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ABSTRACT 
 
Nearly three decades back nonlinear system identification consisted of several ad-hoc 

approaches, which were restricted to a very limited class of systems. However, with the 

advent of the various soft computing methodologies like neural networks and the fuzzy logic 

combined with optimization techniques, a wider class of systems can be handled at present. 

Complex systems may be of diverse characteristics and nature. These systems may be linear 

or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short 

term or long term, central or distributed, predictable or unpredictable, ill or well defined. 

Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for 

utilising linguistic values and numerical data. This Thesis is focused on the development of 

advanced neurofuzzy modelling architectures and their application to real case studies. Three 

potential requirements have been identified as desirable characteristics for such design: A 

model needs to have minimum number of rules; a model needs to be generic acting either as 

Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification 

model; a model needs to have a versatile nonlinear membership function.  

Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a 

prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–

Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection 

of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification 

strategy involved not only the classification of beef fillet samples in their respective quality 

class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their 

associated microbiological population directly from FTIR spectra. In the case of AFLS, the 

number of memberships for each input variable was directly associated to the number of 

rules, hence, the “curse of dimensionality” problem was significantly reduced. Results 

confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference 

System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques 

used in the same case study.  

In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy 

systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural 

Network (AFINN) has been developed for the monitoring the spoilage of minced beef 

utilising multispectral imaging information. This model, which follows the TSK structure, 

incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final 

fuzzy rule base is determined by competitive learning. In this specific case study, AFINN 

model was also able to predict for the first time in the literature, the beef’s temperature 

directly from imaging information. Results again proved the superiority of the adopted model. 
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By extending the line of research and adopting specific design concepts from the previous 

case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) 

architecture has been developed. This architecture has been designed based on the above 

design principles. A clustering preprocessing scheme has been applied to minimise the 

number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the 

same number of rules as well as fuzzy memberships. In spite of the extensive use of the 

standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric 

function acting as input linguistic node. Since the asymmetric Gaussian membership 

function’s variability and flexibility are higher than the traditional one, it can partition the 

input space more effectively. AGFINN can be built either as an MISO or as an MIMO 

system. In the MISO case, a TSK defuzzification scheme has been implemented, while two 

different learning algorithms have been implemented. AGFINN has been tested on real 

datasets related to electricity price forecasting for the ISO New England Power Distribution 

System. Its performance was compared against a number of alternative models, including 

ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The 

concept of asymmetric functions proved to be a valid hypothesis and certainly it can find 

application to other architectures, such as in Fuzzy Wavelet Neural Network models, by 

designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics 

also make the proposed architecture suitable for a larger range of applications/problems. 
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Chapter One 
 

 INTRODUCTION 
 

1.1 Rationale of Current Research 
	

System modeling, in its general definition, is practically considered as an adequate 

representation of how variables interact and relate to each other to produce an acceptable 

output.  Among all the tasks in data analysis, modeling is considered to be the most frequently 

occurring process. The identification/modeling of nonlinear systems has always been a 

challenging problem due to the unique nature and dissimilar characteristics for each system. 

A fundamental goal in the process of nonlinear system modeling is to produce a universal 

model, which is capable of identifying a wide class of different structured systems. Hence, a 

vast range of techniques to address these tasks has been developed, which vary from 

fundamental mathematical forms to more sophisticated artificial intelligence approaches. 

For many years there have been a number of mathematical techniques designed to facilitate 

this modelling task. These range greatly in complexity from very simple models capable of 

operating general systems like thermostats in heating systems to more complex ones capable 

of tracking/predicting complex dynamic systems and recognising complex objects in a variety 

of surroundings. Conventional modelling methods based around a linear sum of a given set of 

factors have performed remarkably well. In fact, as long as the real world remains fairly close 

to the desired observed states around which the parameters were obtained they are often 

sufficient. However for dynamic systems that change even a little from their known state or 

when asked to distinguish between subjects, which are not linearly separable, different 

techniques are required.  

For the purpose of data analysis, Soft Computing methods (SC) have experienced high 

popularity due to their ability to solve complicated systems, particularly where mathematical 

approaches proved to be insufficient. Modeling real-world problems is often a challenge as 

one usually faces difficult and ill-defined systems. Exact mathematical models in such cases 

tend to be unfeasible, impractical or come with high computational cost. Soft Computing 

methods that have been developed from emulating intelligent phenomenon in human and 

nature provide a suitable framework to deal with such complications. SC involves 

methodologies such as neural networks (NN), fuzzy logic (FL) and Evolutionary 

Computation (EC), and is focused on the study of adaptive mechanism to assist intelligent 

behavior in inconsistent and imprecise environments.  
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Artificial Neural Networks originated as an attempt to mimic the structure of the biological 

brain. They are comprised of a number of simple processing elements which when taken 

together possess massive representational capabilities. Multilayer Perceptron (MLP), radial 

basis function networks, Recurrent Neural Networks (RNN) and Backpropagation (BP) 

learning algorithm with Gradient Decent method (GD) are usually employed to approximate 

the input/output mapping of nonlinear systems. Their main problems are that it is a time-

consuming procedure and the learnt network may not be optimal due to the lack of knowledge 

to select the proper network structure. Fuzzy systems on the other hand, accept numeric 

inputs and convert them into linguistic values that can be manipulated with linguistic IF-

THEN rules and with fuzzy logic operations, such as fuzzy implication and composition rules 

of inference. However, at present there is no systematic procedure for the design of a fuzzy 

system. Usually the fuzzy rules are generated by converting human operators’ experience into 

fuzzy linguistic form directly and by summarizing the system behaviour (sampled input-

output pairs) of the operators. However, it is rather difficult to obtain adequate fuzzy rules 

and membership functions because these are most likely to be influenced by the intuitiveness 

of the operators and the expert designers.  

Neurofuzzy (NF) hybrid modeling approaches are a set of methods created by combining 

Neural Networks and Fuzzy Logic.  Such hybrid approach is supported by the desired 

qualities of both the fuzzy logic and the neural network methods hence generating adaptable 

models, which could be represented and interpreted linguistically by fuzzy rules structure 

while learning from experimental data. In dynamic system identification, neurofuzzy systems 

incorporating a Takagi-Sugeno-Kang (TSK) scheme possess a very good interpretation, 

which is superior to most, if not all, alternative defuzzification approaches. However, TSK-

based fuzzy systems may require a huge number of rules and associated coefficients in order 

to achieve the desired accuracy. A large network structure is associated with an undesirably 

high computational cost. The Adaptive Neurofuzzy Inference System (ANFIS) architecture is 

a classic representative of TSK-based models. 

This thesis investigates the ability of advanced neurofuzzy soft computing approaches to learn 

how to identify adequately complex nonlinear systems. Two important applications areas 

have been targeted, i.e. energy forecasting and prediction of bacteria in food. One important, 

and still open, problem in NF systems is to how to determine their initial structure, including 

the number of fuzzy rules, the initial parameters of membership functions of the premise and 

consequent parts in each rule. Existing NF systems, especially those that follow the TSK-

structure, suffer from the co-called “curse of dimensionality” problem, which practically is 

related to the excessive number of generated fuzzy rules. In addition, although many NF 

systems have been developed for a number of applications, the area of food microbiology is 

still considered as “Terra incognita” for such advanced systems. 
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1.2 Research Aims and Contributions 
 

The main objective of this thesis is the development of novel neurofuzzy architecture, which 

is capable of tackling highly nonlinear problems. Knowing the strengths as well as the 

deficiencies of existing NF systems, the following sub-objectives have been considered:  

• A NF model needs to have minimum possible number of rules 

• A NF model needs to be generic acting either as MISO or MIMO model 

• A NF model needs to have a versatile nonlinear membership function. 

In this research, a hierarchical approach has been followed, towards the development of a 

general purpose advanced NF identification model. At each stage of research, valuable 

experience has been gained and such experience was accumulated to the final model 

development. A number of advanced NF models have been developed for two important 

applications: Meat Spoilage Detection and Electricity price Forecasting.  

Initially, an Adaptive Fuzzy Logic System (AFLS) model has been developed for the 

detection of meat spoilage utilising Fourier transform infrared (FTIR) sensorial information. 

In AFLS models, the number of memberships for each input variable is directly associated to 

the number of rules, thus the “curse of dimensionality” problem is significantly reduced. 

However, the number of rules is still determined by the user. Currently, in the area of food 

microbiology, either classic multivariate techniques or simple MLP networks are used as 

identification models. In this research, for the first time in literature, a MIMO NF system has 

been applied successfully simultaneously as a classifier of beef samples in their respective 

quality class (i.e. fresh, semi-fresh and spoiled), as well as a predictor of their associated 

microbiological population.  

In a further stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) model 

has been developed for the detection of meat spoilage utilising multispectral sensorial 

information. AFINN follows the classic MISO TSK-based structure. However, a clustering 

pre-processing algorithm is applied for the sample data in order to organize feature vectors 

into clusters, such that points within a cluster are closer to each other than vectors belonging 

to different clusters. AFINN provides a means of controlling the growth of the number of 

local linear systems when the order of the system under consideration increases, so that least-

squares estimation can be applied without performance degradation. The idea of clustering 

pre-processing stage is considered as important, as it can determine the number of fuzzy rules 

as well as the initial values for the related fuzzy memberships in the fuzzification layer. The 

application of NF systems in this domain is again novel whereas the identification of 

temperature based only on multispectral imaging information is considered to be truly 

innovative. 
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Results from AFLS and AFINN schemes are compared against models based on ANFIS, 

MLP, and Partial Least Squares (PLS). Such comparison is considered as an essential 

practice, as we have to emphasise the need of induction to the area of food microbiology, 

advanced learning-based modelling schemes, which may have a significant potential for the 

rapid and accurate assessment of meat spoilage. Such an accurate assessment/prediction could 

allow a more efficient management of products in the food chain. 

All these ideas have been also incorporated to the final developed Asymmetric Gaussian 

Fuzzy Inference Neural Network (AGFINN) model, which additionally utilise an asymmetric 

Gaussian function. AGFINN has been tested on real datasets related to electricity price 

forecasting. AGFINN concept has been built either as an MISO or MIMO system and utilizes 

also a hybrid-learning algorithm. AGFINN’s MIMO characteristics also make the proposed 

architecture suitable for a large range of applications/problems. Results from AGFINN 

schemes are compared against models based on AFLS, ANFIS, MLP and Wavelet Neural 

Networks (WNN). In general, NF systems are considered to be more accurate than single 

layer networks, like MLP or even WNNs. In this research, it has been proved that in some 

cases, WNN could outperform ANFIS performance. The importance/utilisation of wavelet 

functions as potential “fuzzy” membership functions is something that needs to be considered 

carefully. 
 

1.3 Thesis Organization 
	

The thesis is organised into seven chapters. Following this introductory chapter the next 

chapter, Chapter 2, gives a summary of nonlinear system identification with models 

procedures and classification.  Then an overview of soft computing methods used in system 

identification is introduced. In addition, several architectures of hybrid techniques are 

explained with an emphasis of the importance of such integration between soft computing 

methods. Chapter 3 provides an analysis of specific soft computing paradigms with necessary 

mathematical details. It starts with fuzzy systems and its concepts. Then, neural networks 

with training learning algorithms have been discussed. Hybrid wavelet neural network 

principles are also explained. Finally, a brief introduction to cluster analysis is provided, with 

emphasis on the Fuzzy C-means method. 

Chapter 4 introduces the Adaptive Fuzzy Logic System (AFLS) architecture and its 

application to the rapid and non-destructive detection of meat spoilage microorganisms 

during aerobic storage at chill and abuse temperatures, utilising FTIR spectroscopy. Datasets 

related to FTIR spectra and the correlated microbiological analysis (i.e. total viable counts – 

TVC) from beef fillets, were provided by the Agricultural University of Athens, and the 

specific application is considered to be as the first time that NF systems are applied to this 
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specific important problem. The identification strategy involved not only the classification of 

beef samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the 

prediction of their associated microbiological population directly from FTIR spectra. The 

realisation of this strategy has been fulfilled with the development of a MIMO neurofuzzy 

model which incorporates a prototype defuzzification scheme, while utilising an efficient, 

compared to TSK-systems, fuzzification layer. In the case of AFLS, the number of 

memberships for each input variable is directly associated to the number of rules, hence, the 

“curse of dimensionality” problem is significantly reduced. The performance of the proposed 

scheme is then compared against ANFIS, in terms of prediction accuracy and structure 

simplicity. Subsequent comparison against the MLP and PLS had also been made. 

Chapter 5 introduces the Adaptive Fuzzy Inference Neural Network (AFINN), an TSK based 

MISO structure, and its application to associate, for the first time according to literature, 

spectral data acquired by multispectral imaging techniques with meat spoilage. AFINN is a 

NF that incorporates a clustering pre-processing stage for the definition of fuzzy rules, while 

its final fuzzy rule base is determined by competitive learning. In addition, a hybrid-learning 

rule is applied for the tuning network’s parameters. An intelligent decision support system 

based on AFINN, initially classifies minced beef samples stored either aerobically or under 

modified atmosphere packaging and then predicts for each case, the total viable counts of 

bacteria. The innovation of the proposed approach is further extended to the identification of 

the temperature used for storage, utilizing only imaging spectral information. Results from 

AFINN scheme are compared against models based on ANFIS, MLP, as well as non-linear 

and linear PLS regression schemes. 

In chapter 6, a novel asymmetric neurofuzzy network AGFINN architecture has been 

presented, which incorporates the experience gained from AFLS and AFINN NF models. The 

proposed scheme has been developed utilising two alternative defuzzification schemes acting 

either as an MIMO or MISO configuration. The Fuzzy C-Means clustering has been used as a 

pre-processing step to derive the required number of clusters and eventually the number of 

fuzzy rules in AGFINN model, while an asymmetric function, acting as input linguistic node, 

has replaced the standard symmetric Gaussian membership function usually appeared in 

neurofuzzy models. The AGFINN model that utilise the Takagi–Sugeno–Kang 

defuzzification method utilises also a hybrid-learning algorithm, which include Gradient 

Descent (GD) and Recursive Least Squares (RLS). AGFINN has been developed for short-

term price forecasting of the electricity prices in ISO New England market and its 

performance clearly outperforms that of AFLS, ANFIS, WNN and MLP systems. 

Finally, chapter 7 draws conclusions and possible directions for future work. Three 

recommended enhancements, which were out of the scope of this research, are presented here.  
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Chapter Two 
 

 NONLINEAR SYSTEM IDENTIFICATION 
 

2.1 Introduction 
	

A mathematical form that describes the static or dynamic behavior of any system is of 

significant requirement to improve our understanding of numerous real world problems. A 

number of complex systems are encountered in technical areas such as electrical engineering, 

as well as the natural sciences and non-technical problems generally found in physics, 

biology, medicine and economics.  

The process of modeling of a system is to describe the temporal behavior of every process by 

characterizing the system conditions and parameters through the development of 

mathematical abstractions. Two distinct approaches are followed in model development; 

theoretical path using the first-principles of a system and empirical approach based on the 

analysis of experimental input-output data. The latter is called System Identification (SI) and 

is considered to be the natural and practical alternative for modeling complex systems in 

particular, since the fundamental level information is either too difficult to be tackled or 

partially unknown.  Moreover, a key asset of SI is the potential of capturing detailed 

information from the observed data that could otherwise be overlooked in theoretical 

modeling [1]. 
 

2.2 System Identification Procedures  
	
System identification is the process of utilizing observed input-output data in the development 

of a mathematical model. Hence, given the data, system identification is a mapping between 

the input domain (causes) and the output domain (effects). System identification combines the 

knowledge of the model developer with their creativity to design the most consistent and 

accurate representation of the system.  Fig. 2.1 illustrates the schematic of the salient steps in 

system identification. The identification employment is divided into 4 main steps [2,3]: 

 

I. Data Acquisition 

The integral step of creating an identification system model is data acquisition. It is the initial 

step and one that establishes the foundation by which the model is generated and evaluated.  
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II. Data Pre-Processing 

Upon acquiring the data, it is often in its initial form that is usually inadequate for use in the 

model. In turn, a pre-processing procedure is vital to ensure the data is in an appropriate form. 

This step also accounts for certain features that influence the quality of raw data, namely the 

problem of outliers among others. Outliers refer to anomalous data points that do not appear 

to correspond to or match the rest of the data. Although these pose a challenge to the model 

due to the difficulty of identifying and tackling them, a number of statistical methods can be 

used in this instance to assist in this preprocessing step. 

 

 
 

Fig. 2.1 A diagram of the salient steps in system identification 

It has to be emphasized that this step is where all assumptions and requirements of developing 

the system identification model can be accounted for and implemented. This includes any 

available a priori knowledge regarding the structure and order of the model and the set of 

parameters. Consequently, the incorporation of such information leads to a model 

development process with higher transparency. The modelling process usually begins with an 

initial choice of a model with preliminary specification in terms of structure and type.  
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Any blind guess is likely to lead to a twisty route with a divergent result, and a decent guess 

should be based on a priori information. An introductory investigation of the data such as 

clustering is certainly considered as beneficial knowledge to be incorporated to reflect the 

process behaviour. Additionally, methods such as dimensionality reduction and filtering could 

be proved to be beneficial preprocessing tools. 

III. Model Development 

This is the fundamental step of the identification procedure: model development. Such step is 

where the model order identified, the structure formulated, and the parameters estimated. It is 

perhaps the most challenging and time-consuming stage of the procedure. There is a range of 

candidate models that can be chosen in this step, depending on the desired requirements. One 

consideration is the prior knowledge available on the type and structure of the model. Once a 

selection of a candidate model is confirmed, the problem becomes an optimization case in 

order to modify the model factors. The target function to be minimised is usually based on a 

metric space such as the square error between the predicted and actual values. Overall, this 

step tends to be initiated by an approximation of the model’s configuration, which is followed 

by refinements along the way. 

VI. Model Evaluation  

This step comprises of assessing and validating the quality of the resulting identification 

model. What is essentially judged is the model’s capability of effectively describing disparity 

in the output of the training data, in anticipation of minimal errors in prediction given a 

sufficient level of precision. 

Statistical residuals error evaluation as well as an analysis of model fitness is performed 

simultaneously. Based on the findings, the decision is made for the amount of refinements 

needed on previous stages. The overall aim is to achieve an acceptable point of balance 

between the prediction accuracy and precision of the variance values. Shortcomings could 

result from an unsatisfactory model structure, order or data quality. Hence, any refinements 

should be based on the diagnostic feedback provided by the quality assessment. 

Unlike its theoretical counterpart, empirical modeling provides the developer with a certain 

level of flexibility and freedom in choosing the structure of the model. However, this 

advantage also has its downfalls, particularly with respect to the accuracy of mathematical 

description and the problem of overfitting.  The problem of overfitting occurs when the model 

is trained to apprehend the local characters of the data rather than the global features. The 

attempt to decrease the bias of the prediction occurs with the risk of high variance errors in 

the parameter approximations. This leads to poor prediction ability and might in extreme 

situations end up into an unbounded model. The ideal model would both accurately capture 
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the local features of the experimented input-output effects and generalize the model ability of 

identifying a fresh data set. This systematic approach can be expected to lead to a working 

model in the least number of iterations, subject to the learning algorithm. A useful and well-

qualified model necessarily requires a sound knowledge of the impact of the initial choices 

and the preceding decisions made throughout the identification process. It’s worth mentioning 

that system identification is a journey, which designs a well made and suitable model that is 

considered as the centerpiece of science and art.  

 

2.3  System Identification Models Classification 

	
Further categories can be distinguished within the two distinct approaches of first-principle 

and empirical modeling. The following classifications are based on different criteria found in 

the system. 

• Response features: Static vs. dynamic systems  

A key difference between static and dynamic models is that the latter integrates time 

into the explanatory variables, whereas the former is time-independent. Naturally, 

dynamic models are suitable for applications where the time variable is fundamental 

to understand the behaviour of the system, such as financial forecasting and control 

applications. On the other hand, one of the most important applications to the static 

field is pattern recognition. 

• System nature assumption: Linear vs. non-linear systems 

A linear system follows the principles of superposition and homogeneity [4] as shown 

in the following definition: 
 

Definition 2.1 

A system with input 𝑢 𝑡  and output 𝑦 𝑡  where 𝑦 𝑡 = 𝑇{𝑢 𝑡 } is linear if and only if 

I. 𝑇 𝛼𝑢 𝑡 = 𝛼𝑇 𝑢 𝑡  

II. 𝑇 𝛼!𝑢! 𝑡 + 𝛼!𝑢! 𝑡 = 𝑎!𝑇 𝑢! 𝑡 + 𝛼!𝑇 𝑢! 𝑡  

       Where T is the transformation operator, and 𝛼 is a constant.  

In contrast, nonlinear systems do not obey the mentioned linear principles and their 

behavior shows unpredictable trace. Most real world problems are nonlinear with 

inherent nature. The system is described by a set of equations that include one or 

more nonlinear functions in term of the explanatory variables. Linear techniques are 

commonly applied to solve the system of equations, however many studies proved 

them to be inadequate in approximating systems with strong nonlinear behaviors.     
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• Structure of the model: Parametric vs. Non-Parametric Models 

Parametric model assumes that a finite number of parameters are directly related to 

the objective qualities of the system, and are adequate to model any process. A 

specific difference or differential equation commonly forms the structure of the 

required mathematical model. Conversely, in non-parametric models, fewer 

structuring rules are imposed on the model. Rather, these models provide an implicit 

relation between the inputs and their corresponding response.  A large number of 

factors are used to identify the non-parametric model however minimal initial 

knowledge of the system is required for the estimation [2]. 

• Existing knowledge: Grey shades palette 

In the classification of models, we can generate a palette of grey shades, each 

attributed to models with certain features. White-box models are the product of first-

principle modeling, which is based on the direct knowledge of physical laws 

characterizing the system. This approach guarantees a high level of transparency in 

the final model that is not present in empirical models. This transparency depends on 

the knowledge imposed, thus empirical models tend to lie on the cloudier, grey side 

of the spectrum. On the other hand, a purely empirical approach based solely on 

experimental measurements are labeled as black-box models. One well-established 

example of a black-box model is neural networks. 
 

 
 

Fig. 2.2 Modeling approaches ranging from clear white to black box 

Fig. 2.2 illustrates how increasing the knowledge of physical laws in the system decreases the 

opaqueness of the model, which generates this palette of grey shades of modeling techniques. 

The size of the arrows indicates the amount of knowledge inserted in each box [4]. 
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2.4  An Overview of Soft Computing Methods in System 

Identification  
 
2.4.1 Introduction 
	

	
As many processes in control, monitoring and prediction systems reveal a nonlinear static and 

dynamic behavior, they are naturally more challenging to be identified and modelled. Many 

researchers had proven the deficiency of techniques based on conventional analysis where the 

rigorous mathematical equations had failed to accurately describe the nonlinear behavior in 

dynamic systems.  Consequently, approaches based on classical methods do not provide an 

appropriate conceptual framework for dealing with the imprecise and complex nature of real 

world problems especially if wide domain of functionality is considered. 

The general model structure to describe linear process is assumed to consist of a series of 

inputs and an output. The measure response in any process includes two different 

components, deterministic component (u) associated with the known inputs, and the 

stochastic white noise components (v) related to disturbance, unmeasured data and modeling 

error. The two distinct influences on the system could be characterized using two linear filters 

at time k.  A linear filter G (q) called the Input Transfer Function is applied for modelling the 

deterministic part u(k), while the Noise Transfer Function H (q) is used to relate the stochastic 

noise part v(k) to the output y (k). Both linear filters could be split into their numerator and 

denominator components with a shared denominator factor A (q) where q denotes the forward 

shift operator. Hence, A general linear model combining both parts could be written as: 

                                        𝑦 𝑘 = ! !
! ! ! !

𝑢 𝑘 + ! !
! ! ! !

𝑣(𝑘)                                   (2.1) 

This general model operates as a unified framework for methods most commonly used in 

control engineering. Several models that belong to the classical approach in system 

identification have been established based on the previous general mathematical formula [5]. 

This includes the models: AR, ARMA, ARMAX, Box Jenkins and the nonlinear extensions 

NARX and NARMAX, which are considered to be the most applicable methods in a broad 

range of dynamic system problems. Nonlinear methods are extended in a straightforward 

fashion by replacing the simple linear polynomials with nonlinear equations [6-10].  

Several restrictions apply on models based on mathematical forms. In practice, the type of 

nonlinearity is usually unknown, hence large number of coefficients stem from considering 

all forms of nonlinear equations under investigation. The models often run into difficulty if 

the system is noisy or features sparse measurements. Inherently nonlinear behaviour usually 

prevents the achievement of a reasonably valid model with the accurate structure. Therefore, 
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linear mathematical models are not the perfect representation due to potential shortcomings in 

accuracy over its full operation domain. Those shortcomings in the theoretical models 

increase the need of the development of more high-level techniques to handle nonlinear 

systems [11].  

As a result of the growing complexity of nonlinear system behaviour, Artificial Intelligent 

techniques such as Soft Computing could be utilized as a suitable approach to model 

processes utilizing input/output experimental data. Soft computing consists of different ideas 

and procedures, which emphasize on building intellectual technologies to overcome the 

complications and imprecise conditions commonly encountered in real world problems. The 

ultimate target is to develop smart machines, which will interact in a similar way as human 

beings and integrate the clarity of thinking, and dealing with uncertainty with machine 

intelligence capability. L. A. Zadeh proposed and defined the term Soft Computing as a 

collection of methodologies that aim to exploit the tolerance for uncertainty and imprecision 

to achieve robustness, tractability, and low solution cost [12]. Soft computing trades the 

complex and slow techniques of hard computing with more intellectual handling techniques. 

The key stage for moving from hard to soft computing is the consideration that the 

compulsory computations struggle by conventional approaches. 

Soft computing origins are associated to biological or interactive behavior in humans and 

include artificial neural networks (ANN) that comprehend intelligence through the imitation 

of neurons functionality in human’s brain, fuzzy logic (FL) which realizes intelligence 

through the imitation of human reasoning treat, and Evolutionary Computation (EC) that 

comprehends intelligence through the imitation of genetic evolution. Neural networks are 

widely used for modelling and classification applications.  Fuzzy logic delivers a natural 

framework for the processes via the concept of uncertainty. Genetic algorithms (GAs) belong 

to the EC family and are involved in various optimization and search processes. In this 

chapter, a brief outline of Fuzzy Logic and Neural Network systems is provided together with 

the hybrid approaches employing other soft computing methods.  

 
	
2.4.2   Fuzzy Systems 
 
Fuzzy systems include both fuzzy sets and fuzzy logic theory to deliver a significant 

accumulation to represent data of imprecise nature. In general, the concept of fuzziness 

allows dealing with ambiguity and vagueness usually traced in the human knowledge in a 

more conceptual framework [13]. The seminal paper proposed by Zadeh titled ‘fuzzy sets’ in 

1965 [12] laid the foundation of fuzzy sets theory and fuzzy logic as a natural extension of the 

typical binary logic. 
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In classical set theory, the universe of discourse is strictly divided into two distinct crisp 

subsets, where an element either belongs to a given set or its complement. However, fuzzy 

sets theory abolishes this sharp dichotomy with gradual transition membership value that lies 

between 0 and 1. The difference between crisp and fuzzy sets is basically acknowledged by 

the membership function. In a similar manner, the fuzzy logic distinguishes propositions by 

allowing them to hold values that are not simply true T or false F. The degree of truth is based 

on membership function that operates over the range of real numbers [0,1]. This non-binary 

logic is a generalization of classic logic and proposes an excellent computational concept to 

capture the subjective human reasoning of the real processes.  

 

 
Fig. 2.3 “Productivity” membership functions 

 

Variables, which take words instead of numerical values, are called linguistic variables, and 

they could be decomposed into a set of linguistic labels. For example, countless variables 

used in economics and finance such as credibility, profitability and reputation could suffer 

from ambiguity and subjectivity. While their approximations are highly desirable, the crisp 

logic fails to represent their uncertain nature, and as such this requires a more sophisticated 

tool to estimate them. For example, if we consider productivity as a linguistic variable, then 

using linguistic terms we could use expressions such as low, very low, middle, high and very 

high. Each one of these linguistic terms can be observed as a fuzzy subset that provides a 

basis for approximate reasoning. Fig. 2.3 illustrates the variable productivity expressed by its 

different linguistic terms using corresponding membership functions. 

 
2.4.2.1 Identification with Fuzzy Modeling 

	
The incorporation of fuzzy logic into data analysis provides human reasoning power to an 

otherwise simpler knowledge based scheme. The complexity in nonlinear problems can be 

dealt with using fuzzy logic as approximate reasoning forms the basis for its data 
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manipulation.  Fuzzy inference systems conduct the approximate reasoning procedure, and 

consist of four main principles [14]:  

• The fuzzification step evaluates crisp data according to membership functions in 

order to devise membership values for each linguistic variable. A number of 

membership functions are used in the literature, such as triangular, trapezoidal 

and Gaussian.  

• A fuzzy IF-THEN rule is constituted of the premise and consequent parts, and is 

generally expressed as “If X is A then Y is B”, where A and B are linguistic 

values. The firing strength of each rule is obtained by using fuzzy operators, such 

as minimum and multiplication, on the values of the premise part. 

• Approximate reasoning is performed to obtain a reasonable decision based on the 

membership values and the firing strength of each rule measured in previous 

steps. 

• Lastly, the defuzzification step comprises of producing crisp output by using the 

aggregated consequents. This utilizes methods such as centroid of area, mean of 

maximum, or largest of maximum. 

The main advantage gained of the fuzzy systems approach is the capability to express human 

knowledge and subjectivity using the IF-THEN rule structure with linguistic variables.  In this 

sense, fuzzy reasoning is appropriate to be used in problems that need to understand human 

intuitive thinking. This understanding is inserted while building the model rather than 

undertaking it on the conclusion stage only. The natural rule representation as the basis of 

fuzzy logic ensures the model to be easy to interpret. This observation highlights many of the 

other fuzzy logic characteristics to allow the expert to specify the rules underlying the system 

behavior and represents the feature of each variable with fuzzy sets. In addition, new 

additional rules are easily extended without the need of rebuilding the knowledge base from 

scratch. One of the major drawbacks of fuzzy systems is their lack of learning ability to tune 

the fuzzy rules and membership parameters. Normally, experts would decide the fuzzy rules 

according to the available information and test it against the testing data. However, they 

would have to continuously adapt the system in a manual way and not to rely on the machine 

power to automatically adjust the rules and parameters. Fixed architecture is another rising 

problem in fuzzy systems. It is almost impossible to define the optimal features relying only 

on the human interaction, due to the uncertainty and complexity of the identifying system. 

 

2.4.3 Neural Networks 
 
Neural networks are information-processing paradigms that inspired by the biological neurons 

in human nervous system. They are designed to mimic a human brain approach to managing 
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knowledge. A neural network is composed of interconnected components (neurons) operating 

to perform a miniature function each and the network overall output is their weighted sum. 

The modeling approach is achieved by using the data to train a generic network to identify a 

suitable input/output relation approximation within a specific level of tolerance [15]. 

 A neural network could be trained to learn the mapping that represents the required relation, 

by adjusting the values of the weights between the elements and accordingly modifying its 

internal structure. A key strength of NNs is the ability to generalise the trained knowledge and 

provide accurate responses to new data, making it a more adaptable and convenient tool of 

data modelling.  

A neural network is formed according to a number of specifications. These include: 

• The connectionist architecture between the neurons where signals travel 

• The weight determination method of the parameters, or the learning algorithm 

• The transfer functions of the neurons’ inputs that determine the outputs. 

Neural networks have a wide range of applications, including pattern recognition, function 

approximation, stock prediction, energy market prediction, image processing, weather 

forecasting, and security and loan applications [16-18]. Notably, NNs have outperformed 

conventional methodologies in solving problems of a complex nature. This is a result of NNs 

being trained to extract the needed information from the data and they work finest if the 

correlation between the inputs and outputs are highly non-linear. Neural networks aim to 

bring the conventional computers to mimic the human brain mechanism. 

