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ABSTRACT 

Aim: Gut microbial dysbiosis is implicated in the pathogenesis of non-alcoholic 

steatohepatitis (NASH). We investigated downstream effects of gut microbiota modulation 

on markers of hepatic inflammation, steatosis, and hepatic and peripheral insulin sensitivity 

in patients with NASH using Rifaximin therapy. 

Methods: Patients with biopsy-proven NASH and elevated aminotransferase values were 

included in this open-label pilot study, all receiving 6 weeks Rifaximin 400mg twice daily, 

followed by a 6 week observation period. The primary endpoint was change in ALT after 6 

weeks of Rifaximin. Secondary endpoints were change in hepatic lipid content and insulin 

sensitivity measured with a hyperinsulinaemic euglycaemic clamp. 

Results: Fifteen patients, 13 male, 2 female, with median (range) age 46(32-63) years were 

included. Seven had diabetes on oral hypoglycaemic medications and 8 had no diabetes. 

After 6 weeks of therapy, no differences were seen in ALT (55 [33-191] versus 63 [41-

218]IU/L, p=0.41), peripheral glucose uptake (28.9 [19.4-48.3] to 25.5 [17.7-47.9] 

µmol/kg/min, p=0.30), hepatic insulin sensitivity (35.2 [15.3-51.7]% versus 30.0 [10.8-

50.5]%, p=0.47), or hepatic lipid content (21.6[2.2-46.2]% before and 24.8[1.7-59.3]% after 

Rifaximin, p=0.59) before and after Rifaximin treatment.  After 12 weeks from baseline, 

serum ALT increased to 83(30-217)IU/L, p=0.02. There was a significant increase in HOMA-IR 

(p=0.05). The urinary metabolic profile indicated a significant reduction in urinary hippurate 

with treatment, which reverted to baseline after cessation of Rifaximin, although there was 

no consistent difference in relative abundance of faecal microbiota with treatment.  
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Conclusion: These data do not indicate a beneficial effect of Rifaximin in patients with 

NASH.  

Abstract 248 words (max 250) 

 

Key words: 
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and 

an increasing cause of liver-related morbidity and mortality globally(1, 2). NAFLD, and its 

inflammatory and potentially progressive subtype, non-alcoholic steatohepatitis (NASH), 

represents a complex disease trait, with genetic and environmental influences on incidence 

and disease progression(2, 3). While lifestyle measures in order to achieve sustained weight 

loss, including dietary changes and regular exercise are the mainstay of current 

management(4), many patients do not respond to such measures and specific therapies are 

lacking(5, 6). 

 

The gut microbiota is increasingly recognised as a key metabolic influence in the body and a 

potentially modifiable environmental target in disorders of energy metabolism and fat 

storage(7).  Mechanisms include increase of calorific yield of meals by co-digestion, 

production of short chain fatty acids and bacterial endotoxin (7, 8)(9).  
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Microbial interventions, such as transfer of caecal contents from conventionally-raised mice 

to germ free mice have been shown to alter the host phenotype(7), while a study in patients 

with the metabolic syndrome demonstrated improved insulin sensitivity in patients 

receiving a faecal allogenic enteric infusion from a lean donor than from an autologous 

infusion(10). Besides direct microbial transfer, other methods for alteration of the gut 

microbiota include use of prebiotics, probiotics and antibiotics(11). Antibiotic therapy in 

obese mice reduced LPS and improved the metabolic phenotype(12), while Rifaximin was 

found to reduce endotoxinaemia in patients with decompensated cirrhosis, associated with 

improvements in hepatic synthetic function, but not aminotransferase values(13). 

 

Rifaximin is a minimally-absorbed, broad spectrum antibiotic, which has been found to have 

clinical utility in a number of gastrointestinal settings with few side effects(14-16). With 

standard oral dosing, intraluminal drug levels exceed the minimum inhibitory 

concentrations for most bacterial species by up to 250-fold, while systemic absorption is 

<0.4% of the dose(17).  

