
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Discovering of System’s Invariants by Temporal Reasoning

Bolotov, A.

This is an electronic version of a paper presented at The International Conference on

Innovations in Info-business and Technology (ICIIT), Colombo, Sri Lanka 04 March. The

paper is available from the conference website at:

http://iciit.iit.ac.lk/publications/discovering-of-systems-invariant...

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://iciit.iit.ac.lk/publications/discovering-of-systems-invariants-by-temporal-reasoning/
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Discovering of System’s Invariants by Temporal Reasoning.

Alexander Bolotov
Department of Computer Science,

University of Westminster, London, W1W 6UW, UK
A.Bolotov@wmin.ac.uk

Abstract

We present a technique to handle invariants in the
branching-time setting, for the specifications written in the
formalism called Branching Normal Form (BNF). The lan-
guage of BNF was previously used as part of the deductive
clausal resolution method for a variety of branching-time
logics. We show how this framework can tackle useful pe-
riodic properties, or invariants. We emphasise the potential
power of this approach to the process of reconfiguration of
an adaptive system where preserving invariant properties is
essential.

Keywords: software verification, formal specification,
temporal reasoning, invariants, branching-time. Descrip-
tors: Software and its engineering; Theory of Computation.

1. Introduction

In the area of formal specification/verification the most im-
portant properties to tackle are dynamic and an appropri-
ate reasoning framework is given by temporal logics. It
allows the representation of a software execution as a se-
quence of time moments while a possible behaviour of the
system is represented by an execution path. Among these
dynamic properties some properties represent patterns, i.e.
when some event (process, etc) is repeated with some peri-
odicity. We call these properties periodic. Some famous ex-
amples of periodic properties are: an invariant property, i.e.
the repetition at every moment of time, which corresponds
to always operator in temporal logic; some regular pattern
properties, such as the repetition at every even moment of
time (we abbreviate this as even-moment), Periodic proper-
ties represent patterns and play special role in many areas
- software integration, scheduling of communication proto-
cols, etc. For example, during the component-based system
integration it is crucial to guarantee that periodic properties
of components are consistent with each other and conform
to the configuration protocol.

We concentrate on adaptive systems which are flexible

and long lived systems with the ability to change bahaviour
autonomously. Although there has been significant research
invested in the analysis of adaptive systems, it has not led to
a commonly accepted rigorous definition of what ‘changing
the system’s behaviour’ entails. Our analysis will be carried
out in the context of a generic architecture based on three
layers: the functionality layer (‘FL’ for short), the man-
agement layer (‘ML’) and the reasoning layer (‘RL’). These
layers represent respectively the functionality of the system,
the configuration and re-configuration management, and, fi-
nally, the automated reasoning engine. Thus, within each of
the layers we embed a relevant model: of the main func-
tionality of the system within the FL consists of functional
components which carry out the required processing tasks.
The management layer manages the configuration of these
’components’ by providing the means to monitor and re-
configure the functional components. Finally, the reasoning
layer communicates with the management layer in order to
determine which reconfigurations are plausible and propose
reconfigurations to the management layer. Our main focus
in this paper will be on the reasoning layer.

Properties and states within our system will be repre-
sented through propositions. For example, we may let p
stand for ’printer is printing’. Through the use of a suitable
logic we may then express the behaviour p, meaning that
the printer is always printing. Such a behaviour may be
termed a ’loop’ or ’invariant’ of the system.

We use a specific formlaism, BNF (Separated Normal
Form for Branching Time Logic). It has been shown
that BNF can express simple fairness constraints and their
Boolean combinations [2], thus having the same expres-
siveness as the branching-time logic ECTL+. At the same
time the structure of the specifications written in the BNF
language enables us to apply to them directly a deduc-
tive verification technique, namely, a clausal temporal res-
olution [2]. This, unlike in the case of commonly used
model-checking technique, overcomes the restrictions of fi-
nite state systems, providing us with uniform proofs.

2 Verification Framework

Notation. In the rest of the paper, let T abbreviate any
unary BNF temporal operator and P either of path quan-
tifiers. Any formula of the type PT is called a basic BNF
modality. Finally, a literal is a proposition or its negation.

