of determining whether or not an event cas is the case with probability, fuzziness
measures the degree to which an event occurs.tfibBusembership degree shared among various
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clusters. This creates the concept of fuzzy bouesdavhich differs from the traditional concept of

well-defined boundaries[102].

5.1 Fuzzy Partitions

The objective of clustering is to partition thealaet X into C clusters. For the time being, let us
assume that C is known, based on prior knowledgevery fuzzy clustering method there is a

fuzzy partition matrixy =[] \xcWhich demonstrates the degree of membership of saciple
to cluster c.y,, are the values of the membership function ofittie fuzzy subset oX, we

assume thay,, are constrained labels satisfying

Osyjisl
C

yji:]'

fu

Where the latter, means no existence of emptyensi$100]

Most fuzzy clustering algorithms are objective fiime based: they determine an optimal (fuzzy)
partition of a given data set X ={; | j =1, ..., N} into c clusters by minimiziran objective

function.

C N

JX,Y,0)=> >y d (5.2)

i=1 j=1
whered, is the distance between datum and cluster i. The parameter s, s > 1, is caled t
fuzzifier or weighting exponent. It determines tifiezziness” of the classification: with higher
values for s the boundaries between the clusteceniie softer, with lower values they get
harder[103]. The value of the cost function (eq) 5s2a measure of the total weighted within-
group squared error incurred by the presentatiothefC clusters normally defined by their

prototypel; . Statistically, eq (5.2) can be considered as asmre of the total variance of each

data vector x from, .
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This approach is usually called probabilistic fuzhystering, because the membership degrees for
a datum formally resemble the probabilities oftiesSng a member of the corresponding clusters.
The minimization of the eq(5.2) represents a noadr optimization problem that can be solved

using a variety of available methods. Some of tstrpopular methods presented in this chapter.

5.2 Distance Norms

The distance measure D in 5.2 has the general faima

d=(x-) 2 (x4, (6.3

The shape of the clusters is determined by theiceXtin distance measure (eq 5.8).common

choice isZ =1 , which induces the standard Euclidean norm:

d=(x-p)" (x-1) (5.4)
The Euclidean norm induces hyperspherical clustegs, clusters whose surface of constant
membership are hyperspher@scan be selected as Rx Pdiagonal matrix that accounts for

different variances in the orientations of the clomaite axes of X. In this case, Matrix induces a

Diagonalnorm onRP.

ol 0 0
0 o 0

25 = :2 gb.
0 O o:

Finally, Z can be realized as the inverse d?a PCovariance Matrix of X
13 > o
Sy == (X, = X)X, -X) T (5.6)
\ ey

The X shows the sample mean of data. In this Zds¢heMahalanobisnorm on R .
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Both the diagonal and thdahalanobisnorm generate hyperellipsoidal clusters, the difiee is
that with the diagonal norm, the axes of the hylfipseids are parallel to the coordinate axes

while with theMahalanobisnorm the orientation of the hyperellipsoids is teny.

5.3 Fuzzy C-Mean Clustering

Fuzzy c-means is one of the most commonly used/fakestering techniques for different degree
estimation problems. FCM determines each clusteation using maximum membership
defuzzification and neighbourhood smoothing techesy FCM employs two simple and
straightforward statistical features, namely mead standard deviation. This method developed
by Dunn in 1973[104] and improved by Bezdek in 1§B15], proposes a generalisation by means
of a family of objective function and is frequentiged in pattern recognition. It is based on the

minimisation of the following objective function:

C N

IXY.0)=X > v |u - % (5.7)

i=1 j=1
As denoted, Fuzzy C-Mean Clustering uses Euclidiatance in its cost function. All parameters
are all described earlier afid | is any norm expressing the similarity between measured data
and the centre. The centroid of a cluster is thanm&f all points, weighted by their degree of
belonging to the cluster:

N
2. ViX

W == (5.8)

>y

This iteration will stop whef| yijk+l - yijk [} <&, wheree is atermination criterion between 0 and

1, whereask are the iteration steps. The degree of belongingeliated to the inverse of the
distance to the cluster, then the coefficients ramemalised and fuzzified with a real parameter

s>1 so that their sum is 1.
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_ 1
Yij = > (5.9)

()

-]

Several investigations have been made on the bast to choose for the fuzzification exponent, s,
which is chosen a priori. A recent study[106] dades empirically that m = 2.0 is a “good”
value. For s equals to 2, this is equivalent tonadising the coefficient linearly to make their sum

one. The algorithm determines the following steps

Step 1. Randomly initialising the membership mayrix

Step 2. Calculating the centroiby using eq (5.8).

Step 3. Compute dissimilarity between cédgrand data points using eq(5.4). Stop if

its improvement over previdasation is below a threshold.
Step 4. Compute a newvusing eq(5.9). Go to step 2.

The FCM algorithm has proven to be a very populathod of clustering for many reasons. In
terms of programming implementation, it is relayvetraightforward. It employs an objective
function that is intuitive and easy-to-grasp. Begaof its fuzzy basis, it performs robustly: it
always converges to a solution, and it providesistent membership values.
FCM strength over the famous K-Means algorithm[1i87hat, given an input point, it yields the
points membership value in each of the classesh®nother hand the weaknesses are:
* It requires the number of clusters to look for éokmown as a priori
* Initialisation
« If the iterative algorithm commonly employed fonding solutions of the FCM objective
function is used, it may find more than one sohutitepending on the initialisation. This
relates to the general problem of local and glaipéimisation.
* Fuzzy C-Means (FCM) clustering method discoverssphl clusters with equal volumes
and density. However, in a number of real datdlpras as performance analysis, time-

series data as well as some forecasting and mioglédisks the identified clusters are not
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spherical as they are presumed to be charactenitedch different shape and orientation
in the space.

e lts accuracy is sensitive to noise and outliers.

5.4 Gustafson — Kessel Clustering

The Gustafson-Kessel (GK) algorithm[108] is anotpewerful clustering technique with a large
number of applications in various domains includimgge processing, classification and system
identification. FCM algorithm as already mentionsésipoint prototypes and an Euclidian norm-
induced distance measure. As a consequence, ftsrpance is acceptable only when the data set
contains clusters that are well-apart or when elgsof approximately the same size and shape,
whereas,

GF extended the standard fuzzy C-mean algorithmetoploying and adaptivévahalonobis
distance norm, in order to detect clusters of diffé geometrical shape by estimating the cluster
covariance matrix. In addition it is relatively ersitive to the data scaling and initializatiorthu#
partition matrix[109]. The Gustafson—-Kessel alduoritis based on iterative optimization of an

objective functional very similar to c-means type:

C N
JOGY,CAAD =D D 1 X)) TS (4 %)
e (5.10)
In this objective function, the number of clustbes to be fixed in advance. The distance norm

dys can account for clusters of different topology[lL 10 his algorithm is capable of detecting

ellipsoidal cloud clusters of dissimilar sizes aadentations. The minimization of the GK
objective functional is obtained by using the oition method according to the following

popular algorithm

Step 1 Computing the cluster centres (prototypes)

N k-1
2.
="——, 1<iscC

2

= (5.11)
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Step 2 Compute the cluster covariance matrices

(%) (1 -x,)
5 = i
2 )

The matrix 2, determines the shape and orientation of the selecluster. Thus, the GK

(5.12)

algorithm employs an adaptive distance norm unfquevery cluster as the norm inducing matrix
2. is calculated by estimates of the data covariance

Step 3 Compute the distances

) ) p |Z |1/P

_ T i i

dij{z;, = ()i 'y, ()f K )[%] (5.13)
1

Without any prior knowledge, the cluster volunggsare simply fixed at one for each cluster.