 

We hypothesised that modulation of the gut microbiota, using Rifaximin, in humans with 

NASH would lead to improvement in hepatic inflammation, hepatic lipid content and insulin 

sensitivity. Thus, we conducted a pilot prospective clinical trial to evaluate the efficacy and 

safety of such an approach. We examined the faecal microbiota, urinary metabolome and 

inflammatory cytokine profile as secondary analyses to assess whether any changes 

observed were linked to detectable differences in bacterial populations, to microbial co-

metabolism and whether this could be mediated by inflammatory signalling. 
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METHODS 

Ethical approval (REC 10/H0711/58) was obtained and the study was registered on the 

European Clinical Trials Database (EudraCT 2010-021515-17). Patients were recruited from 

Hepatology clinics at a single UK centre (Imperial College Healthcare NHS Trust) between 

May 2011 and June 2012. Informed consent was obtained from all patients included in the 

study and the study protocol conforms to the ethical guidelines of the 1975 Declaration of 

Helsinki as reflected in a priori approval by the institution's human research and ethics 

committee (West London REC 2). Male and female patients were eligible for inclusion if 

aged between 18 and 70 years with non-alcoholic steatohepatitis histologically-proven, as 

evidenced by the presence of all of: steatosis, hepatocyte ballooning and lobular 

inflammation, and scored according to Kleiner(18) by a single experienced histopathologist 

(RDG) within the previous year, with or without mild to moderate fibrosis (stage 0-3/4) and 

with persistently elevated alanine aminotransferase (ALT) values on at least two occasions 

in the three months prior to recruitment. Patients were excluded if there was histological 

evidence of cirrhosis; hepatic decompensation; regular alcohol consumption exceeding 14 

units/week (16g ethanol/day) for a woman or 21 units/week (24g ethanol/day) for a man; 

evidence of viral, autoimmune or other metabolic liver disease on a chronic liver disease 

screen; a history of malignancy or systemic inflammatory conditions; myocardial infarction 

or cerebrovascular events in the preceding 6 months; a history of bariatric surgery, blind 

loop or short bowel; use of any treatment known or suspected to change bowel flora within 

3 months of enrolment; initiation or major dose change of metformin, thiazolinediones, 

biguanides, statins, fibrates, anti-obesity medications or insulin within 3 months of 

enrolment. 



 

 
This article is protected by copyright. All rights reserved. 

Study design 

This was an open-label study of Rifaximin (Normix, Alfa Wasserman S.p.A, Bologna, Italy) 

400mg twice daily for six weeks followed by a further six weeks observation period during 

which patients received standard care. Compliance with treatment was checked by 

collection of empty blister packs. Subjects were asked to provide a structured dietary and 

lifestyle history as previously described(19). The primary endpoint was change in ALT after 6 

weeks’ Rifaximin therapy. Secondary endpoints were change in hepatic and whole-body 

insulin sensitivity assessed by the two-stage hyperinsulinaemic euglycaemic clamp and 

change in hepatic triglyceride content assessed by proton nuclear magnetic resonance 

spectroscopy at 6 weeks from baseline. Serum ALT, biochemistry and anthropometrics were 

also measured at 12 weeks to look for longer-term effects. Stool microbiota, urinary 

metabolic profile and serum cytokine profile were measured before and after intervention.  

Laboratory measurement 

Routine biochemistry was undertaken by the hospital biochemistry laboratory on the 

Aeroset (ALT, AST, HDL, triglyceride) or Architect (insulin) clinical chemistry analyser 

platforms (Abbott Diagnostics, Illinois, USA). Insulin concentrations were determined using a 

one-step chemiluminescent immunoassay. Cytokine analysis was performed by Aushon 

Multiplex Immunoassay Analysis (Aushon Biosystems, Billerica, USA). 

Hyperinsulinaemic euglycaemic clamp 

The two-step hyperinsulinaemic euglycaemic clamp combined with a [6,6-2H2]glucose 

infusion to measure insulin sensitivity was performed as previously described and detailed 

in the supplementary information (20). Patients consumed nothing but water orally after 
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eating a low-fat pre-prepared meal (identical before and after intervention) 10 hours prior 

to the clamp study.  