Indices. The language for indices is based on the set
of terms IND = {f, g, h, . . .}, where f, g, h . . . denote
constants. Thus, EAf means that A holds on some path
labelled as f. Note that indices play essential role in the
formulation of BNF as they help identifying a specific path
context for given formulae. Indices are used to label all for-
mulae of BNF that contain the basic modality E gor E♢.
Specifically, the modality E gis associated with BNF step
clauses (see below) and, thus, an index ind here simply rep-
resents that some formula is evaluated at the successor state
of the current state along the path associated with the ‘di-
rection’ ind - speaking informally, we only take ‘one step’
along this path. The modality E♢ is associated with eval-
uating eventualities over longer period of time and thus the
label ind for this formula represents that some formula is
evaluated at some state along the path which goes from the
current state along the ‘direction’ ind and every successor
state along this path, speaking informally, is obtained by
taking ‘a step’ along this ‘direction’ ind. This corresponds
to the limit closure of the path ind and hence the existence
of such a path is always guaranteed. Finally, to define the
BNF language, we need classically defined constants true
and false , and the operator, start (‘at the initial moment
of time’).

Definition 1 (Branching Normal Form) Given Prop, a
set of atomic propositions, and IND, a countable set of

indices, BNF has the structure A

[∧
i

Ci

]
, where each

of the clauses Ci is defined as below where each αi, βj or γ
is a literal, true or false and ind ∈ IND is some index.

start ⇒
k∨

j=1

βj an Initial Clause

l∧
i=1

αi ⇒ A g k∨
j=1

βj

 an A step clause

l∧
i=1

αi ⇒ E g k∨
j=1

βj

ind

a E step clause

l∧
i=1

αi ⇒ A♢γ an A sometime clause

l∧
i=1

αi ⇒ E♢γind a E sometime clause

2.1 Interpretation of BNF

For the interpretation of BNF clauses, we introduce an
indexed tree-like model. Let IND be a countable set of
indices, S be a set of states, R ⊆ S × S be a total bi-
nary relation over S, and L be an interpretation function
S −→ 2Prop, which maps a state si ∈ S to the set of
atomic propositions that are true at si. Then an indexed
model structure M = ⟨S,R,L, [ind], s0⟩ where s0 ∈ S,
and [ind] is a mapping IND −→ 2S×S of every index
ind ∈ IND to a successor function [ind] such that [ind]
is a total functional relation on S, such that for any si, sj ,
if si, sj ∈ [ind] then si, sj ∈ R (i.e. [ind] is the determin-
saiton of R, and for any s ∈ S, there exists only one state
s′ ∈ S satisfying (s, s′) ∈ [ind].

It is easy to see that the underlying tree model above is
an ω-tree.

A state si ∈ S is an ind-successor state of state sj ∈
S ⇔ (si, sj) ∈ [ind]. An infinite path χind

si is an infi-
nite sequence of states si, si+1, si+2, . . . such that for every
j (i ≤ j), we have that (sj , sj+1) ∈ [ind].

Below, we define a relation ‘|=’, omitting cases for
Booleans and classically defined true and false . The re-
lation |= evaluates well-formed BNF clauses at a state si in
a model M.
⟨M, si⟩ |= start iff i = 0
⟨M, si⟩ |= A gB iff for each ind ∈ IND

and each s′ ∈ S, if (si, s
′) ∈ [ind]

then ⟨M, s′⟩ |= B
⟨M, si⟩ |= E gBind iff there exist ind ∈ IND,

and s′ ∈ S, such that (si, s
′) ∈ [ind]

and ⟨M, s′⟩ |= B
⟨M, si⟩ |= A B iff for each χsiand sj ∈ χsi ,

if (i ≤ j) then ⟨M, sj⟩ |= B
⟨M, si⟩ |= A♢B iff for each χsi ,

there exists sj ∈ S, such that (i ≤ j)
and ⟨M, sj⟩ |= B

⟨M, si⟩ |= E♢Bind iff there exist χind
si

and sj ∈ χind
si , such that i ≤ j

and ⟨M, sj⟩ |= B

Definition 2 [Satisfiability, Validity] If C is in BNF then

• C is satisfiable if, and only if, there exists a model M
such that ⟨M, s0⟩ |= C

• C is valid if, and only if, it is satisfied in every possible
model.