 

2.4.3.1 Architecture and learning in Neural Networks 

	
A neural network commonly consists of an input layer, one or more hidden layers, and an 

output layer. The processing nodes of neural networks can be assembled in a range of layers 

depending on the desired purpose of the network. This arrangement of the neurons will form 

the overall structure of the neural network. Two significant architectures of neural networks 

are the feedforward and recurrent structures.  Feedforward neural networks are characterised 

by the lack of loops in the structure, as the input layer is only mapped onto the output layer, 

but the reverse is not possible. Thus, network signals only move forward. Fig. 2.4 illustrates a 

renowned feedforward neural network known as the Multiple Layer Perceptron structure.  

On the other hand, recurrent neural networks incorporate loops in their structure, which is the 

main component that distinguishes the two architectures apart. Fig. 2.5 illustrates an example 

of a recurrent neural network where the output is mapped back onto the input. 

Network learning notation also known as algorithm training is the practice of modifying the 

weights and parameters to enforce a network to generate a particular result. Two different 

categories of training rules are distinguished 
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                                              Fig. 2.5 Recurrent NN 
 

I.   Supervised learning of Neural Networks 

The supervised rule is provided with training data that include a set of inputs and target 

outputs for the network to identify the system. As the inputs are applied to the model, the 

network result is compared to the system target. The rule of supervised learning is to adjust 

/tune the network parameters, which consistently can fulfill the input-output prerequisite for 

the entire system target. Among the typical rules that belong to supervised learning paradigm 

are delta rule and backpropagation training. 
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II.    Unsupervised learning of Neural Networks 

The desired output is not known in the unsupervised learning and hence there is no external 

signal to adjust the weights. In its place, the learning process internally monitors the 

algorithm performance until a balance condition is reached with stable weights. With the 

missing information, learning looks for trends and consistencies within the inputs signals and 

adapts the network function weights. Accordingly, the network organizes itself to build its 

topology and learn the parameters. The process of unsupervised learning is required in many 

clustering and pattern recognition problems. Hopfield rule [19] and Kohonen rule [20] are 

among popular types of unsupervised learning. 

 

2.5    Hybrid Soft Computing Techniques 
 

Intelligent hybrid systems using soft computing techniques have been identified as promising 

research field of computational intelligence (CI). The main hypothesis behind combining two 

or more soft computing algorithms, is to develop a hybrid technique that exploits the synergy 

between them, leveraging their benefits and overcoming their respective limitations [21]. This 

has indeed proven to be quite powerful for a variety of applications, such as pattern 

recognition, intelligent control, data mining and classification. Marked at the beginning of 

1990s when scientists and researchers recognized that the hybrid process would lead to more 

powerful tools compared to solo methods. During the last few years there has been an 

energetic increase in research efforts aimed at synthesizing techniques. Smart combination of 

soft computing techniques is considered to be the new favorable frontline of Artificial 

Intelligence. Examples of promising hybridization paradigms that are widespread in practice 

are outlined in the following subsections. 

2.5.1 Neurofuzzy Systems 
 

A hybrid system known as a Neurofuzzy network combines the strengths of both Fuzzy Logic 

(FL) and Neural Networks. This integration allows a system to deal with data characterized 

with being both fuzzy and crisp, which is often the case in nonlinear problems. A brief 

comparison between fuzzy systems and neural networks from many aspects of knowledge is 

shown in Table 2.1. Fuzzy logic enables a model to approach complex problems that suffer 

from uncertainty effectively as it uses approximate reasoning. This means that more power is 

given to the user to determine a systems’ behaviour through the FL basic principle, the IF-

THEN rule, and the ability to input linguistic variables [22]. However, this could also be a 

downfall to the performance of a fuzzy logic based model if the number of input variables is 

large, which is known as the curse of dimensionality. 
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Methodology Fuzzy Systems Neural Networks 

Presentation with natural 
language 

Explicit implementation 
High flexibility 

Implicit implementation 
Low flexibility 

Learning and adapting Low 
Induction 

Highly skilled 
Adjusting parameters 

Knowledge acquisition Human expert interaction Data sets 

 

Table 2.1 A comparison between Fuzzy Systems and Neural Networks 
 

The linguistic aspect of FL also restricts its application to fields that lack the required 

linguistic information. NNs are advantageous as a complement to a neurofuzzy system due to 

their ability to adapt and modify their weights and behaviour to best fit the model. Generally, 

NNs strength is its ability for generalisations and computations. However, the learning 

process in MLP is not time effective and is often relatively slow.  Moreover, the fundamental 

process in NNs known as the black box method is a downside as the networks actions is 

unknown and thus difficult to analyse.  

 

2.5.2 Neural Genetic algorithms  
 

Evolutionary Computing (EC) models are a class of stochastic search and optimization 

methods that are inspired by the Darwinian-type survival of the fittest strategy of creating 

offspring. By inheritance, the new descendants are expected to be fit individuals and 

significantly skilled to adapt the harsh environment. EC comprises Genetic Algorithms and 

Genetic Programming. Genetic algorithm (GA) is an optimum search-technique that mimics 

the practices of genetic evolution and natural selection to identify the fittest solution. The 

algorithm deals with a population of candidate solutions called individuals, which is usually 

represented by the shape of a string similar to genetic chromosome coding [23]. Usually, 

solutions are symbolised in binary values of 0s and 1s, although other encodings are 

available, they are less used. Unlike other optimization techniques, GA does not require 

mathematical descriptions of the optimization problem, but instead relies on a cost function in 

order to assess the fitness of a particular solution to the problem [24]. A classic genetic 

algorithm requires a genetic representation and a fitness function to assess the solution range. 

The algorithm improves the initialized population through applying an iterative set of 

stochastic operators (crossover and mutation) to the coded population in order to select fitter 

individuals.  
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Evolutionary artificial neural networks refer to a class of neural networks in which evolution 

optimization scheme is utilized to adapt the model. Because GA is virtuous at searching 

complex, non-differentiable and large-scale spaces, the GA fusion with NNs are explored to 

solve non-linear problems. GA methods are basically used for recognizing the topology 

and/or tuning the weights in neural networks.  For instance, NNs using Backpropagation are 

faster to converge than GAs due to their local knowledge capability. However, this frequently 

comes with the risk of the NN getting stuck in local minima. Although GA techniques are not 

exposed to this dilemma, they are characterized by slow global search. For the drawbacks, 

GAs requires more functional computations compared to linearised techniques. Despite the 

great advantage of converging to a solution without exploiting derivatives, the method gives 

no assurance to find the function’s minima [25]. 

 

2.5.3 Fuzzy Genetic Algorithms 
 

The hybrid field of Fuzzy Genetic algorithms has been created through the combination of the 

two soft computing techniques. This is consistent with our previously debated conception 

about the ability of hybrid methods to exploit benefits and overcome the weaknesses of the 

original methods. One approach of hybridization is recognized when the FL controls the GAs 

resources. FL has the full ability to manage the GA instruments such as population size and 

weights of the altered selection operators.  The genetic algorithm tools managed by FL result 

in an adaptive method that significantly improve efficiency and speed of convergence [26]. 

 On the other hand, GA Fuzzy systems could get fine-tuned by the global searching talent of 

GAs. FL controller augmented by genetic algorithm is essentially a fuzzy inference system 

with genetic based learning process.  The provision of a suitable fuzzy knowledge base (FKB) 

system is equivalent to optimizing the rules structure and membership function parameters 

with respect to the design conditions and constraints.  Fuzzy logic based controllers is a 

prominent application of the FKB systems [27]. The knowledge base parameters are 

transformed into an appropriate genetic array where the evolutionary optimization process 

could perform. First the initial rule base is initialized using an intuitive investigation scheme, 

and then the algorithm would generate an improved rule base. Finally, GA will tune the 

membership parameters function in the antecedent part functions. 
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Chapter Three 

 

COMPUTATIONAL INTELLIGENT SYSTEM 
PRINCIPLES 

 

3.1 Fuzzy Systems  
 

A fuzzy system estimates by inference an unknown mapping between two spaces from a set 

of logical statements. It incorporates a rule-based approach to solve a modelling problem 

rather than attempting to model a system mathematically. Fuzzy systems are based on fuzzy 

set and fuzzy logic theory, both introduced by Zadeh [12, 28]. A fuzzy system uses fuzzy set 

theory and its operations to solve a given problem and represents the imprecision found in 

real-world problems using IF-THEN rules, which are expressed in a comprehensible 

language.  

A system in general is a combination of components that as a whole operate on a vector of 

input functions of time 𝑥 (𝑡)  ∈ 𝑅! for each t to produce a vector of output functions of time         

𝑦(𝑡) ∈ 𝑅!for each t. A fuzzy system in particular is a system that uses fuzzy logic to operate 

upon the input 𝑥 𝑡  to produce the crisp output 𝑦 (𝑡) [29]. A fuzzy system (also known as 

fuzzy logic system, fuzzy inference system or fuzzy-rule-based system) is constructed 

upon fuzzy logic theory, which considers logical variables with gradual truth-values between 

true and false. This character makes it suitable for uncertain or approximate reasoning, 

especially for systems with complex models that are difficult to derive.  It is capable of 

mimicking cognitive thinking and provides a framework by which nonlinear models can be 

learnt and readily understood by humans.  Fuzzy systems have been successfully applied to a 

wide variety of fields, such as data classification, automatic control, expert system, pattern 

recognition and robotics [30]-[34]. 

Fuzzy logic is a form of multi-valued logic that is employed to handle the concept of partial 

truth, where the truth-value may range between completely true and completely false. The 

truth-values of variables take any real number between 0 and 1, in contrast to the classical 

Boolean logic where the truth-values of variables may only be the integers 0 or 1. 

Furthermore, when linguistic variables are used, these degrees may be managed by specific 

membership functions. The concept of graded membership provides a mathematical precision 

to information arising from our cognitive process [29].  It is seen as a technique based on the 
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key notion that the activity of the human brain is not numbers but rather indicators of fuzzy 

sets where the transition is gradual between inclusion and non-inclusion. Having this main 

characteristic of fuzzy logic as an extension to classical logic means it is easier to deal with 

imprecise concepts in a well-defined way. 

 

3.1.1 Fuzzy Sets and Membership Functions 
 

Fuzzy set theory is a mathematical tool for translating abstract concepts found in natural 

language into computable entities. A classical set A is a set with a crisp boundary whereby an 

element either belongs to A or not. Although classical set theory is suitable for various 

applications and proved to be an essential part of mathematics, it does not reflect the 

imprecise nature of human concepts and opinions. In contrast to a classical set, a fuzzy set as 

the name indicates, is a set without a crisp boundary. The switch from ‘belonging’ to ‘not 

belonging’ to a set is gradual and is characterised by a transition function. This smooth move 

gives fuzzy sets the flexibility to model commonly used linguistic expressions. The theory of 

fuzzy sets provides a mechanism for representing linguistic values such as 'many', 'low', 

'medium', 'often', and 'few'. 

All elements x in the universe of discourse U are assumed to have a degree of membership 

through a characterized function called the Membership Function (MF) defined as: 

𝜇 𝑥 :𝑈 → [0,1] 

 where the MF maps each element of 𝑈 to a membership grade or value between 0 and 1.   

By definition, a Fuzzy set 𝐴 in 𝑈 is mathematically represented as a set of ordered pairs: 

𝐴 = 𝑥, 𝜇!(𝑥) |𝑥 ∈ 𝑈  (3.1) 

where 𝜇! 𝑥  = 𝜇 𝐴 𝑥 ,  represents the grade of membership of  belonging to the fuzzy set, 

and  is the fuzzy label or linguistic value (term) describing the linguistic variable. The 

universe of discourse might be a continuous space or consist of discrete elements.  

Linguistic variables, which take text words rather than numerical values, could be 

decomposed into a set of linguistic labels or terms. Each label is expressed by a fuzzy set. In 

fuzzy theory the determination of fuzzy sets and MF relies on the knowledge of human 

experts [14].  

Typical MFs for these linguistic values are displayed in Fig. 3.1 and defined by their 

corresponding equations (3.2)-(3.5). The universe of discourse X should be totally covered by 

the MFs and the transition from one MF to another should be smooth and gradual. The input 

space is divided into a number of regions, which can be labelled by a linguistic term. Each 

term is associated with a membership function that produces a membership value for each 

region. 

µ

x

A
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Fig. 3.1 Classes of membership functions:  

a) Triangle, b) Trapezoid, c) Gaussian, d) Bell shaped 
 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑥, 𝑎, 𝑏, 𝑐 = 𝑚𝑎𝑥 𝑚𝑖𝑛
𝑥 − 𝑎
𝑏 − 𝑎

,
𝑐 − 𝑥
𝑐 − 𝑏

, 0  (3.2) 

𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑 𝑥, 𝑎, 𝑏, 𝑐,𝑑 = 𝑚𝑎𝑥 𝑚𝑖𝑛
𝑥 − 𝑎
𝑏 − 𝑥

, 1,
𝑑 − 𝑥
𝑑 − 𝑐

, 0  (3.3) 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑥, 𝑐,𝜎 = 𝑒!
!
!
!!!
!

!

  (3.4) 

𝐵𝑒𝑙𝑙_𝑠ℎ𝑎𝑝𝑒𝑑 𝑥, 𝑎, 𝑏, 𝑐 =
1

1 + 𝑥 − 𝑐
𝑎

!!	 (3.5) 

 

In general, the fuzzy set theory provides an inference structure that enables approximate 

human reasoning capabilities. On the contrary, the traditional binary set theory describes crisp 

events, events that either do or do not occur. It uses probability theory to explain if an event 

will occur, measuring the chance with which a given event is expected to occur.  

The construction of a fuzzy set depends on two elements: the identification of a suitable 

universe of discourse and the specification of an appropriate membership function. The 

specification of a MF is subjective, which means that the MF specified for the same term by 

different experts may vary considerably. This subjectivity comes from individual perception 

and the expression of abstract concepts with no influence of randomness. Thus, subjectivity 

and randomness of fuzzy sets are the primary differences between fuzzy logic theory and 

probability theory, which deals with objective solutions of random phenomena [35].  
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3.1.2 Fuzzy Rules and Fuzzy Reasoning 
 

The theory of fuzzy set is based upon the notion of relative graded membership and so are the 

functions of mentation and cognitive processes. Thus, the utility of fuzzy sets lies in their 

ability to model uncertain or ambiguous data often encountered in real life.  

When more fuzzy sets are incorporated in a system, they can be connected using IF-THEN 

statements, forming a sequence of fuzzy rules. A form of a fuzzy IF-THEN rule (also known 

as fuzzy implication or fuzzy conditional statement) in a fuzzy system is given by 

                                               IF 𝑥 is 𝐴 THEN 𝑦 is 𝐵, (3.6) 

where 𝐴 and 𝐵 are fuzzy sets. The first part “𝑥 is 𝐴” of a rule evaluates the antecedent or 

premise, and involves fuzzification of the input. The second part “𝑦 is 𝐵” applies the result of 

the IF-part to the consequent or conclusion. The IF-part can have multiple antecedents, which 

are connected with fuzzy operators.   

Three main operators which where defined by Zadeh [28] are fuzzy intersection “∩” (AND), 

fuzzy union “∪” (OR) and fuzzy complement “∙ ” (NOT), which are described in the 

following equations. It is assumed that 𝐴 and 𝐵 are fuzzy sets with MFs 𝜇!(𝑥) and 𝜇!(𝑥) 

respectively. 

𝜇!∩! 𝑥 = 𝑇(𝜇! 𝑥 , 𝜇! 𝑥 ) = 𝑚𝑖𝑛 𝜇! 𝑥 , 𝜇!(𝑥)  (3.7) 

𝜇!∪! 𝑥 = 𝑆(𝜇! 𝑥 , 𝜇! 𝑥 ) = 𝑚𝑎𝑥 𝜇! 𝑥 , 𝜇!(𝑥)  (3.8) 

𝜇! 𝑥 = 1 − 𝜇! 𝑥  (3.9) 

The class of fuzzy intersection operators is often referred to as T-norm and the fuzzy union 
class is known as T-conorm (S-norm). Some of the most frequently used T-norm and T-
conorm (S-norm) operators are:  
 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚                           𝑇!"# 𝑎, 𝑏 = min (𝑎, 𝑏)                                                            (3.10) 

 
𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡         𝑇!" 𝑎, 𝑏 = a ∗ b                                                                        (3.11) 

 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚                         𝑆!"# 𝑎, 𝑏 = max (𝑎, 𝑏)                                                            (3.12) 

 
𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑠𝑢𝑚               𝑆!" 𝑎, 𝑏 = a + b − ab                                                                (3.13) 

 
Based on the interpretation of fuzzy intersection and fuzzy union, various T-norm and  

T-conorm operators are defined and used to formulate a number of qualified methods to 

calculate the fuzzy relations.  
Fuzzy reasoning (also known as approximate reasoning) is the inference operations executed 

upon a set of fuzzy IF-THEN rules to derive conclusions.  The steps of fuzzy reasoning 

performed by fuzzy inference systems are [22]: 
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1. Degree of membership: Compare the input variables with the membership functions on 

the premise part to obtain the membership values of each linguistic label. This step is called 

fuzzification. 

2. Firing forte: Combine the membership values on the premise part to get firing strength of 

each rule through a specific T-norm operator, usually multiplication or min. 

3. Generation: Apply the firing strength to the consequent MFs to produce the qualified 

consequent (either fuzzy or crisp) of each rule depending on the firing weight. 

4. Aggregation: Aggregate the qualified consequents to produce an overall crisp output. This 

step is called defuzzification. 

Fuzzy rules and fuzzy reasoning are the backbone when constructing the most important 

modeling tool based on fuzzy theory. Fuzzy Inference Systems (FIS) are built of Fuzzifier, a 

knowledge base called Fuzzy Inference Engine and Defuzzifier. A fuzzy inference engine 

combines a Fuzzy Rule Base into a mapping from the inputs of the system into its outputs, 

using fuzzy reasoning mechanisms. That is, fuzzy systems represent nonlinear mapping lead 

by fuzzy IF-THEN rules from the rule base, where each of these rules describes the local 

mappings [13].  

 

 

Fig. 3.2 Fuzzy Inference System structure 

 

The fuzzy rule base is constructed either by a skilled expert or through applying automatic 

generation and extraction of rules using numerical input-output data. The units of a fuzzy 

inference system are shown in Fig. 3.2.  After deriving the IF-part, the output of the THEN-

part will be the result of a fuzzy reasoning process by applying the appropriate fuzzy 

operators. The output of an inference engine is an area with an irregular shape that depends 

on the membership functions used in the consequent part, the membership value of each rule 

and the inference type used.  

The fuzzy IF-THEN for Multi-Input-Multi-Output (MIMO) rules are written in the following 

general form: 

IF x1 is F1, x2 is F2, ..., and xn is Fn THEN z1 is C1, z2 is C2 , ..., and zp is Cp      (3.14) 
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And the following form presents the fuzzy rules with Multi-Input-Single-Output (MISO): 

           IF x1 is F1 and ... and xn is Fn THEN z is C                                  (3.15) 

where Fi is fuzzy set in space of discourse Ui R, C is fuzzy set in V  R;; and xi and z are 

measured variables. Most researchers use and analyse only Multi-Input-Single-Output 

(MISO), since a Multi-Input Multi-Output (MIMO) can be decomposed into a multi-input 

single output for each output.  It can be shown that a fuzzy system with n inputs and m 

outputs (MIMO) is equivalent to m fuzzy systems, each with n inputs and one output (MISO) 

fuzzy systems.  
 
3.1.3 Defuzzification Methods 
 

Defuzzification is the process of transferring a fuzzy output into a crisp output using some 

chosen defuzzification method. This method extracts a crisp value that represents a fuzzy set. 

Two types of fuzzy inference systems that have been widely used in various applications are 

the Mamdani model [36] and the Takagi, Sugeno and Kang (TSK) model [37, 38]. The 

distinction between them lies in the consequent part of the fuzzy rules where different 

aggregation and defuzzification procedures are employed.  
 

3.1.3.1 The Mamdani inference model 
	

The Mamdani system was proposed as the first attempt to control a steam engine and boiler 

combination by a set of linguistic rules obtained by experienced human operators. In the 

Mamdani method consequents are fuzzy sets, and the final output is based on defuzzification 

of the overall output.  

Fig. 3.3 is an illustration of a two-rule Mamdani inference system employing the min and 

max aimed at T-norm and T-conorm operators, respectively.   

The form of the rules is 

 

            IF    𝑥 is 𝐴!   AND   𝑦 is 𝐵!   THEN   𝑧 𝑖𝑠 𝐶!  

Also     IF   𝑥 is 𝐴!   AND   𝑦 is 𝐵!   THEN    𝑧 𝑖𝑠 𝐶! 

 

The Mamdani method has several variations [21]. There are different t-norms to use for the 

connectives of the antecedents, different aggregation operators for the rules, and numerous 

defuzzification methods that could be used. 

∈ ∈



27 
 

 
Fig. 3.3 The original Mamdani FIS using (max-min) composition  

 

One alternative composition is to use product for the implication operator and summation for 

the aggregation operator. This sum-product variation has the advantage of a simpler 

defuzzification scheme with computation shortcut. 

Some of the mostly used defuzzification methods are centroid of area, centre average, 

bisector of area, mean of maximum, smallest of maximum, or largest of maximum (Fig. 3.4). 

	
Fig. 3.4 Various defuzzification methods 

 

The Centroid approach (also called center of area or center of gravity) is a logical answer to 

defuzzification because it uses all available information to compute the output. Centroid 

defuzzification can be put into equation form as  

 

 

 

Smallest of Max. Largest of Max. 
Mean of Max.	

Bisector of Area 
Centroid of Area 

μ 

Z 
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                                              (3.16)

        

where  is the aggregated output MF. Centroid is one of the most widely adopted 

techniques, however it suffers from the intensive computation dilemma.   

Under the sum-product composition, the output of a Mamdani model with centroid 

defuzzification method is equal to the weighted average of the centroids of the consequents 

MFs [22]. The method is called centre average (CA) defuzzifier and has the formula  

 

                             

        (3.17) 

 

where each of the weighting factors is equal to the product of a firing strength and the 

consequent MF’s area. The problem with the CA defuzzifier is that it suffers due to not using 

the entire shape of the consequent membership function  
 

3.1.3.2 TSK inference model  
	
The second inference method, generally referred to as the TSK method, or alternatively 

Sugeno method was proposed in an effort to develop a systematic approach to generating 

fuzzy rules from a given input–output data set [37]. TSK fuzzy model is one of the most 

outstanding fuzzy models in the literature, which is suitable to model a large class of non-

linear systems. 

A typical rule in a TSK model, which has two inputs x and y and one output z, has the form 

 

IF   x is A and y is B   THEN   z = f (x, y)                                 (3.18) 

 

where  f (x, y)  is a crisp function in the consequent part. Usually f (x, y) is a polynomial 

function in the inputs x and y, but it can be any general function as long as it describes the 

output of the system within the fuzzy region specified in the antecedent of the rule to which it 

is applied. When f (x, y) is a constant, the inference system is called a zero-order Sugeno 

model, which is a special case of the Mamdani system in which each rule’s consequent is 

specified as a fuzzy singleton. When f (x, y) is a linear function of x and y, the inference 

system is called a first-order Sugeno model.  

		

zcentroid =
µA(z)zdz

z
∫
µA(z)dz

z
∫

		µA(z)

		
zCA =

µA(z)z
z
∑

µA(z)
z
∑
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Fig. 3.5 TSK fuzzy model 

 

Fig. 3.5 illustrates two rules TSK model where each rule has a crisp function in the 

consequent part with a linear polynomial defined as follows: 

IF     𝑥 is 𝐴   AND   𝑦 is 𝐵     THEN    𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑟 (3.19) 

The overall output is obtained via weighted average, thus avoiding time-consuming 

defuzzification that is required in the Mamdani model. 

TSK fuzzy model consists of a number of local linear models, possessing excellent ability to 

describe uncertain systems and to approximate a nonlinear model with any given accuracy.  

The basic idea of this method is to decompose the input space into “fuzzy partitions” and to 

approximate the system in every region by a simple piecewise linear model. The overall fuzzy 

model is thus considered as a combination of interconnected subsystems with simpler models.  

Typically, in a general TSK model, the employed IF–THEN rules can be viewed as the 

expansion of piecewise linear partition [39] and they are presented as 

𝑅𝑢𝑙𝑒!:  IF 𝑥! 𝑖𝑠 𝐹!,! 𝑎𝑛𝑑 𝑥! 𝑖𝑠 𝐹!,! 𝑎𝑛𝑑… 𝑥!  𝑖𝑠 𝐹!,!      𝑇𝐻𝐸𝑁 

𝑧! =  𝑎!! + 𝑎!!𝑥! +⋯+ 𝑎!"𝑥! , 𝑤ℎ𝑒𝑟𝑒  𝑖 = 1,2,… ,𝑁                       (3.20) 

The  𝑅𝑢𝑙𝑒!
  
represents the  fuzzy inference rule, 𝑥 = 𝑥!, 𝑥!… 𝑥!  is the premise fuzzy 

variables and 𝐹!,! are the fuzzy sets. The consequent parts of the rules are specified using 

polynomials, which are linear equations with parameters 𝑎!"  belonging to  rule and jth
 input 

variable where (i=1,…,N) and (j=1,…,M). The functioning range of any fuzzy rule is defined 

by the membership functions of the antecedent part.  
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The overall output z of the N-rules in TSK fuzzy system is aggregated as a weighted sum of 

fuzzy rule outputs. The defuzzification method applied is given by: 

                     𝑧= (𝑎!! + 𝑎!!!
!!! 𝑥! +⋯+ 𝑎!"𝑥!) ∗ ℱ!(𝑥)                          (3.21) 

Where ℱ! 𝑥  is the normalised firing strengths of the rule i and obtained as                                                                          

          ℱ! 𝑥 =
!!(!!)!

!!!

!!(!!)!
!!!

!
!!!

 ,      𝑥 = 𝑥!, 𝑥!,… , 𝑥!                         (3.22) 

With 𝜇! 𝑥!  is the Gaussian membership of the fuzzy sets 𝐹!,! defined as 

        𝜇! 𝑥! = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑥!;  𝑐!" ,𝜎!" = exp (  − !
!

 !!! !!"
!!"

!
 )                 (3.23) 

𝐹𝑜𝑟         𝑖 = 1,…𝑁 𝑎𝑛𝑑 𝑗 = 1,…𝑀 

where  𝑐!"  denotes the centres and 𝜎!"  depicts the standard deviation for membership functions 

associated with rule i and input j. The parameters are obtained by fitting the equation (3.21) to 

the set of data points by numerical optimization methods. 

The fundamental distinction between the two inference systems lies in the approach used to 

generate the crisp output from the fuzzy inputs. Mamdani uses an output membership 

function and obtain the crisp output through the defuzzification of the consequent rules. On 

the other hand, TSK method has no output membership function and crisp result is found 

using the weighted average of the rules. Mamdani type is recognised for describing the expert 

knowledge in more intuitive manner. This interpretability power is lost in TSK type since the 

consequent part of the rule base is not fuzzy. However, Mamdani type entails extensive 

computational load while TSK replaced the time-consuming defuzzification phase by the 

weighted average process. Moreover, TSK inference system support only the MISO type 

whilst Mamdani is capable of adapting both MISO and MIMO styles. 

 

3.2 Neural Network Systems 
 

Neural networks are biologically inspired computing structures that are conceptually 

modelled after the nervous system. In particular, they were created in an attempt to imitate the 

processing patterns of the human brain. The fundamental aspect of this paradigm is the novel 

design for processing information [15]. Although humans are not as fast or precise as digital 

computers, they are typically much better at perceiving cognitive tasks such as identifying an 

object of interest in a natural scene, or interpreting natural language, than a digital computer. 

The basic processing unit in the brain is the neuron (nerve cell), which is not individually an 

intelligent element. However, the hundred billion of interconnected neurons coupled with 

approximately three orders of magnitude more connections synapses are capable of 

understanding and representing knowledge [40]. A synapse is a structure that permits a  
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neuron to pass an electrical or chemical signal to another neuron. A neural network of 

processing artificial neurons is designed based on the physiology and individual processing 

neurons of the brain. Initial work by McCulloch and Pitts in 1943 presented simplified 

artificial neurons that were shown to have basic logical properties. In 1957 Frank Rossenblatt 

put forward the concept of the Perceptron and Widrow developed the first training algorithm 

called Adaline [16, 41]. 

The neural network incorporates highly connected processor units, which are mimicking 

organic neurons. The operational features of the total network are determined by the weight 

of each connecting link. Modifying the links’ weight in an adaptive manner forms the basis of 

network learning. Neural computing is a study of networks of adaptable nodes, which, 

through a process of learning from task examples, store experiential knowledge and make it 

available for use. Once trained using the existing data, neural networks can subsequently 

recognize such patterns when they occur again. Moreover, to a suitable degree of accuracy, 

similar patterns are also detected by what is known as generalization. 
 

	
Fig. 3.6 Single perceptron process 

 

Fig. 3.6 depicts the feed forward information process of a single neuron with n inputs, which 

are individually weighted. This model is based on the concept of the perceptron originated by 

Frank Rosenblatt in 1957 [41]. The input vector 𝑥 = (𝑥!, 𝑥!,… , 𝑥!) is multiplied by its 

corresponding weight 𝑤 = (𝑤!,… ,𝑤!)  . The neuron includes a summation operator to 

combine the incoming information. The result is then passed through an arbitrarily selected 

activation (transfer) function.  
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Equation 3.24 presents the computed result for this simple neuron. 
 

         𝑦! = 𝑓 𝐼! = 𝑓( 𝑤!"!
!!! 𝑥!)                                       (3.24) 

 

The collective structure and learning ability empower the network to solve difficult and 

tedious problems. This is also coupled with the potential property of faster operational speeds 

achieved through underlying parallel operations. NNs are nonlinear systems due to the 

nonlinear activity of their unit’s neurons. In several cases a nonlinear system is viewed as 

being sinister; however, this nature is highly appreciated, especially when NN is applied to 

model a training data acquired from nonlinear real processes. 

Neural networks follow the black box modelling style where no prior knowledge is a 

prerequisite to identify the required system. This modelling fashion is extremely flexible to 

model different mappings through learning from the input-output data. On the other hand, the 

stored knowledge in the output model is difficult to explain and interpret. 

The field of neural networks has a strong interdisciplinary foundation, involving computing, 

biology, electronics engineering and neuropsychology. This attracts the interest of researchers 

in many different backgrounds to employ the NN in applications such as nonlinear system 

modelling, function approximation, prediction, clustering, data compression, pattern 

classification, feature extraction and nonlinear control [42-46]. The successful implantations 

have arisen partly due to the huge power of recent computers and the computing approach 

delivered by this paradigm to provide tractable solutions to complex problems. 

 

3.2.1 Activation Functions 
 

Some of the common activation functions found in NNs literature are: 

i. Linear function which transfers the summation output to the same value.	 [Equation 

3.25, Fig. 3.7 (a)] 
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(c) 

 

 

Fig. 3.7  Neuron Activation Functions 

a) Linear, b) Hyperbolic tangent, c) Sigmoid 

𝑓(𝑥) = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛 𝑥 = 𝑥 (3.25) 

𝑓(𝑥) = 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑥 =
𝑒!! − 1
𝑒!! + 1

 (3.26) 

𝑓(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =
1

1 + 𝑒!!
 (3.27) 

 

ii. The differentiable nonlinear transfer functions hyperbolic tangent and sigmoidal 

function take R=(−∞,∞) as their input domain, while their output range is (−1,1) 

and (0,1), respectively. [Equation 3.26, Fig. 3.7 (b) and Equation 3.2), Fig. 3.7 (c)]. 

 

3.2.2 Multilayer Perceptron (MLP) 
 

Multilayer Perceptron (MLP) networks are an important class of neural networks and have 

become the most encountered NN. Typically, the feedforward network consists of a set of 

source neurons (nodes) that represent the input layer, one or more intermediate hidden layers, 

and an output layer. Fig. 3.8 depicts the architecture of a MLP with two hidden layers and an 

output layer. The network shown is entirely connected, which means that a neuron in any 

layer must be linked to all the neurons in the former layer [16]. 

