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Abstract 
 

The enormous number of complex systems results in the necessity of high-level and cost-efficient 

modelling structures for the operators and system designers. Model-based approaches offer a very 

challenging way to integrate a priori knowledge into the procedure. Soft computing based models 

in particular, can successfully be applied in cases of highly nonlinear problems. A further reason 

for dealing with so called soft computational model based techniques is that in real-world cases, 

many times only partial, uncertain and/or inaccurate data is available.  

Wavelet-Based soft computing techniques are considered, as one of the latest trends in system 

identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based 

approaches to model the non-linear dynamical systems in real world problems in conjunction with 

possible twists and novelties aiming for more accurate and less complex modelling structure.   

Initially, an on-line structure and parameter design has been considered in an adaptive Neuro-

Fuzzy (NF) scheme.  The problem of redundant membership functions and consequently fuzzy 

rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus 

(Monascus ruber van Tieghem) is examined against several other approaches for further 

justification of the proposed methodology. 

By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have 

been introduced. Increasing the accuracy and decreasing the computational cost are both the 

primary targets of proposed novelties. Modifying the synoptic weights by replacing them with 

Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) 

comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for 

the above challenges. These two models differ from the point of view of structure while they share 

the same HLA scheme. The second approach contains an additional Multiplication layer, plus its 

hidden layer contains several sub-WNNs for each input dimension. The practical superiority of 

these extensions is demonstrated by simulation and experimental results on real non-linear 

dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) 

whole milk, and consolidated with comprehensive comparison with other suggested schemes.   

At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is  

presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network 

(FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a 

modified Expectation-Maximization (EM) algorithm.  One of the main aims of this thesis is to 
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illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from 

the data by building accurate regression, but also for the identification of complex systems. 

The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the 

consequent parts of rules. In order to improve the function approximation accuracy and general 

capability of the FWNN system, an efficient hybrid learning approach is used to adjust the 

parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is 

employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which 

is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world 

application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the 

above technique.  
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Chapter 1  

Introduction 
 
            
 
 
1.1 Understanding of Soft Computing and Intelligent Systems 
 
 

When we interact with a system, we need some concept of how its variables relate to each other, 

with a broad definition such an assumed relationship called model of the system. Model is 

normally known as simplified representation of a system, in time or space intended to promote 

understanding of the real system. On the list of data analysis tasks frequently occurring in 

applications, modelling occupies very high, if not the highest rank. As a consequence a large 

variety of methods to tackle these tasks have been developed ranging from different sorts of 

mathematical modelling to more advanced soft computing techniques. Among all these methods, 

soft computing approaches draw intense interest in data analysis. This interest is mainly due to 

extremely rapid growth of complex plants/systems which has rendered mathematical modelling 

virtually impossible. When attempting to solve real-world problems, we realize that there are 

typically ill-defined systems to analyze and difficult to model. In these cases, precise models are 

impractical, too expensive, or non-existent. Furthermore, the relevant available information are 

mainly in form of empirical prior knowledge and input-output data representing instances of the 

systems’ behaviour. Therefore, we need an approximate reasoning system capable of handling 

such imperfect information. Soft Computing techniques originated from emulating intelligent 

phenomenon in nature, their main scope is on the study of adaptive mechanism to enable or 

facilitate intelligent behaviour in complex and changing environment. It includes paradigms like 

neural networks, evolutionary computation, swarm intelligence, fuzzy system and so forth. 
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Traditional quantitative models in modelling have two main disadvantages. First, conventional 

mathematical and statistical models usually require complicated formulae, and hence they may be 

considered as “grey-box” type models for their users even if they are familiar with advanced 

mathematics. Since these models require advanced mathematical skills and notations, they are 

often laborious with respect to calculations and computations. Second, models based on bivalent 

logic already seem outdated because they often yield excessively coarse or otherwise problematic 

outcomes (even paradoxes). Hence, the research community requires the development of more 

user-friendly and powerful theories and models. These difficulties lead to a number of challenging 

problems, i.e., “incorporate” the human intelligence into a machine, because there is a huge gap 

between the human intelligence and the machine intelligence. In order to cope with the difficulties 

mentioned above, an emerging framework - soft computing - has been developed recently, which 

has the following properties: 

• Soft computing is pointed towards the analysis and design of intelligent systems. It 

consists of fuzzy logic, artificial neural networks and probabilistic reasoning including 

evolutionary algorithms, and parts of machine learning and has the attributes of 

approximation. 

• Soft computing is aiming at a formalisation of the human ability to make rational decision 

in uncertain and imprecise environment; 

• The constituents of soft computing are complementary rather than competitive. The 

experiments gained over the past decade have indicated that it can be more effective to use 

them in a hybrid manner, rather than solely; 

• Soft computing is an open framework. This means its framework can always be 

incremented by newly created techniques come from the imitating of the human/natural. 

Applications of hybrid soft computing systems are currently used in such diverse industrial and 

commercial fields. In these areas, some combinations of hybrid soft computing systems, such as 

fuzzy logic controller tuned by neural networks and evolutionary computing, neural network tuned 

by evolutionary computing or fuzzy logic system, and evolutionary computing tuned by fuzzy 

logic systems have been considered. Applications in diagnostic systems, control, and prediction 

were received greater attention in past years.  
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1.2 Rationale of present research 

 
Modelling and identification of nonlinear dynamic systems is a chanllenging task because 

nonlinear processes are unique in the sense that they do not share many properties. A major goal 

for any nonlinear system modelling and identification scheme is universalness: that is the 

capability of decribing a wide class of structurally different systems. In this context, a great effort 

is being made within the area of system identification, towards the development of nonlinear 

models of real processes. In addition to more classical identification methods such as NARMAX 

modelling, a new set of methods has been developed recently which apply artificial neural 

networks and fuzzy systems to the tasks of identification of dynamic systems. These works are 

supported by two of the most important capabilities of neural networks, i.e. their ability to learn 

(based on the optimization of an appropriate error function) and their good performance for the 

approximation of nonlinear functions, as well as the main characteristic of fuzz systems, i.e. fuzzy 

rules / defuzzification schemes. Fuzzy systems accept numeric inputs and convert theses into 

linguistic values (represented by fuzzy numbers) that can be manipulated with linguistic IF-THEN 

rules and with fuzzy logic operations, such as fuzzy implication and composition rules of inference. 

However, at present there is no systematic procedure for the design of a fuzzy system. Usually the 

fuzzy rules are generated by converting human operators’ experience into fuzzy linguistic form 

directly and by summarizing the system behaviour (sampled input-output pairs) of the operators. 

But designers find it difficult to obtain adequate fuzzy rules and membership functions because 

these are most likely to be influenced by the intuitiveness of the operators and the designers. 

Neural network models basically use the sigmoid activation function in neurons. However, the 

sigmoid function normally appeared in neural networks is not orthogonal, and the energy of the 

sigmoid function is limitless, and this leads to slow convergence. Wavelet function is a waveform 

that has limited duration and an average value of zero. The integration of the localisation 

properties of wavelets and the learning abilities of neural networks shows advantages of wavelet 

neural networks over neural networks in complex nonlinear system modelling in terms of learning 

efficiency and structure transparency. 

Neurofuzzy hybrid modelling approaches have been introduced as an ideal technique for utilising 

such knowledge and empirical data. Based on the similarities between fuzzy systems and some 

neural networks, neurofuzzy approaches combine the desired attributes of both the fuzzy and the 

neural paradigms hence producing flexible models which can learn from empirical data and can be 
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represented linguistically by fuzzy rules. For modelling of dynamic processes, neurofuzzy systems 

incorporating a Takagi-Sugeno-Kang (TSK) scheme possess a very good interpretation, which is 

superior to most, if not all, alternative defuzzification approaches. However, in the case of 

modelling of complex nonlinear processes, TSK-type fuzzy systems may require a high number of 

rules in order to achieve the desired accuracy. Increasing the number of the rules leads to an 

increase in the number of parameters needed to be calculated. 

This thesis investigates the ability of wavelet-based soft computing approaches to learn how to 

identify adequately complex nonlinear systems. A hybrid soft computing framework has been 

constructed and applied to the identification of nonlinear dynamic modelling. The major 

motivation for this research is that current hybrid implementations of soft computing techniques 

suffer from the lack of efficient constructive methods, both in determining the parameters and in 

choosing network structure. To remedy the weakness of traditional computational intelligent 

systems, in this thesis some novel wavelet-based methods have been proposed in order to improve 

the performance of existing modelling schemes.    

Encouraged by the potential strengths of the idea of combining both wavelet decompositions and 

the feed-forward neural networks, a Wavelet Neural network scheme has been proposed [1]. 

Inspired by theory of multi-resolution analysis(MRA) of wavelet transforms and fuzzy concepts, 

the Fuzzy Wavelet Networks(FWNNs) concept was introduced in [2]. The combination of fuzzy 

logic and WNNs in FWNNs not only reserves the multi-resolution capability of WNNs, but also 

enjoy the advantages of high approximation accuracy and good generalization performance. 

However, existing WNN/FWNN methods for dynamic system identification suffer from i) lack of 

an efficient constructive model, ii) slow convergence rate when high dimensional data exist, iii) 

low identification accuracy when imprecision in the measured data exists and iv) the need to find 

the model structure by trial and error, a problem that is has been addressed with the proposed in 

this thesis novel FWNN concept. 

In this research, through innovative applications and adroit integration of emerging information 

technologies, a signal processing method (wavelets), and two soft computing methods (fuzzy logic 

and neural network), novel WNNs and Fuzzy Wavelet Neural network models have been 

developed for modelling and identification purposes.   

A step-by-step constructive approach has been adopted in the presentation of the developed 

methodologies. Initially, a study on one popular neurofuzzy system scheme has been performed in 

order to investigate its strength over alternative non-hybrid schemes as well as its major 
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weaknesses. The specific neurofuzzy scheme was adopted due to its TSK defuzzification scheme 

which has influenced the design of the proposed in this thesis FWNN. This neurofuzzy scheme 

was evaluated using real food data, acquired from Agricultural University of Athens. The specific 

experiment was performed in order to verify scheme’s performance to the static identification of a 

nonlinear process. Nevertheless, as the main focus of this thesis is the modelling of dynamic rather 

static nonlinear processes, in the next stage, two novel wavelet neural networks have been 

developed. Their design has been influenced by the classic TSK neurofuzzy systems. The static 

weights scheme appeared in classic wavelet neural networks, have been replaced here by a linear 

TSK-combination weight scheme. 

The efficiency of the new WNN structures has been evaluated through the dynamic identification 

of a complex nonlinear case study related to food analysis and acquired from Agricultural 

University of Athens. 

Emphasis in this particular case study has been given to the performance (accuracy / training speed) 

of the developed WNN schemes, through the comparison against existing regression and 

intelligent methodologies. The challenge with the specific dataset was the rather limited number of 

samples/patterns and thus methods how to handle small number of samples with dynamic 

behaviour had to be developed. 

The ultimate goal of this thesis is the development of a prototype FWNN. However in order to 

develop such efficient and novel scheme, a number of sub-components related to FWNN had to be 

developed. The developed WNNs have replaced the classic linear TSK defuzzification part. 

However, in a hybrid fuzzy-based system, accuracy is not the only issue of consideration. The 

computational cost, associated with the number of fuzzy rules, is of equally importance.  It is well 

known that efficient performance in hybrid systems is closely related to the number of 

samples/patterns. But in traditional hybrid schemes, this results in to an increased number of 

required fuzzy rules and subsequently to a large number if parameters to be calculated. In this 

thesis a new type of clustering technique has been introduced as an essential part of the proposed 

FWNN. The proposed FWNN concept has been evaluated with a large dataset related to load 

forecasting of the power system of the island of Crete, Greece. The embedded in the FWNN 

clustering sub-systems managed to provide accurate predictions, and such result was also 

associated with an efficient relatively small structure (i.e. fuzzy rules).  

In general wavelet-based hybrid methods and their applications are comparatively new and 

research is being carried out continuously in many universities and research institutions worldwide. 
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1.3   Outline of the Thesis 

 
The thesis is organised into seven chapters. Following this introductory chapter the next chapter, 

Chapter 2, gives an overview of modelling focusing on some traditional linear systems and 

fundamental concept of some of classic techniques mentioned above. It also introduces the various 

types of hybrid architectures highlighting some of their weaknesses and advantages, followed by 

explaining the necessity of such merging. This chapter finalised by explaining the problems this 

thesis trying to tackle and the criteria going to be considered when proposing new schemes in 

following chapters.  

Chapter 3 delves further beyond and presents detailed discussions and mathematical formulation 

of some selected computational intelligence architectures. It starts with dynamics of neural 

networks and its training algorithms and analysing some other variants of it according to 

connections layout and activation functions. Fuzzy systems and its concept, together with three 

hybrid neuro-fuzzy structures are the other main topics outlined in this chapter. Finally, a Neuro-

Fuzzy scheme equipped with adaptive structure learning was developed, and tested on a Food 

Microbiology dataset.  

Chapter 4 attempts to give a detailed introduction of wavelet transform. This chapter then 

addressed some existing WNNs through some literature review. Two proposed new WNN 

structures with a hybrid learning scheme are then proposed. Each of proposed schemes have been 

examined with a real dynamic biological system. We then provide comprehensive result analysis, 

and performances evaluated against many other techniques.  

Chapter 5 is a background introductory chapter to the concept of clustering and mainly focuses on 

various fuzzy clustering techniques with objective function and its applications. This chapter   

reviews the potential of clustering algorithms to reveal the underlying structures, not only for 

classification and pattern recognition, but also for the reduction of complexity in modelling and 

optimization. More specifically, the Expectation-Maximization (EM) and Gaussian Mixture 

Models (GMM) as a probabilistic framework discussed in this chapter. The latter will be utilised in 

the following chapter. This chapter’s aims focus on providing sufficient background theory to be 

able to study and develop a novel scheme in the following chapter.  

Chapter 6 elaborates on the fusion of the two former chapters in order to determine the most 

extensive of this research. A novel clustering-based FWNN suggested and explained. The flows of 

the signal from input to output and the dynamics of the structure are elaborated. The EM clustering 
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method and two training algorithms, i.e. Extended Kalman Filter and Weighted Least Square 

which are used in conjunction with each other to adjust non-linear and linear parameters of the 

networks, are deployed. The mentioned section which is the core part of the research, applied to a 

dynamic application known as Short Term Load Forecasting (STLF).  

Chapter 7 draws conclusions and possible directions for future work.  Four recommended 

enhancements, which were out of the scope of this project, are presented here.  

 

1.4 Contributions of thesis 

 
Over the period of this research project, certain contributions to the field of hybrid soft computing 

techniques have been offered, by exploring a number of modifications and innovations. They are 

mainly around the wavelet-based neural networks and Fuzzy -neural networks. This area is 

relatively new and has growing importance. Below is a list of these innovations. A full description 

of each point can be found latter in this document. 

 

1. Initially, the general practicability of conventional Neuro-Fuzzy modelling has been 

enhanced by applying an Adaptive Neuro Fuzzy structure into a Biological application. 

2. Wavelet Neural Network conventional structure was reviewed and revised. Two 

distinguished new fully tuneable schemes of WNNs were introduced. They are 

different in number of layers, activation function and mainly the connection 

configuration between the layers. They have levels of novelty both in the structure and 

in the learning algorithm.  

• Local Linear Combination weights applied in conjunction with a hybrid 

learning algorithm.  

• One-Step-Ahead prediction of Lysteria Monocytogene Bactria Survival curves 

The new structures contributed significantly to both accuracy and computational cost 

when facing a real world dataset.  

3. A novel FWNN scheme proposed and functionality approved through comprehensive 

comparisons on a real world dynamic dataset, and several error criteria. The novel 
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FWNN scheme is considered as an evolutionary version of previously proposed 

FWNN and addressed several drawbacks existing in hybrid methods.  

• Clustering for the first time embedded into a wavelet-based structure. 

Significant reduction in fuzzy rule and overcoming with problems occur as the 

result of increasing number of features and dimensions (curse of 

dimensionality) are the main outcomes. The clustering conducted in input-

output space. 

• New hybrid of learning method i.e. Extended Kalman Filter together with 

Weighted Least Square, alleviate the convergence speed.  

• Also a modified version of Expectation-Maximization responsible for 

partitioning the data as well as finding the cluster parameters. The modified 

version enabled with a feedback link from output error into the clustering 

process. 

• Probabilistic interpretation of fuzzy clusters (Gaussian Mixture Model) which 

assists in extracting the fuzzy membership without projecting them onto the 

input axis. 

4. Automated number of clusters and initialisation of cluster parameters. This performed 

via Subtractive Clustering. 
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Chapter 2 

State-of-the-Art in System Identification 
 

How to better understand and replicate the real world around us is a long-established issue. Models 

of the real world have provided a vital means of creating a link between theory and proof. In 

information processing, the objective is generally to gain an understanding of the phenomena 

involved, and to evaluate relevant parameters quantitatively. This is usually accomplished trough 

‘modelling’ or ‘identification’ of the system, either experimentally or analytically. 

System modelling is a technique to express, visualise, analyse and transform the architecture of a 

system.  In loose terms, a system is an object in which variables of different kinds interact and 

produce observable signals. The observable signals that are of interest to us are usually called 

outputs.  The system can be affected by external stimuli as well. External signals that can be 

manipulated by the observer are called the inputs. The activities and tasks that turn the inputs into 

products and services are called Processes. 

A system may consist of software components, hardware components, or both and also the 

connections between these components. In this sense a system model is then considered as a 

skeletal model of the system. System modelling uses three elements: inputs, processes, and 

outcomes.  

 

2.1   Mathematical Modelling 

 
In mathematical modelling, we translate those behaviours into the language of mathematics. This 

has many advantages; 

1. Mathematics is a very precise language. This helps us to formulate ideas and identify underlying 

    assumptions. 

2. Mathematics is a concise language, with well-defined rules for manipulations. 

3. All the results that mathematicians have proved over hundreds of years are at our disposal. 

4. Computers can be used to perform numerical calculations. 
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The primary concern of a system modeller is to obtain a mathematical representation of system’s 

behaviour under study in terms of physically significant variables. Any system modelling consists 

of two steps, model design and performance evaluation. There is a large element of compromise in 

mathematical modelling. The majority of interacting systems in the real world are far too 

complicated to model in their entirety. Hence the first level of compromise is to identify the most 

important parts of the system. These will be included in the model, the rest will be excluded. The 

second level of compromise concerns the amount of mathematical manipulation which is 

worthwhile. Although mathematics has the potential to prove general results, these results depend 

critically on the form of equations used. Small changes in the structure of equations may require 

enormous changes in the mathematical methods. Using computers to handle the model equations 

may never lead to elegant results, but it is much more robust against alterations. Mathematical 

models in terms of their nature can be in various ways: 

 
Dynamic vs. Static Models: Dynamic systems may be complex industrial plants where the dynamic 

relationship between the inputs and the plant behaviour must be modelled. The inputs to the 

dynamic system often represent the system state at a previous time step and the mapping is 

between the current system state and the one at the next time step. The output from such a system 

is often a continuous value or series of values which may vary independently unlike the 

classification systems where they are normally linked. Applications of this type include attempts to 

identify the underlying processes in financial assets, engineering and control applications, food 

microbiology and load forecasting.  In contrast to the dynamic systems that are described by 

differential or difference equations, the static systems are described by algebraic equations. 

Typical examples of identification of static system include problems where input variables are not 

time-dependent or pattern recognition problems.   

 

Linear vs. Nonlinear Models : Dynamic system models are either linear or nonlinear. A linear 

model obeys the principle of superposition and homogeneity[3]. The following equations are true 

for linear models. 
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Where x1 and x2 are the system inputs, y1 and y2 are the system outputs, and  ‘a’  is a constant. 

Conversely, nonlinear models do not obey the principles of superposition or homogeneity. Many 

real-world systems are nonlinear, though we can many times linearize them to simplify a design or 

analysis procedure. Linear modelling techniques are capable of modelling nonlinear processes if 

the nonlinear characteristics are weak. Their strengths come from the fact that they contain a small 

number of parameters and so long, there are few noisy measurements they perform adequately. 

This means that often it is possible to calculate a linear model for a data set that is too sparse for 

more complex nonlinear models. A linear model is simply a weighted sum of a set of inputs that 

describe a hyper-plane across the input space. The parameters can be estimated simply using a 

least squares technique, with online optimisation realized using a recursive least squares technique. 

Generally linear models can be divided into parametric and non-parametric models.  

• Parametric models assume that the process can be modelled with a finite number of 

parameters. These parameters often have a direct relationship to the physical qualities of 

the process. Examples of these types of models can be found in differential equation 

models. Linear regression techniques can be used to identify the parameter. These models 

in turn may be used for the approximation of non-parametric techniques where the number 

of parameters has been reduced to a finite number.  

• Non-parametric models often require an infinite number of parameters to describe the 

process exactly. They are used when less structure is to be imposed on the model. 

Although in theory these methods have no fixed parameters, in the end they require a 

finite number of parameters to be imposed during implementation.  

This section is concerned with parametric models based around the time domain, as these are the 

methods most commonly used in process and control engineering.  

The general linear model structure process is presumed to consist of a series of inputs u(t) and an 

output process y(t).  If the system is purely deterministic, i.e. the noise process is negligible, then 

the system output y(t) can be computed by passing a set of input parameters or a state vector 
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through a linear filter called the Input Transfer Function. Variable q here denotes the forward shift 

operator. A stochastic white noise model can be added to this by filtering the white noise process, 

v(k), through a second linear filter called the Noise Transfer Function. Each of these can be 

assumed to possess a numerator and a denominator, often with an assumed shared denominator 

factor. As a result the general linear model can be given by [4]. 

 

                                          ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )B q C q
y k u k v k

F q A q D q A q
= +                                (2.2) 

 

Not all of the numerators and denominators in the general linear model are used in each modelling 

scheme. For some applications the input variables are unknown or too numerous to identify 

properly. In these applications such as these the stochastic series represented by the previous 

system outputs are generally used. In terms of the general linear model this leads to the u(k) term 

being discarded. The presence or absence of the terms numerators and denominators of the v(k)  

and u(k)  parts of eq (2.2) further classifies these systems. The simplest form of these is the 

stochastic model with just the denominator D(q) present. These are called autoregressive (AR) 

models as shown below.  

 

Fig 2.1- AR Model  

So the transfer equation is as follows. 

                                               ( ) ( ) ( )1
y k v k

D q
=                                                                      (2.3) 

The parameters can be calculated using a simple Least Squares (LS) technique making them easy 

to identify. However they are capable of modelling only series with AR characteristics. They also 

suffer from model order selection problems when the data sets are too small. This leads to the 

model containing spurious peaks [5].  

When just the numerator is present then it is called a moving average (MA) model. These are 

generally far less applied in engineering applications as the parameter identification process is 
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nonlinear. Again there are real problems with finding the minimum order for the MA model and 

although solutions have been proposed they are often computationally intensive requiring 

frequency analysis [6].  

 

Fig 2.2- MA Model 

So the transfer equation corresponding with figure 2.2 is  

 ( ) ( ) ( )y k C q v k=   (2.4) 

As can be seen the noise parameters at each stage must be estimated. This leads to the need for 

another model to estimate the parameters. Joining both these schemes together give the 

autoregressive moving average (ARMA) model.  

 

Fig 2.3- ARMA Model 

Here, the transfer equation is as follows: 

 ( ) ( )
( ) ( )C q

y k v k
D q

=   (2.5) 

This resolves the problem of needing to estimate the v(k) parameters in the MA model. A two-

stage optimisation can be used. First the AR parameters are estimated as normal using technique 

such as LS. The resulting AR model is then used to provide v values for each reading and a simple 

linear optimisation technique can then be used for the MA model. There are a number of other 

optimisation techniques can be used to identify the parameters to the ARMA such as correlation 

based techniques and maximum likelihood (ML) method. These integrated techniques are capable 

of modelling both AR and MA series as well as ones which integrate both types of patterns [7].  

 

Adding in extra inputs or exogenous inputs may extend all of these methods. These turn the purely 

stochastic models described here into stochastic-deterministic hybrids. The inclusion of exogenous 
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inputs to an AR model is called an autoregressive model with eXogenous inputs or ARX model. It 

retains the output feedback of the AR model but adds to this a number of parameters that are 

known to affect the system state.  

 

Fig 2.4- ARX Model 

So the transfer equation is as follows. 

 ( ) ( )
( ) ( ) ( ) ( )B q 1

y k u k v k
A q A q

= +   (2.6) 

The ARX model is widely used because the parameters can be computed simply with linear 

techniques such as LS. The technique runs into difficulty when it is modelling data that deviate 

systematically from the mean. Also the assumption that the system is capable of being modelled in 

a purely deterministic fashion is also often inaccurate. The inclusion of a more complete stochastic 

noise model leads to the ARMAX model. This model assumes that there is a shared denominator 

for the noise transfer function and the input transfer function.  

 

Fig 2.5- ARMAX Model 

 

So the transfer equation is as follows. 

 ( ) ( )
( ) ( ) ( )

( ) ( )B q C q
y k u k v k

A q A q
= +   (2.7) 
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Each of the previous models incorporates different parts of the general linear model. For all of 

these linear techniques with exogenous inputs model order selection can be a problem often 

requiring a heuristic approach.  For a full implementation of it the Box-Jenkins model may be used. 

              

Fig 2.6- Box-Jenkins Model 

So the transfer equation is as follows. 

 ( ) ( )
( ) ( ) ( )

( ) ( )B q C q
y k u k v k

F q D q
= +   (2.8) 

This model does suffer from the fact that it has a large number of parameters that must be 

estimated. If the data is sparse or noisy then this becomes difficult and is highly unlikely to yield a 

valid model. The parameter estimation process is also inherently nonlinear and is usually tackled 

by estimating an ARX model and then using this to estimate the parameters for the MA part [8].  

There are nonlinear extensions of the ARMAX and ARX models called, unsurprisingly Nonlinear 

ARMAX (NARMAX) and Nonlinear ARX (NARX). Here the simple linear function used in 

ARMA and ARMAX is replaced with a nonlinear mapping function. Often it is the NARX form 

that is most generally applicable to the widest range of nonlinear dynamic systems. In practice the 

form of the nonlinearity is unknown and as a result all forms of the polynomial must be 

considered. This generally means that a prohibitively large number of coefficients must be 

evaluated [9].  

In general,there are several limitations on modelling based on mathematical analysis. First, it 

always relies on the accuracy of the mathematical model, which is never a prefect representation 

of the plant. And second, there is a need for the development of analysis techniques for even more 

sophisticated non-linear systems. 

 

+ 
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2.2  Soft Computing Techniques 

 

Following our overview of conventional mathematical modelling, problems exist in traditional 

techniques. We can easily conclude that the currently ongoing complicated plants cannot be 

accurately described by traditional rigorous mathematical models. Especially non-linear dynamic 

systems can exhibit extremely complex dynamic behaviour. As discussed earlier, the traditional 

approaches for predicting the behaviour of such systems based on analytical conventional 

techniques in many cases can prove to be insufficient. In addition, there is need for the 

development of highly precise models and autonomous behaviour in system identification, control, 

and artificial life communities. However in real applications, precision has a cost 

(computational/financial), therefore in order to solve the problem with an acceptable cost, we need 

to aim at a decision with only the necessary degree of precision and not exceeding the 

requirements. These deficiencies lead to a fundamental remedy, which is the core part of soft 

computing concept i.e. embedding the human intelligence into a machine. So, it is of great 

importance to change the direction toward intelligent computational tools that will enable the 

identification of the best model by a series of input-output pairs.  

Soft Computing(SC) techniques refers to a collection of computational tools which have their 

origins in biological or behavioural phenomena related to humans. Unlike traditional Hard 

computing techniques, SC can tolerate imprecision, uncertainty and partial truth without loss of 

performance and effectiveness. The term SC in its broadest sense, encompasses a number of 

technologies that include, but not limited to, evolutionary computation (EC) realizes intelligence 

through the simulated evolution artificial neural networks (ANNs) realize intelligence through the 

simulated behaviour of neurons in brain, fuzzy logic (FL) realizes intelligence through the 

simulated behaviour of human reasoning process[10].  

 It was at the beginning of 1990s when researchers realised that the Hybrid use of the 

methodologies mentioned, would lead to tools that were certainly more powerful than if the 

techniques were employed individually. Combination of soft computing techniques is considered 

to be the new frontier of Artificial Intelligence.   
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                               Fig 2.7 – Some of possible hybrid Soft Computing techniques 

 

The modern techniques of artificial soft computing have found applications in almost all the fields, 

however the great emphasis is given to engineering area[11]. 

There are some common problems to be solved in soft computing identification, independently of 

the data type and description method. As a prelude, in this chapter, we provide a brief overview of 

two of the most common artificial intelligence modelling approaches Artificial Neural Networks 

(ANN) and Fuzzy Logic (FL) systems together with their hybrid Neuro-Fuzzy (NF) systems. 

These two classic approaches, ANN and FL, are examined in some depth. 

 

2.2.1  Neural Networks 

 

Neural networks are composed of simple elements operating in parallel. These elements are 

inspired by biological nervous systems. As in nature, the network function is determined largely 

by the connections between elements. Neural Networks approach the modelling by using precise 

inputs and outputs which are used to ‘train’ a generic model which has sufficient degrees of 

freedom for a good approximation  between inputs and outputs. A neural network can be trained to 

perform a particular function by adjusting the values of the connections (weights) between the 

elements. One of the most common processes for which NNs are used in system modelling is the 

one involves :  placing the NN in parallel with physical system, applying the system input to the 
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input of the network, using system output as the desired output for the neural network, and train 

the neural network until the error between the system output and the network reaches and 

acceptable level[12]. Here, the network is adjusted, based on the comparison between the output 

and the target. The Schematic diagram of such an identification of a time-invariant, causal system 

is shown in figure 2.8 

 

 

                               

                                    Fig 2.8 – Neural Network identification structure 

 

In general, by a function F, compact input sets p
jU ⊂ ℜ are mapped into elements jy for j=1,..,N 

in the output space. Whereas, in the case of a dynamic system, we have input-output pairs of time 

u(t),y(t). The main objective in both type is to determine F̂  such that, the input and output of the 

plant is given by u and F(u) respectively. The error e is the difference  between the observed 

system output and the output generated by F̂ . 