Plasma glucose concentration and enrichment time-courses were smoothed using optimal 

segments analysis(21) and non-steady-state equations(22) 

 

Proton nuclear magnetic resonance spectroscopy 

Patients fasted for at least 10 hours prior to scanning.  Rapid T1-weighted magnetic 

resonance images were acquired using a 1.5T Phillips AchievaTM scanner (Philips Medical 

Systems, Best, Netherlands), as previously described(23). Proton nuclear magnetic 

resonance (1H NMR) spectra were acquired at 1.5T, using a surface coil. Transverse images 

of the liver were used to ensure accurate positioning of the (20x20x20 mm) voxel in the 

liver, avoiding blood vessels, the gall bladder and fatty tissue. Spectra were obtained from 

the right lobe of the liver using a PRESS sequence (TR 1500ms, TE 135 ms) without water 

saturation and with 128 signal averages. Intrahepatocellular lipids (IHCL) were measured 

relative to liver water content, as previously described(24).  

Faecal microbiota 

Faeces were collected in a sterile container at each assessment visit and frozen at -70⁰C 

within 10 minutes. DNA was extracted using a Qiagen DNA stool extraction kit (Qiagen, 

Manchester, UK), with an additional bead beating step added before the ASL buffer was 

added to the stool sample. The extracted DNA was quantified using a Qubit platform and all 

DNA samples were normalised to 10 ng/µL. The 16S rRNA gene was amplified using primers 

for the V1 to V3 regions and sequenced using paired end 250bp chemistry on an Illumina 
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MiSeq platform (Illumina Inc, San Diego, California). The data were analysed using 

bioinformatics statistical packages (Mothur, STAMP) and R (R Foundation, Vienna, Austria) 

to determine whether any statistically significant changes in the profiles of the faecal 

microbiota had occurred(25-27). 

 

Urinary metabolomics 

Urine was collected, processed and buffered as detailed in the supplementary information. 

All NMR spectra were referenced, phased and baselined corrected as detailed in the 

supplementary information. Data were initially modelled using unsupervised principle 

components analysis (PCA) and subsequently combined with clinical data and modelled 

using orthogonal partial least squares discriminant analysis (OPLS-DA). For univariate 

analyses Topspin (Bruker, Billerica, USA) was used to integrate under spectral resonances 

for metabolites of interest and the quantitative data was analysed in the statistics package 

SPSS (IBM, Armonk, USA). 

Statistical analysis 

Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, USA). Based on 

historical data from 20 patients with paired ALT data in response to lifestyle and standard of 

care intervention from the NAFLD clinic at our institution, a sample size of 16 would provide 

80% power and  of 0.05 to detect a change in ALT of 25IU/L with an expected standard 

deviation of the difference of 33IU/L. Data were non-parametrically distributed, so are 

displayed as median (range). Significance of differences in endpoints before and after 

intervention was tested by the Wilcoxon Signed Rank test.  
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RESULTS 

Of the 77 patients with biopsy-proven NAFLD evaluated in clinic over the recruitment 

period, 41 met inclusion criteria and were invited to take part in the study. On receipt of the 

patient information, 18 patients declined to participate and 23 were screened. Of these, a 

further two declined to participate further at the screening visit and three were excluded by 

the screening questionnaire. Of the 15 patients who initiated the study protocol, one 

participant was unable to tolerate MR scanning owing to claustrophobia and another 

participant declined the hyperinsulinaemic euglycaemic clamp having already started the 

study.  Baseline patient characteristics are displayed in Table 1. 100% compliance with 

Rifaximin therapy was reported by all participants. One subject noted loose stools for 36 

hours during therapy, which resolved spontaneously and therapy was not discontinued. No 

other adverse events were recorded. Recruitment was halted after enrolment of 15 subjects 

because of difficulty in recruitment to the full study protocol over the defined study time 

period. 

Hepatocellular inflammation 

Alanine aminotransferase (ALT) values, the primary endpoint in this study, were 55IU/L (33-

191) before Rifaximin, 63IU/L (41-218) after 6 weeks’ Rifaximin (p=0.41 compared to 

baseline) and 83IU/L (30-217) after a further 6 weeks follow-up (p=0.017 compared to 

baseline), Figure 1A. Anthropometrics, HOMA-IR and lipid profile before and after Rifaximin 

are shown in Table 2. There was a significant increase in HDL and HOMA-IR at 12 weeks. 
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Hepatic Lipid content 

Hepatic lipid content (IHCL) was 21.6% (2.2-46.2) before and 24.8% (1.7-59.3) after 

Rifaximin, p=0.59. Figure 1B.  