Activation functions are employed for both the hidden and output computation nodes where 

the output from one layer becomes the input to the next. Typically, the sigmoid function is 

used to transfer the output of the neuron from 0.0 to 1.0. 
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Fig. 3.8 MLP structure 

 

The feedforward process starts by calculating the output of the first hidden layer using the 

input nodes values and the weights connecting both the input and the hidden layer, then 

calculates the next layer with the same fashion. The outputs of any hidden layer could be 

directed to multiple other neurons for further processing. As the learning process advances 

layer by layer across the MLP, the hidden nodes begin to gradually discover the outstanding 

features of the training data. The parallel nature of NN comes into performance with multiple 

neurons in a layer. Each of these neurons can process their functions at the same time, making 

neural networks faster in the MLP architectures. 

Feedforward networks are generally static. They lack the memory units and their response to 

input signal is independent of the current network status. Conversely, Recurrent networks 

have a dynamic nature where the memory units nourish the network with feedback values 

once computed which leads the network to reach a further state [41]. 

One of the MLP shortcomings is the difficulty to explain the theoretical analysis of the 

network due to the form of distributed nonlinearity and the excessive connectivity between its 

elements. Furthermore, the implicit functionality handled in hidden layers makes the entire 

process harder to visualize, hence falling into the black box category. 

 

3.2.3 Backpropagation Algorithm 
 

In the paradigm of learning procedures, the Backpropagation algorithm is perhaps the most 

prominent method for the determination of the associated weights between the neurons. The 

algorithm essentially uses a training sample to enhance the fit of the network parameters by 
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comparing the partial derivative of the mean squared error between the system output and the 

desired output [47]. Given a training set of input/output data in the neural network layers, the 

error signal acquired from the output of each neuron is propagated backward to modify the 

previous layer’s weights. The generalised delta rule is applied for adjusting the parameters of 

the feedforward networks in order to minimise a predetermined cost error function. 

The mathematical basis for the backpropagation algorithm is the optimisation technique 

known as gradient descent method. The gradient of a function gives the direction in which the 

function increases most rapidly; a negative value of the gradient gives the direction in which 

the function decreases most rapidly. 

Two reversal passes of calculations are distinguished in the application of the learning 

scheme. The forward pass is where the parameters stay unchanged throughout the network, 

and the function signals of the network are moving forward layer-by-layer. The second pass is 

the backward pass, which starts by recursively transferring the error signal from the output 

layer to compute the local gradient vector in every hidden layer [15, 16]. 
 

First we define some necessary notations to describe the algorithm mathematical equations.  

•  represents the input to node j of layer l . 

•  is the weight from node i of layer (l-1) to node j of layer l.  

•  represents the output of node j of layer l  

•  represents the desired output of the training data. 

•  is an activation function where the sigmoid function is used in this description.  

 

We can outline the backpropagation-learning algorithm as Gradient Descent on sum-squared 

error. The total error E in a network is given by the following equation  

		
E = 12 (dj − y jL

j∈L
∑ )2                                           (3.28) 

L is the total number of  layers, and  is the output of the neural network corresponding to 

the input x.  We want to adjust the network’s weights to reduce this overall error. The rate of 

change of the error with respect to the weights is giving by the delta: , where  

is the learning rate, and the negative sign indicates that weight changes are in the direction of 

decrease in error. However the error in equation (3.28) is not a direct function of the weight. 

Hence the chain rule is applied. Two placement of nodes are considered, an output node or a 

node belonging to a hidden layer  
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First, in the output layer we compute the partial derivative based on the chain rule. That is: 

                                            (3.29) 

 is the output of activation function. So, the equation becomes:  

                                             (3.30) 

where  is the linear combination of all inputs of the node j in the layer L with the weights. 

The derivative of sigmoid function has the special form, which is easy to implement: 

                                                (3.31) 

Therefore, the partial derivative function becomes: 

                            (3.32) 

The last term is based on chain rule, where . Thus 

                                (3.33) 

By this equation, we find the relation between j node of L-1 layer and the k node of L layer. 

We define the new notation  

to represent the k node of the L layer term. So equation (3.33) becomes: 

                                                                   (3.34) 

Secondly, consider the nodes in the l hidden layer. Similarly, we need to apply partial 

derivative over hidden layer weights on the error function 

                                             (3.35) 
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Again, we apply chain rule to get: 

                               (3.36) 

Then, we modify the last derivative term by chain rule: 

                            (3.37) 

Now, we simplify the derivative term based on the chain rule: 

   (3.38) 

Define   , therefore the equation becomes 

                                                        (3.39) 

Using all mathematical derivations, BP algorithm can be summarised in the following steps: 
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The Backpropagation Algorithm 
 

1. Run	the	network	forward	with	input	data	to	get	the	network	
output	
	

2. For	each	output	node,	compute	
	

	
	

3. For	each	hidden	node,	compute	
	

																													 	

	
4. Update	the	weights	as	follows:	

	
							Calculate	

			
							Apply	Gradient	Decent	method	
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  Δw = −ηδ l yl−1

 wnew ← wold + Δw
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3.2.4 Wavelet Neural network (WNN) 
 

In recent years, wavelets have become a very active subject in many scientific and 

engineering research areas [49]. Especially, wavelet neural networks (WNN) inspired by both 

the feed-forward neural networks and wavelet decompositions have received considerable 

attention and become a popular tool for function approximation [50]. The main characteristic 

of WNN is that some kinds of wavelet functions are used as the nonlinear transformation 

function in the hidden layer, instead of the usual sigmoid function. Incorporating the time-

frequency localisation properties of wavelets and the learning abilities of general neural 

network, WNN has shown its advantages over the regular methods such as NN for complex 

nonlinear system modelling [51]. 

The fundamental of WNN is looking for a series of appropriate wavelet basis functions in 

wavelet space. This process can be realized by iteration computation of wavelet basis 

function, which is to make the energy function minimised. To design a WNN, the main work 

is to design network structure, to determine the number of nodes in the hidden layer, and to 

choose the wavelet basis function and the learning algorithm of weights training. A simple 

WNN is shown in Fig. 3.9 (a). 

 

 
 

Fig. 3.9  (a) WNN structure (b) Morlet Wavelet basis function 
 

The WNN consists of three layers: input layer, hidden layer and output layer. The connections 

between input units and hidden units, and between hidden units and output units are called 

weights tiw and tW respectively. In this WNN, the training procedure is described as follows: 

• Initialising the dilation parameter ta translation parameter tb and node connection 

weights tiw , tW to some random values. All those random values are limited in the 

interval (0, 1). 
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• Input data ( )nX i  and the corresponding output values , where i varies from 1 to 

S , representing the number of the input nodes, n represents the thn data sample of 

training set, and  represents the target output state. 

• The output value of the sample nV is calculated with the following formula: 

1

1

( )
S

ti n tT
i

n t
t t

w x i b
V W

a
ψ =

=

⎛ ⎞−⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎝ ⎠

∑
∑                  (3.40) 

Where ψ is considered a mother wavelet [49]. The Morlet wavelet filter is 

employed in this derivation and its plot is shown in Fig. 3-9(b). Morlet filter is 

represented by  
2

0( ) cos( )exp( 0.5 )t t tψ ω= −                 (3.41) 

• To reduce the error, tW , tiw , ta , tb are adjusted using tWΔ , tiwΔ , taΔ , tbΔ . In the 

WNN, the gradient descend algorithm is employed, through the following equations, 

( 1) ( )
( )t t
t

EW j W j
W j

η α∂Δ + = − + Δ
∂

           (3.42) 

( 1) ( )
( )t t
t

Ew j w j
w j

η α∂Δ + = − + Δ
∂

        (3.43) 

( 1) ( )
( )t t
t

Ea j a j
a j

η α∂Δ + = − + Δ
∂

     (3.44) 

( 1) ( )
( )t t
t

Eb j b j
b j

η α∂Δ + = − + Δ
∂

     (3.45) 

where the error function E is taken as: 

( )
2

1

1
2

N
T
n n

n
E V V

=

= −∑           (3.46) 

and N standing for the data number of training set, η and α being the learning 

rate and the momentum term, respectively. 

• The process is continued until E satisfies the given error criteria, and the whole 

training of the WNN is completed. 

 

3.3 Neurofuzzy Systems 
 

The motivating force behind the combination of two or more of the soft computational 

techniques is to avoid limitations and emphasize on benefits in their hybrid creation. 

Following the study of the two soft computing methods: Fuzzy logic systems and NN, one 

nV

T
nV
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could point out both the advantages and disadvantages for each method.  In pattern 

recognition for example, fuzzy logic can reason vague data and clearly explain the acquired 

result. However, they lack the automated ability to update the rules needed for their decision 

making process [52].  

The problem of finding membership functions and appropriate rules is frequently a tiring 

process of attempt and error. This	 leads to the idea of employing learning algorithms to the 

fuzzy systems. The neural networks, that have efficient learning algorithms, had been 

presented as an alternative to automate or to support the development of tuning fuzzy 

systems.  As a result, the performance of the hybrid model is significantly improved. The first 

studies of the neurofuzzy systems started on the 1991 with Jang [22], Lin and Lee [13], 

followed by Berenji [54] and Nauck [55].  

The majority of the first applications were in process control. Gradually, its application 

spread for all the areas of the knowledge like, data analysis, data classification, imperfections 

detection and decision-making support systems [53, 56, 57]. 

 

3.3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 

One of the most frequently used neurofuzzy systems is the adaptive neurofuzzy inference 

system (ANFIS). The structure was proposed by Jang [22, 58] and it is based on the TSK 

reasoning configuration. In the TSK model, the output of each rule is a linear combination of 

the input variables. Fig. 3.10 demonstrates the ANFIS structure with two inputs and two IF-

THEN rules of TSK system type: 

 ℜ!:    𝑖𝑓 𝑥! 𝑖𝑠 𝐴! 𝑎𝑛𝑑 𝑥! 𝑖𝑠 𝐵! 𝑡ℎ𝑒𝑛 𝑓! = 𝑝!𝑥! + 𝑞!𝑥! + 𝑟! 

ℜ!:    𝑖𝑓 𝑥! 𝑖𝑠 𝐴! 𝑎𝑛𝑑 𝑥! 𝑖𝑠 𝐵! 𝑡ℎ𝑒𝑛 𝑓! = 𝑝!𝑥! + 𝑞!𝑥! + 𝑟! 

	

	
 

Fig. 3.10 A two-input ANFIS architecture 
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ANFIS Structure 

A description of each layer as well as the learning process is discussed below layer by layer. 

 Layer 1: The output of the ith node of this layer is 

𝑜!! = 𝐴! 𝑥                                                             (3.47) 

where 𝑥 is the input to the ith node and the linguistic label is associated with the Gaussian 

membership function 𝐴!:  

𝐴! 𝑥 = exp (− !!!!
!!

!!!
)                                            (3.48) 

where {ai, bi, ci} is the parameter set of the premise part. 

 Layer 2: Nodes of this layer multiply the incoming signals and send the product out. 

Each node output represents the firing strength wl of the corresponding rule. 

 Layer 3: The outputs of the nodes in this layer are normalized firing strengths 𝑤!. 

 Layer 4: The output of the ith node of this layer is based on the TSK defuzzification 

method and given by: 

𝑜!! = 𝑤!𝑓! = 𝑤! 𝑝!𝑥 + 𝑞!𝑦 + 𝑟!                                        (3.49) 

where {pi, qi, ri} is the parameter set of the consequent part.  

Layer 5: The single node in this layer computes the overall system output as the 

summation of all incoming signals: 

𝑜! = 𝑤!𝑓!!                                                         (3.50) 

 

ANFIS Learning 

The basic learning rule of adaptive networks is based on the gradient descent method and the 

chain rule. Define the measure of error for the kth input as  

𝐸! =
!
!

(𝑑! − 𝑜!)!                                                (3.51) 

where dk is the desired system output and ok is the actual system output. 

In order to develop a learning procedure that implements gradient descent in E over the 

parameter space, first we have to calculate the error rate !!!
!!!

 for training data and for each 

node output.  We calculate the partial derivatives of the error function (3.51) with respect to 

the parameters of the fuzzy system, which need to be tuned. In other words, for every 

parameter 𝛽! we have to use the chain rule in order to calculate the partial derivatives.  

!!!
 !!!

= !!!
!!!

!!!
!!!

= −(𝑑! − 𝑜!)
!!!
!!!

                                    (3.52) 

Now, the error rate for consequence parameters can be calculated as follows: 
 

!"
!!!

= !"
!!!

!!!
!!!

!!!
!!!

                                                  (3.53) 
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where 𝛽! is the consequence parameter and 𝑜! is the output of the ith  layer. 

While the error rate for premise parameters can be calculated as follows: 
 

!"
!!!

= !"
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

                                           (3.54) 

where 𝛽! is the premise parameter and 𝑜! is the output of the ith layer. 

Start by computing the first partial derivative of the error 
!"
!!!

= −(𝑑 − 𝑜)                                                     (3.55) 

The derivation of 
!!!
!!!!!

, j=5,4,3,2 is calculated as follows: 

!!!
!!!

= !( !!!!)
!(!!!!)

= 1                                                 (3.56) 

where 𝑤! is the normalized firing strength of the ith rule 
!!!
!!!

= !(!!!!)
!(!!)

= 𝑓!                                                   (3.57) 

where i is the number of the corresponding rule in the 3rd layer 

!!!
!!!

= !
!!!

!!
!!!

!!!
=

!!!!!!
!!!

( !!!
!!! )!

                                    (3.58) 

where i is the number of the corresponding rule in the 2nd layer, and n is the total number of 

rules in the system. 

 
!!!
!!!

= !
!!!

𝐴!!!∈ℜ !! = 𝐴!!!∈ℜ !! ,!!!!!                       (3.59) 

 

where 𝐴! ∈ ℜ 𝐴!  denotes the fuzzy sets, which make the premise part of the rule containing 

fuzzy set Am 

We can aggregate equations (3.55)-(3.59) to get a compact form of the partial derivatives. 

For the consequence parameter 𝛽!: 
!"
!!!

= −(𝑑 − 𝑜) !!!
!!!

                                              (3.60) 

And for the premise parameter 𝛽! of the membership function of linguistic label Am: 

!"
!!!

= −(𝑑 − 𝑜)𝑓!
!!!!!!

!!!

( !!!
!!! )!

𝐴!!!∈ℜ !! ,!!!!!
!!!
!!!

                      (3.61) 

Now, calculate the partial derivatives of the output functions with respect to their parameters: 

 
!!!
!!!

= !
!!!

𝑤!𝑓! = !
!!!

𝑤! 𝑝!𝑥 + 𝑞!𝑦 + 𝑟! = 𝑤!𝑥                        (3.62) 

!!!
!!!

= !
!!!

𝑤!𝑓! = !
!!!

𝑤! 𝑝!𝑥 + 𝑞!𝑦 + 𝑟! = 𝑤!𝑦                        (3.63) 

!!!
!!!

= !
!!!

𝑤!𝑓! = !
!!!

𝑤! 𝑝!𝑥 + 𝑞!𝑦 + 𝑟! = 𝑤!                          (3.64) 
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where i is the number of the corresponding rule. 

!!!
!!!"

= !
!!!"

exp − !!!!"
!!"

!!!"
= 2

!!!!"
!!"

!!!"
!!" !"# !

!!!!"
!!"

!!!"

!!"
              (3.65) 

 

!!!
!!!"

= !
!!!"

exp − !!!!"
!!"

!!!"
= −2 !!!!"

!!"

!!!"
𝑙𝑛 !!!!"

!!"
exp − !!!!"

!!"

!!!"
   (3.66) 

 

!!!
!!!"

= !
!!!"

exp − !!!!"
!!"

!!!"
= 2

!!!!"
!!"

!!!"
!!" !"# !

!!!!"
!!"

!!!"

!!!!"
                (3.67) 

 

where i is the number of the corresponding rule and j is the number of the corresponding 

linguistic variable in the rule. 

To simplify the premise parameters updating formulas, assume that 𝐺!" =
!!!!"
!!"

!!!"
then 

!!!
!!!"

= 2 !!"
!!"
𝐺!" exp −𝐺!"                                              (3.68) 

!!!
!!!"

= −2𝑙𝑛 !!!!"
!!"

𝐺!" exp −𝐺!"                                     (3.69) 

!!!
!!!"

= 2 !!"
!!!!"

𝐺!" exp −𝐺!"                                           (3.70) 

 

Different learning schemes have been presented by Jang to update the parameters of ANFIS 

where the Gradient Decent method (GD) is used in most of them. GD could be used to update 

the parameters in both the premise and consequent parts. Another version is similar to the first 

one but the Least squares estimation (LS) is applied once to get the initial values as a pre-

processing phase. A hybrid version has been introduced that employs the GD to update the 

nonlinear parameters in the premise part while using least square estimation to renew the 

linear weights in the consequent part. Lastly, using sequential least square estimations such 

as: Recursive Least Squares (RLS) and Extended Kalman filtering (EKF) to update ANFIS 

parameters  [59].  

The ANFIS network performance is considered to be decent though it suffers from some 

significant drawbacks such as the curse of dimensionality. In ANFIS, the required number of 

rules relies directly on the length of the input vector and is calculated as Rules = (MF)input 

where MF denotes the number of membership functions representing the input fuzzy 

partitions. In cases where number of inputs is high, the parameters, which need to be 

evaluated, will consequently increase.  Hence, the least square estimation will have to deal 

with very large matrices and time consuming calculations [21, 22]. 
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3.4 Cluster Analysis 
 

Large amount of information is encountered daily for storage or further investigation and 

management. A dynamic attitude in managing these data is to classify or group them into a 

set of categories or clusters.  Clustering is the process of grouping vectors into classes based 

on their similar features employing a self-organising mode.  A cluster is a group of objects 

that are more alike to one another than to members of other groups. The aim of cluster 

analysis is the classification of objects according to similarities and organizing data into 

groups.  The similarity between elements should be comprehended as a mathematical term, 

measured in precise sense. In metric spaces, the term “similarity” in many cases is considered 

as a distance norm from a data vector to a prototype object called the centre [60].   

Clustering proved to be an effective approach to detect the underlying structure in complex 

nonlinear data. Based on the clustering output, the space of input would be partitioned into 

subsets and a simple model estimates each subset. The data used could be quantitative 

(numerical) and/or qualitative (categorical). Clustering techniques are used in various 

applications such as pattern recognition, model reduction and optimization.   

Clustering methods are unsupervised networks where the class identifiers are unavailable.  

In general, major clustering methods can be classified into five categories. 

• Partitioning Methods 

• Hierarchical Methods 

• Density-Based Methods 

• Grid-Based Methods 

• Model-Based Methods 

In this research, the partitioning methods are discussed. Since clusters are basically subsets of 

the original data set, clustering methods could be classified according to whether the obtained 

subsets are fuzzy or crisp. Based on that, the partitioning methods are divided into: Hard and 

Soft clustering. Hard clustering methods are based on classical set theory, thus forming an 

exclusive crisp partition of the given data where any object either does or does not belong to a 

cluster. On the other hand, Soft or Fuzzy clustering methods allow objects to belong to 

several clusters simultaneously, with different degrees of membership. This creates the 

concept of fuzzy boundaries, which differs from the traditional concept of well-defined 

boundaries [61]. In actual conditions, fuzzy clustering is more accepted than hard clustering, 

as objects on the boundaries are not forced to fully belong to one of the classes, but rather are 

assigned gradual membership degrees between 0 and 1. Moreover, in fuzzy clustering, instead 

of determining whether or not an event occurs, as is the case with probability, fuzziness 

measures the degree to which an event occurs.  
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3.4.1 Fuzzy C-Means Clustering 
 

Fuzzy C-Means (FCM) is one of the most commonly used clustering techniques in different 

problems. FCM employs two straightforward statistical features, namely the mean and 

standard deviation. This method was initiated by Dunn in 1973 [62] and then improved and 

popularised by Bezdek in 1981 [63].  

FCM produce their results in the form of a fuzzy partition matrix and prototype locations 

representing the cluster centres. A membership value is assigned to each data point 

corresponding to the distance between the cluster center and the data point. If the data point is 

closer to the center of the cluster, its membership value increases. A comparison between the 

final results of hard and fuzzy clustering is shown in Fig. 3.11. 

 

 
Original mouse data                        Hard Clustering                        Fuzzy Clustering 

Fig. 3.11 Comparison between hard and fuzzy clustering 

 

This iterative algorithm uses a predetermined number of clusters where no optimization is 

done to change the integer [64]. After each iteration, the membership matrix 𝜇!"  and 

accordingly the cluster centers 𝑣!  are updated using the two following formulas: 

 

𝜇!" =
!

!!"
!!"

!
!!!!

!!!

,∀𝑖 = 1,2,… 𝑛 𝑎𝑛𝑑 ∀𝑗 = 1,2,… 𝑐 𝑎𝑛𝑑  𝑚𝜖[1,∞)          (3.71) 

 

𝑣! =
!!"

!!!!
!!!

!!"
!!

!!!
,∀𝑗 = 1,2,… 𝑐                                      (3.72) 

Where 𝑛 is the number of input, c is the number of clusters, 𝐷!" represents the distance 

between i input and j cluster center, and 𝑚 is the fuzziness index. 
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Algorithmic steps of the FCM 

Let 𝑋 = 𝑥!, 𝑥!,… , 𝑥!  be the a set of data points and 𝑉 = 𝑣!, 𝑣!,… , 𝑣!  be the initial set of 

cluster centers where c is the selected number of clusters. Also assume the fuzziness index m 

to be equal to 2. The main objective of the fuzzy c-means algorithm is to minimise the 

function: 

𝐽 𝑈,𝑉 = 𝜇!"
! 𝑥! − 𝑣!

!!
!!!

!
!!!                                    (3.73) 

where 𝑥! − 𝑣!  is the Euclidean distance. 

Step 1: Randomly select c cluster centers  
Step 2: Calculate the fuzzy membership matrix 𝜇!" using the formula 
 

𝜇!" =
!

!!!!!
!!!!!

!
!
!!!

                                                   (3.74) 

 

Step 3: Compute the new fuzzy centers using the equation 

𝑣! =
!!"

!!!!
!!!

!!"
!!

!!!
,∀𝑗 = 1,2,… 𝑐                                       (3.75) 

Step 4: Repeat steps 2 and 3 until the minimum of the objective function is reached  

𝐽 𝑈,𝑉 = 𝜇!"
! 𝑥! − 𝑣!

!!
!!!

!
!!!                                 (3.76) 

	

The FCM algorithm is widely used and well recognised in different disciplines for its 

advantages. In terms of coding implementation, it is relatively straightforward and employs 

an objective function that is intuitive and easy-to-grasp [65]. The algorithm has proven to be 

convergent with robust performance and delivers consistent membership values. 

The method experiences some disadvantages. Firstly, the number of clusters has to be 

determined by the user. Also, the initialization of the centres has a direct impact on the final 

findings. So when the iterative algorithm is employed to minimise the objective function, it 

could get trapped in local minima instead of finding the global depending on the initial points 

used. Finally, the algorithm is sensitive to noise and outliers. 
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Chapter Four 
 

COMPUTATIONAL INTELLIGENCE TECHNIQUES 
TO ASSESS SENSORY QUALITY OF MEAT USING 

FTIR SPECTROSCOPY 
 
4.1 Introduction 
 

In the past few decades, meat industry has enormously thrived, as demands for better food 

quality continues to grow on both international and domestic markets [66]. Interests in meat 

quality are driven by the need to supply the consumer with a consistent high quality product 

at an affordable price [67]. To realise such need, it is a crucial element within the meat 

industry to accurately assess meat quality attributes by improving modern techniques for 

quality evaluation [68].  

Beef is one of the commercially viable and widely consumed muscle foods throughout the 

world. Although it is a good food source for proteins and other essential nutrients, it is also an 

ideal substrate for the growth of both spoilage and pathogenic microorganisms. Spoilage 

occurs when the formation of off-flavours, off-odours, discoloration, or any other changes in 

physical appearance or chemical characteristics make the food unacceptable to the consumer. 

Changes in muscle food characteristics are due to native or microbial enzymatic activity or to 

other chemical reactions. The current practice to assure the safety of meat still relies on 

regulatory inspection and sampling regimes. This approach, however, seems inadequate 

because it cannot sufficiently guarantee consumer protection, since 100% inspection and 

sampling is technically, financially and logistically impossible. Additionally, although more 

than 50 chemical, physical and microbiological methods have been proposed for the detection 

and measurement of bacterial safety or spoilage in meat, most of them are time-consuming 

and provide retrospective information [69]. 

Meat industry however needs rapid analytical methods for quantification of these indicators in 

order to determine suitable processing procedures for their raw material and to predict the 

remaining shelf life of their products [70]. The development of non-destructive sensing 

technologies to detect spoilage bacteria as well as pathogenic bacteria with a high degree of 

dependency in food products is very desirable. Various rapid, non-invasive methods based on 

analytical instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR) 

[71], Raman spectroscopy [72], and Electronic nose technology [73] have been researched for 
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their potential in assessing meat quality. In recent years, spectral imaging (i.e., hyperspectral 

and multispectral) has been also considered as an alternative tool for safety and quality 

inspection of various agricultural products [74]. This technique integrates the conventional 

imaging and spectroscopy technique to attain simultaneously both spatial and spectral 

information from the target product. The “mechanism” of these approaches is based on the 

assumption that the metabolic activity of micro-organisms on meat results in biochemical 

changes, with the simultaneous formation of metabolic by-products, which may contribute to 

the spoilage phenomenon. The quantification of these metabolic activities corresponds to a 

unique “signature”, providing thus information about the type and rate of spoilage [75]. 

The huge amount of information provided by analytical sensors/devices requires an advanced 

data analysis approach. This has been achieved through the integration of modern analytical 

platforms with computational and chemometric techniques [76]. Multivariate statistical 

analyses (e.g., partial least square (PLS) regression, discriminant function analysis (DFA), 

cluster analysis) have resulted in the development of decision support systems for timely 

determination of safety/quality of meat products [77]. Considering that microbial meat 

spoilage is a complex process, which involves growth of microorganisms during storage, their 

spectra contain highly non-linear characteristics. Hence, linear-based techniques might not 

provide a complete solution to such complex identification/classification problem [78]. 

Neural networks (NNs) have gained much interest in predictive engineering and quantitative 

modelling due to their flexibility and high accuracy as compared to other modelling 

techniques (e.g., statistical models). In comparison to other NN-based application areas, the 

field of food science is still in an early development stage. Recently, advanced NN algorithms 

have shown promising results in applications such as growth parameter estimation of 

microorganisms [79]. NNs usually require a large number of neurons for solving the majority 

of approximation problems and are prone to dimensionality problems, as each single neuron-

node cannot define a multi-dimensional hyper-sphere of the input domain. Although fuzzy 

logic systems, provide such input space mapping, they do not have learning ability, thus it is 

difficult to analyse complex systems without prior and accurate knowledge on the system 

being analysed [80]. 

To overcome the limitations of NNs and fuzzy systems, neuro-fuzzy approaches have 

attracted growing interest of researchers in various scientific and engineering areas. Two 

specific case studies have been considered in this research and are presented with all 

necessary details in the current and next chapters. In the first case, an Adaptive Fuzzy Logic 

System (AFLS) model has been developed for the detection of beef spoilage using FTIR 

spectral data, while in the second case, an Adaptive Fuzzy Inference Neural Network 

(AFINN) has been used, for the first time according to literature, to associate meat spoilage 

with spectral data, acquired by multispectral imaging techniques.  
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To address the rapid and non-destructive detection of meat spoilage microorganisms during 

aerobic storage at chill and abuse temperatures, Fourier transform infrared (FTIR) 

spectroscopy with the aid of a neurofuzzy identification model has been considered in this 

chapter. Datasets related to FTIR and imaging spectral information as well as the correlated 

microbiological analysis (i.e. total viable counts - TVC) from meat samples, were provided by 

Agricultural University of Athens, Greece. Fresh beef fillets were packaged under aerobic 

conditions and left to spoil at (0, 5, 10, 15, 20 °C), for up to 350 h. FTIR spectra were 

collected directly from the surface of meat samples, whereas TVCs of bacteria were obtained 

via standard plating methods. Sensory evaluation was performed during storage and samples 

were attributed into three quality classes, namely fresh, semi-fresh, and spoiled [81]. The 

proposed AFLS model has been utilised to simultaneously classify beef samples to one of 

three quality classes, based on their biochemical profile provided by the FTIR spectrometer 

and predict TVCs on meat surface. Results from AFLS scheme are compared against models 

based on ANFIS, multilayer neural networks (MLP), and PLS regression models. Such 

comparison is considered as an essential practice, as we have to emphasise the need of 

induction to the area of food microbiology, advanced learning-based modelling schemes, 

which may have a significant potential for the rapid and accurate assessment of meat 

spoilage.  

 

4.2 FTIR Spectroscopy in Food Quality Analysis 
 

FTIR spectroscopy has been used extensively by chemists to identify compounds in a wide 

variety of applied fields. This motivation is justified from the fact that FTIR is a rapid, 

inexpensive and sensitive technology that rapidly allows real-time measurements at all stages 

of production without requiring special skills from users. Moreover, it has been recognized as 

a powerful tool when coupled to chemometric techniques, and is widely utilised for rapid 

quality control of numerous foodstuffs since it provides information from complex spectra 

about the composition of food components. In fact, for any individual sample, FTIR 

spectroscopy provides information on fundamental vibration and stretching of molecules 

exhibited under infrared light in the spectral region between 4000 and 700 -1cm . It provides a 

characteristic spectrum that is the result of absorption by various chemical constituents, 

providing thus a ‘‘fingerprint’’ of each sample [82]. 

Over the last few years, FTIR has been considered as a very important tool in food analysis 

including authenticity and adulteration. Nutrient determination is time consuming and not 

appropriate for routine application in the food industries. FTIR was able to determine omega-

6 and omega-3 fatty acids in pork adipose tissue [83]. It has been used to investigate the 
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influence of heating rates and different heating temperatures on protein denaturation in beef 

[84], as well as to study the influence of ageing and salting on uncooked and cooked pork 

[85]. In addition, it has been considered as a fast and non-destructive technique for the 

detection and quantification of pork in beef meatball formulation for Halal verification 

purposes. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures 

in meatball formulation, were scanned, interpreted, and identified by relating them to those 

spectroscopically representative to pure PF and BF [86]. The quality of oil, an essential 

ingredient of the food processing industry has also been investigated through the use of FTIR 

for the accurate quantification of the moisture in edible oils [87]. Although, the vast majority 

of FTIR-based applications for classification and quantification purposes utilise liquid and 

solid phase samples, very few applications based on gaseous phase samples have been 

reported. A FTIR spectroscopy-based olfactory sensing system has been investigated in 

sensing the volatiles collected from the headspace of a meat package for the detection of 

pathogen contamination (Salmonella typhimurium) in the packed meat [88].  

The application of chemometric techniques to associate FTIR spectral data with meat spoilage 

is not new and it has been tackled in the past [89]. In that approach, emphasis was given only 

to the detection of bacterial spoilage, in terms of microbiological analysis, whereas no attempt 

was made to associate spectral data with quality classes defined by sensory assessment of the 

samples. FTIR spectral data collected directly from the surface of meat had been verified that 

they could be used as biochemical interpretable “signatures”, in an attempt to obtain 

information on early stage detection of microbial spoilage of chicken breast and rump steaks 

[90]. An MLP-based NN has been also explored in an attempt to correlate spectral data from 

FTIR spectroscopy analysis with beef spoilage and its associated total viable bacteria counts-

TVC [81]. A rapid and non-destructive determination of pork storage time associated with its 

freshness has been considered with the aid of FTIR and MLP networks [91], while the 

spoilage of fresh minced pork was examined through the use of FTIR and PLS models [92]. 

Recently, the potential of mid infrared spectroscopy to determine microorganisms’ spoilage 

on the surface of chicken breast fillets has been explored. PLS regression was carried out to 

predict TVCs, Pseudomonas, Enterobacteriaceae and Brochothrix thermosphacta microbial 

counts from related spectral data [83]. 