The natural intuition behind BNF is that the initial
clauses provide starting conditions while step and some-
time clauses constrain the future behaviour. An initial BNF
clause, start ⇒ F , is understood as “F is satisfied at the
initial state of some model M”. Any other BNF clause

is interpreted taking also into account that it occurs in the
scope of A .

3 Temporal Logic Specifications as Metadata

We follow an assumption that the behaviours of individ-
ual and composite components in a component system are
specified. Our subsequent tasks are to

1. Verify that when components are composed, the re-
sulting component does not possess any contradictions.

2. Verify that invariant properties that we may require
for the components are maintained.

The following example is provided in order to illustrate
the framework.

The method used to specify components in Fractal and
relies on an XML schema, known as ADL [5]. The ADL
can be extended in order to provide for the inclusion of a
Temporal Logic Specification for each component. For in-
stance,

<!ELEMENT behaviour-specification
(comment*, interface*,component*)>
<!ATTLIST behaviour

variables CDATA #REQUIRED
TL-SPEC CDATA #REQUIRED
invariant CDATA #REQUIRED

>

Within each component we associate properties which
represent the requirements and behaviour of the system. For
clarity of exposition we will remove XML wrappers from
now on and just present the variables, the Temporal Logic
clauses that describe the behaviour, and the clauses that rep-
resent our required invariant. For example, a component re-
sponsible for adding two integers may have the following
set as part of its metadata [11].

The Variables:

1. a - adder is free

2. b - variables are bound

3. d - computation active

4. e - computation error

and the TL-SPEC can be a full Temporal Logic Speci-
fication in either ECTL+ or BNF form. For instance, we
can represent the required behaviour by the following set of
BNF clauses. Note that the required behaviour could just
as easily be specified in ECTL+ and then reduced into the
following BNF form required by the algorithms.

1. start ⇒ ¬A g(a ∧ ¬b)
2. b ⇒ A g¬a
3. ¬a ⇒ A gd
4. e ⇒ E g¬d

The ML monitors and maintains the current state of these
variables. The behaviour should be read as specifying that

1 At the beginning, on all future computations, at the
next moment of time the adder is free and neither of
the variables are bound.

2 When the variables are bound then the adder is not
free.

3 When the adder is not free then the computation is ac-
tive, and

4 When there is an error, the computation is not active.

It is the role of the RL (Reasoning Layer) to monitor
these states for consistency.

For instance, we may require that

b ∧ ¬e => A d

should be an invariant of the system. A statement that
describes the required invariant property would be

”Whenever variables are bound and there is no compu-
tation error, then the computation is active in all futures”

In the following section we describe how we are able to
determine this using our Loop search algorithms.

4 Deductive verification for invariants

In [4] a clausal resolution method over the set of BNF
clauses was developed. It has been shown that BNF
can serve as a normal form for the logics CTL, ECTL
and ECTL+ ([2]) (where the corresponding procedures for
translating ECTL and ECTL+ formulae into BNF were de-
fined). The core procedure for the application of the reso-
lution method is the discovery of loops. Formally loops are
defined as follows:

Definition 3 (Loop in BNF) A loop in l is a set of
merged clauses (possibly labelled) of the form

B0⇒P0
gC0⟨ind0⟩

, . . . , Bn⇒Pn
gCn⟨indn⟩

where P is any of path quantifiers and the following con-

ditions hold |= Ci ⇒ l and |= Ci ⇒
n∨

j=0

Bj , for all

0 ≤ i ≤ n.

We will abbreviate a loop introduced in Definition 3 by
(B0 ∨ . . . ∨Bn) ⇒ P gP l⟨ind⟩, where

(i) if for all i, (0 ≤ i ≤ n), Pi is the ‘A’ path quantifier
then P = A, ⟨ind⟩ is empty, and we have an A-loop in l,

(ii) if for all i (0 ≤ i ≤ n), Pi there is only one ‘E’
quantifier or every Pi is the ‘E’ quantifier with the same

label ⟨indi⟩ then we have an E-loop in l on the path ⟨indi⟩,
otherwise

(iii) we have indicated a hidden E-loop in l on an infinite
path, ⟨ind⟩, combined from ⟨ind1⟩ . . . ⟨indn⟩.