Insulin sensitivity 

Hepatic insulin sensitivity as assessed by suppression of hepatic glucose production was 

35.2% (15.3-51.7) before Rifaximin and 30.0% (10.8-50.5) after Rifaximin, p=0.47, Figure 1C. 

Peripheral insulin sensitivity as assessed by glucose Rd was 28.9 mol/kg/min (19.4-48.3) 

before Rifaximin and 25.5 mol/kg/min (17.7-47.9) after Rifaximin, p=0.30, Figure 1D.  

Cytokine analysis 

There were no differences in serum cytokine values, including TNF and IL-1 before and 

after treatment with Rifaximin, and over the observation periods (Supplementary Table 1). 

 

Urinary metabonomics 

Urinary metabolites were identified as seen in the representative urinary metabolic profile, 

Figure 2A. Principal components analysis of urinary metabolic profiles demonstrated close 

clustering of quality control samples and case samples clustered by patient, Figure 2B. 

Supervised partial least squares discriminant analysis (OPLS-DA) failed to produce robust, 

predictive models based upon the effect of treatment upon urinary metabolic profiles. 

Examination of the loadings plots for the OPLS-DA models identified three metabolites, 

alanine, creatinine and hippurate, with modest correlation with treatment status, Figure 2C. 

These metabolites were examined further in univariate analyses, Figure 2D. A significant 
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decrease in hippurate levels was observed following treatment with rifaximin (p=0.048). A 

significant increase in hippurate levels was seen from immediately after treatment to 6 

weeks after its discontinuation (p=0.035); no difference was seen between 6 weeks post-

treatment and pre-treatment hippurate levels (p=0.721). There were no statistically 

significant changes in alanine or creatinine levels with treatment. 

 

Stool Microbiota 

No consistent differences were observed in the relative abundance of gut microbiota at the 

phylum level in faeces with Rifaximin treatment (Figure 3). However significant differences 

in the microbiota were seen at the genus level in individual patients with Rifaximin 

treatment (Supplementary Figure 1, published online), although these differences were not 

common to all subjects. 

 

DISCUSSION 

In this study, we performed an open-label clinical trial of Rifaximin in patients with NASH to 

test effect and safety. Although there was no evidence of change in markers of hepatic 

inflammation, hepatic lipid content or insulin sensitivity after 6 weeks of therapy, serum ALT 

values increased significantly from baseline to 12 weeks, in association with increased 

insulin resistance as assessed by the HOMA-IR score. An increase in serum HDL values was 

also observed. Univariate analysis of urinary hippurate levels suggests that treatment 

transiently suppressed the production of this metabolite. However, robust changes were 

not demonstrated in the faecal microbiota, or a panel of pro- and anti-inflammatory serum 

cytokines. No adverse events were recorded. These results contrast with another recent 
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open label study of Rifaximin in NAFLD/NASH which reported an improvement in liver 

biochemistry, body mass index and IL-10 after 28 days of Rifaximin 1200mg per day in 27 

patients with NASH, although insulin sensitivity, liver fat and gut microbiota were not 

assessed specifically in that study(28). 

 

Ours was a prospective clinical study in which subjects were intensively investigated to look 

for signals of biological effect of Rifaximin on NASH in human subjects that might form the 

basis of larger studies of longer duration. The sample size is relatively small, but the study 

was powered to detect a difference in ALT of 25IU/L with treatment, which was not seen. 

This study included more patients than studies using the hyperinsulinaemic euglycaemic 

clamp to assess the effects of antibiotic administration and faecal transfer on insulin 

sensitivity(10, 29), so might be expected to show a difference in insulin sensitivity if 

Rifaximin were to cause an effect of similar magnitude to those interventions. The study was 

of similar size to studies assessing the microbial and metabolic effects of Rifaximin in 

cirrhosis(30, 31) and the effect of Rifaximin on liver biochemistry in patients with PSC(32). 