 

                                                        ˆˆy y F(u) F(u) e− = − <                                                    (2.9) 

 

The main characteristic of the neural networks is the fact that these structures can learn with 

examples (training vectors, input and output samples of the system). The neural network modifies 

its internal structure and the weights of the connections between its artificial neurons to make the 

mapping of the relation input/output that represent the behaviour of the modelled system. 
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2.2.1.1  Structure of Neural Networks 

 

Two classes of neural networks which have received considerable attention in the area of AI in 

recent years are 

• Feed forward Multilayer Perceptron; A feed-forward MLP is one whose topology has 

no closed paths. Its input nodes are the ones with no arcs to them, and its output nodes 

have no arcs away from them[13]. When the states of all the input nodes are set, all the 

other nodes in the network can also set their states as values propagate through the 

network. The operation of a feedforward network consists of calculating outputs given a 

set of inputs in this manner. It represents static nonlinear maps. It is proved extremely 

successful in pattern recognition problems. From a systematic point of view, multilayer 

perceptron can be a versatile non-linear structure for identification problems.  
 

• Recurrent Network ; Sometimes it is necessary to introduce a time delay ∆ into the 

structure in order to model the finite time that is required for an input series to move 

through a physical process[14]. Indeed the length of this delay can be a parameter that is 

adjusted to minimize the residual error in the neural network model. Also, since most 

dynamic systems have temporal behaviour, time delayed versions of the output signal are 

needed to properly model the system. The feedback loops can be both local and external. 
The local loops redirect the output of each neuron to itself or to a lower layer neuron 

within the network. The external feedback normally connects the output of the structure to 

input of the network.    

This external feedback can be implemented in two different ways. In the first approach,  it 

comes from neural network output (figure 2.9a). Unfortunately, this recurrent network  

can easily become unstable due to the feedback loop between its output and input, and  

there is no guarantee that the output that the output will converge to a stable 

configuration[14]. This can be solved in the second approach, in which, the feedback is 

sourced from the actual plant, not the NN output, as illustrated in figure 2.9b. 
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                                                                                   a) 

 

                          

                                                                             b) 
 
    Fig 2.9– a)  NN with time-delayed direct inputs and time-delayed recurrent outputs from  
                         the  modelled system. 
                  b) NN with time-delayed direct inputs and time-delayed recurrent outputs from  
                         the  Actual Plant. 
                           

 

 The advantages of the neural networks are: 
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•  learning capacity; 

•  generalization capacity; 

•  robustness in relation to disturbances. 

 

There are, however critics who point out the disadvantages of using neural networks.  

 

• First, the design of the neural network is a very complex procedure that still relies mostly 

on trial and error.  In addition, because the neural network can only produce accurate 

results if provided with a large volumes of examples in the training phase. 

• Impossible interpretation of the functionality; the most often disadvantage of the neural 

network is the inherent “black-box” nature of its operations. Neural Network although 

able to generate solution to many problems, but are unable to explain how they arrive at 

their results.  

 

 

 

2.2.1.2  Learning Using Neural Networks 

 

Artificial neural nets have been successfully used for recognizing objects from their feature 

patterns.  The neural networks should be trained prior to the phase of recognition process. The 

process of training a neural net can be broadly classified into two typical categories, 

namely;Supervised learning and Unsupervised learning. 

 

• Supervised Learning: The supervised learning process  requires a trainer that submits 

both the input and the target patterns for the objects to get recognized.  Given such input 

and output patterns for a number of objects, the task of supervised learning calls for 

adjustment of network parameters (such as weights and non-linearities), which 

consistently can satisfy the input-output requirement for the entire object class. Among the 

supervised learning algorithms, most common are the back-propagation training 
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• Unsupervised Learning: The process of unsupervised learning is required in many 

recognition problems, where the target pattern is unknown. The unsupervised learning 

process attempts to generate a unique set of weights for one particular pattern. The 

objective of unsupervised learning process is to adjust the weights autonomously, until an 

equilibrium condition is reached when the weights do not change further. The process of 

unsupervised learning, thus, maps a class of objects to a class of weights. Generally, the 

weight adaptation process is described by a recursive functional relationship. Depending 

on the topology of neural nets and their applications, these recursive relations are 

constructed intuitively. Among the typical class of unsupervised learning Hopfield nets are 

the most popular ones. 

 
 

2.2.2   Fuzzy Systems 

 

The fuzzy sets theory was conceived by Lofti Zadeh [16]  in 1965 to represent and manipulate data 

and information that possess non-statistical uncertainty. Fuzzy systems propose a mathematic 

calculus to translate the subjective human knowledge of the real processes. This is a way to 

manipulate practical knowledge with some level of uncertainty. The behaviour of such systems is 

described through a set of fuzzy rules, like: 

                   

                                                        IF <premise> THEN <consequent>                                  (2.10) 

 

that uses linguistics variables with symbolic terms.  Each term represents a fuzzy set. The terms of 

the  input space (typically  5-7 for each linguistic variable) compose the fuzzy partition[11]. Fuzzy 

modelling is the most important issue in fuzzy theory. The fuzzy modelling is a system description 

with fuzzy quantities.  Fuzzy quantities are expressed in terms of fuzzy numbers or fuzzy sets 

associated with linguistic labels.  Therefore, the relation between input and output variables can be 

viewed as a set of fuzzy logical rules or fuzzy-set associations. Since functional variables are 

stored in a distributed rule-based fashion, the value of the function at any point in the input space 

is derived by aggregating the consequences of fuzzy logical rules.  It has been shown that fuzzy 

systems are capable of approximating any real continuous function to any desired degree of 

accuracy [25-26]. 
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The fuzzy inference mechanism consists of three stages: in the first stage, the values of the 

numerical  inputs are mapped by a function according to a degree of compatibility of the 

respective fuzzy sets;  this operation can be called fuzzification. In the second stage, the fuzzy 

system processes the rules in accordance with the firing strengths of the inputs. In the third stage, 

the resultant fuzzy values are transformed again into numerical values; this operation can be called 

defuzzification.  

 

 

2.2.2.1 Identification with Fuzzy modelling  

 

The two usual aspects of identification are: Structure identification and Parameter identification. 

For a given pre-assigned input candidates, the structure identification of a fuzzy system divide into 

two parts. Initially, it starts with finding the number of fuzzy rules in a fuzzy model. By structure 

identification in a ordinary systems theory, what we mean is to find the relations between the 

inputs and outputs[15]. On the contrary, in a fuzzy model, the structure identification is stated in 

different way. The number of fuzzy rules in a fuzzy model corresponds to the order in a 

conventional mode.  

Second, identification implies determining how the input space should be partitioned. There are 

two parts of IF-then rules. The premise part and consequent part. This part of identification deals 

with premise structure. The premise space of the input variables of fuzzy model is partitioned into 

several fuzzy subspaces (Fuzzy sets); where the number of rules corresponds to the number of 

subspaces. These two parts of structure identification are linked together. Therefore, we need a 

heuristic method to optimized partitioning with some criterion, i.e. output error. 

The parameter identification in a fuzzy model includes those in fuzzy sets. The parameter 

identification and the structure identification cannot be performed separately. However in some 

approaches, the parameter identification can be separately done subsequent of the structure 

identification. 

 

The advantages of the fuzzy systems are: 

 

• Capacity to represent inherent uncertainties of the human knowledge with linguistic 

variables; everything is imprecise if you look closely enough, but more than that, most 
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things are imprecise even on careful inspection. Fuzzy reasoning builds this understanding 

into the process rather than tackling it on to the end. 

• Simple interaction of the expert of the domain  with the engineer designer of the system; 

In direct contrast to neural networks, which use training data and generate opaque, 

impenetrable models, fuzzy-logic lets you rely on the experience of people who already 

understand the system. 

• Easy interpretation of the results, because of the  natural rules representation; The basis of 

fuzzy logic is human communication. This observation underpins many of the other 

statements about fuzzy logic. Because fuzzy logic is built on the structures of qualitative 

description used in everyday language, fuzzy logic is easy to interpret. 

• Easy extension of the base of knowledge through the addition of new rules; with any given 

system, it is easy to add on more functionality without starting again from scratch. 

• Robustness in relation of the possible disturbances in the system. 

 

And its disadvantages are : 

 

• One of the foremost problems of these systems is that they are unable to learn. Suppose 

that the problem we have has a bulk of instances. In such a context, it would be good to 

have a system that adapts itself to this dataset. The basic approach is to build a system 

using the available information and test it against the available datasets. This calls for a lot 

of work over and over again by the designer to adapt the system to give a decent 

performance in the scenario given. 

 

• The other problem of these systems is a fixed architecture. The number and type of MFs, 

their parameters, rules, etc  have to be specified beforehand. This needs to be judiciously 

designed by the designer of the system. This affects the performance as the designer may 

make a sub-optimal design of the complete system. 

 

2.2.3   Hybrid Schemes 

 

Hybridization of intelligent systems using soft computing techniques has been identified as a  

promising research field of computational intelligence.  The main premise behind combining two 
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or more soft  computing algorithms is to develop a hybrid technique  that exploits the synergy 

between them, leveraging  their benefits and overcoming their respective  limitations[16]. This has 

indeed proven quite powerful for a variety of applications, such as: pattern recognition, intelligent 

control, data mining [6], and classification. Examples of promising hybridization techniques 

include:   

 

• Neuro-Fuzzy: While neural networks and fuzzy logic have added a new dimension to many 

engineering fields of study, their weaknesses have not been overlooked. Prompted by the 

weaknesses inherent in the two technologies and their complementary strengths, researchers have 

looked at ways of combining neural networks and fuzzy logic. The NF model is a hybrid 

framework that is obtained by combining the concepts of fuzzy logic and neural networking into a 

unified platform. A hybrid neuro-fuzzy  system is a fuzzy system that uses a learning algorithm 

based on gradients or inspired by the neural networks  theory (heuristical learning strategies) to 

determine its parameters (fuzzy sets and fuzzy rules) through the patterns  processing (input and 

output)[17]. Hybrid techniques in this category combine ANN and FL in novel ways for modelling, 

control or for classification applications. This system can be totally created from input output data 

or initialised with the à prior knowledge in the same way of fuzzy rules. The resultant system by 

fusing fuzzy systems and neural networks has as advantages of learning through patterns and the 

easy interpretation of its functionality. However, there remain some problems to be solved, for 

instance, how to automatically partition the input space for each variables, how many fuzzy rules 

are really needed for properly approximating the unknown nonlinear systems. Also, as is well 

known, the curse-of-dimensionality is an unsolved problem in the field. 

 

• Neural Genetic algorithm: Genetic algorithms are a family of computational models inspired by 

the way living organisms adapt to the harsh realities of life in a hostile world, i.e., by evolution and 

inheritance. The algorithm imitates the process of evolution of populations by selecting only fit 

individuals for reproduction. Therefore, a genetic algorithm is an optimum search-technique based 

on the concepts of natural selection and survival of the “fittest” [18]. It works with a fixed-size 

population of possible solutions of a problem, called individuals, which are evolving in time. An 

evolutionary algorithm (EA) maintains a population of candidate solutions for the problem at hand, 

and makes it evolve by iteratively applying a (usually quite small) set of stochastic operators, 

known as mutation, recombination, and selection. Evolutionary artificial neural networks 
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(EANN’s) refer to a special class of artificial neural networks (ANN’s) in which evolution is 

another fundamental form of adaptation in addition to learning[19].  GAs have been used in 

synthesizing and tuning ANNs in many ways. One way is to use the GAs to evolve the network 

topology before Back Propagation is used to tune the network. GAs have also replaced Back 

Propagation as a technique for finding the optimal weight. Another application of GAs in ANNs 

has been making the reward function adaptive by using GAs to evolve the reward function. Many 

combinations of ANNs with GAs can be considered a continuation of the earlier discussions of the 

hybrid methods to exploit the advantages and overcome the disadvantages of GAs and ANNs. For 

example, ANNs using Back Propagation are able to exploit their local knowledge. Hence, they are 

faster to converge than GAs, but this is at the expense of risking the ANN getting stuck in the local 

search, which happens frequently and causes the whole ANN to get stuck in local minima. On the 

other hand, even though GAs are not exposed to this problem, but they are slower due to their 

global search characteristic. In the neuro-genetic algorithm only a specific subset of NN 

architectures, named MLP, is considered for neural encoding[20]. While the great advantage of 

GAs is the fact that they find a solution without utilizing derivatives, but the following drawbacks 

are undeniable : 

 

• Need much more function evaluation comparing to linearized models. 

• No guarantee to convergence even to local minimum 

 

•  Fuzzy Genetic algorithms: Genetic Algorithms (GAs) and FL have also been combined to 

generate the hybrid field of Fuzzy-Genetic Algorithms (FGAs). Similar to the case of Fuzzy 

Neural Networks, the fusion has gone also two ways. GAs controlled by FL as well as FL 

controllers tuned by GAs. FL has been used to manage the tools of GAs such as population size 

and selection pressure during the transition between these two phases [21, 22]. GAs resource 

managed by FL resulted in adaptive algorithms, which significantly improved its efficiency and 

speed of convergence[23]. Also, research has been active on the use of GAs to tune FL controllers. 

An exhaustive survey of the research in this area was indicated in[24] . In the latter case, a GA-

Fuzzy system is basically a fuzzy system augmented by a learning process based on a genetic 

algorithm(GA) [25]. Recent results of the hybridization of FL and GA have been reported in 

variety of applications such as fuzzy logic based controllers. From the optimisation point of view, 

the task of finding an appropriate fuzzy knowledge base (KB) for  particular problem, is equivalent 
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to  parameterise the fuzzy KB (rules and membership functions), and to find those parameter 

values that are optimal with respect to the design criteria. The KB parameters constitute the 

optimisation space, which is transformed into a suitable genetic representation on which the search 

process operates. Based on mentioned fact, the general algorithm consists of three steps: First, 

they defined the initial rule base using intuitive heuristics. Second, they used GAs to generate a 

better rule base. Finally they use GAs to tune membership functions[26]. 

 

• Wavelet Neural Networks : Mixing  the wavelet transform theory with the basic concept of 

neural networks, a  new mapping network called wavelet neural network or wavenets (WNN) is 

proposed as an alternative to feedforward neural networks for approximating arbitrary nonlinear 

functions[27].  Kreinovich proves in [28] that if we use a special type of neurons (wavelet 

neurons), then the resulting neural networks are optimal approximators. The network structures 

applied for representation are determined by using wavelet analysis. The parameter of the 

initialized network is updated using the well-known steepest gradient-descent method of 

optimization. Each hidden unit has a square window in the time-frequency plane. The optimization 

rule is only applied to the hidden units where the selected point falls into their windows. Therefore, 

the learning cost can be reduced. Literature reveals that there are two major approaches to design 

wavelet neural networks i.e. 

 
• In the first approach, the wavelet and neural network processing parts are preformed 

individually. In this format, the wavelet decomposition is a pre-processing step before 

feeding the input into Neural Network. The input signal first decomposed using some 

wavelet basis.  

 

• The second approach combines the two theories; which means that the wavelet is 

implemented inside the neurons. In this case the, two possible structures can be assumed 

 

I) The one with fixed wavelet bases, where the dilation and translation parameters of 

wavelet basis are fixed, and only the output layer weights are adjustable. For 

WNNs with fixed wavelets, the main problem is the selection of wavelet 

bases/frames. The wavelet bases have to be selected appropriately since the choice 

of the wavelet basis can be critical to approximation performance. It is well 

known that by using regularly truncated wavelet frames, the number of wavelet 
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candidates would drastically increase with the dimension. Therefore, constructing 

and storing wavelet bases/frames for large dimension problems are of prohibitive 

cost. 

II)  The other, is the type which Translations and Dilations of the wavelons along with 

weights are optimized during the training. 

 

The scope of this research is focussed on the latter type and, hereafter, by WNN will refer to the 

second one. 

 

• FWNN : By utilizing two important properties, viz., multi-resolution and compression of 

wavelets along with Fuzzy Logic and neural networks FWNNs are proposed[29]. The local details 

of non-stationary signals can be analyzed by wavelet transforms whereas Fuzzy logic allows us to 

reducing  the  complexity of the data and to deal with uncertainty. The approximation accuracy of 

the plant can be improved by the self-learning capabilities of neural networks. Their combination  

allows us to develop a system with fast learning capability that can describe nonlinear systems that 

a characterized with uncertainties.  In FWNN, each fuzzy rule corresponds to a sub-WNN 

consisting of wavelets with a specified dilation value and the rule which determines the effect of 

each sub-WNN on the output. Due to the relative youth of this field of study, a consensus on the 

best way to utilize their individual strengths and compensate for their individual shortcomings has 

not yet been established. Consequently, research into Fuzzy-Wavelet systems is targeting many 

directions. 

 

 

2.3 Problem Description and Proposed Methodology 

 

Traditional mathematical system modelling relies heavily on accuracy of the mathematical model 

and this accuracy needs as many as parameters to be involved. Treating in this way either is 

impossible for complicated systems or even if is viable, it brings us with a very sophisticated 

mathematical expression.  

The soft computing techniques so far introduced, alleviate the problem to a higher degree. 

However, there were some intrinsic problems in each of them. Hybrid schemes by pure SC 

techniques as described were the tools to overcome some of the short comings, but as mentioned 
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still there were plenty rooms for improvement.  Despite the fact that embedding a signal 

processing technique such as wavelet was a way to generalize soft computing techniques to a 

wider spectrum of problems, but the drawbacks such as slow learning algorithms for NNs and 

curse of dimensionality for fuzzy systems are still remained untouched. 

The aim of this research is proposing new versions of WNNs and ultimately FWNN, enabled with 

some clustering techniques and also hybrid learning algorithms combination of Expectation 

Maximization, Recursive Least Square and Extended Kalman Filter to target the aforementioned 

problems. 
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Chapter 3 

Computational Intelligence Methodologies 
 

 

3.1 Artificial Neural Network (ANN)  

 

Neural Networks originated in an attempt to replicate the processing patterns of the human brain. 

Humans are capable of dealing with vast quantities of information very quickly yet the structure of 

the brains individual components is very simple. A single biological neuron is not in itself 

intelligent. Yet the hundred billion or so of interconnected neurons coupled with their supporting 

cells in each of our heads are capable of representing not just the knowledge each of us posses, but 

the personalities and unique problem solving capabilities that make humans individual. An NN is 

an information processing paradigm that is inspired by the way biological nervous systems, such 

as the brain, process information. The key element of this paradigm is the novel structure of the 

information processing system.  

Initial work by McCulloch and Pitts in 1943 presented simplified artificial neurons that were 

shown to have basic logical properties. In 1957 Frank Rossenblatt put forward the concept of the 

Perceptron [30, 31] and B. Widrow (Adaline) developed the first training algorithm . 

Neural Networks(NN) have been widely used in a broad range of applications. These applications 

include pattern recognition, function approximation optimization, simulation and estimation 

among many other application areas. Nowadays, NNs have been trained to solve complex 

problems that are difficult by conventional approaches [32]. NNs overcome the limitations of the 

conventional approaches by extracting the desired information by using the input data. A NN does 

not need such a specific equation form. Instead, it needs sufficient input–output data. Also, it can 

continuously be re-trained, so that it can conveniently adapt to new data.  
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In its simple form, each single perceptron (neuron) is connected to other neurons of a previous 

layer through adaptable synaptic weights. This model is based on the concept of the perceptron 

originated by Frank Rosenblatt in 1957 [33, 34]. Figure 3.1 presents how information is processed 

through a single node. The node receives weighted activation from other nodes through its 

incoming connections. First, these are added up (summation). The result is then passed through an 

activation function; the outcome is the activation of the node. For each of the outgoing connections, 

this activation value is multiplied by the specific weight and transferred to the next node.  

 

                                                                      

                                                    Fig 3.1 –A single perceptron 

 

Knowledge is usually stored as a set of connection weights (presumably corresponding to synapse 

efficacy in biological neural systems).                      

 

 

3.1.1  Multi Layer Perceptron (MLP) 

 

This is probably the most widely known and used Artificial Neural Network (ANN) structure. 

MLP networks consist of layers of perceptrons with each layer connected to each of the layers in 

the previous layer. The weights connecting each of the perceptrons are considered the parameters 

of the network. The network usually consists of an input layer, some hidden layers and an output 

layer. Its structure is illustrated with one Hidden Layer in figure 3.2. 
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      Fig 3.2- MLP Structure 

 

The complexity and the representational capabilities of the MLPs are defined by the number of 

neurons in each layer. The model information is contained in the weights connecting the neurons  

in each layer. The optimisation of these weights represents the learning or training process and it's 

a non-linear optimisation process working from initial parameter values to a set which can model 

the function in question. 

 

An MLP is  characterised by: 

• Its pattern of connections between the neurons called structure (architecture). The 

architecture of a network refers to the number of neurons, their arrangement and 

connectivity. It also covers the arrangement of the neurons into layers. Many neural nets 

have an input layer, in which, the function within a unit is equal to an external input signal. 

The net depicted in figure 3.2 consists of input units, output units and one hidden(middle) 

layer. Typically there is layer of weighs between two adjacent levels of units. 
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• The method of determining the weights on the connections and other transfer function 

parameters (if any) called the training (learning) algorithm. In addition to architecture, the 

method of setting the values of the weights (training) is an important issue. The procedure 

used to carry out the learning process . The training algorithm is applied to the network to 

in order to obtain a desired performance. The type of training is determined by the way in 

which the adjustment of the free parameters in the neural network takes place. Supervised  

and Unsupervised training are the most common methods of training. In supervised one, 

the training is accomplished by pre-setting a sequence of training inputs with a 

corresponding target output vector, whereas in  Unsupervised, no target(output) vector 

specified and the MLP modifies the weights so that the most similar vectors are assigned 

to the same cluster unit. 

• The activation function. The basic operation of an artificial neuron involves summing its 

weighted input signal and applies them on an activation function. The perceptron neuron 

model receives information in the form of a set of numerical input signals. This 

information is then integrated with a set of free parameters to produce a message in the 

form of a single numerical output signal. 

 

In following lines, we adopt a compact matrix–vector notation of the network[35] description in 

order to express the dynamics of Neural Network. Let P and N stand for the number of input nodes 

and the number of hidden layer neurons, respectively. 

Denote by X, W and V for the inputs, the gains of output and the weights from input layer to 

hidden layer neurons, the following  
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The activation function for hidden neurons is normally a symmetric ‘S’ shape function with well-

defined first derivative such as the hyperbolic tangent or the binary sigmoid defined as : 



 

                                                          

As can it be seen from figure

and 0 or -1 and 1. This allows smooth interpolation between data points. 

 

                               

                                                    

                                       

                                               

 

One single neuron makes the simple operation of a weighted sum of the incoming signals and a 

bias term (b), fed through an activation 

network with one hidden layer is described in element
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from figure 3.3, the shapes of the function provide a graded output between 1 

. This allows smooth interpolation between data points.  

                                                    Fig 3.3 –Tangent Hyperbolic 

         Fig 3.4 - Sigmoid Function 

One single neuron makes the simple operation of a weighted sum of the incoming signals and a 

through an activation function (f) and resulting the output value of the neuron. A 

network with one hidden layer is described in element-wise notation as  
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                                                                  (3.2)
 

a graded output between 1 

 

 

One single neuron makes the simple operation of a weighted sum of the incoming signals and a 

and resulting the output value of the neuron. A 

                                          (3.3) 
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Here x is the input with dimension P and y the output of the network and N  is the number of 

hidden layer neurons. The interconnection matrices are W and V  for output layer and hidden 

layer respectively. This network is applied in a variety of problem domains. It does however suffer 

from a number of well-established problems. The massive interdependency of the structure means 

that the model is global in nature. The result of this is that it is often hard to establish exactly what 

information the network has learnt as the model is not readily interpreted due to the massive 

interdependency between each of the artificial neurons. The sequential nature of the training 

methods such as Back-Propagation (BP) means that information can be unlearned as patterns early 

in the training data can be overwritten by patterns latter in the series. It can also be difficult to 

establish the number of artificial neurons needed to accurately represent the training data  and can 

often only be done through trial and error which is very time-consuming. There are a number of 

algorithms available for the learning of the parameters with perhaps the most well known being 

the Back-Propagation (BP) algorithm. This method uses the partial derivative of the mean squared 

error between the system output and the desired output of a given training sample to improve the 

fit of the parameters to the data. This is a gradient descent method and as such is susceptible to 

problems of identifying a local optimum parameter set rather than a global optimum. In addition to 

this the training is often slow requiring the training set to be presented to the network a large 

amount of times in order to find a minimum value. Techniques such as using momentum terms 

help to overcome the problems of local minima and there are a number of advanced BP algorithms 

including factors such as the second derivative of the error function in order to speed training. 

Other learning algorithms include those related to the calculation of the second derivative such as 

conjugate gradient and quasi Newton schemes. These concepts are computationally expensive [36]. 

 

3.1.2 Backpropagation Algorithm 

 

Given a training set of input/output data, the original rule for training MLP is the backpropagation 

(BP) algorithm [37]. It is an iterative process based on an error signal obtained from measuring the 

output signal from each neuron in the output layer. The weightings to a particular neuron are 

modified using new data from training. It employs the quadratic or sum of squared errors metric 

given by 
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In which d
t ,ppy is the desired value of ppth output and t ,ppyɶ is the observed output for the tth 

training sample, the error indicates how far the desired output is far from its observed value. Let θ  

be a vector formed by all the network weights ( V and w) and  ∂θ be the gradient of E at θ = θ (t), 

with t = 1; 2; 3; … ; M ,. Where t is the pattern counter, The BP algorithm is illustrated through the 

following steps: 

 

For each input-output pattern do begin 

1. Apply the input vector X  

2. Compute the output at the last layer through forward calculation. 

Each output unit receives a target pattern corresponding to input training pattern 

We define the instantaneous value of the error energy for t’th pattern is given by eq (3.4). 

3. Compute δs at the last layer and propagate it to the previous layer by using eq (3.7). 

4. Adjust weights of each neuron by using expression (3.6). 

        5. Repeat from step 1 until the error at the last layer is within a desired margin. 

End For 

 

The adaptation of the weights for all training instances, following the above steps, is called a 

learning epoch. A number of learning epochs are required for the training of the network. 

Generally a performance criterion is used to terminate the algorithm. For instance, suppose we 

compute the square norm of the output error vector for each pattern and want to minimize the sum. 

So, the algorithm will be continued until the sum is below a given margin.  

The error of a given output node, which is used for propagation to the previous layer, is designated 

by δ , which is given by the following expression 

                                                      
d

t t(y y )f (.)′δ = − ɶ                                                      (3.5) 

The weight adaptation is described by the following expressions 
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                                              (3.6) 

 

q,q ,w (t 1)′ +ℓ  is the weight from neuron q to neuron q′ , at t’th step, where  q′ lies in the layer ℓ  

and neuron q  in (ℓ −1)’th layer counted from the input layer.   
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q′δ ℓ  is the error generated at neuron q′ , laying in layer ℓ .  

qo ′ℓ is the output of neuron q, positioned at layer ′ℓ  

For generating error at neuron q, lying in layer′ℓ , we use the following expression 

                                                                             

                                                q, q, q, q , q,q ,
q

O (1 O )( w )′ ′ ′ ′ ′
′

δ = − δ∑ℓ ℓ ℓ ℓ ℓ

                                         (3.7)  
 

η in eq (3.6) is the Learning Rate and δ is the error signal for unit j.  

This is a very simple means of updating the parameters but suffers from a number of problems. If 

the learning rate is large then the network will train initially very quickly. However it will be prone 

to overshooting the optimum parameter measures and zigzag about the desired values. If the 

learning rate is too small then the network will take a long time to train as it is taking very small 

steps at each stage. 

 

 

3.1.3  Momentum Effect 

 

The problems with the fixed learning rate forms of BP lead to further modifications of the original 

BP algorithm. Figure 3.5 shows the effects that different learning rates have on the convergence of 

parameters 

                           
                          Fig 3.5 – Effect of various learning rates on convergence of the weights 

 

The problem lies around the fact that, although the calculated gradient identifies the direction in 

which the parameter optimisation must be carried out, it does not identify amount by which each 

parameter needs to be changed. Moreover, if the error function contains many local minima, the 
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Large Learning Rule 
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network might get trapped in some local minimum or get stuck in a very flat plateau[38]. As a 

result a number of techniques were proposed, attempting to modify the learning rate at each 

parameter update, so that to reduce the chances of over shoot and to increase the speed of 

convergence. The simplest method of doing this is to include a momentum term.  Applied to 

backpropagation, the concept of momentum ζ is that previous changes in the weights should 

influence the current direction of movement in weight space. This concept is implemented by the 

revised weight-update rule:  

 

                                                  ij ij ij ijw (t 1) . .o w (t)∆ + = η δ + ζ∆                                              (3.7)                                                                                                                         

 

Once the weights start moving in a particular direction in weight space, they tend to continue 

moving in that direction. Imagine a ball rolling down a hill that gets stuck in a depression half way 

down the hill. If the ball has enough momentum, it will be able to roll through the depression and 

continue down the hill. Similarly, If the gradient has changed direction, then the momentum has 

the effect of dampening the change to the parameters. In this way the zigzagging effect is reduced.  

 

3.2  Elman Neural Network 

 

The recurrent networks have state variables for the delays and incorporate temporal aspects better 

than  Feed-forward neural networks[39]. The Elman Network proposed in 1990 by J.L. Elman is 

one of the simplest among the available recurrent networks.  

In contrast to the feed-forward loop, the Elman Networks are a form of recurrent Neural Networks 

which the back-forward loop employs copy layer which is sensitive to the history of input data. At 

each time step, the values of the hidden layer units are copied to the state layer and this 

information can be stored for future use. This means that the function learnt by the network can be 

based on the current inputs plus a record of the previous state(s) and outputs of the network. The 

feedback idea is a convenient way to accumulate previous knowledge as “experiences” and 

perform future predictions based on these “experiences”.  