 

4.3 FTIR Sampling and Analysis 
 

The FTIR experimental case was performed at the Laboratory of Microbiology and 

Biotechnology of Foods, at the Agricultural University of Athens, Greece. A detailed 

description of the experimental methodology, as well as the related microbiological analysis 
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of the meat samples, is described in [81]. Briefly, the samples were prepared by cutting fresh 

pieces of beef into small portions ( 40 mm wide × 50 mm long× 10 mm thick) and then portions 

placed onto Petri dishes and stored at (0,5,10,15 and 20 )oC in high-precision incubation 

chambers for a total period of 350 h , taking into consideration the storage temperature, until 

spoilage was apparent [81]. For the purposes of FTIR spectral measurements, a thin slice of 

the aerobic upper surface of the beef fillet was isolated and used for additional analysis. In 

total, 74 FTIR spectra were produced through the use of a ZnSe o45 ATR (Attenuated Total 

Reflectance) crystal on a Nicolet 6700 FTIR Spectrometer, as shown in Fig. 4.1. The samples 

were placed on the ZnSe ATR crystal so that the aerobic upper surface of the meat was in 

intimate contact with the crystal. The sample then was pressed with a gripper so as to have 

better possible contact with the crystal. The spectrometer was programmed with Omnic 

Software to collect spectra over the wave number range 4000 to 1400cm− , whilst the scans per 

measurement were 100with a resolution of 14cm− , resulting in a total integration time of 

2min . The ZnSe ATR crystal was capable of 12 external reflections, with the evanescent 

field affecting a depth of1.01 mµ . Each sample was analysed in duplicate and results are 

displayed as mean value of both measurements. Reference spectra were obtained by 

collecting a spectrum from the cleaned blank crystal prior to the presentation of each sample 

replicate. At the end of each sampling, the crystal surface was cleaned with detergent, washed 

with distilled water, dried with lint-free tissue, cleaned with ethanol and finally dried with 

lint-free tissue at the end of each sampling interval. 

 

 

 

 
 

Fig. 4.1 FTIR spectroscopy device / principles 

 
Spectra collected over the specific wave-number range 11800 1000cm−− , which is considered 

as the area where spoilage signals are expected to be detected [81].  
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Fig. 4.2 FTIR spectra collected from beef samples stored at 10°C  

 
Typical FTIR spectral data collected from fresh and spoiled beef fillet samples stored at o10 C

for 6 days are shown in Fig. 4.2. Different colours represent samples collected at various 

sampling times. For example, sample 10F2 has been collected after 8h storage, while 10F18 

is associated with a sample with storage of 148h. Two curves associated to F1a and F1b are 

considered as measurements that correspond to the initialisation of the FTIR procedure, at 

t 0 sec= [81]. Comparison of those FTIR spectra can reveal knowledge on particular 

biochemical changes taking place during beef spoilage, at various temperatures. For example, 

the highest peak 11640cm− is due to the presence of moisture with an essential contribution 

from amide I in the beef sample. The second peak at 11550cm− is due to the absorbance of 

amide II, while peaks at 1460, 1240, and 11175cm− can be credited to fat. These FTIR spectra 

were initially subjected to smoothing according to the Savitzky-Golay algorithm [81].  

In parallel, microbiological analysis was performed, and resulting growth data from plate 

counts were log10 transformed and fitted to the primary model of Baranyi & Roberts [93] in 

order to verify the kinetic parameters of microbial growth (maximum specific growth rate and 

lag phase duration). The growth curves of total viable counts (TVC) for beef fillet storage at 

different temperatures under aerobic conditions are illustrated in Fig. 4.3.  

Analysis specified that the total microflora (TVC) ranged from at the 

beginning of storage (fresh samples), to for samples characterised as 

spoiled [81]. This finding is consistent with an indication that the population threshold that 

depicts the shift of a sample from fresh to semi-fresh and then from semi-fresh to spoiled is 

temperature dependant. 

2

102.9 3.3log cfu cm−−

2

108.7 9.4log cfu cm−−
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Fig. 4.3 Population dynamics of TVC at various temperatures for beef samples 
 
Additionally, sensory evaluation of meat samples was performed during storage, based on the 

perception of colour and smell before and after cooking. Each sensory attribute was assigned 

to a three-point scale corresponding to: 1=fresh; 2=semi-fresh; and 3= spoiled. In total, 74 

meat samples were evaluated by a sensory panel and classified into the selected three groups 

as fresh (n = 24), semi-fresh (n = 16), and spoiled (n = 34) [4.16].   

 
PCs PCA 
 Eigenvalue Prop. % Cum. prop. % 

1 190.080 70.925 70.925 
2 48.083 17.941 88.867 
3 12.754 4.759 93.626 
4 7.215 2.692 96.318 
5 5.194 1.938 98.256 
6 1.807 0.674 98.930 
7 1.070 0.399 99.329 

 
Table 4.1 Eigenvalues and proportion of the first seven PCs for PCA scheme 

 

Due to the nature of FTIR spectral data, the use of principal component analysis (PCA) in 

reducing the level of input dimensionality with the minimum information lost is required. A 

principal component analysis has been applied on those FTIR spectral data used for training 

purposes. This choice was initiated mainly by two reasons. The original FTIR spectral data is 

considered as a high-dimensional problem, thus it could be prohibited for utilising a learning-

based model (i.e. excessive number of input variables). Secondly, the strong correlation 

among the FTIR variables (i.e. wave-numbers), would deteriorate seriously the modelling 

procedure. PCA scheme was implemented in MATLAB, with the aid of PLS_Toolbox (ver. 

7.5, Eigenvector.com). For this particular experimental case study, although the total variance 
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(100%) of the dataset was explained by 34 principal components (PCs), only the first five PCs 

were associated with the 98.25% of the total variance, as shown in Table 4.1. The variability 

(%) of the first three PCs is dominant to the overall contribution and this is also illustrated 

from a visualisation of the first three orthonormal principal component coefficients for each 

variable, and the principal component scores for each observation in a single plot, as shown at 

Fig. 4.4. 

 
Fig. 4.4 3-D plot for the first three principal components  

 

Thus, the first five principal components from the PCA scheme were extracted and utilised as 

inputs to the various simulation models developed for this specific case study. 

 

4.4 Adaptive Fuzzy Logic System (AFLS) 
 

With the continuously growing demand for models for complex systems inherently associated 

with nonlinearity, high-order dynamics and imprecise measurements, there is need for a 

relevant modelling environment. During the last decade, neurofuzzy network (NF) 

approaches have gained considerable interest for solving real world problems, including 

modelling of highly complex systems and pattern recognition. Extensive experimentation has 

demonstrated that the class of feed-forward NF systems exhibits significant advantages 

compared to the NN models [94]. NNs are well-known to act as global models, where 

training is performed on the entire pattern range. In contrast, owing to the partition of the 

input space, NF models perform a fuzzy blending of local models in space. As a result, faster 

convergence is achieved during learning for a specific task. Additionally, by utilising 

learning-based training algorithms for the tuning of fuzzy logic parameters, the efficiency of 

function approximation can be largely improved. Examples of NF systems as modelling 

structures include schemes such as ANFIS, Fuzzy RBF, and Fuzzy Adaptive learning Control 

Network (FALCON) [95]. 
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4.4.1 AFLS Architecture 
 

A Fuzzy Logic System (FLS) is a system that utilises fuzzy set theory and its operations to 

solve a given problem. A specific type of FLS with fuzzifier and defuzzifier components is 

used throughout this study. Various methods have been used in defuzzification section, such 

as “centre average”, “centroid of area”, etc. The “centroid of area” approach is an optimal 

answer to defuzzification because it uses all available information to compute the output. One 

major problem, however, with the centroid defuzzifier is its intensive computation. The 

“centre average” (CA) defuzzifier, on the other hand, is more efficient in terms of 

implementation. Its main disadvantage is that it suffers from not utilising the entire shape of 

the consequent membership function. The output of a CA defuzzifier is still the same, 

regardless of whether the shape is narrow or wide [96].  In general, an adaptive fuzzy logic 

system is a FLS where its rules are derived and extracted from given training data. 

Conventional fuzzy rule-table approaches usually utilise the “look-up table” concept. In those 

models, an input space is divided into 
1 2 nK K .... K× × × fuzzy subspaces, where iK , 1 2i , ,..,n= is 

the number of fuzzy subsets for the thi input variable [97]. As one fuzzy rule is normally 

assigned for each one of these subspaces, their main drawback is that the number of fuzzy 

rules increases exponentially with respect to the number of inputs n .  

 
Fig. 4.5 AFLS Architecture 

 
The Adaptive Neurofuzzy Inference System (ANFIS) is a classic example of such approach, 

where the number of fuzzy rules is related to the number of input variables as well as the 

number of membership functions for each input. In the case of AFLS, the number of 
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memberships for each input variable is directly associated to the number of rules, hence, the 

“curse of dimensionality” problem is significantly reduced. Since we have general ideas about 

the structure and effect of each rule, it is straightforward to effectively initialise each rule. 

This is a tremendous advantage of AFLS over its NN counterpart. The “centroid” defuzzifier 

however cannot be used also due to the presence of gradient-descent learning algorithm.  

The proposed AFLS scheme consists of an alternative defuzzification approach, the area of 

balance (AOB), and its structure is shown in Fig. 4.5 [98]. In this architecture, the fuzzy basis 

layer consists of fuzzy basis nodes for each rule. A fuzzy basis node has the following form: 
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where ( )m xϕ is a fuzzy basis node for rule m and ( )m xµ is a membership value of rule m. 

Since a product-inference is utilised, the fuzzy basis node ( )m xµ is in the following form: 
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where ( )m
i

iF
xµ  is the membership value of the ith input of rule m. In the proposed scheme, a 

“Gaussian-shape” membership function has been employed, thus ( )m
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where m
ic and m

ib are the centre and spread parameters of the membership function ith input of 

the mth rule.  

The “centroid of area” defuzzification method returns the centroid of the area formed by the 

consequent membership function, the membership value of its rules and the max-min or max-

product inference. In the case of a discrete universe, the centroid calculation yields 
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where Q is a number of quantisation levels of the output. The higher Q is the finer y will be. 

The computational cost increases analogous to Q. However, since the method provides good 

performance, its main characteristics, such as centre of gravity and use of the shape of 

membership function, have been adopted in the design of the proposed defuzzification 

approach.  
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AFLS’s overall output utilises Kosko’s method with product inference [99]. The proposed 

defuzzification method can be explained by the following mass-less beam example. Let us 

consider the density (D), which is defined as mass (M) per unit volume (V). 

M
D

V
=                                                        (4.5) 

Under the assumption that we use the same material and all shapes have the same thickness, 

T, then  

M ATD=                 (4.6) 

where A is an area and T is a thickness. Let us assume for simplicity, that the shape of the 

membership function used in the consequent part has a symmetric triangular form. 

 

 
 

Fig. 4.6 Triangular shape membership function 
 
The centre of gravity will pass through the halfway point of the base of that shape. For 

example, if we use a triangular shape and product-inference as a t-norm, then the shape of the 

consequent part of rule m will be shown as in Fig. 4.6. If we could consider the consequent 

part of each rule placed on the massless beam having the pivot point at origin, then such 

visualisation is shown in Fig. 4.7.  

Then, 

1 2 3 1 2 3( )F M g M g M g M M M g= + + = + +         (4.7) 

For balance 
1 2 3 1 2 3
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1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

( ) ( )

( )
b b b b b bM y M y M y g M y M y M y g

y
F M M M g

+ + + +
= =

+ +
                   (4.9) 

Assume that D and T in Eq. 4.6 is the same, thus, 
1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( )
( ) ( )
b b b b b bA y A y A y TD A y A y A y

y
A A A TD A A A
+ + + +

= =
+ + + +

               (4.10) 

The calculation of area A will be depended upon the type of membership function used. 

Under the assumption of symmetric shape, this method will have comparable capability with 

the centroid calculation method to approximate the output from the fuzzy set in the 

consequent part. By utilising the triangle shape as a membership function and the usage of 

max-product inference (i.e. Larsen logic), the shaded area A will be derived as: 
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1
2m m mA Lµ=                 (4.11) 

Deriving from Eq. 10, the output, y  will be 

1 2 3
1 1 2 2 3 3

1 1 2 2 3 3

( )
( )

b b bL y L y L y
y

L L L
µ µ µ

µ µ µ
+ +

=
+ +

                  (4.12) 

 
 

Fig. 4.7 Consequent fuzzy set placed on mass-less beam 
 

In general form, the calculation of the output, y  will be 

1

1

M
m m

m p p
m

p M
m

m p
m

L y
y

L

µ

µ

=

=

=
∑

∑
                             (4.13) 

where  

• yp : the pth output of the network 

• µm: the membership value of the mth rule 

• m
pL : the spread parameter of the membership function in the consequent part of the pth 

output of the mth rule 

• m
py : the centre of the membership function in the consequent part of the pth output of 

the mth rule.  

 

4.4.2 AFLS learning phase procedure 
 
The learning algorithm of AFLS involves the use of the backpropagation/gradient descent 

(BP/GD) method to identify the various parameters. During, the backward “training” pass, the 

error signals are calculating recursively from the output layer backward to the hidden (i.e. 

rules) layer, and parameters at defuzzification and fuzzification parts are fine-tuned.  
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The objective function for training is defined as: 

1

K

k
k

J J
=

=∑        (4.14) 

where K is the number of training patterns and Jk is the sum of squared error for the kth 

pattern. Then, Jk is defined as: 

2

1

1
( ( ) ( ))

2

P

k p k p k
p

J y x d x
=

= −∑                              (4.15) 

where P is the number of outputs and dp is the desired response of the pth output. Variable

( )p ky x is defined as in Eq. 4.13. The update equation of m
py is as in the form: 

( 1) ( ) [ ( ) ( 1)] |m m m m
p p y p p y nm

p

J
y n y n m y n y n

y
η ∂

+ = + − − −
∂

          (4.16) 

where 
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e yJJ J
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where k
py  is the pth output of the network corresponding to the kth pattern in the training data, 

k
pd  is the pth desired output of the kth pattern and k

mµ  is the membership value of the mth rule 

corresponding to the kth pattern in the training data. The update equation of m
pL is in the 

following form: 

( 1) ( ) [ ( ) ( 1)] |m m m m
p p L p p L nm

p

J
L n L n m L n L n

L
η ∂

+ = + − − −
∂

                   (4.19) 

where 
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                    (4.21) 

 

where m
py is interpreted as a centre of the membership function of the pth output of the mth rule 

in the consequent part of IF-THEN rule. The update equation of the centre parameter m
ic is in 

the form: 

( 1) ( ) [ ( ) ( 1)] |m m m m
i i c i i c nm

i

J
c n c n m c n c n

c
η ∂

+ = + − − −
∂

            (4.22) 
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where 

....
m
i

m
i
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As, a Gaussian-based membership function has been adopted, then 
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Thus, 
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The update equation of the spread parameter m

ib is in the form: 
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Again for the Gaussian-based function,  
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Therefore 
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  (4.30) 

 

All equations derived are used to update all parameters during the training phase of the 

network. The initial centre, m

ic  and m
py  are randomly selected from the kth training data, k

ix

and k

pd  respectively. The initial spread parameter, m

ib , is determined by 

 

max( ) min( )i i
i

x x
b

N
−

=                       (4.31) 

 

where ib  is a spread parameter of the ith input of all rules and N is the number of rules. The 

initial spread parameter, m
pL , has been set to 0.75 and is adjusted during training.  
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4.5 Data Analysis 
	
A machine learning approach, based on the AFLS model, has been adopted in order to create 

a decision support system acting in parallel as an efficient classifier, in an effort to classify 

meat samples in three quality classes (fresh, semi-fresh, spoiled), as well as a prediction 

system. The real challenge is to propose a new learning-based structure, which could be 

considered as a benchmark method towards the development of efficient intelligent methods 

in food quality analysis. For this reason, produced results are compared against the PLS 

technique, which is considered as well recognised tool in chemometric analysis. In addition, 

AFLS’s prediction results are compared with those obtained by MLP networks and adaptive 

neurofuzzy inference system (ANFIS) identification models. Such schemes have become 

popular modelling techniques in food science and technology in recent years [100]. These 

approaches are effective and versatile techniques for the identification and modelling of some 

parameters especially in nonlinear systems. They can be used efficiently to solve problems 

and to predict parameters in the absence of accurate mathematical models. The final dataset, 

consisted of 74 beef patterns, include information from the various storage temperatures, the 

first five PCs and the sampling times.  

In this research study, two distinct procedures have been considered. In the first procedure, as 

the number of observations/samples is small, the separation of the dataset into training and 

testing subsets (hold-out method) was considered that it would further reduce the number of 

data and would result in insufficient training of the network. Therefore, in order to improve 

the robustness of identification process, the Leave-One-Out Cross Validation (LOOCV) 

technique was employed to evaluate the performance of the developed AFLS model. 

The AFLS concept has been developed with the aim to be a more effective modelling tool 

against to classic MLP and ANFIS structures. Its structure, as shown from Fig. 4.5, consists 

of an input layer, which in this current research study contains seven input nodes (i.e. storage 

temperature, sampling time, and the values of the five principal components). The second 

layer is related to the inference engine (i.e. the fuzzy rules). After many trials, it has been 

found that only 12 rules are necessary for the proposed AFLS model to achieve an acceptable 

performance for this particular case/experiment. The number of membership functions for 

each input variable is directly associated to the number of rules, hence, each input signal is 

“distributed” through Gaussian functions with different centres and widths to every rule node 

via a product operator. The values of the parameters (centres and widths) of the Gaussian 

membership functions have been adjusted by the learning procedure. The output layer 

consists of two nodes, corresponding to the predicted quality class (fresh, semi-fresh, spoiled) 

of meat samples and the total viable counts (TVC), respectively. As both output parameters 

are dependent, in the sense that quality class is related to microbiological counts and vice 
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versa, a model that combines both these measurements have been considered to be desirable. 

In order to accommodate both classification and modelling tasks in the same model-structure, 

the classification task has been modified accordingly.  

Rather than trying to create a distinct classifier, an attempt has been made to “model” the 

classes [98]. Initially, values of 10, 20 and 30, have been used respectively, to associate the 

three classes with a cluster centre. During the identification process, output values of 

were associated to “fresh” class with cluster centre 10, values of  were associated to 

“semi-fresh” class with cluster centre 20, and finally values of  were associated to 

“spoiled” class with cluster centre 30. The second output node has been assigned to the total 

viable counts (TVC).  The classification accuracy of the AFLS network was determined by 

the number of correctly classified samples in each sensory class divided by the total number 

of samples in the class. The performance of the model in the prediction of TVC for each meat 

sample was determined by the bias (Bf) and accuracy (Af) factors, the mean relative 

percentage residual (MRPR) and the mean absolute percentage residual (MAPR), and finally 

by the root means squared error (RMSE) and the standard error of prediction (SEP) [101].  
 

4.5.1 First Case Study: LOOCV Technique 
	
Results revealed that the classification accuracy of the AFLS model was very satisfactory in 

the characterisation of beef samples, indicating the advantage of a neurofuzzy approach in 

tackling complex, nonlinear problems, such as meat spoilage. The classification accuracy 

obtained from AFLS, is presented in the form of a confusion matrix in Table 4.2.  	
 

True class Predicted class Row total ( in ) Sensitivity (%) 

 Fresh Semi-fresh Spoiled  

Fresh ( n 24= ) 23 1(marginally) 0 24 95.83 

Semi-fresh ( n 16= ) 1 +1(marginally) 14 0 16 87.5 

Spoiled ( n 34= ) 0 0 33+1(marginally) 34 100 

Column total ( jn ) 25 15 34 74  

Specificity (%) 92 93.33 100   

Overall correct classification (accuracy): 95.94% 

 
Table 4.2 Confusion Matrix for AFLS acting as classifier – LOOCV case  

	
 

The model overall achieved a 95.94% correct classification, and 95.83%, 87.5% and 100% 

for fresh, semi-fresh and spoiled meat samples, respectively. The sensitivities (i.e. how good 

the network is at identifying correctly the positive samples) for fresh and spoiled meat 

samples reveal one (even marginally) out of 24 fresh meat samples, and zero 

misclassifications out of 34 spoiled samples. One spoiled meat sample was accurately 

[ ]5,15

[ ]15.01, 25

[ ]25.01,35
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classified as spoiled, even marginally. In the case of semi-fresh samples, two samples out of 

16 were misclassified, as fresh ones. The specificity index (i.e. how good the network is at 

identifying correctly the negative samples) was also high, indicating satisfactory 

discrimination between these three classes (Table 4.2). It is characteristic that no fresh 

samples were misclassified as spoiled and vice versa, indicating that the biochemical 

information provided by FTIR data could discriminate these two classes accurately. Lower 

percentages were obtained for semi-fresh samples (ca. 87.5%) with incorrect classifications in 

the fresh class.  It must be emphasised however that the number of examined samples within 

each class was not equally distributed, due to the different spoilage rate of beef samples at the 

different temperatures. The lower accuracies obtained in the semi-fresh class could be also 

attributed to the performance of the sensory evaluation process, as the difference between 

“fresh” and “semi-fresh” class is not very obvious sometimes.   

 

  
(a) (b) 

Fig. 4.8 AFLS (a) performance for TVCs, and (b) % relative errors (LOOCV case) 
 

The common measure of goodness-of-fit for model comparison in food microbiology is 

performed by calculating the squared correlation coefficient ( ) [102]. The index (

) is often used as an overall measure of the prediction attained. It measures the 

fraction of the variation about the mean that is explained by a model. The higher the value, 

the better is the prediction by the model. AFLS’s overall value of 0.98% for the index

indicates a very good fit of the experimental data from the AFLS-based approach. The 

individual  values for fresh, semi-fresh and spoiled cases were 0.923%, 0.95% and 0.93% 

respectively. However, is a criterion for model comparison on the assumption that the error 

is normally distributed and not dependent on the mean value; In fact, the distribution of the 

error is not clearly known in the case of microbial/bacteria growth, so this term must be used 

with caution, particularly in non-linear regression models and hence additional indices must 

2R 2R
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be employed for model comparison [103]. The plot of predicted versus observed total viable 

counts is illustrated in Fig. 4.8 (a), and shows a very good distribution around the line of 

equity (y=x), with all the data included within the ±1 log unit area. However, a few samples 

were placed near the borderline of the ±1 log unit area, as shown at Fig. 4.8 (a). These include 

the spoiled “5F9”, the semi-fresh “0F8” and the fresh “20F6” samples. “5F9” sample 

corresponds to a beef sample stored at 5oC and collected after 192 h of storage, “0F8” 

corresponds to a beef sample stored at 0oC and collected after 168 h of storage and finally 

“20F6” corresponds to a beef sample stored at 20oC and collected after 22 h of storage. 

The performance of the AFLS model is also presented in Fig. 4.8 (b), where the % relative 

error of prediction is illustrated against the observed microbial population. Based on this plot, 

data was almost equally distributed above and below 0, with all (expect one) predicted 

microbial counts included within the ±20% RE zone. That particular microbial count is 

associated with the fresh “0F4” sample, which corresponds to a beef fillet, stored at 0oC and 

collected after 72h of storage. Fig 4.3 reveals the reason for such behaviour. The “0F4” 

sample is the third sample at the 0oC growth curve. An inspection at the shape of that curve 

illustrates a deep drop after the first two samples, while the curve is increasing throughout 

subsequent sampling time. A possible way to overcome this problem could be to broaden the 

training dataset, especially for low temperatures.  

The performance of the AFLS model to predict TVCs in beef samples in terms of statistical 

indices is presented in Table 4.3.  The RMSE values of the AFLS were very low for all 

samples, with an overall indicator of 0.373. This index is calculated between the desired and 

output values and then averaged across all data. It can be used as an estimation of the 

goodness of fit of the models. It can also provide information about how consistent the model 

would be in the long run [103].  The related RMSE values for the proposed scheme are very 

low, as shown in Table 4.3, indicating the ability of AFLS to make better prediction on data 

for which there was no previous training.  

Bias factor ( ) is a multiplicative factor that compares model predictions and is used to 

determine whether the model over- or under-predicts the response time of bacterial growth. A 

greater than 1.0 indicates that a growth model is fail-dangerous. Equally, a less than 1.0 

generally indicates that a growth model is fail-safe (i.e. observed generation times were larger 

than predicted values), so that predicted values give a margin of safety. Perfect agreement 

between predictions and observations would lead to of 1. Based on the calculated values of 

the bias factor , it can be concluded that the AFLS model over-estimated total viable counts 

in semi-fresh samples ( >1), whereas for fresh samples under-estimation of microbial 

population was evident ( <1) and almost perfect for spoiled samples (1.008). 

fB

fB fB

fB

fB

fB
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Statistical index LOOCV 

 (AFLS case) 
Mathematical Expression Fresh 

Semi-

fresh 
Spoiled Overall 

 
P= the predicted values 

O= observed values 
n = number of observations 

    

Mean squared error (MSE) 

 
 0.129 0.156 0.138 0.139 

Root mean squared error (RMSE)  0.359 0.395 0.371 0.373 

Mean relative percentage residual 

(MRPR %)   

100
n

× (O− P)
O∑  0.648 -2.431 -0.964 -0.758 

Mean absolute percentage residual 

(MAPR %)   

100
n

×
O− P

O∑  7.091 6.234 3.726 5.359 

Bias factor (Bf)   10
log P

O( ) n∑  0.989 1.022 1.008 1.005 

Accuracy factor (Af)   10
log P

O( ) n∑
 1.074 1.063 1.037 1.054 

Standard error of prediction (SEP %)  8.579 6.356 4.406 5.671 

 
Table 4.3 Performance of AFLS - LOOCV case 

 
The accuracy factor fA is a simple multiplicative factor that indicates the spread of results 

about the prediction. A value of one indicates that there is perfect agreement between all the 

predicted and measured values. In our case, the values of the accuracy factor fA  indicated 

that the predicted total viable counts were 7.37%, 6.26%, and 3.74% different from the 

observed values for fresh, semi-fresh, and spoiled meat samples, respectively. Regarding the 

appropriate values of the accuracy factor fA , it has been reported [103] that an increase of 

0.15 (15%) would be acceptable for each independent variable included in model 

development. Therefore, in our study, with only one independent variable (i.e. temperature), 

any value of fA  up to 1.15, could be considered to be satisfactory. The mean relative 

percentage residual index (MRPR) similarly verified the over-prediction for semi-fresh and 

spoiled samples (MRPR < 0) and under-prediction for fresh samples (MRPR > 0), whereas 

the values of mean absolute percentage residual (MAPR), representing the average deviation 

between observed and predicted counts, verified the information provided by the accuracy 

factor. Finally, the standard error of prediction (SEP) index is a relative typical deviation of 

the mean prediction values and expresses the expected average error associated with future 

predictions. It has the advantage of being independent on the magnitude of the measurements 

[103]. The lower the value of this index is, the better the capability of the model to predict 

microbial counts in new meat samples. The value of the index was 5.67% for the overall 

samples indicating good performance of the network for microbial count predictions in this 
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class (Table 4.3), with also very low values (4.4%) for spoiled samples. However in the case 

of fresh samples, the index gave higher values (i.e. 8.58%) as the network under-estimated 

microbial counts for some fresh beef samples. 

Although AFLS identification model utilises the gradient descent learning method for 

training, its main advantage is related to its MIMO structure capability. The majority of 

existing neurofuzzy schemes follow the classic Takagi–Sugeno–Kang (TSK) structure, where 

only one output is enabled. TSK models consist of IF-THEN rules with fuzzy antecedents and 

mathematical functions in the consequent part. The fuzzy sets partition the input space into a 

number of fuzzy regions, while the consequent functions describe the system's behaviour in 

these regions. ANFIS is a classic representative of TSK-based neurofuzzy systems [104]. By 

analysing mapping relationships between input and output data, ANFIS optimises the 

distribution of membership functions by using a gradient descent algorithm either alone or 

combined with a least-squares method. The ANFIS uses fuzzy if–then rules involving 

premise and consequent parts of an TSK-type fuzzy inference system. The five-layer system 

ANFIS architecture includes a fuzzification layer (Layer 1), a production layer (Layer 2), a 

normalisation layer (Layer 3), a defuzzification layer (Layer 4), and a total output layer 

(Layer 5) [105]. 
 

  
(a) (b) 

Fig. 4.9 ANFIS (a) performance for TVCs, and (b) % relative errors (LOOCV case) 
 

In addition to AFLS, in this research work, an ANFIS model has been implemented to predict 

TVCs. The same leave-one-out cross validation technique, as well as the same training 

dataset have been utilised also for this case. Under these conditions, ANFIS performed very 

satisfactory, its performance however was achieved with a high computational cost, by 

utilising two membership functions for each input variables and 128 fuzzy rules.  The related 

plot of the predicted versus the observed TVCs, as shown in Fig. 4.9 (a), reveals a good 

distribution around the line of equity, with the majority of data (ca. 98.65%) included within 

the ± 1 log unit area. Four samples were in the borderline of the ± 1 log unit area, while one 
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sample (semi-fresh) was placed outside that unit area. More specifically, the semi-fresh 

“10F7” sample was clearly outside the ± 1 log unit area. “10F7” corresponds to a beef sample 

stored at 10oC and collected after 52 h of storage. Spoiled samples, “10F12”, “20F11” and 

fresh samples “0F6”, “0F5” were placed very close to the borderline. “10F12” sample 

corresponds to a beef sample stored at 10oC and collected after 90 h of storage, while 

“20F11” corresponds to a beef sample stored at 20oC and collected after 44 h of storage. 

Similarly, 0F6” sample corresponds to a beef sample stored at 0oC and collected after 120 h, 

while “0F5” corresponds to a beef sample stored at 0oC and collected after 96 h of storage.  
 

Statistical index LOOCV (ANFIS case) Fresh Semi-fresh Spoiled Overall 

     

Mean squared error (MSE) 0.1580 0.2717 0.1881 0.1964 

Root mean squared error (RMSE) 0.3975 0.5213 0.4337 0.4432 

Mean relative percentage residual (MRPR %) -3.1892 0.7611 0.3848 -0.6930 

Mean absolute percentage residual (MAPR %) 8.5735 6.4222 3.9022 5.9621 

Bias factor (Bf) 1.0269 0.9886 0.9949 1.0038 

Accuracy factor (Af) 1.0868 1.0670 1.0400 1.0608 

Standard error of prediction (SEP %) 9.4997 8.3852 5.1477 6.7435 

 
Table 4.4 Performance of ANFIS - LOOCV case  

 
The performance of the ANFIS model is also presented in Fig. 4.9 (b), where the % relative 

error of prediction is illustrated against the observed microbial population. Based on this plot, 

data was almost equally distributed above and below 0, with all (expect two) predicted 

microbial counts included within the ±20% RE zone. These particular microbial counts are 

associated with the fresh “0F5” and “0F6” samples. The performance of the ANFIS model in 

predicting TVC in meat samples in terms of statistical indices is presented in Table 4.4. 
 

True class Predicted class Row total ( in ) Sensitivity (%) 

 Fresh Semi-fresh Spoiled  

Fresh ( n 24= ) 21 1(marginally) +2 0 24 87.5 

Semi-fresh ( n 16= ) 2 13 1 16 81.25 

Spoiled ( n 34= ) 0 1 31+2(marginally) 34 97.06 

Column total ( jn ) 23 17 34 74  

Specificity (%) 91.30 76.47 97.06   

Overall correct classification (accuracy): 90.54% 

 
Table 4.5 Confusion Matrix for MLP acting as classifier – LOOCV case  

 
An MLP network has been also implemented using the same FTIR dataset and employing the 

leave-one-out validation method. After a few trials, the MLP was constructed with two 
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hidden layers (with 12 and 6 nodes respectively) and two output nodes, one for the sensory 

class and one for the TVCs. The classification accuracy obtained from MLP, is presented in 

the form of a confusion matrix in Table 4.5.  The model overall achieved a 90.54% correct 

classification, with 87.5%, 81.25% and 97.06% for fresh, semi-fresh and spoiled meat 

samples, respectively. The related sensitivities represent 3 misclassifications out of 24 fresh 

meat samples, and one misclassification out of 34 spoiled samples. In the case of semi-fresh 

samples the respective figure was somehow lower (81.25%). In this case, 3 samples were 

misclassified (out of 16), two as fresh and one as spoiled cases.  