For a given set, R, of BNF clauses the breadth-first and
depth-first loop searching algorithms have been developed.
For the purposes of the completeness of our presentation
we overview here the depth-first search [1] referring an in-
terested reader to [3] for details of breadth first search.

4.1 Depth First Loop search algorithms

In the descriptions that follow we shall use the term self
loop in l to signify a loop of the form Bi ⇒ P g(l ∧ Bi)
for some i. Further, Bi ⇒ P g(l ∧ (Bi ∨ Y1 ∨ . . . ∨ Yn)),
for some n, and for each Yi(0 ≤ i ≤ n), Yi is a conjunction
of literals, represents a partial loop in l. A partial loop be-
comes a loop once we have established that each Yi is also
part of a loop in l. Finally, a ”leading loop” in l is a sequence
of m clauses of the form Bi ⇒ P g(Bi+1 ∧ l)<inds> for
0 ≤ i < m, and for m, Bm ⇒ P gP l.

The depth first search method we propose is an adapta-
tion of the depth first search method for PLTL by Dixon in
[6]. Accordingly, we will adhere to the same terminology
wherever possible and highlight the major differences that
had to be made to the algorithm to adapt it to the Branching
Time case.

We construct a search graph in which edges represent
BNF rules and the nodes represent the left hand side of these
rules. Nodes are added to the graph depth first if they sat-
isfy the expansion criteria for either backward or forward
search in order to find a subgraph where one of the nodes
recurs. Backtracking is used if a particular path leads to a
”dead-end”. The rules governing expansion guarantee that
the desired looping occurs.

Graphs in the algorithm are represented as nested lists
in which successive entries represent the next node in the
graph and where each additional nesting of a level indi-
cates branching, e,g. [n0, n1, [n2, n0], [n4]] represents the
two paths [n0, n1, n2, n0] (which is a loop) and [n0, n1, n4].
As each entry in this graph is guaranteed to also imply l in
the next moment of time (by the expansion rules), this ex-
ample represents a partial loop in l. It becomes loop in l if
we successfully expand to another loop in l from n4

In the remainder of this section, we present the core al-
gorithms for the Depth-First search A algorithm.

The notion behind the DFS search algorithm is to build
a search graph such that nodes represent the left or right
hand side of clauses within BNF. As the search proceeds
a graph is constructed where each edge of the graph repre-
sents a transition from one node to another. Thus the algo-
rithm creates chains linking the right hand side of clauses to
the left hand side of other clauses or vice-versa, depending

on whether backwards or forwards search is being utilised.
Backward search is used to start the search procedure and
forward search is used when we have reached a partial loop
and disjuncts remain to be processed.

4.2 Depth-First A-Search algorithm

When we are looking for an A-loop in l we no longer
need to consider any BNF clauses of the form

g∧
a=0

ka ⇒ E g(r∨
b=0

Cb ∧ l)<inds>

since these would never force a condition to hold on all
paths in the graph. Hence, for Step 1, we initialize the
toExpand variable only considering clauses of the form
Bk ⇒ A gl. Similarly when expanding subsequent clauses
we only consider A clauses from BNF when evaluating the
expansion criteria for backwards and forwards search.

4.3 Backwards Search Algorithm

During the backwards search we seek clauses in BNF
whose right hand side contains a conjunct with l, and also
implies the current node.

1. Given the current node ni, expand the next node
ni+1 in the search tree by looking for clauses or
combinations of clauses of the form

g∧
a=0

ka ⇒ A g(r∨
b=0

Cb ∧ l) or

g∧
a=0

ka ⇒ E g(r∨
b=0

Cb ∧ l)<inds>, where ⊢ Cb ⇒ ni.

2. If such a new rule exists

a. set the current node ni+1 to be
g∧

a=0

ka and retain

the label <inds> if looking for an E loop;

b. if r > 1 (i.e. there is more than one disjunct on the
right hand side of the rule) structure the search
path to represent this and store the disjuncts that
have not been matched to the current node in a
list for future processing; and

c. goto step 3;

otherwise, if no such rule exists

a. if i > 0 (i.e. this is not one of the start nodes)
backtrack setting the current node to ni−1 and
repeat step 1; or

b. if i = 0 (i.e. this is one of the start nodes) ter-
minate backwards search and return to the main
algorithm.