Nevertheless, the study was not powered to detect differences in subgroups, such as those 

with and without type 2 diabetes mellitus. The six-week course of therapy may be 

considered short, but metabolic effects of antibiotics are seen at 1 week(29) and changes in 

hepatocellular inflammation are detectable rapidly in serum. The dose of Rifaximin used in 

this study is lower than in other recent clinical trials which have used 550mg twice daily, a 

dose licenced for use in the secondary prophylaxis of hepatic encephalopathy(14). This 

difference reflects the Rifaximin preparations and dosing information available, and the 

clinical usage for gastrointestinal infections at the time of study initiation. Assessment of 

changes to the intestinal microbiota using sequencing of faecal bacterial DNA is limited as 
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the faecal microbiota may not reflect the metabolically active microbiota at the small bowel 

mucosa, which are implicated in the effects of Rifaximin and more readily sampled in animal 

studies(33).  

 

Although the primary and secondary outcome measures were not altered by Rifaximin in 

this study, some additional markers changed post-treatment. These differences were not 

specified in the a priori analysis so should be interpreted tentatively at this stage. However, 

this, and other studies, suggest that some broad spectrum oral antibiotics, including 

Rifaximin, may be associated with adverse metabolic and hepatic responses. For example, 

oral administration of a short course of vancomycin reduced peripheral insulin sensitivity in 

patients with the metabolic syndrome, in association with reduced gut microbial 

diversity(29). In another study of  patients with cirrhosis before and after Rifaximin 

administration, there was a reduction in the ratio of secondary to primary bile acids(31), 

suggesting a possible mechanism for any Rifaximin-induced insulin resistance. As in the 

present study, previous work using a systems biology approach to evaluate metabolic and 

microbial effects of Rifaximin in patients with cirrhosis and minimal hepatic encephalopathy 

demonstrated no significant difference in the overall microbiome composition of stool(30). 

So, in contrast with in vitro studies, which demonstrate activity against a broad-spectrum of 

bacteria(34), the effects of Rifaximin in vivo may be on bacterial function and virulence, 

rather than simply a reduction in numbers(35, 36). The observation in the present study that 

urinary hippurate levels decreased with Rifaximin therapy is relevant as urinary hippurate is 

influenced by the intestinal microbiota (as well as age, sex and dietary intake, which were 

controlled for in the present study)(37). Hippurate is a glycine conjugate of benzoic acid and 

a normal constituent of the human urinary metabolite profile. Germ-free mice have 
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significantly lower levels of urinary hippurate than conventially raised mice(38) and 

administration of vancomycin to mice leads to changes in the faecal microbiome and 

associated suppression of urinary hippurate levels(39). Metabolism of high-molecular 

weight polyphenolic compounds by colonic microbiota leads to production of benzoic acid 

which may be excreted as hippurate(37). Differential capacities of microbiota species to 

metabolise polyphenolic compounds(40) means that antibiotic-mediated changes in 

bacterial numbers or population composition may alter the bioavailability of upstream 

metabolites of benozoic acid and this lead to changes in urinary hippurate levels. Benzoic 

acid is converted to hippurate predominantly in hepatic mitochondria and impaired hepatic 

function is associated with a decreased capacity to produce hippurate from orally or 

intravenously administered precursors(41, 42). Thus there is some evidence that the 

transient depression in urinary hippurate levels with Rifaximin in this study is mediated by 

suppression of such activity by colonic microbiota. 

This work indicates that the use of a minimally-absorbed, broad spectrum antibiotic is not 

associated with consistent changes in the stool microbiota at the phylum or genus level, but 

suggests a metabolic effect, illustrated by the urinary hippurate levels. Nevertheless, such 

an intervention has not led to detectable changes in ALT, insulin sensitivity and hepatic 

steatosis, nor is it associated with a robust pattern of inflammatory cytokines. This study 

does not support the use of antibiotics as a therapeutic intervention in NASH, but suggests a 

possible adverse metabolic effect which needs further evaluation. The variable effect of this 

intervention at a genus level between patients indicates that future studies should focus on 

functional niches rather than the abundance of the microbiota to direct therapy. Future 
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therapies targeting the gut microbiota will need to be more nuanced to result in beneficial 

metabolic and inflammatory modulation. 

Administration of Rifaximin for 6 weeks to subjects with non-alcoholic steatohepatitis was 

not associated with changes in markers of hepatocellular damage, hepatic triglyceride 

content, insulin sensitivity or systemic inflammation at 6 weeks, although an increase in 

serum ALT levels was noted at 12 weeks, associated with increased HOMA-IR and HDL. On 

the basis of the evidence presented in this study, Rifaximin cannot be recommended as a 

potential therapy in NAFLD/NASH, but further studies are warranted to investigate the 

hepatic and metabolic consequences of enteric antibiotic therapies.  
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Table 1. Baseline Characteristics.  