 

 
(a) 

 
(b) 

Fig. 4.10 MLP (a) performance for TVCs, and (b) % relative errors (LOOCV case) 

 
The related plot of the predicted versus the observed TVCs, as shown in Fig. 4.10 (a), reveals 

a reasonable good distribution around the line of equity without any particular trend, with the 

majority of data (ca. 90.54%) included within the ± 1 log unit area. Three samples were in the 

borderline of the ± 1 log unit area, while four samples (3 spoiled and one semi-fresh) were 

placed outside that unit area. A more comprehensive picture of the prediction performance of 

the MLP is given in Fig. 4.10 (b) where the % relative error of prediction is depicted against 

the observed microbial population. Based on this plot, approximately 91.89% of predicted 

microbial counts included within the ± 20% RE zone.  

 The performance of the MLP network in predicting TVC in meat samples in terms of 

statistical indices is presented in Table 4.6. An MLP implementation of the same FTIR 

dataset has been considered recently, however with a much simpler structure [81]. More 

specifically, an MLP with one hidden layer (with 10 nodes) and two outputs managed to 

perform the same task, however with worse results. The overall RMSE was 0.850, while the 

overall SEP was increased to 12.94%. It is well known that a two-hidden MLP structure 

enjoys a better performance against its single-hidden MLP counterpart, and such results 

simply proved that concept. 
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Statistical index LOOCV (MLP case) Fresh Semi-fresh Spoiled Overall 

     

Mean squared error (MSE) 0.2082 0.4077 0.2856 0.2869 

Root mean squared error (RMSE) 0.4563 0.6385 0.5344 0.5357 

Mean relative percentage residual (MRPR %) -2.3964 -1.2590 -2.1948 -2.0578 

Mean absolute percentage residual (MAPR %) 9.8067 9.7132 4.8452 7.5069 

Bias factor (Bf) 1.0175 1.0062 1.0196 1.0160 

Accuracy factor (Af) 1.1008 1.0999 1.0480 1.0760 

Standard error of prediction (SEP %) 10.9063 10.2712 6.3441 8.1509 

 
Table 4.6 Performance of MLP - LOOCV case  

 

Although both AFLS and MLP share the same learning training algorithm, i.e. the gradient 

descent method, the different “philosophy” in building the neurofuzzy architecture, allowed 

AFLS to achieve such superior performance. In MLP models, all normalised inputs are fed to 

the hidden layer, while in the case of AFLS, each input is fuzzified / decomposed through 

Gaussians membership functions. As the number of these membership functions is equal to 

the numbers of rules, this architecture has advantages over the classic ANFIS neurofuzzy 

model. The increased number of Gaussian membership functions increases the localisation of 

the input signal while at the same time maintains the required number of rules at low level. 

This localisation spread through the membership functions, is one advantage against the 

classic MLP structure. The proposed defuzzification scheme improves also the final output, 

against a simple sigmoid function, as it is the case for MLP. All modelling schemes have been 

implemented in MATLAB (ver. R2012a, Mathworks.com). 
 

 
Fig 4.11  PLS performance for TVCs  

 
Partial least squares (PLS) regression approaches, similarly to NNs, have the ability to relate 

the input and output variables without having any pre-knowledge on physics of the system 
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provided an accurate and adequate amount of data on the system variables is available [105]. 

The PLS method is a linear multivariate regression method that projects the input–output data 

down in to a latent space, extracting a number of principal factors with an orthogonal 

structure, while capturing most of the variance in the original data. PLS derives its usefulness 

from its ability to analyse data with strongly collinear, noisy and numerous variables in the 

predictor matrix X and responseY . The PLS model was constructed using the same input 

vector as in the cases of AFLS, ANFIS and MLP, and the PLS_Toolbox software (ver. 7.5, 

Eigenvector.com) in association with MATLAB was used to perform the PLS analysis. The 

nonlinear iterative partial least squares algorithm (NIPALS) has been chosen as the 

appropriate learning scheme. The related plot of the predicted versus the observed TVCs, as 

shown in Fig. 4.11, reveals a satisfactory, but inferior to MLP and AFLS, distribution around 

the line of equity without any particular trend, with the majority of data (ca. 67.56%) included 

within the ± 1 log unit area. The performance of the PLS regression model in predicting TVC 

in meat samples in terms of statistical indices is presented in Table 4.7.  

 

Statistical index LOOCV (PLS case) Fresh Semi-fresh Spoiled Overall 

     

Mean squared error (MSE) 2.6621 0.8929 0.9514 1.4936 

Root mean squared error (RMSE) 1.6316 0.9449 0.9754 1.2221 

Mean relative percentage residual (MRPR %) -7.6389 2.9306 3.4914 -0.2397 

Mean absolute percentage residual (MAPR %) 32.0962 13.5635 9.9630 17.9199 

Bias factor (Bf) 0.9666 0.9581 0.9582 0.9609 

Accuracy factor (Af) 1.4270 1.1503 1.1071 1.2121 

Standard error of prediction (SEP %) 38.9944 15.2013 11.5779 18.5961 

 
Table 4.7 Performance of PLS - LOOCV case  

 
Although in general, PLS results are worse than those from MLP, special attention should be 

paid to the cases of fresh samples. Both SEP and Accuracy Factor indicators are very 

extremely high and such behaviour could be explained by an inspection at Fig. 4.11. Four 

fresh samples, “15F2”, “20F4”, “20F2” and “20F3”, which correspond to collection after 6 h, 

12 h, 4 h and 8 h of storage respectively, are placed far away from the ± 1log unit area. Fig. 

4.3 illustrates the behaviour of 15oC and 20oC growth curves, where a very abrupt behaviour 

can be noticed especially for the 20oC curve at low sampling times. However, such results 

from PLS are expected, as it is well known that in modelling of real processes, linear PLS has 

some difficulties in its practical applications since most real problems are inherently nonlinear 

and dynamic [106]. 
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4.5.2  Second Case Study: Hold-Out Method 
	
The FTIR data analysis utilising the leave-one-out cross validation method was imposed by 

the relative number of experimental samples. In order to investigate further the capabilities of 

AFLS model in this joint problem of classification/prediction, a second experiment was 

carried out, where the initial FTIR dataset was divided into a training subset with approx. 

75% of the data, and a testing subset with the remaining 25% (i.e. 19 samples). An ANFIS 

model and an MLP network have been also developed for comparison reasons, to associate 

the same spectral data from FTIR analysis with beef fillet spoilage during aerobic storage at 

different temperatures. 
 

True class Predicted class Row total ( in ) Sensitivity (%) 

 Fresh Semi-fresh Spoiled  

Fresh ( n 7= ) 6+1(very marginally) 0 0 7 100 

Semi-fresh ( n 5= ) 0 4 1 5 80 

Spoiled ( n 7= ) 0 0 7 7 100 

Column total ( jn ) 7 4 8 19  

Specificity (%) 100 100 87.5   

Overall correct classification (accuracy): 94.74% 

 
Table 4.8 Confusion Matrix for AFLS acting as classifier – Case 2 

 
The proposed AFLS model has been also utilised in this second simulation study, in order to 

assess its competence to be trained with a dataset with a reduced number of samples. For this 

particular case, after trials, it has been found that 15 rules were necessary for the proposed 

model to achieve an acceptable performance for this particular case/experiment. The training 

set consisted of 55 samples, while 19 (7 fresh, 5 semi-fresh and 7 spoiled) meat samples were 

included in the testing subset. Table 4.8 illustrates these testing results. It has to be mentioned 

however, that one fresh meat sample, although formally categorised as positive, its value was 

almost identical to the cut-off threshold, therefore it could be considered it as a “grey” case.  

In addition, AFLS’s second output modelled successfully the TVCs, as illustrated in Fig. 

4.12. In this case, the plot of the predicted vs. the observed TVC for the testing dataset, have 

shown reasonably good distribution around the line of equity without any particular trend, 

with the majority of data (ca. 89.47%) included within the ± 1 log unit area. The semi-fresh 

“10F7” sample is clearly out of the ± 1 log unit area, while the spoiled “5F9” sample is on the 

borderline. Another fresh sample (i.e. “0F5”) has been placed very close to the borderline. 

“10F7” sample corresponds to a beef sample stored at 10oC and collected after 52 h of 

storage, “5F9” corresponds to a beef sample stored at 5oC and collected after 192 h of storage 
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and finally “0F5” corresponds to a beef sample stored at 0oC and collected after 96 h of 

storage. 
 

 
(a) 

 
(b) 

Fig. 4.12 AFLS (a) performance for TVCs, and  (b) % relative errors (Case 2) 
 

The comparison of Fig. 4.12a with the related Fig. 4.8a is more than evident. A more 

comprehensible picture of the AFLS’s prediction performance is provided in Fig. 4.12b, 

where the % relative error of prediction is shown against the observed microbial population. 

Based on this plot, data were distributed above and below 0, with approximately 89.47% of 

predicted microbial counts included within the ± 20% RE zone. Samples “10F7” and “0F5” 

are placed outside the ± 20% RE zone. 

 
Statistical index - AFLS (19 test) Fresh Semi-fresh Spoiled Overall 

     

Mean squared error (MSE) 0.263 0.484 0.166 0.286 

Root mean squared error (RMSE) 0.513 0.696 0.407 0.534 

Mean relative percentage residual (MRPR %) -7.107 3.052 1.404 -1.298 

Mean absolute percentage residual (MAPR %) 11.828 7.045 2.906 7.282 

Bias factor (Bf) 1.064 0.964 0.985 1.007 

Accuracy factor (Af) 1.118 1.078 1.031 1.075 

Standard error of prediction (SEP %) 13.311 10.695 4.552 8.311 

 
Table 4.9 Performance for AFLS - Case 2  

 
The performance of the AFLS model to predict TVCs in beef samples for this second 

simulation, in terms of statistical indices is presented in Table 4.9. Based on the calculated 

values of the bias factor fB , it can be assumed that the neurofuzzy network under-estimated 

TVCs in semi-fresh and spoiled samples ( fB <1), whereas for fresh samples over-estimation 
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of microbial population was evident ( fB  >1). The overall fB was almost optimal (ca. 1.007). 

In addition, the values of the accuracy factor fA  indicated that the predicted TVCs were 

11.8%, 7.8%, and 3.1% different from the observed values for fresh, semi-fresh, and spoiled 

meat samples, respectively. However, a closer comparison of AFLS performance for these 

two simulation case studies reveals a problem with the limited number of samples for 

training. The SEP index is much worse in this second case, and this reflects an open problem 

in learning-based systems, i.e. the need to have as large as possible training datasets.  

Similarly to the previous case study, an ANFIS model has been developed to predict TVCs 

for this reduced dataset. ANFIS’s performance although generally inferior to the previous 

case study, revealed an almost excellent “response” to the cases of semi-fresh and spoiled 

samples. Unfortunately, such performance was compromised with a high computational cost, 

by utilising two membership functions for each input variable and 128 fuzzy rules. 

 

 
(a) 

 
(b) 

Fig. 4.13 ANFIS (a) performance for TVCs, and (b) % relative errors (Case 2) 

 
The related plot of the predicted versus the observed TVCs, as shown in Fig. 4.13a, reveals a 

good distribution around the line of equity without any particular trend, with the majority of 

data (ca. 89.47%) included within the ± 1 log unit area. Two fresh samples were clearly 

outside the borderline of the ± 1 log unit area. A more complete picture of the prediction 

performance of the ANFIS model is given in Fig. 4.13b where the % relative error of 

prediction is depicted against the observed microbial population. 

These diagrams reveal however some similarities. Samples “0F2” and “10F3” which are 

placed outside the ± 1 log unit area at Fig. 4.13a also are responsible for the high relative 

errors at Fig. 4.13b, with 57.32% and 30.63% respectively. Sample “0F2” corresponds to a 

beef sample stored at 0oC and collected after 24 h of storage, while sample “10F3” to a beef 

sample stored at 10oC and collected after 18 h of storage.  
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 The performance of the ANFIS model in predicting TVCs for beef samples for this second 

simulation, in terms of statistical indices is presented in Table 4.10. 
 

Statistical index - ANFIS (19 test) Fresh Semi-fresh Spoiled Overall-test 

     

Mean squared error (MSE) 1.1384 0.1699 0.0970 0.4998 

Root mean squared error (RMSE) 1.0670 0.4122 0.3115 0.7070 

Mean relative percentage residual (MRPR %) 15.9330 3.1366 2.1999 7.5060 

Mean absolute percentage residual (MAPR %) 22.3553 4.5608 2.4782 10.3494 

Bias factor (Bf) 0.8064 0.9673 0.9777 0.9081 

Accuracy factor (Af) 1.3176 1.0484 1.0257 1.1313 

Standard error of prediction (SEP %) 27.6720 6.3350 3.4800 10.9953 

 
Table 4.10 Performance for ANFIS - Case 2  

 
The performance of the MLP model using the reduced training dataset, although it could be 

considered as satisfactory, it is also inferior compared to MLP’s performance from the 

previous case. The calculated correct classifications were similar to the previous case (i.e. 

leave-one-out case). More specifically, the classification for fresh, semi-fresh and spoiled 

beef samples were 85.71%, 80.0% and 100% respectively, whereas the overall correct 

classification (accuracy) for MLP test dataset was 89.47%. The semi-fresh “15F10” sample, 

which corresponds to a beef sample stored at 15oC and collected after 48 h of storage, was 

classified as spoiled, whereas the fresh “15F5” sample, which corresponds to a beef sample 

stored at 15oC and collected after 24 h of storage, was classified as semi-fresh case. Table 

4.11 illustrates the MLP-based testing classification results. 

 

True class Predicted class Row total ( in ) Sensitivity (%) 

 Fresh Semi-fresh Spoiled  

Fresh ( n 7= ) 6 1 0 7 85.71 

Semi-fresh ( n 5= ) 0 4 1 5 80.0 

Spoiled ( n 7= ) 0 0 7 7 100 

Column total ( jn ) 6 5 8 19  

Specificity (%) 100 80 87.50   

Overall correct classification (accuracy): 89.47% 

 
Table 4.11 Confusion Matrix for MLP acting as classifier – Case 2 

 
The related plot of the predicted versus the observed TVCs, as shown in Fig. 4.14a, reveals a 

reasonable good distribution around the line of equity without any particular trend, with the 

majority of data (ca. 84.21%) included within the ± 1 log unit area. Three samples (2 fresh 

and one spoiled) were outside the borderline of the ± 1 log unit area. A more complete picture 
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of the prediction performance of the MLP is given in Fig. 4.14b where the % relative error of 

prediction is depicted against the observed microbial population. Based on this plot, 

approximately 78.94% of predicted microbial counts included within the ± 20% RE zone.  

The below two diagrams reveal also some resemblances. Samples “15F5” and “0F2” which 

are placed outside the ± 1 log unit area at Fig. 4.14a also are responsible for the high relative 

errors at Fig. 4.14b, with -48.76% and 28.86% respectively. Sample “0F2” corresponds to a 

beef sample stored at 0oC and collected after 24 h of storage. The performance of the MLP 

model in predicting TVCs for beef samples for this second simulation, in terms of statistical 

indices is presented in Table 4.12. 
 

 
(a) 

 
(b) 

Fig. 4.14 MLP (a) performance for TVCs, and (b) % relative errors (Case 2) 
 

The overall RMSE for the MLP was 0.8133, while the overall SEP was increased to 12.73%. 

However, an interesting issue from both Fig. 4.14a and Table 4.12 is related with the 

performance of semi-fresh samples. In comparison with the related AFLS and ANFIS cases, 

MLP model managed to predict more accurately the growth dynamics of semi-fresh samples. 

The related SEP was 5.97%, compared to 10.7% and 6.33% for the cases of AFLS and 

ANFIS respectively.  
 

Statistical index - MLP (19 test) Fresh Semi-fresh Spoiled Overall-test 

     

Mean squared error (MSE) 1.0099 0.1509 0.7000 0.6697 

Root mean squared error (RMSE) 1.0050 0.3884 0.8367 0.8183 

Mean relative percentage residual (MRPR %) -2.4966 -4.5711 3.6519 -0.7773 

Mean absolute percentage residual (MAPR %) 17.5794 5.1790 5.1044 9.7201 

Bias factor (Bf) 0.9995 1.0450 0.9600 0.9964 

Accuracy factor (Af) 1.1883 1.0514 1.0566 1.1019 

Standard error of prediction (SEP %) 26.0641 5.9699 9.3482 12.7269 

 
Table 4.12 Performance for MLP - Case 2  
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Overall results revealed that both classification and especially prediction accuracies of the 

AFLS model were better compared with the performances of MLP and ANFIS in the 

characterisation of meat samples for this reduced number of samples, indicating again the 

superiority of this specific MIMO neurofuzzy approach in tackling complex, nonlinear 

problems such as the meat spoilage. 

In this chapter, Fourier transform infrared spectra were used to identify meat spoilage 

microorganisms during aerobic storage at chill and abuse temperatures. The identification 

strategy involved not only the classification of beef samples in their respective quality class 

(i.e. fresh, semi-fresh and spoiled), but also the prediction of their associated microbiological 

population directly from FTIR spectra. The realisation of this strategy has been fulfilled with 

the development of a MIMO neurofuzzy model which incorporates a prototype 

defuzzification scheme, while utilising an efficient, compared to TSK-systems, fuzzification 

layer. In the case of AFLS, the number of memberships for each input variable was directly 

associated to the number of rules, hence, the “curse of dimensionality” problem was 

significantly reduced. Classification performance was almost excellent, with 95.94% and 

94.74% accuracy for the two different case studies. Similarly, overall prediction for TVCs has 

been considered as very satisfactory, although lower performance was observed especially for 

the fresh samples. ANFIS’s prediction performance appeared to be comparable to AFLS case; 

however such results were achieved with huge expensive computational cost. ANFIS suffers 

from the “curse of dimensionality” problem as well as the inability to support multiple output 

variables. Prediction performances of MLP and PLS schemes revealed the deficiencies of 

these systems which have been used extensively in the area of Food Microbiology.  
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Chapter Five  
  

 COMPUTATIONAL INTELLIGENCE TECHNIQUES 
TO ASSESS SENSORY QUALITY OF MEAT USING 

MULTISPECTRAL IMAGING 
   

5.1 Introduction 
Machine vision and Near Infrared (NIR) spectroscopy are two of the most extensively applied 

methods for food quality and safety assessment. The use of vision technology for quality 

testing of food production has the obvious advantage of being able to continuously monitor a 

production using non-destructive methods, thus increasing the quality and minimizing cost. 

Machine vision techniques based on RGB colour vision systems have been successfully 

applied to evaluate the external characteristics of foods [108]. Such systems, however, are not 

able to capture broad spectral information, which is related to internal characteristics; hence 

computer vision has limited ability to conduct quantitative analysis of chemical components 

in food [109]. Alternatively, the tight relationship between NIR spectra and food components 

makes NIR spectroscopy more attractive than the other spectroscopic techniques. On the 

other hand, these spectral methods were proved inefficient when it comes to heterogeneous 

materials such as meat, owing to the fact that they are not capable of obtaining any spatial 

information about objects [110].  

 

 

Fig. 5.1 Schematic of the proposed data analysis 
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In recent years, spectral imaging (i.e., hyperspectral and multispectral) has emerged as a 

better tool for safety and quality inspection of various agricultural commodities. This 

technique integrates the conventional imaging and spectroscopy technique to attain both 

spatial and spectral information from the target objects simultaneously. 

The main objective of this chapter is to associate, for the first time according to literature, 

spectral data acquired by multispectral imaging techniques with meat spoilage, using 

neurofuzzy systems. Fig. 5.1 illustrates the proposed data analysis concept.  

Fig.5.2   Structure of proposed decision support system 
 

Minced beef samples, packaged either aerobically (AIR) or under modified atmosphere 

(MAP), were held from freshness to spoilage at 0, 5, 10, and 15 . Datasets related to 

imaging spectral Agricultural University of Athens, Greece, again provided information and 

the associated microbiological analysis from meat samples. An intelligent decision support 

system has been designed in such way in order to accommodate all relevant information. Its 

overall schematic diagram shown at Fig. 5.2 includes a classifier unit to discriminate 

AIR/MAP based samples as well as an identification model to predict the temperatures under 

which meat samples were stored. 

The proposed approach is considered as novel, as for the first time, prediction of temperature 

is performed utilizing only imaging spectral information. Individual identification models 

have been also developed for the prediction of the total viable counts of bacteria (TVC) as 

well as the growth of salmonella (XLD) for both AIR/MAP conditions.  The Adaptive Fuzzy 

Inference Neural Network (AFINN), a Takagi–Sugeno–Kang (TSK) structure, has been 

considered as the identification/classifier models for this proposed decision support systems 

[111]. Results from AFINN scheme are compared against models based on ANFIS, 

multilayer neural networks (MLP) and PLS schemes. 

oC
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5.2 Multispectral Imaging Approaches in Food Quality  

Analysis 

Due to its simplicity, hyperspectral / multispectral imaging has been utilised for online 

process monitoring and quality control applications [112]. Recently, this technique has been 

adopted to assess food safety and quality including contaminants detection [113]. In addition, 

inspection of internal and external attributes in various fruits and vegetables such as apple 

[114] and fresh-cut spinach leaves [115] have been performed using multispectral imaging 

combined with various chemometric methods. Hyperspectral and multispectral imaging 

spectroscopy have been also used as rapid techniques to monitor quality attributes of meat 

products. A non-destructive method based on multispectral imaging in the visible and near 

infrared (NIR) regions to determine the aerobic plate count (APC) in cooked pork sausages 

has been considered recently [116]. The prediction of total viable counts of minced pork meat 

stored under two different storage conditions - aerobic and modified atmosphere packages - 

has been performed using the VideometerLab multispectral imaging device [117]. A 

hyperspectral imaging technique has been investigated for evaluating pork meat tenderness 

and Escherichia coli contamination [118]. In that research study, a Modified Gompertz 

function was exploited to extract the scattering characteristics of pork meat from the spatially-

resolved hyperspectral images. Hyperspectral images were used to predict fresh beef 

tenderness based on Warner–Bratzler shear force [119]. The identification and extraction of 

useful colour and texture features from fresh beef samples using a multispectral imaging 

system has been also explored and a support vector machine algorithm was then utilised to 

predict cooked beef tenderness [120]. The detection of minced lamb adulteration has been 

considered using hyperspectral imaging [121], while a feasibility of combining spectral with 

texture features in order to improve pH prediction for salted pork was investigated through 

hyperspectral imaging [122]. Finally, detection of adulteration of minced beef with pork 

samples has been explored using multispectral image analysis [123]. 
 

5.3 Multispectral Imaging - Sampling and Analysis 
 
The entire experimental case study was performed at the Agricultural University of Athens, 

Greece. Minced Meat was separated into small portions (75 g) and packaged individually 

either aerobically or under modified atmosphere (MAP) (40% CO2, 30% O2, 30% N2), and in 

different temperatures (0, 5, 10, 15 °C) that are associated with acceptable/non-acceptable 

storage practices in a distribution chain for meat products [124]. Fig 5.3 shows a sample of 

meat under these different storage conditions.  
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Fig. 5.3 Example of Aerobic vs. MAP storage 

 
At the beginning and during storage, after appropriate time intervals, meat samples were 

divided into two parts; one part was used for microbiological analysis while the other one for 

image analysis. It was assumed that the microbial population at both parts would be 

comparable. Aerobic samples stored at 0oC  and 5oC  were analysed approx. every 48h for 

the period 0 186h− and every 24h for the period186 378h− . Finally, the last sample was 

analysed at 479h . Similarly, samples stored at 10 oC  and 15oC  were analysed approx. every 

12h for the period 0 156h− . In total, 14 samples were analysed for each temperature case, 

resulting 56 samples in total. The same procedure was repeated for MAP case too. 

Microbiological analysis was performed, and resulting growth data from plate counts were 

log10 transformed and fitted to the Baranyi & Roberts’ model in order to verify the kinetic 

parameters of microbial growth (maximum specific growth rate and lag phase duration) for 

the TVC and salmonella (XLD). A detailed description of the preparation of minced beef 

samples, as well as their related microbiological analysis, is described in [124]. The growth 

curves of TVC and XLD for minced beef storage at different temperatures under AIR and 

MAP conditions as a function of storage time are illustrated in Fig 5.4.   

The growth curves for both TVC cases are similar, with the exception that the maximum 

specific growth rate (µmax) for the AIR packaged condition is different than of that of the 

MAP case. It has been found that packaging under modified atmosphere delay the growth 

rates of all members of the microbial association, as well as the maximum population attained 

by each microbial group compared with aerobic storage. Aerobic storage accelerates spoilage 

due to the fast growing Pseudomonas spp.; in addition such growth can be significantly 

inhibited by the presence of gas carbon dioxide [125]. Analysis specified that the total viable 

counts ranged from for aerobic cases, and for MAP 

cases. However, for both AIR and MAP conditions, the growth rate is increased faster, as the 

storage temperature increases. For the case of XLD, significant changes occur only when 

temperature reaches at 15 °C.  

 

 

2
103.8 9.8log cfu cm−− 2

103.7 8.5log cfu cm−−
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Fig. 5.4   Population dynamics of TVC and XLD at various temperatures for minced beef 

samples 

 

Images from every sample (56 aerobic and 56 MAP cases) were captured using 

VideometerLab, (Videometer A/S, Denmark), a system which acquires multispectral images 

in 18 different wavelengths ranging from 405 to 970 nm. More specifically, the wavelengths 

are at 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 

970 nm. Meat samples were presented in Petri dishes and collected at the same time as 

microbiological analysis occurred [126]. Fig. 5.5 illustrates the concept of multispectral 

imaging. 

The acquisition system records surface reflections with a standard monochrome charge 

coupled device chip, nested in a calibrated digital camera. The meat sample was placed inside 

an Ulbricht sphere in which the camera is top-mounted. The sphere has its interior coated 

with matte titanium paint. The coating together with the curvature of the sphere ensures a 

uniform reflection of the cast light and thereby a uniform light in the entire sphere. 
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Fig. 5.5 Multispectral Imaging Concept 

 

At the rim of the sphere, light emitting diodes (LEDs) with narrow-band spectral radiation 

distribution are positioned side by side in a pattern, which distributes the LEDs belonging to 

each wavelength uniformly around the entire rim. Each diode emits light in a specific 

wavelength ensuring that only light of one wavelength is present at a time. These 

characteristics ensure an optimal dynamic range and keep the amount of shadow and shading 

effects to a minimum. Each multispectral image consists of 18 separate images, one from 

each of the 18 wavelengths. The result is a monochrome image with 32-bit floating point 

precision for each LED type, giving in the end, a multispectral 3D cube of dimensionality 

1280 × 960 × 18 [127], as shown from Fig. 5.6. 

 

 
Fig. 5.6 Videometer Sensorial System 

 

As images include redundant information, such as the Petri dish as well as meat fat, a 

segmentation procedure is required as a pre-processing step. The main objective of 

segmentation is to identify only the minced meat as the Region of Interest (ROI) from the 

background or any other undesired regions. This step includes transformation and 

segmentation procedures, which were implemented using VideometerLab software. The pre-
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processing was implemented by maximizing the contrast between the sample meat material 

and the other non-relevant objects, enabling thus a threshold operation [128]. Canonical 

discriminant analysis (CDA) was employed as a supervised transformation building method 

to divide the images into regions of interest [129]. Following transformation using CDA, the 

separation was distinct and a simple thresholding was enough to separate meat from non-

meat. The multispectral image sample without the background was transformed to spectrum 

by mean calculation. For each image, the mean reflectance spectrum was calculated by 

averaging the intensity of pixels within the ROI at each wavelength. Thus, the resulting data 

consisted of 18 mean values of the reflectance, as it was recorded by the camera for the pixels 

that were included in each image's ROI, and were further analysed with the proposed 

intelligent decision support system [123]. Fig.5.7 illustrates samples of mean reflectance 

spectra acquired for from both AIR and MAP minced beef samples.  A close look on selected 

spectra at Fig. 5.7 and more precisely on the case of aerobic samples stored at o5 Creveals that 

there are some differences in the reflectance’s magnitude in the wavelength range from 600 

nm to 850 nm, between unspoiled sample 2

10(t 0h,  TVC =4.1log cfu cm )−= and spoiled sample

2

10(t 479.5h,  TVC =9.3log cfu cm )−= .  

 

  

  
Fig. 5.7 Selected spectra for both AIR and MAP cases 

 
These differences usually result from the spoilage and deterioration of nutrient compositions 

such as carbohydrates, protein, fat, which are gradually consumed and decomposed during 
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storage, producing a series of chemical substances, including ammonia, hydrogen sulphide, 

ketones and aldehydes [116]. A similar situation can be also observed in the near infrared 

region (850–970 nm) where reflectance values are decreased with increasing storage time 

[126]. Datasets related to reflectance spectra as well as the associated microbiological 

analysis from meat samples, were provided by Agricultural University of Athens, Greece and 

were further utilised towards the development of the proposed intelligent decision support 

system.  

A principal component analysis (PCA) has been applied on those multispectral data used for 

training purposes. This choice was initiated mainly by two reasons. The original spectral data 

is considered as a high-dimensional problem, thus it could be prohibited for utilising a 

learning-based model (i.e. excessive number of input variables). Secondly, the strong 

correlation among the spectral variables (i.e. wavelengths), would deteriorate seriously the 

modelling procedure. In the classical PCA approach, the first component corresponds to the 

direction in which the projected observations have the largest variance. The second 

component is then orthogonal to the first component and again maximises the variance of the 

data points projected on it. Continuing in this way produces all of the principal components, 

which correspond to the eigenvectors of the empirical covariance matrix. However, both the 

classical variance (which is being maximised) and the classical covariance matrix (which is 

being decomposed) are very sensitive to anomalous observations. Consequently, the first 

components are often attracted toward outlying points, and may not capture the variation of 

the regular observations.  
 

PCs 
Robust PCA 

Eigenvalue Prop. % Cum. prop. % 
1 346 65.98 65.98 
2 125 22.94 88.92 
3 48.8 8.98 97.90 
4 8.96 1.56 99.46 
5 1.21 0.21 99.67 

 
Table 5.1 Robust PCA scheme 

An alternative approach to improve PCA appears to be the combination of projection pursuit 

with robust scatter matrix estimation. The goal of a robust PCA (RPCA) scheme is to obtain 

principal components that are not influenced much by outliers. The RPCA is implemented in 

three main steps. First, the data are pre-processed such that the transformed data are lying in a 

subspace whose dimension is at most . A preliminary covariance matrix is then 

constructed and used for selecting the number of components  that will be retained in the 

sequel, yielding a k-dimensional subspace that fits the data well. Then the data points are 

projected on this subspace where their location and scatter matrix are robustly estimated, from 

1n −

k
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which its nonzero eigenvalues   are computed. The corresponding eigenvectors are 

the robust principal components [130]. RPCA scheme was implemented in MATLAB, with 

the aid of PLS_Toolbox (ver. 8.0 Eigenvector.com). 

For this particular experimental case study, the first five principal components (PC) were 

associated with the 99.675% of the total variance, as shown in Table 5.1. These specific PCs 

were extracted and utilised as inputs to the various simulation models developed for this 

specific case study. A mandatory check however is required to validate the integrity and 

applicability of the developed model in predicting/classifying unknown samples to make sure 

that models could work in the future for new and similar data. Full cross-validation, also 

called leave-one-out cross-validation (LOOCV), is commonly utilized to validate the 

established models [131], [132]. LOOCV leaves one sample out of the calibration process, 

which is used for validation. All samples are used in an exhaustive way providing thus 

repeatability of the results compared with other random methods of partitioning of the 

training dataset. As the number of samples was small, separation of the dataset into training 

and testing subsets (hold-out method) would further reduce the number of data and would 

result in insufficient training of the network. Therefore, in order to improve the robustness of 

classification, the LOOCV method has been adopted to evaluate the performance of the 

developed models. Meanwhile, it is necessary to look for effective methods to evaluate the 

predictive effectiveness, robustness, reliability, and accuracy for practical applications. 

Similarly to the FTIR case, the performance of developed models for the prediction of TVC 

and XLD for each meat sample was determined by the bias (Bf) and accuracy (Af) factors, the 

mean relative percentage residual (MRPR) and the mean absolute percentage residual 

(MAPR), the root mean squared error (RMSE) and finally the standard error of prediction 

(SEP) [132][133]. 
 