3. a. if ni+1<inds> is already in the search path return
to the main algorithm - a loop or partial loop has
been detected on <inds>; otherwise

b. increment i and continue at step 1.

4.4 Forwards Search Algorithm

The forward search algorithm is invoked after a partial
loop has been detected using Backwards Search but dis-
juncts remain to be processed. The algorithm works by
finding clauses in the set BNF such that the current node
implies the left hand side of the next node, and the right
hand side of the next node also contains l.

1. Given the current node ni, expand the next node
ni+1 in the search tree by looking for clauses or
combinations of clauses of the form

g∧
a=0

ka ⇒ A g(r∨
b=0

Cb ∧ l) or

g∧
a=0

ka ⇒ E g(r∨
b=0

Cb∧l)<inds>, where ni ⇒
r∧

b=0

ka.

2. If a new such rule exists

a. amend ni to be
g∧

a=0

ka;

b. set the current node ni+1 to be Cb and
c. if r > 1 (i.e. there is more than one disjunct on the

right hand side of the rule) structure the search
path to represent this and store the disjuncts that
have not been matched to the current node in a
list for future processing; and

d. goto step 3;

otherwise, if no such rule exists

a. if i > 0 (i.e. this is not one of the start nodes)
backtrack setting the current node to ni−1 and
repeat step 1; or

b. if i = 0 (i.e. this is one of the start nodes) terminate
forwards search and return to the main algorithm.

3. a. if there is a node in the search path nj (associ-
ated with the <inds> for a E search), such that
ni+1 ⇒ nj then replace ni+1 by nj in the search
path and return to the main algorithm - a loop or
partial loop has been detected (on <inds> for a E
search); otherwise

b. increment i and continue at step 1.

4.5 Example

Example Here we present the A search algorithm along
with its application to the following example set of BNF
clauses which might be derived from composing our com-
ponent with another component.

1. a ⇒ E gd⟨ind1⟩
2. b ⇒ A gd
3. c ⇒ A gd
4. d ⇒ A gd

5. e ⇒ E ge⟨ind2⟩
6. (a ∧ c) ⇒ A ga
7. b ⇒ A gb
8. d ⇒ E gb⟨ind3⟩

We will assume that the creator of the component wants
the computation to always be active. Hence we are looking
for a loop in d.

Before we begin with the algorithm we initialize the
following variables: currentNode = {}, path = [],
toExpand = {}, loopsFound = {}, and since we are
looking for a loop in d we set seekLoopIn = d,

From Step 1. Find the BNFclauses of the form B ⇒ A gl,
and add these nodes to the ”toExpand” variable. Here
toExpand = {b, c, d, {b, c}, {b, d},

{c, d}, {b, c, d}}. Note that a was excluded because
it can only satisfy loop conditions on a path labelled
< ind1 > and we are searching for an A loop. We will
now use each of the elements in toExpand as a root for the
Depth First expansion.

From Step 2. Set currentNode = {b}, path = [(b)],
and remove the first node from ”toExpand”,
toExpand = {c, d, {b, c}, {b, d}, {b, c, d}}.

From Step 3. Perform a backwards search from
currentNode. We are looking for a clause or set of
merged clauses of the form

∧
kj ⇒ A g(∨Cb ∧ d) such

that Cb ⇒ currentNode. We find that merging clauses
7+2: b ⇒ A g(b ∧ d) satisfies these criteria. Now set
currentNode = b, path = [(b), (b)], and we have found a
self-contained loop, b ⇒ A gA d.

From step 2 (continuation). We note that this loop
satisfies the condition that we have found an n0 as a loop
and goto step 6.

From Step 6. Extract the set of nodes from the path con-
structed and add them to loops found loopsFound = {b},
and goto step 2.

The algorithm returns loopsFound = b and terminates.

We return having found the loop

b => A gA (b ∧ d)

5 Discussion

We proposed an extension to the ADL which enabled the
embedding of temporal logic specifications. This specifi-
cation describes the required behaviour of the components.
This enabled the verification of the fact that certain invariant
properties hold.