Step 4 Update the partition matrix
The GK algorithm like other FCM-based clusteringasithms utilises the Lagrange multiplier

method to minimize the cost function. It iterativeletermines the membership degree

1
Vi = ————=

i“ diJ{Z} =
= Gy (5.14)

The algorithm runs unt«yk —yk‘lu <eg.
The GK suffers from a numerical problem mostly ascim Step 3 of the algorithm, where the
cluster covariance matri¥; is inverted. In case of small number of data daspr when the

data inside a cluster are linearly correlated, dbeariance matrix may approach to singularity.
Under this scenarjdhe computed covariance matrix is not a reliabtemege of the underlying
data distribution.
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5.5 Gath-Gava Clustering

The algorithm by Gath and Geva (GG)[111] is an msitn of the Gustafson-Kessel(GK)
algorithm that also takes into account the size @abity of the clusters [107]. GG clustering
algorithm are also based on minimization of therexfientioned objective function which its
parameters have been explained in the previoumsect

The most important part of objective function J,iakhis the characteristic of different fuzzy

clustering methodss the distance functiod,;. GG assumes that the i'th Gaussian distribution
with expected valu€, and covariance matriX; is chosen for generating a datum, with a priori

probability P, ,hence, in the GG methatd] - distance of the jth data point from the ith clustis

defined as follows :

(5.15)

= ey PG (1 T3 5 )

where the parameters of each clustgrand 2, are centre and covariance respectively of i'th

cluster. P is the priori probability, known also as the caméint designed for eliminating the

sensitivity of the algorithm to number of data feim different clusters which is computed by the
following formula

s S
Z Yi

Pp=—— (5.16)

i
22V
i
Minimization of the objective function with respgotmembership degree by considering the fact
that sum of membership values of a data pointltolasters becomes one, leads to the following
equation for computingy, :

i
S—

(Grad

1
d;
(5.17)
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In the GG algorithm, centre and covariance matridlusters and membership degree of data

points are estimated in the following iterative gees[112] :

Step 1Choose number of clusters, initial values of aeamd covariance matrix for each cluster.
Step 2 Calculate distances of data points to all clisstsing eq(5.12).
Step 3 Compute degree of membership for all data paisisg eq(5.14).

Step 4 Estimate centre and covariance matrix for eagstet using the following equations.

N
D ViX

— =

Hi N

S

V06 )0 1)
3 ==

Step 5Go to the second step until a termination cotesatisfies.

(5.18)

5.6 Subtractive Clustering

Clustering algorithms typically require the userpte-specify the number of cluster centres and
their initial locations; the locations of the cleistentres are then adapted in a way such that thes
can better represent a set of data points covénegange of data behaviour. Fuzzy Subtractive
approach is a fast, one pass algorithm for estigatie numbeof clusters and clusters centres in
a set of data. The subtractive clustering methesiirmes each data point is a potential cluster
centre and calculates a measure of the likelihbadl ¢ach data point would define the cluster
centre, based on the density of surrounding datatgjd13]. For better results it is recommended
to normalize each point into a unit hyper-box token@ach dimension identical[114, 115].The
algorithm starts by finding the first large clustend then goes to find the second, and so on[116]

The algorithm is illustrated in the following lines
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» Selects the data point with the highest potertbabe the first cluster centre. It is done by

introducing apotential measurat data pointx ; , defined as
Po ex ” " Ti=1.., 9)1
t = ; P 12 ©)

Where r, is a positive constant representing a neighbourhadidis andx; - x, ||2 is the square

of Euclidean distance betweex; and x, . Hence, a data point will have a high density aftit

has many neighbouring data points[117]. After daling the potential for each vector, the one
with the higher potential is selected as the filgster centre[105].

« Remove all data points in the vicinity of thesficluster centre (as determined by radii of alhda
points to the newly selected cluster centre) ineoitd determine the next data cluster and its

centre location. The first cluster centtg is chosen as the point having the largest deraitye

Pat,. Next, the density measure of each data peinis revised as follows:

2
~Xa

Pot = Pot— Pqf ex Al

T2y (5.20)

Usually the r, variable is taken to be d5¢.
The process of acquiring new cluster centre isdasepotential value in relation to an acceptance

threshold £, rejection threshold: , and the relative distance criterion. A data paiith the

potential greater than the acceptance thresholdirectly accepted as a cluster centre. The
acceptance of a data point with a potential betwkenupper and the lower thresholds depends on

the relative distance equation, defined as

dmln + X Po‘i(

r Pot1

a

(5.21)

whered,,, is the shortest distance between the candidasteclaentre and all previously found

cluster centres. If (5.21) is greater than 1, ttienassociated x will be considered as a new cluste

centre.
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* Iterates on this process until a sufficient numiseclusters is attainted. Since the algorithm is

fixed and does not rely on any randomness, thdtseare fixed. However, we can test the effect

of the four parameters, namely, acceptance @tjoreject ratioE , Cluster radiud,and squash
factor I, . These parameters have influence on the numbetusfers and error performance
measures. Large values Efandf will result in small number of rules. Conversegymall
values of E‘andf will increase the number of clusters. A large eabi r, generally results in

fewer clusters that lead to a coarse model[117].JA8mall value ofr, can produce excessive

number of clusters that may result in an over-a@sfigystem.

5.7 Gaussian Mixture Models (GMM) and Expectation
Maximization(EM)

In the probabilistic point of view, data can bewsesd to be generated according to several
probability distributions. They can be derived frdifferent types of probability density functions
(e.g., multivariate Gaussian distribution), or g#azne families, but with different parameters[98].
In such a mixture model the probability densitydtion of the process that generated the data is
assumed to be a mixture of a certain number ofalitiby density functions, each of which is
described by a cluster[119].

A Gaussian Mixture Model (GMM) is a parametric citiathal probability density function
represented as a sum of Gaussian component derisiseme proportions. These types of models
rely on the assumption that the data comes fromnewk distribution (usually Gaussian
distribution). In GMMs “similarity” should be undstood as the probability that a data belongs to
a specific density. Most databases contain a langeunt of categorical data, where the notion of
distance as a clustering metric is not naturaltzasito be defined according to the case. Gaussian
mixture models not only can be used for conditiodahsity estimation, but due to their
probabilistic nature they also provide means faalidg with the problem of missing data and

active data selection.
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5.7.1 Gaussian Mixture Model

In a mixture model it is assumed that a given dataX = {x, DDPH =1, ., N} has been drawn

from a population of C clusters[120]. Each clustecharacterized by a probability distribution,
specified as a prior probability, together with anditional probability density function

(cpdf)[121]. The data generation process may therninbagined as follows: first a cluster c,
cfy, ..., Clis chosen for a datum, indicating the cpdf to bedusand then the datum is sampled
from this PDF. The weighted sum (mixture probafiliof a given and finite C component

Gaussian densities for an individual member of skt4 j expressed as

EC) :cPe< i i i ORP
p(x,1©) Zl ©®)p(x 128 ) X (5.22)

p(x|©)

0.08

Density
0.04
—
\'\
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-/,/
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i
1

Value

Fig 5.1— Gaussian Mixture Model

Here z is a random variable that has the clustBcés as possible values and associate to Each
we havez . p;(X; |z 8 )is the i'th component (cluster) conditional densiyen the cluster

specified by z.

1 1
P(X 128 )=—————=expt= (-1 ) ) (x-H1 )) (5.23)
BT N T
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Each Gaussian function as in eq (5.23) is intedrt®ne

[p(x 12 8 )dx=1
o° (5.24)

The variable X =[X1,X2,...,XP]T is multivariate input random vector in P dimemsio

describing the attribute values of the data poi@g{el,..., ec} representing the unknown set
of parameters for all clusters. In case of Gauss@nponents, the mixture density contains the
following adjustableparameters for ead:

meany, :[ul,uz,...,up]T which is apx1 dimensional matrix containing corresponding centre
of the one-dimensional Gaussians as componenterfdtels the vector transpose) and the other

tuneable parameter is covariance makjx = diag(1/g, ,

llo, ,...,1b, which is the inverse
of PX P covariance matrix created by product of P one-dsimral Gaussians.
P@®,)is the probability of i'th component which alsdfleets the relative importance of each

cluster and since usually each point is assumdxltang to just one distribution and in eq(5.22)

p(X; |@)is a density function, it must be non-negative iwegrate to one as well[122]. We have

1=[,p(x 10)dx=] > PO )P (x 129 =Y A1, (x| Joxd 8 o5

Hence, as eq (5.25) states,

ch P®)=1. (5.26)

The goal is to find the paramete® and P(@,) that maximizes the likelihood (or minimizes the

minus likelihood).

5.7.2 Maximum Likelihood Estimation (MLE)

Given a set of parameter values, the associateddeDnstrates that which data are more likely
than others. In reality, however, we have alrdatywn/observed the data. Accordingly, we have

to deal with inverse of the problem: Given the obséd data and a model of interest, searching for
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one PDF, among all the probability densities thatmnodel presents, that is most probable to have

generated the data[123]. In order to find solufanthis inverse problem, we define the likelihood

function by swapping the roles of the sample vextand the parameter vectBin p(x|8)i.e.