5.4 AFINN Architecture 
	
The implemented neurofuzzy (NF) system is based on the well-known TSK type, modified 

however with the introduction of an additional layer of output partitions. Unlike the ANFIS 

NF system, where the number of local linear systems is the same as the number of rules, 

AFINN provides a means of controlling the growth of the number of local linear systems 

when the order of the system under consideration increases, so that least-squares estimation 

can be applied without performance degradation. A clustering algorithm is applied for the 

sample data in order to organize feature vectors into clusters, such that points within a cluster 

are closer to each other than vectors belonging to different clusters. The fuzzy rule base is 

derived using results obtained from a clustering algorithm.  

k 1,..., kl l

k
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Fig. 5.8  Structure of AFINN system 

The schematic of the AFINN model, shown in Fig. 5.8, consists of five layers. Layers L1 and 

L2 are associated to IF part of fuzzy rules while layers L4 and L5 to THEN part of these rules 

and are related to the defuzzification task. In layer L3 a mapping between the rules layer and 

the output layer is performed through a competitive learning process and as a consequence, 

the linear units at L4 are linked with each term of layer L3.  Thus the size of required matrices 

for least-squares estimation at the consequent part is much smaller compared to the ANFIS 

approach.  

 

5.4.1 Clustering Algorithm 
 
The applied clustering algorithm at layer L2 consists of two stages [134]. In the first stage the 

method similar to Learning Vector Quantization (LVQ) algorithm generates crisp c-partitions 

of the data set. The number of clusters c and the cluster centres ,   1,..., ,iv i c=  obtained from 

this stage are used by FCM (Fuzzy C-Means) algorithm in the second stage. The first stage 

clustering algorithm determines the number of clusters by dividing the learning data into 

these crisp clusters and calculates the cluster centres which are the initial values of the fuzzy 

cluster centres derived the second stage algorithm. Let np
1[ ,..., ]  R= ∈nX x x  be a learning 

data. The first cluster is created starting with the first data vector from X and the initial value 

of the cluster centre is taking as a value of this data vector. Then other data vectors are 

included into the cluster but only these ones, which satisfy the following condition 

    k ix v D− <      (5.1) 

where , 1,...,k   X  k nx ∈ =  and ,  1,...,iv i c= are cluster centres, cp
1[ ,..., ]    RnV v v= ∈ , the constant value D 

is fixed at the beginning of the algorithm. Cluster centres iv are modified for each cluster (i.e.,

1,...,i c= ) according to the following equation 

    ( 1) ( ) ( ( ))i i t k iv t v t a x v t+ = + −                    (5.2) 
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where 0,1, 2,...t = denotes the number of iterations, [0,1]ta ∈  is the learning rate and it is 

decreasing during performance of the algorithm (depending on the number of elements in the 

cluster). Recursion of Eq. 5.2, originates from the LVQ algorithm. As a result of performance 

of this algorithm, we get the number of clusters c, we have divided data set into the clusters, 

and we know values of cluster centres iv  1,...,i c= , which we can use as initial values for 

the second stage clustering algorithm. In the second stage the Fuzzy C-Means algorithm has 

been used to optimize the values of cluster centres.  Fig. 5.9 illustrates the clustering concept. 

 

 

Fig. 5.9 Clustering concept  

	
	
5.4.2 Feed-forward analysis of AFINN 

 
The number of rules in the AFINN scheme is identical to the number of clusters c obtained 

from the clustering algorithm. Fuzzy IF-THEN rules then can be written in the following 

form: 

1 1 0 1 1IF (  is  AND....AND  is ) THEN ( .. )i i i i i
q q q qx U x U y w w x w x= + + +               

(5.3) 

where ,  1,..., ;   1,..i
jU i c j p= =  and 1q p= − , are fuzzy sets defined based on c-partition of 

learning data X. The membership functions of fuzzy sets i
jU  have been chosen as Gaussian 

membership functions with the following form: 

                             

2
1 expi i
j j

j ij
U U

ij

x v
O µ σ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

−
= = −                    (5.4) 
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for 1,..,j q= and 1,..,i c= . The values ijv in Eq. (5.4) represent the centres of the membership 

functions and are equal to the values of the components of vectors iv , which derive from the 

FCM algorithm. The values σ ij  in Eq. (5.4) define the widths of the membership functions. 

These values are calculated according to 

                            

1
2

2

1 1

( )
n n

ij ik kj ij ik
k k

u x v uσ
= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑                    (5.5) 

The second layer L2 has c elements that realize a multiplication operation. Outputs of this 

layer represent the fire strength of the rules, expressed as: 

                             

2 1

1
i
j

q

i U
j

O O
=

=∏                  (5.6) 

where 1,..,i c= . Nodes at the additional layer (L3), represent the partitions of the output 

variables. The nodes should perform the fuzzy OR operation to integrate the fired rules: 

                                 

3 2 3
,l k l k

k
O O w=∑             (5.7) 

where, 1,..,k c= . Hence, links between L2 and L3 function as an inference engine that does not 

require the rule-matching process. Initially, the links at layers L2-L3 are fully interconnected. 

However, not all the rules are necessary to the fuzzy system. The weight of the link 

connecting the thk rule node from L2 and the thl output partition at L3 is denoted as 3
,l kw and 

assigned to be 0.5. A competitive learning algorithm is then utilised. For the set of training 

data pairs ( , )x y the weights are adjusted as:  

                                              
3 3 3 2
, ,( )l k l l k kw O w OΔ = − +               (5.8) 

where 3
lO is denoted as the output of the l output term node, while 2

kO  is the output of the k

fuzzy rule node. Hence, 3
lO serves as a win-loss index of competition. As the competitive 

algorithm needs the number of output nodes 3
lO  to be a priori known, this has been 

heuristically set to be (c/2+1) of the defined number of rules c. The main principle of this 

phase is to remove the less important rules and to retain essential ones based on the results of 

competitive learning through the whole set of trained data pairs. The weight of a link that 

connects a rule node and an output partition node indicates the strength of the rule affecting 

the output partitions. The link with the maximum weight is chosen and it is assigned to 1, 

while the remaining ones to 0. Therefore, only the rule with the link of maximum weight will 

be assigned to the output partitions. After that, the weights of the links that connect the same 

output term node are compared. If the weight of the link is found to be small compared to the 

maximum one, the weight of the link is assigned to zero. The remaining weights are then 
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assigned to 1. Hence 3
,l kw  will be either 0 or 1, which indicates the existence of the links 

connecting the node l in L3 and the node k in L2.  At layer L4, every node is an adaptive node, 

with a node function as: 

                   

3 3
4

1 23 3 ( )l l
l l l l l

l l
l l

O O
O f p x q x r

O O
= = + +
∑ ∑

    (5.9) 

where{ , , }l l lp q r is the consequent parameter set of this node. Finally in the last layer, L5, the 

single node in this layer computes the overall output as the summation of all incoming 

signals: 

                     

5 4
l

l

O O=∑           (5.10) 

Similarly to the ANFIS model, a hybrid learning approach has been also adopted for the 

AFINN scheme [111]. All modelling schemes have been implemented in MATLAB (ver. 

R2014a, Mathworks.com). 

 

5.4.3 Tuning Premise and Consequence AFINN parameters 
 
Two different sets of AFINN parameters need to be tuned. These include the nonlinear 

premise parameters in the fuzzification part and the linear consequent parameters in the 

defuzzification part. A hybrid learning approach thus has been adopted for the AFINN 

scheme. In this phase, the error backpropagation is applied to tune the premise parameters of 

the membership functions and recursive least squares estimation is applied to find the 

consequence parameters of local linear systems. For each training pair ( , )x y , the system 

output 5O is obtained in forward pass after feeding input pattern into the network. Then the 

purpose of this learning phase is that, for a given thp training data pair ( , )p px y , the 

parameters are adjusted so as to minimise the error function 

  5 21
( )
2p pE y O= −     (5.11) 

The update for the premise parameters is defined as: 

  2

2 2

2( )

( )
p j jk

jk k

k jk

E x v
v n O

O σ

∂ −
Δ = −

∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

                          (5.12) 

where η is the learning rate. The width σ is calculated as  

  
2

2
2 3

2( )

( )
p j jk

jk k
k jk

E x v
O

O
σ η

σ

∂ −
Δ = −

∂

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦  

              (5.13) 

The recursive least-squares estimation is used to find the consequence parameters of the local 

linear systems.   
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Now let us define the estimation error pe  at the thp training data pair:  

  5
1

ˆT
p p p p p pe y O y ϕ θ −= − = −                       (5.14) 

 

The system output is re-formulated as: 

                             

3
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               (5.15) 

where l is the number of nodes at L3, and m denote the number of input variables plus 1 (i.e., 

11, ,.., qm n n= ). The consequent parameters { , , }p q r in Eq. 5.9 are denoted asw . Let us denote,  
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and 

              11 1 21 2 1
ˆ ... ... ...

q q qp n n l lnw w w w w wθ ⎡ ⎤= ⎣ ⎦                                    (5.17) 

Thus, the recursive least-squares estimation can be applied to find the parameters such that 

the cost function J is minimised. 

   21
2 p

p

J e= ∑                (5.18) 

The algorithm for updating parameters is: 
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where 0̂θ is given and 1P− is an identity matrix. 

 

5.5  Data Analysis 
	
The final dataset consisted of 56 minced beef samples at aerobic and 56 samples at MAP 

conditions respectively. Information related also to sampling times was also considered for 

this analysis.  

 
5.5.1 Classification of Meat Samples 
 
The classification accuracy acquired by the AFINN model for the categorization of storage 

conditions (Aerobic vs. MAP) is presented in the form of a confusion matrix in Table 5.2 For 

this specific model, 22 rules have been created by the clustering scheme, while the input 
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vector consisted of the five PCs extracted from the RPCA algorithm. The hybrid parameter-

learning algorithm resulted in a high speed training process, i.e. 20 epochs. The sensitivities 

reveal an overall excellent performance for both cases. The model overall achieved a 95.53% 

correct classification, and 96.43% and 94.64% for AIR and MAP meat samples, respectively. 

The sensitivities for AIR and MAP-based meat samples reveal 54 (including two marginal 

cases) AIR samples, and 53 MAP samples properly classified to their own class. 

Misclassified samples “1A5”, “1A10” correspond to minced beef AIR samples stored at 5oC 

and 10oC respectively and collected immediately (0h of storage). Similarly, misclassified 

samples “1M5”, “1M10”, “1M15” correspond to minced beef MAP samples stored at 5oC, 

10oC and 15oC respectively and collected instantly (0h of storage). Such misclassification can 

be explained by the fact, that at 0t = , meat samples share the same spectral information.  

 

Class (AIR/MAP) Predicted class  (AFINN) Row total Sensitivity (%) 
         AIR MAP   

AIR ( n 56= ) 52 (+2 marginal) 2 56 96.43 
MAP ( n 56= ) 3 53 56 94.64 

Column total (
jn ) 57 56 112  

Specificity (%) 94.74 94.64  

Overall correct classification (accuracy): 95.53% 

 
Table 5.2 Confusion matrix for class of storage conditions  

 
The specificity index was also high, indicating satisfactory discrimination between these two 

classes. In addition to AFINN, an ANFIS model has been also developed to classify 

AIR/MAP samples. Under the same training conditions, ANFIS performed very satisfactory, 

its performance however was achieved with a relatively computational cost, utilising 32 fuzzy 

rules, using two membership functions for each input variable. An overall classification 

accuracy of 93.75% resulted in 7 misclassifications. In addition to previously misclassified 

samples, new samples “4A0” and “4M0” were also failed to be identified. These samples 

correspond to AIR and MAP samples stored at 0oC, collected after 138h of storage 

respectively. 

 
5.5.2 Temperature Identification Model 
 
The changes in microbial flora of fresh minced meat has been monitored at different storage 

temperatures (0 to 15°C) under aerobic and MAP conditions. Results from microbiological 

analysis, revealed that changes in Total Viable Counts follow temperature changes during 

storage and thus, temperature could be considered as a good indicator for meat spoilage.  

However, the knowledge of storage temperature is not always available, thus this issue could 

be considered as an obstacle for production line use.  
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The motivation for this research study derives from the aim to predict, for the first time, 

directly the storage temperature by utilising only multispectral information. Such non-

invasive temperature “measurement” could be then utilised for the prediction of TVC and 

XLD levels. 
 

 

Temp 
(AIR/MAP) 

 

Predicted class (AFINN) 
Row 

 Total 
Sensitivity 
Total (%) 

 AIR MAP  
 0 °C 5 °C 10 °C 15 °C 0 °C 5 °C 10 °C 15 °C   

0 °C 13  1  13  1  28 92.85 
5 °C  13 1   13 1  28 92.85 

10 °C  1 13    14  28 96.43 
15 °C   1 13   1 13 28 92.85 

Column total (
jn ) 13 14 16 13 13 13 17 13 112  

Specificity (%) 100 92.85 81.25 100 100 100 82.35 100  

Overall correct classification (accuracy): (AIR: 92.85%, MAP: 94.64%)     93.75% 

 
Table 5.3 Confusion matrix for temperature using AFINN model 

 
The accuracy acquired by an AFINN model for the temperature prediction was 93.75% and is 

presented in the form of a confusion matrix in Table 5.3 Seven minced meat samples were not 

identified properly. These include the aerobic “1A0”, “1A5”, “5A10”, “1A15” and the MAP 

“1M0”, “1M5”, “1M15” samples. The “1A0”, “1A5”, “1A15” cases correspond to AIR 

samples stored at 0oC, 5oC and 15oC respectively and collected immediately (0h of storage). 

The case “5A10” corresponds to an AIR sample stored at 10oC and collected at 48h. 

Similarly, “1M0”, “1M5”, “1M15” cases correspond to MAP samples stored at 0oC, 5oC and 

15oC respectively and collected immediately (0h of storage).  

An ANFIS model has been also developed to predict temperature levels. An overall 

classification accuracy of 92.85% resulted in 8 misclassifications, as clearly shown in Table 

5.4. In addition to the misclassified samples, which were collected immediately (0h of 

storage), new samples “9M5” and “13M5” were also failed to be identified. These cases 

correspond to MAP samples both stored at 5oC, but collected at 282h and 378h respectively. 

Additionally, an MLP network has been implemented using the same conditions using two 

hidden layers (with 24 and 12 nodes respectively). Due to the usage of gradient descent 

learning algorithm, 20,000 epochs were applied, resulting thus a rather slow training 

procedure. The prediction accuracy obtained from MLP was inferior to those achieved by 

both AFINN and ANFIS, with an overall rate of 90.17%. 
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Temp 
(AIR/MAP) 

Predicted class (ANFIS) 
Row 
Total 

Sensitivity 
ANFIS 

(%) 

Sensitivity 
MLP (%) 

 AIR MAP   
 0°C 5 °C 10 °C 15 °C 0 °C 5 °C 10 °C 15 °C    

0 °C 13  1  13  1  28 92.85 89.28 
5 °C  13 1  2 11 1  28 85.71 89.28 

10 °C   14    14  28 100 89.28 
15 °C   1 13   1 13 28 92.85 92.85 

Column total (
jn ) 13 13 17 13 15 11 17 13 112   

Specificity (%) 100 100 82.35 100 86.66 100 82.35 100   
Overall correct classification (accuracy)  - ANFIS: (AIR: 94.64%, MAP: 91.07%)     92.85% 
Overall correct classification (accuracy)  - MLP:    (AIR: 91.07%, MAP: 89.28%)     90.17% 

 

 

Table 5.4 Confusion matrix for temperature using ANFIS / MLP models 
 
 

5.5.3 Total Viable Counts Identification Model 
 

AFINN models have been also constructed for TVC prediction for both Aerobic and MAP 

cases [135]. For each case, two simulation studies were carried out.  

 

 

Fig. 5.10  AFINN prediction model for TVC (AIR case- all inputs) 

 

5.5.3.1 AIR Case 
	
In the first study, AFINN’s input vector consisted of the five PCs extracted from the RPCA 

algorithm, as well as the sampling time and temperature information, while in the second 

study only the extracted PCs were considered as input variables. The number of rules used in 

these networks was 34 and 22 for each study respectively.   

 



94 
 

 

Fig. 5.11 AFINN prediction model for TVC (AIR case- RPCA inputs) 

Results revealed that the identification accuracy of the AFINN model was very satisfactory in 

the prediction of TVCs for the AIR dataset, indicating the advantage of this approach in 

tackling nonlinear problems, such as meat spoilage. The plot of predicted vs. observed TVCs 

is illustrated in Fig. 5.10, and shows a very good distribution around the line of equity; with 

almost all the data included within the ±0.5 log unit area. Based on Fig. 5.10, the 

“7A5”pattern that corresponds to a minced beef sample stored at 5oC and collected after 234h 

of storage was placed outside the specified area. 

 

TVC – AIR case  (LOOCV) 
PCA inputs, time, temperature 

 
 

 
Mathematical 

Expression 

 

Temperatures (AFINN) 

Total 

AFINN 

Total 

AFINN 

(46/10) 

 P= the predicted values 
O= observed values 

n = number of observations 0 °C 5 °C 10 °C 15 °C   

Mean squared error (MSE) 
 ( )2

1

1 n

i

P O
n =

−∑  0.0304 0.0599 0.0064 0.0153 0.028 0.1335 

Root mean squared error (RMSE) ( )2O P

n

−∑  0.1745 0.2447 0.0797 0.1238 0.1673 0.3654 

Mean relative percentage residual 
(MRPR %) 

  

100
n

× (O− P)
O∑  0.5465 -0.787 0.1028 0.5387 0.1003 -1.5921 

Mean absolute percentage residual 
(MAPR %) 

  

100
n

×
O− P

O∑  1.6684 2.1346 0.7659 0.9869 1.3889 3.3159 

Bias factor (Bf)   10
log P

O( ) n∑  
0.9943 1.0075 0.9989 0.9945 0.9988 1.0152 

Accuracy factor (Af) 
  10

log P
O( ) n∑

 
1.0169 1.0216 1.0077 1.0100 1.014 1.0332 

Standard error of prediction (SEP %) 
( )2100 O P

O n

−∑  2.1274 2.9941 1.0124 1.4728 2.0498 4.1566 

 

Table 5.5  Statistical performance for AIR case (all inputs) 
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The performance of the AFINN model to predict TVCs in minced beef samples in terms of 

statistical indices is presented in Table 5.5. The RMSE values of the model were very low for 

testing samples, with an overall indicator of 0.1673. The accuracy factor , which indicates 

the spread of results about the prediction, reveal that predicted total viable counts were 1.4% 

above from the observed values for meat samples. The mean relative percentage residual 

index (MRPR) verified the overall under-prediction for samples (MRPR > 0). Finally, the 

standard error of prediction (SEP) index was 2.049 % for the overall samples indicating a 

good performance of the network for microbial count predictions.  

In order to investigate further the capabilities of AFINN model for this specific identification 

problem, a second experiment was carried out, where the initial multi-AIR dataset was 

divided into a training subset with approx. 82% of the data and a testing subset with the 

remaining 18% (i.e. 10 samples). The performance of the AFINN model to predict TVCs in 

minced beef samples for this second experiment, in terms of statistical indices is also 

presented in Table 5.5. Based on the new calculated values of the bias factor , it can be 

assumed that model has over-estimated (  >1) microbial population. However, a closer 

comparison of AFINN’s performance at these two experiments reveals a problem with the 

limited number of samples for training. The SEP index is worse in this second case, and this 

reflects an open problem in learning-based systems, i.e. the need to have as large as possible 

training datasets.   

 

TVC – AIR case  (LOOCV) 
PCA inputs, time, temperature 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

     

Mean squared error (MSE) 0.0579 0.0744 0.0909 0.9022 

Root mean squared error (RMSE) 0.2406 0.2727 0.3015 0.9498 

Mean relative percentage residual (MRPR %) -0.2408 -0.486 -0.2166 -2.396 

Mean absolute percentage residual (MAPR %) 2.4768 3.0725 3.3923 11.263 

Bias factor (Bf) 1.0019 1.0041 1.0010 1.0109 

Accuracy factor (Af) 1.0250 1.0310 1.0342 1.1105 

Standard error of prediction (SEP %) 2.9479 3.3412 3.6938 11.6366 

                        
                       Table 5.6 Statistical performances for AIR case (all inputs- comparison) 
 
An ANFIS and MLP models have been developed to predict TVCs utilising the same training 

conditions. ANFIS model performed very satisfactory, as shown in Table 5.6, its performance 

however was achieved with a high computational cost, utilising 128 fuzzy rules and 

subsequently a large number of consequent parameters. After a few trials, the MLP was 

constructed with two hidden layers (with 12 and 10 nodes respectively) and one output node 

for the TVC prediction.  

fA

fB

fB
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The performance of the MLP network in predicting TVC in meat samples in terms of 

statistical indices is also presented in Table 5.6 Although both AFINN and ANFIS share the 

same TSK-style architecture, the clustering component allowed AFINN to achieve a superior 

performance. On the other hand, the localisation spread through the membership functions, is 

one advantage of ANFIS and AFINN models against the classic MLP structure.  

In addition to these computational intelligence structures, partial least squares (PLS) and 

nonlinear regression schemes have been applied to the same dataset, in order reveal the 

advantage of advanced learning-based methods. The PLS model was constructed using the 

same input vector as in the cases of AFINN, and the PLS_Toolbox software (ver. 8.0, 

Eigenvector.com) in association with MATLAB was used to perform the PLS analysis. The 

SIMPLS algorithm has been chosen as the appropriate optimisation scheme [136]. The 

algorithm calculates the PLS factors directly as linear combinations of the original variables. 

These factors are determined such as to maximize a covariance criterion, while obeying 

certain orthogonality and normalization restrictions. The optimal number for latent variables 

was set to 7.  The following PLS model is associated with this specific case study.  
 

1  6.63310 0.00555* 1 0.07886 * 2 0.00677 * 3 0.05901* 4

        0.14028* 5 0.06439 * 6 0.11419 * 7

Y X X X X
X X X

= + + − +

+ + +       
  (5.21) 

where X1 represents the sampling time, X2 the temperature, and the remaining Xi inputs the 

five PCs from the RPCA scheme. Nonlinear regression is often used to model complex 

phenomena, which cannot be handled by the linear model. The XLSTAT (v. 2015.2) software 

provides such capability through the use of nonlinear regression (NLR) modelling using the 

nonlinear iterative partial least squares (NIPALS) algorithm. For this specific case, the 

following 4th order model has been constructed using XLSTAT and achieved a remarkable 

performance compared to PLS scheme. Its performance could be easily compared to MLP’s 

results.  

2 2 2 2 2

2 2 3

1 4.96194 0.05334* 1 0.33833* 2 0.00504* 3 0.00893* 4 0.11732* 5 0.00651* 6

    0.11490* 7 0.00026* 1 0.07909* 2 0.00127 * 3 0.00079* 4 0.01233* 5

0.02901* 6 0.27772* 7 6.03629 7 * 1 0.003    

Y X X X X X X

X X X X X X

X X E X

= + − − + + +

− − + − + −

− + + − − 3 3 3

3 3 3 4 4

4 4 4 4

44* 2 5.67724 6* 3 0.00001* 4

0.00074* 5 0.00156* 6 0.03664* 7 5.13162 10* 1 7.81010 7 * 3

1.47147 6* 4 0.00006* 5 0.00025* 6 0.04060* 7

    
    

X E X X

X X X E X E X

E X X X X

− − +

− + + − − + −

− − + + −   

(5.22) 

 

Statistical information for both NLR and PLS models is illustrated at Table 5.6. However, 

such performance from PLS scheme was expected, as it is well known that linear PLS has 

some difficulties in its practical applications since most real problems are inherently 

nonlinear. 
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TVC – AIR case  
(LOOCV) 

PCA inputs 
Temperatures (AFINN) 

Total 
AFINN 

Total 
ANFIS 

Total 
MLP 

Total 
NLR 

Total 
PLS 

 0 °C 5 °C 10 °C 15 °C      
Mean squared error (MSE) 0.0399 0.0607 0.0535 0.3661 0.1301 0.1989 0.2564 0.3004 1.1807 
Root mean squared error 

(RMSE) 
0.1998 0.2463 0.2314 0.6051 0.3606 0.446 0.5063 0.5481 1.0866 

Mean relative percentage 
residual (MRPR %) 

-0.755 -2.208 -1.139 2.0953 -0.5018 -0.6087 0.1852 0.7906 -3.0959 

Mean absolute percentage 
residual (MAPR %) 

2.3601 3.0684 2.7021 3.6667 2.9493 4.3986 5.2674 5.5568 12.8970 

Bias factor (Bf) 1.0070 1.0210 1.0104 0.9739 1.0029 1.0032 0.998 1.0046 1.0127 
Accuracy factor (Af) 1.0237 1.0299 1.0267 1.0426 1.0307 1.0455 1.0548 1.0567 1.1245 

Standard error of prediction 
(SEP %) 

2.4369 3.0141 2.9399 7.1969 4.4182 5.4645 6.2031 6.7148 13.3119 
 

 
Table 5.7 Statistical performance for AIR case (PCA inputs) 

 
For the second simulation study, the input vector was consisted of the five only PCs extracted 

from the RPCA algorithm. The plot of predicted vs. observed TVCs is illustrated in Fig. 5.11, 

and shows a good distribution around the line of equity. The comparison of Fig. 5.10 with the 

related Fig. 5.11 is more than evident. One sample, the “2A15”, is clearly outside the border 

line of the ±0.5 log unit area and it is associated to a meat sample stored at 15oC and collected 

after 12h of storage. Three samples (i.e. “2A10”, “2A5”, “4A10”) are however in the border 

line of the ±0.5 log unit area. “2A5” corresponds to a minced beef, stored at 5oC and collected 

after 42h of storage, while “2A10” and “4A10” were stored at 10oC and collected after 12h 

and 36h of storage respectively. The performance of the AFINN model to predict TVCs in 

minced beef samples for this second simulation, in terms of statistical indices is presented in 

Table 5.7. Based on the calculated values, undoubtedly the SEP index is worse in this second 

scenario, and this is mainly explained by the absence of the sampling time of meat samples 

from the input vector. There is an open problem of incorporating the time into the spectral 

information, which could be investigated in a future research. AFINN’s performance is still 

however superior to other applied models, especially against PLS which is considered as a 

standard modelling tool in food microbiology. 
 

5.5.3.2 MAP Case 
 

An important advancement in food packaging techniques is the development of Modified 

Atmosphere Packaging (MAP). Modified atmospheric packaged foods have become 

increasingly more available, as food manufactures are interested for foods with extended shelf 

life. In addition to aerobic TVCs prediction, AFINN models have been also applied for 

minced beef samples packaged under modified atmosphere conditions.  
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Fig. 5.12  AFINN prediction model for TVC (MAP case- all inputs) 

 

The plot of predicted vs. observed TVCs for MAP spectra is illustrated in Fig 5.12, and shows 

a good distribution around the line of equity, with almost all the data included within the ±0.5 

log unit area, only for the case where additional features (i.e. sampling time, temperature) 

were included as input variables. Based on Fig 5.12, “2M15” and “14M5” patterns were 

clearly outside the borderline. “2M15” corresponds to a minced beef sample stored at 15oC 

and collected after 12h of storage, while “14M5” corresponds to a sample stored at 5oC and 

collected after 479.5h of storage. Three samples (i.e. “10M15”, “12M5”, “7M0”) were 

however in the border line of the ±0.5 log unit area. “10M15” corresponds to a minced beef, 

stored at 15oC and collected after 108h of storage, while “12M5” was stored at 5oC and 

collected after 354h. Finally, meat sample “7M0” corresponds to a minced beef, stored at 0oC 

and collected after 234h of storage.  
 

Statistical index – MAP case  (LOOCV) 
PCA inputs, time, temperature 

Temperatures (AFINN) 
Total 

AFINN 

Total 

AFINN 

(46/10) 

 0 °C 5 °C 10 °C 15 °C   

Mean squared error (MSE) 0.046 0.0668 0.0163 0.0693 0.0496 0.0960 

Root mean squared error (RMSE) 0.214 0.2585 0.1276 0.2632 0.2227 0.3098 

Mean relative percentage residual (MRPR %) -0.021 0.2853 -0.057 -0.890 -0.1708 1.7648 

Mean absolute percentage residual (MAPR %) 2.446 2.7323 1.7543 3.4124 2.5863 3.5787 

Bias factor (Bf) 0.999 0.9964 1.0002 1.0068 1.0008 0.9779 

Accuracy factor (Af) 1.025 1.0277 1.0178 1.0331 1.0258 1.0372 

Standard error of prediction (SEP %) 3.362 3.7002 2.0716 3.8460 3.3784 4.2436 

 
Table 5.8 Statistical performance for MAP case (all inputs) 



99 
 

 
The performance of the AFINN model to predict TVCs in minced beef samples for the MAP 

case, in terms of statistical indices is presented in Table 5.8.  The RMSE values of the AFINN 

model were very low, with an overall indicator of 0.22. A SEP value of 3.38% was calculated 

for this specific study, which is however higher compared to the equivalent achieved SEP 

index for the AIR samples. 

Overall, a comparison against AFINN’s performance for AIR case, reveal an increased level 

of difficulty in predicting TVCs for samples packaged in MAP conditions. Similarly to the 

AIR case, an experiment was carried out, where the initial multi-MAP dataset was divided 

into a training subset with approx. 82% of the data and a testing subset with the remaining 

18% (i.e. 10 samples). The performance of the AFINN model to predict TVCs for this 

experiment, in terms of statistical indices is also presented in Table 5.8. Based on the new 

calculated values of the bias factor fB , it can be assumed that model has under-estimated ( fB

< 1) microbial population, while the SEP index was increased to 4.24%. Furthermore, an 

ANFIS and MLP model have been developed to predict TVCs for the MAP case.  

Similarly to the previous aerobic case study, both ANFIS and MLP performed very 

satisfactory, as shown in Table 5.9, MLP’s performance however was achieved with a 

computational cost, by utilising two hidden layers (with 18 and 12 nodes respectively), while 

ANFIS model utilised 128 fuzzy rules. In addition to these learning-based structures, PLS and 

NLR schemes have been also applied to the same dataset. 

 

Statistical index – MAP case  (LOOCV) 
PCA inputs, time, temperature 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

     

Mean squared error (MSE) 0.0707 0.1103 0.181 1.0268 

Root mean squared error (RMSE) 0.266 0.3321 0.4254 1.0133 

Mean relative percentage residual (MRPR %) -0.2573 0.3622 0.6577 -3.5658 

Mean absolute percentage residual (MAPR %) 3.4666 4.2612 5.5206 15.3059 

Bias factor (Bf) 1.0012 1.0015 1.0027 1.0172 

Accuracy factor (Af) 1.0349 1.0428 1.0559 1.1548 

Standard error of prediction (SEP %) 4.0351 5.038 6.4542 15.3741 

 
Table 5.9 Statistical performance for MAP case (all inputs- comparison) 

  

The following PLS regression model is associated with this MAP dataset 

          

1  5.01285 0.00516 * 1 0.08757 * 2 0.01390 * 3 0.07088* 4

       0.03170 * 5 0.01656 * 6 0.00409 * 7

Y X X X X
X X X

= + + + +

− + +
    (5.23) 

For this specific case, the following 5th order NLR model has been also constructed using 

XLSTAT 2015 and the results are also summarised at Table 5.9. 
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Y1= 2.69484 + 0.02708* X1− 0.03163* X 2 − 0.03285* X 3+ 0.09362 * X 4 − 0.02093* X5+ 0.10341* X 6

      + 0.27366 * X 7 + 0.00010 * X12 + 0.02910 * X 22 + 0.00084 * X 32 − 0.00448* X 42 + 0.01279 * X52

     − 0.00246 * X 62 − 0.24896 * X 72 −1.14461E − 6 * X13 − 0.00138* X 23 + 0.00008* X 33 − 0.00050 * X 43

     + 0.00020 * X53 − 0.00723* X 63 − 0.12594 * X 73 + 2.94030E − 9 * X14 − 4.93287E − 7 * X 34 + 0.00005* X 44

     − 0.00009 * X54 − 0.00006 * X 64 + 0.04442 * X 74 − 3.61721E − 8* X 35 −1.43622E − 6 * X 45 − 2.69827E − 6 * X55

  

(5.24) 

The AFINN model was also tested with the reduced input vector for this MAP study. The plot 

of predicted vs. observed TVCs is illustrated in Fig 5.13, and shows a distribution around the 

line of equity, with eleven samples placed however outside the ±0.5 log unit area. This 

specific plot, compared with the equivalent for aerobic case, reveals the difficulty in 

predicting correctly meat samples under MAP conditions. Five patterns (i.e. “2M15”, 

“4M15”, “5M15”, “7M15”, “11M15”) were associated to meat samples stored at 15oC and 

collected after 12h, 36h, 48h, 72h and 120h respectively. Three patterns (i.e. “4M5”, “9M5”, 

“13M5”) were associated to meat samples stored at 5oC and collected after 138h, 282h and 

378h respectively. Two patterns (i.e. “4M0”, “8M0”) were associated to meat samples stored 

at 0oC and collected after 138h and 258h respectively. Finally, one pattern, “4M10”, was 

associated to meat samples stored at 10oC and collected after 36h of storage.  