It is notable that our specification for the components in
the language of the normal form has been used to ease the
model checking approach, namely, for the bounded model
checking. Let us recall that bounded model checking was
initially proposed in [8] as one of the solutions to over-
come the famous model checking’ state explosion problem
by introducing a so called ‘temporal bound’. The encod-
ing then converts the specification into a Boolean formula
which is subsequently used for a SAT checker. In [9] the
authors utilised our specification language of the normal
form for branching-time logic, BNF, for such the encod-
ing of the specification into a Boolean formula. Their re-
search showed that a SAT solver which ‘performs a repeti-
tion check and a check for trivial clauses on its input may
succeed more quickly than one which tries to apply a deci-
sion procedure to the whole clause set. This opens an inter-
esting perspectives of research into the selection of clauses,
for example, useful clauses.

References

[1] A. Basukoski and A. Bolotov. Search strate-
gies for resolution in CTL-type logics: Exten-
sion and complexity. In Proceedings of the Time-
2005/International Conference on Temporal Logic,
pages 195–197, IEEE, 2005.

[2] A. Bolotov and A. Basukoski. Clausal resolution for
extended computation tree logic ECTL+. In Journal
of Annals of Mathematics and Artificial Intelligence,
in press.

[3] A. Bolotov and C. Dixon. Resolution for Branching
Time Temporal Logics: Applying the Temporal Res-
olution Rule. In Proceedings of the 7th International
Conference on Temporal Representation and Reason-
ing (TIME2000), pages 163–172, Cape Breton, Nova
Scotia, Canada, 2000. IEEE Computer Society.

[4] A. Bolotov and M. Fisher. A Clausal Resolution
Method for CTL Branching Time Temporal Logic.
Journal of Experimental and Theoretical Artificial In-
telligence., 11:77–93, 1999.

[5] E. Bruneton, T. Coupaye, and J. B. Stefani. Re-
cursive and dynamic software composition with shar-
ing. Proc. of the 7th International Workshop on

Component-Oriented Programming (WCOP2002).,
2002.

[6] C. Dixon. Search Strategies for Resolution in Tem-
poral Logics. In M. A. McRobbie and J. K. Slaney,
editors, Proceedings of the Thirteenth International
Conference on Automated Deduction (CADE), volume
1104 of Lecture Notes in Artificial Intelligence, pages
672–687, New Brunswick, New Jersey, July/August
1996. Springer.

[7] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science: Volume B, Formal Models and Semantics.,
pages 996–1072. Elsevier, 1990.

[8] A. M. Frisch, D. Sheridan and T.Walsh. A Fixpoint
Based Encoding for Bounded Model Checking. In
FMCAD 2002: 238-255.

[9] A. M. Frisch, D. Sheridan and T.Walsh. Comparing
SAT Encoding for Model Checking. In Proceedings of
the 7th International Conference Principles and Prac-
tice of Constraint Programming - CP 2001, Paphos,
Cyprus, November 26 - December 1, 2001, Lecture
Notes in Computer Science, Volume 2239, 2001, 784.

[10] CoreGRID Project. Proposals for a Grid Compo-
nent Model, Deliverable D.PM.02, February 2006,
http://www.coregrid.net.

[11] J. Thiyagalingam and V. Getov. A Metadata Extracting
Tool for Software Components in Grid Applications.
IEEE JVA 2006 Symposium on Modern Computing,
189-196, IEEE CS Press, 2006.

[12] J. H. Perkins and M. D. Ernst. Efficient incremental
algorithms for dynamic detection of likely invariants.
In Proc. of the ACM SIGSOFT 12th Symposium on
the Foundations of Software Engineering (FSE 2004),
(Newport Beach, CA, USA), November 2-4, 2004, pp.
23-32.

[13] J. Thiyagalingam, S. Isaiadis, and V. Getov. Towards
building a generic services platform: A components-
oriented approach. In V. Getov and T. Kielmann, edi-
tors, Component Models and Systems for Grid Appli-
cations. Springer-Verlag, 2004.

[14] P. Wolper. On the relation of programs and compu-
tations to models of temporal logic. In L. Bolc and
A. Szałas, editors, Time and Logic, a computational
approach, chapter 3, pages 131–178. UCL Press Lim-
ited, 1995.