L(8] %) =p(x|6) 5.27)
Hence,L(0] x) is the likelihood of parametdt. To alleviate the computational load, the MLE

estimate is obtained by maximizing the log-likeblofunctionLog(L(B]x)). Quality of a given

set of parameter® is determined by how well the corresponding pdbieidits the data[124].
This is quantified by the log-likelihood of the datf the random observations are independent of

each other, the probability of generating N obstgoma x, (j=1,...,N) - according to probability

theory - is the product. Given as
N
PXy ... Xy} ©) = |'1||O(X,- |©) 8)2
j=
or alternatively, in logarithm form

L(®X) :Iog(|fN1| p(x, |©))
. 29)
L(@]X) =Y logp(x, |©)

i=1
The so-calledog-likelihood,can ease the technical task[99]. Substituting.28§5n eq(5.29) ,
N [}
L(©IX) =2 log{D> P(z;6)p (X 17 4 ) (5.27)
j=1 i=1
In maximum likelihood estimation the unknown paréen® ={6,, 6,,...,6 .} is estimated so

that the log-likelihood function is maximized bying a set of observed sample.
oLog(L(®|x))/0©=0 38)

Unfortunately, since the solutions of eq(5.30) adnme obtained analytically in most

circumstances and therefore no closed-form solut@nit, iterative routines are required to

approximate MLE estimates. Among these methodsE#pectation-Maximization(EM) is one of

the most popular schemes.
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5.7.3 Jensens’s Inequality

In order to connect the logarithm of sum to expmtaoperator later in the section, herby we
explain briefly some useful results of Jensenssgjirality.

Jensen’s inequality is often employed to boundltigarithm of a sum of terms: Given C non-

negative numberst,---, T, with the summation equal to one (it can be assuasdliscrete

probability distribution) and C arbitrary numbens,...,0., as the result of convexity of the

logarithm we can conclude that[122]

C C
log ) ma, > 1 log(a, ) 35)
i=1 i=1
Considering this inequality, some other useful egpions can be extracted out, such as
@ C T C a.
log) o, =log> o, —L=>"1 log—- (5.32)
i=L =R | = Tt

The inequality in eq(5.32 ) associatles logarithm of a sum with expected value of lithan.

5.7.4 Expectation — Maximization for GMMs

In this section the iterative computation of maximlikelihood is discussed when the
observations can be considered as incomplete Satee each iteration of the algorithm consists
of an expectation step followed by a maximizatitepswve call it the EM algorithm[125]. These
two steps are repeated until convergence.

The general idea underlying the EM algorithm igléscribe a value that is missing by a random
variable. The domain of this random variable is $le¢ of values that could be the actual, but
unknown value. As a consequence, the likelihootthefdata set becomes a random variable. This,
of course, makes it impossible to maximize theliliced directly, as it does not have a unique
value anymore. However, since it is a random véijalve can compute its expected value and
choose the parameters in such a way that this &sghgalue is maximized.

In order to apply EM, a standard approach to hatidiee problems consists in assuming that for

each X, there is a discrete unobserved (hiddengatar vectorz, [0{1,...,C}. The indicator vector

specifies the mixture component from which the okmtéon X is drawn[126]. Note that the

combination of observations X and the ‘hidden-stafeconstitute the complete-data[120, 124]
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L(©'|X) =logp(X|©")
=logp(X|©')>  P(Z|X©") (5.33)

=log(} P(Z|X,©" )p(X[e"))
Equation above (5.33) maintains, simply becaEé?(Z | X,©")=1[107]. Considering the

definition of conditional probability, we have

_PEX|9) (5.34)

p(X|©") PZ[X0')

Using eg5.33 in eg5.34 and also Jensen’s Inequality.32) the following results achieved
p(Z,X|9")

L(©']X) =Iog(ZZ: P(Z| X,0" )WX,G‘))

; p(Z,X|e")
> ZZ:{P(Z [X,© )Iog(—P(Z X0 ))} (5.35)

=Y P(ZIX0")logp(Z X0 Y P(Z|X®' )logP(Z| @

It might look that there are two random variableeq (5.33-5.35) but the key issue is that X is

constant and ={6,, 0,,...,8.} is a normal variable that wish to adjust and z is@dom

variable governed by it's the marginal distributi@ | X,8 ) and it is dependent on both observed
data X and current estimate of parameters[127koAlecalling tha[h(z) | X= x]:Zh(z)p(z | X),
therefore, eq (5.35) can be re-written as

E,llogp(z, X|6" )| X8 |- E [logP(z | Xg" )| X"

(5.36)

E,[ ]denotes expectation with respects to z. Thus, denot

Q@16"")=E,[logp(z, X 16" )| XF" (5.37)
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The evaluation of expectation eq(5.37) called tHgté&p. It is important to distinguish between the
first and second argument of the Q functions. Tewsd argumenx, 8" 'is regarded as fixed and
known at every E-Step[128].
The second step of the algorithm is to maximizeetkgected value computed in the first step
O =argmaxQE @)
(€]
=argmaxE [logp(z,X@" ) X0 ]
o
N
=argmax » P(z|X" Z logp(x ,z@ ) (5.38)

° .o j=1

=arg max > {ﬂ Pz [x©™ )ﬁ: logp(x ,z

Z41,..,.CN

In the last step, we need a transformation, whagblaces the complex sum over all possible
vectors of cluster indices by a simple sum over ¢hesters. This transformation justified by

Bilmes [129]. The final result is shown in the tlling equation

@' =arg maxiZN: PO, |x)logp(x ,z§ (5.39)

i=1 j=1

In eq(5.39),P@ | X ) computed by Bayesian rule as

P/2 p( =) &) (Xx—4))
P@ |x)= (2m) |Z|| 2
Z e p(_% (XJ' —H Y & ) ()ﬁ —K)) (5.40)

=1 (271)P’2\/ﬁ

Eq (5.40) illustrates the relative probability bktdifferent clusters at the location of eaciuX
with a given set of cluster parameters[130]. Theibalea behind the EM iterative algorithm is
that we would like to find® in order to maximizdogp(x,z |4 ), however we don't have/know the

data z. So instead, first we can find the expeatatif logp(x,z|g ) with the respect to unknown

data z given the data X and our current estimatéof The whole procedure carried out
explicitly declaring a variable representing thepextation of complete data as a function of the

incomplete data X [131].
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Finding the derivative expressions with respeawery parameter in €g@39)and set them to zero,

we obtain three groups of equations for the mgastandard deviations and mixing probability
P@®). Start with some initial guess{,=,P(®;)), EM iterates the following computations until

convergence to a local maximum of the likelihooddiipn

2. PO %)X
O YPE )
D PG 1%)06 ™) —1™)T
== i=1,..c j=1..n (541

> PE 1%)

PE™)=Y PE' I¥)

Note that the updating of eq(5.38) for each cluatet recursively eq(5.39), perform both the

expectation step and maximization step simultarigous

5.7.5 ldentification with Fuzzy Clustering

The main aim of this research is the developmenarofefficient modelling and identification
scheme. In the system identification, the purpafselustering is to find relationships between
independent system variables, called the regresaars future values of dependent variables,
called the regressands [132]. One should howevep kein mind that, the relations defined by
clustering are just associations among the dat#orsgcand as such do not yet constitute a
prediction model of the given system. To achiewehsamodel, extra steps need to be taken. In the
next chapter, in order to increase the efficienéyclustering algorithm, a clustering based
algorithm is proposed. The main idea of these #lguos is that when the available input-output
data set is clustered in the product space of ¢égeessors and the model output, the obtained

clusters would approximate the regression surfatieeomodel.
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Chapter 6
Fuzzy Wavelet Neural Networks

Neuro-fuzzy systems combine the learning abilityNMis and inference properties of fuzzy
systems. In general, these systems derive fuzeg fubm a given input—output dataset. In Fuzzy
Wavelet Neural Network, the aim is to combine Nekuzzy systems with wavelet functions in
order to increase the performance of Neuro-Fuzziy\&ihN systems significantly. Wavelets are
known to have good modelling properties over a eaofjfrequencies, and for this reason they
have been used as activation functions in Neur@ysystems, yielding fuzzy wavelet neural
networks (FWNNSs).

In the literature, several combination of fuzzy &MbNIN for solving time-series prediction, system
identification and control problems have been regabf133, 134], [135], [136], [137]. The FWNN
proposed in [131] uses summation of dilated andsteded versions of wavelet functions in
consequent part of fuzzy rules for system idergtifan and control purposes. In [132] three types
of FWNN models were developed for prediction arehiification of nonlinear dynamic systems.
Each fuzzy rule is associated by a sub-WNN. Thaltiag network has been used for function
approximation. These models use wavelet functinrtee consequent part of fuzzy rules. In all the
models, translation and dilation parameters of ‘evienctions, weights, and constant terms are
adjusted by fast learning (second order) gradiaset algorithms.