However, although the Elman neural network has found various applications in speech recognition 

and time series prediction, its training and converge speed are usually very slow and not suitable 

for some critical applications. Correlative study shows that The dynamic memory property 

developed by Elman has been proved to be effective for modelling linear systems not higher than 
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the first order[40] with standard back-propagation learning algorithm and more suitable for time 

series. 

                     

 

 

 

 

           

 

 

                               

                          

 

                                    
 
                                               Fig 3.6 – Elman Network structure 
 
 

The basic structure of Elam network is illustrated in figure 3.6. It comprises four layers namely 

input layer, hidden layer, output layer and copy layer. Tuneable weights exist between two 

neighbouring layers. For hidden and copy layer the number of nodes is an adjustable parameter, 

and the optimal number is acquired through simulations[41]. The inputs of the network are

P P Nx(t) R ,u(t) R , (t) R′∈ ∈ ϕ ∈ , and then the outputs in each layer can be given by 
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Where,  
  
 N  :  The total number of hidden layer nodes 

pjv  : The weight connection input node to hidden layer 

 p jv ′′ : The weight connect copy node to hidden node  

jw : The weight connects hidden node to output node 
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f(.) : The non-linear function of hidden layer 
 

 

3.3  Radial Basis Functions (RBF) 

 

Radial basis functions, emerged as a variant of Neural Networks, were first introduced by 

Powell[42] in 1980’s to solve the real multivariate interpolation problem.  The MLP neuron 

bisects the information space along a single linear line. As a result each neuron covers the entire 

information space within its layer. As opposed to an ‘S’ shaped function the RBF neuron uses a 

bell shaped activation function as shown in figure 3.7. One major difference from MLP is that 

RBFs utilise a local learning strategy vs. MLP’s global learning, thus resulting a higher rate of 

accuracy and faster training times. Such a system consists of three layers (input, hidden, output) 

In the RBF neuron the parameters define the centre point of the neuron and the size and shape of 

the area covered by the activation function. In RBF there is a built-in distance criterion with 

respect to a centre. This means a graded output is given from 0 at the edges of the area covered by 

the function to 1 at the functions centre.  

Learning is equivalent to finding a multidimensional function that provides a best fit to the training 

data, with the criterion for “best fit” being evaluated by means of a cost function usually assumed 

to be mean squared error as depicted . RBFs are embedded in a two layer neural network where 

each hidden unit implements a radial activated function. The non-linearity within an RBF network 

can be chosen from a few typical non-linear functions. Gaussian function is the most typical one                                                                                                                          

                                                          2(x) exp( x / )ϕ = − σ                                                          (3.9) 

 

The parameter σ is called unit width and is determined using the heuristic rule “global first 

nearest-neighbour”[43] . All the widths in the network are fixed to the same value σ  and this 

result in a simpler training strategy. The activation of a neuron in the output layer is determined by 

a linear combination of the fixed nonlinear basis functions, i.e 

                                                        

C

i i
i 1

Y(x) w (x)
=

= ϕ∑                                 (3.10)          

where i i(x) ( x c )ϕ = ϕ −  and wi are the adjustable weights that link the output nodes with the 

appropriate hidden neurons. These weights in the output layer can then be learnt using the least-
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squares method. This research study adopts a systematic approach to the problem of centre 

selection. Because a fixed centre corresponds to a given regressor in a linear regression model, the 

selection of RBF centres can be regarded as a problem of subset selection. The orthogonal least 

squares (OLS) method can be employed as a forward selection procedure that constructs RBF 

networks in a rational way.  

The output units implement a weighted sum of hidden unit outputs. 

                            

                                            Fig 3.7– RBF network with Gaussian activation 

 

The use of radial activation functions provides a nonlinear method of interpolating between 

numbers of different regions in the information space. RBF networks train rapidly, usually orders 

of magnitude faster than MLP, while exhibiting none of its training pathologies such as local 

minima problems[44]. In practice the centres are normally chosen from the data points. The key 

question is that how to select centres appropriately from dataset. 

 

3.3.1 Orthogonal Least Squares 

 

The most popular RBF training algorithm is the Orthogonal Least Squares (OLS). This method 

treats the RBF network as a special case of the linear regression model. It creates a series of 

regression vectors from the input data and then uses the Gram-Schmidt algorithm to build an 

orthogonal set of basis vectors from this which spans the same space[45]. Utilising each of the 

input vectors as the mean parameter of a RBF activation function provides a perfect mapping 

between x and y. OLS is an iterative technique that selects the new centres so that the increase in 
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variance of the output is maximised. The algorithm allows the selection of the centres one by one 

in a rational procedure, each selected centre maximises the increment to the explained variance of 

the desired output. Thus the algorithm manages to reduce the size of the network without 

significantly degrading its performance.  

It views the RBF network as a form of the linear regression model with each column vector ϕ  

being a regression vector or regressor.  
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C

t i t i t
i 1

y (x )w
=

= ϕ + ε∑                               (3.11) 

where ty  is the desired output and is also called the dependent variable, the iw  are the 

parameters, and i (x)ϕ  known as the regressors which are some fixed functions of tx : 

                     i t t i(x ) ( x c )ϕ = ϕ −       (3.12) 

the error signal tε  is assumed to be uncorrelated with the regressors  i t(x )ϕ . The problem of how 

to select a suitable set of RBF centers from the data set can be regarded as an example of how to 

select a subset of significant regressors from a given candidate set. An efficient learning procedure 

for selecting a subset model can readily be derived based on the OLS method. Rewrite eq (3.11) 

into the matrix form as 

                                               Y W E= Φ +       (3.13) 

Where 

                                               
T

1 NY [y ....y ]=                            (3.14) 

                                               [ ],Φ = ϕ ϕ1 C....  T
i i 1 i N[ (x ).... (x )]ϕ = ϕ ϕ , 1 i C≤ ≤   

                                               
T

1 CW [w ....w ]=       (3.15)        
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                                               T
1 NE [ .... ]= ε ε                    (3.16) 

Note that number of centers equals to C, since all C data samples are employed as centers to 

initialize the model. Vectors iϕ form a set of basis vectors, and the linear squares solution Ŵ  

satisfies the condition that the square of the projection ŴΦ  is part of the desired output energy 

that can be counted by the regressors. Because different regressors are generally correlated, it is 

not clear how an individual regressor contributes to this output energy. The OLS method involves 

the transformation of the set of ϕi into a set of orthogonal basis vectors, and thus makes it possible 

to calculate the individual contribution to the desired output energy from each basis vector. The 

regression matrix Φ  can be decomposed into 

                            RAΦ =                                          (3.17)  

Where A is a C C× triangular matrix with 1’s on the diagonal and 0’s below the diagonal, that is, 

                 

12 1C

C 1C

1 ...

0 1 ... ...
A

... ... ...

0 ... 0 1
−

α α 
 
 =
 α
 
 

                 (3.18) 

and  R is an N C× matrix with orthogonal columns ir such that  

                                                                       
TR R H=                                  (3.19) 

Where H is diagonal matrix with elementsih : 

                                      

N
T t t

i i i i i
t 1

h r r r r
=

= = ×∑    1 i C≤ ≤                              (3.20) 

And eq( 3.11) can be re-written as 

                 y Rg E= +       (3.21) 

the OLS solution ̂g is given by 

                    
1 Tĝ G R Y−=        

or 
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T T

i i i iĝ r y / (r r )=    1 i C≤ ≤     (3.22) 

the quantities ̂g and Ŵ satisfy  

            
ˆ ˆAW g=      (3.23) 

The OLS method is to use for subset selection of the candidate RBF centres. In practice, the 

number of data is often very large and centres are to be chosen as a subset of data set. Due to its 

linear computational procedure at the output layer, the RBF is shorter in training time algorithm. 

This method ensures that each new neuron added reduces the overall error of the system by the 

maximum amount. Training thereby continues until a predefined accuracy is reached. The main 

drawback with this method is that it uses a single predefined value for the width of each of the 

neurons. This is defined before the training process starts and although there are a number of 

heuristics for this such as nearest neighbour it is often necessary to manually modify it through 

trial and error which is not guaranteed to find an optimal result [46].  This use of a single width 

parameter for the entire network introduces severe problems. The assumption that the regions with  

different properties in the input domain can be accurately identified using identically sized local 

area functions is often erroneous.  

 

3.4  Fuzzy Logic 

 

Fuzzy Logic, is a generalization of Boolean logic[47]. It is seen as a technique based on the key 

elements that the activity of human brain are not numbers but rather indicators of fuzzy sets of 

which are a generalization of Crisp sets in classical set theory, in which the transition membership 

and non-membership is gradual between 0 and 1. Having this main characteristic of fuzzy logic, it 

is easier to deal with imprecise concepts in a well-defined way. 

In general, NNs provide a means of learning data through very low level numerical analysis. 

However the heavily interconnected structure of NN often makes analysis of the information 

contained within it difficult. Fuzzy Logic (FL) provides a framework by which nonlinear models 

can be learnt and readily understood by humans. FL incorporates a simple, rule-based IF X AND 

Y THEN Z approach to a solving modelling problem rather than attempting to model a system 

mathematically. FL is capable of mimicking this type of behaviour but at very high rate.  
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Each of the parameters of the model is divided into a number of regions which can be given a 

linguistic label. Each label is associated with a membership function which produces a 

membership value for each region between 1 and 0.  

             

                 

                                                         Fig 3.8 - Fuzzy logic system     

 

The typical architecture of a fuzzy system, illustrated in figure 3.8, is comprised of four principal 

components:-     

 

Fuzzification  : Transforms crisp measured data  into suitable fuzzy sets. Crisp inputs are exact 

inputs measured by sensors and passed into the control system for processing. 

A fuzzy set is defined in terms of a membership function which is a mapping from the universal 

set U to the interval [0,1]. Larger values denote higher degrees of set membership. The shape of 

the membership function should be representative of the variable. However this shape is also 

restricted by the computing resources available. Complicated shapes require more complex 

descriptive equations or large lookup tables. These shapes can be diverse but we will usually work 

with triangles, trapezoidal and Gaussian (see figure 3.9). For this reason we need at least three (for 

triangles), four (for trapezoids) and two parameters (for Gaussian) to define one MF of one 

variable. 
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                         Fig 3.9 – Three types of membership functions with corresponding                                                        
                                         mathematical expressions  a) Triangular    b) Trapezoidal     c) Gaussian         
 

Fuzzy Rule Base  : Stores the observed knowledge of the operation of the process [48]. Fuzzy 

rules are linguistic IF-THEN- constructions that have the general form "IF A THEN B" where A 

and B are (collections of) propositions containing linguistic variables. A is called the premise and 

B is the consequence of the rule. In effect, the use of linguistic variables and fuzzy IF-THEN- 

rules exploits the tolerance for imprecision and uncertainty. There are several kinds of fuzzy rules 

used to construct fuzzy models. These fuzzy rules can be classified into the following three types  

according to their consequent form.      
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               Type I : Fuzzy rules with constant consequent 

                    IF 1 i,1x is A  AND 2 i,2x is A AND…. P i,Px is A   THEN  i if = ω                                                                               

              Type II : Fuzzy rules with linear combination consequent  (Takagi Sugeno Kang  Model ) 

                   IF 1 i,1x is A AND 2 i,2x is A AND…. P i,Px is A THEN     

                    i i0 i1 1 i0 pf x ... x= + + +ω ω ω                                                                                    

              Type III: Fuzzy rules with fuzzy set consequent  ( Mamdani Model) 

                   IF 1 i,1x is A  AND 2 i,2x is A AND…. P i,Px is A   THEN  i if B=
  

             
 

 In the rules X and f denote input and output variables, respectively. The antecedent 

linguistic terms ipA the consequent linguistic term iB are parameterized fuzzy sets whose 

shape can be   any of the described above. In type I and II fuzzy rules iω  denotes a 

constant value and i0 i1 1 i0 px ... xω ω ω+ + + denotes a linear combination of input variables 

where are constant coefficients.   

Fuzzy rule equations are “AND” rule, which means all the conditions of the IF part must 

be met simultaneously in order for the result of the THEN part to occur. 

 

• Inference Engine: The Inference Engine is the heart of a FL and it has the capability of 

simulating human decision making by performing approximate reasoning[49]. During the 

process, it derives a reasonable action with respect to a specific situation based on the 

given rule base. The membership values measured in Fuzzification step, are aggregated to 

obtain a single degree of membership or firing value. The most common of which are t-

norms such as MIN connective, denoted with ∧ . Thus, the degree of fire of rule i for the 

new input vector, X , is calculated as follows 

 

                                            

P

i i p
p 1

*
i i i

(X) AND (x ) i 1,..,C

y (X) f i 1,..,C

=
γ = µ =

= γ × =

ɶ
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• Defuzzification : Lastly, the Defuzzifier converts the fuzzy action to the non-fuzzy action 

that can be accepted by the real world. This step depends on consequent structure of the 

rule base, In TSK fuzzy rule base structures, the model output of each rule is aggregated 

by taking weighted average of the scalar output of each rule 

                                                     

C
*
i

i 1
C

i
i 1

y
y

(x)

=

=

=
γ

∑

∑
ɶ

                                                           (3.24)

 

The training of a fuzzy system is the process by which the positions and sizes of the fuzzy regions 

are set and a valid form of consequent is identified. In the simplest form where the consequent is 

simply a singleton fuzzy variable this can be achieved by means of a table lookup system. This 

involves creating a set of partitions that cover the whole range of the model data. A rule is then 

generated for each input-output pair in the model data. Following this the most likely set of rules 

from the complete set are selected so that there are no conflicts in the rule base. An interesting 

feature in fuzzy logic is the concept of Adaptive fuzzy logic systems. Because of the arbitrary 

positioning of the partitions by the developer, it is often necessary to fine-tune the parameters of 

the rule base. The Back-Propagation (BP) method can also be used for this. Since it works by 

taking the partial derivative of a mean squared error function with respect to the parameters of a 

model it can be used to derive update equations gradient descent learning as is done in the 

Adaptive Fuzzy Logic System (AFLS) [50]. Despite this it is generally accepted that FL is better 

applied to domains in which it is possible to incorporate expert knowledge and NN are better 

applied to domains where little is known of the interdependencies of the model requiring low-level 

numerical analysis to discover them. FL systems also suffer from the so called curse of 

dimensionality. This term refers to the problem that every possible combination of possible rules 

must be considered. As a result the number of possible rules increases exponentially with the 

number of model parameters and the number of partitions in each.  

 

3.4.1 TSK Fuzzy modelling  

 

TSK fuzzy model is one of the most outstanding fuzzy models in the literature which are suitable 

to model a large class of non-linear systems. It consists of number of local linear models; 

possessing excellent ability to describe uncertain system and to approximate a nonlinear model 
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with any given accuracy.  The basic idea of this method is to decompose the input space into 

“fuzzy partitions” and to approximate the system in every region by a simple pricewise linear 

model. The overall fuzzy model is thus considered as a combination of interconnected  subsystems 

with simpler models. Typically, in a TSK model, the employed IF–THEN rules can be viewed as 

the expansion of pricewise linear partition and they are presented as  

 

                                iR   :  IF 1 i,1x is A  AND 2 i,2x is A AND…. P i,Px is A                  (3.25)                                                                      

                                           THEN i i0 i1 1 ip pf x ... x= + + +ω ω ω
 

 

The 
iR represents the i’th fuzzy inference rule, px and ipA are the premise fuzzy variables and 

fuzzy sets with Gaussian membership functions. The rule consequent indicates linear equations 

which are linear in the parameters i,pω belonging to i’th rule and p’th input variable. The working 

region of any fuzzy rule is defined by the membership functions of antecedent part. The output of 

the TSK fuzzy system with C rules is aggregated as weighted sum of fuzzy rule outputs known 

also as defuzzification.                   

                                 
C

i0 i1 1 ip p i
i 1

y ( x ... x ) (X)ω ω ω γ
=

= + + +∑ɶ                                                     (3.26) 

Where i (X)γ is the normalized firing strengths of the rule i and obtained as :                                                                 
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i p
p 1 i

i P CC

ii p
i 1i 1 p 1

(x )
(X)

(X)
(X)(x )

=

== =

= =
∏

∑∑∏

ɶ

ɶ

µ
αγ

αµ
                                                             (3.27)               

 

 

With the i p(x )ɶµ is the membership of 
i,pA  with , Gaussian membership. 

Where the jpµ denote the centres and jpσ depicts the standard deviation for membership functions 

associated with rule i. The parameters are obtained by fitting the eq(3.26) to the set of data points 

by numerical optimization. 
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 3.5  Neuro-Fuzzy Systems 

 

The two soft computing or “intelligent” computing techniques described above are both inherently 

mathematical but possess strengths and weaknesses. A striking example of particularly effective 

combination is what has come to known as “Neuro-Fuzzy”. NF systems attempt to incorporate the 

low-level numerical analysis of the NN with the model transparency of FL [51]. For example, 

while neural networks are good at recognizing patterns, they are not good at explaining how they 

reach their decisions. Fuzzy logic systems, which can reason with imprecise information, are good 

at explaining their decisions but they cannot automatically acquire the rules they use to make those 

decisions. These limitations have been a central driving force behind the creation of intelligent 

hybrid systems where two or more techniques are combined in a manner that overcomes the 

limitations of each other techniques. In theory, neural networks, and fuzzy systems are equivalent 

in that they are convertible, yet in practice each has its own advantages and disadvantages. As it 

was noted above, in case of dynamic work environment, the automatic knowledgebase correction 

is necessary. On the other hand artificial neural networks are successfully used in problems 

connected to knowledge acquisition using learning by examples with required degree of precision.  

There are many different algorithms falling under the banner NF systems. All of them range in 

complexity and fall to somewhere along the line joining FL systems and NN. 

 

3.5.1  Adaptive Neuro Fuzzy Inference System(ANFIS) 

 

ANFIS is a Neuro-Fuzzy model proposed by Jang[52]. ANFIS is an example of a NF system that 

directly implements the TSK rule system.  ANFIS model has a fuzzy inference system in the form 

of an adaptive network for system identification and a predictive tool that maps a given input 

space to its corresponding output space based on a representative training data set. 

The structure of ANFIS with five layers is shown in figure 3.9. Xs are the inputs for ANFIS. The 

ANFIS is composed of two parts. The first part is the antecedent part and the second part is the 

conclusion(consequent) part. These are connected to each other by the fuzzy rules in form of a 

network. It can be described as a multi-layered neural network .The first layer executes a 

fuzzification process, the second layer executes the fuzzy AND of the antecedent part of the fuzzy 



51 
 

rules, the third layer normalizes the MFs, the fourth layer executes the conclusion part of the fuzzy 

rules, and the last layer computes the output of the fuzzy system by summing up the outputs of the 

fourth layer which is the defuzzification process.                 

                  

 

 

     

 

 

                                    

 

      

                      1X     

                      2X                                                                    

  

                            

                     

                           Fig 3.10 -The structure of ANFIS (type III) with two inputs and one output 

 

The feed-forward equations of the ANFIS structure and all the parameters depicted in figure.3.10 

are the same as eq(3.25-3.27) for p=1,2 and i=1,2 with two inputs and two membership functions. 

They are shown as 
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The ANFIS uses fuzzy MFs in antecedent part for splitting each input dimension; the input space 

is covered by the overlapped MFs, that is, several local regions can be activated simultaneously by 

a single input.  
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Subsequent to the development of ANFIS approach, a number of methods have been proposed for 

learning rules and for obtaining an optimal set of rules[53]. For instance, Mascioli et al.[53, 54] 

have proposed to use a combination of Min–Max and ANFIS model to determine neuro-fuzzy 

network and create optimal set of fuzzy rules. Jang and Mizutani[55] have introduced application 

of Levenberg–Marquardt algorithm, which is essentially a nonlinear least-squares technique, for 

learning the ANFIS network structure. In another paper, Jang  has proposed a scheme for input 

selection and Kumar and Garg[56] have used Kohonen’s map for training. Jang introduced four 

methods to update the parameters of the ANFIS structure, as listed below according to their 

computation complexities: 

 

• Gradient Decent only: all parameters are updated by the GD. 

• Gradient Decent only and one pass of least square estimation: the least square estimation 

is applied  only once at the very beginning to get the initial values of the conclusion 

parameters and then the gradient decent takes over to update all parameters. 

• Gradient Decent only and least square estimation: this is the Jang’s proposed hybrid 

learning method. 

• Sequential least square estimation: using EKF to update all parameters 

 

The performance of the network is indeed very good. Nevertheless, the network suffers general 

faults identified with all fuzzy systems in terms of the curse of dimensionality; the number of input 

fuzzy partitions is large and hence the required number of rules and consequence parameters will  

be very large. The least-squares estimation algorithm cannot be implemented easily because the 

calculation of very large matrices is required. Thus, the application of the network is limited to 

some low-dimensional systems. 

 

3.5.2  FALCON 

Fuzzy Adaptive Learning Control Network (FALCON) is another general modelling structure that 

integrates the basic elements of the fuzzy structure into a connectionist model. The input and 

output nodes represent the system input and outputs in the same manner as general NN structures. 

The hidden nodes represent the fuzzy basis functions and the rules as can be seen in figure 3.11.  
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Fig 3.11- Falcon Neuro-Fuzzy architecture 

 

The difference between traditional FL and FALCON is that the connectionist structure permits the 

use of NN learning techniques. This means that the proper basis functions and parameters can be 

determined within the connectionist structure and then the rule base extracted from this structure. 

In theory, this means that the normally black-box trait of the traditional NN architectures can be 

bypassed. Expert knowledge can be readily incorporated into the network structure as each of the 

hidden nodes has a transparent action. The training of these networks is often done in a two-phase 

approach. The first phase is to use statistical clustering techniques to identify initial Fuzzy basis  

functions. Competitive learning is then used to identify which of the combinations of fuzzy basis 

neurons represent valid rules. Rule nodes are then merged if they satisfy certain conditions relating 

similarities between consequents and preconditions. Often a second phase of learning is required 

to fine-tune the network using a gradient descent technique [31]. 

 

3.5.3  NEFCON 

 

NEFCON is a model for neural fuzzy controllers developed by Nauck [57], and it is based on the 

architecture of the fuzzy perceptron. The learning algorithm for NEFCON is based on a mixture of 

reinforcement learning with back propagation algorithm. Figure 3.12 shows a NEFCON system 

with two input variables, one output variable and five rules. The connections in this architecture 

are weighted with fuzzy sets and rules using the same antecedents (called shared weights), which 

are represented by the drawn ellipses.                                                
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                                                       Fig 3.12 – NEFCON architecture 

 

The feed-forward connections between the layers are weighted with fuzzy sets. Each of the layers 

contains a number of units, where the hidden “rule units’’ use a t-norm as activation function, and 

the output unit combines fuzzy sets and applies a defuzzification procedure. The input units just 

contain the input values and are doing no further computation.  The input variables  1x  and 2x are 

state variables of a technical system  which has to be controlled. NEFCON’s output y  is the 

control action applied to S. The units of the hidden layer represent fuzzy rules[58]. 

 

3.6   Adaptive Neuro-Fuzzy Network 

 

An alternative adaptive fuzzy neural network (AFNN) proposed by J.Theocharis [59] has been 

implemented and validated in the framework of this research study. Its main characteristics are the 

self-construction ability, parameter learning ability and rule extraction ability. An outline is shown 

in figure 3.13. In contrary to ordinary ANFIS, the adaptive FNN has a structure-learning 

mechanism which creates/adjusts the structure of its premise part as training proceeds[60].  

In conventional ANFIS structure the number of membership functions and therefore the number of 

rules is fixed, and increases significantly by increasing the number of membership functions (MFs) 

and input dimensionality 
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                                      Fig 3.13- Three input and one output Adaptive Neuro-Fuzzy scheme 
 

The fuzzy inference system considered in this network follows Takagi Sugeno’s IF-THEN rules in 

the form of eq(3.25) where as mentioned, p is the dimension of input components, i depicts the 

counter of rules and 
ipω  are the polynomial coefficients, linearly connecting the input variables to 

the rules’ outputs 
if . Finally, j

pA  denote the labels of fuzzy sets outputs. Each linguistic label j
pA  , 

is associated with a membership function.  The membership functions considered here are of 

Gaussian type as appears in figure 3.8. The degree of fulfilment represents the degree to which 

each rule participates in the output defined by a  

t-norm(*) operator is defined as follows: 

                                                    i i
1 p

i 1 PA A
(x )* * (x )γ = µ µɶ ɶ…                                                   (3.28) 

The algebraic product of the membership functions of each premise axis is chosen as the t-norm 

operator. For each input membership term the below equation is considered 

 

                                                      p
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p A pmax{ (x ) }

p 1,...,P.

µ = µ

=

ɶ ɶ
                                                       (3.29)    

The term max
pµɶ represents the max value of the membership belonging to the term set p for px .  
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The structure of proposed FNN comprises of three major modules:  

• Premise Part: It calculates not only the rule coordinates through the MFs, but also firing 

strengths for each rule. The structure of the fuzzy inference system is determined by adjusting 

this part. Both structure learning and parameter influence premise part. 

• Consequent Part: It deals with consequent functions 
if as in eq(3.25) which is linear 

polynomials of input vector components. 

• Defuzzification Part: It involves the defuzzification process. This is performed by combining 

the outputs of the premise and consequent part and provides the final output of the fuzzy 

system. The Weighted-Average scheme has been used to produce a fuzzy outputŷ , for each 

input vector 

 

The training of AFNN is performed by the following three phases:  

 

• Initial membership functions and corresponding rules creation by using a subset of the training 

data set. This step is conducted off-line, which is referred to as respective premise/consequent 

parameter setting . 

• Selection of input patterns by computing node outputs in all network layers and the max-

membership terms,max
pµɶ , for each premise axis. By observing the maximum stimulating level  

 

of the term nodes max
pµɶ  it can be verified whether they are greater or smaller than the 

prescribed lower membership thresholdδ̂ . For those where the degree of fulfilment by 

current MFs is less than a predefined threshold, or in other words the input vector is not 

adequately spanned by current MFs (max
p

ˆµ < δɶ ), network inserts a new membership function 

in the respective term set and calculates its parameters (mean and deviation) according to eq 

(3.30)(3.31).  Let p,new p,new p,newA ( , )µ σ  denote the new MF  
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Where 

                                

i,nearest i,nearest i,new i,nearest

i,nearest i,nearest i,new i,nearest

x h . if

x h . if

1
h [2Ln( )]

+ +

+ +

+

=µ + σ µ >µ

=µ − σ µ <µ

=
Ω

                                (3.31) 

AndΩ exhibits the degree of overlapping between membership functions. In this case when at 

least one new membership is created, then a new fuzzy rule is created by combining the new 

memberships and an appropriate set of already existing memberships. The consequent 

parameters (polynomial weights) of the new rule are initially defined by: 

                                                   d
0i iy (t 1) i 1,...,C= + =ω                                           (3.32) 

Where d
iy (t) is the desired output for the t’th  input training instance. The remaining weight 

parameter are set to zero (1i 2i Pi 0ω =ω = =ω =⋯ ). 

In the case when max
i

ˆµ > δɶ  meaning that the input vector is sufficiently covered by the existing 

fuzzy membership functions, the term set remains unchanged. 

In an alternative scenario where the degree of fulfilment by the membership functions is large 

enough but the respective fuzzy rule is missing, a fuzzy rule is created by proper permutation of 

term node coordinates.  

 

Parameter fine tuning performed using the classic back-propagation algorithm. The back-

propagation (BP) method is a gradient based algorithm which is usually used to perform parameter 

learning of both neural networks and fuzzy neural systems. BP is a simple, well established and 

easily applicable optimization method for this scheme; the learning task is accomplished by 

minimizing a single objective function, as shown in eq(3.33). 

                                 T
t d d

1
e (y(t) y (t)) (y(t) y (t))

2
= − −ɶ ɶ                                                  (3.33) 

    As training proceeds, parameter learning is simultaneously conducted to adjust the network     

    parameters. The final updated equations are: 
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                 (3.36) 

 

µη , ση  and wη  representing the mean, deviation and polynomial-weights learning rates 

respectively and µζ  is momentum which is used for updating means. Training is carried out on-

line on the basis of real-time data. 

The predictive capability of above adaptive neuro-fuzzy system was tested on fungus growth in 

comparison to conventional neural networks approaches. More specifically, the purpose of the 

present work is (i) to develop an intelligent methodology based on neuro-fuzzy networks to predict 

the combined effect of temperature, water activity and pH on the maximum specific growth rate of 

Monascus ruber van Tieghem, and (ii) to compare the prediction accuracy of the proposed 

intelligent scheme and classic neural networks 
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3.7   Case Study: Fungus Growth Modelling 
 
 

Growth-predictive models are currently accepted as informative tools that assist rapid and cost-

effective assessment of microbial growth for product development, risk assessment, and education 

purposes [61]. More recently, predictive microbiology has been used to forecast the growth of 

spoilage micro-organisms in order to study the shelf life of a food product. Fungal spoilage of food 

commodities causes significant economic losses. Although industrial standards have been greatly 

improved in the last years, food spoilage by fungi is still a major concern for both food producers 

and regulatory agencies. Today, there is a need for understanding fungal growth in foods, 

particularly those factors associated with new manufacturing processing and packaging techniques 

[62]. Fungal presence in food may adversely affect not only the organoleptic value of the 

commodity but most importantly its nutritional value by producing toxic metabolites, thus a public 

health risk is inevitable [63]. Improvement of food quality and safety, demands the development of 

appropriate tools allowing prediction of fungal growth. 