 

 

Fig 5.13 AFINN prediction model for TVC (MAP case- RPCA inputs) 
 

The performance of AFINN model to predict TVCs in minced beef samples for this MAP 

case study, in terms of statistical indices is presented in Table 5.10. The sole use of PCs in the 

input vector resulted in a severe deterioration of the prediction accuracy, as clearly shown by 

all statistical indices. Table 5.10, however, reveals an additional important issue. Both 

neurofuzzy schemes (i.e. AFINN and ANFIS) managed to keep their SEP index below to 

10%, while in the same time, the MLP neural network achieved a not satisfactory prediction 
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performance. In fact, MLP’s performance could be comparable to the one achieved by the 

NLR scheme which has been also applied to the same dataset.  

 

TVC MAP case 
(LOOCV) - PCA inputs 

Temperatures (AFINN case) 
Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.1287 0.1919 0.1062 0.3223 0.1873 0.3374 0.5844 0.7543 1.4963 
Root mean squared error 

(RMSE) 
0.3587 0.4380 0.3260 0.5677 0.4327 0.5808 0.7644 0.8685 1.2232 

Mean relative percentage 
residual (MRPR %) 

0.0436 1.5998 1.0274 -2.998 -0.4913 -1.2785 -2.8391 -2.6597 -4.9347 

Mean absolute percentage 
residual (MAPR %) 

4.3587 4.3702 4.2935 7.6113 5.1584 7.0959 10.5108 11.9987 18.8424 

Bias factor (Bf) 1.0147 0.9825 0.9880 1.0243 1.0022 1.0058 1.0183 1.0131 1.0234 

Accuracy factor (Af) 1.0439 1.0456 1.0446 1.0748 1.0522 1.0692 1.1088 1.1211 1.1912 

Standard error of prediction 
(SEP %) 

5.6239 6.2704 5.2939 8.2961 6.5656 8.8126 11.5981 13.1766 18.5589 
 

 
Table 5.10 Statistical performance for MAP case (PCA inputs) 

 

5.5.4 Salmonella Identification Model 
	
Finally, two AFINN models have been developed for the prediction of growth levels of 

Salmonella (XLD) for both AIR and MAP conditions. The number of rules created by the 

clustering unit in these two AFINN networks was 28 and 32 for AIR and MAP cases 

respectively. Results revealed that the accuracy of the AFINN model was very satisfactory in 

the prediction of XLD for the AIR dataset 
 

 

Fig. 5.14 AFINN prediction model for XLD (AIR case- all inputs) 
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The plot of predicted vs. observed XLD is illustrated in Fig. 5.14, and shows a very good 

distribution around the line of equity; with all the data included within the ±0.5 log unit area. 

Based on Fig. 5.14, an excellent fitting has been achieved for the minced samples stored at 

15oC and 10oC. This can be also verified through the statistical indices, which are presented in 

Table 5.11. 

 

XLD - Statistical index 
AIR case  (LOOCV) 

PCA inputs, time, temperature 
Temperatures (AFINN) 

Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

 0 °C 5 °C 10 °C 15 °C    

Mean squared error (MSE) 0.0162 0.0476 0.0116 0.0260 0.025 0.0430 0.0644 

Root mean squared error (RMSE) 0.1273 0.2183 0.1076 0.1612 0.159 0.2072 0.2539 

Mean relative percentage residual 
(MRPR %) 

2.4355 -1.029 -1.1968 -0.1493 0.015 -0.1971 -0.7459 

Mean absolute percentage residual 
(MAPR %) 

4.4350 7.2118 2.5285 2.6404 4.204 5.6081 5.8530 

Bias factor (Bf) 0.9742 1.0064 1.0114 1.0003 0.998 0.9992 1.0030 

Accuracy factor (Af) 1.0462 1.0736 1.0251 1.0265 1.043 1.0577 1.0607 

Standard error of prediction (SEP %) 5.5684 8.9097 3.2613 2.6359 4.501 5.8586 7.1760 

 
Table 5.11 Statistical performance for AIR case (XLD case) 

 
Based on the calculated values, the SEP index is very low for these temperatures, while the 

overall SEP value is considered as acceptable for this specific problem, taking into account 

the XLD growth graphs at Fig. 5.14. Furthermore, ANFIS and MLP models have been 

developed to predict XLD for the aerobic case. Similarly to the previous aerobic case studies, 

both ANFIS and MLP performed very satisfactory, as shown in Table 5.11. 

 

 

Fig. 5.15 AFINN prediction model for XLD (MAP case- all inputs) 
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The prediction of salmonella growth levels under MAP conditions, proved to be less accurate 

from the equivalent AIR case, similarly to the previous TVC predictions. The plot of 

predicted vs. observed XLD is illustrated in Fig. 5.15 and shows a good distribution around 

the line of equity, with all the data, except one, included within the ±0.5 log unit area. Based 

on Fig. 5.15, an excellent fitting has been achieved for the minced samples stored at 15oC.  

 
XLD - Statistical index 
MAP case  (LOOCV) 

PCA inputs, time, temperature 
Temperatures (AFINN) 

Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

 0 °C 5 °C 10 °C 15 °C    

Mean squared error (MSE) 0.0327 0.0367 0.1267 0.0020 0.0495 0.0661 0.1054 

Root mean squared error (RMSE) 0.1808 0.1917 0.3560 0.0449 0.2226 0.2571 0.3247 

Mean relative percentage residual 
(MRPR %) 

-0.477 -3.272 2.5640 -0.430 -0.4041 -1.076 0.2048 

Mean absolute percentage residual 
(MAPR %) 

4.9747 4.8535 8.2098 0.7047 4.6857 6.0833 7.9474 

Bias factor (Bf) 1.0029 1.0305 0.9692 1.0042 1.0015 1.0071 0.9948 

Accuracy factor (Af) 1.0509 1.0473 1.0884 1.0070 1.048 1.0624 1.0814 

Standard error of prediction (SEP %) 6.4911 7.3320 10.741 0.8298 6.3018 7.2788 9.1919 

 
Table 5.12 Statistical performance for MAP case (XLD case) 

 
The performance of the AFINN model to predict XLD in minced beef samples for this MAP 

case study, in terms of statistical indices is presented in Table 5.12. ANFIS model’s 

performance was very satisfactory, achieving a comparable to AFINN’s SEP prediction. 

Although MLP and PLS schemes have already been applied to similar multispectral / 

hyperspectral studies, the exploitation of neurofuzzy models for this specific imaging related 

application is completely novel, according to existing research/literature. Overall prediction 

for TVC and XLD cases has been considered as very satisfactory, although lower 

performance was observed especially for the MAP cases. ANFIS’s prediction performance 

appeared to be comparable to AFINN’s case; however such results were achieved with huge 

expensive computational cost. Prediction performances of MLP, and PLS schemes revealed 

the deficiencies of these systems which have been used extensively in the area of Food 

Microbiology. 
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Chapter Six 
 

SHORT-TERM ELECTRICITY PRICE 
FORECASTING USING ASYMMETRIC FUZZY 

NEURAL NETWORKS 
 

6.1 Introduction 
	
Electricity, due to its nature, is difficult to store and thus, unlike other commercial products, it 

is not possible under normal operating conditions to keep it in stock or have customers queue 

for it. Additionally, power demand and supply change continuously. Hence, it is desirable for 

a controlling agency, such as a transmission system operator, to coordinate the dispatch of 

generating units to meet the expected demand of the system [137].  

In the past, the centralized regulation of the electricity supply industry was considered as the 

best practice to guarantee security of power supply and efficient production. The power sector 

at that time was characterized by a highly vertically integrated market structure with very 

small degree of competition. However, during the last two decades, the structure of the 

electricity business has been transformed dramatically worldwide. Deregulated, competitive 

markets, where consumers have the choice to select their provider, had replaced the initial 

monopolistic situation. To enable trading in these new markets, exchanges and pools for 

electric power have been organized. Everything from real-time and spot contracts to 

derivatives, such as forward, future and option contracts, are traded [138].  

An independent system operator (ISO) manages businesses in the electricity market. By 

managing various bids and offers, ISOs can obtain market trading knowledge, which is used 

to keep the system balance. In any electricity market, power and energy are considered 

commodities. Power is the rate of the transferred electric energy and is measured in 

megawatts (MW), while electrical energy is the energy generated by flows of electric charges 

and is measured in megawatt-hours (MWh). Transmission congestion and electricity 

derivative markets are developed in major electricity operators trading by virtue of the 

restructuring of electric power systems. Such restructuring, these days, is being developed in 

parallel with similar restructuring of natural gas markets. Modern deregulated electricity 

markets are generally follow day-ahead and real-time settings. In day-ahead electricity 

markets, demand bids and generation offers determine the electricity price of the next 

operating day, while in the latter case, five-minute-interval electricity prices are calculated 
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based on the grid operating condition. The Electricity Market Clearing price (MCP) 

commonly indicates the day-ahead electricity market price. Such price is determined only 

when the electric market is in an equilibrium state (i.e. clear of shortage and surplus). When 

the electricity MCP is determined, every supplier, whose offering price is below or equal to 

the electricity MCP, will be picked up. To maintain market fairness, and avoid corruption, all 

picked-up supply offers will be paid the same (MCP), regardless the offered price [139]. 

Short-term forecasts of the electricity price and reserve energy are issued by an ISO. Upon the 

public availability of this forecast, electricity suppliers and/or large-size consumers can 

participate (either as supplying or purchasing) via a specific bid to the ISO. The ISO then 

accepts initially the lowest offered price and goes up to the higher prices subjected to 

consumer demand’s satisfaction. All approved suppliers are paid based on the last accepted 

offer (MCP). Hence, electricity price forecasting has become one of the most significant 

aspects in electricity market for trading and planning. As a result, many stakeholders are 

eager to invest time and money for the development of new algorithm for precise price 

prediction. This financial aspect has drawn great interest to research community, and has 

produced many significant research contributions in electricity price forecasting [140].  

Electricity price forecasting models can be classified based on horizon duration, mainly into 

three groups, Short-Term Price Forecasting (STPF), Medium-Term Price Forecasting (MTPF) 

and finally Long-Term Price Forecasting (LTPF) schemes. STPF scheme is important for a 

quick decision making process, so that markets can design their bidding strategy using this 

forecasted price in order to maximize their profit in such deregulated domain. In smart grid, 

consumer can decide on the level of load consumption based on the current and predicted 

near future price. STPF approach includes next hour and day-ahead price prediction schemes 

[141]. MTPF scheme includes prediction for next week, next month, up to one year. The 

performance of this specific scheme is affected by seasonal effects, such as rise in electricity 

price in summer due to higher load consumption and decline in winter. MTPF information 

can be used by suppliers to optimize their production cost by planning an efficient resource 

allocation for generation of electricity. Finally, LTPF horizon varies from couple of year to 

decades. Such models are used by policy makers to plan pricing schemes and management of 

resources, while investors utilise them for analysing recovery of investment in power plant 

construction, production, type of energy sources and transmission [142].   

Due to the importance of accurate price forecasting in volatile-style electricity market, a 

number of approaches have been explored in the literature. These approaches range from 

traditional time-series analysis to intelligent-based techniques for forecasting future prices.  

A number of research studies have been performed on electricity price forecasting using the 

Auto Regressive Integrated Moving Average (ARIMA) method [143]. Specifically, the 

ARIMA method has been modified to include error correction for the worse market 
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conditions with high price volatility [144]. Wavelets transform and ARIMA models have 

been combined and used to Spanish power markets in order to improve the accuracy of price 

forecasting [145]. A simpler version of ARIMA Auto Regressive (AR) models have been 

used in Norwegian system for forecasting weekly prices [146], while ARIMA models were 

also utilised in Californian power market (CAISO) for forecasting daily average prices, based 

on historical data [147].  

However, the utilisation of linear regression models in many cases, fails to capture the 

complicated nonlinear dynamic characteristics involved in electricity prices modelling.  Thus, 

the use of neural networks (NN) for electricity price forecasting has come up as an 

improvement to above mentioned techniques. To achieve profit in the energy market it is 

important to predict next-day price both for consumers as well as producers for planning of 

electric energy resources and for developing intercession skills. Szkuta et al. [148] have 

developed NN-based models for one-step-ahead price forecasting for Victoria State in 

Australia, utilising historical price, load and system reserve data. Multi-Layer Perceptron 

(MLP) and Radial Basis Function (RBF) NNs have been utilised to forecast the average on-

peak and average off-peak New England (ISONE) electricity market prices [149]. Ontario 

electricity market (IESO) forecasting performance was investigated through the usage of a 

MLP NN utilising two hidden layers [150]. Feature selection techniques and NNs have been 

combined to remove non-stationarity and time variance in price behaviour and this scheme 

has been verified on day-ahead forecasting of PJM electricity price market [151]. Recurrent 

NNs have been also used to eliminate complex and rough fluctuations in electricity price. An 

Elman recurrent NN has been used to forecast electricity prices with greater accuracy than 

MLP NNs. The specific methodology has been tested for robustness on the mainland Spain 

market data sample captured during winter week and summer weeks [152].  

As an alternative to NNs, Support Vector Machines (SVM) has grown in popularity as a data-

driven method. SVMs provide a non-linear mapping of the original data into high 

dimensional space. SVMs provide a global solution to a problem unlike MLPs which can 

operate within local minima of their objective function. This fact has been also recognized in 

many research studies related to the load and price forecasting area [153]. A two stage hybrid 

network of self-organized maps and SVM was explored for the ISONE electricity market 

[154], while improved forecasting results were also reported through the combination of 

Genetic algorithms with LSSVM (Least Square SVM) [155].  

One of the first applications of fuzzy logic to electricity price forecasting was performed by 

Hong [156], who utilized fuzzy c-means for classifying historical data into three clusters 

(peak, medium and off-peak), and then employed a recurrent network for forecasting. A 

traditional fuzzy inference system utilising historical prices and previous load demand on 

hourly basis, has been developed to predict Marginal Cost Prices  for private power vendors 
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in India [157]. The use of hybrid intelligent systems has been also investigated recently due to 

modelling advantages of such architectures. An adaptive-network-based fuzzy inference 

system (ANFIS) has been developed for electricity price forecasting, and results proved to be 

superior to equivalent MLP NN approaches [158]. A day-ahead market clearing price 

forecasting has been developed for the California Electricity Market through the usage of 

ANFIS [159]. Similarly, a wavelet neural network (WNN) has been also considered for short-

term wind speed forecasting and short-term electricity price forecasting. An improved cuckoo 

search (CS) algorithm was proposed for optimisation of the initial weights as well as the 

parameters of dilation and translation in WNN model [160].  

In this research, novel clustering-based neurofuzzy models are considered to compute the 

forecasted electricity prices in ISO New England market. In the majority of electricity price 

forecasting studies, especially for the hourly ahead forecasting case, only one model is 

usually utilized to forecast the next 24 hourly prices. However, it is a rather difficult task to 

associate all the characteristics of 24 different hourly prices by a single model. Thus, the 

model may become under-fitting for some hourly predictions, while at the same time it may 

become over-fitting for some others, which eventually leads to unsatisfactory results. An 

obvious disadvantage of such MIMO approach is related to the high complexity of the 

network structure (i.e. a system with 24 output nodes) in terms of training time and 

performance. Alternatively, a recurrent structure could provide similar characteristics, 

however in practice its performance would be deteriorated due to the feedback error 

accumulation. An alternative approach has been proposed in recent past [161] and it has been 

also adopted in this research. The core of the proposed modular forecasting system is the 24 

multi-input-single-output (MISO) modelling blocks. One of the advantages of the proposed 

modular system is its possible use also for long-range forecasting schemes.  

The proposed Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture 

has been designed based on the fulfilment of the following objectives  

• A NF model must have minimum possible number of rules 

• A NF model must be generic acting either as MISO or MIMO identification model 

• A NF model must have a versatile nonlinear membership function. 

Among existing neurofuzzy modelling techniques, the Takagi–Sugeno–Kang (TSK) model 

has attracted most attention [162]. This model consists of IF-THEN rules with fuzzy 

antecedents and linear functions in the consequent part. The fuzzy sets partition the input 

space into a number of fuzzy regions, while the consequent functions describe the system's 

behaviour in these regions. Clustering analysis is of great advantage as it not only defines the 

rules but also estimates the initial membership function parameters for the inputs 

simultaneously. Both TSK-based structure as well as the “clustering of fuzzy rules” concept 
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has been considered in the proposed AGFINN architecture. The Fuzzy C-Means (FCM) 

clustering has been applied as a pre-processing scheme to keep minimum number of fuzzy 

rules. Although a FCM algorithm has been currently integrated in the AGFINN framework, 

any other unsupervised clustering scheme can be also incorporated as a future work. It is well 

known that ANFIS scheme has issues with excessive number of rules. In the proposed 

scheme, the number of fuzzy memberships for each input variable is directly associated to the 

number of rules, hence, the “curse of dimensionality” problem is significantly reduced. In 

spite of the extensive use of the standard symmetric Gaussian membership functions, 

AGFINN utilizes an asymmetric function acting as input linguistic node. Since the 

asymmetric Gaussian membership function’s variability and flexibility are higher than the 

traditional one, it can partition input space more effectively [163]. AGFINN has been 

designed either as an MISO or MIMO system. In the MISO case, a TSK defuzzification 

scheme has been implemented. Two different learning algorithms have been adopted 

• Gradient Descent (GD) algorithm for both premise and consequent parameters 

• RLS algorithm for consequent and GD for premise parameters respectively 

For the MIMO case, a “centre average” (CA) defuzzifier has been used as defuzzification 

scheme while the GD algorithm was utilised as learning approach.  

In the following discussion and results sections, STPF results corresponding to hours with the 

maximum (22h) and minimum (4h) electricity prices are considered. The proposed modelling 

schemes are compared against AFLS, ANFIS, Wavelet network (WNN) and MLP NN 

modelling schemes in order to assess their prediction performance. Such comparison is 

considered as an essential practice, as we have to emphasise the need of induction to the area 

of power forecasting, advanced learning-based modelling schemes, which may have a 

significant potential for accurate assessment of electricity price prediction. Such an accurate 

assessment/prediction could allow an ISO operator to have a more efficient management of 

power supply. 
 

6.2 The STPF Case Problem 
	
ISO New England (ISONE) (http://www.iso-ne.com) is a not-for-profit independent 

corporation created in 1997 to carry out three primary tasks: to manage the daily operation of 

the regional power grid, to develop and oversee a market for wholesale electricity generation, 

and finally to ensure a reliable source of electricity to the New England region through 

system and market efficient planning. ISONE is the system operator for the six-state region of 

New England (i.e. Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, and 

most of Maine). A centralized approach to managing power flow, allows for scheduling 
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required plant maintenance without concern of insufficient peak period generation. In order to 

improve system reliability and to mitigate price volatility, ISONE manages Day-ahead and 

Forward capacity markets as a means to schedule efficiently future supply and demand 

requirements. On the supply side, ISONE can call upon generating units that range from small 

“peak-load” units, to medium-sized units used in the presence of a quick increase in demand, 

and to large base-load units that are online nearly continuously. In total, ISONE has control 

on over 350 electricity generators within the region as well as ties among neighbouring 

regional grids in New York, Quebec, and New Brunswick. New England has approximately 

30,500 MWs of installed electricity generating capacity and the power generation resource 

mix is transitioning from coal, oil, and nuclear power to natural gas and renewable energy. In 

total, ISONE serves 7.1 million retail electricity customers in a population of 14.7 million. 

Power demand is not constant, with high electricity peak of 28,000 MWs in the summer 

period, to smaller peak of 22,800MW in the winter.  

 

Hour Max Min Mean Median STD Coefficient of 
Variation 

1 82.93	 33.82	 51.39694521	 50.69	 8.508092838	 0.165536936	

2 79.89	 32	 53.5769589	 55.135	 9.811868548	 0.183135974	

3 75.7	 29.85	 50.38982192	 51.69	 9.376865197	 0.186086492	

4 64.99	 20.22	 45.42739726	 46.7	 9.134124929	 0.20107084	

5 106.55	 35.79	 59.43954795	 57.78	 13.66979665	 0.229978139	

6 92.41	 37.88	 59.72078082	 58.3	 9.678234207	 0.162058065	

7 78.37	 29.73	 57.64484932	 60.825	 10.88807959	 0.18888209	

8 161.79	 35.64	 87.09231507	 82.175	 24.11532545	 0.276893839	

9 166.93	 49.7	 112.7451918	 117.02	 20.79239258	 0.184419329	

10 169.31	 38.22	 86.92812329	 83.995	 21.99826678	 0.253062714	

11 96.75	 0	 59.91643836	 59.615	 10.81548758	 0.180509521	

12 105.24	 24.36	 53.78390411	 55.265	 13.18375994	 0.245124636	

13 217.43	 29	 65.62735616	 63.915	 23.73682855	 0.361691068	

14 109.06	 28.4	 64.8880411	 67.17	 14.59885589	 0.224985308	

15 146.46	 25.18	 63.23605479	 59.98	 18.76144335	 0.296689023	

16 111.89	 32.56	 70.46687671	 71.56	 14.10779615	 0.200204647	

17 118.1	 26.62	 63.02356164	 63.61	 15.35079884	 0.243572379	

 18 102.51	 29.36	 59.14246575	 59.355	 14.36492454	 0.242886805	

19 114.11	 30.1	 63.35526027	 63.86	 12.62266848	 0.199236313	

20 166.78	 35.55	 82.46321918	 78.675	 24.39192868	 0.295791614	

21 131.91	 57.08	 90.1630274	 91.02	 15.76953729	 0.174900264	

22 220.1	 60.83	 113.0527397	 109.96	 27.39522212	 0.242322496	

23 107.18	 40.46	 65.62654795	 66.545	 10.78044055	 0.164269505	
24 98.73	 35.23	 60.60347945	 59.655	 10.67550225	 0.176153289	

	

Table 6.1 Statistical indices of the ISONE dataset (2006-2007) 
 

In this work, the training/testing dataset was created from the hourly basis EP in the period 

2006-2007, starting from 1/1/2016 for 723 days. Both training and testing sets were organised 

into 24 time series, each one corresponding to a different hour of the day. More specifically, 
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600 data were allocated to training subset, while 123 data for the testing one. The data used 

for  case studies in chapter 6 are provided from a public database, found in the following link: 

https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/zone-info 
 

Table 6.1 illustrates some statistical characteristics of the hourly prices of the dataset. 

According to mean and median prices, it is noticeable that prices are low in early morning 

hours and from 05:00 there is a continuous increment until 09:00. After a short decline at 

10:00, a continuous increment is observed until 22:00. The coefficient of variation is an 

indication about the dispersion of values around the means. Low values correspond to low 

variability. The values vary between 0.16 and 0.36, with the majority of values around 0.20. 

This means that hourly values are characterized by a medium variability. 
 
 

	
Fig. 6.1 ISONE Electricity price time series corresponding to 4h 

 

	
Fig. 6.2 ISONE Electricity price time series corresponding to 22h 
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In the following result section, only values that correspond to hours with the maximum (22h) 

and minimum (4h) electricity prices are considered. The ISONE time-series for minimum and 

maximum electricity price are shown in Figs. 6.1 and 6.2 respectively. 

Electricity price forecasting is a nonlinear problem with many input variables, including past 

own values as well as past and forecasted values of any exogenous variables such as 

electricity consumption. To deal with this fact, three different models have been considered 

for this study, in order to extract conclusions about the most appropriate forecasting scheme 

in terms of input selection. In general, historical values of the parameter under study have 

been considered as input candidates for forecasting problems. In electricity price analysis, 

load factor has been considered as the most important external variable. Therefore, in this 

research, we assume that next day’s forecasted load is also available. There is a similarity 

between price and load parameters. While the load level rises, a constant increase of price is 

observed too.  

 

6.3 Asymmetric Neurofuzzy Model (AGFINN) 
 

In this section, the proposed Asymmetric Gaussian Fuzzy Inference Neural Network 

(AGFINN) concept is presented as an alternative neurofuzzy modelling approach. Initially, 

AGFINN has been implemented as a MIMO neurofuzzy (NF) network, which incorporates a 

clustering pre-processing stage. The architecture of the proposed scheme, shown in Fig 6.3, 

includes also a FCM clustering scheme for structural / initialization purposes.  

 

	

Fig. 6.3 Structure of AGFINN-CA System 
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In this MIMO configuration, AGFINN has been optimized through the gradient descent 

learning algorithm, while “centre average” (CA) defuzzifier has been used as defuzzification 

method. This technique is more efficient in terms of implementation compared to the 

traditional, for fuzzy logic systems, “centroid of area” approach [164]. 

 

	

Fig. 6.4 Structure of AGFINN-TSK System 

Many neurofuzzy schemes are following the TSK defuzzification style, where only one 

output is enabled (i.e. MISO configuration). ANFIS is a well-known representative of TSK-

based neurofuzzy systems. Generally, TSK-based models allow us to model nonlinear 

behaviour with relatively fast training speed. Thus, it would be also interesting to investigate 

a TSK-based version for AGFINN and explore any possible improvement against ANFIS. 

Similarly to previous AGFINN-CA scheme, the AGFINN-TSK has been built around five 

layers, utilising the same learning algorithm. The architecture for AGFINN-TSK is shown in 

Fig 6.4. The first three layers L1, L2 and L3 correspond to IF part of fuzzy rules whereas layer 

L5 contains information about THEN part of these rules and perform the	defuzzification task. 

In layer L4 a normalization process is performed for all rules derived from L3. 

	
6.3.1 FCM Clustering Algorithm 

	
Fuzzy C-Means (FCM) clustering is the most prominent fuzzy unsupervised clustering 

algorithm which is based on minimizing an objective function that represents the distance 

from any given data point to a cluster centre weighted by that data point’s membership value. 
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Given n data patterns, 1 2 nx ,x ,..., x , fuzzy clustering means partitioning the data patterns into c

clusters which centred at ic . The objective function for FCM is defined by 

c n
m 2
ij ij

i 1 j 1
d ,    1 i c

= =
µ ≤ ≤∑∑ 			 	 				 										(6.1) 

where ijµ  is the degree of membership of object j  in cluster i , m  is the weighting exponent 

varying in the range [ ]1,∞  and ijd  denotes the Euclidean distance between jx  and ic . The 

membership ijµ and the cluster centres 
  
!ci

r  are calculated by the following equations:  
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where 
  
!cr

i = [ci1,...,ciq ]  represents the multidimensional ic cluster vector and q  equals to the 

number of input variables. 

FCM clustering is an iterative procedure, which updates ic using the last iteration’s 

membership values. This algorithm moves objects between clusters until the objective 

function cannot be decreased further. The result is a set of clusters that are as compact and 

well separated as possible. In the present study, cluster centres have been utilized as initial 

values for the centres of Asymmetric Gaussian membership functions, while the number of 

If–THEN rules for AGFINN modelling is equal to the number of clusters obtained through 

FCM clustering approach. The spread values for each membership functionσ ij  are initialized 

according to  

  

σ ij = µik (xkj − cij )2

k=1

n

∑ µik
k=1

n

∑
⎛

⎝
⎜
⎜

⎞

⎠
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1
2
	 						 	 (6.4) 

These values are calculated based on the matrixU , where its elements correspond to the 

fuzzy memberships of input kx  in the thi  cluster and have centre values obtained again from 

FCM.  

 

6.3.2 Feed-forward Analysis of AGFINN 
	

The clustering algorithm provides the fuzzy c-partition of the sample data. This result helps 

us to generate the fuzzy rules base for AGFINN schemes. Fuzzy IF-THEN rules can be 

written in the following general form, based on the configuration: 
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	(6.5)	 						

where U  are fuzzy sets defined based on c-partition of learning data X and cR are the fuzzy 

normalised rules.  

The structure of AGFINN schemes is explained below layer by layer: 

Layer 1: This layer is simply the input layer. Nodes in this layer pass on the input signals 

1 2, ,..., nx x x  to L2. 

Layer 2: This layer is the fuzzification layer, and its nodes represent the fuzzy sets used in 

the antecedent parts of the fuzzy rules. A fuzzification node receives an input and determines 

the degree to which this input belongs to in the node’s fuzzy set. This Layer utilises an 

asymmetric Gaussian membership function (MF), which has the following general form  
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	 	 	 				(6.6)	

 

	
Fig. 6.5 Structure of Asymmetric MF 

From the above equation, it is obvious that the proposed MF utilizes two spreads, namely left
ijσ

and right
ijσ respectively. Both of these parameters transform the traditional “standard” Gaussian 
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function to a more asymmetric style, which can provide greater flexibility from the original 

one. A schematic of the proposed asymmetric MF is shown in Fig. 6.5. 

Due to the asymmetric nature of the MF, both spread initialisation and updates need to be 

modified from the “traditional way” gradient descent algorithm that is used to update standard 

Gaussian MFs. Following the FCM clustering stage, an initial value for spreads ( init
ijσ ) have 

been provided. However, AGFINN utilise two spreads, one located at the left of the initial 

centre parameter and one at the right. Initially, both spreads are initialised as
rightinit left

ij ij ij/ 2σ = σ = σ .  Thus, during the first iteration of the training process, the spread of any 

asymmetric MF will be equal to righttotal left
ij ij ijσ = σ +σ . Upon the arrival of any input variable 

from L1, there is a need to identify its position (either left or right) against the specific centre 

parameter for each MF. This is recorded via a specific MF index allocated for each MF. This 

index is then used in the backward phase to update that particular spread parameter, and is 

updated accordingly to any new input arrival from L1. During forward training phase, total
ijσ is 

used as the spread used in the Gaussian function which has the specific form 

  

Aij = exp − 1
2

xi − cij

bij

⎛

⎝
⎜

⎞

⎠
⎟

2⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
			 	 	 	 (6.7) 

where   
2bij =σ ij

total  , i  represent the number of MF/rules, while j  denotes the specific input 

variable. During the backward training phase, a new spread new
ijσ value is obtained via the GD 

learning method. Based on the information stored at that specific MF index, either the left or 

right is updated as left  or right new
ijij / 2σ = σ . For the next iteration step, in the forward training 

phase, the spread parameter will be equal again as righttotal left
ij ij ijσ = σ +σ , incorporating however 

the relative adjustment of one of its components. 

Layer 3: This layer is the firing strength calculation layer. Since each fuzzy rule’s antecedent 

part has AND connection operator, the firing strengths are calculated using the product T-

norm operator. The most commonly used fuzzy AND operations are intersection and 

algebraic product [165]. In this case, the multiplication has been used, and the output of this 

layer has the following form: 

	 	 ( )
n

i ji j
j

R A x=∏ 									 		 															 (6.8)	

The number of nodes, at this layer, is equal to the number of clusters, as it was defined by the 

clustering pre-processing step. 

Layer 4: This layer is the normalization layer. Each node in this layer calculates the 

normalized activation firing of each rule by:  
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The normalized activation firing is the ratio of the activation firing of a given combination to 

the sum of activation firings of all combinations. It represents the contribution of a given 

combination to the final result. 

Layer 5: This layer is related to the defuzzification /output part of the AGFINN. Each node at 

this layer combines the output of each node in L4 by algebraic sum operation after being 

multiplied by the output weight value of either jf  or ijw , based on the network’s 

configuration. Thus, the output has the following form 
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where 
 
f j = w j1x1 + ...+ w jnxn + w j(n+1)  represent the “consequent parameters” of the TSK-style 

defuzzification scheme.  