However, models differ at the consequent parthefftizzy rules. In the first model, consequent
parts consist of weighted summation of dilated &mahslated versions of single-dimensional
wavelet functions. In the second model, conseqparit of the rules consist of radial function of
wavelets and a constant term. In the last modelfiptication of single-dimensional wavelet
functions and a constant term form the THEN partuaty rules. In [135], a dynamic recurrent
fuzzy wavelet network is proposed for identifiechtimear dynamic systems. In [136], the inputs

enter into a discrete wavelet transform block, #ah the output of this block is fuzzified and it
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forms the input to a single NN. This model has belen used for system identification and control
problems. In [137], the proposed model combinesrdis wavelet transform with Takagi—
Sugeno—Kang (TSK) fuzzy systems and it consista eét of IF-THEN rules and THEN parts
which are series expansion of wavelets functiords Todel has been also applied to system
modelling. In [79], both sigmoid and wavelet functs are used in the hidden layer of a WNN and
the output of this new WNN is calculated by multiption and summation of these results. Then,
this WNN is used in consequent parts of the IF-THHEMSs in FWNN.

This part of research presents fuzzy wavelet newetliork that integrates wavelet functions with
the TSK fuzzy model. The consequent parts of T tiuzzy IF-THEN rules are represented by
either a constant or a function. As a function, fhafsthe fuzzy and Neuro-Fuzzy models use
linear functions. Here, the consequent part repldeg sequence of sub-WNNs explained in
Chapter 4. FWNN systems can describe the consigeddem by means of combination of sub-
WNNSs constructed at consequence part of eachIrulEWNN, fuzzy rules provide the influence
of each WNN to the output of FWNN. The use of WNMNhwdifferent dilation and translation
values allows capturing different behaviours angeesal features of the nonlinear model under
these fuzzy rules. Sometimes these systems neeel mies for modelling complex nonlinear
processes in order to obtain the desired acculacyeasing the number of the rules leads to
increasing number of neurons in the hidden layerthef wavelet network. To improve the
computational power of the FWNN system, we usetefusy technique to avoid the development

of a large and complicated network.

6.1 Clustering Based -FWNN structure and Constructn

To improve the computational power of the neur@jusystem, we use wavelets in the
consequent part of each rule. In this study wep@se a new structure as in figure 6.1. In
traditional ANFIS, consequent parts of the struetare linear functions and the gradient decent
method is usually used to train the non-linear @dent parameters. However in the proposed
structure instead of a linear function, a novel éan Combination Weight Wavelet Neural
Network (LCW-WNN) recently presented Bymina et. al.J138] has been applied. The MWNN-
LCW model integrated two learning schemes; Weightedst Square (WLS) and Extended
Kalman Filter (EKF). Furthermore a Linear Combinat\Weight has been developed for further

training speed and accuracy.
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Since one cluster in the input-output space coomdp to one potential fuzzy logic rulér
constructing the CB-FWNNhe first step of the structure learning is toedetine the number of
fuzzy sets in the universal of discourse of eaplitivariable[139]. Fuzzy clusters, similar to fuzzy
rules, are well suited for presentation of the Itesy model to the user. Although the traditional
cluster algorithm works on unsupervised dataséis, eixtension in thighapter allows cluster
models to be built based output trajectory and tied directly as fuzzy rules, which are then
optimized. The fuzzy wavelet neural network demidtefigure 6.1 has got a modular structure. In
the first step the whole dataset enters the fistkbfor finding the optimurmumber of clusters.

In this research the number of clusters determinedubtractive clustering based on the training
data as described in previous chapter and remainstant throughout. Once the number of
clusters defined, the layout of the desired CB-FWih be sketched. During the training,
candidate models representing possible statestrtieture, are clustered using the EM technique
described in previous chapter but with some madtifims. The obtained clusters are multivariate
Gaussians each with different size and orientatiom the other. The outputs of the clustering
block are the firing strength multiplied by the sequence part of the structure.

At the consequence side, different scales of wavederonsg ,(mP,nP)assigned for every

dimension of the input. Although the number of elifint scales/translation allocated to each
dimension is fixed, each of inputs can hire différecales/translations. By knowing the optimum
number of clusters, the number of different scaldgch each input dimension going to be
decomposed is then determined. In parallel, onatitecedent side, by knowing the number of
clusters the number of fuzzy rules C and consetuérg number of unknown parameters can be
figured out. In the proposed scheme all the ctimjeprocesses are done in Cartesian product
space of the inputs X and outputs y with P+1 dirmred data. However, the final obtained
clusters are in P dimension with centres in the alonof input data X. With this scheme the
eq(3.26) can be re-formulated as

;= LV (X)W (X)) 9(X,)

= Zyi (XPWi(X)) u Oup (X))
_(Lip)z

= WOV (X ([Jeos@BE e )

(6.1)
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Where the latter in eq(6.1) is obtained by subtititeq(4.52) and eq(4.53) in eq(3.26).
Discussing from nonparametric regression pointiefvythe main goal of parametric regression is

to estimate a function from the knowledge of a tédi number of pointy, =f(x,). In many

applications, the data-points are obtained experially and may even be corrupted with noise.

Considering from standard non-parametric regrespiablem: Let (X,y) be a pair of random

variables with values iX OR", yOR . Assume thaty, =f(x,) +¢ whereg, is independent

N(0,0)normally distributed variable. A function y=f(x) filse regression function of Y on X if
f(x) =Ely| X =x] 6.2)

The regression problem can also be rephrased inptbbabilistic framework, and as the

conditional densityp(Y | X)is also a mixture of Gaussians[140], therefore

y; =F() =Ely; | x]

) [y )dy

:iW@(Xj)Lr)(ifj)l 9p@) = WxP@ 1 )ip O )]

@(x;)is the i'th output, out of C outputs of LCW-WNN ftre j'th input vector g(x;) determines
the contribution of each wavelet to the output ®/NIN. W, (X) is the linear combination
weight multiplying byg(x;) , andP(@ | X )is the probability that the i'th Gaussian componisnt
generated by the input vectd as depicted in eq(5.40). Merging the eq(6.1) ai{6.8) gives us

the final output based on dynamic of the proposedire

e P xP —nP ;(Xin? ’
Y; :ZW'(XJXP(Q |5 )(|:| COS(W(JF e ¢ (6.4)
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6.2 CB-FWNN Antecedent Parameters update

The design of FWNN (figure 6.1) includes determimatof the unknown parameters that are the
parameters of the antecedent and the consequetst glathe fuzzy IF-THEN rules. In the
antecedent parts, the input-output space is divito a set of fuzzy regions, and in the
consequent parts the system behaviour in thosenegs described. As mentioned earlier, recently,
a number of different approaches have been usedefgigning fuzzy IF-THEN rules based on
clustering.

EM could be a sophisticated candidate for trairsind estimate parameters for Fuzzy Multivariate

membership functions~or each incoming pattenx ; rule firing strength can be regarded as the

probability to which the incoming pattern maintaingccording to the corresponding POhe
cluster parameters are estimated by Expectatiorimaation knowing that EM approach avoids
the numerical instabilities encountered in Gradieetent and improved learning convergence,
and the Wavelet Neural Network parameters areddainy Extended Kalman Filter and Weighted
Least Square. If we think of a conditional denéitgction p(V|8)that is governed by the set of
parameters@ could be the meangi and covarianc& of Gaussian densities) and we also have a

data set V=X,y) of size N and P+1 as dimensionality, supposddiyvn from this density.
)?1 Y1

X = _2 , Y= _yz ,V:[Xy]T

For the V data we have a Mixture of Gaussiansttiwatel thep(V | @) as described iaq(5.23)

P(v; 1©)=2 PO )R (¥ B ) y ORP™ (6.9
Where,
1
(v 16)= expt— (V-4 Y &) (y-H"))
j (277)(P+1)/2\/|Ziv| 2 4 Y H (6.6)
Eq(6.5) can be further expanded according to pritityetheorem as follows:
P(v;1©)=2 PO )n ( B Ip(y Ix 8 (6.7
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The input distributionp, (x; |6, )defines the domain of influence of cluster

1 1
! . e - - - _ .X x' 1 _ .x 68
p (% 16) P oy expt— (g —H' ) &5 ) (1) (6.8)
And the output distribution considered as
oy, 1% 8,)= 1 o 61(y, Qx)’ (y, (P(X,»))} 6.9)
[21'[0'y 2 O'y
So, eq(6.7) can be re-written
Lo v w1 10-004)0; ~9%)
p(y 10)= zwmq—ﬁx"‘z H T E T i )x@ et 7 (6.10)

In order to find out the probability of a clustef,which, a data pair is generated we use eq(5.40)

in form of
_PO) o] & 1Y, -9())" % -9(x)
ez ()? PPN ) L )
(P)/2 2
- §c P - xpe1 wye \/ (Y, —( ))yT(y— () =
Py (ZJ-D(P)/(?/) | 2 (- )€ )_l()J(_HX))X\/— expﬁz A DAV LY