Polynomial models have been widely used in predictive microbiology for the quantitative 

assessment of the effects of various environmental factors on fungal growth[64]. However, a 

major disadvantage of these models is that they are developed from linear and quadratic 

combinations of variables; use of such simplified models may not be justified. Neural networks 

(NNs) have been deployed in recent years as an alternative to conventional statistical models, due 

to their ability to describe highly complex and non-linear problems in many fields of science. The 

NN-based methodologies have been applied in predictive food microbiology[65]. The main 

characteristics of NNs, such as (i) non-linearity, allowing better fit to the data, (ii) noise-

insensitivity, providing more accurate predictions in the presence of uncertain data and 

measurement errors, enabling application of the model to unknown data make them an interesting 

tool in an area which is dominated by statistical analysis tools[66]. Several published works 

indicate that neural network-based models produce better estimation of kinetic parameters of 

micro-organisms than response surface models. In a recent study, NNs have been compared with 

response surface models in modelling the growth rate of L. plantarum and E. coli. It was reported 

that the NN approach outperformed the statistical models based on its lower standard error of 

prediction (SEP) term, despite the fact that NN models had higher degree of complexity[67].  

Monascus is an ascomycetous fungus traditionally used for the production of food colouring, 

fermented foods and beverages in southern China, Taiwan, Japan, Thailand, Indonesia and the 
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Philippines[44]. Members of the genus can commonly survive heat treatments and grow under 

reduced oxygen levels, resulting in food spoilage. Monascus ruber is a widespread ascomycetous 

fungus in Europe, as it is common in silage and deteriorating grain. One characteristic of the genus 

is the production of ascospores capable of surviving heat treatment. Subsequently they can grow 

under reduced- oxygen environment and cause food spoilage. Spoilage may result from the 

development of a mycelia mat on the surface of the olives, and from a softening of the fruits and 

changes in the pH of the final product. Temperature, pH and water activity (aw) are generally 

regarded as the principal controlling factors during fermentation and subsequent storage of table 

olives. A combination of these factors could effectively control the growth of the fungus during 

storage. Predictive modeling has been extensively used mainly to predict bacterial growth as a 

function of environmental factors such as temperature, pH and Water Activity. However, model 

development of filamentous fungal growth has not received the same level of attention as that of 

bacterial growth. A few studies concerning fungal growth have dealt with the predictive modelling 

approach[60].  

This section illustrates the ability of the AFNN to perform combined structure and parameter 

learning of a non-linear three input and one output system. The predictive capability of an adaptive 

neuro-fuzzy system was tested to predict the combined effect of temperature, water activity and 

pH on the maximum specific growth rate of Monascus ruber van Tieghem in comparison to 

conventional neural networks approaches.  

The three dimension input data is normalised in such a way that the maximum of each input 

column is equal to 0.9 and minimum equal to 0.1. However the error evaluation is based on de-

normalised data. The fixed parameters of the system are defined in the form of a vector 

w
ˆParam [ , , , , , ] [0.001,0.0001,0.01,0.05,0.5,0.6]µ σ µ= η η η ζ Ω δ = . The rule base is automatically generated 

along a model formed by the FNN input-output components. As can be seen from fig. 3.14, the 

trained FN approximates the desired function quite accurately such that the observed output almost 

completely overlaps the desired output.  
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                  Fig 3.14– Training samples simulation results for Adaptive Fuzzy Neural Network 

 

The training procedure starts with just one single rule and only one membership for each premise 

axis as depicted in figure 3.15 (a). The total MFs inserted as a result of structure learning is shown 

in figure 3.15 (b) and the final position of the MFs after imposing parameter learning and fine 

tunings illustrated in figure 3.15(c), five MFs for temperature axis, four MFs for water –activity 

and four  

dedicated to pH axis. The exact centre positions and also deviation with and without parameter 

learning are mentioned in table 3.1. Figure 3.16a, 3.16b and 3.16c depict each input pair and 

output of  AFNN, for this particular training case we attempted 63 pairs, the error measure is 

decreasing until a MSE of 3.1623e-005 is finally achieved on training dataset.  

At the end, the structure finalised with 16 epochs and 35 fuzzy rules. Observing the curves (figure 

3.16) reveals that the maximum growth occurs in case of lower Water-Activity, mid-high 

temperatures and in almost any pH depends on temperature and water activity, which of course 

shows that pH does not play a significant role in growth comparing to other two.  The error criteria 

are as in table 3.2, the detailed definition of each error criterion can be found in appendix.             

                                                                                                                                                           

 

 

 

 

 

Training Samples 
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 TABLE 3.1 - Normalised means and deviations of all Membership Functions with and without                      

                        parameter learning . 
                     

   
           
TABLE  3.2 - Adaptive Neuro-Fuzzy Error Coefficients for Training and Testing dataset 
 

               
 
 
 
 

Without Parameter Learning With  Parameter Learning 

Temp. 
Axis 
 

Mean 0.1 0.3 0.5 0.7     0.9 0.0531 0.2530 0.4530 0.6529 0.8529 

Dev. 0.08 0.08 0.08 0.08  0.08 0.0397 0.0396 0.0395 0.0395 0.0394 

W.A. 
Axis 

Mean 0.1 0.45 0.77 0.9 ----- 0.0585 0.4089 0.7307 0.8558 --------- 

Dev. 0.07 0.07 0.07 0.07 ----- 0.0323 0.0296 0.0269 0.0243 --------- 

pH 
Axis 

Mean 0.1 0.36 0.63 0.9 ----- 0.1152 0.3818 0.6484 0.9150 --------- 

Dev. 0.06 0.06 0.06 0.06 ----- 0.0808 0.0807 0.0806 0.0805 --------- 

Error Coefficients 

 

Training Testing 

Mean Square Error 3.1623e-005 0.0818 

Root Mean Square Error 0.0056 0.2860 

Mean Absolute Error  0.0041 0.2215 

Mean Absolute Relative Error 0.3095 3.5379 

Coeff. of  Determination            0.9999 0.8984 
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Fig 3.15 - (a) Initial membership functions for  each   normalized input.(b)-Memberships after  
                 structure learning process for each normalized  input (c)-  Final membership function  
                 together with parameter learning  
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Fig 3.16  – a) Temperature and Water Activity vs. estimated output curve for normalized training  

                    data  and the actual output  curve b) Predicted Temperature and PH output surface and  
                    actual output surface c) PH and Water  Activity  predicted and desired output surface. 
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3.7.1  Fungus Growth Modelling By MLP 

 

A three-input one-output Multi Layer Perceptron (MLP) has been designed to estimate the output. 

MLP has a simple structure but as it shown in figure 3.17 it requires more than 17000 epochs to 

achieve the desired output. The suggested network contains a single hidden layer (3 layer MLP) 

comprises of 30 neurons with sigmoid as an activation function and Back propagation (BP) 

training algorithm. The learning rate used here is 0.15=η   and momentum is 0.45=ζ .                                                                    

               

                                   Fig 3.17– Number of epochs and the related sum square error 

 The training results demonstrated in figure 3.18 show the difference between the desired output 

and observed output.     

                                              

 

                                        Fig 3.18 -MLP training results for each input pattern 

The final statistical error coefficients are  logged in table 3.3.  
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                          TABLE 3.3 – MLP Error coefficients for training and testing  

 

 
 
 
 

3.7.2   Fungus Growth Modelling By OLS-RBF 

 
In this section, we use OLS-RBF to model the fungus growth in accordance to three inputs 

(temperature, water activity and pH). OLS-RBF networks approximate an unknown function by 

locally constructing receptive fields around a set of centres, while these centres chosen by 

Orthogonal Least Square (OLS) algorithm. The RBF network and the OLS algorithm have the 

following fixed constants: The RBF is a Gaussian with width 0.8σ = and desired Error Reduction 

Ratio set as 0.001ρ = .          

                                                                                                                                      

                    Error Coefficients Training 
 

Testing 
 

Mean Square Error 
0.0080 0.1071 

Root Mean Square Error 
0.0895 0.3273 

Mean Absolute Error 
0.0753 0.3133 

Mean Absolute Relative Error 
4.4037 17.9191 

Coefficient of Determination  2R  0.982 0.4283 
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       Fig 3.19- a) OLS-RBF regressors index and their contribution to error reduction                                                          
                      b) OLS-RBF training results for each input pattern 
 
 

The results are plotted in figure 3.19(a), the asterisks represent the regressor indices versus the 

error ratio reduction, in this network 31 regressors has been chosen in the sequence  of ; 

{14,60,1,17,45,62,10,33,54,2,22,12,61,48,31,15,13,11,6,21,4,7,56,53,41,3,58,44,25,9,20}.This 

sequence shows the data indices which are chosen to act as regressors, obviously selecting more 

than 31 regressors cannot further improve the model quality significantly. The accuracy of the 

function approximation shown in figure 3.19 (b). It is visible that the greater deviationσ  is chosen 

for the RBFs, the smaller number of regressors is used, however this reduction comes of the 

expense of increasing MSE. Table 3.4 summarizes the estimated error values.   

                                    
 

Training 
O

utpu
t 

Index of the regressors which contribute most to achieve minimum error 

E
rror  reduction ratio

 

b) 

a) 
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                      TABLE 3.4 – OLS-RBF Error coefficients for training and testing 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
According to Table 3.2, 3.3 and 3.4, the simulation results have shown that AFNN method 

generates superior results and outperforms the other two. 

Because the initial structure and weights of the neural network are set properly, FNN exhibits 

faster convergence, it can be seen from the number of epochs the AFNN is a much faster algorithm 

than Back Propagated MLP and RBF. RMSE values of the AFNN performed well for the training 

and reasonably good for the testing data set based on both graphical plots and statistical indices. In 

summary, the applied FNN training algorithm, as expected, well fitted to any microbiological 

system. It serves as a better alternative to microbiological processes predictive modelling scheme 

based on some of its interesting properties such as: containing only necessary number of rules, fast 

convergence, simple structure, less training time and of course adjustable performance. 

 

 

 

 

Error Coefficients Training 
 

Testing 
 

Mean Square Error 0.0027 0.0844 

Root Mean Square Error 0.0516 0.2906 

Mean Absolute Error 0.0442 0.2547 

Mean Absolute Relative Error 2.7199 18.8620 

Coefficient of Determination  2R  
        0.9911 0.8999 
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Chapter  4 

Wavelet Neural Networks 
 

 

4.1  Time - Frequency Analysis 

 

Many signals are non-stationary or in other words the spectrum of the signal can be time-varying. 

Thus,  the standard Fourier Transform is not useful for analysing the signal. It can be spotted in 

many applications such as speech processing, in which we are interested in the frequency content 

of a signal locally in time. In this scenario characterisation of non-stationary signals in the 

frequency domain must therefore include the time dimension, which resulting in the time-

frequency analysis. In order to do that, we usually calculate a spectrum of a signal at sufficiently 

short regular intervals of time. Taking an interval of time function is known as windowing which 

is equivalent to multiplying the signal by a window function and taking Fourier Transform (FT) of 

each segment, also called Short-Time Fourier Transform (STFT).           

                                      
j2 ftSTFT (f , ) x ( t )g (t )e dtπτ τ

∞
−= −

−∞
∫                                 (4.1)         

It might seem that the time-frequency analysis is perfect, but having a closer look reveals the 

problem behind the above equation. The problem is the width of the window. If we use a window 

of infinite length, we return back to FT, which gives perfect frequency resolution, but no time 

information. Likewise, in order to obtain the stationarity, a short enough window should be used, 

in which the signal is stationary. The narrower we make the window, the better the time resolution, 

and better the assumption of stationarity, but poorer the frequency resolution. The problem is as a 

result of choosing a window function once, and freezes it, and recycling that window throughout  
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the entire analysis. A Multi-Resolution Analysis (MRA) which enables us to process data at 

different scales or resolutions can be an ultimate solution to overcome this problem. 

Characteristics localization of time series in spatial (or time) and frequency (or scale) domains can 

be accomplished efficiently through wavelet decomposition. The power of wavelets for time series 

analysis stems from three features : First, wavelet analysis can determine the sharp transitions 

simultaneously in both frequency and time domains. Thus, wavelets can help identify nonlinear, 

chaotic or fractal behaviour displayed in any signal. Second, wavelet analysis allows for an 

effective representation of discontinuities in the chaotic time series. The wavelet representation of 

information in the time series allows for its hierarchical decomposition. In this way, the 

information can be analyzed in components of desired characteristics and at various levels of 

details. Third, when the information in time series is transformed into the wavelet domain less 

storage is required for its effective representation, resulting in computational efficiency for large 

time series[68]. 

 

 

4.2  Principles of Wavelet Transform 

Wavelets with oscillation of effectively finite duration look like a small wave [69] which means it 

grows and decays in a finite time period as opposed to sinus and cosines used in FT who are big 

waves[70] and they grow and decays repeatedly in over an infinite time period.  The fundamental 

idea behind wavelets is to analyse according to scale or Multi Resolution Analysis. The Wavelet 

Transform, similar to the STFT, also maps a time function into a two-dimensional function of α  

andτ (see eq 4.6). The parameter α  is called the scale; it scales a function by compressing and 

stretching it, temporal analysis is performed with a contracted, high-frequency version of the 

wavelet, while frequency analysis is performed with a dilated, low-frequency version of the same 

wavelet. τ is the translation of the wavelet function along the time axis. Wavelet analysis is 

accomplished by first choosing a representative prototype function called the mother wavelet ϕ , 

or analyzing wavelet. A function (t)ϕ  , defined over the real axis ( , )−∞ +∞  is considered as 

wavelet,  if fulfils the following criteria 

(i) The integral of ϕ  is zero 



 

                                                           

                   It ensures it has zero

                   function makes above zeros, must be cancelled out by excursions below zero.                                                           

(ii)  Finite energy of

                                                    

(iii)  Admissibility Condition, 

invertible transform

                         

Where f (f )ϕ is the Fourier transform of 

One of the oldest and possibly simplest

named after A.Haar who developed it in 1910.

                                              

                        

                                                     

                                (t)dt 0ϕ =∫                                          

It ensures it has zero dc component, or in other words any excursions the wavelet  

makes above zeros, must be cancelled out by excursions below zero.                                                           

Finite energy of the function. Function is leading to rapid decay toward zero with time.

                                                    2(t)ϕ
+∞

−∞
< ∞∫                                       

Admissibility Condition, is a requirement that should be fulfilled in order to have 

invertible transform. 

                   
2

f

0

(f )
a df

fϕ

ϕ∞
≡ ∫     satisfies     0 aϕ< < ∞               

is the Fourier transform of (t)ϕ . 

and possibly simplest wavelet functions is the Haar wavelet(see figure 

named after A.Haar who developed it in 1910. It is a step function by the definition

                                                            Haar

1 0 x 0.5

(x) 1 0.5 x 1

0 else

+ ≤ ≤
ϕ ≡ − ≤ <

                 

                                                     Fig 4.1 – Haar Wavelet function 
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                         (4.2)                       

any excursions the wavelet       

makes above zeros, must be cancelled out by excursions below zero.                                                           

rapid decay toward zero with time. 

                             (4.3) 

should be fulfilled in order to have 

                                (4.4) 

wavelet(see figure 4.1), 

It is a step function by the definition 

                                     (4.5)
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There are two main types of wavelet transforms: Continuous (CWT) and discrete (DWT). The first 

is designed to work with functions defined over the entire horizontal axis ,whereas, DWT deals 

with functions that are defined over a range of integers usually 0,1,...,Tτ = where T denotes the 

number of values in the time series. The Continuous Wavelet Transform (CWT) of a signal x(t) is 

as follows: 

  

                                   ,

1 t
x, x(t) ( )dt

−< >= ∫α τ
τϕ ϕ

αα
                                                 (4.6) 

where the 1/2−α is for energy normalisation across the different scales, and (t)ϕ  are the so-called 

Mother Wavelet functions that satisfy certain mathematical requirements explained earlier. Since it 

is continuous, the parameters τ and α used for creating the wavelet family both vary 

continuously. The idea of transform is, for a given dilation α and a translation τ of the mother 

wavelet (t)ϕ to calculate the amplitude coefficient which makes ,α τϕ best fit the signal x(t) by 

eq(4.6).  By integrating with eq(4.6), we can demonstrate a picture of how wavelet function fits the 

signal from one dilation to next one can be shown. By shifting τ , we can see how the nature of the 

signal changes over time. The set of coefficients ,{ x, | 0, }< > > −∞ < < ∞α τϕ α τ  is called the 

CWT of x(t). CWT keeps all the information from main signal. If the wavelet function (t)ϕ fulfils 

the admissibility condition and the original signal is energy limited, which means 

                                                                  
2x (t)dt

∞

−∞
< ∞∫                                                       (4.7) 

The signal can be recovered from CWT coefficients by using the inverse transform 

                                               , ,

0

1
x(t) x, (t)d d

∞ ∞

−∞ ≥

= < >∫ ∫ α τ τ α
α

ϕ ϕ α τ
α

                             (4.8)                     

CWT and its computation is a very redundant presentation and impracticable and also may 

consume significant amount of time and resources, depending on the resolution required as 

parameters ,τ α are continuous variables. The wavelet transform is calculated by continuously 
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shifting a continuously scalable function over a signal and calculating the correlation between the 

two. For most practical applications we would like to remove this redundancy like as it is always 

easier to deal with lower volume amount of data. The Discrete Wavelet Transform (DWT) 

overcomes this problem by a discrete grid of time-scale plane and is found to yield a fast 

computation of Wavelet Transform[71]. We can, in fact, retain the key features of the transform by 

only considering subsamples of the CWT. It is easy to be implemented and reduces the 

computation time and resources required and leading to a discrete set of continuous basis functions. 

Wavelet function in DWT introduced as below 

                                        m/2 m
mn 0 0 0(t) a (a t n )ϕ ϕ τ− −= −                                                      (4.9) 

 And therefore the discrete wavelet transform of signal x (t) will be  

                                         mnDWT(m, n) x(t) (t)dtϕ= ∫                                                                         

(12) 0a  and 0τ  are constants that determine the sampling intervals ,  e.g 0a 2=  and 0 1τ = , for 

having standard dyadic  lattice. The perfect   reconstruction achieved by   

                                          mn
m n

x(t) DWT(m,n) (t)ϕ=∑∑                                                    (4.10) 

Figure 4.2 shows the DWT of a signal using Haar wavelet using the MATLAB Wavelet Toolbox. 

The diagram shows the transform for dilation m of up to 3. The signal used has the mathematical 

definition of 

   

                          
0.05x 0.5

2.186x 12.864 10 x 2

x(t) 4.246x 2 x 0

10e sin[(0.03x 0.7)x] 0 x 10− −

− − − ≤ < −


= − ≤ <
 + ≤ ≤

                                 (4.11)                             
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                                                    Fig 4.2 – DWT using Haar Wavelet 

 

The last level of the transform, eliminates the high frequency components of the signal. Prior 

transforms remove lower and lower frequency features from the signal and we finally left with an 

approximation of the signal which is a lot smoother. This approximation indicates any underlying 

trends and the overall shape of the signal.   

As with the CWT, the original signal can be reconstructed fully from its DWT. The sub-sampling 

performed at just dyadic scales, as a result of that, not only it seems to be a significant reduction in 

analysis but also it does not incur any loss in data. 

 

4.3  Wavelet Neural Network 

 

In the past decades, neural networks have been established as a general approximation tool for 

fitting nonlinear models from input-output data. A neural network derives its computing power 

through its massively parallel distributed structure and its ability to learn. However, the 

implementation of neural networks suffers from the lack of efficient constructive methods, both 

for determining the parameters of neurons and for choosing network structures.  ANNs have 

limited ability to characterize local features of a time series, which are generally critical to 

accurately classifying or modelling the series.  Since these features are often localized in time 



75 
 

and/or frequency, employing wavelets enables the Neural Network to take advantage of the multi-

resolution analysis offered by wavelets to focus the network on these local features.  

Wavelet techniques can offer added insight and performance in data analysis situations where 

Fourier techniques have previously been used. The idea of using wavelets in neural networks has 

been proposed by Zhang and Benveniste [1]. Zhang et al.[72] described a wavelet-based neural 

network for function learning and estimation, and the structure of this network is similar to that of 

the RBF network except that the radial functions are replaced by orthonormal scaling functions. 

From the point of view of function representation, the traditional RBF networks can represent any 

function that is in the space spanned by the family of basis functions. However, the basis functions 

in the family are generally not orthogonal and are redundant. It means that the RBF network 

representation for a given function is not unique and is probably not the most efficient. Bakshi and 

Stephanopoulos creatively presented an orthogonal WNN for approximation and classification 

based on multi-resolution analysis [73]. 

Wavelets have become a very active subject in many scientific and engineering research areas. 

Especially, wavelet neural networks (WNN), inspired by both the feed-forward neural networks 

and wavelet decompositions, have received considerable attention and have become a popular tool 

for function approximation[74]. The main characteristic of WNNs is that, as opposed to classical 

ANNs which use sigmoidal-based activation functions, they typically employ the DWT - which 

are drawn from a family of orthonormal wavelets - as the activation function for the hidden layer 

neurons instead of the usual sigmoid function. Each neuron in the hidden layer represents a 

wavelet coefficient.  Since the wavelet transform results in a sparse representation, not all of the 

wavelet coefficients are necessary for an accurate reconstruction of the original signal. In fact, the 

inclusion of all of the coefficients would likely cause over training of  the neural network, and 

result in poor convergence.  For this reason, wavelet coefficients  that do not contribute to the local 

features of the signal are identified during the iterative training of the WNN, and their  

corresponding neurons are pruned from the network . The simplest structure of WNN is very 

similar to Neural Network as shown in figure 4.3 where each neuron is commonly applied to all 

input variables. Here, the hidden layer consists of neurons, are usually referred to as wavelons.                            
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                                       Fig 4.3 – Structure of wavelet neural network  
 
 

The WNN consists of three layers: input layer, hidden layer and output layer. The connections 

between input units and hidden units, and between hidden units and output units are called weights 

jpv  and jW respectively. In this WNN, the training procedure is described as follows: 

 

• Initialising the dilation parameter jm , translation parameter jn  and node connection 

weights jpv  , jW  to some random values. All those random values are limited in the 

interval (0, 1). 

 

• Input data px (t)  and the corresponding output valuesd
ty , where p varies from 1 to P, 

representing the number of the input nodes, t represents the t’th data sample of training set, 

and d represents the desired output state. 

 

• The output value of the sample t, tŷ  calculated with the following formula: 

                                                        

P
p

jp t jN
p 1

t j
j 1 j

v x m

ŷ W
n

=

=

 − 
 = ϕ
 
 
 

∑
∑                                      (   4.12) 
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where  ϕ is considered as mother wavelet, such as the Morlet wavelet filter which is 

shown in figure 4.4, and is represented by  

                                                2(x ) cos(2 x ) exp( 0.5x )= −ϕ πβ                                  (4.13) 

                    

                                                  Fig 4.4 - Morlet Wavelet basis function 

 

To reduce the error, jp j j jv , W , m , n are adjusted using v, W, m, n∆ ∆ ∆ ∆  .In the WNN, the 

gradient descend algorithm is employed, through the following equations, 

 

                                                    

t
j j

j

t
jp jp

jp

t
j j

j

t
j j

j

E
W (t 1) W (t)

W (t)

E
v (t 1) v (t)

v (t)

E
m (t 1) m (t)

m (t)

E
n (t 1) n (t)

n (t)

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

∂∆ + = −η + ξ∆
∂

                                   (4.14) 

Where the error function E  taken as:  
 

                                                             
M

d 2
t t t

t 1

1
ˆE (y y )

2 =

= −∑                                                   (4.15) 
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M is standing for the data number of training set. η  and ζ  being the learning rate and the 

momentum  term  respectively.  

• The process continues until E satisfies the given error criteria, and the whole training of 

the WNN is completed . 

Incorporating the time-frequency localisation properties of wavelets and the learning abilities of 

general neural network, WNN has shown its advantages over the regular methods such as NN for 

complex nonlinear system modelling. 

 

 

4.4  Proposed Structure Scheme (WNN-LCW)   
 
As it has been already mentioned, two key problems in designing of WNN are how to determine 

the WNN architecture and what learning algorithm can be effectively used for training the WNN. 

These problems are related to determining an optimal WNN architecture, to arrange the windows 

of wavelets, and to find the proper orthogonal or non-orthogonal wavelet basis.  

The WNN is a kind of basis function neural network in the sense of that the wavelets consist of the 

basis functions. Note that an intrinsic feature of the basis function networks is the localised 

activation of the hidden layer units, so that the connection weights associated with the units can be 

viewed as locally accurate piecewise constant models whose validity for a given input is indicated 

by the activation functions. Compared to the MLP, this local capacity provides some advantages 

such as the learning efficiency and the structure transparency. However, the problem of basis 

function networks is also led by it. The aim of this part of research study is to investigate the 

feasibility of utilising WNN methodology as an alternative to classical neural networks in the area 

of food microbiology. The proposed, in this thesis, WNN scheme incorporates some modifications 

compared to classic WNNs, in order to enhance its performance. A classic WNN employs 

nonlinear wavelet basis functions (named wavelets) instead of using common sigmoid activation 

functions. The output of the network is a weighted sum of a number of wavelet functions. In the 

proposed linear-weights wavelet neural network (WNN-LCW), the connection weights between  

the hidden layer neurons and output neurons are replaced by a local linear model, similar to the 

output layer appeared in ANFIS neuro-fuzzy system. The output of the network is a weighted sum 

of a number of wavelet functions. The linear-weights wavelet neural network (WNN-LCW) is an 

improvement of wavelet neural network, in which the connection weights between the hidden 
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layer neurons and output neurons are replaced by a local linear model (similar to the TSK – as in  

NF systems).  

A WNN approximates any desired signal y(t) by generalizing a linear combination of a set of 

daughter wavelets m,n(t)ϕ which are generated by step sizes dilation and translation m and n from 

a mother wavelet with either of the forms below : 

                                                m,n

m
m,n

t n
( )

m

(2 t n)

ϕ ϕ

ϕ ϕ −

−=

= −
                                                             (4.16) 

Where m>0. Note that eq (4.16) is similar to eq(4.6) and eq(4.9) but without the energy 

normalisation. For the n-dimensional input space, the multivariate wavelet basis function can be 

calculated by the tensor product of P single wavelet basis functions as follows:  

                                                 
P

p
p 1

(x ) (x )
=

= ∏ϕ ϕ                                                                     (4.17) 

Due to the crudeness of the local approximation, a large number of basis function units have to be 

employed for system identification a given system. Two shortcomings of the wavelet neural 

network are: 

• For higher dimensional problems many hidden layer units are needed  

• Due to the parameters inside the activation functions in the network more epochs should 

be elapsed to achieve a particular accuracy [75-78].  

In order to take advantage of the local capacity of the wavelet basis functions while not having too 

many hidden units and reasonable number of epochs, an alternative type of wavelet neural network 

has been adopted. Its output in the output layer is given by  

                               
N

j0 j1 1 jp p j
j 1

y ( x ... x ) (x)ω ω ω ϕ
=

= + + +∑                                                     (4.18)       

Where jx is the summation of product of weights and inputs from input layer to neuron j of hidden 

layer. It is shown in figure 4.5 
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                        Fig 4.5 – Linear Combination Weight Wavelet Neural Network Structure 

Instead of static weights between hidden layer and output layer a linear combination of weights is 

provided jW . The major motivations for introducing the linear weights are mainly i) They showed 

good performances in TSK neuro-fuzzy systems ii) local linear models should provide a more 

parsimonious interpolation in high-dimension spaces. The scale and translation parameters and 

local linear model parameters and first-to-second layer weights are randomly initialised at the 

beginning and are optimized by gradient descent backpropagation algorithm utilizing partial 

derivatives and chain rule. The wavelet function adopted in hidden layer nodes is a modified 

differentiable version of Morlet wavelet as appeared in eq(4.13). This wavelet is derived from a 

function that is proportional to the cosine function and Gaussian probability density function. It is 

non-orthogonal and has infinite support[79]. Substituting (4.16) in (4.13) the activation function of 

j th wavelet node connected with the input data will be as follows: 

 

2 2
2

2

x (t) n
( )

m
ϕ −

 

N N
N

N

x (t) n
( )

m
ϕ −

∑
 

1 10 11 1 1p pW x ... xω ω ω= + + +  

2 20 21 1 2p pW x ... xω ω ω= + + +  

N N0 N1 1 Np pW x ... xω ω ω= + + +  
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j 2

j

j j

x m
( )

n
j j

m ,n j
j

x m
(x ) cos(2 ( ))e

n

−

−−
= υϕ πβ                                                (4.19) 

. 

4.4.1 The Hybrid parameter learning scheme 

 

In the tuning phase, emphasis has been given to the efficient optimisation of the network’s 

parameters. A hybrid learning approach has been adopted. As the proposed architecture consists of 

linear and non-linear parts, a two-stage learning scheme, consisting of a recursive least-squares 

(RLS) and the gradient descent (GD) methods has been applied.  

The classical formula of least squares is in batch form, meaning that all measurements are 

collected first and then processed simultaneously. Such a formula poses major computational 

problems since the computational complexity is in the order of O( 3Ω ) which grows continuously 

with the number of data collected[80], where Ω  is the number of parameters to be estimated. To 

increase the efficiency of LS algorithms, a recursive variant, known as Recursive Least Squares 

(RLS), has been derived and is used to incrementally train a linear regression model. 

The parameter learning is based on the training data after one-step-ahead prediction process is 

accomplished. Motivated by the fact that many output layers weights of WNN are linear, thus, it 

seems reasonable to employ the RLS technique to tune the parameters of the output layer during 

training, along with Gradient Descent (GD) for other parameters. This class of hybrid learning can 

speed up the learning process substantially and, simultaneously, enhance its stability[35]. We have 

used a hybrid method of learning comprising the Recursive Least Square (RLS) and GD. The 

parameters are divided into two categories; linear and non-linear parameters. For updating linear 

parameters RLS is utilised and for non-linear ones GD algorithm seems the simplest option. Both 

algorithms used such that that E in (4.15) should be minimised. Modifying (4.15) for single output 

and a three-layer structure we have  

                                             d 3 2
t t t

1
E (y O )

2
= −

        
t=1,…,M                                             (4.20) 

Where tOℓ is the output of the l’ th layer for t’th training sample. In a three layer structure 3
tO  is 

the final estimated output of the system and d
ty  is the desired output for the same sample and M  
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represents total number of inputs. The hybrid-learning algorithm of Linear Weight WNN 

combines the recursive least-squares (RLS) method and the back propagation gradient descent 

(BP/GD) to identify the parameters. 