Characteristic Total cohort 

Number 15 

Gender, M/F 13/2 

Age, yrs 46 (32-63) 

Weight, kg 83.8 (66.3-116.0) 

BMI, kg/m2 27.2 (22.9-35.3) 

Waist, cm 101.9 (86.9-127.3) 

Diabetes, Y/N 7/8 

Abdominal Obesity†, Y/N 14/1 

Dyslipidaemia† , Y/N 11/4 

Hypertension†, Y/N 9/6 

Metabolic syndrome†, Y/N 9/6 

ALT, IU/L 55 (33-191) 

AST, IU/L 35 (20-100) 

Triglyceride, mmol/L 1.69 (0.94-2.94) 

HDL, mmol/L 1.07 (0.73-1.45) 

HOMA -IR 3.65 (1.52- 8.18) 

Histology‡  

Steatosis, 0/1/2/3 0/4/8/3 

Ballooning, 0/1/2/3 0/12/3/0 

Lobular inflammation, 0/1/2 0/12/3 

Fibrosis, 0/1/2/3/4 1/6/4/4/0 

Data expressed as numbers or median (range) as appropriate. †IDF criteria 2005. ‡ Kleiner 

et al. 2005 
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Table 2. Anthropometrics and metabolic clinical chemistry 

 Pre-Rifaximin (0 

weeks) 

Post-Rifaximin (6 

weeks) 

†P= Post-Rifaximin (12 

weeks) 

†P= 

BMI, kg/m2 27.15 (22.86-35.27) 27.84 (22.92-35.59) 0.14 28.08 (22.73-35.59) 0.47 

Waist, cm 101.9 (86.9- 127.3) 100.6 (87.7-125.5) 0.58 101.5 (87.0-126.0) 0.27 

HOMA-IR 3.65 (1.52-8.18) 4.31 (1.25-8.54) 0.08 4.29 (2.04-15.71) 0.05 

Total 

Cholesterol, 

mmol/L 

4.68 (2.52-5.98) 4.65 (2.58-7.37) 0.14 4.44 (2.75-7.10) 0.33 

HDL, mmol/L 1.07 (0.73-1.45) 1.11 (0.80-1.45) 0.18 1.19 (0.77-1.62) 0.004 

Triglycerides, 

mmol/L 

1.69 (0.94-2.94) 1.47 (0.81-3.17) 0.73 1.47 (0.76-5.23) 0.89 

†compared to baseline 

  



 

 
This article is protected by copyright. All rights reserved. 

FIGURE LEGEND 

 

Fig. 1. Primary and secondary study endpoints before and after Rifaximin therapy. (A) 

Serum ALT values at baseline, 6 weeks (end of treatment) and 12 weeks (6 weeks after end 

of treatment). Individual patient data (n=15). * P=0.41 vs baseline, # P=0.02 vs baseline, 

P=0.04 vs 6 wks. (B) Intrahepatocellular lipid content (IHCL), expressed as a percentage, 

before and after Rifaximin therapy. Individual patient data (N=14). (C) Hepatic insulin 

sensitivity (% suppression of endogenous glucose production, SEGP) before and after 

Rifaximin therapy. Individual patient data, (N=14). (D) Peripheral insulin sensitivity (Rd) 

before and after Rifaximin therapy. Individual patient data (N=14). 
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Fig. 2. Urinary metabonomic analysis. (A) Typical 1D-NOSEY NMR spectrum of urine. (B) 

Scores plot from unsupervised principal components analysis, coloured by timepoint and 

labelled by patient identification number. (C) S-line loadings plot from OPLS-DA for pre- and 

post- treatment timepoints. (D) Boxplots of quantified metabolites of interest at each study 

timepoint. 
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Fig. 3. Effect of Rifaximin on the phylum level composition of faeces. The heatmap shows 

the abundance of the phylum-level 16S rRNA gene sequences for each patient pre and post 

Rifaximin. Relative abundances of the sequence reads plotted are colour coded from less 

(blue) to more abundant (red). The colour value shows log10 fold changes. 

 

 