By taking the partial derivatives of eq(6.10) widspect to parameters and set it to zero and also

taking into account eq(6.4) the equations for updahe parameters at each step is calculated as
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e Jip(ei|xj,yj) (6.12
) J:l(X,-‘liix)(Xj‘llix)TF’(ei I % y)
o X PO Ix.y)
1 i (V=@ (x ) NT((y; =@ (x; )P (& %,y )
orE N P(8,)

6.3 Estimation of local linear models

A common choice for the cost function to estimatés the squared error. We assume that every
local linear model is assigned with an equal wetghthe error at all times while applying Least

Square method[141]. In our cage in each model is fired by different rule weightased on that,

Weighted Least Square (WLS) is applied to estintagédinear model parameters. The number of
parameters in each linear model is equal to (pHiichvP is the dimension of the input data.
Associated to each cluster, there is one lineareiao the total number of parameter to estimate

in local linear models i<x(p+1) .The least square parameter estimating is accdmeplidy
minimizing the following condition[140]
I= min (= XY, = Xeut2) (6.13)

X, IS the input data matrix extended by a unitary coland they; is an N-by-N matrix having

membership degrees multiplied by the output ofipod layer from wavelet network on its main

diagonal
v 0 - 0 Ip@ v o - 0
e I B (6.14)
o 0 vl | o 0 PG I

To determine an estimate of the Linear Combinatmarameters by least squares (LS)

minimization of J,
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wi = (XT le ext) —lx . Yy ‘ (615)

ext ext

w is a (P+1)— by — 1 vector of coefficients.

Note that the value of N is typically in the hundisge whereas the value of C is typically 5-15.

Thus the conditioning of the matrix! yX .., is generally good and does not pose problems for

the inversion required by eq(6.15).
6.3.1 Extended Kalman Filter

Kalman filter (KF) is widely used in studies of dymic systems, analysis, estimation, prediction,
processing and control. KF is a set of mathematerlations which provide an efficient
computational solution to sequential systems. Tlter fis derived by finding the estimator for a
linear system, subject to additive white Gaussiaisen However, the real system is non-linear;
Linearization using the approximation technique hasn used to handle the non-linear system.
This extension of the nonlinear system is calledERtended Kalman Filter (EKF)[142].

Consider the following discrete-time nonlinear si@stic system:

(6.16)

{ak =f(a,) +W,,
Y, =h(a,)+V,

Where X, and Y, denote the state vector and the measurement \actioe time k, respectively,

f(.) is a non-linear representation and h(.) ioa-hnear observation model. If the nonlinearities
in eq (6.16) are sufficiently smooth, we can expHmm around the state estimate using Taylor

series

f(a,) =f(a,) +Y, x(a, —4,) +H.O.T.
h@,)=h@,)+Hx @, -a,)+HO.T
Yk :%kkl:dkl
oy
:ah(ak,k—l)
aa,

(6.17)

k |(1k =0y k1
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The random variable®V, and V, represent the artificial additive process and measent noises.

They assumed to be independent ( of each otheifg veimd with the following statistic
characteristic[143]

E[W,]=0 E[WijT] = Qk6kj
E[V,] =0 E[VV,1 =R 5, (6.18)
E[WijT] =0

Where E is the expectation operator zﬁ;pis the Kronecker delt€), denotes the covariance
matrix of process noise®, is the covariance matrix of the measurement noi@s.main idea of

EKF is to expand the nonlinear functions f( . ) &fd) at the point of filtered valug® by means
of the Taylor series neglecting higher-order terimseq(6.17). The Extended Kalman Filter

algorithm includes two groups of equations

The prediction equations:
6(k,k—l =f(a,)

(6.19)
Boka= Yk,k—lpk—lY:ll;,k—l-'- O

In the equation above, let us define (ﬁ)yk_l the predicted value of the state vector at time k
based on all information available before timeanstk, andP, , , its associated covariance error

matrix.

The measurement equations:

L, =P H (HRH + R)*

l?kzlil)(—l_LkaPk+Q 76)
Ay =0 g tL&y

€ =Y.~ h(dk,k—l)

L, is the Kalman Gain matrix.
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6.3.2 Estimating Wavelet Neural Network (WNN) paraneters using EKF

In this section we briefly outline how EKF can bpplked to WNN network optimization
illustrated in figure 6.1. Let the Transitions adiations of the feed-forward WNN be the states
of the extended Kalman filter and the final outpfithe network be the measurements of the filter.
Let us suppose that there are C centres for eashndion and the dimensionality of data is P, and
associated (C + 1) linear component output weigdftie. updating of Linear Weights is described
in the previous section so they are excluded frétk Estimation. In order to cast the optimization
problem in a form suitable for Kalman Filtering, et the elements of the Translation and the
elements of the Dilations constitute the state nbalinear systenm, and we let the output of the
WNN network constitute the output of the nonlinegstem to which the Kalman Filter is applied.

o is considered as an array which all WNN parametersarranged in there.

a :[mi m? ..om m; mﬁ o oo rf- rt fﬂ
The actual output at k'th iteration of the optintima algorithm is given as
y=ly, -yl
h@) =9, 9nls (6.21)
h(ék )is the actual output of the WNN network given thé&lM/parameters at the K'th iteration of

the Kalman recursiont, is the partial derivative of the WNN output withspect to the WNN

network parameters at the k'th iteration of therdah recursion. It is denoted as below

H.. .
Hk :{ Dllatlon:| (622)

H Trans

Where
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(6.23)

Hpiaion @Nd H,.are both[CxP]x Nmatrix andH, in eq(6.22) is ari2xCxP]xN. Having theH,

matrix ready, we can now execute recursively th{é.2q)

6.4 TSK CB-FNN

Some approaches for modelling TSK fuzzy rules Heean proposed in the literature and they use
one-dimensional (1-D) (univariate) fuzzy sets, sashriangular or Gaussian ones, and partitioned
multidimensional input spaces by grid Cartesiandpots of these univariate membership
functions. The advantages of this approach aresitnple and transparent representation of the
membership functions and the straightforward apgbn of the model. But, when the model is
obtained by grid-type partitioning of its input spathe number of rules grows exponentially with
the number of input variables, which leads to amegessarily complex model (curse of
dimensionality).

The scheme described earlier can be generalizeall teorts of TSK-FNNs to overcome this

problem. In this way, the number of rules can tgnificantly reduced. Although in the next
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A

evaluation section the implementation of the WNNidure is well-justified in the results’ table,
in this sub-section we briefly mention how it coldd applied to even simple non-wavelet-based

structures.

Wi(X) =y + @)X gt ...+ WpX p

!

n

n

Wy (X) =ty + Wy X 1+ ...+ Wp X p

Layer 2 Layer 3 Layer 4

Fig 6.2—-TSK Clustering-Based Fuzzy Neural Network

Layer 1: The input nodes are located at this layer. Reaoeeded for a P-dimensional dataset.
Layer 2 Gaussian Mixture Models play the role of clustassdiscussed earlier, and the tuning
method is the modified Expectation-Maximization.vwéwer, due to the absence of WNN part, the

output distribution is simplified as

1 expeg(yj -Wi(Xj))Tz(yj -W (X))
2 2 o

y y

p(y; 1%.8)= ) (6.24)

210

As the tuning of the clusters is imposed on prodpeice of input-output, therefore the distribution

of the P+1 dimensional data (including outputgii®n as
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T w1 2y ~WOK)T W)
P [©)= zﬁﬁ_WQWZQHja)Q(HWJEEQﬁZ 2 (6.25)

y

The probability of a cluster of which a datum is\@eated is modified as the output distribution
also takes part in its value.

PR8) oot gy Ty e s et V) U
p@ I%.y)= @ \/—l ‘/R 2 05 (6.26)
7T PEA) , 2y, ~WE))' ¢ W)
e><p€( ) &) W= et )
Sl 2" A
The updating formula for P-dimension cluster paranseare
p(6)= =3 P® Ix.Y)
N < i Y
> X PO 1% .,)
llix - :1N
S PO 1%.y)
IR I M ICHE D
5r = 2 ;
X PE Ix.y)
1iwfwumwm—wummamM)
W P(®) (6.27)

Layer 3: Multiplication of each cluster’s output take gain layer 3. The TSK local linear models
are activated based on the degree of membersliye afatum to their corresponding clusters. The

output of this layer is

@ =YW (6.28)
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Layer 4 : The output of the whole structure comes;/rilﬁ)r the input vectorX ;. y, is computed

by aggregatingp, collected from previous layer

5,3 VW 04) =3 P@ X )W (X) (629

6.4.1 Consequence Parameter Updating

Weighted Least Square (WLS) can be applied to eptls local linear models. The criterion

which should be minimized is as eq 6.13. Despite gtmilarity in cost function the;, matrix

which has the membership degrees on its main d&geudifferent as follow

v, 0 - O] [p®1Ix) 0 - 0
Yi,FNN_ 0 V;z O - 0 p(eizlxz) O
0 0 - v, 0 0 <o pe %) (6.30)

The estimate of the consequent parameters is diyen

w; = (Xlx[Yi,FNNX ) X TextYi,FNl\y ‘ (6.31)

The definition of X’

ext

and y° are the same as e((6.13 - 6.15).