1) RLS – In forward pass node outputs go until last layer and the linear weights identified by 

RLS, given fixed values of Wavelet parameters, which the output can be expressed as a 

linear combination of the linear parameters. The estimated linear parameters are known to 

be globally optimal[81]. 

 

2) BP/GD – In backward pass we calculate the error signals recursively from the output layer 

backward to the hidden and input nodes. Thus the wavelet parameters are fine tuned by 

GD here. 

For updating Linear Connection Weights elements 0( , , )…j Pjω ω  between third and second layer 

first we need to make eq(4.21) linearized in terms of parameters and in order to do that  the 

following steps are taken 

                                   
N

j j j
j 1

y W (x) (x )
=

=∑ ϕ                                                                              (4.21) 

                                      

1 01 11 1 P1 P

2 02 12 1 P2 P

N 0N 1N 1 PN P

W (x) x ... x

W (x) x ... x

W (x) x ... x

= + + +
 = + + +


 = + + +

⋮

ω ω ω
ω ω ω

ω ω ω

                                                     (4.22) 

 

Hence, we can re-write and expand equation (4.21) in the form of 

                                         

                                  
N N N

0 j j j 1j 1 j j pj p j j
j 1 j 1 j 1

y (x ) x (x ) x (x )
= = =

= + + +∑ ∑ ∑⋯ω ϕ ω ϕ ω ϕ                             (4.21) 

If we define 

                   
1 1 2 2 N N 1 1 1 1 2 2 1 N N

T
p 1 1 p 2 2 p N N

(x) [ (x ), (x ), , (x ), x (x ), x (x ), x (x ),

x (x ), x (x ), x (x )]

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

Φ = ⋯ ⋯ ⋯

⋯
                     (4.22) 

And  

                    01 20 N0 11 21 N1 p1 p2 pN[ , , , , , , , , , , , , ]θ ω ω ω ω ω ω ω ω ω= ⋯ ⋯ ⋯ ⋯                                       (4.23) 
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So that,  

                                                     Ty(x | ) (x)θ = θ Φ                                                                    (4.24)                    

 

To compute an estimate of the θ at each time step we use following equation 

If we define an M P×  matrix  which consists of tx data vectors stacked on top of each other[82] 

we have 

                                                        

1

2

( )

( )
( )

( )

T

T

M T

x

x
M

x

 
 
 Φ =
 
 
  

⋮
 

Where M is the total number of data vectors and P is the dimension of each data vector.  In RLS a 

type of Gaussian Newton algorithm is used to update the estimated parameters θ (consists of the 

weights and thresholds) 

 

                               T
t(T) (T 1) K(T)(y (T) (T 1))θ = θ − + − Φ θ −                                           (4.25) 

Where ty  is the desirable output and K(t) is the data dependent Kalman Gain or the updating step 

size[83], given by : 

 

                                        
T

S(T 1) (T)
K(t)

(T) P(T 1) (T)

− Φ=
λ + Φ − Φ

                                                     (4.26) 

The Covariance matrix S(t) is updated recursively according to  

 

                                      1 TS(T) (I K(T) (T) )S(T 1)−= λ − Φ −                                                (4.27) 

 

The initial value of the K(T) matrix, K(0), is set to zero and the initial value of S(T) matrix, S(0) is 

set to Iϑ  where I is the identity matrix and ϑ is a large positive number typically between 100-

10000. Small values of ϑ  may cause slow learning and large ϑ  may cause the estimated 

parameters not to converge properly[83]. λ is called the forgetting factor  is normally fixed to 

constant value  0 1λ< ≤  which thorough this study we have considered it as 1.                                                                       
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Back propagation algorithm mentioned in chapter 3, has been used according to relevant updating 

expressions appeared in 4.14, for wavelet parameters ( j jm ,n ). They are updated by using chain 

rule and taking into account subscripts P and N denote the dimension of input and number of 

hidden layer neurons respectively. The derivatives of the error function obtained by differentiating 

the cost function with respect to each free tuneable parameter 

                         

                           

23 3
jt t t t

3 3 2
j jt t j
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jt t t t
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                                                        (4.29) 

                               

tI
ℓ and tOℓ are the input and output of layer l for the sample at time instance t respectively.  

The output layer function - throughout this research - is linear, therefore it’s derivative against its 

corresponding input from previous layer,outf ′ =1. 

Where, by considering eq(4.19)     
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         (4.30)                           

                         
j j j

j j j

n (t 1) n (t) n

m (t 1) m (t) m

+ = + ∆
 + = + ∆

                                                                                   (4.31) 

 Where 
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Similarly, the updated law of connection weights between input and wavelet layer weights (ijv ) is 

given as follow  
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By getting the first deviation from (18) 
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                                           jp jp jpv (t 1) v (t) v+ = + ∆                                                                 (4.35)     

Where 

                                     jp v jp
jp

E
v v (t 1)

v

∂∆ = + −
∂

η ζ                                                                    (4.36) 

The mη , nη  and vη represent learning rates for m, n and v respectively and ζ  is the momentum. 

As we can see from above discussed equations, the use of Linear Combination Weights proposed 

in this thesis, does not complicate the implementation  of the tuning procedures significantly, 

providing at the same time a higher rate of convergence and better accuracy. 

 

4.4.2  Case Analysis - Prediction of pressure inactivation of Listeria monocytogenes in      
          whole   milk 
 

Listeria monocytogenes is a ubiquitous food-borne pathogen associated with outbreaks of 

listeriosis from consumption of various food commodities such as vegetables, dairy products, 

seafood and meat[84]. The pathogen is of great health concern for the food industry because it is  

characterised by high mortality rates, especially in pregnant women, neonates, elderly and 

immune-compromised[85]. The pathogen can grow at refrigeration temperatures and survive in 
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foods for prolonged periods of time under adverse conditions[86]. It is a very hardy micro-

organism that can grow over a wide range of pH values (4.3 to 9.1) and temperature range from 0 

to 45 °C. In addition, it is relatively resistant to desiccation and can grow at aw values as low as 

0.90 [87].  There has been continued interest in the food industry in using high hydrostatic 

pressure processing as a non-thermal preservation technique. Its primary advantage is that it can 

inactivate microorganisms and certain detrimental enzymes at ambient temperatures, and thus 

avoid the effects of cooking temperatures on various food quality attributes, such as nutritional 

qualities, flavour and taste. Although the inactivation kinetics of microorganisms using heat has 

been extensively studied, information on the inactivation kinetics of microorganisms under high 

pressure, especially under simultaneous application of pressure and other processing techniques, is 

still limited. Accurate prediction of the effectiveness of high pressure processing against 

foodborne pathogens based on inactivation kinetics is essential to permit production of safe 

products. The overall objective of this study is to design one-step ahead predictive schemes to 

model the survival of L. monocytogenes in ultra high temperature (UHT) whole milk during high 

pressure treatment using the proposed WNN-LCW structure. Its performance will be judged 

against a MLP and a linear PLS regression model. Two nonlinear conventional statistical models 

(Weibull, Gompertz) used in predictive food microbiology will be also considered and an 

evaluation will be made to compare the goodness-of-fit of these models. L. monocytogenes NCTC  

10527 from the collection of the Laboratory of Microbiology and Biotechnology of Foods were 

used throughout this study. The data for different pressures, (300, 350, 400, 450, 500, 550 and 600 

MPa) were provided by Agricultural University of Athens, Greece.  

 

 

4.4.3   Initialisation of the network parameters 

 

Initialising the wavelet network parameters is an important issue. Similar to Radial Basis Function 

networks (and in contrast to neural networks using sigmoidal functions), a random initialisation of 

all the parameters to small values (as usually done with neural networks) is not desirable since this  

may make some wavelets too local (small dilations) and make the components of the gradient of 

the cost function very small in areas of interest. In general, one wants to take advantage of the 

input space domains where the wavelets are not zero. 
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We denote by p pa ,b   the domain containing the values of the thp component of the input vectors 

of the examples. We initialise the vector m of wavelet j at the centre of the parallelepiped defined 

by intervals{ } ( )1
, :

2
  = + p p jp p pa b m a b . The dilation parameters are initialised to the value 

( )0.2 −p pb a in order to guarantee that the wavelets extend initially over the whole input domain.  

Throughout this research we have used0.5 β = and 1=υ as the optimal choice for our dataset. 

The remaining parameters are initialised to small random values.  

 

4.4.4  Dynamic System Identification 

 

In nonlinear systems prediction, the purpose of modelling is different for different applications. In 

many cases the data are ill-conditioned and the support of delayed versions of outputs and  inputs 

are needed to achieve the desired accuracy, which make us to switch from static system modelling 

to dynamic system modelling.  

In general, dynamic systems are complex and nonlinear. An important step in nonlinear systems 

identification is the development of a nonlinear model. In recent years, computational-intelligence 

techniques, such as neural networks, fuzzy logic and combined hybrid systems algorithms have 

become very effective tools of identification of nonlinear plants. The problem of identification 

consists of choosing an identification model and adjusting the parameters, such that the response 

of the model approximates the response of the real system to the same input.  In the framework of 

this research study, the proposed  WNN-LCW structure will be utilised as a nonlinear model.  

Different methods have been developed in the literature for nonlinear system identification. These 

methods use a parameterised model. The parameters are updated to minimise an output 

identification error. A wide class of nonlinear dynamic systems with an input u and an output can 

be described by the models mentioned in Chapter 2, generally defined as                           

                                                         m ky (k) f ( (x ), )ϕϕϕϕ= Θ      

Where, my (k) is the output of the model, k(x )ϕϕϕϕ  is the regressor vector and Θ includes all the 

weights and other wavelet parameters in the network. Depending on the choice of the regressors in 

k(x )ϕϕϕϕ , different models can be derived [8] 

• NARX(non-linear Autoregressive with eXogenous inputs) which is series parallel model. 
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As figure 4.6a  illustrates, it means the outputs of the actual plant  are used as input to the 

model. Only one step ahead prediction is possible(fig 4.6b). The model said to have 

external dynamics.  

             ( )u y(k) u(k), u(k 1), u(k 2),..., u(k n ), y(k 1), y(k 2),..., y(k n )ϕ = − − − − − −      (4.37)                                                   

• NOE(Non-linear Output Error) which is parallel model. It means the model output itself 

create time-lagged inputs, as depicted in fig 4.6c. This model can be considered as fully 

recurrent model. The parallel model is able to give predictions over a short period of time. 

The model is said to have internal dynamics. 

              ( )u m m m y(k) u(k),u(k 1),u(k 2),...,u(k n ), y (k 1), y (k 2),..., y (k n )ϕ = − − − − − −    (4.38) 

 

In both cases the prediction error of the model, compared with the true plant outputs are used as a 

measure to optimise the model parameters. For dynamic systems, the model must have some way 

to implement time lags. In other words, some memory function must be present in the model. In 

modelling using computational intelligence schemes, such as neural networks, neuro-fuzzy 

systems, WNNs, this can be done in two ways: either, delayed inputs and outputs are used as extra 

external inputs, or some memory is included in the individual neurons.  

Models with external dynamics can be seen as one-step-ahead predictors. Models with internal 

dynamics are best used for simulation purposes, as the model doesn’t need the true plant outputs. 

The latter case has a higher potential for output errors in the long term. the prediction error can 

accumulate during iteration and larger error can occur[88]. This is certainly the case for nonlinear 

systems, where the internal nonlinearities can drive the system into an unstable state. Since for 

nonlinear problems the complexity usually increases strongly with the input space dimensionality 

(curse of dimensionality) the application of lower dimensional NARX or NOE models is more 

widespread. One drawback of these models is that the choice of the dynamic order,, is crucial for 

the performance and really efficient methods for its determination are not available. Often the user 

is left with a trial-and-error approach. 
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     Fig 4.6 – a) Series Parallel dynamic system  b) One step a head prediction  c)Parallel mode 
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4.4.5 Model Development 

 

4.4.5.1 Primary Modelling 

 

The survival curves of L. monocytogenes during high pressure inactivation were fitted with two 

primary models to determine the kinetic parameters of L. monocytogenes in UHT whole milk. The 

first model applied was the re-parameterized Gompertz equation[89], determined by the following 

equation 

                          
( )10 Patho 10 Patho s

k e
log N (t) log N (0) A exp exp t t 1

A

 ⋅  = + ⋅ − ⋅ − +    
       (4.39) 

 

where ts [min] is the duration of the shoulder, k [min-1] is the maximum specific inactivation rate, 

PathoN (0)  [log CFU ml-1] is the initial population density of the pathogen, and A [log CFU ml-1] is 

the difference between the initial and residual population. 

The second model was based on the modified Weibull equation[90] which can be defined as: 

 

                     

( )
ht

10 Patho 10 Patho res reslog N (t) log N (0) N 10

   −  δ  

 
 = − ⋅ + Ν
 
  

     (4.40) 

 

where δ [min] is a scale parameter denoting the time for the first decimal reduction, and h 

[dimensionless unit] is the shape factor of the curve. For h > 1, convex curves are obtained 

whereas for h < 1 concave curves are described. Finally, PathoN (0)  and Nres [log CFU ml-1] are the 

initial and residual population of the pathogen, respectively.  

 

 

4.4.5.2 Non-Parametric Modelling  

 

Partial least squares (PLS) regression, a multivariate calibration technique, projects the initial 

input-output data down into a latent space, extracting a number of principal factors (also known as  
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latent variables) with an orthogonal structure, while capturing most of the variance in the original 

data. In brief, it can be expressed as a bilinear decomposition of both  X  and  Y  as: 

                                T
XX E= +TW                                                     (4.41) 

          and 

                                                         
T

YY E= +UQ                   (4.42) 

such that the scores in the X-matrix and the scores of the yet unexplained part of Y have maximum 

covariance. Here, T and W, U and Q are the vectors of X and Y PLS scores and loadings (weights), 

respectively, while EX, EY are the X and Y residuals[91]. The decomposition models of X and Y 

and the expression relating these models through regression constitute the linear PLS regression 

model. In case of one Y-variable,y , the model can be expressed as a regression equation  

                                                                  y bX E= +            (4.43) 

where b is the regression coefficient. The PLS model is developed in two stages; the initial dataset 

is divided into training and testing subsets. The former dataset is used to build the models and 

compute a set of regression coefficients (bPLS), which are subsequently used to make a prediction 

of the dependent variable in the test subset.  

Multilayer Perceptron structure is probably the most widely used neural network paradigm and has 

long proven nonlinear modelling capabilities/performance. The knowledge of the network is stored 

in the weights connecting the artificial neurons. The massively interconnected structure of the 

MLP provides a great number of these weights and as such a great capacity for storing complex 

information. The generalised delta rule is applied for adjusting the weights of the feedforward 

networks in order to minimise a predetermined cost error function.  

 

4.5.6 Model Validation 

 

The Wavelet network, and PLS and MLP schemes as well as the statistical models were 

comparatively evaluated to determine whether they could successfully predict the responses of the 

pathogen at pressure levels other than those initially selected for model development. For this 

reason, two different high pressure levels, within the range employed to develop the models, were 

selected namely 400 and 500 MPa. At predetermined time intervals the surviving population of L. 

monocytogenes was enumerated and compared with the survival curves predicted by the developed 

in this study models. The accuracy of the prediction was estimated by the calculation of the bias 
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(Bf) and accuracy (Af) factors [92], the regression coefficient (R2), the standard error of prediction 

(SEP), the mean absolute percentage error (MAPE) and the root mean square error (RMSE) . 

The shapes of the survival curves that follow those experimental data change considerably 

depending on the treatment pressure levels. However, in all pressure levels assayed, a clear 

inactivation pattern was observed including a lag phase (or shoulder), a log-linear and a tailing 

phase. As expected, the duration of shoulder was pressure dependent, so higher pressures resulted 

in lower shoulder time. At different pressure levels, survival curves showed a pronounced 

curvature and tailing indicating that a small population of the pathogen could resist pressurization 

and eventually survive in milk. 

 

 

 

                                   Fig 4.7 – Survival Curves of Lysteria in various pressures 

 

The estimated kinetic parameters of inactivation based on the models of re-parameterized 

Gompertz and modified Weibull are presented in Table 4.1. All models fitted the experimental 

data well as can be inferred by the high values of regression coefficient (R2 > 0.97) and low values 

of root mean square error (RMSE < 0.45). Figure 4.18 (a & b) illustrates the models’ performance 

on the training data. 

 

The prediction capability of those models was considered by adopting a two-step standard 

procedure commonly applied in predictive microbiology [56]. Initially, the primary models (i.e., 

Gompertz, Weibull) were fitted to high pressure inactivation data and the respective kinetic 
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parameters were calculated (Table 4.1). Subsequently, the derived kinetic parameters were related 

to high pressure levels through the development of first or second order secondary polynomial 

models (Table 4.2) and their new estimates were determined at 400 and 500 MPa, which have 

been pre-selected for model validation. For the kinetic parameters which did not present a clear 

trend with pressure, their respective values at 400 and 500 MPa were determined by interpolation.  

 

TABLE 4.1 - Parametersa and statistics of secondary models for the effect of high pressure on the  
                       kinetic parameters of Listeria monocytogenes in UHT whole milk. 
 

Model type Parameter Equation Estimated value h R2 

 

Gompertz b 

 

kmax 

 
2

1 2 3k a P a P a= ⋅ + ⋅ +max  

5 5
1

2

3

4 43 10 0 71 10

0 034 0 007

6 908 1 674

a

a

a

− −= ⋅ ± ⋅
= − ±
= ±

. .

. .

. .

 

0.009 

0.005 

0.002 

 

0.981 

Weibull c 
δ 

1 2a T aδ = ⋅ +ln( )  1

2

0 009 0 001

6 175 0 517

a

a

= − ±
= ±

. .

. .
 

0.006 

0.011 

0.977 

 
a Data are values ± standard deviation.  
b The parameters N0, A and ts of the Gompertz model at 400 and 500 MPa were determined    
   by interpolation.    
c The parameters N0, Nres and the shape factor (h) of the Weibull model at 400 and 500 MPa were determined 
by interpolation. 
 

 

Finally, based on the new values of the kinetic parameters at the selected pressures for validation, 

equations 4.39 and 4.40 were refitted and compared with survival data of the pathogen at the same 

pressures, in order to determine the potential of the models for generalisation, i.e., their ability to 

foresee survival curves at pressures for which there was no previous training. The performance 

against the unknown 400MPa and 500MPa curves is illustrated in figure 4.9 and 4.10, respectively.  
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Fig 4.8 - Survival curves of Listeria monocytogenes in UHT whole milk during high pressure 
processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated by the re-
parameterised Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and 
the wavelet neural network . Data points are mean values of two independent experiments with 
two replications each
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TABLE 4.2 -Parameter estimationa and statistical indices of the different models used for fitting the survival of L.  
                    monocytogenes in  whole UHT milk during high pressure treatment.  
 

Model type log10 N0 
[CFU ml-1] 

log10 A
b  

[CFU ml-1] 
log10 Nres 

[CFU ml-1] 
kmax  

[min-1] 
ts 

[min] 
δ  

[min] 
h  
[-]  

RMSE R2 

Gompertz          
 350 MPa 6.90 ± 0.16 4.08 ± 0.59  0.41 ± 0.03 10.07 ± 2.51    0.307 0.969 
450 MPa 6.99 ± 0.42 4.15 ± 0.69  0.39 ± 0.04 2.25 ± 0.16   0.313 0.971 
550 MPa 7.36 ± 0.32 6.21 ± 0.18  1.68 ± 0.17 - c   0.432 0.987 
600 MPa 6.51 ± 0.58 6.30 ± 0.96  2.26 ± 0.16 -   0.311 0.993 

Weibull          
 350 MPa 7.00 ± 0.15   3.27 ± 0.25      14.53 ± 1.88 1.88 ±0.40 0.266 0.977 

    450 MPa 6.94 ± 0.24  3.09 ± 0.25   7.71 ± 2.14 1.13 ± 0.28 0.318 0.970 
550 MPa 6.74 ± 0.37  0.61 ± 0.48   2.05 ± 0.74 1.24 ± 0.34 0.4136 0.988 
600 MPa 6.41 ± 0.10  0.65 ± 0.10   1.46 ± 0.14 1.11 ± 0.07 0.102 0.999 

Wavelet           
 350 MPa        0.168 0.994 
450 MPa        0.249 0.986 
550 MPa        0.200 0.995 
600 MPa        0.110 0.998 

a Data are values ± standard deviation. 
b A is the difference between the initial population (N0) and the residual population (Nres). 
c No shoulder was observed. 
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Fig 4.9- Observed values and predicted survival curves of Listeria monocytogenes in UHT whole 
milk during high pressure treatment at 400 MPa, generated by the reparameterized Gompertz 
model (a), the modified Weibull model (b), and the wavelet neural network (c). Data points are 
mean values of two independent experiments with two replications each. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig 4.10- Observed values and predicted survival curves of Listeria monocytogenes in UHT whole 
milk during high pressure treatment at 500 MPa, generated by the reparameterized Gompertz 
model (a), the modified Weibull model (b), and the wavelet neural network (c). Data points are 
mean values of two independent experiments with two replications each. 
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It must be pointed out that despite the plethora of proposed inactivation models in the literature 

none is flexible enough to account for all changes of shapes with the intensity of stress[93]. The 

selected models were able to describe the survival of the pathogen at 350, 450, 550, and 600 MPa 

quite accurately. However, the prediction at 400 and 500 MPa was not very accurate as the 

experimental values of the pathogen showed a pattern which possibly indicated the presence of  

two subpopulations, one sensitive to high pressure that was inactivated within the first 10 min of 

the process (figure. 4.9 and 4.10) and a second more resistant to the applied stress. The 

discrepancy observed in the prediction at these pressure levels could be attributed to the fact that 

both models did not account for the presence of a mixed population of the pathogen with a 

variable resistant to high pressure.    

Small data set conditions exist in many fields, such as food analysis, disease diagnosis, fault 

diagnosis or deficiency detection in mechanics, aviation and navigation, etc. The main reason that 

small data sets cannot provide enough information as that of large ones is that there exist gaps 

between samples; even the domain of samples cannot be ensured[94]. It is hard to catch the pattern 

of high order non-linear functions by a standard feed-forward neural network-like scheme, with a 

small sample set, since they have shown weakness in providing sufficient information for forming 

population patterns. Lacking the whole picture of a function means the network cannot precisely 

identify which sections of the function are ascending and which sections are descending. Hence, 

for learning systems that lack sufficient data, the knowledge learned is often unacceptably rough 

or unreliable. 

How to fill up the gaps is the primary problem to be solved. Inspired by the way the RBF network 

approximates a nonlinear function through Gaussian local-basis functions, we employed such a 

network to each “survival curve” defined from the experimental data. The aim was to associate 

each local-basis-function to each sample, and therefore easy then to generate new data that satisfy 

each “survival curve”. An RBF network using the regularised orthogonal least squares learning 

algorithm has been employed for this task [44].  

The inputs included the type of pressure level and the sampling time-step, while the output was 

related to the bacteria counts. Each “continuous survival curve” has been verified against the real 

experimental samples.  

For each pressure level case, an RBF network has been associated. As the real number of samples 

for each pressure level is very limited, we associated each RBF centre with the real samples. Then 
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with a constant time-step 0.5 min, through a 2-inputs network, continuous survival curve” has 

been obtained for each pressure level, as shown in figure 4.11. 

 

 

                          Fig 4.11 – Continuous Survival curves of Lysteria monocytogenes 

 

Based on these continuous datasets, the capabilities of proposed WNN-LCW architecture has been 

verified as a one-step-ahead prediction system. Comparative studies have been conducted with the 

utilisation of a PLS regression model and an MLP neural network. Pressure levels of 400 MPa and 

500 MPa have been used as testing datasets, while the remaining levels as training ones. 

The PLS model was initially constructed using the “continuous survival curve” dataset which is 

comprised of two inputs and one output. Two latent variables were selected and the resulting 

equation has the following form 

 

                            1 1 212 8684247 0 0150321224 0 1096417853Y . . X . X= − −       (4.44) 

 

Figure 4.12 illustrates the performance of the produced linear model on the testing data curves. 

Obviously, the dynamic behaviour of the Listeria survival curve cannot be adequately modelled by 

a static linear system. 
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                                 Fig 4.12 – PLS regression model on a two-input case 

 

Following the principles of nonlinear identification, NARX models using the WNN-LCW, the 

MLP and the PLS schemes have been developed. The training dataset, consisting of 204 data from 

350, 450, 550, and 600 MPa “continuous survival curves”, was employed, while 81 data from 

400MPa and 51 data from 500MPa curves were kept for validation. 

The following structure has been adopted as a NARX model: 

 

( )Count(t 1),Count(t 2),MPa,Sample_Time(t),Sample_Time(t 1),Sample_Time(t 2)Count(t) f − − − −=
   (4.45) 

 

During trials, it has been found that the model is sensitive to the previous number of bacteria 

counts, proving thus its dynamic behaviour.  

In the proposed WNN-LCW, 25 wavelet Morlet functions have been used, while the network’s 

learning parameter vector was m n v[ , , , ] [0.001,0.17,0.17,0.2]= =λ η η η ζ . The hybrid parameter 

learning algorithm has been utilised, which resulted a high speed training process, i.e. less than 10 

epochs. Figure 4.18d shows the performance of the WNN model, especially against the real 

experimental points from the training survival curves. The fitting performance of the developed 

WNN was comparable with the statistical models based on the comparison of the same indices 

(Table 4.1), as the root mean square error index ranged from 0.110 to 0.249, while the values of R2 

were also high (0.986-0.988). The high fitting performance of the WNN approach was expected as 

the network has been trained on these particular datasets. WNN and MLP schemes have been 
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implemented using MATLAB (ver. R2009, Mathworks). Results showed that the WNN was more 

effective in predicting the response of the pathogen compared with statistical models as illustrated 

by graphical plots (figure 4.13 and 4.14) implying that although the WNN has been trained on 

different survival curves, it has managed to learn the underlying process with high accuracy.  

In a similar way, an MLP neural network using the classic backpropagation learning algorithm 

was constructed with the same input structure as WNN. Through trial and error, eventually two 

hidden layers with 12 and 8 nodes respectively have been employed. The learning algorithm was 

responsible for the network’s slow convergence, which took approximately 5000 epochs. Figure 

4.11& 4.12 illustrate the MLP performance for both testing survival curves.   

The PLS-NARX scheme was certainly much more accurate from the previous simple PLS case. 

Like WNN and MLP, the PLS regression model was constructed to anticipate the dynamic nature 

of the specific problem, by including past values of the Listeria counts as inputs. The calculated by 

XLSTAT software, equation has the following form 

      

1 1 2 3 4 5 60 1646857 0 000172 0 0055 0 0055 0 0055 0 955 1 9412Y . . X . X . X . X . X . X= − − − − − +   (4.46) 

 

Figure 4.13 & 4.14 illustrate the PLS performance for both testing survival curves. With regard to 

the assessment of the quality of the overall model predictions various statistical criteria were 

calculated at all the tested validation experiments.  
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Fig 4.13-  Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa              
                 fitted with different modelling schemes 
 

 

 

 

Fig 4.14-  Survival curves of Listeria monocytogenes during high pressure treatment at 500 
                      fitted with different modelling schemes 
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The regression coefficient (2R ) is often used as an overall measure of the prediction attained. It 

measures the fraction of the variation about the mean that is explained by a model. The higher the 

value ( 20 1R≤ ≤ ), the better is the prediction by the model[95]. The wavelet neural network 

developed herein was found to yield better agreement with experimental observations for the test 

data set compared to data predicted by the MLP and the PLS model. The values of the coefficient 

of determination ( 2R ), as shown in Table 4.3, indicate a very good fit of the experimental data 

from the WNN-based approach.  

          

         TABLE 4.3- Performance indices  of various methods for Lysteria Monocytogen data 

 

Statistical index Model Testing Data sets 

400MPa 500MPa 
Coefficient of determination (R2) MLP 0.9526 0.9933 

WNN 0.9935 0.9996 
PLS 0.9796 0.9966 

   
Root mean square error (RMSE) MLP 0.3830 0.1733 

WNN 0.1627 0.1128 
PLS 0.5532 0.2246 

   
Mean absolute percentage error 
(MAPE) (%) 

MLP 23.2939 2.7674 
WNN 5.3072 2.0750 
PLS 32.8082 5.3354 

   
Mean Square Error MLP 0.1467 0.0300 

WNN 0.0265 0.0127 
PLS 0.3061 0.0504 

   
Standard error of prediction 
(SEP) (%) 

MLP 15.9921 3.9301 
WNN 6.7934 2.5569 
PLS 23.1004 5.0930 

   
Bias factor (Bf) 
 

MLP 1.0177 0.9751 
WNN 0.9750 0.9792 
PLS 1.2960 1.0491 

   
Accuracy factor (Af) 
 

MLP 1.2182 1.0288 
WNN 1.0551 1.0212 
PLS 1.2983 1.0525 
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However, 2R is a suitable criterion for model comparison on the assumption that the error is 

normally distributed and not dependent on the mean value; In fact, the distribution of the error is 

not clearly known in the case of microbial/bacteria growth, so this term must be used with caution, 

particularly in non-linear regression models[96] and hence additional indices must be employed 

for model comparison.  

The RMSE values of the WNN were also significantly better for the two “test” survival curves, i.e. 

400MPa and 500MPa. This index is calculated between the desired and output values and then 

averaged across all data and it can be used as an estimation of the goodness of fit of the models. It 

can also provide information about how consistent the model would be in the long run . The 

RMSE values for both networks (WNN and MLP) were lower those from the linear PLS model, 

indicating the ability of non-linear networks to make better predictions on data for which there was 

no previous training.  

The MAPE term provides information about the average deviation from the observed value. The 

relevant figures from Table 4.3 indicate again better performance for WNN. Especially, the high-

nonlinear features of 400MPA curve proved to be difficult to be modelled from the PLS and MLP 

models. The SEP index is determined as the relative deviation of the mean prediction values and it 

has the advantage of being independent on the magnitude of the measurements [96]. Based on this 

index, the WNN scheme was superior from both MLP and PLS models for the two test curves.  