 

6.3.3 AGFINN Learning Phase  
	

The learning algorithms of AGFINN schemes involve the use of the gradient descent (GD) 

method to optimize the various network parameters for both AGFINN-CA and AGFINN-

TSK configurations. In addition, for the AGFINN-TSK scheme, a hybrid learning algorithm, 

which includes the use of recursive least squares method for the consequent parameters, has 

been also considered in this research. During, the backward “training” passes, the error 

signals are calculated from the output layer backward to the premise (i.e. membership) layers, 

and parameters at both defuzzification and fuzzification sections are fine-tuned. For each 

training pair ( , )x y , the system output iO is obtained by forward pass after feeding an input 

pattern into the network. Then the purpose of this learning phase is that, for a given thp

training data pair ( , )p px y , the parameters are adjusted so as to minimise the error function  
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where K is the number of outputs and kD  the desired response of the thk  output. Variable kO

is defined as in Eq. 6.10. According to the GD method, the weights in the defuzzification 

layer for the MIMO-CA scheme are updated by the following equation 
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where 1k =  and 1,2,..i c=  denote the number of outputs and normalisation units,  

respectively. The weights of the output units are updated according to the following equation 

  Wki(t +1)=Wki(t)+ηwΔWki 		 	 	 										(6.13) 
where wη  is the learning rate. For the AGFINN-TSK configuration, GD has been modified to 

address the parameters n1i i1 in i(n 1)f w x ... w x w += + + +  in the consequent linear part of the 

network. Thus, the chain rule is extended to 
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The ijc  and ijb  parameters of the asymmetric membership function are adjusted by the amount 
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components need to be calculated using the chain rule. 
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Analytically, the partial derivatives are defined as 
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6.3.3.1 AGFINN-TSK Hybrid Learning Scheme  

	
Since the training of NF systems usually involves intensive computation, they are often 

trained off-line using techniques such as the GD method. However, the convergence of the 

estimated parameters using this method is often slow, as it is derived mainly from the 

consideration of the convergence of the training algorithm, rather than the learning speed. 

TSK-based NF systems utilise a linear combination of weights and input variables in their 

defuzzification part, hence well-established linear parameter estimation algorithms can be 

used to estimate these “defuzzification” weights of the model [162]. Among them, least-

squares (LS) based algorithms provide a simple adaptive scheme which is capable of a fast 

convergence rate, good estimation accuracy and fast tracking ability to system parameter 

changes. In nonlinear models, that utilise LS methods, the system’s output can be written in 

the form of a regression model as TY =Φ θ, where Φ  is the called regressor and θ  represents 

the parameter vector.  
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The basic idea in LS estimation is to find parameters that minimise the square of the 

difference between the estimated and true nonlinear functions. While the batch version of LS 

method has proven to be very successful for a variety of applications, it is by its very nature a 

“batch” approach (i.e., all the data are gathered, then processing is done). For small number of 

patterns, we could easily apply the batch calculation for increasingly more data as they are 

gathered, but the computations can become prohibitive due to the computation of the inverse 

of TΦ Φ . Recursive version of the batch least squares method (RLS) will allow us to update 

our θ  estimate parameter vectors each time we get a new data pair, without using all the old 

data in the computation and without having to compute the inverse of TΦ Φ [166]. The system 

output of the AGFINN-TSK scheme, shown in Eq. 6.10, is re-formulated as: 

    ( )( )
( 1)

1 1

nc

jl lj
l j

O R Z w
+

= =
=∑∑                                     (6.21) 

where l  is the number of nodes at L4,  and Z  denote the number of input variables plus 1 (i.e. 

1 2, ,.. ,1nZ x x x⎡ ⎤⎣ ⎦= ). The consequent linear parameters are denoted as ijw .Let us denote, 

1 1 1 2 1 1 1 2 ,, ,..., , ,...., , ,...,n c c c n cR x R x R x R R x R x R x R⎡ ⎤
⎣ ⎦Φ =             (6.22) 

and 

11 12 1 1 21( 1) ( 1), ,..., , ,..., , ,..., ,cnn c cn c nw w w w w w w w+ +
⎡ ⎤
⎢ ⎥⎣ ⎦

θ=             (6.23) 

the vector parameters to be utilised in the RLS estimation method. With a new input sample

( )tΦ , and desired output value ( )d t , RLS procedure is summarised as: 

• Update the input history vector ( )tΦ  

• Compute the model output using the previous set of model linear coefficients ( 1)tθ −  

( ) ( ) ( 1)Ty t t t=Φ θ −              (6.24) 

• Compute the error 

( ) ( ) ( )e t d t y t= −                       (6.25) 

• Compute the gain vector 

( ) ( ) ( )K t P t t= Φ        (6.26) 

where 

            ( 1) ( ) ( ) ( 1)1( ) ( 1)
( ) ( 1) ( )

T

T
P t t t P tP t P t

t P t t
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− Φ Φ −= − −
λ λ+Φ − Φ

               (6.27) 

• Update the linear coefficients for the next  iteration 

( ) ( 1) ( ) ( )t t K t e tθ = θ − +     (6.28) 
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The value of weighting factor λ  is defined as the system memory, and affects the 

convergence and the ability of the method to track time-varying statistics in the input 

sequence. In this research, this parameter has been set constant to one. Initialisation of (0)P  

has been set as (0)P aI= for some large 0a > . All modelling schemes have been 

implemented in MATLAB (ver. R2016a, Mathworks.com). 
 

6.4 Results and Discussion 
	

In order to evaluate the proposed AGFINN NF models, utilizing either CA or TSK 

defuzzification schemes, various simulations were carried out based on the same ISONE 

datasets. Input variable selection is an extremely important issue for such investigation. 

Historical information of electricity prices and past load demand constitutes important inputs 

for predicting the electricity price. The output of electricity price can take several durations, 

namely hourly, daily and weekly forecasting. In our investigation, the proposed forecasting 

architecture has been based on an hourly-horizon plan. In all our models, only historical 

prices and forecasted demands have been chosen as appropriate input variables, while three 

case studies based on different input selection schemes have been considered for all used 

learning-based methods. A series of trials has been required to define the optimal 

configuration for the structure of each learning-based model, such as number of clusters, 

number of neurons at hidden layer, epochs, etc. To assess the forecasting performance of the 

all models, a number of error measures have been employed as assessment criteria. These 

include root mean square error (RMSE), mean absolute percentage error (MAPE), standard 

error of prediction (SEP), accuracy factor (Af), mean absolute error (MAE), Theil U1 statistic 

(U1), absolute percentage error (APE) and the coefficient of determination (R2) [167].  

The RMSE index depends on the scale of the dependent variable. It should be used as relative 

measure to compare forecasts for the same series across different models. The smaller the 

RMSE index is, the better the forecasting ability of that model. However, one potential 

problem associated with RMSE index is the fact that the forecast error variance varies across 

time, due to model’s nonlinearity. RMSE is defined as 

  
RMSE =

Om − Pm( )2

m=1

M

∑
M

 

The Absolute Percentage Error (APE) provides information about the errors dispersion 

around zero.   It is defined as  

  
APE =100×

Om − Pm
Omm=1

M

∑  
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The MAPE index provides information about the average deviation from the observed value. 

However, MAPE has been criticized for the problem of asymmetry and instability in cases 

when the original value is small. In general, MAPE index as an accuracy measure is affected 

with the presence of outliers, which may distort the comparisons in real case studies. MAPE 

is defined as 

  
MAPE = 100

M
×

Om − Pm
Omm=1

M

∑  

The MAE index is also relied on the scale of the dependent variable but it is less sensitive to 

large deviations than the usual squared loss. MAE is defined as 

1

1 M

m m
m

MAE O P
M =

= −∑  

The SEP index is determined as the relative deviation of the mean prediction values and it has 

the advantage of being independent on the magnitude of the measurements [164]. SEP is 

defined as 

( )2
1100 m m
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∑
 

The idea of introducing relative measures is to evaluate the performance of a forecast relative 

to that of a benchmark forecast. Measures may produce very big numbers due to outliers 

and/or inappropriate modelling, which in turn make the comparison of different forecasts not 

feasible or not reliable. Relative measures may eliminate the bias introduced by potential 

trends, seasonal components and outliers, provided that the benchmark forecast handles these 

issues appropriately. One of these relative measures is the Theil U1 coefficient. This Theil 

coefficient is scale invariant and it lies between zero and one. If U1 equals zero then we have a 

perfect fit. This index is defined as 
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R-squared (R2) is a statistical measure of how close the data are to the fitted regression line. It 

is also known as the coefficient of determination, or the coefficient of multiple determination 

for multiple regression. It measures the proportion of the variance in the dependent variable 

that is predictable from the independent variables. The higher the value ( 20 1R≤ ≤ ), the 

better is the prediction by the model [164].  
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This index is defined as 
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Results from AGFINN schemes are compared against models based on AFLS, ANFIS, 

Wavelet NNs (WNN) and Multilayer Neural Networks (MLP). Such comparison is 

considered as a essential test, as we have to emphasise the need of induction to the area of 

energy systems, advanced learning-based modelling schemes, which may have a significant 

potential for the accurate estimation of either load or price forecasting.   

 
 
6.4.1 Case Study 1 
	
The objective of this model is to examine a simple configuration, used by various researchers, 

where electricity prices at previous days and hours, as well as forecasted (for the targeted 

hour/day) load demand are utilized as input variables. Thus, for electricity price modelling for 

a specific hour (i) and day (j), the following five input variables have been considered:  

Target:  

• Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 

• Price(i, j-2): price at the ith hour on the (j-2)th day, 

• Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

• Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

• Load(i,j): electricity load at the ith hour on the jth day, 

This proposed input structure has been constructed based on the knowledge of the price at the 

(i,j-1) position as the main variable, while additional variables were selected from its direct 

“neighbourhood”. More specifically, prices on the same hour (i) at two previous days and 

prices on the same day (j-1) at two previous hours have been considered. In this case study, it 

is also assumed that the forecasted demand (i,j) is also available via a separate load 

forecasting model. Based on this configuration, AGFINN models have been involved in 

forecasting the maximum (22h) and minimum (4h) price respectively.  

AGFINN-RLS models produced best results. Their optimal structure included 20 fuzzy rules 

for the case of 22h, while 15 rules were adequate for the case of 4h. The combination of GD 

+RLS, as learning algorithms, resulted in a fast training process, as the training time was 

completed in less than 500 epochs.  
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Fig. 6.6 Forecasting Electricity Price at 22h  (Case Study 1) 

 

Fig. 6.7 Forecasting Electricity Price at 4h  (Case Study 1) 

Figs. 6.6 and 6.7 illustrate the testing performances for minimum (4h) and maximum (22h) 

electricity price forecasting using case study 1, for all simulated forecasting models, while 

Tables 6.2 and 6.3 summarise their statistical performances.  Viewing these two curves, we 

can conclude that AGFINN-RLS model fitting with historical price data managed to forecast 

the result very satisfactory. Although both curves have different dynamic characteristics, it is 

important to mention the existence of volatile price spikes mainly for 22h case. 

From the statistical tables, we can see the clear advantages of AGFINN-based models against 

other models implemented for this specific problem. Case Study 1 will be used as a 

benchmark for all implemented models for the next two case studies, where alternative input 

variable schemes would be presented. It is also important to mention the performance 

differences between AGFINN models. This is illustrated at Fig.6.8, where TSK-based 
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defuzzification structures surpasses CA configuration. In fact, AGFINN-CA’s performance 

could be considered to be close to AFLS’s one.  Based on these indices, AGFINN schemes 

achieved a very good performance, especially for the case of maximum price (i.e. 22h). In 

order to evaluate the goodness of the current performance of the proposed AGFINN schemes, 

a comparison against NN, WNN and neurofuzzy models that have been employed for the 

specific datasets has been carried out. More specifically, AGFINN schemes have been 

compared against a multilayer perceptron (MLP), wavelet NN and neurofuzzy (NF) ANFIS 

and AFLS systems.  

 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 3.1753 3.3783 4.0542 4.6194 7.5882 8.5394 10.4905 

APE 727.0175 862.1091 956.1771 1169.1 1675.5 1892.9 2627.2 

MAPE 5.9107 7.0090 7.7738 9.5050 13.6217 15.3897 21.3592 

MAE 2.4390 2.7909 3.3526 3.9456 6.1493 6.2892 8.1517 

SEP 7.1039 7.5578 9.0700 10.3345 16.9763 19.1044 23.4693 

U1 0.0344 0.0369 0.0433 0.0490 0.0779 0.0908 0.1158 

R2 0.9516 0.9395 0.9482 0.9325 0.9147 0.7252 0.1321 
	

Table 6.2 Statistical performance for Electricity Price Forecasting Models at 4h 
 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 7.2511 7.9028 8.1100 8.6060 10.3569 9.2798 12.8880 

APE 551.0082 619.7377 607.4207 671.4143 775.0515 755.1376 912.2255 

MAPE 4.4797 5.0385 4.9384 5.4587 6.3012 6.1393 7.4165 

MAE 5.5696 6.1820 6.3175 6.7172 8.1925 7.4155 9.8865 

SEP 5.9924 6.5310 6.7022 7.1122 8.5591 7.6690 10.6508 

U1 0.0293 0.0322 0.0332 0.0353 0.0430 0.0380 0.0539 

R2 0.9679 0.9671 0.9729 0.9664 0.9694 0.9639 0.9619 

	
Table 6.3 Statistical performance for Electricity Price Forecasting Models at 22h  

The “Adaptive Fuzzy Logic System” (AFLS) model is an advanced MIMO NF systems 

which includes the CA defuzzification scheme, while differs from conventional fuzzy rule-

table approaches that utilize the “look-up table” concept [164]. The AFLS scheme does not 

follow TSK’s architecture, as the number of memberships for each input variable is directly 

associated to the number of rules, hence, the “curse of dimensionality” problem is 

significantly reduced. The fuzzification component in AFLS is similar to AGFINN, with the 

exception of the FCM clustering step as well as the absence of asymmetric MFs. For this 
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specific case study, 25 fuzzy rules for the case of 22h, and 20 rules for the case of 4h were 

used as a final configuration.  

	

 
(a) 

	

 
(b) 

 
Fig. 6.8 Comparison of AGFINN-based models (Case Study 1) 

 
An MLP network was also constructed for this case study, using the same input vector. After 

a few trials, utilizing different internal structures, a NN was implemented with two hidden 

layers (with 20 and 8 nodes respectively). Although AGFINN-TSK, AGFINN-CA, AFLS and 

MLP share the same learning training algorithm, the different “philosophy” in building the 

neurofuzzy architecture, allowed those systems to achieve a superior performance. 
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An ANFIS NF model has been constructed, utilising 32 fuzzy rules. As the number of MFs in 

AGFINNs is equal to the numbers of rules, the proposed architecture has advantages over the 

classic ANFIS model. The increased number of Gaussian membership functions increases the 

localization of the input signal while in the same time maintains the required number of rules 

at low level. ANFIS’s training utilises a hybrid learning algorithm, the same as the AGFINN-

RLS scheme. An interesting outcome from this case study is related to the performance of 

wavelet neural network (WNN), which outperformed ANFIS for the case of 22h. The idea of 

utilising wavelets in neural networks has been proposed by Zhang & Benveniste [168]. In this 

type of network, all dilation and translation parameters as well as output layer weights are 

adjustable via GD learning algorithm. Obviously, to improve the approximation accuracy, 

large numbers of wavelet neurons are required for WNN with fixed wavelet bases. This may 

result in a large complex network structure and cause possible over-fitting problems. For this 

research, the wavelet function adopted in WNN’s hidden layer nodes is a modified 

differentiable version of Morlet wavelet, which has the following form 

j 2

j

j j

x m
( )
n

i j
m ,n i

j

x m
(x ) cos(2 ( ))e

n

−

−−
= θϕ πβ  

where m and n  are associated with the dilation and translation parameters respectively. After 

trials, 20 modified Morlet wavelet functions were utilised in the construction of WNN [169]. 

 

6.4.2 Case Study 2 
	
Research has indicated that current hour electricity price shows a high correlation with those 

of hour h-24 and h-168, a fact that indicates daily and weekly periodicity. The objective of 

this particular case study is to investigate this issue, therefore no exogenous input variables 

have been considered as potential input variables. Thus, for electricity price modelling for a 

specific hour (i) and day (j), the following six input variables have been considered:  

Target:  

• Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 

• Price(i, j-2): price at the ith hour on the (j-2)th day, 

• Price(i, j-3): price at the ith hour on the (j-3)th day, 

• Price(i, j-7): price at the ith hour on the (j-7)th day, 
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• Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

• Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

In this proposed case study, the number of input variables was increased to six, as weekly 

information of the electricity price for that specific hour was also considered.  

Figs. 6.9 and 6.10 illustrate the testing performances for minimum (4h) and maximum (22h) 

electricity price forecasting using case study 2, for all simulated forecasting models, while 

Tables 6.4 and 6.5 summarise their statistical performances. 

	

Fig. 6.9 Forecasting Electricity Price at 4h (Case Study 2) 

	

Fig. 6.10 Forecasting Electricity Price at 22h (Case Study 2) 

 Based on this configuration, AGFINN models have been involved in forecasting the 

maximum (22h) and minimum (4h) price respectively. AGFINN-RLS models produced best 

results again. From both forecasting graphs and statistical performances, it is obvious that 
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results have been improved compared to case study 1. This simulation and the improved 

results verified the assumption that electricity prices “contain” a periodicity effect. 

 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 2.9220 3.3089 3.7748 4.5427 6.0034 6.7550 8.7796 

APE 637.484 770.647 929.999 1160.1 1515.4 1493.2 1306.4 

MAPE 5.1828 6.2654 7.5610 9.4320 12.3199 12.1400 10.6214 

MAE 2.2178 2.6347 3.1964 3.9305 5.2979 5.2973 4.8608 

SEP 6.5371 7.4027 8.4450 10.1630 13.4307 15.1124 19.6418 

U1 0.0321 0.0361 0.0402 0.0484 0.0629 0.0710 0.0969 

R2 0.9555 0.9453 0.9580 0.9214 0.9197 0.8729 0.6799 

 

Table 6.4  Statistical performance for Electricity Price Forecasting Models at 4h 
 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 6.9356 7.3320 7.6515 7.9278 9.8380 8.5303 11.6525 

APE 540.905 562.889 560.288 591.165 759.612 666.332 855.803 

MAPE 4.3976 4.5763 4.5552 4.8062 6.1757 5.4173 6.9578 

MAE 5.2993 5.6935 5.7602 5.9638 7.4261 6.6674 9.0974 

SEP 5.7317 6.0593 6.3233 6.5517 8.1302 7.0496 9.6298 

U1 0.0280 0.0297 0.0311 0.0320 0.0400 0.0350 0.0484 

R2 0.9703 0.9686 0.9660 0.9620 0.9462 0.9674 0.9552 

 

Table 6.5  Statistical performances for Electricity Price Forecasting Models at 22h 
 

The optimal structure for AGFINN-RLS included 20 fuzzy rules for both cases. As it is 

illustrated from these statistical tables, an AFLS NF model utilising 20 and 25 rules for 4h 

and 22h respectively, achieved a satisfactory performance, although inferior to AGFINN-CA 

model. Both AFLS and AGFINN-CA shared the same type of defuzzification scheme. Fig. 

6.11 illustrates the performances of AGFINN-based models for this case study. 

Both MLP and ANFIS forecasting results were problematic as they revealed a number of 

unexpected “spikes” and 4h and 22h respectively. The MLP NN retained the same network 

configuration as in case study 1, while in the case of ANFIS, this performance was achieved 

with a high computational cost, by utilizing two membership functions for each input 

variables and 64 fuzzy rules. In contrast, WNN model reveal a remarkable robustness against 

ANFIS, resulting in a similar performance with only 20 wavelet functions.  
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Fig. 6.11 Comparison of AGFINN-based models (Case Study 2) 

6.4.3 Case Study 3 
	
The objective of this model is to expand case study 2, by adding the exogenous input of the 

forecasted electricity load from case study 1. It was considered as very important to evaluate 

the combined effect of exogenous input together with the weekly periodicity characteristics of 

the price. Thus, for electricity price modelling for a specific hour (i) and day (j), the following 

seven input variables have been considered: 

Target:  

• Price(i,j): electricity price at the ith hour on the (j)th day,  

Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 

• Price(i, j-2): price at the ith hour on the (j-2)th day, 
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• Price(i, j-3): price at the ith hour on the (j-3)th day, 

• Price(i, j-7): price at the ith hour on the (j-7)th day, 

• Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th day, 

• Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th day, 

• Load(i,j): electricity load at the ith hour on the jth day, 

In this case study, the number of input variables was increased to seven, due to the inclusion 

of the forecasted value of electricity load. Figs. 6.12 and 6.13 illustrate the testing 

performances for minimum (4h) and maximum (22h) electricity price forecasting using case 

study 3, for all simulated forecasting models. 

	

Fig. 6.12 Forecasting Electricity Price at 4h  (Case Study 3) 

	
Fig. 6.13 Forecasting Electricity Price at 22h (Case Study 3) 
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As it is illustrated from Fig. 6.12, AGFINN, AFLS and WNN models managed to capture the 

dynamics (i.e. trend) at 4h with different levels of accuracy. For this experiment, AGFINN-

RLS utilized 20 rules, while the optimal number of rules for AFLS was 25. WNN performed 

satisfactory with 20 Morlet wavelet functions. On the other hand, forecasting via ANFIS 

model resulted in unexpected spikes. This issue is due to the complexity of the specific 

ANFIS model. With seven input variables and two MFs per input, a massive number of 128 

rules required for training purposes. ANFIS’s performance was significantly improved for the 

case of 22h, as shown in Fig. 6.13. MLP’s performance was deteriorated however for this 

case.  

 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 2.6612 2.9988 3.5844 4.3667 5.4409 5.4184 8.0055 

APE 608.757 674.439 857.814 944.293 1023 1273.9 2040.3 

MAPE 4.9492 5.4832 6.9741 7.6772 8.3168 10.3565 16.5878 

MAE 2.0810 2.2845 2.9241 3.34409 3.5089 4.3761 6.8644 

SEP 5.9536 6.7089 8.0189 9.7692 12.1724 12.1219 17.9098 

U1 0.0290 0.0326 0.0383 0.0474 0.0590 0.0579 0.0815 

R2 0.9635 0.9555 0.9588 0.9229 0.8630 0.8802 0.9079 
 

Table 6.6 Statistical performance for Electricity Price Forecasting Models at 4h 

 AGFINN 
RLS 

AGFINN 
TSK 

AGFINN 
CA AFLS ANFIS WNN MLP 

        

RMSE 6.4605 6.8514 7.5032 7.7340 9.1584 8.0368 11.4835 

APE 487.999 521.740 616.196 550.734 655.688 606.248 739.416 

MAPE 3.9675 4.2418 5.0097 4.4775 5.3308 4.9288 6.0115 

MAE 4.8768 5.2331 5.9290 5.7301 6.9329 6.1892 7.9360 

SEP 5.3391 5.6621 6.2007 6.3915 7.5686 6.6417 9.4901 

U1 0.0260 0.0277 0.0303 0.0314 0.0377 0.0325 0.0473 

R2 0.9742 0.9718 0.9699 0.9670 0.9682 0.9604 0.9388 
 

Table 6.7 Statistical performance for Electricity Price Forecasting Models at 22h 
 

Tables 6.6 and 6.7 summarise statistical performances for minimum (4h) and maximum (22h) 

electricity price forecasting using case study 3, for all simulated forecasting models. AGFINN 

models in both experiments outperformed “rival” models, as shown also from the statistical 

tables. 
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Although, case study 3 proved to be the most accurate compared to previous cases, even in 

this case, there were variations in performance among AGFINN-based models. All models 

utilise FCM clustering units, as well as asymmetric functions as MFs.  

 

 
 

 
 

Fig. 6.14 Comparison of AGFINN-based models (Case Study 3) 

The difference in defuzzification part is mainly responsible for such variations. It was verified 

that TSK-based models are more accurate/suitable for forecasting applications that CA-based 

systems. AGFINN-RLS utilised the recursive least squares for tuning the linear parameters at 

TSK part, similarly to the case of ANFIS. Fig. 6.14 illustrates the performances of AGFINN-

based models for this case study. 
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The plot of predicted (via AGFINN-RLS) versus observed electricity prices is illustrated in 

Fig. 6.15, and shows a very good distribution around the line of equity (y=x). This is also 

verified by the 2R index which indicated a very good fit of the observed data from the 

AGFINN-RLS based approach for both 4h and 22h tests. 

 

 

 

Fig. 6.15 AGFINN-RLS  Forecasting performance (Case Study 3) 

 

Electricity price forecasting has become essential to power consumers and producers in the 

deregulated electricity market. Developing an effective and accurate forecasting model has 

thus become a very important task. This work presented an hourly-ahead short-term 

electricity price forecast by using novel neurofuzzy modelling approaches in ISO New 

England market. In ISO New England market, the main challenging issue is that the hourly 
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market price curves are highly volatile. AGFINN models utilised Fuzzy C-Means clustering 

method for identifying the number of MFs/rules, while asymmetric MFs have replaced the 

traditional Gaussian functions in the fuzzification component of the NF architecture. Two 

distinct approaches have been investigated based on the defuzzification scheme. The 

effectiveness of the proposed approaches has been thoroughly assessed by comparing them 

with alternative neural or neurofuzzy techniques, via three case studies. Future research 

includes the incorporation in the modelling process additional exogenous parameters, as well 

as the adoption of an alternative clustering method for the pre-processing stage. There is need 

to explore further the use of hybrid intelligent systems in the area of electricity price 

forecasting, and this research has contributed towards this goal. 
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Chapter Seven 
 

 CONCLUSIONS AND FUTURE ENHANCEMENTS 
 

7.1 Conclusions  
 

Nearly two decades back nonlinear system identification consisted of several ad-hoc 

approaches, which were restricted to a very limited class of systems. However, with the 

advent of the various soft computing methodologies like neural networks and the fuzzy logic 

combined with modern structure optimization techniques, a wider class of systems can be 

handled at present. Complex systems may be of diverse characteristics and nature. These 

systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, 

static or dynamic, short term or long term, central or distributed, predictable or unpredictable, 

ill or well defined. System outputs may be measurable or not measurable. Models of real 

systems are of fundamental importance in virtually all disciplines and hence there is a strong 

demand for advanced modelling and identification schemes. This is because models help in 

system’s analysis, which in turn helps to get a better understanding of the system for 

predicting or simulating a system’s behaviour. The challenges involved in modelling and 

identification of a nonlinear system are too many and efforts had been made to tackle them by 

applying various soft computing methodologies. Neural networks and fuzzy systems have 

been combined to join their advantages and to cure their individual “illnesses”. Neural 

networks introduced their computational characteristics of learning in the fuzzy systems and 

received from them the interpretation and clarity of systems representation. Thus, the 

disadvantages of the fuzzy systems are compensated by the capacities of the neural networks.  

Throughout main parts of this thesis, an attempt has been made to construct advanced 

neurofuzzy (NF) architectures and verify their capabilities through a number of real case 

studies. Obviously, during this process, extensive comparison against established modelling 

schemes has been considered in order to justify the adoption/use of the proposed methods. 

Reviewing chapters 4, 5 and 6, we could easily identify the “evolution” of the proposed 

attempt to create a novel multipurpose neurofuzzy modelling architecture.   

In chapter 4, an Adaptive Fuzzy Logic System (AFLS) model was implemented to associate 

FTIR spectral data with beef spoilage. According to literature, for the first time in the world, 

neurofuzzy systems have been used in this specific area. The AFLS model, a classic MIMO 

scheme, included a prototype defuzzification scheme and was different from conventional 
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fuzzy rule-table approaches that utilise the “look-up table” concept. In those models, as one 

fuzzy rule is normally assigned for each one of these subspaces, their main drawback is that 

the number of fuzzy rules increases exponentially with respect to the number of inputs n . The 

Adaptive NeuroFuzzy Inference System (ANFIS) is a classical example of such approach, 

where the number of fuzzy rules is related to the number of input variables as well as the 

number of membership functions for each input. In the case of AFLS, the number of 

memberships for each input variable is directly associated to the number of rules, hence, the 

“curse of dimensionality” problem is significantly reduced. The MIMO characteristics and the 

“fuzzification” structure of AFLS have been considered as important issues to be incorporated 

in the development of an advanced neurofuzzy model. Performance of AFLS was superior to 

that of ANFIS, while prediction performances of MLP and PLS schemes revealed the 

deficiencies of these systems, which have been used extensively in the area of Food 

Microbiology. 

The methodology proposed in Chapter 5, addresses some interesting ideas that could be 

incorporated in an advanced NF scheme. The main objective of that chapter was to associate, 

for the first time again according to literature, spectral data acquired by multispectral imaging 

techniques with meat spoilage, using neurofuzzy systems. In addition, for the first time, an 

identification model was built to predict the temperatures under which meat samples were 

stored. The modelling aspects of this case study are associated with the concept of MISO 

modelling schemes. It is well known that TSK-based NFs, such as ANFIS, have enjoyed a 

great success in modelling single output nonlinear problems. The realization of AFINN model 

follows also the classic TSK structure, incorporating however a clustering unit in the 

fuzzification section and an additional internal competitive clustering layer. Unlike the 

ANFIS system, where the number of local linear systems is the same as the number of rules, 

AFINN provides a means of controlling the growth of the number of local linear systems 

when the order of the system under consideration increases, so that least-squares estimation 

can be applied without performance degradation. A clustering algorithm is applied for the 

sample data in order to organize feature vectors into clusters, such that points within a cluster 

are closer to each other than vectors belonging to different clusters. The fuzzy rule base is 

derived using results obtained from a clustering algorithm. Results from AFINN scheme 

revealed its superiority, against models based on ANFIS, multilayer neural networks (MLP), 

Non-linear regression and PLS schemes.  

The knowledge gained from the previous two case studies were summarised to the following 

desirable objectives for an advanced NF scheme:  

• A NF model must have minimum possible number of rules 

• A NF model must be generic acting either as MISO or MIMO identification model 
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• A NF model must have a versatile nonlinear membership function. 

Based on these objectives, the AGFINN architecture was developed in Chapter 6 and was 

evaluated to an electricity price forecasting problem. AGFINN models utilised fuzzy C-means 

clustering method for identifying the number of MFs/rules, while asymmetric MFs have 

replaced the traditional Gaussian functions in the fuzzification component of the NF 

architecture. AGFINN has been designed acting either as an MISO or MIMO system. In the 

MISO case, a TSK defuzzification scheme has been adopted, while for the MIMO case, a 

“centre average” (CA) defuzzifier has been used as defuzzification scheme. For the case of 

TSK scheme, a hybrid learning algorithm has been also developed. The proposed modelling 

schemes are compared successfully against AFLS, ANFIS, Wavelet network (WNN) and 

MLP NN modelling schemes in order to assess their prediction performance. 
 

7.2 Future Enhancements 
 

There are a number of issues that have been left out of the scope in the present thesis, which 

could be considered as a future work. Future enhancements of this research’s field can be 

aligned in several directions. Points mentioned below, are just some of the possible 

extensions that could be done as future work. 

Advanced Clustering Algorithm: Although the hypothesis of having a pre-processing 

clustering step proved to be valid for the AGFINN scheme, there is need for a more efficient 

unsupervised clustering algorithm, where the number of clusters needs to be identified from 

the algorithm itself. For real applications, we might look also for a “topology”- based 

algorithms, such as growing cells or growing neural gas. 

Asymmetric Function: The hypothesis of having an asymmetric fuzzy membership function 

proved to be valid. It could be interesting to see the incorporation of asymmetric function to 

wavelet functions used as MFs in fuzzy wavelet models. Alternatively, AGFINN could be 

transformed to a fuzzy wavelet version by replacing the polynomial function at the TSK 

defuzzification with a wavelet NN.  

Adaptive structure/parameter learning: Off-line clustering methods require that data 

should be ready before the modelling. Obviously, it is difficult for human experts to examine 

all the input–output data from a real complex system to find a number of proper rules for the 

fuzzy system. Hence, an alternative way is to consider a two learning stages procedure, the 

structure learning phase and the parameter learning phase. These two phases are done 

simultaneously. Rules and parameters are created and adapted as on-line learning proceeds 

via simultaneous structure and parameter identification. Extended Kalman Filter as a learning 

algorithm could also replace the classic GD algorithm. 	  
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