6.5 Case Study — Short Term Load Forecasting in Pow&ystem

Short term electric load (STLF) forecasting is twenerstone of the operation of today’s power
systems. Precise load forecasting helps the daegtility to make unit commitment decisions,
reduce spinning reserve capacity and schedule elev@intenance plan properly. The system
operators use the load forecasting result as a basiff-line network analysis to determine if the
system might be vulnerable. If so, corrective awtighould be prepared, such as load shedding,
power purchases and bringing peaking units on uéh the recent trend of deregulation of

electricity markets, STLF has gained more imporaaied greater challenges[14#] the market
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environment, precise forecasting is the basisaxftdatal energy trade and spot price establishment
for the system to gain the minimum electricity gnasing cost. In the real-time dispatch operation,
forecasting error causes more purchasing elegtiecist or breaking-contract penalty cost to keep
the electricity supply and consumption balance.

In recent years two different paradigms of STLFehamerged, namely those that are based on
statistical analysis and those that are based dedbhiques. The former include such traditional
statistical approaches as linear and nonlineaessgn analysis[145], time series models[146] and
Kalman Filtering models[147]. Most statistical bdsaethods for STLF are linear models that
make certain assumptions about the characteristithe load series. However, the relationship
between the variables that affect load demand ahdilaload demand is complex and nonlinear
making the accuracy of different statistical modsistem dependent. Fahal.[148] described an
implementation of ARIMAX (autoregressive integratadving average with exogenous variables)
models for load forecasting, while Yang and HuaA§]lproposed a fuzzy autoregressive moving
average with exogenous input variables (FARMAX)dae day ahead hourly load forecasting.
Most recently, the scientific community has turriedCl for solving the problem of STLF. CI-
based models are able to learn nonlinear deperegenaiectly from the historical data. These
models can be divided into three subgroups depgmatinthe artificial intelligence paradigm that
they represent, namely neural networks (NN), indgadhe multilayer perceptron (MLP)[150],
radial basis function (RBF)[151] and support vect@achine (SVM)[152], fuzzy systems[153] and
hybrid models[154]. Although the NN-based modekrijpularly the MLP) and the fuzzy systems
have received the most attention in STLF litergtargrowing interest exists for the case of hybrid
schemes. Yang[155] presented an integrated metiaidcombines an increment regression tree
and SVM for STLF. Both increment and non-incremieeé are built according to the historical
data to provide the data space partition and impuable selection. SVM was employed to the
samples of regression tree nodes for further fageassion. The integration of genetic algorithms
(GA) with SVM has found its application also in STtases. A novel GA-based SVM forecasting
model with deterministic annealing clustering haerbpresented by Sun[158he experimental
results demonstrated its superiority over a clasii® network. Amongst the above neural based
forecasting techniques most of them generally @oléssified into two categories in accordance
with techniques they employ. One approach treasldad pattern as a time series signal and
predicts the future load by using the already nosetil techniques. In the second approach the
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load pattern is considered to be heavily depentetit on weather variables and previous load
patterns.

Many attempts by researchers have been made towmgoad-forecasting process in many
worldwide regions. Khaet al[157] used a hybrid of neural network and fuzzy logiddrecast
the load in Czech Republic. They found that hylfwizzy neural network and radial basis function
networks are the best candidates for the analyfsttenload in Czech Republic. An Adaptive
Neuro Fuzzy Inference System (ANFIS) has beersatiliby Yuillet al[158] for the development
of a STLF model for South African power networkg,donsidering temperature and humidity as
the main weather parameters affecting the load.tierostudy by Kodogiannigt al. [159]
discussed the development of improved neural-nétlvesed forecasting models for the power
system of the Greek island of Crete. The perforraamas evaluated through a simulation study,
using metered data provided by the Greek PublicdP@worporation. Their results indicated that
the load-forecasting models developed provided nameurate forecasts than the conventional
methods.

NN models basically use the sigmoid activation fiorc in neurons. However, the sigmoid
function is not orthogonal, and the energy of tlgmsid function is limitless, and this leads to
slow convergence. Wavelet function is a waveforat tias limited duration and an average value
of zero. The integration of the localisation prdjger of wavelets and the learning abilities of NN
shows advantages of Wavelet neural networks (WNWY NN in complex nonlinear system
modelling in terms of learning efficiency and sttue transparencyA STLF model of wavelet-
based networks was proposed in[160] to model tigalyinonlinear, dynamic behaviour of the
system loads and to improve the performance oftibadl NNs. To investigate the performance
of the proposed evolving wavelet-based networksloam forecasting, the practical load and
weather data for the Taiwan power systems were gl

The comparison against an STLF NN version reve#thedsuperiority of WNN forecasting in
terms of more accurate forecasting result and fastning speed. Here, a modular-constructed
forecasting system is proposed, where 24 neurakblwith a single output have to be developed
and trained separately to represent the 24 hoadstd respectively. The outline of the proposed

architecture is illustrated in figure 6.3.
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Fig 6.3- Proposed modular architecture for the STLF mobl

The main objective of the proposed system is thesldpment of sufficiently accurate blocks
representing the individual hourly loads. An asstiomphas been made in the case of black-outs,
which occurred during the whole year. All the zévad values have been removed from both
training and testing sets, and were replaced bymban value of the preceding and subsequent
load value. In this section the results and thissitzs of forecasts obtained from the applicatibn
the developed STLF models on the power systemefdland of Crete presented. Only results
that correspond to hours with the maximum (14:@0tg minimum (02:00h) load consumption are
illustrated.

Case studies for the proposed methods were captiédor a 24-hour load forecasting. The
complete results for the STLF problem, for the Bowith minimum and maximum load
consumption, are illustrated in Table I. Trainingshbeen conducted using power load data for
1994 (365 data points), while testing has beenuatadl using data from the 4 first months of 1995.
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6.5.1 Cluster Analysis for Case Study

Each cluster could be oblique towards the inpus axid the covariance matrix is not necessarily
diagonal; therefore projecting the clusters on e taxis won't give a precise univariate
membership functions. In P-dimensional space eduakter can also be recognized by its

corresponding eigenvectors and eigenvalues.

Fig 6.4-Eigenvectors of a 3-dimension hyper-ellipsoidaktér

Projecting each cluster on to its associated egetovs makes better estimation of decomposed

univariate elements of each cluster. Let us defqtend Rip as the eigenvalues and the unitary

eigenvectors af *, respectively. However, in this case to find tlegree of membership theput

domain transformatioms needed

%, =thX (6.32)

Based on eq (6.32), the univariate Gaussian metmipdtsctions are given by
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1 ()~(ip B I]'ip)z

A (X )=exp(— 6.33
0(Xip) =exp( 2 o ) (6.33)
Where
..,- :k’T X
lj';’ ':’u‘ (6.34)
c).i,p=Bi,p

The eigenvector projection of each cluster afteialde transformation is illustrated in figure 6.5.
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Fig 6.5~ Projection of normalized Multivariate (4-dimesmjalusters on their eigenvectors
6.5.2 CB-FWNN Short Term Load Forecasting Results
An obvious advantage of the proposed modular a@chite is that, since the complete system

consists of 24 neural blocks, each one with a siogkput, training is easier and faster compared
to traditional neural approaches, which treat thipat as a 24x1 vector. After many trials, it has

155



been found that only two previous time load par@nseare necessary for the proposed CB-FWNN
to achieve an acceptable performance, whereasutnéer of cluster/fuzzy rules was determined
with the aid of subtractive clustering to be 10.