The benefits of mathematical models to predict pathogen growth, survival and inactivation in 

foods include the ability to account for changes in microbial load in food as a result of 

environment and handling; the use of predictive microbiology in management of foodborne 

hazards. The usual measures of goodness-of-fit for model comparison in food microbiology is 

performed by calculating in addition to squared correlation coefficient ( 2R ) the bias ( fB ) and 

accuracy ( fA ) indices as proposed by Ross[92]. Bias factor is a multiplicative factor that 

compares model predictions and is used to determine whether the model over- or under-predicts 

the response time of bacterial growth. A fB greater than 1.0 indicates that a growth model is fail-

dangerous. Conversely, a fB less than 1.0 generally indicates that a growth model is fail-safe. 

Perfect agreement between predictions and observations would lead to fB of 1. The accuracy  
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factor ( fA ), is a simple multiplicative factor indicates the spread of results about the prediction. A 

value of one indicates that there is perfect agreement between all the predicted and measured 

values. Table 4.3 also shows the bias and accuracy factor values obtained for the two testing 

survival curves. The fB parameters for both WNN and MLP were superior to those of the PLS, 

however the WNN was just under the optimal 1.0, providing thus a fail-safe condition. The 

relevant figures for fA indicate again better performances for the WNN scheme, which is more 

evident at the 400MPa survival curve. In order to further justify the plausibility of embedding 

Local Linear weights along with Hybrid learning algorithm, a comparison has been performed to 

verify the proposed scheme’s performance over traditional WNNs. Table 4.4 and figure 4.15 & 

4.16 illustrate the related results. 

 

               TABLE 4.4 – Convergence comparison of existing models on prediction problem 

 Epochs 

(Ave.) 

Independent 

Parameters. 

  Target    Training   

    MSE 

WNN-LCW by GD 

only 

721 375 0.00005 

WNN-LCW  Using 

Hybrid  

7 375 0.00005 

WNN-Static weights 1620 225 0.00005 
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                      Fig 4.15- Convergence speed comparison  by number of epochs using pure  GD                                              

   
                      Fig  4.16 - Convergence speed using Hybrid  Learning method                                                                        

 

 

4.5  Proposed Structure Scheme II (MWNN-LCW) 

 

For modelling the non-linear systems an alternative four-layered wavelet network structure is 

proposed herby, which is comprised of an input layer, hidden (wavelet) layer, product layer and 
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finally output layer. Referring to figure 4.17, Layer 1 accepts the input variables which are in form 

of T
1 2 px [x ,x ,..., x ]= , while Layer 2 is used to calculate the wavelet “membership” values. In this 

layer, each node performs a membership function and acts as an element for membership degree 

calculation, where a wavelet function is adopted as the membership function. Generally, a WNN 

approximates any desired signal y(t) by generalising a linear combination of a set of daughter 

wavelets m,nϕ which are generated by step sizes dilation and translation and from a mother wavelet. 

We adopt the wavelet function as its node function in MWNN-LCW in form of 

m
m,n (2 t n)−= −ϕ ϕ . A modified differentiable version of Morlet wavelet deployed for j’th 

wavelet node connection to the p’th input data, expressed as  

                                     

jmp j 2
p

j
p

j j
pp

(2 x n )
m j

pm ,n
(x) cos(2 (2 x n ))e

−− −
−= − υϕ πβ                                      (4.52) 

This wavelet is derived from a function that is proportional to the cosine function and Gaussian 

probability density function. Its non-orthogonal, infinite support and maximum energy lies around 

origin with the narrow band [97]. The nodes of Layer 3 are regarded as the “wavelet” rules in 

association to the fuzzy rules in a neuro-fuzzy architecture. The number of the “wavelet” 

membership functions for each input variable is equal to the number of “wavelet” inference rules. 

These units are fixed, meaning that no modifiable parameter is associated with them. The 

multiplicative inference (Larsen product operator) has been used [14], thus the output of this 

inference layer is given by 

                                                 
j j
p p

P

j p pm ,n
p 1

(x ) (x )
=

= ∏φ ϕ
            

                                              (4.53) 

The proposed approach differs from the conventional fuzzy rule table approaches. In those models, 

an input space is divided into 1 2 nK K K× × ×⋯ fuzzy subspaces, where, iK ,i 1,2, ,n= ⋯ is the 

number of fuzzy subsets for the input variable. There is a fuzzy rule for each of these subspaces. 

The main drawback of that approach is that the number of fuzzy rules increases exponentially with 

respect to the number of inputs n. The fourth layer is connected to third layer via Linear 

Combination Weights. The difference of this proposed scheme compared to the previous one, 

includes the adoption of one extra layer, the multiplication layer. The proposed scheme has 
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similarities with the AFLS  [16], in terms that this “multiplication” layer represents the fuzzy rules. 

The scheme has some interest, as it is desirable to minimise the number of “wavelet” function 

nodes, and this can be achieved by “clustering” them similarly as in the AFLS case.  

                       

                                      

                Fig 4.17 – Architecture of WNN with multiplication layer and Linear Weights 

 
 
4.5.1  The parameter learning scheme 
 
After the initial WNN is constructed, the parameters of the network are obtained via minimisation 

of the cost function E after a number of training epochs according to desired MSE. The linear 

parameters which are Linear Combination Weights have been updated exactly the same as the way 

described in structure 1. However the only minor difference is that the Φ  matrix is generated 
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according to output of Multiplication layer. For non-linear parameters, in this case it is also used 

the steepest descending gradient method, hence, it is necessary to calculate the gradient vector 
E

p

∂
∂

  

for all the trainable non-linear parameters. pjm  and p
jn are the parameters that determine the 

location of the centre (translation) and the width (dilation) of the wavelets. Using the Gradient-

based procedure we obtain the incremental updating algorithm of each parameter. Without any 

major change, just in this case we have one layer more, so the observed output for sample t is4
tO . 

Therefore the updating equations derived from proposed structure 1 can be modified accordingly. 

The updating expressions are in accordance to following rules  

                         

3 3 24 4
j j pj

4 4 3 3 2
pj pjj j pj

3 3 24 4
j j pj

4 4 3 3 2
pj pjj j pj

O I OE E O I

m mO I O I O

O I OE E O I

n nO I O I O

 ∂ ∂ ∂∂ ∂ ∂ ∂= × × × × ×
∂ ∂∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ∂= × × × × ×∂ ∂∂ ∂ ∂ ∂ ∂

                                                (4.54)      
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 ∂∂
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∂ ∂


 ∂∂ ′= − − × × × ×∂ ∂

= =

∏

∏

ϕ ϕ
ϕ

ϕ ϕ
ϕ

                                   (4.55)               

Where  

 

m m2 2pj pj
pj pjpj pj

pj pj pj

m m2pj pj
pjpj

pj pj

m m(2 x n ) (2 x n )
m m mpj pj
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m(2 x n ) (2 x
m mpj pj

pj pj
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x2 log(2)(2 x n )
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m
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Following the same procedure mentioned for updating pjm  and pjn  , here also we can use 

expressions (4.31) and (4.32). 

 

4.5.2 Case Analysis and Simulation Results 

 

In this section, the proposed model was applied to the same Milk-Listeria dataset, of course after 

imposing the one-step-ahead-prediction defined earlier. The inputs included the type of pressure 

level and the sampling time-step, while the output was related to the bacteria counts. Each 

“continuous survival curve” has been verified against the real experimental samples. Based on 

these continuous datasets, the capabilities of the proposed MWNN-LCW architecture has been 

verified as a one-step-ahead prediction system. Pressure levels of 400 MPa and 500 MPa have 

been used as testing datasets, while the remaining levels as training ones.  

Following the principles of nonlinear identification, NARX models using the MWNN-LCW, the 

MLP, the RBF and the Elman recurrent networks have been developed and comparative studies 

have been conducted. The training dataset, consisting of 204 data from 350, 450, 550, and 600 

MPa “continuous survival curves”, was employed, while 81 data from 400MPa and 51 data from 

500MPa curves were kept for validation.                                               

During trials, it has been found that the model is sensitive to the previous number of bacteria 

counts, thus proving its dynamic behaviour. In the proposed MWNN-LCW, 6 Morlet wavelet 

functions have been used, while the network’s learning parameter vector was  

[ ]m n[ , , ] 0.1,0.1,0.2λ = η η ζ = . The hybrid parameter learning algorithm has been utilised, which 

resulted a quick training of 5 epochs. Figure 4.18d shows the performance of the WNN model, 

especially against the real experimental points from the training survival curves. Following the 

principles of nonlinear identification, NARX models using the MWNN-LCW, the MLP, the RBF 

and the Elman recurrent networks have been developed. The training dataset, consisting of 204 

data from 350, 450, 550, and 600 MPa “continuous survival curves”, was employed, while 81 data 

from 400MPa and 51 data from 500MPa curves were kept for validation. The following structure 

has been adopted as a NARX model: 

                                                    

                                             ( )Count(t 1),Count(t 2), MPaCount(t) f − −=  
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Fig 4.18 -  Survival curves of Listeria monocytogenes in UHT whole milk during high pressure 
processing at 350 MPa (�), 450 MPa (▲), 550 MPa (�), and 600 MPa (■), generated by the re-
parameterised Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and 
the wavelet neural network (d). Data points are mean values of two independent experiments with 
two replications each 
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The fitting performance of the developed WNN was comparable with the statistical models based 

on the comparison of the same indices (Table 1), as the root mean square error index ranged from 

0.054 to 0.124, while the values of 2R  were also high (> 0.989). The high fitting performance of 

the WNN approach was expected as the network has been trained on these particular datasets. 

Results showed that the WNN was more effective in predicting the response of the pathogen 

compared with statistical models as illustrated by graphical plots (figure 4.19, 4.20), implying that 

although the WNN has been trained on different survival curves, it has managed to learn the 

underlying process with high accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig 4.19: Observed values and predicted survival curves of Listeria monocytogenes in UHT whole 
milk during high pressure treatment at 400 MPa, generated by the re-parameterised Gompertz 
model (a), the modified Weibull model (b), the Geeraerd model (c), and the wavelet neural 
network (d). Data points are mean values of two independent experiments with two replications 
each. 
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 Fig 4.20 - Observed values and predicted survival curves of Listeria monocytogenes in UHT 
whole milk during high pressure treatment at 500 MPa, generated by the re-parameterised 
Gompertz model (a), the modified Weibull model (b), the Geeraerd model (c), and the wavelet 
neural network (d). Data points are mean values of two independent experiments with two 
replications each. 
 

Two other approaches, based on neural network technology, the RBF and MLP schemes were 

constructed with the same input structure as the WNN. These two well-established networks are 

known for their generalisation capabilities despite the fact they have different learning strategies 

(global vs. local). An RBF network tends to converge rapidly compared with the MLP one. The 

RBF network based on the OLS algorithm contained 30 Gaussian nodes in the hidden layer and 

one spread parameter σ for all input variables( 0.25)σ = . In contrast to RBF, the MLP network 

structure consisted of two hidden layers (12 and 6 nodes for each hidden layer) and a single 

sigmoidal output node. The learning algorithm was responsible for the MLP’s slow convergence, 

which took approximately more than 5000 epochs. Figure 4.21 & 4.22 illustrate the MLP and RBF 

performances for both testing survival curves. 
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The use of dynamic neural networks presents an alternative solution to the specific problem. Here, 

the focus was to use one dynamic network (Elman) that was given some kind of memory to 

encode past history, with the additional requirements of short training time. The improved, 

compared to the standard MLP structures, results reveal the advantages of using memory neuron 

structures. The inclusion of memories and the related recurrence in the first hidden layer, enable 

the network to carry out accurate predictions. Although this method is dependent on the number of 

“memories” in the “recurrent” nodes and therefore it can be considered as a partially recurrent 

network, it proved to be one faster in training time than the MLP scheme. In this specific Elman 

network, 8 and 4 nodes have been used for the two hidden layers. Figure 4.21 & 4.22 illustrate the 

Elman network’s performance for both testing survival curves. 

The relevant figures from Table 4.5 indicate again an improved performance for WNN. Especially, 

the high-nonlinear features of 400MPA curve proved to be difficult to be modelled from the other 

models. 

 

 

 

 

 

 

 

 



114 
 

 
Fig 4.21 - Survival curves of Listeria monocytogenes during high pressure treatment at 400MPa  
                 fitted with different modelling schemes 
 

 
Fig 4.22 - Survival curves of Listeria monocytogenes during high pressure treatment at 500MPa  
                  fitted with different modelling schemes 
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                TABLE 4.5 – MWNN-LCW and other methods Statistical index comparison.  

 Model  Testing Data sets 
400MPa 500MPa 

Coefficient of determination (R2)  MLP  0.9937 0.9963 
MWNN  0.9985 0.9999 

RBF  0.9975 0.9992 
Elmann 

NN  
0.9926 0.9983 

Root mean square error (RMSE)  MLP  0.2126 0.1151 
MWNN  0.0670 0.0198 

RBF  0.1014 0.0494 
Elmann 

NN  
0.1800 0.0761 

Mean absolute percentage error (MAPE) (%)  MLP  17.8272 2.4127 
MWNN  2.0035 0.3659 

RBF  5.3391 0.8871 
Elmann 

NN  
8.9175 1.4507 

Mean Square Error  MLP  0.0452 0.0132 
MWNN  0.0045 0.0003912 

RBF  0.0103 0.0024 
Elmann 

NN  
0.0324 0.0058 

Standard error of prediction (SEP) (%)  MLP  8.8778 2.6101 
MWNN  2.7967 0.4485 

RBF  4.2339 1.1209 
Elmann 

NN  
7.5142 1.7250 

Bias factor (Bf)  MLP  1.1186 1.0084 
MWNN  1.0137 0.9982 

RBF  1.0469 0.9973 
Elmann 

NN  
1.0614 0.9911 

Accuracy factor (Af)  MLP  1.1336 1.0244 
MWNN 1.0198 1.0037 

RBF  1.0512 1.0089 
Elmann 

NN  
1.0733 1.0147 
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                                Fig 4.23 - Epochs using Hybrid Method for MWNN structure 

 

                               Fig 4.24- Epochs using only Gradient Descent for MWNN structure                
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                TABLE 4.6 –Convergence comparison of existing models on prediction problem 
 

 Epochs 
(Ave.) 

Independent 
Parameters 

Target 
Training MSE 

MWNN-LCW using GD only 721 375 0.00005 

WNN-LCW  
Using Hybrid method 7 375 0.00005 

MWNN-LCW  
With Multiplication Layer 

using Hybrid Method 
4 114 0.00005 

MWNN-LCW  
With 

using GD only 
736 475 0.00005 

MWNN-Static Weights 1620 225 0.00005 

 

The wavelet specifications are listed in Table 4.7. As we know three inputs, out of six inputs, are 

simply delayed version of the other inputs so it can be easily justified that why the corresponding 

wavelets in  input 1,2 and 3- after parameter learning- end up with almost similar scales and 

translations. The scales input 5 and 6 ( of course input 5 and input 6 are both delayed versions of 

output ) remain the same throughout the nodes which may imply the fact that there is only one 

dominant frequency in them.                                                                         

                        TABLE 4.7– Wavelet Parameters of  MWNN-LCW after Optimisation            

_______________Dilation_________________                           _________Translation_______________ 

Node  Input1   Input2     Input3      Input4       Input5      Input6       Input1       Input2     Input3      Input4     Input5 Inpu6       

1 -0.8307 0.28677 0. 0.28677 -3.01 -3.0379 0.43937 0.80117 0.80117 0.80117 1.546 1.5645 

2 -1.5168 -0.0041 -0.0041 -0.0041 -3.01 

 

-3.0378 0.43815 0.49301 0.49301 0.49301 1.546 1.5648 

3 -1.5166 -0.009369 -0.0093 -0.0093 -3.01 

 

-3.0379 0.44046 0.78455 0.78455 0.78455 1.546 1.5644 

4 -0.8302 0.26699 0.26699 0.26699 -3.01 

 

-3.0379 0.43888 0.48505 0.48505 0.48505 1.546 1.5644 

5 -1.5186 0.27192 0.27192 0.27192 -3.01 

 

-3.0379 0.44015 0.794 0.794 0.794 1.546 1.5644 

6 -0.8290 0.05435 0.05435 0.05435 -3.01 

 

-3.0378 0.72172 0.48495 0.48495 0.48495 1.546 1.5647 
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Chapter  5 

Data Clustering Techniques 

 

The world we are living is saturated with overwhelming amount of data. On daily basis, people 

encounter a large amount of information to store or for further analysis and management.  One of 

the vital means in dealing with these data is to classify or group them into a set of categories or 

clusters[98]. Clustering is an effective approach to identification of complex non-linear systems by 

partitioning the available data into subsets and approximate each subset by a simple model.  

Clustering techniques are among the unsupervised (learning) methods, since they do not use prior 

class identifiers. Most clustering algorithms also do not rely on assumptions common to 

conventional statistical methods, such as the underlying statistical distribution of data, and 

therefore they are useful in situations where little prior knowledge exists. 

The aim of clustering is furnished by gathering the objects are more similar to each other in one 

cluster. The term “similarity” in many cases considered as a distance norm  from a data vector to a 

prototype object called as centre[99, 100].  The concept of dissimilarity (or distance) is the 

essential component of any form of clustering that helps us navigate through the data space and 

form clusters. By computing dissimilarity, we can sense and articulate how close together two 

patterns are and, based on this closeness, allocate them to the same cluster[101]. 

While most classical clustering algorithms assign each datum to exactly one cluster, thus forming 

a crisp partition of the given data, fuzzy clustering allows for degrees of membership, to which the 

transitions of the subsets are gradual rather than abrupt (soft membership).  In fuzzy clustering, 

instead of determining whether or not an event occurs, as is the case with probability, fuzziness 

measures the degree to which an event occurs. Thus the membership degree shared among various 
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clusters. This creates the concept of fuzzy boundaries which differs from the traditional concept of 

well-defined boundaries[102].  

 

5.1 Fuzzy Partitions 

 

The objective of clustering is to partition the data set X into C clusters. For the time being, let us 

assume that C is known, based on prior knowledge. In every fuzzy clustering method there is a 

fuzzy partition matrix ni N C[ ]γ γ ×= which demonstrates the degree of membership of each sample 

to cluster c. niγ   are the values of the membership function of the i-th fuzzy subset of nX  we 

assume that niγ are constrained labels satisfying  

 

                                                                   
j i

C

j i
i 1

N

j i
j 1

0 1

1

0 N

γ

γ

γ

=

=

≤ ≤

=

< <

∑

∑
                                                (5.1)                                              

 

Where the latter, means no existence of empty clusters [100].  

Most fuzzy clustering algorithms are objective function based: they determine an optimal (fuzzy) 

partition of a given data set X = { jx  | j = 1, . . . , N} into c clusters by minimizing an objective 

function. 

                                                         
C N

s
ji ji

i 1 j 1

J(X, ,C) d
= =

ϒ =∑∑γ                                                        (5.2) 

where j id is the distance between datum jx  and cluster i. The parameter s, s > 1, is called the 

fuzzifier or weighting exponent. It determines the “fuzziness” of the classification: with higher 

values for s the boundaries between the clusters become softer, with lower values they get 

harder[103]. The value of the cost function (eq 5.2) is a measure of the total weighted within-

group squared error incurred by the presentation of the C clusters normally defined by their 

prototype iµ . Statistically, eq (5.2) can be considered as a measure of the total variance of each 

data vector x from iµ . 
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This approach is usually called probabilistic fuzzy clustering, because the membership degrees for 

a datum formally resemble the probabilities of its being a member of the corresponding clusters. 

The minimization of the eq(5.2) represents a non-linear optimization problem that can be solved 

using a variety of available methods. Some of the most popular methods presented in this chapter. 

 

5.2  Distance Norms 

 

The distance measure D in 5.2 has the general format of   

 

                                                           T 1
i id (x ) (x )−= − µ Σ − µ                                                (5.3) 

 

The shape of the clusters is determined by the certain Σ in distance measure (eq 5.3). A common 

choice is IΣ =  , which induces the standard Euclidean norm: 

 

                                                           T
i id (x ) (x )= − µ − µ                                                     (5.4) 

The Euclidean norm induces hyperspherical clusters, i.e., clusters whose surface of constant 

membership are hyperspheres. Σ can be selected as a P P× diagonal matrix that accounts for 

different variances in the orientations of the coordinate axes of  X. In this case, Matrix induces a 

Diagonal norm on Pℝ .  
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                                                (5.5) 

 

Finally, Σ  can be realized as the inverse of a P P× Covariance Matrix of X  

                                                           
N

T
M j j

j 1

1
(X X)(X X)

N =

Σ = − −∑                                      (5.6) 

The  X  shows the sample mean of data. In this caseΣ is the Mahalanobis norm on Pℝ .                                       
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Both the diagonal and the Mahalanobis norm generate hyperellipsoidal clusters, the difference is 

that with the diagonal norm, the axes of the hyperellipsoids are parallel to the coordinate axes 

while with the Mahalanobis norm the orientation of the hyperellipsoids is arbitrary. 

 

5.3  Fuzzy C-Mean Clustering 

 

Fuzzy c-means is one of the most commonly used fuzzy clustering techniques for different degree 

estimation problems. FCM determines each cluster location using maximum membership 

defuzzification and neighbourhood smoothing techniques. FCM employs two simple and 

straightforward statistical features, namely mean and standard deviation. This  method developed 

by Dunn in 1973[104] and improved by Bezdek in 1981 [105], proposes a generalisation by means 

of a family of objective function and is frequently used in pattern recognition. It is based on the 

minimisation of the following objective function: 

                            
C N

s
ji i j

i 1 j 1

J(X, ,C) x
= =

ϒ = −∑∑γ µ                                              ( 5.7) 

As denoted, Fuzzy C-Mean Clustering uses Euclidian distance in its cost function. All parameters 

are all described earlier and || . || is any norm expressing the similarity between any measured data 

and the centre. The centroid of a cluster is the mean of all points, weighted by their degree of 

belonging to the cluster:             

                                                           

N
s
ij j

j 1
i N

s
ij

j 1

.x
=

=

γ
µ =

γ

∑

∑
                                           (5.8)  

This iteration will stop when 1{| |}  , where k k
ij ijγ γ ε ε+ − <  is a termination criterion between 0 and 

1, whereas k  are the iteration steps. The degree of belonging is related to the inverse of the 

distance to the cluster, then the coefficients are normalised and fuzzified with a real parameter 

1s>  so that their sum is 1.  
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                                i j 2
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 − µ 

∑

                                             (5.9)            

 

Several investigations have been made on the best value to choose for the fuzzification exponent, s, 

which is chosen a priori.  A recent study[106] concludes empirically that m = 2.0  is a “good” 

value. For s equals to 2, this is equivalent to normalising the coefficient linearly to make their sum 

one. The algorithm determines the following steps:   

 

Step 1. Randomly initialising the membership matrix γ . 

       Step 2. Calculating the centroid ic by using eq (5.8). 

       Step 3. Compute dissimilarity between centroids and data points using eq(5.4). Stop if                  

                    its   improvement over previous iteration is below a threshold. 

        Step 4. Compute a new γ  using eq(5.9). Go to step 2. 

The FCM algorithm has proven to be a very popular method of clustering for many reasons. In 

terms of programming implementation, it is relatively straightforward. It employs an objective 

function that is intuitive and easy-to-grasp. Because of its fuzzy basis, it performs robustly: it 

always converges to a solution, and it provides consistent membership values. 

FCM strength over the famous K-Means algorithm[107] is that, given an input point, it yields the 

points membership value in each of the classes. On the other hand the weaknesses are: 

• It requires the number of clusters to look for to be known as a priori 

• Initialisation 

• If the iterative algorithm commonly employed for finding solutions of the FCM objective 

function is used, it may find more than one solution depending on the initialisation. This 

relates to the general problem of local and global optimisation. 

• Fuzzy C-Means (FCM) clustering method discovers spherical clusters with equal volumes 

and density. However,  in a number of real data problems as performance analysis, time-

series data as well as some forecasting and modelling tasks the identified clusters are not 
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spherical as they are presumed to be characterized with a different  shape and orientation 

in the  space. 

• Its accuracy is sensitive to noise and outliers. 

5.4  Gustafson – Kessel Clustering 

 

The Gustafson-Kessel (GK) algorithm[108] is another powerful clustering technique with a large 

number of applications in various domains including image processing, classification and system 

identification. FCM algorithm as already mentioned uses point prototypes and an Euclidian norm-

induced distance measure. As a consequence, its performance is acceptable only when the data set 

contains clusters that are well-apart or when clusters of approximately the same size and shape, 

whereas,  

GF extended the standard fuzzy C-mean algorithm by employing and adaptive Mahalonobis 

distance norm, in order to detect clusters of different geometrical shape by estimating the cluster 

covariance matrix. In addition it is relatively insensitive to the data scaling and initialization of the 

partition matrix[109]. The Gustafson–Kessel algorithm is based on iterative optimization of an 

objective functional very similar to c-means type: 

 

                                         
C N

s T
i ji i j i i j

i 1 j 1

J(X, ,C,{A }) ( x ) ( x )
= =

ϒ = − Σ −∑∑γ µ µ
                                   (5.10)

 

In this objective function, the number of clusters has to be fixed in advance.  The distance norm  

iij{ }d Σ  can account for clusters of different topology[110].  This algorithm is capable of detecting 

ellipsoidal cloud clusters of dissimilar sizes and orientations. The minimization of the GK 

objective functional is obtained by using the optimization method according to the following 

popular algorithm 

 

Step 1. Computing the cluster centres (prototypes) 
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Step 2. Compute the cluster covariance matrices 

 

                                            

N
k 1 s k T k
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                                           (5.12)

 

The matrix iΣ  determines the shape and orientation of the selected cluster.  Thus, the GK 

algorithm employs an adaptive distance norm unique for every cluster as the norm inducing matrix 

iΣ   is calculated by estimates of the data covariance: 

Step 3. Compute the distances  

                                                 
i

1/P

i ik T k
ij{ } j i j i

i

d (x ) (x )[ ]Σ

ρ Σ
= − µ − µ

Σ
                                (5.13)                     

Without any prior knowledge, the cluster volumes iρ  are simply fixed at one  for each cluster.   

Step 4. Update the partition matrix 

The GK algorithm like other FCM-based clustering algorithms utilises the Lagrange multiplier 

method to minimize the cost function. It iteratively determines the membership degree  
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The algorithm runs until k k 1−γ − γ < ε . 

The GK suffers from a numerical problem mostly occurs in Step 3 of the algorithm, where the 

cluster covariance matrix iΣ   is inverted. In case of small number of data samples or when the 

data inside a cluster are linearly correlated, the covariance matrix may approach to singularity. 

Under this scenario, the computed covariance matrix is not a reliable estimate of the underlying 

data distribution.  
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5.5  Gath-Gava Clustering 
 
 
The algorithm by Gath and Geva (GG)[111] is an extension of the Gustafson-Kessel(GK) 

algorithm that also takes into account the size and density of the clusters [107].  GG clustering 

algorithm are also based on minimization of the aforementioned objective function which its 

parameters have been explained in the previous section. 
                                            

 

The most important part of objective function J, which is the characteristic of different fuzzy 

clustering methods, is the distance function ijD . GG assumes that the i’th Gaussian distribution 

with expected value ic  and covariance matrix iΣ  is chosen for generating a datum, with a priori 

probability iP ,hence, in the GG method ijd - distance of the jth data point from the ith cluster - is 

defined as follows : 

                                          
T 1i

ij j i i j i

i

P 1
d exp( (x ) (x ))

2det( )
−= −µ Σ −µ

Σ
                           (5.15) 

 
where the parameters of each cluster,  iµ and iΣ  are centre and covariance respectively of  i’th 

cluster. iP  is the priori probability, known also as the coefficient designed for eliminating the 

sensitivity of the algorithm to number of data points in different clusters which is computed by the 

following formula        
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s
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                                                    (5.16) 

Minimization of the objective function with respect to membership degree by considering the fact 

that sum of membership values of a data point to all clusters becomes one, leads to the following 

equation for computing ijγ : 
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In the GG algorithm, centre and covariance matrix of clusters and membership degree of data 

points are estimated in the following iterative process[112] : 

 

Step 1.Choose number of clusters, initial values of centre and covariance matrix for each cluster. 

Step 2. Calculate distances of data points to all clusters using eq(5.12). 

Step 3. Compute degree of membership for all data points using eq(5.14). 

 

Step 4. Estimate centre and covariance matrix for each cluster using the following equations. 
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Step 5. Go to the second step until a termination criterion satisfies. 

 
 
 
5.6  Subtractive Clustering 
 

Clustering algorithms typically require the user to pre-specify the number of cluster centres and 

their initial locations; the locations of the cluster centres are then adapted in a way such that these 

can better represent a set of data points covering the range of data behaviour. Fuzzy Subtractive 

approach is a fast, one pass algorithm for estimating the number of clusters and clusters centres in 

a set of data.  The subtractive clustering method assumes each data point is a potential cluster 

centre and calculates a measure of the likelihood that each data point would define the cluster 

centre, based on the density of surrounding data points[113]. For better results it is recommended 

to normalize each point into a unit hyper-box to make each dimension identical[114, 115].The 

algorithm starts by finding the first large cluster, and then goes to find the second, and so on[116]. 

The algorithm is illustrated in the following lines: 
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• Selects the data point with the highest potential to be the first cluster centre. It is done by 

introducing a potential measure at data point jx , defined as  

                                           

2
N

j k

j 2
k 1 a

x x
Pot exp( )

(r / 2)=

−
= −∑  j 1,...,N=                                                (5.19) 

 Where  ar   is a positive constant representing a neighbourhood radius and 2

j kx x− is the square 

of Euclidean distance between  jx and kx . Hence, a data point will have a high density value if it 

has many neighbouring data points[117]. After calculating the potential for each vector, the one 

with the higher potential is selected as the first cluster centre[105]. 

 

• Remove all data points in the vicinity of the first cluster centre (as determined by radii of all data 

points to the newly selected cluster centre) in order to determine the  next data cluster and its 

centre location.  The first cluster centre c1x  is chosen as the point having the largest density value 

c1Pot . Next, the density measure of each data point jx is revised as follows: 

 

                                          

2

j c1

j j c1 2
b

x x
Pot Pot Pot exp( )

(r / 2)

−
= −                                                    (5.20) 

 

Usually the  br variable is taken to be as a1.5r .  

The process of acquiring new cluster centre is based on potential value in relation to an acceptance 

threshold ε , rejection threshold ε , and the relative distance criterion. A data point with the 

potential greater than the acceptance threshold is directly accepted as a cluster centre. The 

acceptance of a data point with a potential between the upper and the lower thresholds depends on 

the relative distance equation, defined as 

 

                                                            min k

a 1

d Pot
1

r Pot
+ ≥                                                            (5.21) 

 

where mind  is the shortest distance between the candidate cluster centre and all previously found 

cluster centres. If (5.21) is greater than 1, then the associated x will be considered as a new cluster 

centre. 
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• Iterates on this process until a sufficient number of clusters is attainted. Since the algorithm is 

fixed and does not rely on any randomness, the results are fixed. However, we can test the effect 

of the four parameters, namely, acceptance ratio ε  , reject ratio ε , cluster radius ar and squash 

factor br .These parameters have influence on  the  number of clusters and error performance 

measures. Large values of ε  and ε  will result in small number of  rules.  Conversely, small 

values of  ε and ε  will increase the number of clusters. A large value of ar  generally results  in 

fewer clusters that lead to a coarse model[117, 118]. A small value of ar  can produce excessive 

number of clusters that may result in an over-defined system. 

 

 

5.7  Gaussian Mixture Models (GMM) and Expectation    

       Maximization(EM) 

 

In the probabilistic point of view, data can be assumed to be generated according to several 

probability distributions. They can be derived from different types of probability density functions 

(e.g., multivariate Gaussian distribution), or the same families, but with different parameters[98]. 

In such a mixture model the probability density function of the process that generated the data is 

assumed to be a mixture of a certain number of probability density functions, each of which is 

described by a cluster[119]. 

A Gaussian Mixture Model (GMM) is a parametric conditional probability density function 

represented as a sum of Gaussian component densities in some proportions. These types of models 

rely on the assumption that the data comes from a known distribution (usually Gaussian 

distribution). In GMMs “similarity” should be understood as the probability that a data belongs to 

a specific density. Most databases contain a large amount of categorical data, where the notion of 

distance as a clustering metric is not natural and has to be defined according to the case. Gaussian 

mixture models not only can be used for conditional density estimation, but due to their 

probabilistic nature they also provide means for dealing with the problem of missing data and 

active data selection.   
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5.7.1  Gaussian Mixture Model 

 

In a mixture model it is assumed that a given data set X = { jx
P∈ℜ | j = 1, . , N} has been drawn 

from a population of C clusters[120]. Each cluster is characterized by a probability distribution, 

specified as a prior probability, together with a conditional probability density function 

(cpdf)[121]. The data generation process may then be imagined as follows: first a cluster c,  

c {1,  . . . ,  C}∈ is chosen for a datum, indicating the cpdf to be used, and then the datum is sampled 

from this PDF. The weighted sum (mixture probability) of a given and finite C component 

Gaussian densities for an individual member of dataset jx expressed as 

                          C
p

j i i j j i j
i 1

p ( x | ) P ( ) p ( x | z , ) x
=

Θ = θ θ ∈∑ ℝ
                             (5.22)                                                                      

                                                                                                 
p(x | )Θ  

                                                                                                                          

                                            Fig 5.1 – Gaussian Mixture Model  

 

Here z is a random variable that has the cluster indices as possible values and associate to each jx  

we have jz . i j j ip (x | z , )θ is the i’th component (cluster) conditional density given the cluster 

specified by z.  

 

                 

T x 1
i j j i j i i j iP/2 x

i

1 1
p (x | z , ) exp( (x ) ( ) (x ))

2(2 ) | |

−θ = − − µ Σ − µ
π Σ

                    (5.23) 

 

 

X  

2P( )θ  
1P( )θ  

CP( )θ  

2p Cp1p

Σ
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Each Gaussian function as in eq (5.23) is integrated to one 

  

                                                   
P

i j j ip (x | z , )dx 1
ℜ

θ =∫
                                                         (5.24)        

 

The variable 
T

j 1 2 PX [x ,x ,...,x ]=   is multivariate input random vector in P dimensions, 

describing the attribute values of the data points. 1 C{ ,..., }Θ = θ θ  representing the unknown set 

of parameters for all clusters. In case of Gaussian components, the mixture density contains the 

following adjustable
 
parameters for each iθ :  

mean T
i 1 2 p[ , , ..., ]µ = µ µ µ which is a p 1×  dimensional matrix containing corresponding centres 

of the one-dimensional Gaussians as components (T denotes the vector transpose) and the other 

tuneable parameter is covariance matrix 1i i1 i2 iPdiag(1/ ,1/ ,...,1 / )σ σ σ−Σ = which is the inverse 

of p p×  covariance matrix created by product of P one-dimensional Gaussians.  

iP( )θ is the probability of  i’th component which also reflects the relative importance of each 

cluster and since usually each point is assumed to belong to just one distribution and in eq(5.22)

jp(x | )Θ is a density function, it must be non-negative and integrate to one as well[122]. We have 

                                                          

p P P

C C C

j i i j j i i i j j i i
i 1 i 1 i 1

1 p(x | )dx P( )p (x | z , )dx P( ) p (x | z , )dx P( )
ℜ ℜ ℜ

= = =

= Θ = θ θ = θ θ = θ∑ ∑ ∑∫ ∫ ∫
           (5.25)

 

Hence, as eq (5.25) states,   

                                                                
C

i
i 1

P( ) 1
=

θ =∑ .                                                             (5.26) 

The goal is to find the parameters Θ  and iP( )θ  that maximizes the likelihood (or minimizes the 

minus likelihood). 

 

5.7.2  Maximum Likelihood Estimation (MLE) 

 

Given a set of parameter values, the associated PDF demonstrates that which data are more likely 

than others.  In reality, however, we have already known/observed the data. Accordingly, we have 

to deal with inverse of the problem: Given the observed data and a model of interest, searching for 
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one PDF, among all the probability densities that the model presents, that is most probable to have 

generated the data[123]. In order to find solution for this inverse problem, we define the likelihood 

function by swapping the roles of the sample vector x and the parameter vector θ in p(x | )θ i.e. 

                                               

                                                                L( | x) p(x | )θ = θ                                                    (5.27) 

Hence, L( | x)θ  is the likelihood of parameter θ . To alleviate the computational load, the MLE 

estimate is obtained by maximizing the log-likelihood function Log(L( | x))θ . Quality of a given 

set of parameters Θ  is determined by how well the corresponding pdf model fits the data[124]. 

This is quantified by the log-likelihood of the data.  If the random observations are independent of 

each other, the probability of generating N observations jx (j=1,...,N) -  according to probability 

theory -  is the product.  Given as 

                                                  
N

1 N j
j 1

p({x ,..., x } | ) p(x | )
=

Θ = Θ∏                                                (5.28) 

or alternatively, in logarithm form 

                                                      

N

j
j 1

N

j
j 1

L( | X) log( p(x | ))

L( | X) log p(x | )

=

=

Θ = Θ

Θ = Θ

∏

∑
                                                (5.29) 

The so-called log-likelihood ,can ease the technical task[99]. Substituting eq(5.22) in eq(5.29) ,   

                                           
N C

i i i j j i
j 1 i 1

L( | X) log{ P(z ; )p (x | z , )}
= =

Θ =∑ ∑ θ θ                                     (5.27) 

In maximum likelihood estimation the unknown parameter 1 2 C{ , , ..., }Θ = θ θ θ is estimated so 

that the log-likelihood function is maximized by using a set of observed sample.  

 

                                                             Log(L( | x)) / 0∂ Θ ∂Θ =                                                 (5.30)                                                                

 

Unfortunately, since the solutions of eq(5.30) cannot be obtained analytically in most 

circumstances and therefore no closed-form solution for it, iterative routines are required to 

approximate MLE estimates. Among these methods, the Expectation-Maximization(EM) is one of 

the most popular schemes. 
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5.7.3   Jensens’s Inequality 

 

In order to connect the logarithm of sum to expectation operator later in the section, herby we 

explain briefly some useful results of Jensens’s inequality. 

Jensen’s inequality is often employed to bound the logarithm of a sum of terms: Given C non-

negative numbers 1 C, ,π π⋯ with the summation equal to one (it can be assumed as discrete 

probability distribution) and C arbitrary numbers 1 C,...,α α , as the result of convexity of the 

logarithm we can conclude that[122] 

                                                     
C C

i i i i
i 1 i 1

log log( )
= =

π α ≥ π α∑ ∑                                                 (5.31) 

Considering this inequality, some other useful expressions can be extracted out, such as                                                   

                                             
C C C

i i
i i i

i 1 i 1 i 1i i

log log log
= = =

π αα = α ≥ π
π π∑ ∑ ∑                                      (5.32) 

 The inequality in eq(5.32 )  associates the logarithm of a sum with expected value of logarithm.                                              

 

5.7.4   Expectation – Maximization for GMMs 

 

In this section the iterative computation of maximum-likelihood is discussed when the 

observations can be considered as incomplete data. Since each iteration of the algorithm consists 

of an expectation step followed by a maximization step we call it the EM algorithm[125]. These 

two steps are repeated until convergence. 

The general idea underlying the EM algorithm is to describe a value that is missing by a random 

variable. The domain of this random variable is the set of values that could be the actual, but 

unknown value. As a consequence, the likelihood of the data set becomes a random variable. This, 

of course, makes it impossible to maximize the likelihood directly, as it does not have a unique 

value anymore. However, since it is a random variable, we can compute its expected value and 

choose the parameters in such a way that this expected value is maximized.  

In order to apply EM, a standard approach to handle these problems consists in assuming that for 

each X, there is a discrete unobserved (hidden) indicator vector jz {1,...,C}∈ . The indicator vector 

specifies the mixture component from which the observation X is drawn[126]. Note that the 

combination of observations X and the ‘hidden-states’ Z constitute the complete-data[120, 124].  
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t t

t t

z

t t

z

L( | X) log p(X | )

log p(X | ) P(Z | X, )

log( P(Z | X, )p(X | ))

Θ = Θ

= Θ Θ

= Θ Θ

∑

∑

        

  

                                      (5.33)             

Equation above (5.33) maintains, simply because t

z

P(Z | X, ) 1Θ =∑ [107]. Considering the 

definition of conditional probability, we have 

                                                 
t

t
t

p(Z,X | )
p(X | )

P(Z | X, )

ΘΘ =
Θ

                                                             (5.34)                       

Using eq5.33 in eq5.34 and also Jensen’s Inequality (eq.5.32) the following results achieved  

                                                                 

                    

t
t t

t
z

t
t

t
z

t t t t

z z

p(Z,X | )
L( | X) log( P(Z| X, ) )

P(Z | X, )

p(Z,X | )
{P(Z | X, ) log( )}

P(Z | X, )

P(Z | X, ) logp(Z,X | ) P(Z | X, )logP(Z | X, )

ΘΘ = Θ
Θ
Θ≥ Θ
Θ

= Θ Θ − Θ Θ

∑

∑

∑ ∑

             (5.35) 

 

It might look that there are two random variables in eq (5.33-5.35) but the key issue is that X is 

constant and 1 2 C{ , , ..., }Θ = θ θ θ is a normal variable that wish to adjust and z is a random 

variable governed by it's the marginal distribution i ip(z | X, )θ  and it is dependent on both observed 

data X and current estimate of parameters[127].  Also, recalling that
z

E[h(z) | X x] h(z)p(z | x)= =∑ , 

therefore, eq (5.35) can be re-written as  

                 

                           T T 1 T T 1
z zE [logp(z,X | ) | X, ] E [logP(z | X, ) | X, ]θ θ θ θ− −−

                                    (5.36)

 

zE [ ] denotes expectation with respects to z. Thus, denote 

 

                                            T 1 T T 1
zQ( | ) E [logp(z,X | ) | X, ]− −=θ θ θ θ                                            (5.37) 
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The evaluation of expectation eq(5.37) called the E-Step. It is important to distinguish between the 

first and second argument of the Q functions. The second argument T 1X, −θ is regarded as fixed and 

known at every E-Step[128]. 

The second step of the algorithm is to maximize the expected value computed in the first step     

                                   

N

N

T T 1

T T 1
z

N
t 1

j j
j 1z {1,..,C}

N N
t 1

l l j j
j 1l 1z {1,..,C}

argmaxQ( , )

argmaxE [logp(z,X | ) | X, ]

argmax P(z | X, ) logp(x ,z | )

argmax { P(z | x , )} logp(x ,z | )

−

Θ

−

Θ

−

Θ =∈

−

Θ ==∈

Θ = Θ Θ

= Θ Θ

= Θ Θ

= Θ Θ

∑ ∑

∑ ∑∏

                      (5.38)                                                                                      

In the last step, we need a transformation, which replaces the complex sum over all possible 

vectors of cluster indices by a simple sum over the clusters. This transformation justified by 

Bilmes [129]. The final result is shown in the following equation 

                                         
C N

t
i j j j

i 1 j 1

arg max P( | x ) log p(x ,z | )
= =

Θ = θ θ∑∑                                            (5.39)   

In eq(5.39), i jP( | X )θ  computed by Bayesian rule as   

 

                    

T 1i
j i i j iP / 2

i

i j C
T 1i

j i i j iP / 2
i 1 i

P( ) 1
exp( (x ) ( ) (x ))

2(2 )
P( | x )

P( ) 1
exp( (x ) ( ) (x ))

2(2 )

−

−

=

− − Σ −
Σ

=
− − Σ −

Σ
∑

θ µ µ
π

θ
θ µ µ

π
                       (5.40) 

 

Eq (5.40) illustrates the relative probability of the different clusters at the location of each jx X∈  

with a given set of cluster parameters[130]. The basic idea behind the EM iterative algorithm is 

that we would like to find Θ in order to maximize ilogp(x,z | )θ , however we don’t have/know the 

data z. So instead, first we can find the expectation of ilogp(x,z | )θ  with the respect to unknown 

data z given the data X and our current estimate of Θ .  The whole procedure carried out 

explicitly declaring a variable representing the expectation of complete data as a function of the 

incomplete data X [131].                             
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Finding the derivative expressions with respect to every parameter in eq(5.39) and set them to zero, 

we obtain three groups of equations for the mean µ , standard deviations Σ  and mixing probability

P( )θ . Start with some initial guess (tiµ , t
iΣ , t

iP( )θ ), EM iterates the following computations until 

convergence to a local maximum of the likelihood function                               

           

N
t
i j j

j 1t 1
i N

t
i j

j 1
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t t 1 t 1 T
i j j i j i
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j 1
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t 1 t
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j 1

P( | x )X
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1
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+ +
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+
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θ

θ − µ − µ
Σ = = =

θ

θ = θ

∑

∑

∑

∑

∑

      (5.41) 

 
 
Note that the updating of eq(5.38) for each cluster and recursively eq(5.39), perform both the 

expectation step and maximization step simultaneously.  

 

 

5.7.5  Identification with Fuzzy Clustering  

 
The main aim of this research is the development of an efficient modelling and identification 

scheme.  In the system identification, the purpose of clustering is to find relationships between 

independent system variables, called the regressors, and future values of dependent variables, 

called the regressands [132]. One should however keep it in mind that, the relations defined by 

clustering are just associations among the data vectors, and as such do not yet constitute a 

prediction model of the given system. To achieve such a model, extra steps need to be taken. In the 

next chapter, in order to increase the efficiency of clustering algorithm, a clustering based 

algorithm is proposed. The main idea of these algorithms is that when the available input-output 

data set is clustered in the product space of the regressors and the model output, the obtained 

clusters would approximate the regression surface of the model.  
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Chapter 6 
 

Fuzzy Wavelet Neural Networks 
 
 
 
Neuro-fuzzy systems combine the learning ability of NNs and inference properties of fuzzy 

systems. In general, these systems derive fuzzy rules from a given input–output dataset. In Fuzzy 

Wavelet Neural Network, the aim is to combine Neuro-Fuzzy systems with wavelet functions in 

order to increase the performance of Neuro-Fuzzy and WNN systems significantly. Wavelets are 

known to have good modelling properties over a range of frequencies, and for this reason they 

have been used as activation functions in Neuro-Fuzzy systems, yielding fuzzy wavelet neural 

networks (FWNNs). 

In the literature, several combination of fuzzy and WNN for solving time-series prediction, system 

identification and control problems have been reported [133, 134], [135], [136], [137]. The FWNN 

proposed in [131] uses summation of dilated and translated versions of wavelet functions in 

consequent part of fuzzy rules for system identification and control purposes. In [132] three types 

of FWNN models were developed for prediction and identification of nonlinear dynamic systems. 

Each fuzzy rule is associated by a sub-WNN. The resulting network has been used for function 

approximation. These models use wavelet functions in the consequent part of fuzzy rules. In all the 

models, translation and dilation parameters of wavelet functions, weights, and constant terms are 

adjusted by fast learning (second order) gradient-based algorithms. 

However, models differ at the consequent parts of the fuzzy rules. In the first model, consequent 

parts consist of weighted summation of dilated and translated versions of single-dimensional 

wavelet functions. In the second model, consequent parts of the rules consist of radial function of 

wavelets and a constant term. In the last model, multiplication of single-dimensional wavelet 

functions and a constant term form the THEN part of fuzzy rules. In [135], a dynamic recurrent 

fuzzy wavelet network is proposed for identified nonlinear dynamic systems. In [136], the inputs 

enter into a discrete wavelet transform block, and then the output of this block is fuzzified and it 



137 
 

forms the input to a single NN. This model has been also used for system identification and control 

problems. In [137], the proposed model combines discrete wavelet transform with Takagi–

Sugeno–Kang (TSK) fuzzy systems and it consists of a set of IF–THEN rules and THEN parts 

which are series expansion of wavelets functions. This model has been also applied to system 

modelling. In [79], both sigmoid and wavelet functions are used in the hidden layer of a WNN and 

the output of this new WNN is calculated by multiplication and summation of these results. Then, 

this WNN is used in consequent parts of the IF–THEN rules in FWNN.  

This part of research presents fuzzy wavelet neural network that integrates wavelet functions with 

the TSK fuzzy model. The consequent parts of TSK type fuzzy IF–THEN rules are represented by 

either a constant or a function. As a function, most of the fuzzy and Neuro-Fuzzy models use 

linear functions. Here, the consequent part replaced by sequence of sub-WNNs explained in 

Chapter 4. FWNN systems can describe the considered problem by means of combination of sub-

WNNs constructed at consequence part of each rule. In FWNN, fuzzy rules provide the influence 

of each WNN to the output of FWNN. The use of WNN with different dilation and translation 

values allows capturing different behaviours and essential features of the nonlinear model under 

these fuzzy rules. Sometimes these systems need more rules for modelling complex nonlinear 

processes in order to obtain the desired accuracy. Increasing the number of the rules leads to 

increasing number of neurons in the hidden layer of the wavelet network. To improve the 

computational power of the FWNN system, we use clustering technique to avoid the development 

of a large and complicated network. 

 

6.1 Clustering Based -FWNN structure and Construction  
 

To improve the computational power of the neuro-fuzzy system, we use wavelets in the 

consequent part of each rule.  In this study we propose a new structure as in figure 6.1. In 

traditional ANFIS, consequent parts of the structure are linear functions and the gradient decent 

method is usually used to train the non-linear antecedent parameters. However in the proposed 

structure instead of a linear function, a novel Linear Combination Weight Wavelet Neural 

Network (LCW-WNN) recently presented by Amina et. al., [138] has been applied. The MWNN-

LCW model integrated two learning schemes; Weighted Least Square (WLS) and Extended 

Kalman Filter (EKF). Furthermore a Linear Combination Weight has been developed for further 

training speed and accuracy. 
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Since one cluster in the input-output space corresponds to one potential fuzzy logic rule, for 

constructing  the CB-FWNN, the first step of the structure learning is to determine the number of 

fuzzy sets in the universal of discourse of each input variable[139]. Fuzzy clusters, similar to fuzzy 

rules, are well suited for presentation of the resulting model to the user. Although the traditional 

cluster algorithm works on unsupervised datasets, the extension in this chapter allows cluster 

models to be built based output trajectory and then used directly as fuzzy rules, which are then 

optimized. The fuzzy wavelet neural network depicted in figure 6.1 has got a modular structure. In 

the first step the whole dataset enters the first block for finding the optimum number of clusters.  

In this research the number of clusters determined by subtractive clustering based on the training 

data as described in previous chapter and remains constant throughout. Once the number of 

clusters defined, the layout of the desired CB-FWNN can be sketched. During the training, 

candidate models representing possible states of a structure, are clustered using the EM technique 

described in previous chapter but with some modifications. The obtained clusters are multivariate 

Gaussians each with different size and orientation from the other. The outputs of the clustering 

block are the firing strength multiplied by the consequence part of the structure.  

At the consequence side, different scales of wavelet-neurons p
p p
i ix

(m , n )ϕ assigned for every 

dimension of the input. Although the number of different scales/translation allocated to each 

dimension is fixed, each of inputs can hire different scales/translations. By knowing the optimum 

number of clusters, the number of different scales which each input dimension going to be 

decomposed is then determined. In parallel, on the antecedent side, by knowing the number of 

clusters the number of fuzzy rules C and consequently the number of unknown parameters can be 

figured out.  In the proposed scheme all the clustering processes are done in Cartesian product 

space of the inputs X and outputs y with P+1 dimensional data. However, the final obtained 

clusters are in P dimension with centres in the domain of input data X. With this scheme the 

eq(3.26) can be re-formulated as 

                       

p p
i i

p p
j i 2

p
i
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j i j i j i j
i 1
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i 1 p 1
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 (6.1)                                                              
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    Fig6.1-Proposed CB-FWNN 
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Where the latter in eq(6.1) is obtained by substituting eq(4.52) and eq(4.53) in eq(3.26).  

Discussing from nonparametric regression point of view, the main goal of parametric regression is 

to estimate a function from the knowledge of a limited number of points j jŷ f (x )= . In many 

applications, the data-points are obtained experimentally and may even be corrupted with noise. 

Considering from standard non-parametric regression problem: Let (X,y) be a pair of random 

variables with values in PX ∈ℝ , y∈ℝ . Assume that j j jy f (x ) εεεε= + where jεεεε  is independent 

N(0, )σσσσ normally distributed variable. A function y=f(x) is the regression function of Y on X if 

                                                                   

                                                               f (x) E[y | X x]= =                                                          (6.2) 

                                                       

The regression problem can also be rephrased in the probabilistic framework, and as the 

conditional density  p(y | x)is also a mixture of Gaussians[140], therefore  

 

                                   

j j j
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j j j
jy

C C
i i j j i i

i i j i j
i 1 i 1j
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y p(x ,y )dy
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p(x )

[W (x )]p(x | )p( )
W P( | x )[ (x )]

p(x )= =

= =

= =

φ θ θ
= = × θ φ

∫
∫

∑ ∑

                          (6.3) 

 

i j(x )φ is the i’th output, out of C outputs of LCW-WNN for the j’th input vector . i j(x )φ  determines 

the contribution of each wavelet to the output of FWNN. i jW (X )  is the linear combination 

weight multiplying by i j(x )φ  , and i jP( | X )θ is the probability that the i’th Gaussian component is 

generated by the input vector jX as depicted in eq(5.40).  Merging the eq(6.1) and eq(6.3) gives us 

the final output based on dynamic of the proposed structure                                                                                                                              
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6.2 CB-FWNN Antecedent Parameters update 

 

The design of FWNN (figure 6.1) includes determination of the unknown parameters that are the 

parameters of the antecedent and the consequent parts of the fuzzy IF–THEN rules. In the 

antecedent parts, the input-output space is divided into a set of fuzzy regions, and in the 

consequent parts the system behaviour in those regions is described. As mentioned earlier, recently, 

a number of different approaches have been used for designing fuzzy IF–THEN rules based on 

clustering. 

EM could be a sophisticated candidate for training and estimate parameters for Fuzzy Multivariate 

membership functions. For each incoming pattern jx  rule firing strength can be regarded as the 

probability to which the incoming pattern maintained according to the corresponding PDF. The 

cluster parameters are estimated by Expectation Maximization knowing that EM approach avoids 

the numerical instabilities encountered in Gradient Decent and improved learning convergence, 

and the Wavelet Neural Network parameters are trained by Extended Kalman Filter and Weighted 

Least Square.  If we think of a conditional density function p(V| )θ that is governed by the set of 

parameters (θ  could be the means  µ
 and covariance Σ of Gaussian densities) and we also have a 

data set V=(X,y) of size N and P+1 as dimensionality, supposedly drawn from this density.  
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For the V data we have a Mixture of Gaussians that model the p(V | )θ as described in eq(5.23) 
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Where, 

      v T v 1 v
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1 1
p (v | ) exp( (v ) ( ) (v ))

2(2 ) | |

−

+
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θ µ µ
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Eq(6.5) can be further expanded according to probability theorem as follows: 

                         
C

j i i j i j j i
i 1

p(v | ) P( )p (x | )p(y | x , )
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The input distribution i j ip (x | )θ defines the domain of influence of cluster 

                   x T x 1 x
i j i j i i j i(P)/2 x

i

1 1
p (x | ) exp( (x ) ( ) (x ))

2(2 ) | |

−θ = − − µ Σ − µ
π Σ

                      (6.8)     

 And the output distribution considered as  

                          
T

j i j j i j
j j i 22

yy

(y (X )) (y (X ))1 1
p(y | x , ) exp( )

22

− φ − φ
θ = −

σπσ
                   (6.9) 

So, eq(6.7) can be re-written  
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In order to find out the probability of a cluster, of which, a data pair is generated we use eq(5.40) 

in form of  
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    (6.11) 

 

By taking the partial derivatives of eq(6.10) with respect to parameters and set it to zero and also 

taking into account eq(6.4) the equations for updating the parameters at each step is calculated as 
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      (6.12)                                       

 

 

6.3 Estimation of local linear models 

 

A common choice for the cost function to estimate ω  is the squared error. We assume that every 

local linear model is assigned with an equal weight to the error at all times while applying Least 

Square method[141]. In our case iW  in each model is fired by different rule weights, based on that, 

Weighted Least Square (WLS) is applied to estimate the linear model parameters. The number of 

parameters in each linear model is equal to (p+1) which P is the dimension of the input data. 

Associated to each cluster, there is one linear model, so the total number of parameter to estimate 

in local linear models is ( )C p 1× + .The least square parameter estimating is accomplished by 

minimizing the following condition[140] 

                                         d T d
ext i i ext i

1
J min (y X ) (y X )

Nω
= − ω ϒ − ω                                                       (6.13) 

 extX is the input data matrix extended by a unitary column and the  iϒ  is  an N-by-N matrix having 

membership degrees multiplied by  the output of product layer from wavelet network on its main 

diagonal                                        

                

i i i
1 1 i 1 1

i i i
2 2 i 2 1
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i i i
N N i N 1

0 00 0p( | v )

0 0p( | v )0 0
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⋯ ⋯

⋯ ⋯

⋮ ⋮⋮ ⋱ ⋮ ⋱⋮ ⋮

⋯ ⋯

                                (6.14) 

To determine an estimate of the Linear Combination parameters by least squares (LS) 

minimization of J,  
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                                                T 1 T d
i ext i ext ext i(X X ) X y−ω = ϒ ϒ                                                       (6.15) 

 

iω  is a (P+1)– by – 1 vector of coefficients.  

Note that the value of N is typically in the hundreds, whereas the value of C is typically 5–15. 

Thus the conditioning of the matrix Text i extX Xγ , is generally good and does not pose problems for 

the inversion required by eq(6.15). 

 

6.3.1 Extended Kalman Filter 

 

Kalman filter (KF) is widely used in studies of dynamic systems, analysis, estimation, prediction, 

processing and control. KF is a set of mathematical equations which provide an efficient 

computational solution to sequential systems. The filter is derived by finding the estimator for a 

linear system, subject to additive white Gaussian noise. However, the real system is non-linear; 

Linearization using the approximation technique has been used to handle the non-linear system. 

This extension of the nonlinear system is called the Extended Kalman Filter (EKF)[142]. 

Consider the following discrete-time nonlinear stochastic system: 

                                                               

                                            
k k 1 k 1

k k 1 k
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−

α = α +
 = α +

                                                                  (6.16) 

 

Where kX and kY denote the state vector and the measurement vector at the time k, respectively, 

f(.) is a non-linear representation and h(.) is a non-linear observation model.  If the nonlinearities 

in eq (6.16) are sufficiently smooth, we can expand them around the state estimate using Taylor 

series 
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The random variables kW and kV represent the artificial additive process and measurement noises. 

They assumed to be independent ( of each other), white, and with the following statistic 

characteristic[143] 

 

                                           

T
k k j k kj

T
k k j k kj

T
k j

E[W ] 0 E[W W ] Q

E[V ] 0 E[V V ] R

E[W V ] 0

 = = δ

 = = δ
 =

                                   (6.18)                    

 

Where E is the expectation operator and kjδ  is the Kronecker delta. kQ denotes the covariance 

matrix of process noises, kR is the covariance matrix of the measurement noises. The main idea of 

EKF is to expand the nonlinear functions f( . ) and h( . ) at the point of filtered values α̂  by means 

of the Taylor series neglecting higher-order terms in eq(6.17). The Extended Kalman Filter 

algorithm includes two groups of equations 

 

The prediction equations: 

                                 
k,k 1 k
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k,k 1 k,k 1 k 1 k,k 1 k 1
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P P Q

−

− − − − −

α = α

= ϒ ϒ +
                                                            (6.19) 

In the equation above, let us define by k,k 1
ˆ −α  the predicted value of the state vector at time k 

based on all information available before time instant k, and k ,k 1P −  its associated covariance error 

matrix. 