Figure 6.6 and 6.7 illustrate the training perfonges on both minimum and maximum power
consumption cases, while Figure 6.8 and 6.9 ititistthe testing performances for both cases.
Table 6.1summarizes the various performance indices

TABLE 6.1 — Performance indices of proposed CB-FWNN for Sfierm Load Forecasting

Statistical index Testing Data sets
14:0C  02:0C
Coefficient of determinatiorR®) 0.981( 0.967:
Root mean square error (RM¢ 2.657: 1.898¢
Mean relative percentage er 1.996¢ 1.282¢

(MRPE) (%)

Mean absolute percentage e 0.860: 0.493¢
(MAPE) (%)
Standard error of prediction (SEP) 1 2.66%  2.001¢

Bias factor By) 0.991: 0.994¢
Accuracy factor Ay) 1.020¢ 1.012¢

This performance was associated also with a fastitg speed, of 280 epochs. The regression
coefficient (R?) is often used as an overall measure of the piedi@ttained. It is common

practice to use this index to compare differentigteal models. It measures the fraction of the

variation about the mean that is explained by aghddhe higher the valudd& R < 1), the better
is the prediction by the model. The CB-FWNN schataeeloped herein was found to yield high

level agreement with experimental observationdHertest data set. The values of the coefficient
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of determination R?), as shown in Table 6.1, indicate a very goodfithe experimental data
from the CB-FWNN based approach.

Training Results for 14:00 h
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Fig 6.6- Training performance for max load
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Fig 6.7 - Training performance for min load

However, R?is a suitable criterion for model comparison on #ssumption that the error is
normally distributed and not dependent on the medime; In fact, the distribution of the error is
not clearly known, so this term must be used wahtion, particularly in non-linear regression
models and hence additional indices must be emgltoremodel comparison.
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RMSE index is calculated between the desired atglibwalues and then averaged across all data
and it can be used as an estimation of the goodwie§s of the models. It can also provide
information about how consistent the model wouldrbéhe long run. The related RMSE values
for the proposed scheme are very low, as showrabiel6.1, indicating the ability of CB-FWNN
to make better prediction on data for which theas wo previous training.

In order to evaluate the goodness of the curreribpeance of the proposed CB-FWNN scheme,
a comparison against the same models that havedmegloyed for the specific datasets has been
carried out. Tables Il and Ill provide a summary tbbse statistical performances. More
specifically, the CB-FWNN scheme has been compagainst an autoregressive linear model
(AR), a multilayer perceptron utilizing an adaptilearning rate (ABP), a spread encoding
multilayer neural network (SE), a window randomivatton weight neural network (WRAWN), a
radial basis function (RBF) network and the proplasethis section CB-FNN.

From these four schemes, only SE and RBF managptbtide a “similar” but inferior to CB-
FWNN performance, however with high training timemgputational cost. Compared to the
proposed CB-FWNN structure, the above mentionedhoustiogies were also criticized by their
large input dimensionalityi.e. 6-8 input variables) for performances shown inlésl6.2 and 6.3.
The alternative also CB-FNN structure performea aksy satisfactory. The MRPE term provides
information on how close forecasts or predictioresta the eventual outcomes. The MRPE is an
index that provides information about the biashef inodel. A value of zero means that there is no
bias in predictions. Positive values indicate uratediction of the power load, i.e. the predicted

values are lower than the observed, and thus tlkeihm ‘fail-safe’.
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TABLE 6.2— Comparison oPerformance Indices for 2hr STLF for various method

Statistical index
Testing Dataset

2hour

CB-FNN AR ABP  SE WRAWN RBF

2h 2h 2h 2h 2h 2h
RMSE 1.9223 5.8020 3.8063 2.0314 4.0633 1.8672
Mean relative percentage 1.3104 3.8630 2.7346 15174 2.7542 1.3512
error
(MRPE)(%)
MAPE (%) 0.4939 0.5715 1.0849 1.0632 0.6675 0.4706
Standard error of prediction 2.0299 5.7642 3.8215 2.0728 4.0916 1.9086
(SEP) (%)
Bias factor By) 1.0048 1.0041 1.0102 1.0105 1.0059 1.0045
Accuracy factor £&)

1.0132 1.0388 1.0275 1.0152 1.0277 1.0136

Negative values indicate over-prediction, i.e. thedel over-estimates power load and thus is

‘fail-dangerous’. CB-FWNN achieved a very good penfance, by scoring 1.9964% and 1.2826%

for 14h and 2h respectively. Comparing with CB-FWNNEe alternative methods cannot match

the same performance especially in the case of Talhles 6.2 and 6.3 provide a good indication

of their performances.
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TABLE 6.3 -Comparison of Performance Indices for 14hr STLF/Emous methods

Statistical index
Testing Data set

14hour

CB- AR 14 ABP 14 SE 14 WRAWN RBF

FNN 14 14 14
Mean relative 2.3183 11.1837 11.9674 3.4001 10.5902 2.7924
percentage error
(MRPE) (%)
MAPE (%) 0.8731 1.3304 6.4261 1.1397 1.3385 0.8927
Standard error of 3.1998 15.0745  14.3387 4.5409 12.8006 3.4007
prediction (SEP) (%)
Bias factor By) 1.0052  0.9993 1.0525 1.0104 1.0033 1.0073
RMSE 3.3069 17.2049 17.6778 4.6194 15.1935 3.6061
Accuracy factor A) 1.0236  1.1173 1.1180 1.0343 1.1071 1.0281

It is clear that the SE network outperformed thePARBhile the RBF network proves its traditional

superiority against MLP-style networks. This stitiss similar to the bias factor; ) introduced

by Ross [92]. Models describing prediction8;() within the range of0.9 -1.05} could be

considered good, in the range {of7 - 0.9}||{1.06- 1.15}are considered acceptable, while for
{<0.7 || >1.15/are considered unacceptable. Bias factor is a plioltive factor that compares

model predictions and is used to determine whetiemodel over- or under-predicts the power

consumption. In this case B value greater than 1 indicates that the model egémates load

and is thus ‘fail-dangerous’, whereas a value tieas1 indicates under-prediction of load and thus

a ‘fail-safe’ model

The B parameters of all models were in an acceptableetamgwever the related parameter for

CB-FWNN was just under the optimal 1.0, providihgg a fail-safe condition.
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SEP index is determined as the relative deviatibthe mean prediction values and it has the
advantage of being independent on the magnitudieeomeasurements [19]. Based on this index,
the CB-FWNN scheme achieved again a very good padoce for both cases. Only for the 2h
case, the RBF network was slightly better thanpifegosed scheme. For the 14h case, although
RBF and SE were superior to ABP and WRAWN modéksy toth fall behind to the CB-FWNN.
The accuracy factor 4; ), is a simple multiplicative factor that indicattee spread of results
about the prediction. A value of one indicates ttmare is perfect agreement between all the
predicted and measured values. Table | shows tbaraxy factor values obtained for the two

testing datasets. The relevant figures fgrindicate again better performances for the CB-FWNN

scheme, which is more evident at the 14h load ddse MAPE term provides information about

the average deviation from the observed value taiscsimilar to the accuracy factoA¢ ). Based

on this index, the average deviation of the prediqgiower load values for the CB-FWNN case
was 0.86% and 0.49% for 14h and 2h load cases.

The results of MAPE were in good agreement with vhkies of the accuracy factorA¢ )
estimated for both data sets. Some differences dagtwhe two indices can be attributed to
different computational methods followed. The aboweparison results reveal the superiority of

the proposed CB-FWNN scheme in terms of modellc@ieacy and training speed. The CB-FNN

performed also satisfactory however its accuracy laer to CB-FWNN.
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Chapter 7
Conclusions and Future Enhancements

Soft computing approaches have been developed @pigt@ to many scientific and engineering
areas in recent years. There have been also maogssful researches for the identification and
modelling of nonlinear dynamic systems by usingiows soft computing techniques with
different computational architecture. In the eatlyges of this research (chapter 3), inspired &y th
method presented by Theochass all in the frame of Neuro-Fuzzy schemes, an adaptive
modelling structure created. The adaptive structwaved and adjusted in an online manner to
reduce as much as possible the network redundandiexsce, since the models are created
automatically and not pre-designed, the difficgltia determining of the architecture of soft
computing models can be avoided to some extamgus growthmodelling, a real food data
analysis problem, was examined in presence of tim@mas; temperature, water activity and pH
and relatively better results based on standaidwserror criteria achieved.

In the literature, an amount of work exploring thgbrid learning algorithms to identify the
structure parameters and also novel structure gélegbased neural networks has been reported.
The well established real world problems reveatedfact that a great deal of further research is
still needed. Throughout main parts of this thesis, have attempted to identify flaws within
existing applications and structures of Waveleebdasariants of neural networks. The first
structure and training algorithm proposed in Chagtapproaches a simple by efficient techniques
applicable to all types of NNs with wavelet familjhe incorporation of Linear Combination
Weights on hidden-output connection links boostsdhtput accuracy and also training speed to a
higher level. In the same scheme, a Hybrid Learditgprithm was implemented to tackle the
main problem associated with the use of GD algorjtie. the problem of low convergence rate.
Based on the first structure, a more advancedtateiof WNNs proposed MWNN-LCW which
appeared to be more modular. The alteration orstthueture makes not only the structure more

interpretable but also leads to much higher acgurac
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Both algorithms were then utilised to process redata provided via ongoing research
collaboration with Agricultural University of AtherGreece relating thysteria Monocytogenes
Bacteria Count prediction. In conjunction with various tgpef WNNs and also other soft
computing techniques, the proposed technique pesdut-performing results according to
accuracy and computational cost.