                                                                

The measurement equations: 
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                                                (6.20) 

 

kL is the Kalman Gain matrix. 
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6.3.2 Estimating Wavelet Neural Network (WNN) parameters using EKF 

 

In this section we briefly outline how EKF can be applied to WNN network optimization 

illustrated in figure 6.1. Let the Transitions and Dilations of the feed-forward WNN be the states 

of the extended Kalman filter and the final output of the network be the measurements of the filter. 

Let us suppose that there are C centres for each dimension and the dimensionality of data is P, and 

associated (C + 1) linear component output weights. The updating of Linear Weights is described 

in the previous section so they are excluded from EKF estimation. In order to cast the optimization 

problem in a form suitable for Kalman Filtering, we let the elements of the Translation and the 

elements of the Dilations constitute the state of a nonlinear system α , and we let the output of the 

WNN network constitute the output of the nonlinear system to which the Kalman Filter is applied. 

α is considered as an array which all WNN parameters are arranged in there. 

 

                1 2 c 1 2 c 1 c 1 c
1 1 1 p p p 1 1 p pm m m m m m n n n n α =  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

The actual output at k’th iteration of the optimization algorithm is given as 

                                              
T

1 N

T
k 1 N k

y [y y ]

ˆ ˆ ˆh( ) [y y ]

=

θ =

⋯

⋯                                                                     (6.21)                                                           

k
ˆh( )θ is the actual output of the WNN network given the WNN parameters at the k’th iteration of 

the Kalman recursion. kH is the partial derivative of the WNN output with respect to the WNN 

network parameters at the k’th iteration of the Kalman recursion. It is denoted as below 
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Where  
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                                                                                                                                                   (6.23) 

 

DilationH and TransH are both [C P] N× × matrix and KH in eq(6.22) is an [2 C P] N× × × . Having the KH

matrix ready, we can now execute recursively the eq(6.20)  

 

6.4  TSK CB-FNN  

 

Some approaches for modelling TSK fuzzy rules have been proposed in the literature and they use 

one-dimensional (1-D) (univariate) fuzzy sets, such as triangular or Gaussian ones, and partitioned 

multidimensional input spaces by grid Cartesian products of these univariate membership 

functions. The advantages of this approach are the simple and transparent representation of the 

membership functions and the straightforward application of the model. But, when the model is 

obtained by grid-type partitioning of its input space, the number of rules grows exponentially with 

the number of input variables, which leads to an unnecessarily complex model (curse of 

dimensionality). 

The scheme described earlier can be generalized to all sorts of TSK-FNNs to overcome this 

problem. In this way, the number of rules can be significantly reduced. Although in the next 
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evaluation section the implementation of the WNN structure is well-justified in the results’ table, 

in this sub-section we briefly mention how it could be applied to even simple non-wavelet-based 

structures. 

 

                  

 

 

                                  

                                Fig 6.2 –TSK  Clustering-Based Fuzzy Neural Network 

 

Layer 1 : The input nodes are located at this layer. P nodes needed for a P-dimensional dataset. 

Layer 2: Gaussian Mixture Models play the role of clusters as discussed earlier, and the tuning 

method is the modified Expectation-Maximization. However, due to the absence of WNN part, the 

output distribution is simplified as   
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As the tuning of the clusters is imposed on product space of input-output, therefore the distribution 

of the P+1 dimensional data (including outputs) is given as 
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The probability of a cluster of which a datum is generated is modified as the output distribution 

also takes part in its value. 
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 The updating formula for P-dimension cluster parameters are  
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                        (6.27)

 

 

Layer 3 : Multiplication of each cluster’s output take place in layer 3. The TSK local linear models 

are activated based on the degree of membership of the datum to their corresponding clusters. The 

output of this layer is  

                                                                  i i iWφ = γ                                                                  (6.28) 
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Layer 4 :  The output of the whole structure comes as jŷ for the input vector jX . jŷ  is computed 

by aggregating iφ  collected from previous layer 

                                              
C C

j i i j i j i j
i 1 i 1

ŷ W (X ) P( | X )W (X )
= =

= γ = θ∑ ∑                                 (6.29) 

 

 

6.4.1 Consequence Parameter Updating 

 

Weighted Least Square (WLS) can be applied to update the local linear models. The criterion 

which should be minimized is as eq 6.13. Despite the similarity in cost function the iϒ matrix 

which has the membership degrees on its main diagonal is different as follow  
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 The estimate of the consequent parameters is given by    

 

                                                   T 1 T d
i ext i ,FNN ext ext i ,FNN(X X ) X y−ω = ϒ ϒ                                       (6.31) 

The definition of T
extX and dy are the same as eq(6.13 - 6.15). 

                                                                                                                   

 

6.5 Case Study – Short Term Load Forecasting in Power System 

 

Short term electric load (STLF) forecasting is the cornerstone of the operation of today’s power 

systems. Precise load forecasting helps the electric utility to make unit commitment decisions, 

reduce spinning reserve capacity and schedule device maintenance plan properly. The system 

operators use the load forecasting result as a basis of off-line network analysis to determine if the 

system might be vulnerable. If so, corrective actions should be prepared, such as load shedding, 

power purchases and bringing peaking units on line. With the recent trend of deregulation of 

electricity markets, STLF has gained more importance and greater challenges[144]. In the market 
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environment, precise forecasting is the basis of electrical energy trade and spot price establishment 

for the system to gain the minimum electricity purchasing cost. In the real-time dispatch operation, 

forecasting error causes more purchasing electricity cost or breaking-contract penalty cost to keep 

the electricity supply and consumption balance.  

In recent years two different paradigms of STLF have emerged, namely those that are based on 

statistical analysis and those that are based on CI techniques. The former include such traditional 

statistical approaches as linear and nonlinear regression analysis[145], time series models[146] and 

Kalman Filtering models[147]. Most statistical based methods for STLF are linear models that 

make certain assumptions about the characteristics of the load series. However, the relationship 

between the variables that affect load demand and actual load demand is complex and nonlinear 

making the accuracy of different statistical models system dependent. Fan et al. [148] described an 

implementation of ARIMAX (autoregressive integrated moving average with exogenous variables) 

models for load forecasting, while Yang and Huang[149] proposed a fuzzy autoregressive moving 

average with exogenous input variables (FARMAX) for one day ahead hourly load forecasting. 

Most recently, the scientific community has turned to CI for solving the problem of STLF. CI-

based models are able to learn nonlinear dependencies directly from the historical data. These 

models can be divided into three subgroups depending on the artificial intelligence paradigm that 

they represent, namely neural networks (NN), including the multilayer perceptron (MLP)[150], 

radial basis function (RBF)[151] and support vector machine (SVM)[152], fuzzy systems[153] and 

hybrid models[154]. Although the NN-based models (particularly the MLP) and the fuzzy systems 

have received the most attention in STLF literature, a growing interest exists for the case of hybrid 

schemes. Yang[155] presented an integrated method that combines an increment regression tree 

and SVM for STLF. Both increment and non-increment tree are built according to the historical 

data to provide the data space partition and input variable selection. SVM was employed to the 

samples of regression tree nodes for further fine regression. The integration of genetic algorithms 

(GA) with SVM has found its application also in STLF cases. A novel GA-based SVM forecasting 

model with deterministic annealing clustering has been presented by Sun[156]. The experimental 

results demonstrated its superiority over a classic MLP network. Amongst the above neural based 

forecasting techniques most of them generally can be classified into two categories in accordance 

with techniques they employ. One approach treats the load pattern as a time series signal and 

predicts the future load by using the already mentioned techniques. In the second approach the 
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load pattern is considered to be heavily dependent both on weather variables and previous load 

patterns. 

Many attempts by researchers have been made to improve load-forecasting process in many 

worldwide regions. Khan et al.[157] used a hybrid of neural network and fuzzy logic to forecast 

the load in Czech Republic. They found that hybrid fuzzy neural network and radial basis function 

networks are the best candidates for the analysis of the load in Czech Republic. An Adaptive 

Neuro Fuzzy Inference System (ANFIS) has been utilised by Yuill et al.[158] for the development 

of a STLF model for South African power networks, by considering temperature and humidity as 

the main weather parameters affecting the load. Another study by Kodogiannis et al. [159] 

discussed the development of improved neural-network-based forecasting models for the power 

system of the Greek island of Crete. The performance was evaluated through a simulation study, 

using metered data provided by the Greek Public Power Corporation. Their results indicated that 

the load-forecasting models developed provided more accurate forecasts than the conventional 

methods. 

NN models basically use the sigmoid activation function in neurons. However, the sigmoid 

function is not orthogonal, and the energy of the sigmoid function is limitless, and this leads to 

slow convergence. Wavelet function is a waveform that has limited duration and an average value 

of zero. The integration of the localisation properties of wavelets and the learning abilities of NN 

shows advantages of Wavelet neural networks (WNN) over NN in complex nonlinear system 

modelling in terms of learning efficiency and structure transparency. A STLF model of wavelet-

based networks was proposed in[160] to model the highly nonlinear, dynamic behaviour of the 

system loads and to improve the performance of traditional NNs. To investigate the performance 

of the proposed evolving wavelet-based networks on load forecasting, the practical load and 

weather data for the Taiwan power systems were employed.  

The comparison against an STLF NN version revealed the superiority of WNN forecasting in 

terms of more accurate forecasting result and faster training speed.  Here, a modular-constructed 

forecasting system is proposed, where 24 neural blocks with a single output have to be developed 

and trained separately to represent the 24 hourly loads respectively. The outline of the proposed 

architecture is illustrated in figure 6.3.       
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    Fig 6.3 - Proposed modular architecture for the STLF problem 

 

The main objective of the proposed system is the development of sufficiently accurate blocks 

representing the individual hourly loads. An assumption has been made in the case of black-outs, 

which occurred during the whole year. All the zero load values have been removed from both 

training and testing sets, and were replaced by the mean value of the preceding and subsequent 

load value. In this section the results and the statistics of forecasts obtained from the application of 

the developed STLF models on the power system of the island of Crete presented. Only results 

that correspond to hours with the maximum (14:00h) and minimum (02:00h) load consumption are 

illustrated. 

Case studies for the proposed methods were carried out for a 24-hour load forecasting. The 

complete results for the STLF problem, for the hours with minimum and maximum load 

consumption, are illustrated in Table I. Training has been conducted using power load data for 

1994 (365 data points), while testing has been evaluated using data from the 4 first months of 1995.  
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6.5.1 Cluster Analysis for Case Study  

 

Each cluster could be oblique towards the input axis and the covariance matrix is not necessarily 

diagonal; therefore projecting the clusters on to the axis won’t give a precise univariate 

membership functions. In P-dimensional space each cluster can also be recognized by its 

corresponding eigenvectors and eigenvalues.  

 

                             

                          Fig 6.4- Eigenvectors of a 3-dimension hyper-ellipsoidal cluster 

 

 

Projecting each cluster on to its associated eigenvectors makes better estimation of decomposed 

univariate elements of each cluster. Let us denote ipββββ and ipk
�

as the eigenvalues and the unitary 

eigenvectors of x
iΣ , respectively. However, in this case to find the degree of membership the input 

domain transformation is needed  

 

                                                                     ip
T

ipx t X=ɶ                                                             (6.32) 

Based on eq (6.32), the univariate Gaussian membership functions are given by                                                
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The eigenvector projection of each cluster after variable transformation is illustrated in figure 6.5. 

 

 

       Fig 6.5– Projection of normalized Multivariate (4-dimesnion) clusters on their eigenvectors 

 

6.5.2  CB-FWNN Short Term Load Forecasting Results 

 

An obvious advantage of the proposed modular architecture is that, since the complete system 

consists of 24 neural blocks, each one with a single output, training is easier and faster compared 

to traditional neural approaches, which treat the output as a 24x1 vector. After many trials, it has 
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been found that only two previous time load parameters are necessary for the proposed CB-FWNN 

to achieve an acceptable performance, whereas the number of cluster/fuzzy rules was determined 

with the aid of subtractive clustering to be 10. 

Figure 6.6 and 6.7 illustrate the training performances on both minimum and maximum power 

consumption cases, while Figure 6.8 and 6.9  illustrate the testing performances for both cases. 

Table 6.1summarizes the various performance indices. 

 

      TABLE 6.1 – Performance indices of proposed CB-FWNN for Short Term Load Forecasting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This performance was associated also with a fast training speed, of 280 epochs. The regression 

coefficient ( 2R ) is often used as an overall measure of the prediction attained. It is common 

practice to use this index to compare different statistical models. It measures the fraction of the 

variation about the mean that is explained by a model. The higher the value ( 20 1R≤ ≤ ), the better 

is the prediction by the model. The CB-FWNN scheme developed herein was found to yield high 

level agreement with experimental observations for the test data set. The values of the coefficient 

Statistical index Testing Data sets 

14:00 02:00 
Coefficient of determination (R2) 0.9810 0.9673 

Root mean square error (RMSE) 2.6573 1.8986 

Mean relative percentage error  
(MRPE) (%) 

1.9964 1.2826 

Mean absolute percentage error 
(MAPE) (%) 

0.8601 0.4935 

Standard error of prediction (SEP) (%) 2.665 2.0018 

Bias factor (Bf) 0.9911 0.9949 

Accuracy factor (Af) 1.0204 1.0129 
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of determination ( 2R ), as shown in Table 6.1, indicate a very good fit of the experimental data 

from the CB-FWNN based approach. 

 

 

Fig 6.6 - Training performance for max load 
 

 
Fig 6.7 - Training performance for min load 

 

However, 2R is a suitable criterion for model comparison on the assumption that the error is 

normally distributed and not dependent on the mean value; In fact, the distribution of the error is 

not clearly known, so this term must be used with caution, particularly in non-linear regression 

models and hence additional indices must be employed for model comparison. 
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RMSE index is calculated between the desired and output values and then averaged across all data 

and it can be used as an estimation of the goodness of fit of the models. It can also provide 

information about how consistent the model would be in the long run. The related RMSE values 

for the proposed scheme are very low, as shown in Table 6.1, indicating the ability of CB-FWNN 

to make better prediction on data for which there was no previous training. 

In order to evaluate the goodness of the current performance of the proposed CB-FWNN scheme, 

a comparison against the same models that have been employed for the specific datasets has been 

carried out. Tables II and III provide a summary of those statistical performances.  More 

specifically, the CB-FWNN scheme has been compared against an  autoregressive linear model 

(AR), a multilayer perceptron utilizing an adaptive learning rate (ABP), a spread encoding 

multilayer neural network (SE), a window random activation weight neural network (WRAWN), a 

radial basis function (RBF) network and the proposed in this section CB-FNN.  

From these four schemes, only SE and RBF managed to provide a “similar” but inferior to CB-

FWNN performance, however with high training time computational cost. Compared to the 

proposed CB-FWNN structure, the above mentioned methodologies were also criticized by their 

large input dimensionality (i.e. 6-8 input variables) for performances shown in Tables 6.2  and  6.3. 

The alternative also CB-FNN structure performed also very satisfactory. The MRPE term provides 

information on how close forecasts or predictions are to the eventual outcomes. The MRPE is an 

index that provides information about the bias of the model. A value of zero means that there is no 

bias in predictions. Positive values indicate under-prediction of the power load, i.e. the predicted 

values are lower than the observed, and thus the model is ‘fail-safe’.  
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Fig 6.8 - Testing performance for max load 

 

 

 

Fig 6.9 - Testing performance for min load 
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             TABLE 6.2– Comparison of Performance Indices for 2hr STLF for various methods  

 

 

 

Negative values indicate over-prediction, i.e. the model over-estimates power load and thus is 

‘fail-dangerous’. CB-FWNN achieved a very good performance, by scoring 1.9964% and 1.2826% 

for 14h and 2h respectively. Comparing with CB-FWNN, the alternative methods cannot match 

the same performance especially in the case of 14h. Tables 6.2 and 6.3 provide a good indication 

of their performances.  

 

 

 

 

 

 

 

 

Statistical index 
Testing Dataset   
2hour 

  CB-FNN 
2h 

AR  
2h 

 ABP 
2h 

SE  
2h  

WRAWN 
2h 

 RBF 
2h 

 

           
RMSE   1.9223 5.8020  3.8063 2.0314 4.0633  1.8672  

Mean relative percentage 
error  
(MRPE)(%) 
 

 1.3104 3.8630  2.7346 1.5174 2.7542  1.3512  

MAPE (%)  0.4939 0.5715  1.0849 1.0632 0.6675  0.4706  
 
Standard error of prediction 
(SEP) (%) 

  
2.0299 

 
5.7642 

  
3.8215 

 
2.0728 

 
4.0916 

  
1.9086 

 

 
Bias factor (Bf) 
 

  
1.0048 

 
1.0041 

  
1.0102 

 
1.0105 

 
1.0059 

  
1.0045 

 

           
Accuracy factor (Af) 
 

  
1.0132 

 
1.0388 

  
1.0275 

 
1.0152 

 
1.0277 

  
1.0136 
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            TABLE 6.3 – Comparison of Performance Indices for 14hr STLF for various methods 

 

Statistical index 
Testing Data set  
14hour 

          

  CB-
FNN 14 

AR 14  ABP 14 SE  14  WRAWN 
14 

 RBF 
14 

  

            
            
Mean relative 
percentage error 
(MRPE) (%) 

 2.3183 11.1837  11.9674 3.4001 10.5902  2.7924   

MAPE (%)  0.8731 1.3304  6.4261 1.1397 1.3385  0.8927   
 
Standard error of 
prediction (SEP) (%) 

  
3.1998 

 
15.0745 

  
14.3387 

 
4.5409 

 
12.8006 

  
3.4007 

  

 
Bias factor (Bf) 

  
1.0052 

 
0.9993 

  
1.0525 

 
1.0104 

 
1.0033 

  
1.0073 

  

 
RMSE  

  
3.3069 

 
17.2049 

  
17.6778 

 
4.6194 

 
15.1935 

  
3.6061 

  

 
Accuracy factor (Af) 
 

  
1.0236 

 
1.1173 

  
1.1180 

 
1.0343 

 
1.1071 

  
1.0281 

  

           
 

 

It is clear that the SE network outperformed the ABP, while the RBF network proves its traditional 

superiority against MLP-style networks. This statistic is similar to the bias factor (fB ) introduced 

by Ross [92]. Models describing predictions (fB ) within the range of {0.9 1.05}− could be 

considered good, in the range of {0.7 0.9} || {1.06 1.15}− − are considered acceptable, while for 

{ 0.7 ||  1.15}< > are considered unacceptable. Bias factor is a multiplicative factor that compares 

model predictions and is used to determine whether the model over- or under-predicts the power 

consumption. In this case a fB value greater than 1 indicates that the model over-estimates load 

and is thus ‘fail-dangerous’, whereas a value less that 1 indicates under-prediction of load and thus 

a ‘fail-safe’ model 

The fB parameters of all models were in an acceptable range; however the related parameter for 

CB-FWNN was just under the optimal 1.0, providing thus a fail-safe condition.  
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SEP index is determined as the relative deviation of the mean prediction values and it has the 

advantage of being independent on the magnitude of the measurements [19]. Based on this index, 

the CB-FWNN scheme achieved again a very good performance for both cases. Only for the 2h 

case, the RBF network was slightly better than the proposed scheme.  For the 14h case, although 

RBF and SE were superior to ABP and WRAWN models, they both fall behind to the CB-FWNN. 

The accuracy factor ( fA ), is a simple multiplicative factor that indicates the spread of results 

about the prediction. A value of one indicates that there is perfect agreement between all the 

predicted and measured values. Table I shows the accuracy factor values obtained for the two 

testing datasets. The relevant figures for fA indicate again better performances for the CB-FWNN 

scheme, which is more evident at the 14h load case. The MAPE term provides information about 

the average deviation from the observed value and it is similar to the accuracy factor (fA ). Based 

on this index, the average deviation of the predicted power load values for the CB-FWNN case 

was 0.86% and 0.49% for 14h and 2h load cases. 

The results of MAPE were in good agreement with the values of the accuracy factor (fA ) 

estimated for both data sets. Some differences between the two indices can be attributed to 

different computational methods followed. The above comparison results reveal the superiority of 

the proposed CB-FWNN scheme in terms of modelling accuracy and training speed. The CB-FNN 

performed also satisfactory however its accuracy was lower to CB-FWNN. 
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Chapter 7 

Conclusions and Future Enhancements 
 

Soft computing approaches have been developed and applied to many scientific and engineering 

areas in recent years. There have been also many successful researches for the identification and 

modelling of nonlinear dynamic systems by using various soft computing techniques with 

different computational architecture. In the early stages of this research (chapter 3), inspired by the 

method presented by Theocharis et all in the frame of Neuro-Fuzzy schemes, an adaptive 

modelling structure created. The adaptive structure evolved and adjusted in an online manner to 

reduce as much as possible the network redundancies. Hence, since the models are created 

automatically and not pre-designed, the difficulties in determining of the architecture of soft 

computing models can be avoided to some extent. Fungus growth modelling, a real food data 

analysis problem, was examined in presence of three inputs; temperature, water activity and pH 

and relatively better results based on standard various error criteria achieved. 

In the literature, an amount of work exploring the hybrid learning algorithms to identify the 

structure parameters and also novel structure of wavelet-based neural networks has been reported. 

The well established real world problems revealed the fact that a great deal of further research is 

still needed. Throughout main parts of this thesis, we have attempted to identify flaws within 

existing applications and structures of Wavelet-based variants of neural networks. The first 

structure and training algorithm proposed in Chapter 4 approaches a simple by efficient techniques 

applicable to all types of NNs with wavelet family. The incorporation of Linear Combination 

Weights on hidden-output connection links boosts the output accuracy and also training speed to a 

higher level. In the same scheme, a Hybrid Learning Algorithm was implemented to tackle the 

main problem associated with the use of GD algorithm, i.e. the problem of low convergence rate.  

Based on the first structure, a more advanced structure of WNNs proposed MWNN-LCW  which 

appeared to be more modular. The alteration on the structure makes not only the structure more 

interpretable but also leads to much higher accuracy. 
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Both algorithms were then utilised to process real data provided via ongoing research 

collaboration with Agricultural University of Athens-Greece relating to Lysteria Monocytogenes 

Bacteria Count prediction. In conjunction with various types of WNNs and also other soft 

computing techniques, the proposed technique produces out-performing results according to 

accuracy and computational cost. 

Despite the excellent performance of the proposed WNNs, research has highlighted some 

limitations to the approach. The first was a significant increase in the number of neurons in higher 

dimensional data. This yields that, although it was an improvement in convergence speed and 

accuracy but the network’s tuneable parameters dramatically “grow” with network size which can 

be prohibitive due to memory constraints. The second was that still the appropriate number of 

neurons for each input was a matter of randomness and on trial and error basis. 

The methodology proposed in Chapter 6, gearing forward a long way toward covering 

aforementioned drawbacks.  A clustering-based FWNN approach has been presented. Choosing a 

clustering algorithm, itself, can be a challenging task. Most structures generally assume some 

explicit structure in the dataset. However, usually we have little or no information regarding the 

structure, which is, paradoxically, what someone wants to uncover. Two clustering methods have 

been utilised in serial form, i.e. Subtractive Clustering and Mixture Densities with Expectation 

Maximization. Initially, the subtractive clustering was used as a pre-processing technique to find 

out initial set and adequate number of clusters and ultimately number of neurons in each sub-

WNN inside wavelet network, an optimum number of neurons can strongly influence the time 

required to obtain a solution and then the GMM-EM was responsible for forming the multi-

dimensional Gaussians, which later used as multidimensional membership functions. The rationale 

behind the choice of former one was its ability to detect number of clusters without any prior 

knowledge of the data and the latter one selected due to the platform it can creates for feeding back 

the desired-predicted output error into the clustering process and also deriving the membership 

degree directly from clusters without the need of projecting them on the input’s axis. Two learning 

algorithms namely, Weighted Least Square and Extended Kalman Filter were incorporated to 

adjust the linear and non-linear parameters respectively.  

We demonstrated the usefulness and benefits of the network by applying it to a real database for 

dynamic system modelling. The case study was related to the Power Load forecasting for Greek 

Island of Crete. Prediction of the maximum load at 14:00 and minimum load at 02:00 was set as a 
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target. Comprehensive comparison conducted against some popular existing methods for both 

cases in accordance to several error criteria.  

There are several topics that have been left out of the scope in the present dissertation which can 

be considered as a future work. Future enhancements of this research’s field can be aligned in 

several directions. Points mentioned below, are just some of the possible extensions can be done as 

future work. 

 

Linguistic Data/Patterns : The term Computing With Words (CWW), pioneered by Zadeh in the 

mid-1990s[161]. In principle, the proposed schemes are only applicable to numerical data (or 

linguistic data converted to numerical data) but for the humans the only fully natural means of 

articulation and communication is natural language. In coming years the use of words in place of 

numbers is destined to be in centre of attention. This is certain to happen, therefore, maybe we 

could develop models, tools, techniques, algorithms, etc., that could operate on natural language 

(words) and can serve the same (or similar) purpose as their numerical counterparts, i.e., maybe 

instead of traditional computing with numbers (from measurements), it would be better to compute 

with words (from perceptions). Therefore, we may skip an “artificial’’ interface and try to operate 

on what is human-specific: natural language[161, 162]. Perhaps the most direct extension of this 

work is by the means modifying the proposed structures to deal with this type of data. 

 

Adaptive structure/parameter learning: Off-line clustering methods - as we did in chapter 4 & 6 

- require that data be ready before the modelling. Obviously, it is difficult for human experts to 

examine all the input–output data from a real complex system to find a number of proper rules for 

the fuzzy system. Hence, an immune way to the above-mentioned deficiency is online 

identification methods appeared in the literature and several methods proposed [163]. Generally, 

these approaches consist of two learning phases, the structure learning phase and the parameter 

learning phase. These two phases are done simultaneously. In terms of structure identification, 

there are no rules initially in an online structure. They are created and adapted as on-line learning 

proceeds via simultaneous structure and parameter identification. This idea was touched upon at 

the end of Chapter 3. However, the goal in this case is to develop an online clustering method 

along with an online WNN structure. Extended Kalman Filter as a learning algorithm provides us 

with a potential platform for online learning however Weighted Least Square should be replaced 
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by a recursive variant of it. An adaptive type of Expectation Maximization also proposed in [126], 

which can be modified accordingly. 

 

Recurrent connections: Most of these problems demand nonlinear adaptive systems which can 

learn from observed data. Recurrent wavelet neural networks with arbitrarily connected neurons 

have great potential to meet this demand. However, how to train recurrent WNN networks 

effectively remains an open problem, which hinders wide applications of recurrent networks in the 

aforementioned areas. As a future step of the work presented in this Thesis, we could extend the 

work to WNN recurrent networks. Our goal is twofold. First, we would like to develop a 

framework for fully recurrent networks based on MWNN-LCW proposed in chapter 4 with 

internal and external loops. Related suggestions can be found in [164-166]. Second, we would like 

to apply a learning algorithm for training that recurrent wavelet network so that avoid divergence 

occurring over tuning such an autonomous system. 

 

Incremental Learning algorithm: The learning algorithm should be able to supply a way that 

enables clustering part and consequence WNN part to accommodate new data, including examples 

that correspond to previously unseen dataset. It means, the learning algorithm should be in such a 

way that does not require access to previously used data during subsequent incremental learning 

sessions, while at the same time, preserving the knowledge learnt by the network on previous 

learning[167]. There may even be further improvements to be imposed, i.e. agents should not only 

acquire new knowledge but also modify or delete old knowledge. However, these modification 

and deletion are not always efficient in learning; hence embedding this type algorithm could be a 

challenge. Incremental learning has been addressed in a few numbers of published papers and on 

very primitive structural platforms [168, 169]. Expanding these types of algorithms over hybrid 

methods is one that would certainly merit further investigations. 
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Appendix I 

Statistical Error Criteria 
 

Coefficient of Determination (R2): The coefficient of determination indicates how much of the 

total variation in the dependent variable can be accounted for by the model. It is computed as a 

value between 0 (0 percent) and 1 (100 percent). The higher the value, the better the fit. 
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Root Mean Square Error (RMSE): Expressing the formula in words, the difference between 

forecast and corresponding observed values are each squared and then averaged over the sample. 

Finally, the square root of the average is taken. Since the errors are squared before they are 

averaged, the RMSE gives a relatively high weight to large errors. 
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Mean Absolute Percentage Error (MAPE) (%): The MAPE measures the average magnitude of 

the errors in a set of forecasts, without considering their direction, in percentage.  
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Standard Error of Prediction (SEP) (%): The standard error of prediction is the standard 

deviation of the prediction errors. It is computed like any other standard deviation - the square root 

of the error sum of squares divided by the number of samples                                                                   
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Mean Relative Percentage Error (MRPE)(%) : Mean Relative Error is a number that compares 

how incorrect a quantity is from a number considered to be true. Unlike absolute error, where the 

error has the units of what is being measured, relative error is expressed as a percentage, defined 

as the absolute error divided by the true value. 
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Bias factor (Bf): The simplest relative measure is a ratio of the desired and estimated output. The 

ratio alone, however, may be misleading because, for example, a ‘factor of 10’ over-prediction 

(predicted/observed=10) will have more weight than a ‘factor of 10’ under-prediction of 

generation time (predicted/observed = 0.1). Thus, the logarithm of the ratio was chosen so that 

over- and under-prediction were given equal weight in determining the average deviation. The 

antilogarithm of this value (average relative deviation) may be interpreted as the average ratio of 

the predicted and observed values. 

                                            

                                           
desired

estimated

Output
( log( )/N)

OutputBias Factor 10
∑

=                               

 

Accuracy factor (Af): In order that under- and over-prediction not to ‘cancel out’ each other 

(because the logarithm of the ratios will have opposite signs) and consequently have some 

indication of the average accuracy of estimates,  the average of the absolute values of the 

logarithm of the ratio was calculated in Accuracy Factor. The antilogarithm of this value will 

always be greater than or equal to one 
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