Despite the excellent performance of the proposeldNg/ research has highlighted some
limitations to the approach. The first was a sigaifit increase in the number of neurons in higher
dimensional data. This yields that, although it vaasimprovement in convergence speed and
accuracy but the network’s tuneable parameters atieatly “grow” with network size which can
be prohibitive due to memory constraints. The sdcaas that still the appropriate number of
neurons for each input was a matter of randomnes®@ trial and error basis.

The methodology proposed in Chapter 6, gearing dodwa long way toward covering
aforementioned drawbacks. A clustering-based FVgproach has been presented. Choosing a
clustering algorithm, itself, can be a challengiagk. Most structures generally assume some
explicit structure in the dataset. However, usualéy have little or no information regarding the
structure, which is, paradoxically, what someona&t&&o uncover. Two clustering methods have
been utilised in serial form, i.e. Subtractive @Gdumg and Mixture Densities with Expectation
Maximization. Initially, the subtractive clusterivgas used as a pre-processing technique to find
out initial set and adequate number of clusters wtichately number of neurons in each sub-
WNN inside wavelet network, an optimum number ofinoes can strongly influence the time
required to obtain a solution and then the GMM-EMswesponsible for forming the multi-
dimensional Gaussians, which later used as mukidsional membership functions. The rationale
behind the choice of former one was its abilitydetect number of clusters without any prior
knowledge of the data and the latter one seleatedalthe platform it can creates for feeding back
the desired-predicted output error into the clilsteprocess and also deriving the membership
degree directly from clusters without the needrofgrting them on the input’s axis. Two learning
algorithms namely, Weighted Least Square and Eegri€alman Filter were incorporated to
adjust the linear and non-linear parameters reispdct

We demonstrated the usefulness and benefits afdtveork by applying it to a real database for
dynamic system modelling. The case study was cbkatehePowerLoad forecasting for Greek
Island of CretePrediction of the maximum load at 14:00 and minimload at 02:00 was set as a
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target. Comprehensive comparison conducted agaorse popular existing methods for both
cases in accordance to several error criteria.

There are several topics that have been left othetcope in the present dissertation which can
be considered as a future work. Future enhancenoértss research’s field can be aligned in
several directions. Points mentioned below, aregosie of the possible extensions can be done as

future work.

Linguistic Data/Patterns : The term Computing With Words (CWW), pioneered lagd&h in the
mid-1990s[161]. In principle, the proposed scheraes only applicable to numerical data (or
linguistic data converted to numerical data) buttfie humans the only fully natural means of
articulation and communication is natural langudgecoming years the use of words in place of
numbers is destined to be in centre of attentidns Ts certain to happen, therefore, maybe we
could develop models, tools, techniques, algorithets., that could operate on natural language
(words) and can serve the same (or similar) purpgstheir numerical counterparts, i.e., maybe
instead of traditional computing with numbers (froreasurements), it would be better to compute
with words (from perceptions). Therefore, we maip s “artificial” interface and try to operate
on what is human-specific: natural language[162].1Berhaps the most direct extension of this

work is by the means modifying the proposed stmgsttio deal with this type of data.

Adaptive structure/parameter learning: Off-line clustering methods - as we did in chapt& 6

- require that data be ready before the modell®igviously, it is difficult for human experts to
examine all the input—output data from a real caxplystem to find a number of proper rules for
the fuzzy system. Hence, an immune way to the abwationed deficiency is online
identification methods appeared in the literaturd aeveral methods proposed [163]. Generally,
these approaches consist of two learning phasessttbcture learning phase and the parameter
learning phase. These two phases are done simoltsiye In terms of structure identification,
there are no rules initially in an online structufbey are created and adapted as on-line learning
proceeds via simultaneous structure and parandgetification. This idea was touched upon at
the end of Chapter 3. However, the goal in thiedasto develop an online clustering method
along with an online WNN structure. Extended Kalnkédlter as a learning algorithm provides us

with a potential platform for online learning hoveewVeighted Least Square should be replaced
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by a recursive variant of it. An adaptive type apEctation Maximization also proposed in [126],

which can be modified accordingly.

Recurrent connections:Most of these problems demand nonlinear adaptiséesys which can
learn from observed data. Recurrent wavelet nexebdliorks with arbitrarily connected neurons
have great potential to meet this demand. Howeliew to train recurrent WNN networks
effectively remains an open problem, which hindeide applications of recurrent networks in the
aforementioned area8s a future step of the work presented in this ©hese could extend the
work to WNN recurrent networks. Our goal is twofolirst, we would like to develop a
framework for fully recurrent networks based on MWHNCW proposed in chapter 4 with
internal and external loops. Related suggestionseaound in [164-166]. Second, we would like
to apply a learning algorithm for training that weent wavelet network so that avoid divergence

occurring over tuning such an autonomous system.

Incremental Learning algorithm: The learning algorithm should be able to supplyay what
enables clustering part and consequence WNN paddommodate new data, including examples
that correspond to previously unseen dataset. dns)eghe learning algorithm should be in such a
way that does not require access to previously dséa during subsequent incremental learning
sessions, while at the same time, preserving tlwsvlatge learnt by the network on previous
learning[167]. There may even be further improveisiém be imposed, i.e. agents should not only
acquire new knowledge but also modify or delete loldwledge. However, these modification
and deletion are not always efficient in learnihgnce embedding this type algorithm could be a
challenge. Incremental learning has been addréssedew numbers of published papers and on
very primitive structural platforms [168, 169]. Eaquling these types of algorithms over hybrid

methods is one that would certainly merit furthereistigations.
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Appendix |

Statistical Error Criteria

Coefficient of Determination (R2): The coefficient of determination indicates how mudtthe
total variation in the dependent variable can bepacted for by the model. It is computed as a
value between 0 (0 percent) and 1 (100 percen®.higher the value, the better the fit.

Z(OUtpuL}stimated_ OUtpu'ﬂesirecﬁ

Coefficient of Determination(®3 + —
Z(OUtpuhesired_ OUtputjesiredzj

Root Mean Square Error (RMSE): Expressing the formula in words, the differencenaen
forecast and corresponding observed values aresep@red and then averaged over the sample.
Finally, the square root of the average is takdnceSthe errors are squared before they are
averaged, the RMSE gives a relatively high weighatge errors.

N

Z(OUtputestimated_ OUtpupjesired%
Root Mean Square Error(RMSE)12

N

Mean Absolute Percentage Error (MAPE) (%): The MAPE measures the average magnitude of

the errors in a set of forecasts, without considgtheir direction, in percentage

00 <
Mean Absolute Percentage Error(MAI N XZ| Outpifae™  OUtRULL
El

Standard Error of Prediction (SEP) (%): The standard error of prediction is the standard

deviation of the prediction errors. It is compuliéd any other standard deviation - the square root

of the error sum of squares divided by the numbsamples
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N

Z (OUtpuLstimated_ OUtpUtdeSire(j
Standard Error Of Prediction(SER) 190 = N

Mean Relative Percentage Error (MRPE)(%) :Mean Relative Error is a number that compares
how incorrect a quantity is from a number considecebe true. Unlike absolute error, where the
error has the units of what is being measurediivelarror is expressed as a percentage, defined

as the absolute error divided by the true value

N
Output..: — Output,,.;
Mean Absolute Percentage Error(MRﬁé@xz| PUkstinated PUeside
N i=1 OUtputjesired

Bias factor (Bf): The simplest relative measure is a ratio of therélésand estimated output. The
ratio alone, however, may be misleading becauseeXample, a ‘factor of 10’ over-prediction
(predicted/observed=10) will have more weight than‘factor of 10’ under-prediction of
generation time (predicted/observed = 0.1). Thins,logarithm of the ratio was chosen so that
over- and under-prediction were given equal weightletermining the average deviation. The
antilogarithm of this value (average relative d&ei@ may be interpreted as the average ratio of

the predicted and observed values.

. g:log(cfn:tww)m)
Bias Factor= 1 UtPUbimateq

Accuracy factor (Af): In order thatunder- and over-prediction not to ‘cancel out’ eather
(because the logarithm of the ratios will have @dgo signs) and consequently have some
indication of the average accuracy of estimatebe dverage of the absolute values of the
logarithm of the ratio was calculated in Accuragcter. The antilogarithm of this value will
always be greater than or equal to one

( ‘bg%umdj,m
Accuracy Factor 18: OUtPUEsimate
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